1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9#include <linux/cpu.h>
10#include <linux/kvm.h>
11#include <linux/kvm_host.h>
12#include <linux/interrupt.h>
13#include <linux/list.h>
14#include <linux/uaccess.h>
15#include <linux/list_sort.h>
16
17#include <linux/irqchip/arm-gic-v3.h>
18
19#include <asm/kvm_emulate.h>
20#include <asm/kvm_arm.h>
21#include <asm/kvm_mmu.h>
22
23#include "vgic.h"
24#include "vgic-mmio.h"
25
26static struct kvm_device_ops kvm_arm_vgic_its_ops;
27
28static int vgic_its_save_tables_v0(struct vgic_its *its);
29static int vgic_its_restore_tables_v0(struct vgic_its *its);
30static int vgic_its_commit_v0(struct vgic_its *its);
31static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
32			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
33
34/*
35 * Creates a new (reference to a) struct vgic_irq for a given LPI.
36 * If this LPI is already mapped on another ITS, we increase its refcount
37 * and return a pointer to the existing structure.
38 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
39 * This function returns a pointer to the _unlocked_ structure.
40 */
41static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
42				     struct kvm_vcpu *vcpu)
43{
44	struct vgic_dist *dist = &kvm->arch.vgic;
45	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
46	unsigned long flags;
47	int ret;
48
49	/* In this case there is no put, since we keep the reference. */
50	if (irq)
51		return irq;
52
53	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
54	if (!irq)
55		return ERR_PTR(-ENOMEM);
56
57	ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
58	if (ret) {
59		kfree(irq);
60		return ERR_PTR(ret);
61	}
62
63	INIT_LIST_HEAD(&irq->ap_list);
64	raw_spin_lock_init(&irq->irq_lock);
65
66	irq->config = VGIC_CONFIG_EDGE;
67	kref_init(&irq->refcount);
68	irq->intid = intid;
69	irq->target_vcpu = vcpu;
70	irq->group = 1;
71
72	xa_lock_irqsave(&dist->lpi_xa, flags);
73
74	/*
75	 * There could be a race with another vgic_add_lpi(), so we need to
76	 * check that we don't add a second list entry with the same LPI.
77	 */
78	oldirq = xa_load(&dist->lpi_xa, intid);
79	if (vgic_try_get_irq_kref(oldirq)) {
80		/* Someone was faster with adding this LPI, lets use that. */
81		kfree(irq);
82		irq = oldirq;
83
84		goto out_unlock;
85	}
86
87	ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0));
88	if (ret) {
89		xa_release(&dist->lpi_xa, intid);
90		kfree(irq);
91	}
92
93out_unlock:
94	xa_unlock_irqrestore(&dist->lpi_xa, flags);
95
96	if (ret)
97		return ERR_PTR(ret);
98
99	/*
100	 * We "cache" the configuration table entries in our struct vgic_irq's.
101	 * However we only have those structs for mapped IRQs, so we read in
102	 * the respective config data from memory here upon mapping the LPI.
103	 *
104	 * Should any of these fail, behave as if we couldn't create the LPI
105	 * by dropping the refcount and returning the error.
106	 */
107	ret = update_lpi_config(kvm, irq, NULL, false);
108	if (ret) {
109		vgic_put_irq(kvm, irq);
110		return ERR_PTR(ret);
111	}
112
113	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
114	if (ret) {
115		vgic_put_irq(kvm, irq);
116		return ERR_PTR(ret);
117	}
118
119	return irq;
120}
121
122struct its_device {
123	struct list_head dev_list;
124
125	/* the head for the list of ITTEs */
126	struct list_head itt_head;
127	u32 num_eventid_bits;
128	gpa_t itt_addr;
129	u32 device_id;
130};
131
132#define COLLECTION_NOT_MAPPED ((u32)~0)
133
134struct its_collection {
135	struct list_head coll_list;
136
137	u32 collection_id;
138	u32 target_addr;
139};
140
141#define its_is_collection_mapped(coll) ((coll) && \
142				((coll)->target_addr != COLLECTION_NOT_MAPPED))
143
144struct its_ite {
145	struct list_head ite_list;
146
147	struct vgic_irq *irq;
148	struct its_collection *collection;
149	u32 event_id;
150};
151
152/**
153 * struct vgic_its_abi - ITS abi ops and settings
154 * @cte_esz: collection table entry size
155 * @dte_esz: device table entry size
156 * @ite_esz: interrupt translation table entry size
157 * @save_tables: save the ITS tables into guest RAM
158 * @restore_tables: restore the ITS internal structs from tables
159 *  stored in guest RAM
160 * @commit: initialize the registers which expose the ABI settings,
161 *  especially the entry sizes
162 */
163struct vgic_its_abi {
164	int cte_esz;
165	int dte_esz;
166	int ite_esz;
167	int (*save_tables)(struct vgic_its *its);
168	int (*restore_tables)(struct vgic_its *its);
169	int (*commit)(struct vgic_its *its);
170};
171
172#define ABI_0_ESZ	8
173#define ESZ_MAX		ABI_0_ESZ
174
175static const struct vgic_its_abi its_table_abi_versions[] = {
176	[0] = {
177	 .cte_esz = ABI_0_ESZ,
178	 .dte_esz = ABI_0_ESZ,
179	 .ite_esz = ABI_0_ESZ,
180	 .save_tables = vgic_its_save_tables_v0,
181	 .restore_tables = vgic_its_restore_tables_v0,
182	 .commit = vgic_its_commit_v0,
183	},
184};
185
186#define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
187
188inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
189{
190	return &its_table_abi_versions[its->abi_rev];
191}
192
193static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
194{
195	const struct vgic_its_abi *abi;
196
197	its->abi_rev = rev;
198	abi = vgic_its_get_abi(its);
199	return abi->commit(its);
200}
201
202/*
203 * Find and returns a device in the device table for an ITS.
204 * Must be called with the its_lock mutex held.
205 */
206static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
207{
208	struct its_device *device;
209
210	list_for_each_entry(device, &its->device_list, dev_list)
211		if (device_id == device->device_id)
212			return device;
213
214	return NULL;
215}
216
217/*
218 * Find and returns an interrupt translation table entry (ITTE) for a given
219 * Device ID/Event ID pair on an ITS.
220 * Must be called with the its_lock mutex held.
221 */
222static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
223				  u32 event_id)
224{
225	struct its_device *device;
226	struct its_ite *ite;
227
228	device = find_its_device(its, device_id);
229	if (device == NULL)
230		return NULL;
231
232	list_for_each_entry(ite, &device->itt_head, ite_list)
233		if (ite->event_id == event_id)
234			return ite;
235
236	return NULL;
237}
238
239/* To be used as an iterator this macro misses the enclosing parentheses */
240#define for_each_lpi_its(dev, ite, its) \
241	list_for_each_entry(dev, &(its)->device_list, dev_list) \
242		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
243
244#define GIC_LPI_OFFSET 8192
245
246#define VITS_TYPER_IDBITS		16
247#define VITS_MAX_EVENTID		(BIT(VITS_TYPER_IDBITS) - 1)
248#define VITS_TYPER_DEVBITS		16
249#define VITS_MAX_DEVID			(BIT(VITS_TYPER_DEVBITS) - 1)
250#define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
251#define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
252
253/*
254 * Finds and returns a collection in the ITS collection table.
255 * Must be called with the its_lock mutex held.
256 */
257static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
258{
259	struct its_collection *collection;
260
261	list_for_each_entry(collection, &its->collection_list, coll_list) {
262		if (coll_id == collection->collection_id)
263			return collection;
264	}
265
266	return NULL;
267}
268
269#define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
270#define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
271
272/*
273 * Reads the configuration data for a given LPI from guest memory and
274 * updates the fields in struct vgic_irq.
275 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
276 * VCPU. Unconditionally applies if filter_vcpu is NULL.
277 */
278static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
279			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
280{
281	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
282	u8 prop;
283	int ret;
284	unsigned long flags;
285
286	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
287				  &prop, 1);
288
289	if (ret)
290		return ret;
291
292	raw_spin_lock_irqsave(&irq->irq_lock, flags);
293
294	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
295		irq->priority = LPI_PROP_PRIORITY(prop);
296		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
297
298		if (!irq->hw) {
299			vgic_queue_irq_unlock(kvm, irq, flags);
300			return 0;
301		}
302	}
303
304	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
305
306	if (irq->hw)
307		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
308
309	return 0;
310}
311
312static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
313{
314	int ret = 0;
315	unsigned long flags;
316
317	raw_spin_lock_irqsave(&irq->irq_lock, flags);
318	irq->target_vcpu = vcpu;
319	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
320
321	if (irq->hw) {
322		struct its_vlpi_map map;
323
324		ret = its_get_vlpi(irq->host_irq, &map);
325		if (ret)
326			return ret;
327
328		if (map.vpe)
329			atomic_dec(&map.vpe->vlpi_count);
330		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
331		atomic_inc(&map.vpe->vlpi_count);
332
333		ret = its_map_vlpi(irq->host_irq, &map);
334	}
335
336	return ret;
337}
338
339static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
340					   struct its_collection *col)
341{
342	return kvm_get_vcpu_by_id(kvm, col->target_addr);
343}
344
345/*
346 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
347 * is targeting) to the VGIC's view, which deals with target VCPUs.
