1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 *    Alexander Graf <agraf@suse.de>
7 *    Kevin Wolf <mail@kevin-wolf.de>
8 *    Paul Mackerras <paulus@samba.org>
9 *
10 * Description:
11 * Functions relating to running KVM on Book 3S processors where
12 * we don't have access to hypervisor mode, and we run the guest
13 * in problem state (user mode).
14 *
15 * This file is derived from arch/powerpc/kvm/44x.c,
16 * by Hollis Blanchard <hollisb@us.ibm.com>.
17 */
18
19#include <linux/kvm_host.h>
20#include <linux/export.h>
21#include <linux/err.h>
22#include <linux/slab.h>
23
24#include <asm/reg.h>
25#include <asm/cputable.h>
26#include <asm/cacheflush.h>
27#include <linux/uaccess.h>
28#include <asm/interrupt.h>
29#include <asm/io.h>
30#include <asm/kvm_ppc.h>
31#include <asm/kvm_book3s.h>
32#include <asm/mmu_context.h>
33#include <asm/switch_to.h>
34#include <asm/firmware.h>
35#include <asm/setup.h>
36#include <linux/gfp.h>
37#include <linux/sched.h>
38#include <linux/vmalloc.h>
39#include <linux/highmem.h>
40#include <linux/module.h>
41#include <linux/miscdevice.h>
42#include <asm/asm-prototypes.h>
43#include <asm/tm.h>
44
45#include "book3s.h"
46
47#define CREATE_TRACE_POINTS
48#include "trace_pr.h"
49
50/* #define EXIT_DEBUG */
51/* #define DEBUG_EXT */
52
53static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54			     ulong msr);
55#ifdef CONFIG_PPC_BOOK3S_64
56static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57#endif
58
59/* Some compatibility defines */
60#ifdef CONFIG_PPC_BOOK3S_32
61#define MSR_USER32 MSR_USER
62#define MSR_USER64 MSR_USER
63#define HW_PAGE_SIZE PAGE_SIZE
64#define HPTE_R_M   _PAGE_COHERENT
65#endif
66
67static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68{
69	ulong msr = kvmppc_get_msr(vcpu);
70	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71}
72
73static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74{
75	ulong msr = kvmppc_get_msr(vcpu);
76	ulong pc = kvmppc_get_pc(vcpu);
77
78	/* We are in DR only split real mode */
79	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80		return;
81
82	/* We have not fixed up the guest already */
83	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84		return;
85
86	/* The code is in fixupable address space */
87	if (pc & SPLIT_HACK_MASK)
88		return;
89
90	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92}
93
94static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95{
96	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97		ulong pc = kvmppc_get_pc(vcpu);
98		ulong lr = kvmppc_get_lr(vcpu);
99		if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100			kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101		if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102			kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103		vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104	}
105}
106
107static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108{
109	unsigned long msr, pc, new_msr, new_pc;
110
111	kvmppc_unfixup_split_real(vcpu);
112
113	msr = kvmppc_get_msr(vcpu);
114	pc = kvmppc_get_pc(vcpu);
115	new_msr = vcpu->arch.intr_msr;
116	new_pc = to_book3s(vcpu)->hior + vec;
117
118#ifdef CONFIG_PPC_BOOK3S_64
119	/* If transactional, change to suspend mode on IRQ delivery */
120	if (MSR_TM_TRANSACTIONAL(msr))
121		new_msr |= MSR_TS_S;
122	else
123		new_msr |= msr & MSR_TS_MASK;
124#endif
125
126	kvmppc_set_srr0(vcpu, pc);
127	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128	kvmppc_set_pc(vcpu, new_pc);
129	kvmppc_set_msr(vcpu, new_msr);
130}
131
132static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133{
134#ifdef CONFIG_PPC_BOOK3S_64
135	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138	svcpu->in_use = 0;
139	svcpu_put(svcpu);
140
141	/* Disable AIL if supported */
142	if (cpu_has_feature(CPU_FTR_HVMODE)) {
143		if (cpu_has_feature(CPU_FTR_ARCH_207S))
144			mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145		if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146			mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147	}
148#endif
149
150	vcpu->cpu = smp_processor_id();
151#ifdef CONFIG_PPC_BOOK3S_32
152	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153#endif
154
155	if (kvmppc_is_split_real(vcpu))
156		kvmppc_fixup_split_real(vcpu);
157
158	kvmppc_restore_tm_pr(vcpu);
159}
160
161static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162{
163#ifdef CONFIG_PPC_BOOK3S_64
164	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165	if (svcpu->in_use) {
166		kvmppc_copy_from_svcpu(vcpu);
167	}
168	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170	svcpu_put(svcpu);
171
172	/* Enable AIL if supported */
173	if (cpu_has_feature(CPU_FTR_HVMODE)) {
174		if (cpu_has_feature(CPU_FTR_ARCH_207S))
175			mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176		if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177			mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178	}
179#endif
180
181	if (kvmppc_is_split_real(vcpu))
182		kvmppc_unfixup_split_real(vcpu);
183
184	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186	kvmppc_save_tm_pr(vcpu);
187
188	vcpu->cpu = -1;
189}
190
191/* Copy data needed by real-mode code from vcpu to shadow vcpu */
192void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193{
194	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195
196	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210	svcpu->cr  = vcpu->arch.regs.ccr;
211	svcpu->xer = vcpu->arch.regs.xer;
212	svcpu->ctr = vcpu->arch.regs.ctr;
213	svcpu->lr  = vcpu->arch.regs.link;
214	svcpu->pc  = vcpu->arch.regs.nip;
215#ifdef CONFIG_PPC_BOOK3S_64
216	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217#endif
218	/*
219	 * Now also save the current time base value. We use this
220	 * to find the guest purr and spurr value.
221	 */
222	vcpu->arch.entry_tb = get_tb();
223	vcpu->arch.entry_vtb = get_vtb();
224	if (cpu_has_feature(CPU_FTR_ARCH_207S))
225		vcpu->arch.entry_ic = mfspr(SPRN_IC);
226	svcpu->in_use = true;
227
228	svcpu_put(svcpu);
229}
230
231static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232{
233	ulong guest_msr = kvmppc_get_msr(vcpu);
234	ulong smsr = guest_msr;
235
236	/* Guest MSR values */
237#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239		MSR_TM | MSR_TS_MASK;
240#else
241	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242#endif
243	/* Process MSR values */
244	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245	/* External providers the guest reserved */
246	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247	/* 64-bit Process MSR values */
248#ifdef CONFIG_PPC_BOOK3S_64
249	smsr |= MSR_HV;
250#endif
251#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252	/*
253	 * in guest privileged state, we want to fail all TM transactions.
254	 * So disable MSR TM bit so that all tbegin. will be able to be
255	 * trapped into host.
256	 */
257	if (!(guest_msr & MSR_PR))
258		smsr &= ~MSR_TM;
259#endif
260	vcpu->arch.shadow_msr = smsr;
261}
262
263/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
264void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265{
266	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268	ulong old_msr;
269#endif
270
271	/*
272	 * Maybe we were already preempted and synced the svcpu from
273	 * our preempt notifiers. Don't bother touching this svcpu then.