348 * Needs to be called whenever either the collection for a LPIs has
349 * changed or the collection itself got retargeted.
350 */
351static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
352{
353	struct kvm_vcpu *vcpu;
354
355	if (!its_is_collection_mapped(ite->collection))
356		return;
357
358	vcpu = collection_to_vcpu(kvm, ite->collection);
359	update_affinity(ite->irq, vcpu);
360}
361
362/*
363 * Updates the target VCPU for every LPI targeting this collection.
364 * Must be called with the its_lock mutex held.
365 */
366static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
367				       struct its_collection *coll)
368{
369	struct its_device *device;
370	struct its_ite *ite;
371
372	for_each_lpi_its(device, ite, its) {
373		if (ite->collection != coll)
374			continue;
375
376		update_affinity_ite(kvm, ite);
377	}
378}
379
380static u32 max_lpis_propbaser(u64 propbaser)
381{
382	int nr_idbits = (propbaser & 0x1f) + 1;
383
384	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
385}
386
387/*
388 * Sync the pending table pending bit of LPIs targeting @vcpu
389 * with our own data structures. This relies on the LPI being
390 * mapped before.
391 */
392static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
393{
394	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
395	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
396	unsigned long intid, flags;
397	struct vgic_irq *irq;
398	int last_byte_offset = -1;
399	int ret = 0;
400	u8 pendmask;
401
402	xa_for_each(&dist->lpi_xa, intid, irq) {
403		int byte_offset, bit_nr;
404
405		byte_offset = intid / BITS_PER_BYTE;
406		bit_nr = intid % BITS_PER_BYTE;
407
408		/*
409		 * For contiguously allocated LPIs chances are we just read
410		 * this very same byte in the last iteration. Reuse that.
411		 */
412		if (byte_offset != last_byte_offset) {
413			ret = kvm_read_guest_lock(vcpu->kvm,
414						  pendbase + byte_offset,
415						  &pendmask, 1);
416			if (ret)
417				return ret;
418
419			last_byte_offset = byte_offset;
420		}
421
422		irq = vgic_get_irq(vcpu->kvm, NULL, intid);
423		if (!irq)
424			continue;
425
426		raw_spin_lock_irqsave(&irq->irq_lock, flags);
427		if (irq->target_vcpu == vcpu)
428			irq->pending_latch = pendmask & (1U << bit_nr);
429		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
430		vgic_put_irq(vcpu->kvm, irq);
431	}
432
433	return ret;
434}
435
436static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
437					      struct vgic_its *its,
438					      gpa_t addr, unsigned int len)
439{
440	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
441	u64 reg = GITS_TYPER_PLPIS;
442
443	/*
444	 * We use linear CPU numbers for redistributor addressing,
445	 * so GITS_TYPER.PTA is 0.
446	 * Also we force all PROPBASER registers to be the same, so
447	 * CommonLPIAff is 0 as well.
448	 * To avoid memory waste in the guest, we keep the number of IDBits and
449	 * DevBits low - as least for the time being.
450	 */
451	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
452	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
453	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
454
455	return extract_bytes(reg, addr & 7, len);
456}
457
458static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
459					     struct vgic_its *its,
460					     gpa_t addr, unsigned int len)
461{
462	u32 val;
463
464	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
465	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
466	return val;
467}
468
469static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
470					    struct vgic_its *its,
471					    gpa_t addr, unsigned int len,
472					    unsigned long val)
473{
474	u32 rev = GITS_IIDR_REV(val);
475
476	if (rev >= NR_ITS_ABIS)
477		return -EINVAL;
478	return vgic_its_set_abi(its, rev);
479}
480
481static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
482					       struct vgic_its *its,
483					       gpa_t addr, unsigned int len)
484{
485	switch (addr & 0xffff) {
486	case GITS_PIDR0:
487		return 0x92;	/* part number, bits[7:0] */
488	case GITS_PIDR1:
489		return 0xb4;	/* part number, bits[11:8] */
490	case GITS_PIDR2:
491		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
492	case GITS_PIDR4:
493		return 0x40;	/* This is a 64K software visible page */
494	/* The following are the ID registers for (any) GIC. */
495	case GITS_CIDR0:
496		return 0x0d;
497	case GITS_CIDR1:
498		return 0xf0;
499	case GITS_CIDR2:
500		return 0x05;
501	case GITS_CIDR3:
502		return 0xb1;
503	}
504
505	return 0;
506}
507
508static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db)
509{
510	struct kvm_io_device *kvm_io_dev;
511	struct vgic_io_device *iodev;
512
513	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db);
514	if (!kvm_io_dev)
515		return ERR_PTR(-EINVAL);
516
517	if (kvm_io_dev->ops != &kvm_io_gic_ops)
518		return ERR_PTR(-EINVAL);
519
520	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
521	if (iodev->iodev_type != IODEV_ITS)
522		return ERR_PTR(-EINVAL);
523
524	return iodev->its;
525}
526
527static unsigned long vgic_its_cache_key(u32 devid, u32 eventid)
528{
529	return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid;
530
531}
532
533static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
534					     u32 devid, u32 eventid)
535{
536	unsigned long cache_key = vgic_its_cache_key(devid, eventid);
537	struct vgic_its *its;
538	struct vgic_irq *irq;
539
540	if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID)
541		return NULL;
542
543	its = __vgic_doorbell_to_its(kvm, db);
544	if (IS_ERR(its))
545		return NULL;
546
547	rcu_read_lock();
548
549	irq = xa_load(&its->translation_cache, cache_key);
550	if (!vgic_try_get_irq_kref(irq))
551		irq = NULL;
552
553	rcu_read_unlock();
554
555	return irq;
556}
557
558static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
559				       u32 devid, u32 eventid,
560				       struct vgic_irq *irq)
561{
562	unsigned long cache_key = vgic_its_cache_key(devid, eventid);
563	struct vgic_irq *old;
564
565	/* Do not cache a directly injected interrupt */
566	if (irq->hw)
567		return;
568
569	/*
570	 * The irq refcount is guaranteed to be nonzero while holding the
571	 * its_lock, as the ITE (and the reference it holds) cannot be freed.
572	 */
573	lockdep_assert_held(&its->its_lock);
574	vgic_get_irq_kref(irq);
575
576	/*
577	 * We could have raced with another CPU caching the same
578	 * translation behind our back, ensure we don't leak a
579	 * reference if that is the case.
580	 */
581	old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
582	if (old)
583		vgic_put_irq(kvm, old);
584}
585
586static void vgic_its_invalidate_cache(struct vgic_its *its)
587{
588	struct kvm *kvm = its->dev->kvm;
589	struct vgic_irq *irq;
590	unsigned long idx;
591
592	xa_for_each(&its->translation_cache, idx, irq) {
593		xa_erase(&its->translation_cache, idx);
594		vgic_put_irq(kvm, irq);
595	}
596}
597
598void vgic_its_invalidate_all_caches(struct kvm *kvm)
599{
600	struct kvm_device *dev;
601	struct vgic_its *its;
602
603	rcu_read_lock();
604
605	list_for_each_entry_rcu(dev, &kvm->devices, vm_node) {
606		if (dev->ops != &kvm_arm_vgic_its_ops)
607			continue;
608
609		its = dev->private;
610		vgic_its_invalidate_cache(its);
611	}
612
613	rcu_read_unlock();
614}
615
616int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
617			 u32 devid, u32 eventid, struct vgic_irq **irq)
618{
619	struct kvm_vcpu *vcpu;
620	struct its_ite *ite;
621
622	if (!its->enabled)
623		return -EBUSY;
624
625	ite = find_ite(its, devid, eventid);
626	if (!ite || !its_is_collection_mapped(ite->collection))
627		return E_ITS_INT_UNMAPPED_INTERRUPT;
628
629	vcpu = collection_to_vcpu(kvm, ite->collection);
630	if (!vcpu)
631		return E_ITS_INT_UNMAPPED_INTERRUPT;
632
633	if (!vgic_lpis_enabled(vcpu))
634		return -EBUSY;
635
636	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
637
638	*irq = ite->irq;
639	return 0;
640}
641
642struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
643{
644	u64 address;
645
646	if (!vgic_has_its(kvm))
647		return ERR_PTR(-ENODEV);
648
649	if (!(msi->flags & KVM_MSI_VALID_DEVID))
650		return ERR_PTR(-EINVAL);
651
652	address = (u64)msi->address_hi << 32 | msi->address_lo;
653
654	return __vgic_doorbell_to_its(kvm, address);
655}
656
657/*
658 * Find the target VCPU and the LPI number for a given devid/eventid pair
659 * and make this IRQ pending, possibly injecting it.