274	 */
275	if (!svcpu->in_use)
276		goto out;
277
278	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292	vcpu->arch.regs.ccr  = svcpu->cr;
293	vcpu->arch.regs.xer = svcpu->xer;
294	vcpu->arch.regs.ctr = svcpu->ctr;
295	vcpu->arch.regs.link  = svcpu->lr;
296	vcpu->arch.regs.nip  = svcpu->pc;
297	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298	vcpu->arch.fault_dar   = svcpu->fault_dar;
299	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300	vcpu->arch.last_inst   = svcpu->last_inst;
301#ifdef CONFIG_PPC_BOOK3S_64
302	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303#endif
304	/*
305	 * Update purr and spurr using time base on exit.
306	 */
307	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310	if (cpu_has_feature(CPU_FTR_ARCH_207S))
311		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312
313#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314	/*
315	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316	 * notifying host:
317	 *  modified by unprivileged instructions like "tbegin"/"tend"/
318	 * "tresume"/"tsuspend" in PR KVM guest.
319	 *
320	 * It is necessary to sync here to calculate a correct shadow_msr.
321	 *
322	 * privileged guest's tbegin will be failed at present. So we
323	 * only take care of problem state guest.
324	 */
325	old_msr = kvmppc_get_msr(vcpu);
326	if (unlikely((old_msr & MSR_PR) &&
327		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328				(old_msr & (MSR_TS_MASK)))) {
329		old_msr &= ~(MSR_TS_MASK);
330		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331		kvmppc_set_msr_fast(vcpu, old_msr);
332		kvmppc_recalc_shadow_msr(vcpu);
333	}
334#endif
335
336	svcpu->in_use = false;
337
338out:
339	svcpu_put(svcpu);
340}
341
342#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
343void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344{
345	tm_enable();
346	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349	tm_disable();
350}
351
352void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353{
354	tm_enable();
355	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358	tm_disable();
359}
360
361/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362 * hardware.
363 */
364static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365{
366	ulong exit_nr;
367	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368		(MSR_FP | MSR_VEC | MSR_VSX);
369
370	if (!ext_diff)
371		return;
372
373	if (ext_diff == MSR_FP)
374		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375	else if (ext_diff == MSR_VEC)
376		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377	else
378		exit_nr = BOOK3S_INTERRUPT_VSX;
379
380	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381}
382
383void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384{
385	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386		kvmppc_save_tm_sprs(vcpu);
387		return;
388	}
389
390	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391	kvmppc_giveup_ext(vcpu, MSR_VSX);
392
393	preempt_disable();
394	_kvmppc_save_tm_pr(vcpu, mfmsr());
395	preempt_enable();
396}
397
398void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399{
400	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401		kvmppc_restore_tm_sprs(vcpu);
402		if (kvmppc_get_msr(vcpu) & MSR_TM) {
403			kvmppc_handle_lost_math_exts(vcpu);
404			if (vcpu->arch.fscr & FSCR_TAR)
405				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406		}
407		return;
408	}
409
410	preempt_disable();
411	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412	preempt_enable();
413
414	if (kvmppc_get_msr(vcpu) & MSR_TM) {
415		kvmppc_handle_lost_math_exts(vcpu);
416		if (vcpu->arch.fscr & FSCR_TAR)
417			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418	}
419}
420#endif
421
422static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423{
424	int r = 1; /* Indicate we want to get back into the guest */
425
426	/* We misuse TLB_FLUSH to indicate that we want to clear
427	   all shadow cache entries */
428	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429		kvmppc_mmu_pte_flush(vcpu, 0, 0);
430
431	return r;
432}
433
434/************* MMU Notifiers *************/
435static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436{
437	unsigned long i;
438	struct kvm_vcpu *vcpu;
439
440	kvm_for_each_vcpu(i, vcpu, kvm)
441		kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442				      range->end << PAGE_SHIFT);
443
444	return false;
445}
446
447static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448{
449	return do_kvm_unmap_gfn(kvm, range);
450}
451
452static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453{
454	/* XXX could be more clever ;) */
455	return false;
456}
457
458static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459{
460	/* XXX could be more clever ;) */
461	return false;
462}
463
464/*****************************************/
465
466static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467{
468	ulong old_msr;
469
470	/* For PAPR guest, make sure MSR reflects guest mode */
471	if (vcpu->arch.papr_enabled)
472		msr = (msr & ~MSR_HV) | MSR_ME;
473
474#ifdef EXIT_DEBUG
475	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476#endif
477
478#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479	/* We should never target guest MSR to TS=10 && PR=0,
480	 * since we always fail transaction for guest privilege
481	 * state.
482	 */
483	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484		kvmppc_emulate_tabort(vcpu,
485			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486#endif
487
488	old_msr = kvmppc_get_msr(vcpu);
489	msr &= to_book3s(vcpu)->msr_mask;
490	kvmppc_set_msr_fast(vcpu, msr);
491	kvmppc_recalc_shadow_msr(vcpu);
492
493	if (msr & MSR_POW) {
494		if (!vcpu->arch.pending_exceptions) {
495			kvm_vcpu_halt(vcpu);
496			vcpu->stat.generic.halt_wakeup++;
497
498			/* Unset POW bit after we woke up */
499			msr &= ~MSR_POW;
500			kvmppc_set_msr_fast(vcpu, msr);
501		}
502	}
503
504	if (kvmppc_is_split_real(vcpu))
505		kvmppc_fixup_split_real(vcpu);
506	else
507		kvmppc_unfixup_split_real(vcpu);
508
509	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
510		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
511		kvmppc_mmu_flush_segments(vcpu);
512		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
513
514		/* Preload magic page segment when in kernel mode */
515		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
516			struct kvm_vcpu_arch *a = &vcpu->arch;
517
518			if (msr & MSR_DR)
519				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
520			else
521				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
522		}
523	}
524
525	/*
526	 * When switching from 32 to 64-bit, we may have a stale 32-bit
527	 * magic page around, we need to flush it. Typically 32-bit magic
528	 * page will be instantiated when calling into RTAS. Note: We
529	 * assume that such transition only happens while in kernel mode,
530	 * ie, we never transition from user 32-bit to kernel 64-bit with
531	 * a 32-bit magic page around.
532	 */
533	if (vcpu->arch.magic_page_pa &&
534	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
535		/* going from RTAS to normal kernel code */
536		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
537				     ~0xFFFUL);
538	}
539
540	/* Preload FPU if it's enabled */
541	if (kvmppc_get_msr(vcpu) & MSR_FP)
542		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
543
544#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
545	if (kvmppc_get_msr(vcpu) & MSR_TM)
546		kvmppc_handle_lost_math_exts(vcpu);
547#endif
548}
549
550static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
551{
552	u32 host_pvr;
553
554	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
555	vcpu->arch.pvr = pvr;
556#ifdef CONFIG_PPC_BOOK3S_64
557	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
558		kvmppc_mmu_book3s_64_init(vcpu);
559		if (!to_book3s(vcpu)->hior_explicit)
560			to_book3s(vcpu)->hior = 0xfff00000;
561		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
562		vcpu->arch.cpu_type = KVM_CPU_3S_64;
563	} else
564#endif
565	{
566		kvmppc_mmu_book3s_32_init(vcpu);
567		if (!to_book3s(vcpu)->hior_explicit)
568			to_book3s(vcpu)->hior = 0;
569		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
570		vcpu->arch.cpu_type = KVM_CPU_3S_32;
571	}
572
573	kvmppc_sanity_check(vcpu);
574
575	/* If we are in hypervisor level on 970, we can tell the CPU to
576	 * treat DCBZ as 32 bytes store */
577	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
578	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
579	    !strcmp(cur_cpu_spec->platform, "ppc970"))
580		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
581
582	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
583	   really needs them in a VM on Cell and force disable them. */
584	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
585		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
586
587	/*
588	 * If they're asking for POWER6 or later, set the flag
589	 * indicating that we can do multiple large page sizes
590	 * and 1TB segments.
591	 * Also set the flag that indicates that tlbie has the large
592	 * page bit in the RB operand instead of the instruction.
593	 */
594	switch (PVR_VER(pvr)) {
595	case PVR_POWER6:
596	case PVR_POWER7:
597	case PVR_POWER7p:
598	case PVR_POWER8:
599	case PVR_POWER8E:
600	case PVR_POWER8NVL:
601	case PVR_HX_C2000:
602	case PVR_POWER9:
603		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604			BOOK3S_HFLAG_NEW_TLBIE;
605		break;
606	}
607
608#ifdef CONFIG_PPC_BOOK3S_32
609	/* 32 bit Book3S always has 32 byte dcbz */
610	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611#endif
612
613	/* On some CPUs we can execute paired single operations natively */
614	asm ( "mfpvr %0" : "=r"(host_pvr));
615	switch (host_pvr) {
616	case 0x00080200:	/* lonestar 2.0 */
617	case 0x00088202:	/* lonestar 2.2 */
618	case 0x70000100:	/* gekko 1.0 */
619	case 0x00080100:	/* gekko 2.0 */
620	case 0x00083203:	/* gekko 2.3a */
621	case 0x00083213:	/* gekko 2.3b */
622	case 0x00083204:	/* gekko 2.4 */
623	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
624	case 0x00087200:	/* broadway */
625		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626		/* Enable HID2.PSE - in case we need it later */
627		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628	}
629}
630
631/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633 * emulate 32 bytes dcbz length.
634 *
635 * The Book3s_64 inventors also realized this case and implemented a special bit
636 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637 *
638 * My approach here is to patch the dcbz instruction on executing pages.
639 */
640static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641{
642	struct page *hpage;
643	u64 hpage_offset;
644	u32 *page;
645	int i;
646
647	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
648	if (is_error_page(hpage))
649		return;
650
651	hpage_offset = pte->raddr & ~PAGE_MASK;
652	hpage_offset &= ~0xFFFULL;
653	hpage_offset /= 4;
654
655	get_page(hpage);
656	page = kmap_atomic(hpage);
657
658	/* patch dcbz into reserved instruction, so we trap */
659	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
660		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
661			page[i] &= cpu_to_be32(0xfffffff7);
662
663	kunmap_atomic(page);
664	put_page(hpage);
665}
666
667static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
668{
669	ulong mp_pa = vcpu->arch.magic_page_pa;
670
671	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
672		mp_pa = (uint32_t)mp_pa;
673
674	gpa &= ~0xFFFULL;
675	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
676		return true;
677	}
678
679	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
680}
681
682static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
683			    ulong eaddr, int vec)
684{
685	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
686	bool iswrite = false;
687	int r = RESUME_GUEST;
688	int relocated;
689	int page_found = 0;
690	struct kvmppc_pte pte = { 0 };
691	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
692	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
693	u64 vsid;
694
695	relocated = data ? dr : ir;
696	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
697		iswrite = true;
698
699	/* Resolve real address if translation turned on */
700	if (relocated) {
701		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
702	} else {
703		pte.may_execute = true;
704		pte.may_read = true;
705		pte.may_write = true;
706		pte.raddr = eaddr & KVM_PAM;
707		pte.eaddr = eaddr;
708		pte.vpage = eaddr >> 12;
709		pte.page_size = MMU_PAGE_64K;
710		pte.wimg = HPTE_R_M;
711	}
712
713	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
714	case 0:
715		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
716		break;
717	case MSR_DR:
718		if (!data &&
719		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
720		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
721			pte.raddr &= ~SPLIT_HACK_MASK;
722		fallthrough;
723	case MSR_IR:
724		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
725
726		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
727			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
728		else
729			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
730		pte.vpage |= vsid;
731
732		if (vsid == -1)
733			page_found = -EINVAL;
734		break;
735	}
736
737	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
738	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
739		/*
740		 * If we do the dcbz hack, we have to NX on every execution,
741		 * so we can patch the executing code. This renders our guest
742		 * NX-less.
743		 */
744		pte.may_execute = !data;
745	}
746
747	if (page_found == -ENOENT || page_found == -EPERM) {
748		/* Page not found in guest PTE entries, or protection fault */
749		u64 flags;
750
751		if (page_found == -EPERM)
752			flags = DSISR_PROTFAULT;
753		else
754			flags = DSISR_NOHPTE;
755		if (data) {
756			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
757			kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags);
758		} else {
759			kvmppc_core_queue_inst_storage(vcpu, flags);
760		}
761	} else if (page_found == -EINVAL) {
762		/* Page not found in guest SLB */
763		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
764		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
765	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
766		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
767			/*
768			 * There is already a host HPTE there, presumably
769			 * a read-only one for a page the guest thinks
770			 * is writable, so get rid of it first.
771			 */
772			kvmppc_mmu_unmap_page(vcpu, &pte);
773		}
774		/* The guest's PTE is not mapped yet. Map on the host */
775		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
776			/* Exit KVM if mapping failed */
777			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
778			return RESUME_HOST;
779		}
780		if (data)
781			vcpu->stat.sp_storage++;
782		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
783			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
784			kvmppc_patch_dcbz(vcpu, &pte);
785	} else {
786		/* MMIO */
787		vcpu->stat.mmio_exits++;
788		vcpu->arch.paddr_accessed = pte.raddr;
789		vcpu->arch.vaddr_accessed = pte.eaddr;
790		r = kvmppc_emulate_mmio(vcpu);
791		if ( r == RESUME_HOST_NV )
792			r = RESUME_HOST;
793	}
794
795	return r;
796}
797
798/* Give up external provider (FPU, Altivec, VSX) */
799void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
800{
801	struct thread_struct *t = &current->thread;
802
803	/*
804	 * VSX instructions can access FP and vector registers, so if
805	 * we are giving up VSX, make sure we give up FP and VMX as well.
806	 */
807	if (msr & MSR_VSX)
808		msr |= MSR_FP | MSR_VEC;
809
810	msr &= vcpu->arch.guest_owned_ext;
811	if (!msr)
812		return;
813
814#ifdef DEBUG_EXT
815	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
816#endif
817
818	if (msr & MSR_FP) {
819		/*
820		 * Note that on CPUs with VSX, giveup_fpu stores
821		 * both the traditional FP registers and the added VSX
822		 * registers into thread.fp_state.fpr[].
823		 */
824		if (t->regs->msr & MSR_FP)
825			giveup_fpu(current);
826		t->fp_save_area = NULL;
827	}
828
829#ifdef CONFIG_ALTIVEC
830	if (msr & MSR_VEC) {
831		if (current->thread.regs->msr & MSR_VEC)
832			giveup_altivec(current);
833		t->vr_save_area = NULL;
834	}
835#endif
836
837	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
838	kvmppc_recalc_shadow_msr(vcpu);
839}
840
841/* Give up facility (TAR / EBB / DSCR) */
842void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
843{
844#ifdef CONFIG_PPC_BOOK3S_64
845	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
846		/* Facility not available to the guest, ignore giveup request*/
847		return;
848	}
849
850	switch (fac) {
851	case FSCR_TAR_LG:
852		vcpu->arch.tar = mfspr(SPRN_TAR);
853		mtspr(SPRN_TAR, current->thread.tar);
854		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
855		break;
856	}
857#endif
858}
859
860/* Handle external providers (FPU, Altivec, VSX) */
861static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
862			     ulong msr)
863{
864	struct thread_struct *t = &current->thread;
865
866	/* When we have paired singles, we emulate in software */
867	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
868		return RESUME_GUEST;
869
870	if (!(kvmppc_get_msr(vcpu) & msr)) {
871		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
872		return RESUME_GUEST;
873	}
874
875	if (msr == MSR_VSX) {
876		/* No VSX?  Give an illegal instruction interrupt */
877#ifdef CONFIG_VSX
878		if (!cpu_has_feature(CPU_FTR_VSX))
879#endif
880		{
881			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
882			return RESUME_GUEST;
883		}
884
885		/*
886		 * We have to load up all the FP and VMX registers before
887		 * we can let the guest use VSX instructions.