660 * Must be called with the its_lock mutex held.
661 * Returns 0 on success, a positive error value for any ITS mapping
662 * related errors and negative error values for generic errors.
663 */
664static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
665				u32 devid, u32 eventid)
666{
667	struct vgic_irq *irq = NULL;
668	unsigned long flags;
669	int err;
670
671	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
672	if (err)
673		return err;
674
675	if (irq->hw)
676		return irq_set_irqchip_state(irq->host_irq,
677					     IRQCHIP_STATE_PENDING, true);
678
679	raw_spin_lock_irqsave(&irq->irq_lock, flags);
680	irq->pending_latch = true;
681	vgic_queue_irq_unlock(kvm, irq, flags);
682
683	return 0;
684}
685
686int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
687{
688	struct vgic_irq *irq;
689	unsigned long flags;
690	phys_addr_t db;
691
692	db = (u64)msi->address_hi << 32 | msi->address_lo;
693	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
694	if (!irq)
695		return -EWOULDBLOCK;
696
697	raw_spin_lock_irqsave(&irq->irq_lock, flags);
698	irq->pending_latch = true;
699	vgic_queue_irq_unlock(kvm, irq, flags);
700	vgic_put_irq(kvm, irq);
701
702	return 0;
703}
704
705/*
706 * Queries the KVM IO bus framework to get the ITS pointer from the given
707 * doorbell address.
708 * We then call vgic_its_trigger_msi() with the decoded data.
709 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
710 */
711int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
712{
713	struct vgic_its *its;
714	int ret;
715
716	if (!vgic_its_inject_cached_translation(kvm, msi))
717		return 1;
718
719	its = vgic_msi_to_its(kvm, msi);
720	if (IS_ERR(its))
721		return PTR_ERR(its);
722
723	mutex_lock(&its->its_lock);
724	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
725	mutex_unlock(&its->its_lock);
726
727	if (ret < 0)
728		return ret;
729
730	/*
731	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
732	 * if the guest has blocked the MSI. So we map any LPI mapping
733	 * related error to that.
734	 */
735	if (ret)
736		return 0;
737	else
738		return 1;
739}
740
741/* Requires the its_lock to be held. */
742static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
743{
744	list_del(&ite->ite_list);
745
746	/* This put matches the get in vgic_add_lpi. */
747	if (ite->irq) {
748		if (ite->irq->hw)
749			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
750
751		vgic_put_irq(kvm, ite->irq);
752	}
753
754	kfree(ite);
755}
756
757static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
758{
759	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
760}
761
762#define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
763#define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
764#define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
765#define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
766#define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
767#define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
768#define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
769#define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
770#define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
771
772/*
773 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
774 * Must be called with the its_lock mutex held.
775 */
776static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
777				       u64 *its_cmd)
778{
779	u32 device_id = its_cmd_get_deviceid(its_cmd);
780	u32 event_id = its_cmd_get_id(its_cmd);
781	struct its_ite *ite;
782
783	ite = find_ite(its, device_id, event_id);
784	if (ite && its_is_collection_mapped(ite->collection)) {
785		/*
786		 * Though the spec talks about removing the pending state, we
787		 * don't bother here since we clear the ITTE anyway and the
788		 * pending state is a property of the ITTE struct.
789		 */
790		vgic_its_invalidate_cache(its);
791
792		its_free_ite(kvm, ite);
793		return 0;
794	}
795
796	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
797}
798
799/*
800 * The MOVI command moves an ITTE to a different collection.
801 * Must be called with the its_lock mutex held.
802 */
803static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
804				    u64 *its_cmd)
805{
806	u32 device_id = its_cmd_get_deviceid(its_cmd);
807	u32 event_id = its_cmd_get_id(its_cmd);
808	u32 coll_id = its_cmd_get_collection(its_cmd);
809	struct kvm_vcpu *vcpu;
810	struct its_ite *ite;
811	struct its_collection *collection;
812
813	ite = find_ite(its, device_id, event_id);
814	if (!ite)
815		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
816
817	if (!its_is_collection_mapped(ite->collection))
818		return E_ITS_MOVI_UNMAPPED_COLLECTION;
819
820	collection = find_collection(its, coll_id);
821	if (!its_is_collection_mapped(collection))
822		return E_ITS_MOVI_UNMAPPED_COLLECTION;
823
824	ite->collection = collection;
825	vcpu = collection_to_vcpu(kvm, collection);
826
827	vgic_its_invalidate_cache(its);
828
829	return update_affinity(ite->irq, vcpu);
830}
831
832static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
833{
834	gfn_t gfn = gpa >> PAGE_SHIFT;
835	int idx;
836	bool ret;
837
838	idx = srcu_read_lock(&its->dev->kvm->srcu);
839	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
840	srcu_read_unlock(&its->dev->kvm->srcu, idx);
841	return ret;
842}
843
844/*
845 * Check whether an ID can be stored into the corresponding guest table.
846 * For a direct table this is pretty easy, but gets a bit nasty for
847 * indirect tables. We check whether the resulting guest physical address
848 * is actually valid (covered by a memslot and guest accessible).
849 * For this we have to read the respective first level entry.
850 */
851static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
852			      gpa_t *eaddr)
853{
854	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
855	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
856	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
857	int esz = GITS_BASER_ENTRY_SIZE(baser);
858	int index;
859
860	switch (type) {
861	case GITS_BASER_TYPE_DEVICE:
862		if (id > VITS_MAX_DEVID)
863			return false;
864		break;
865	case GITS_BASER_TYPE_COLLECTION:
866		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
867		if (id >= BIT_ULL(16))
868			return false;
869		break;
870	default:
871		return false;
872	}
873
874	if (!(baser & GITS_BASER_INDIRECT)) {
875		phys_addr_t addr;
876
877		if (id >= (l1_tbl_size / esz))
878			return false;
879
880		addr = base + id * esz;
881
882		if (eaddr)
883			*eaddr = addr;
884
885		return __is_visible_gfn_locked(its, addr);
886	}
887
888	/* calculate and check the index into the 1st level */
889	index = id / (SZ_64K / esz);
890	if (index >= (l1_tbl_size / sizeof(u64)))
891		return false;
892
893	/* Each 1st level entry is represented by a 64-bit value. */
894	if (kvm_read_guest_lock(its->dev->kvm,
895			   base + index * sizeof(indirect_ptr),
896			   &indirect_ptr, sizeof(indirect_ptr)))
897		return false;
898
899	indirect_ptr = le64_to_cpu(indirect_ptr);
900
901	/* check the valid bit of the first level entry */
902	if (!(indirect_ptr & BIT_ULL(63)))
903		return false;
904
905	/* Mask the guest physical address and calculate the frame number. */
906	indirect_ptr &= GENMASK_ULL(51, 16);
907
908	/* Find the address of the actual entry */
909	index = id % (SZ_64K / esz);
910	indirect_ptr += index * esz;
911
912	if (eaddr)
913		*eaddr = indirect_ptr;
914
915	return __is_visible_gfn_locked(its, indirect_ptr);
916}
917
918/*
919 * Check whether an event ID can be stored in the corresponding Interrupt
920 * Translation Table, which starts at device->itt_addr.
921 */
922static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
923		u32 event_id)
924{
925	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
926	int ite_esz = abi->ite_esz;
927	gpa_t gpa;
928
929	/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
930	if (event_id >= BIT_ULL(device->num_eventid_bits))
931		return false;
932
933	gpa = device->itt_addr + event_id * ite_esz;
934	return __is_visible_gfn_locked(its, gpa);
935}
936
937/*
938 * Add a new collection into the ITS collection table.
939 * Returns 0 on success, and a negative error value for generic errors.
940 */
941static int vgic_its_alloc_collection(struct vgic_its *its,
942				     struct its_collection **colp,
943				     u32 coll_id)
944{
945	struct its_collection *collection;
946
947	collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
948	if (!collection)
949		return -ENOMEM;
950
951	collection->collection_id = coll_id;
952	collection->target_addr = COLLECTION_NOT_MAPPED;
953
954	list_add_tail(&collection->coll_list, &its->collection_list);
955	*colp = collection;
956
957	return 0;
958}
959
960static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
961{
962	struct its_collection *collection;
963	struct its_device *device;
964	struct its_ite *ite;
965
966	/*
967	 * Clearing the mapping for that collection ID removes the
968	 * entry from the list. If there wasn't any before, we can
969	 * go home early.