888		 */
889		msr = MSR_FP | MSR_VEC | MSR_VSX;
890	}
891
892	/* See if we already own all the ext(s) needed */
893	msr &= ~vcpu->arch.guest_owned_ext;
894	if (!msr)
895		return RESUME_GUEST;
896
897#ifdef DEBUG_EXT
898	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
899#endif
900
901	if (msr & MSR_FP) {
902		preempt_disable();
903		enable_kernel_fp();
904		load_fp_state(&vcpu->arch.fp);
905		disable_kernel_fp();
906		t->fp_save_area = &vcpu->arch.fp;
907		preempt_enable();
908	}
909
910	if (msr & MSR_VEC) {
911#ifdef CONFIG_ALTIVEC
912		preempt_disable();
913		enable_kernel_altivec();
914		load_vr_state(&vcpu->arch.vr);
915		disable_kernel_altivec();
916		t->vr_save_area = &vcpu->arch.vr;
917		preempt_enable();
918#endif
919	}
920
921	t->regs->msr |= msr;
922	vcpu->arch.guest_owned_ext |= msr;
923	kvmppc_recalc_shadow_msr(vcpu);
924
925	return RESUME_GUEST;
926}
927
928/*
929 * Kernel code using FP or VMX could have flushed guest state to
930 * the thread_struct; if so, get it back now.
931 */
932static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
933{
934	unsigned long lost_ext;
935
936	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
937	if (!lost_ext)
938		return;
939
940	if (lost_ext & MSR_FP) {
941		preempt_disable();
942		enable_kernel_fp();
943		load_fp_state(&vcpu->arch.fp);
944		disable_kernel_fp();
945		preempt_enable();
946	}
947#ifdef CONFIG_ALTIVEC
948	if (lost_ext & MSR_VEC) {
949		preempt_disable();
950		enable_kernel_altivec();
951		load_vr_state(&vcpu->arch.vr);
952		disable_kernel_altivec();
953		preempt_enable();
954	}
955#endif
956	current->thread.regs->msr |= lost_ext;
957}
958
959#ifdef CONFIG_PPC_BOOK3S_64
960
961void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
962{
963	/* Inject the Interrupt Cause field and trigger a guest interrupt */
964	vcpu->arch.fscr &= ~(0xffULL << 56);
965	vcpu->arch.fscr |= (fac << 56);
966	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
967}
968
969static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
970{
971	enum emulation_result er = EMULATE_FAIL;
972
973	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
974		er = kvmppc_emulate_instruction(vcpu);
975
976	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
977		/* Couldn't emulate, trigger interrupt in guest */
978		kvmppc_trigger_fac_interrupt(vcpu, fac);
979	}
980}
981
982/* Enable facilities (TAR, EBB, DSCR) for the guest */
983static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
984{
985	bool guest_fac_enabled;
986	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
987
988	/*
989	 * Not every facility is enabled by FSCR bits, check whether the
990	 * guest has this facility enabled at all.
991	 */
992	switch (fac) {
993	case FSCR_TAR_LG:
994	case FSCR_EBB_LG:
995		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
996		break;
997	case FSCR_TM_LG:
998		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
999		break;
1000	default:
1001		guest_fac_enabled = false;
1002		break;
1003	}
1004
1005	if (!guest_fac_enabled) {
1006		/* Facility not enabled by the guest */
1007		kvmppc_trigger_fac_interrupt(vcpu, fac);
1008		return RESUME_GUEST;
1009	}
1010
1011	switch (fac) {
1012	case FSCR_TAR_LG:
1013		/* TAR switching isn't lazy in Linux yet */
1014		current->thread.tar = mfspr(SPRN_TAR);
1015		mtspr(SPRN_TAR, vcpu->arch.tar);
1016		vcpu->arch.shadow_fscr |= FSCR_TAR;
1017		break;
1018	default:
1019		kvmppc_emulate_fac(vcpu, fac);
1020		break;
1021	}
1022
1023#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1024	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1025	 * for TM spr can trigger TM fac unavailable. In this case, the
1026	 * emulation is handled by kvmppc_emulate_fac(), which invokes
1027	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1028	 * RT for NV registers. So it need to restore those NV reg to reflect
1029	 * the update.
1030	 */
1031	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1032		return RESUME_GUEST_NV;
1033#endif
1034
1035	return RESUME_GUEST;
1036}
1037
1038void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1039{
1040	if (fscr & FSCR_SCV)
1041		fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1042	/* Prohibit prefixed instructions for now */
1043	fscr &= ~FSCR_PREFIX;
1044	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1045		/* TAR got dropped, drop it in shadow too */
1046		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1047	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1048		vcpu->arch.fscr = fscr;
1049		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1050		return;
1051	}
1052
1053	vcpu->arch.fscr = fscr;
1054}
1055#endif
1056
1057static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1058{
1059	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1060		u64 msr = kvmppc_get_msr(vcpu);
1061
1062		kvmppc_set_msr(vcpu, msr | MSR_SE);
1063	}
1064}
1065
1066static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1067{
1068	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1069		u64 msr = kvmppc_get_msr(vcpu);
1070
1071		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1072	}
1073}
1074
1075static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1076{
1077	enum emulation_result er;
1078	ulong flags;
1079	ppc_inst_t last_inst;
1080	int emul, r;
1081
1082	/*
1083	 * shadow_srr1 only contains valid flags if we came here via a program
1084	 * exception. The other exceptions (emulation assist, FP unavailable,
1085	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1086	 * exception when injecting a program interrupt into the guest.
1087	 */
1088	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1089		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1090	else
1091		flags = SRR1_PROGILL;
1092
1093	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1094	if (emul != EMULATE_DONE)
1095		return RESUME_GUEST;
1096
1097	if (kvmppc_get_msr(vcpu) & MSR_PR) {
1098#ifdef EXIT_DEBUG
1099		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1100			kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1101#endif
1102		if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1103			kvmppc_core_queue_program(vcpu, flags);
1104			return RESUME_GUEST;
1105		}
1106	}
1107
1108	vcpu->stat.emulated_inst_exits++;
1109	er = kvmppc_emulate_instruction(vcpu);
1110	switch (er) {
1111	case EMULATE_DONE:
1112		r = RESUME_GUEST_NV;
1113		break;
1114	case EMULATE_AGAIN:
1115		r = RESUME_GUEST;
1116		break;
1117	case EMULATE_FAIL:
1118		pr_crit("%s: emulation at %lx failed (%08x)\n",
1119			__func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1120		kvmppc_core_queue_program(vcpu, flags);
1121		r = RESUME_GUEST;
1122		break;
1123	case EMULATE_DO_MMIO:
1124		vcpu->run->exit_reason = KVM_EXIT_MMIO;
1125		r = RESUME_HOST_NV;
1126		break;
1127	case EMULATE_EXIT_USER:
1128		r = RESUME_HOST_NV;
1129		break;
1130	default:
1131		BUG();
1132	}
1133
1134	return r;
1135}
1136
1137int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1138{
1139	struct kvm_run *run = vcpu->run;
1140	int r = RESUME_HOST;
1141	int s;
1142
1143	vcpu->stat.sum_exits++;
1144
1145	run->exit_reason = KVM_EXIT_UNKNOWN;
1146	run->ready_for_interrupt_injection = 1;
1147
1148	/* We get here with MSR.EE=1 */
1149
1150	trace_kvm_exit(exit_nr, vcpu);
1151	guest_exit();
1152
1153	switch (exit_nr) {
1154	case BOOK3S_INTERRUPT_INST_STORAGE:
1155	{
1156		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1157		vcpu->stat.pf_instruc++;
1158
1159		if (kvmppc_is_split_real(vcpu))
1160			kvmppc_fixup_split_real(vcpu);
1161
1162#ifdef CONFIG_PPC_BOOK3S_32
1163		/* We set segments as unused segments when invalidating them. So
1164		 * treat the respective fault as segment fault. */
1165		{
1166			struct kvmppc_book3s_shadow_vcpu *svcpu;
1167			u32 sr;
1168
1169			svcpu = svcpu_get(vcpu);
1170			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1171			svcpu_put(svcpu);
1172			if (sr == SR_INVALID) {
1173				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1174				r = RESUME_GUEST;
1175				break;
1176			}
1177		}
1178#endif
1179
1180		/* only care about PTEG not found errors, but leave NX alone */
1181		if (shadow_srr1 & 0x40000000) {
1182			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1183			r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1184			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1185			vcpu->stat.sp_instruc++;
1186		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1187			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1188			/*
1189			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1190			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1191			 *     that no guest that needs the dcbz hack does NX.
1192			 */
1193			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1194			r = RESUME_GUEST;
1195		} else {
1196			kvmppc_core_queue_inst_storage(vcpu,
1197						shadow_srr1 & 0x58000000);
1198			r = RESUME_GUEST;
1199		}
1200		break;
1201	}
1202	case BOOK3S_INTERRUPT_DATA_STORAGE:
1203	{
1204		ulong dar = kvmppc_get_fault_dar(vcpu);
1205		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1206		vcpu->stat.pf_storage++;
1207
1208#ifdef CONFIG_PPC_BOOK3S_32
1209		/* We set segments as unused segments when invalidating them. So
1210		 * treat the respective fault as segment fault. */
1211		{
1212			struct kvmppc_book3s_shadow_vcpu *svcpu;
1213			u32 sr;
1214
1215			svcpu = svcpu_get(vcpu);
1216			sr = svcpu->sr[dar >> SID_SHIFT];
1217			svcpu_put(svcpu);
1218			if (sr == SR_INVALID) {
1219				kvmppc_mmu_map_segment(vcpu, dar);
1220				r = RESUME_GUEST;
1221				break;
1222			}
1223		}
1224#endif
1225
1226		/*
1227		 * We need to handle missing shadow PTEs, and
1228		 * protection faults due to us mapping a page read-only
1229		 * when the guest thinks it is writable.
1230		 */
1231		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1232			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1233			r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1234			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1235		} else {
1236			kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr);
1237			r = RESUME_GUEST;
1238		}
1239		break;
1240	}
1241	case BOOK3S_INTERRUPT_DATA_SEGMENT:
1242		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1243			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1244			kvmppc_book3s_queue_irqprio(vcpu,
1245				BOOK3S_INTERRUPT_DATA_SEGMENT);
1246		}
1247		r = RESUME_GUEST;
1248		break;
1249	case BOOK3S_INTERRUPT_INST_SEGMENT:
1250		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1251			kvmppc_book3s_queue_irqprio(vcpu,
1252				BOOK3S_INTERRUPT_INST_SEGMENT);
1253		}
1254		r = RESUME_GUEST;
1255		break;
1256	/* We're good on these - the host merely wanted to get our attention */
1257	case BOOK3S_INTERRUPT_DECREMENTER:
1258	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1259	case BOOK3S_INTERRUPT_DOORBELL:
1260	case BOOK3S_INTERRUPT_H_DOORBELL:
1261		vcpu->stat.dec_exits++;
1262		r = RESUME_GUEST;
1263		break;
1264	case BOOK3S_INTERRUPT_EXTERNAL:
1265	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1266	case BOOK3S_INTERRUPT_H_VIRT:
1267		vcpu->stat.ext_intr_exits++;
1268		r = RESUME_GUEST;
1269		break;
1270	case BOOK3S_INTERRUPT_HMI:
1271	case BOOK3S_INTERRUPT_PERFMON:
1272	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1273		r = RESUME_GUEST;
1274		break;
1275	case BOOK3S_INTERRUPT_PROGRAM:
1276	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1277		r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1278		break;
1279	case BOOK3S_INTERRUPT_SYSCALL:
1280	{
1281		ppc_inst_t last_sc;
1282		int emul;
1283
1284		/* Get last sc for papr */
1285		if (vcpu->arch.papr_enabled) {
1286			/* The sc instruction points SRR0 to the next inst */
1287			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1288			if (emul != EMULATE_DONE) {
1289				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1290				r = RESUME_GUEST;
1291				break;
1292			}
1293		}
1294
1295		if (vcpu->arch.papr_enabled &&
1296		    (ppc_inst_val(last_sc) == 0x44000022) &&
1297		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1298			/* SC 1 papr hypercalls */
1299			ulong cmd = kvmppc_get_gpr(vcpu, 3);
1300			int i;
1301
1302#ifdef CONFIG_PPC_BOOK3S_64
1303			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1304				r = RESUME_GUEST;
1305				break;
1306			}
1307#endif
1308
1309			run->papr_hcall.nr = cmd;
1310			for (i = 0; i < 9; ++i) {
1311				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1312				run->papr_hcall.args[i] = gpr;
1313			}
1314			run->exit_reason = KVM_EXIT_PAPR_HCALL;
1315			vcpu->arch.hcall_needed = 1;
1316			r = RESUME_HOST;
1317		} else if (vcpu->arch.osi_enabled &&
1318		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1319		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1320			/* MOL hypercalls */
1321			u64 *gprs = run->osi.gprs;
1322			int i;
1323
1324			run->exit_reason = KVM_EXIT_OSI;
1325			for (i = 0; i < 32; i++)
1326				gprs[i] = kvmppc_get_gpr(vcpu, i);
1327			vcpu->arch.osi_needed = 1;
1328			r = RESUME_HOST_NV;
1329		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1330		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1331			/* KVM PV hypercalls */
1332			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1333			r = RESUME_GUEST;
1334		} else {
1335			/* Guest syscalls */
1336			vcpu->stat.syscall_exits++;
1337			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1338			r = RESUME_GUEST;
1339		}
1340		break;
1341	}
1342	case BOOK3S_INTERRUPT_FP_UNAVAIL:
1343	case BOOK3S_INTERRUPT_ALTIVEC:
1344	case BOOK3S_INTERRUPT_VSX:
1345	{
1346		int ext_msr = 0;
1347		int emul;
1348		ppc_inst_t last_inst;
1349
1350		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1351			/* Do paired single instruction emulation */
1352			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1353						    &last_inst);
1354			if (emul == EMULATE_DONE)
1355				r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1356			else
1357				r = RESUME_GUEST;
1358
1359			break;
1360		}
1361
1362		/* Enable external provider */
1363		switch (exit_nr) {
1364		case BOOK3S_INTERRUPT_FP_UNAVAIL:
1365			ext_msr = MSR_FP;
1366			break;
1367
1368		case BOOK3S_INTERRUPT_ALTIVEC:
1369			ext_msr = MSR_VEC;
1370			break;
1371
1372		case BOOK3S_INTERRUPT_VSX:
1373			ext_msr = MSR_VSX;
1374			break;
1375		}
1376
1377		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1378		break;
1379	}
1380	case BOOK3S_INTERRUPT_ALIGNMENT:
1381	{
1382		ppc_inst_t last_inst;
1383		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1384
1385		if (emul == EMULATE_DONE) {
1386			u32 dsisr;
1387			u64 dar;
1388
1389			dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst));
1390			dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst));
1391
1392			kvmppc_set_dsisr(vcpu, dsisr);
1393			kvmppc_set_dar(vcpu, dar);
1394
1395			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1396		}
1397		r = RESUME_GUEST;
1398		break;
1399	}
1400#ifdef CONFIG_PPC_BOOK3S_64
1401	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1402		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1403		break;
1404#endif
1405	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1406		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1407		r = RESUME_GUEST;
1408		break;
1409	case BOOK3S_INTERRUPT_TRACE:
1410		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1411			run->exit_reason = KVM_EXIT_DEBUG;
1412			r = RESUME_HOST;
1413		} else {
1414			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1415			r = RESUME_GUEST;
1416		}
1417		break;
1418	default:
1419	{
1420		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1421		/* Ugh - bork here! What did we get? */
1422		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1423			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1424		r = RESUME_HOST;
1425		BUG();
1426		break;
1427	}
1428	}
1429
1430	if (!(r & RESUME_HOST)) {
1431		/* To avoid clobbering exit_reason, only check for signals if
1432		 * we aren't already exiting to userspace for some other
1433		 * reason. */
1434
1435		/*
1436		 * Interrupts could be timers for the guest which we have to
1437		 * inject again, so let's postpone them until we're in the guest
1438		 * and if we really did time things so badly, then we just exit
1439		 * again due to a host external interrupt.