970	 */
971	collection = find_collection(its, coll_id);
972	if (!collection)
973		return;
974
975	for_each_lpi_its(device, ite, its)
976		if (ite->collection &&
977		    ite->collection->collection_id == coll_id)
978			ite->collection = NULL;
979
980	list_del(&collection->coll_list);
981	kfree(collection);
982}
983
984/* Must be called with its_lock mutex held */
985static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
986					  struct its_collection *collection,
987					  u32 event_id)
988{
989	struct its_ite *ite;
990
991	ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
992	if (!ite)
993		return ERR_PTR(-ENOMEM);
994
995	ite->event_id	= event_id;
996	ite->collection = collection;
997
998	list_add_tail(&ite->ite_list, &device->itt_head);
999	return ite;
1000}
1001
1002/*
1003 * The MAPTI and MAPI commands map LPIs to ITTEs.
1004 * Must be called with its_lock mutex held.
1005 */
1006static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1007				    u64 *its_cmd)
1008{
1009	u32 device_id = its_cmd_get_deviceid(its_cmd);
1010	u32 event_id = its_cmd_get_id(its_cmd);
1011	u32 coll_id = its_cmd_get_collection(its_cmd);
1012	struct its_ite *ite;
1013	struct kvm_vcpu *vcpu = NULL;
1014	struct its_device *device;
1015	struct its_collection *collection, *new_coll = NULL;
1016	struct vgic_irq *irq;
1017	int lpi_nr;
1018
1019	device = find_its_device(its, device_id);
1020	if (!device)
1021		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1022
1023	if (!vgic_its_check_event_id(its, device, event_id))
1024		return E_ITS_MAPTI_ID_OOR;
1025
1026	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1027		lpi_nr = its_cmd_get_physical_id(its_cmd);
1028	else
1029		lpi_nr = event_id;
1030	if (lpi_nr < GIC_LPI_OFFSET ||
1031	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1032		return E_ITS_MAPTI_PHYSICALID_OOR;
1033
1034	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1035	if (find_ite(its, device_id, event_id))
1036		return 0;
1037
1038	collection = find_collection(its, coll_id);
1039	if (!collection) {
1040		int ret;
1041
1042		if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1043			return E_ITS_MAPC_COLLECTION_OOR;
1044
1045		ret = vgic_its_alloc_collection(its, &collection, coll_id);
1046		if (ret)
1047			return ret;
1048		new_coll = collection;
1049	}
1050
1051	ite = vgic_its_alloc_ite(device, collection, event_id);
1052	if (IS_ERR(ite)) {
1053		if (new_coll)
1054			vgic_its_free_collection(its, coll_id);
1055		return PTR_ERR(ite);
1056	}
1057
1058	if (its_is_collection_mapped(collection))
1059		vcpu = collection_to_vcpu(kvm, collection);
1060
1061	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1062	if (IS_ERR(irq)) {
1063		if (new_coll)
1064			vgic_its_free_collection(its, coll_id);
1065		its_free_ite(kvm, ite);
1066		return PTR_ERR(irq);
1067	}
1068	ite->irq = irq;
1069
1070	return 0;
1071}
1072
1073/* Requires the its_lock to be held. */
1074static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its,
1075				 struct its_device *device)
1076{
1077	struct its_ite *ite, *temp;
1078
1079	/*
1080	 * The spec says that unmapping a device with still valid
1081	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1082	 * since we cannot leave the memory unreferenced.
1083	 */
1084	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1085		its_free_ite(kvm, ite);
1086
1087	vgic_its_invalidate_cache(its);
1088
1089	list_del(&device->dev_list);
1090	kfree(device);
1091}
1092
1093/* its lock must be held */
1094static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1095{
1096	struct its_device *cur, *temp;
1097
1098	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1099		vgic_its_free_device(kvm, its, cur);
1100}
1101
1102/* its lock must be held */
1103static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1104{
1105	struct its_collection *cur, *temp;
1106
1107	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1108		vgic_its_free_collection(its, cur->collection_id);
1109}
1110
1111/* Must be called with its_lock mutex held */
1112static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1113						u32 device_id, gpa_t itt_addr,
1114						u8 num_eventid_bits)
1115{
1116	struct its_device *device;
1117
1118	device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1119	if (!device)
1120		return ERR_PTR(-ENOMEM);
1121
1122	device->device_id = device_id;
1123	device->itt_addr = itt_addr;
1124	device->num_eventid_bits = num_eventid_bits;
1125	INIT_LIST_HEAD(&device->itt_head);
1126
1127	list_add_tail(&device->dev_list, &its->device_list);
1128	return device;
1129}
1130
1131/*
1132 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1133 * Must be called with the its_lock mutex held.
1134 */
1135static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1136				    u64 *its_cmd)
1137{
1138	u32 device_id = its_cmd_get_deviceid(its_cmd);
1139	bool valid = its_cmd_get_validbit(its_cmd);
1140	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1141	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1142	struct its_device *device;
1143
1144	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1145		return E_ITS_MAPD_DEVICE_OOR;
1146
1147	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1148		return E_ITS_MAPD_ITTSIZE_OOR;
1149
1150	device = find_its_device(its, device_id);
1151
1152	/*
1153	 * The spec says that calling MAPD on an already mapped device
1154	 * invalidates all cached data for this device. We implement this
1155	 * by removing the mapping and re-establishing it.
1156	 */
1157	if (device)
1158		vgic_its_free_device(kvm, its, device);
1159
1160	/*
1161	 * The spec does not say whether unmapping a not-mapped device
1162	 * is an error, so we are done in any case.
1163	 */
1164	if (!valid)
1165		return 0;
1166
1167	device = vgic_its_alloc_device(its, device_id, itt_addr,
1168				       num_eventid_bits);
1169
1170	return PTR_ERR_OR_ZERO(device);
1171}
1172
1173/*
1174 * The MAPC command maps collection IDs to redistributors.
1175 * Must be called with the its_lock mutex held.
1176 */
1177static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1178				    u64 *its_cmd)
1179{
1180	u16 coll_id;
1181	struct its_collection *collection;
1182	bool valid;
1183
1184	valid = its_cmd_get_validbit(its_cmd);
1185	coll_id = its_cmd_get_collection(its_cmd);
1186
1187	if (!valid) {
1188		vgic_its_free_collection(its, coll_id);
1189		vgic_its_invalidate_cache(its);
1190	} else {
1191		struct kvm_vcpu *vcpu;
1192
1193		vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1194		if (!vcpu)
1195			return E_ITS_MAPC_PROCNUM_OOR;
1196
1197		collection = find_collection(its, coll_id);
1198
1199		if (!collection) {
1200			int ret;
1201
1202			if (!vgic_its_check_id(its, its->baser_coll_table,
1203						coll_id, NULL))
1204				return E_ITS_MAPC_COLLECTION_OOR;
1205
1206			ret = vgic_its_alloc_collection(its, &collection,
1207							coll_id);
1208			if (ret)
1209				return ret;
1210			collection->target_addr = vcpu->vcpu_id;
1211		} else {
1212			collection->target_addr = vcpu->vcpu_id;
1213			update_affinity_collection(kvm, its, collection);
1214		}
1215	}
1216
1217	return 0;
1218}
1219
1220/*
1221 * The CLEAR command removes the pending state for a particular LPI.
1222 * Must be called with the its_lock mutex held.
1223 */
1224static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1225				     u64 *its_cmd)
1226{
1227	u32 device_id = its_cmd_get_deviceid(its_cmd);
1228	u32 event_id = its_cmd_get_id(its_cmd);
1229	struct its_ite *ite;
1230
1231
1232	ite = find_ite(its, device_id, event_id);
1233	if (!ite)
1234		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1235
1236	ite->irq->pending_latch = false;
1237
1238	if (ite->irq->hw)
1239		return irq_set_irqchip_state(ite->irq->host_irq,
1240					     IRQCHIP_STATE_PENDING, false);
1241
1242	return 0;
1243}
1244
1245int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1246{
1247	return update_lpi_config(kvm, irq, NULL, true);
1248}
1249
1250/*
1251 * The INV command syncs the configuration bits from the memory table.
1252 * Must be called with the its_lock mutex held.
1253 */
1254static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1255				   u64 *its_cmd)
1256{
1257	u32 device_id = its_cmd_get_deviceid(its_cmd);
1258	u32 event_id = its_cmd_get_id(its_cmd);
1259	struct its_ite *ite;
1260
1261
1262	ite = find_ite(its, device_id, event_id);
1263	if (!ite)
1264		return E_ITS_INV_UNMAPPED_INTERRUPT;
1265
1266	return vgic_its_inv_lpi(kvm, ite->irq);
1267}
1268
1269/**
1270 * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1271 * @vcpu: the vcpu for which the RD is targeted by an invalidation
1272 *
1273 * Contrary to the INVALL command, this targets a RD instead of a
1274 * collection, and we don't need to hold the its_lock, since no ITS is
1275 * involved here.