1440		 */
1441		s = kvmppc_prepare_to_enter(vcpu);
1442		if (s <= 0)
1443			r = s;
1444		else {
1445			/* interrupts now hard-disabled */
1446			kvmppc_fix_ee_before_entry();
1447		}
1448
1449		kvmppc_handle_lost_ext(vcpu);
1450	}
1451
1452	trace_kvm_book3s_reenter(r, vcpu);
1453
1454	return r;
1455}
1456
1457static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1458					    struct kvm_sregs *sregs)
1459{
1460	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1461	int i;
1462
1463	sregs->pvr = vcpu->arch.pvr;
1464
1465	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1466	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1467		for (i = 0; i < 64; i++) {
1468			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1469			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1470		}
1471	} else {
1472		for (i = 0; i < 16; i++)
1473			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1474
1475		for (i = 0; i < 8; i++) {
1476			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1477			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1478		}
1479	}
1480
1481	return 0;
1482}
1483
1484static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1485					    struct kvm_sregs *sregs)
1486{
1487	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1488	int i;
1489
1490	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1491
1492	vcpu3s->sdr1 = sregs->u.s.sdr1;
1493#ifdef CONFIG_PPC_BOOK3S_64
1494	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1495		/* Flush all SLB entries */
1496		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1497		vcpu->arch.mmu.slbia(vcpu);
1498
1499		for (i = 0; i < 64; i++) {
1500			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1501			u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1502
1503			if (rb & SLB_ESID_V)
1504				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1505		}
1506	} else
1507#endif
1508	{
1509		for (i = 0; i < 16; i++) {
1510			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1511		}
1512		for (i = 0; i < 8; i++) {
1513			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1514				       (u32)sregs->u.s.ppc32.ibat[i]);
1515			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1516				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1517			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1518				       (u32)sregs->u.s.ppc32.dbat[i]);
1519			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1520				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1521		}
1522	}
1523
1524	/* Flush the MMU after messing with the segments */
1525	kvmppc_mmu_pte_flush(vcpu, 0, 0);
1526
1527	return 0;
1528}
1529
1530static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1531				 union kvmppc_one_reg *val)
1532{
1533	int r = 0;
1534
1535	switch (id) {
1536	case KVM_REG_PPC_DEBUG_INST:
1537		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1538		break;
1539	case KVM_REG_PPC_HIOR:
1540		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1541		break;
1542	case KVM_REG_PPC_VTB:
1543		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1544		break;
1545	case KVM_REG_PPC_LPCR:
1546	case KVM_REG_PPC_LPCR_64:
1547		/*
1548		 * We are only interested in the LPCR_ILE bit
1549		 */
1550		if (vcpu->arch.intr_msr & MSR_LE)
1551			*val = get_reg_val(id, LPCR_ILE);
1552		else
1553			*val = get_reg_val(id, 0);
1554		break;
1555#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1556	case KVM_REG_PPC_TFHAR:
1557		*val = get_reg_val(id, vcpu->arch.tfhar);
1558		break;
1559	case KVM_REG_PPC_TFIAR:
1560		*val = get_reg_val(id, vcpu->arch.tfiar);
1561		break;
1562	case KVM_REG_PPC_TEXASR:
1563		*val = get_reg_val(id, vcpu->arch.texasr);
1564		break;
1565	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1566		*val = get_reg_val(id,
1567				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1568		break;
1569	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1570	{
1571		int i, j;
1572
1573		i = id - KVM_REG_PPC_TM_VSR0;
1574		if (i < 32)
1575			for (j = 0; j < TS_FPRWIDTH; j++)
1576				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1577		else {
1578			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1579				val->vval = vcpu->arch.vr_tm.vr[i-32];
1580			else
1581				r = -ENXIO;
1582		}
1583		break;
1584	}
1585	case KVM_REG_PPC_TM_CR:
1586		*val = get_reg_val(id, vcpu->arch.cr_tm);
1587		break;
1588	case KVM_REG_PPC_TM_XER:
1589		*val = get_reg_val(id, vcpu->arch.xer_tm);
1590		break;
1591	case KVM_REG_PPC_TM_LR:
1592		*val = get_reg_val(id, vcpu->arch.lr_tm);
1593		break;
1594	case KVM_REG_PPC_TM_CTR:
1595		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1596		break;
1597	case KVM_REG_PPC_TM_FPSCR:
1598		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1599		break;
1600	case KVM_REG_PPC_TM_AMR:
1601		*val = get_reg_val(id, vcpu->arch.amr_tm);
1602		break;
1603	case KVM_REG_PPC_TM_PPR:
1604		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1605		break;
1606	case KVM_REG_PPC_TM_VRSAVE:
1607		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1608		break;
1609	case KVM_REG_PPC_TM_VSCR:
1610		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1611			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1612		else
1613			r = -ENXIO;
1614		break;
1615	case KVM_REG_PPC_TM_DSCR:
1616		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1617		break;
1618	case KVM_REG_PPC_TM_TAR:
1619		*val = get_reg_val(id, vcpu->arch.tar_tm);
1620		break;
1621#endif
1622	default:
1623		r = -EINVAL;
1624		break;
1625	}
1626
1627	return r;
1628}
1629
1630static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1631{
1632	if (new_lpcr & LPCR_ILE)
1633		vcpu->arch.intr_msr |= MSR_LE;
1634	else
1635		vcpu->arch.intr_msr &= ~MSR_LE;
1636}
1637
1638static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1639				 union kvmppc_one_reg *val)
1640{
1641	int r = 0;
1642
1643	switch (id) {
1644	case KVM_REG_PPC_HIOR:
1645		to_book3s(vcpu)->hior = set_reg_val(id, *val);
1646		to_book3s(vcpu)->hior_explicit = true;
1647		break;
1648	case KVM_REG_PPC_VTB:
1649		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1650		break;
1651	case KVM_REG_PPC_LPCR:
1652	case KVM_REG_PPC_LPCR_64:
1653		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1654		break;
1655#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1656	case KVM_REG_PPC_TFHAR:
1657		vcpu->arch.tfhar = set_reg_val(id, *val);
1658		break;
1659	case KVM_REG_PPC_TFIAR:
1660		vcpu->arch.tfiar = set_reg_val(id, *val);
1661		break;
1662	case KVM_REG_PPC_TEXASR:
1663		vcpu->arch.texasr = set_reg_val(id, *val);
1664		break;
1665	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1666		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1667			set_reg_val(id, *val);
1668		break;
1669	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1670	{
1671		int i, j;
1672
1673		i = id - KVM_REG_PPC_TM_VSR0;
1674		if (i < 32)
1675			for (j = 0; j < TS_FPRWIDTH; j++)
1676				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1677		else
1678			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1679				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1680			else
1681				r = -ENXIO;
1682		break;
1683	}
1684	case KVM_REG_PPC_TM_CR:
1685		vcpu->arch.cr_tm = set_reg_val(id, *val);
1686		break;
1687	case KVM_REG_PPC_TM_XER:
1688		vcpu->arch.xer_tm = set_reg_val(id, *val);
1689		break;
1690	case KVM_REG_PPC_TM_LR:
1691		vcpu->arch.lr_tm = set_reg_val(id, *val);
1692		break;
1693	case KVM_REG_PPC_TM_CTR:
1694		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1695		break;
1696	case KVM_REG_PPC_TM_FPSCR:
1697		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1698		break;
1699	case KVM_REG_PPC_TM_AMR:
1700		vcpu->arch.amr_tm = set_reg_val(id, *val);
1701		break;
1702	case KVM_REG_PPC_TM_PPR:
1703		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1704		break;
1705	case KVM_REG_PPC_TM_VRSAVE:
1706		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1707		break;
1708	case KVM_REG_PPC_TM_VSCR:
1709		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1710			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1711		else
1712			r = -ENXIO;
1713		break;
1714	case KVM_REG_PPC_TM_DSCR:
1715		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1716		break;
1717	case KVM_REG_PPC_TM_TAR:
1718		vcpu->arch.tar_tm = set_reg_val(id, *val);
1719		break;
1720#endif
1721	default:
1722		r = -EINVAL;
1723		break;
1724	}
1725
1726	return r;
1727}
1728
1729static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1730{
1731	struct kvmppc_vcpu_book3s *vcpu_book3s;
1732	unsigned long p;
1733	int err;
1734
1735	err = -ENOMEM;
1736
1737	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1738	if (!vcpu_book3s)
1739		goto out;
1740	vcpu->arch.book3s = vcpu_book3s;
1741
1742#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1743	vcpu->arch.shadow_vcpu =
1744		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1745	if (!vcpu->arch.shadow_vcpu)
1746		goto free_vcpu3s;
1747#endif
1748
1749	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1750	if (!p)
1751		goto free_shadow_vcpu;
1752	vcpu->arch.shared = (void *)p;
1753#ifdef CONFIG_PPC_BOOK3S_64
1754	/* Always start the shared struct in native endian mode */
1755#ifdef __BIG_ENDIAN__
1756        vcpu->arch.shared_big_endian = true;
1757#else
1758        vcpu->arch.shared_big_endian = false;
1759#endif
1760
1761	/*
1762	 * Default to the same as the host if we're on sufficiently
1763	 * recent machine that we have 1TB segments;
1764	 * otherwise default to PPC970FX.
1765	 */
1766	vcpu->arch.pvr = 0x3C0301;
1767	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1768		vcpu->arch.pvr = mfspr(SPRN_PVR);
1769	vcpu->arch.intr_msr = MSR_SF;
1770#else
1771	/* default to book3s_32 (750) */
1772	vcpu->arch.pvr = 0x84202;
1773	vcpu->arch.intr_msr = 0;
1774#endif
1775	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1776	vcpu->arch.slb_nr = 64;
1777
1778	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1779
1780	err = kvmppc_mmu_init_pr(vcpu);
1781	if (err < 0)
1782		goto free_shared_page;
1783
1784	return 0;
1785
1786free_shared_page:
1787	free_page((unsigned long)vcpu->arch.shared);
1788free_shadow_vcpu:
1789#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1790	kfree(vcpu->arch.shadow_vcpu);
1791free_vcpu3s:
1792#endif
1793	vfree(vcpu_book3s);
1794out:
1795	return err;
1796}
1797
1798static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1799{
1800	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1801
1802	kvmppc_mmu_destroy_pr(vcpu);
1803	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1804#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1805	kfree(vcpu->arch.shadow_vcpu);
1806#endif
1807	vfree(vcpu_book3s);
1808}
1809
1810static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1811{
1812	int ret;
1813
1814	/* Check if we can run the vcpu at all */
1815	if (!vcpu->arch.sane) {
1816		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1817		ret = -EINVAL;
1818		goto out;
1819	}
1820
1821	kvmppc_setup_debug(vcpu);
1822
1823	/*
1824	 * Interrupts could be timers for the guest which we have to inject
1825	 * again, so let's postpone them until we're in the guest and if we
1826	 * really did time things so badly, then we just exit again due to
1827	 * a host external interrupt.
1828	 */
1829	ret = kvmppc_prepare_to_enter(vcpu);
1830	if (ret <= 0)
1831		goto out;
1832	/* interrupts now hard-disabled */
1833
1834	/* Save FPU, Altivec and VSX state */
1835	giveup_all(current);
1836
1837	/* Preload FPU if it's enabled */
1838	if (kvmppc_get_msr(vcpu) & MSR_FP)
1839		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1840
1841	kvmppc_fix_ee_before_entry();
1842
1843	ret = __kvmppc_vcpu_run(vcpu);
1844
1845	kvmppc_clear_debug(vcpu);
1846
1847	/* No need for guest_exit. It's done in handle_exit.
1848	   We also get here with interrupts enabled. */
1849
1850	/* Make sure we save the guest FPU/Altivec/VSX state */
1851	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1852
1853	/* Make sure we save the guest TAR/EBB/DSCR state */
1854	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1855
1856	srr_regs_clobbered();
1857out:
1858	vcpu->mode = OUTSIDE_GUEST_MODE;
1859	return ret;
1860}
1861
1862/*
1863 * Get (and clear) the dirty memory log for a memory slot.