1276 */
1277int vgic_its_invall(struct kvm_vcpu *vcpu)
1278{
1279	struct kvm *kvm = vcpu->kvm;
1280	struct vgic_dist *dist = &kvm->arch.vgic;
1281	struct vgic_irq *irq;
1282	unsigned long intid;
1283
1284	xa_for_each(&dist->lpi_xa, intid, irq) {
1285		irq = vgic_get_irq(kvm, NULL, intid);
1286		if (!irq)
1287			continue;
1288
1289		update_lpi_config(kvm, irq, vcpu, false);
1290		vgic_put_irq(kvm, irq);
1291	}
1292
1293	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1294		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1295
1296	return 0;
1297}
1298
1299/*
1300 * The INVALL command requests flushing of all IRQ data in this collection.
1301 * Find the VCPU mapped to that collection, then iterate over the VM's list
1302 * of mapped LPIs and update the configuration for each IRQ which targets
1303 * the specified vcpu. The configuration will be read from the in-memory
1304 * configuration table.
1305 * Must be called with the its_lock mutex held.
1306 */
1307static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1308				      u64 *its_cmd)
1309{
1310	u32 coll_id = its_cmd_get_collection(its_cmd);
1311	struct its_collection *collection;
1312	struct kvm_vcpu *vcpu;
1313
1314	collection = find_collection(its, coll_id);
1315	if (!its_is_collection_mapped(collection))
1316		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1317
1318	vcpu = collection_to_vcpu(kvm, collection);
1319	vgic_its_invall(vcpu);
1320
1321	return 0;
1322}
1323
1324/*
1325 * The MOVALL command moves the pending state of all IRQs targeting one
1326 * redistributor to another. We don't hold the pending state in the VCPUs,
1327 * but in the IRQs instead, so there is really not much to do for us here.
1328 * However the spec says that no IRQ must target the old redistributor
1329 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1330 * This command affects all LPIs in the system that target that redistributor.
1331 */
1332static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1333				      u64 *its_cmd)
1334{
1335	struct vgic_dist *dist = &kvm->arch.vgic;
1336	struct kvm_vcpu *vcpu1, *vcpu2;
1337	struct vgic_irq *irq;
1338	unsigned long intid;
1339
1340	/* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1341	vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1342	vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1343
1344	if (!vcpu1 || !vcpu2)
1345		return E_ITS_MOVALL_PROCNUM_OOR;
1346
1347	if (vcpu1 == vcpu2)
1348		return 0;
1349
1350	xa_for_each(&dist->lpi_xa, intid, irq) {
1351		irq = vgic_get_irq(kvm, NULL, intid);
1352		if (!irq)
1353			continue;
1354
1355		update_affinity(irq, vcpu2);
1356
1357		vgic_put_irq(kvm, irq);
1358	}
1359
1360	vgic_its_invalidate_cache(its);
1361
1362	return 0;
1363}
1364
1365/*
1366 * The INT command injects the LPI associated with that DevID/EvID pair.
1367 * Must be called with the its_lock mutex held.
1368 */
1369static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1370				   u64 *its_cmd)
1371{
1372	u32 msi_data = its_cmd_get_id(its_cmd);
1373	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1374
1375	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1376}
1377
1378/*
1379 * This function is called with the its_cmd lock held, but the ITS data
1380 * structure lock dropped.
1381 */
1382static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1383				   u64 *its_cmd)
1384{
1385	int ret = -ENODEV;
1386
1387	mutex_lock(&its->its_lock);
1388	switch (its_cmd_get_command(its_cmd)) {
1389	case GITS_CMD_MAPD:
1390		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1391		break;
1392	case GITS_CMD_MAPC:
1393		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1394		break;
1395	case GITS_CMD_MAPI:
1396		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1397		break;
1398	case GITS_CMD_MAPTI:
1399		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1400		break;
1401	case GITS_CMD_MOVI:
1402		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1403		break;
1404	case GITS_CMD_DISCARD:
1405		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1406		break;
1407	case GITS_CMD_CLEAR:
1408		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1409		break;
1410	case GITS_CMD_MOVALL:
1411		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1412		break;
1413	case GITS_CMD_INT:
1414		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1415		break;
1416	case GITS_CMD_INV:
1417		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1418		break;
1419	case GITS_CMD_INVALL:
1420		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1421		break;
1422	case GITS_CMD_SYNC:
1423		/* we ignore this command: we are in sync all of the time */
1424		ret = 0;
1425		break;
1426	}
1427	mutex_unlock(&its->its_lock);
1428
1429	return ret;
1430}
1431
1432static u64 vgic_sanitise_its_baser(u64 reg)
1433{
1434	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1435				  GITS_BASER_SHAREABILITY_SHIFT,
1436				  vgic_sanitise_shareability);
1437	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1438				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1439				  vgic_sanitise_inner_cacheability);
1440	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1441				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1442				  vgic_sanitise_outer_cacheability);
1443
1444	/* We support only one (ITS) page size: 64K */
1445	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1446
1447	return reg;
1448}
1449
1450static u64 vgic_sanitise_its_cbaser(u64 reg)
1451{
1452	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1453				  GITS_CBASER_SHAREABILITY_SHIFT,
1454				  vgic_sanitise_shareability);
1455	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1456				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1457				  vgic_sanitise_inner_cacheability);
1458	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1459				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1460				  vgic_sanitise_outer_cacheability);
1461
1462	/* Sanitise the physical address to be 64k aligned. */
1463	reg &= ~GENMASK_ULL(15, 12);
1464
1465	return reg;
1466}
1467
1468static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1469					       struct vgic_its *its,
1470					       gpa_t addr, unsigned int len)
1471{
1472	return extract_bytes(its->cbaser, addr & 7, len);
1473}
1474
1475static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1476				       gpa_t addr, unsigned int len,
1477				       unsigned long val)
1478{
1479	/* When GITS_CTLR.Enable is 1, this register is RO. */
1480	if (its->enabled)
1481		return;
1482
1483	mutex_lock(&its->cmd_lock);
1484	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1485	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1486	its->creadr = 0;
1487	/*
1488	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1489	 * it to CREADR to make sure we start with an empty command buffer.
1490	 */
1491	its->cwriter = its->creadr;
1492	mutex_unlock(&its->cmd_lock);
1493}
1494
1495#define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1496#define ITS_CMD_SIZE			32
1497#define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1498
1499/* Must be called with the cmd_lock held. */
1500static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1501{
1502	gpa_t cbaser;
1503	u64 cmd_buf[4];
1504
1505	/* Commands are only processed when the ITS is enabled. */
1506	if (!its->enabled)
1507		return;
1508
1509	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1510
1511	while (its->cwriter != its->creadr) {
1512		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1513					      cmd_buf, ITS_CMD_SIZE);
1514		/*
1515		 * If kvm_read_guest() fails, this could be due to the guest
1516		 * programming a bogus value in CBASER or something else going
1517		 * wrong from which we cannot easily recover.
1518		 * According to section 6.3.2 in the GICv3 spec we can just
1519		 * ignore that command then.
1520		 */
1521		if (!ret)
1522			vgic_its_handle_command(kvm, its, cmd_buf);
1523
1524		its->creadr += ITS_CMD_SIZE;
1525		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1526			its->creadr = 0;
1527	}
1528}
1529
1530/*
1531 * By writing to CWRITER the guest announces new commands to be processed.
1532 * To avoid any races in the first place, we take the its_cmd lock, which
1533 * protects our ring buffer variables, so that there is only one user
1534 * per ITS handling commands at a given time.