1864 */
1865static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1866					 struct kvm_dirty_log *log)
1867{
1868	struct kvm_memory_slot *memslot;
1869	struct kvm_vcpu *vcpu;
1870	ulong ga, ga_end;
1871	int is_dirty = 0;
1872	int r;
1873	unsigned long n;
1874
1875	mutex_lock(&kvm->slots_lock);
1876
1877	r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1878	if (r)
1879		goto out;
1880
1881	/* If nothing is dirty, don't bother messing with page tables. */
1882	if (is_dirty) {
1883		ga = memslot->base_gfn << PAGE_SHIFT;
1884		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1885
1886		kvm_for_each_vcpu(n, vcpu, kvm)
1887			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1888
1889		n = kvm_dirty_bitmap_bytes(memslot);
1890		memset(memslot->dirty_bitmap, 0, n);
1891	}
1892
1893	r = 0;
1894out:
1895	mutex_unlock(&kvm->slots_lock);
1896	return r;
1897}
1898
1899static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1900					 struct kvm_memory_slot *memslot)
1901{
1902	return;
1903}
1904
1905static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1906				const struct kvm_memory_slot *old,
1907				struct kvm_memory_slot *new,
1908				enum kvm_mr_change change)
1909{
1910	return 0;
1911}
1912
1913static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1914				struct kvm_memory_slot *old,
1915				const struct kvm_memory_slot *new,
1916				enum kvm_mr_change change)
1917{
1918	return;
1919}
1920
1921static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1922{
1923	return;
1924}
1925
1926#ifdef CONFIG_PPC64
1927static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1928					 struct kvm_ppc_smmu_info *info)
1929{
1930	long int i;
1931	struct kvm_vcpu *vcpu;
1932
1933	info->flags = 0;
1934
1935	/* SLB is always 64 entries */
1936	info->slb_size = 64;
1937
1938	/* Standard 4k base page size segment */
1939	info->sps[0].page_shift = 12;
1940	info->sps[0].slb_enc = 0;
1941	info->sps[0].enc[0].page_shift = 12;
1942	info->sps[0].enc[0].pte_enc = 0;
1943
1944	/*
1945	 * 64k large page size.
1946	 * We only want to put this in if the CPUs we're emulating
1947	 * support it, but unfortunately we don't have a vcpu easily
1948	 * to hand here to test.  Just pick the first vcpu, and if
1949	 * that doesn't exist yet, report the minimum capability,
1950	 * i.e., no 64k pages.
1951	 * 1T segment support goes along with 64k pages.
1952	 */
1953	i = 1;
1954	vcpu = kvm_get_vcpu(kvm, 0);
1955	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1956		info->flags = KVM_PPC_1T_SEGMENTS;
1957		info->sps[i].page_shift = 16;
1958		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1959		info->sps[i].enc[0].page_shift = 16;
1960		info->sps[i].enc[0].pte_enc = 1;
1961		++i;
1962	}
1963
1964	/* Standard 16M large page size segment */
1965	info->sps[i].page_shift = 24;
1966	info->sps[i].slb_enc = SLB_VSID_L;
1967	info->sps[i].enc[0].page_shift = 24;
1968	info->sps[i].enc[0].pte_enc = 0;
1969
1970	return 0;
1971}
1972
1973static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1974{
1975	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1976		return -ENODEV;
1977	/* Require flags and process table base and size to all be zero. */
1978	if (cfg->flags || cfg->process_table)
1979		return -EINVAL;
1980	return 0;
1981}
1982
1983#else
1984static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1985					 struct kvm_ppc_smmu_info *info)
1986{
1987	/* We should not get called */
1988	BUG();
1989	return 0;
1990}
1991#endif /* CONFIG_PPC64 */
1992
1993static unsigned int kvm_global_user_count = 0;
1994static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1995
1996static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1997{
1998	mutex_init(&kvm->arch.hpt_mutex);
1999
2000#ifdef CONFIG_PPC_BOOK3S_64
2001	/* Start out with the default set of hcalls enabled */
2002	kvmppc_pr_init_default_hcalls(kvm);
2003#endif
2004
2005	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2006		spin_lock(&kvm_global_user_count_lock);
2007		if (++kvm_global_user_count == 1)
2008			pseries_disable_reloc_on_exc();
2009		spin_unlock(&kvm_global_user_count_lock);
2010	}
2011	return 0;
2012}
2013
2014static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2015{
2016#ifdef CONFIG_PPC64
2017	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2018#endif
2019
2020	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2021		spin_lock(&kvm_global_user_count_lock);
2022		BUG_ON(kvm_global_user_count == 0);
2023		if (--kvm_global_user_count == 0)
2024			pseries_enable_reloc_on_exc();
2025		spin_unlock(&kvm_global_user_count_lock);
2026	}
2027}
2028
2029static int kvmppc_core_check_processor_compat_pr(void)
2030{
2031	/*
2032	 * PR KVM can work on POWER9 inside a guest partition
2033	 * running in HPT mode.  It can't work if we are using
2034	 * radix translation (because radix provides no way for
2035	 * a process to have unique translations in quadrant 3).
2036	 */
2037	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2038		return -EIO;
2039	return 0;
2040}
2041
2042static int kvm_arch_vm_ioctl_pr(struct file *filp,
2043				unsigned int ioctl, unsigned long arg)
2044{
2045	return -ENOTTY;
2046}
2047
2048static struct kvmppc_ops kvm_ops_pr = {
2049	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2050	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2051	.get_one_reg = kvmppc_get_one_reg_pr,
2052	.set_one_reg = kvmppc_set_one_reg_pr,
2053	.vcpu_load   = kvmppc_core_vcpu_load_pr,
2054	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2055	.inject_interrupt = kvmppc_inject_interrupt_pr,
2056	.set_msr     = kvmppc_set_msr_pr,
2057	.vcpu_run    = kvmppc_vcpu_run_pr,
2058	.vcpu_create = kvmppc_core_vcpu_create_pr,
2059	.vcpu_free   = kvmppc_core_vcpu_free_pr,
2060	.check_requests = kvmppc_core_check_requests_pr,
2061	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2062	.flush_memslot = kvmppc_core_flush_memslot_pr,
2063	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2064	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2065	.unmap_gfn_range = kvm_unmap_gfn_range_pr,
2066	.age_gfn  = kvm_age_gfn_pr,
2067	.test_age_gfn = kvm_test_age_gfn_pr,
2068	.free_memslot = kvmppc_core_free_memslot_pr,
2069	.init_vm = kvmppc_core_init_vm_pr,
2070	.destroy_vm = kvmppc_core_destroy_vm_pr,
2071	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2072	.emulate_op = kvmppc_core_emulate_op_pr,
2073	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2074	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2075	.fast_vcpu_kick = kvm_vcpu_kick,
2076	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2077#ifdef CONFIG_PPC_BOOK3S_64
2078	.hcall_implemented = kvmppc_hcall_impl_pr,
2079	.configure_mmu = kvm_configure_mmu_pr,
2080#endif
2081	.giveup_ext = kvmppc_giveup_ext,
2082};
2083
2084
2085int kvmppc_book3s_init_pr(void)
2086{
2087	int r;
2088
2089	r = kvmppc_core_check_processor_compat_pr();
2090	if (r < 0)
2091		return r;
2092
2093	kvm_ops_pr.owner = THIS_MODULE;
2094	kvmppc_pr_ops = &kvm_ops_pr;
2095
2096	r = kvmppc_mmu_hpte_sysinit();
2097	return r;
2098}
2099
2100void kvmppc_book3s_exit_pr(void)
2101{
2102	kvmppc_pr_ops = NULL;
2103	kvmppc_mmu_hpte_sysexit();
2104}
2105
2106/*
2107 * We only support separate modules for book3s 64
2108 */
2109#ifdef CONFIG_PPC_BOOK3S_64
2110
2111module_init(kvmppc_book3s_init_pr);
2112module_exit(kvmppc_book3s_exit_pr);
2113
2114MODULE_LICENSE("GPL");
2115MODULE_ALIAS_MISCDEV(KVM_MINOR);
2116MODULE_ALIAS("devname:kvm");
2117#endif
2118