1535 */
1536static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1537					gpa_t addr, unsigned int len,
1538					unsigned long val)
1539{
1540	u64 reg;
1541
1542	if (!its)
1543		return;
1544
1545	mutex_lock(&its->cmd_lock);
1546
1547	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1548	reg = ITS_CMD_OFFSET(reg);
1549	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1550		mutex_unlock(&its->cmd_lock);
1551		return;
1552	}
1553	its->cwriter = reg;
1554
1555	vgic_its_process_commands(kvm, its);
1556
1557	mutex_unlock(&its->cmd_lock);
1558}
1559
1560static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1561						struct vgic_its *its,
1562						gpa_t addr, unsigned int len)
1563{
1564	return extract_bytes(its->cwriter, addr & 0x7, len);
1565}
1566
1567static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1568					       struct vgic_its *its,
1569					       gpa_t addr, unsigned int len)
1570{
1571	return extract_bytes(its->creadr, addr & 0x7, len);
1572}
1573
1574static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1575					      struct vgic_its *its,
1576					      gpa_t addr, unsigned int len,
1577					      unsigned long val)
1578{
1579	u32 cmd_offset;
1580	int ret = 0;
1581
1582	mutex_lock(&its->cmd_lock);
1583
1584	if (its->enabled) {
1585		ret = -EBUSY;
1586		goto out;
1587	}
1588
1589	cmd_offset = ITS_CMD_OFFSET(val);
1590	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1591		ret = -EINVAL;
1592		goto out;
1593	}
1594
1595	its->creadr = cmd_offset;
1596out:
1597	mutex_unlock(&its->cmd_lock);
1598	return ret;
1599}
1600
1601#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1602static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1603					      struct vgic_its *its,
1604					      gpa_t addr, unsigned int len)
1605{
1606	u64 reg;
1607
1608	switch (BASER_INDEX(addr)) {
1609	case 0:
1610		reg = its->baser_device_table;
1611		break;
1612	case 1:
1613		reg = its->baser_coll_table;
1614		break;
1615	default:
1616		reg = 0;
1617		break;
1618	}
1619
1620	return extract_bytes(reg, addr & 7, len);
1621}
1622
1623#define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1624static void vgic_mmio_write_its_baser(struct kvm *kvm,
1625				      struct vgic_its *its,
1626				      gpa_t addr, unsigned int len,
1627				      unsigned long val)
1628{
1629	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1630	u64 entry_size, table_type;
1631	u64 reg, *regptr, clearbits = 0;
1632
1633	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1634	if (its->enabled)
1635		return;
1636
1637	switch (BASER_INDEX(addr)) {
1638	case 0:
1639		regptr = &its->baser_device_table;
1640		entry_size = abi->dte_esz;
1641		table_type = GITS_BASER_TYPE_DEVICE;
1642		break;
1643	case 1:
1644		regptr = &its->baser_coll_table;
1645		entry_size = abi->cte_esz;
1646		table_type = GITS_BASER_TYPE_COLLECTION;
1647		clearbits = GITS_BASER_INDIRECT;
1648		break;
1649	default:
1650		return;
1651	}
1652
1653	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1654	reg &= ~GITS_BASER_RO_MASK;
1655	reg &= ~clearbits;
1656
1657	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1658	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1659	reg = vgic_sanitise_its_baser(reg);
1660
1661	*regptr = reg;
1662
1663	if (!(reg & GITS_BASER_VALID)) {
1664		/* Take the its_lock to prevent a race with a save/restore */
1665		mutex_lock(&its->its_lock);
1666		switch (table_type) {
1667		case GITS_BASER_TYPE_DEVICE:
1668			vgic_its_free_device_list(kvm, its);
1669			break;
1670		case GITS_BASER_TYPE_COLLECTION:
1671			vgic_its_free_collection_list(kvm, its);
1672			break;
1673		}
1674		mutex_unlock(&its->its_lock);
1675	}
1676}
1677
1678static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1679					     struct vgic_its *its,
1680					     gpa_t addr, unsigned int len)
1681{
1682	u32 reg = 0;
1683
1684	mutex_lock(&its->cmd_lock);
1685	if (its->creadr == its->cwriter)
1686		reg |= GITS_CTLR_QUIESCENT;
1687	if (its->enabled)
1688		reg |= GITS_CTLR_ENABLE;
1689	mutex_unlock(&its->cmd_lock);
1690
1691	return reg;
1692}
1693
1694static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1695				     gpa_t addr, unsigned int len,
1696				     unsigned long val)
1697{
1698	mutex_lock(&its->cmd_lock);
1699
1700	/*
1701	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1702	 * device/collection BASER are invalid
1703	 */
1704	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1705		(!(its->baser_device_table & GITS_BASER_VALID) ||
1706		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1707		 !(its->cbaser & GITS_CBASER_VALID)))
1708		goto out;
1709
1710	its->enabled = !!(val & GITS_CTLR_ENABLE);
1711	if (!its->enabled)
1712		vgic_its_invalidate_cache(its);
1713
1714	/*
1715	 * Try to process any pending commands. This function bails out early
1716	 * if the ITS is disabled or no commands have been queued.
1717	 */
1718	vgic_its_process_commands(kvm, its);
1719
1720out:
1721	mutex_unlock(&its->cmd_lock);
1722}
1723
1724#define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1725{								\
1726	.reg_offset = off,					\
1727	.len = length,						\
1728	.access_flags = acc,					\
1729	.its_read = rd,						\
1730	.its_write = wr,					\
1731}
1732
1733#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1734{								\
1735	.reg_offset = off,					\
1736	.len = length,						\
1737	.access_flags = acc,					\
1738	.its_read = rd,						\
1739	.its_write = wr,					\
1740	.uaccess_its_write = uwr,				\
1741}
1742
1743static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1744			      gpa_t addr, unsigned int len, unsigned long val)
1745{
1746	/* Ignore */
1747}
1748
1749static struct vgic_register_region its_registers[] = {
1750	REGISTER_ITS_DESC(GITS_CTLR,
1751		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1752		VGIC_ACCESS_32bit),
1753	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1754		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1755		vgic_mmio_uaccess_write_its_iidr, 4,
1756		VGIC_ACCESS_32bit),
1757	REGISTER_ITS_DESC(GITS_TYPER,
1758		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1759		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1760	REGISTER_ITS_DESC(GITS_CBASER,
1761		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1762		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1763	REGISTER_ITS_DESC(GITS_CWRITER,
1764		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1765		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1766	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1767		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1768		vgic_mmio_uaccess_write_its_creadr, 8,
1769		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1770	REGISTER_ITS_DESC(GITS_BASER,
1771		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1772		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1773	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1774		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1775		VGIC_ACCESS_32bit),
1776};
1777
1778/* This is called on setting the LPI enable bit in the redistributor. */
1779void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1780{
1781	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1782		its_sync_lpi_pending_table(vcpu);
1783}
1784
1785static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1786				   u64 addr)
1787{
1788	struct vgic_io_device *iodev = &its->iodev;
1789	int ret;
1790
1791	mutex_lock(&kvm->slots_lock);
1792	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1793		ret = -EBUSY;
1794		goto out;
1795	}
1796
1797	its->vgic_its_base = addr;
1798	iodev->regions = its_registers;
1799	iodev->nr_regions = ARRAY_SIZE(its_registers);
1800	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1801
1802	iodev->base_addr = its->vgic_its_base;
1803	iodev->iodev_type = IODEV_ITS;
1804	iodev->its = its;
1805	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1806				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1807out:
1808	mutex_unlock(&kvm->slots_lock);
1809
1810	return ret;
1811}
1812
1813#define INITIAL_BASER_VALUE						  \
1814	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1815	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1816	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1817	 GITS_BASER_PAGE_SIZE_64K)
1818
1819#define INITIAL_PROPBASER_VALUE						  \
1820	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1821	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1822	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1823
1824static int vgic_its_create(struct kvm_device *dev, u32 type)
1825{
1826	int ret;
1827	struct vgic_its *its;
1828
1829	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1830		return -ENODEV;
1831
1832	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1833	if (!its)
1834		return -ENOMEM;
1835
1836	mutex_lock(&dev->kvm->arch.config_lock);
1837
1838	if (vgic_initialized(dev->kvm)) {
1839		ret = vgic_v4_init(dev->kvm);
1840		if (ret < 0) {
1841			mutex_unlock(&dev->kvm->arch.config_lock);
1842			kfree(its);
1843			return ret;
1844		}
1845	}
1846
1847	mutex_init(&its->its_lock);
1848	mutex_init(&its->cmd_lock);
1849
1850	/* Yep, even more trickery for lock ordering... */
1851#ifdef CONFIG_LOCKDEP
1852	mutex_lock(&its->cmd_lock);
1853	mutex_lock(&its->its_lock);
1854	mutex_unlock(&its->its_lock);
1855	mutex_unlock(&its->cmd_lock);
1856#endif
1857
1858	its->vgic_its_base = VGIC_ADDR_UNDEF;
1859
1860	INIT_LIST_HEAD(&its->device_list);
1861	INIT_LIST_HEAD(&its->collection_list);
1862	xa_init(&its->translation_cache);
1863
1864	dev->kvm->arch.vgic.msis_require_devid = true;
1865	dev->kvm->arch.vgic.has_its = true;
1866	its->enabled = false;
1867	its->dev = dev;
1868
1869	its->baser_device_table = INITIAL_BASER_VALUE			|
1870		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1871	its->baser_coll_table = INITIAL_BASER_VALUE |
1872		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1873	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1874
1875	dev->private = its;
1876
1877	ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1878
1879	mutex_unlock(&dev->kvm->arch.config_lock);
1880
1881	return ret;
1882}
1883
1884static void vgic_its_destroy(struct kvm_device *kvm_dev)
1885{
1886	struct kvm *kvm = kvm_dev->kvm;
1887	struct vgic_its *its = kvm_dev->private;
1888
1889	mutex_lock(&its->its_lock);
1890
1891	vgic_its_free_device_list(kvm, its);
1892	vgic_its_free_collection_list(kvm, its);
1893	vgic_its_invalidate_cache(its);
1894	xa_destroy(&its->translation_cache);
1895
1896	mutex_unlock(&its->its_lock);
1897	kfree(its);
1898	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1899}
1900
1901static int vgic_its_has_attr_regs(struct kvm_device *dev,
1902				  struct kvm_device_attr *attr)
1903{
1904	const struct vgic_register_region *region;
1905	gpa_t offset = attr->attr;
1906	int align;
1907
1908	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1909
1910	if (offset & align)
1911		return -EINVAL;
1912
1913	region = vgic_find_mmio_region(its_registers,
1914				       ARRAY_SIZE(its_registers),
1915				       offset);
1916	if (!region)
1917		return -ENXIO;
1918
1919	return 0;
1920}
1921
1922static int vgic_its_attr_regs_access(struct kvm_device *dev,
1923				     struct kvm_device_attr *attr,
1924				     u64 *reg, bool is_write)
1925{
1926	const struct vgic_register_region *region;
1927	struct vgic_its *its;
1928	gpa_t addr, offset;
1929	unsigned int len;
1930	int align, ret = 0;
1931
1932	its = dev->private;
1933	offset = attr->attr;
1934
1935	/*
1936	 * Although the spec supports upper/lower 32-bit accesses to
1937	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1938	 * accesses to all 64-bit wide registers. We therefore only
1939	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1940	 * registers
1941	 */
1942	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1943		align = 0x3;
1944	else
1945		align = 0x7;
1946
1947	if (offset & align)
1948		return -EINVAL;
1949
1950	mutex_lock(&dev->kvm->lock);
1951
1952	if (!lock_all_vcpus(dev->kvm)) {
1953		mutex_unlock(&dev->kvm->lock);
1954		return -EBUSY;
1955	}
1956
1957	mutex_lock(&dev->kvm->arch.config_lock);
1958
1959	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1960		ret = -ENXIO;
1961		goto out;
1962	}
1963
1964	region = vgic_find_mmio_region(its_registers,
1965				       ARRAY_SIZE(its_registers),
1966				       offset);
1967	if (!region) {
1968		ret = -ENXIO;
1969		goto out;
1970	}
1971
1972	addr = its->vgic_its_base + offset;
1973
1974	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1975
1976	if (is_write) {
1977		if (region->uaccess_its_write)
1978			ret = region->uaccess_its_write(dev->kvm, its, addr,
1979							len, *reg);
1980		else
1981			region->its_write(dev->kvm, its, addr, len, *reg);
1982	} else {
1983		*reg = region->its_read(dev->kvm, its, addr, len);
1984	}
1985out:
1986	mutex_unlock(&dev->kvm->arch.config_lock);
1987	unlock_all_vcpus(dev->kvm);
1988	mutex_unlock(&dev->kvm->lock);
1989	return ret;
1990}
1991
1992static u32 compute_next_devid_offset(struct list_head *h,
1993				     struct its_device *dev)
1994{
1995	struct its_device *next;
1996	u32 next_offset;
1997
1998	if (list_is_last(&dev->dev_list, h))
1999		return 0;
2000	next = list_next_entry(dev, dev_list);
2001	next_offset = next->device_id - dev->device_id;
2002
2003	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2004}
2005
2006static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2007{
2008	struct its_ite *next;
2009	u32 next_offset;
2010
2011	if (list_is_last(&ite->ite_list, h))
2012		return 0;
2013	next = list_next_entry(ite, ite_list);
2014	next_offset = next->event_id - ite->event_id;
2015
2016	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2017}
2018
2019/**
2020 * typedef entry_fn_t - Callback called on a table entry restore path
2021 * @its: its handle
2022 * @id: id of the entry
2023 * @entry: pointer to the entry
2024 * @opaque: pointer to an opaque data
2025 *
2026 * Return: < 0 on error, 0 if last element was identified, id offset to next
2027 * element otherwise
2028 */
2029typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2030			  void *opaque);
2031
2032/**
2033 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2034 * to each entry
2035 *
2036 * @its: its handle
2037 * @base: base gpa of the table
2038 * @size: size of the table in bytes
2039 * @esz: entry size in bytes
2040 * @start_id: the ID of the first entry in the table
2041 * (non zero for 2d level tables)
2042 * @fn: function to apply on each entry
2043 *
2044 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2045 * (the last element may not be found on second level tables)
2046 */
2047static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2048			  int start_id, entry_fn_t fn, void *opaque)
2049{
2050	struct kvm *kvm = its->dev->kvm;
2051	unsigned long len = size;
2052	int id = start_id;
2053	gpa_t gpa = base;
2054	char entry[ESZ_MAX];
2055	int ret;
2056
2057	memset(entry, 0, esz);
2058
2059	while (true) {
2060		int next_offset;
2061		size_t byte_offset;
2062
2063		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2064		if (ret)
2065			return ret;
2066
2067		next_offset = fn(its, id, entry, opaque);
2068		if (next_offset <= 0)
2069			return next_offset;
2070
2071		byte_offset = next_offset * esz;
2072		if (byte_offset >= len)
2073			break;
2074
2075		id += next_offset;
2076		gpa += byte_offset;
2077		len -= byte_offset;
2078	}
2079	return 1;
2080}
2081
2082/**
2083 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2084 */
2085static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2086			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2087{
2088	struct kvm *kvm = its->dev->kvm;
2089	u32 next_offset;
2090	u64 val;
2091
2092	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2093	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2094	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2095		ite->collection->collection_id;
2096	val = cpu_to_le64(val);
2097	return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2098}
2099
2100/**
2101 * vgic_its_restore_ite - restore an interrupt translation entry
2102 * @event_id: id used for indexing
2103 * @ptr: pointer to the ITE entry
2104 * @opaque: pointer to the its_device
2105 */
2106static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2107				void *ptr, void *opaque)
2108{
2109	struct its_device *dev = opaque;
2110	struct its_collection *collection;
2111	struct kvm *kvm = its->dev->kvm;
2112	struct kvm_vcpu *vcpu = NULL;
2113	u64 val;
2114	u64 *p = (u64 *)ptr;
2115	struct vgic_irq *irq;
2116	u32 coll_id, lpi_id;
2117	struct its_ite *ite;
2118	u32 offset;
2119
2120	val = *p;
2121
2122	val = le64_to_cpu(val);
2123
2124	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2125	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2126
2127	if (!lpi_id)
2128		return 1; /* invalid entry, no choice but to scan next entry */
2129
2130	if (lpi_id < VGIC_MIN_LPI)
2131		return -EINVAL;
2132
2133	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2134	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2135		return -EINVAL;
2136
2137	collection = find_collection(its, coll_id);
2138	if (!collection)
2139		return -EINVAL;
2140
2141	if (!vgic_its_check_event_id(its, dev, event_id))
2142		return -EINVAL;
2143
2144	ite = vgic_its_alloc_ite(dev, collection, event_id);
2145	if (IS_ERR(ite))
2146		return PTR_ERR(ite);
2147
2148	if (its_is_collection_mapped(collection))
2149		vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2150
2151	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2152	if (IS_ERR(irq)) {
2153		its_free_ite(kvm, ite);
2154		return PTR_ERR(irq);
2155	}
2156	ite->irq = irq;
2157
2158	return offset;
2159}
2160
2161static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2162			    const struct list_head *b)
2163{
2164	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2165	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2166
2167	if (itea->event_id < iteb->event_id)
2168		return -1;
2169	else
2170		return 1;
2171}
2172
2173static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2174{
2175	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2176	gpa_t base = device->itt_addr;
2177	struct its_ite *ite;
2178	int ret;
2179	int ite_esz = abi->ite_esz;
2180
2181	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2182
2183	list_for_each_entry(ite, &device->itt_head, ite_list) {
2184		gpa_t gpa = base + ite->event_id * ite_esz;
2185
2186		/*
2187		 * If an LPI carries the HW bit, this means that this
2188		 * interrupt is controlled by GICv4, and we do not
2189		 * have direct access to that state without GICv4.1.
2190		 * Let's simply fail the save operation...
2191		 */
2192		if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2193			return -EACCES;
2194
2195		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2196		if (ret)
2197			return ret;
2198	}
2199	return 0;
2200}
2201
2202/**
2203 * vgic_its_restore_itt - restore the ITT of a device
2204 *
2205 * @its: its handle
2206 * @dev: device handle
2207 *
2208 * Return 0 on success, < 0 on error
2209 */
2210static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2211{
2212	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2213	gpa_t base = dev->itt_addr;
2214	int ret;
2215	int ite_esz = abi->ite_esz;
2216	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2217
2218	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2219			     vgic_its_restore_ite, dev);
2220
2221	/* scan_its_table returns +1 if all ITEs are invalid */
2222	if (ret > 0)
2223		ret = 0;
2224
2225	return ret;
2226}
2227
2228/**
2229 * vgic_its_save_dte - Save a device table entry at a given GPA
2230 *
2231 * @its: ITS handle
2232 * @dev: ITS device
2233 * @ptr: GPA
2234 */
2235static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2236			     gpa_t ptr, int dte_esz)
2237{
2238	struct kvm *kvm = its->dev->kvm;
2239	u64 val, itt_addr_field;
2240	u32 next_offset;
2241
2242	itt_addr_field = dev->itt_addr >> 8;
2243	next_offset = compute_next_devid_offset(&its->device_list, dev);
2244	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2245	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2246	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2247		(dev->num_eventid_bits - 1));
2248	val = cpu_to_le64(val);
2249	return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2250}
2251
2252/**
2253 * vgic_its_restore_dte - restore a device table entry
2254 *
2255 * @its: its handle
2256 * @id: device id the DTE corresponds to
2257 * @ptr: kernel VA where the 8 byte DTE is located
2258 * @opaque: unused
2259 *
2260 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2261 * next dte otherwise
2262 */
2263static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2264				void *ptr, void *opaque)
2265{
2266	struct its_device *dev;
2267	u64 baser = its->baser_device_table;
2268	gpa_t itt_addr;
2269	u8 num_eventid_bits;
2270	u64 entry = *(u64 *)ptr;
2271	bool valid;
2272	u32 offset;
2273	int ret;
2274
2275	entry = le64_to_cpu(entry);
2276
2277	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2278	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2279	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2280			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2281
2282	if (!valid)
2283		return 1;
2284
2285	/* dte entry is valid */
2286	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2287
2288	if (!vgic_its_check_id(its, baser, id, NULL))
2289		return -EINVAL;
2290
2291	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2292	if (IS_ERR(dev))
2293		return PTR_ERR(dev);
2294
2295	ret = vgic_its_restore_itt(its, dev);
2296	if (ret) {
2297		vgic_its_free_device(its->dev->kvm, its, dev);
2298		return ret;
2299	}
2300
2301	return offset;
2302}
2303
2304static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2305			       const struct list_head *b)
2306{
2307	struct its_device *deva = container_of(a, struct its_device, dev_list);
2308	struct its_device *devb = container_of(b, struct its_device, dev_list);
2309
2310	if (deva->device_id < devb->device_id)
2311		return -1;
2312	else
2313		return 1;
2314}
2315
2316/**
2317 * vgic_its_save_device_tables - Save the device table and all ITT
2318 * into guest RAM
2319 *
2320 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2321 * returns the GPA of the device entry
2322 */
2323static int vgic_its_save_device_tables(struct vgic_its *its)
2324{
2325	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2326	u64 baser = its->baser_device_table;
2327	struct its_device *dev;
2328	int dte_esz = abi->dte_esz;
2329
2330	if (!(baser & GITS_BASER_VALID))
2331		return 0;
2332
2333	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2334
2335	list_for_each_entry(dev, &its->device_list, dev_list) {
2336		int ret;
2337		gpa_t eaddr;
2338
2339		if (!vgic_its_check_id(its, baser,
2340				       dev->device_id, &eaddr))
2341			return -EINVAL;
2342
2343		ret = vgic_its_save_itt(its, dev);
2344		if (ret)
2345			return ret;
2346
2347		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2348		if (ret)
2349			return ret;
2350	}
2351	return 0;
2352}
2353
2354/**
2355 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2356 *
2357 * @its: its handle
2358 * @id: index of the entry in the L1 table
2359 * @addr: kernel VA
2360 * @opaque: unused
2361 *
2362 * L1 table entries are scanned by steps of 1 entry
2363 * Return < 0 if error, 0 if last dte was found when scanning the L2
2364 * table, +1 otherwise (meaning next L1 entry must be scanned)
2365 */
2366static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2367			 void *opaque)
2368{
2369	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2370	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2371	u64 entry = *(u64 *)addr;
2372	int dte_esz = abi->dte_esz;
2373	gpa_t gpa;
2374	int ret;
2375
2376	entry = le64_to_cpu(entry);
2377
2378	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2379		return 1;
2380
2381	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2382
2383	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2384			     l2_start_id, vgic_its_restore_dte, NULL);
2385
2386	return ret;
2387}
2388
2389/**
2390 * vgic_its_restore_device_tables - Restore the device table and all ITT
2391 * from guest RAM to internal data structs
2392 */
2393static int vgic_its_restore_device_tables(struct vgic_its *its)
2394{
2395	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2396	u64 baser = its->baser_device_table;
2397	int l1_esz, ret;
2398	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2399	gpa_t l1_gpa;
2400
2401	if (!(baser & GITS_BASER_VALID))
2402		return 0;
2403
2404	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2405
2406	if (baser & GITS_BASER_INDIRECT) {
2407		l1_esz = GITS_LVL1_ENTRY_SIZE;
2408		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2409				     handle_l1_dte, NULL);
2410	} else {
2411		l1_esz = abi->dte_esz;
2412		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2413				     vgic_its_restore_dte, NULL);
2414	}
2415
2416	/* scan_its_table returns +1 if all entries are invalid */
2417	if (ret > 0)
2418		ret = 0;
2419
2420	if (ret < 0)
2421		vgic_its_free_device_list(its->dev->kvm, its);
2422
2423	return ret;
2424}
2425
2426static int vgic_its_save_cte(struct vgic_its *its,
2427			     struct its_collection *collection,
2428			     gpa_t gpa, int esz)
2429{
2430	u64 val;
2431
2432	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2433	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2434	       collection->collection_id);
2435	val = cpu_to_le64(val);
2436	return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2437}
2438
2439/*
2440 * Restore a collection entry into the ITS collection table.
2441 * Return +1 on success, 0 if the entry was invalid (which should be
2442 * interpreted as end-of-table), and a negative error value for generic errors.
2443 */
2444static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2445{
2446	struct its_collection *collection;
2447	struct kvm *kvm = its->dev->kvm;
2448	u32 target_addr, coll_id;
2449	u64 val;
2450	int ret;
2451
2452	BUG_ON(esz > sizeof(val));
2453	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2454	if (ret)
2455		return ret;
2456	val = le64_to_cpu(val);
2457	if (!(val & KVM_ITS_CTE_VALID_MASK))
2458		return 0;
2459
2460	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2461	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2462
2463	if (target_addr != COLLECTION_NOT_MAPPED &&
2464	    !kvm_get_vcpu_by_id(kvm, target_addr))
2465		return -EINVAL;
2466
2467	collection = find_collection(its, coll_id);
2468	if (collection)
2469		return -EEXIST;
2470
2471	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2472		return -EINVAL;
2473
2474	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2475	if (ret)
2476		return ret;
2477	collection->target_addr = target_addr;
2478	return 1;
2479}
2480
2481/**
2482 * vgic_its_save_collection_table - Save the collection table into
2483 * guest RAM
2484 */
2485static int vgic_its_save_collection_table(struct vgic_its *its)
2486{
2487	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2488	u64 baser = its->baser_coll_table;
2489	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2490	struct its_collection *collection;
2491	u64 val;
2492	size_t max_size, filled = 0;
2493	int ret, cte_esz = abi->cte_esz;
2494
2495	if (!(baser & GITS_BASER_VALID))
2496		return 0;
2497
2498	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2499
2500	list_for_each_entry(collection, &its->collection_list, coll_list) {
2501		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2502		if (ret)
2503			return ret;
2504		gpa += cte_esz;
2505		filled += cte_esz;
2506	}
2507
2508	if (filled == max_size)
2509		return 0;
2510
2511	/*
2512	 * table is not fully filled, add a last dummy element
2513	 * with valid bit unset
2514	 */
2515	val = 0;
2516	BUG_ON(cte_esz > sizeof(val));
2517	ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2518	return ret;
2519}
2520
2521/**
2522 * vgic_its_restore_collection_table - reads the collection table
2523 * in guest memory and restores the ITS internal state. Requires the
2524 * BASER registers to be restored before.
2525 */
2526static int vgic_its_restore_collection_table(struct vgic_its *its)
2527{
2528	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2529	u64 baser = its->baser_coll_table;
2530	int cte_esz = abi->cte_esz;
2531	size_t max_size, read = 0;
2532	gpa_t gpa;
2533	int ret;
2534
2535	if (!(baser & GITS_BASER_VALID))
2536		return 0;
2537
2538	gpa = GITS_BASER_ADDR_48_to_52(baser);
2539
2540	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2541
2542	while (read < max_size) {
2543		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2544		if (ret <= 0)
2545			break;
2546		gpa += cte_esz;
2547		read += cte_esz;
2548	}
2549
2550	if (ret > 0)
2551		return 0;
2552
2553	if (ret < 0)
2554		vgic_its_free_collection_list(its->dev->kvm, its);
2555
2556	return ret;
2557}
2558
2559/**
2560 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2561 * according to v0 ABI
2562 */
2563static int vgic_its_save_tables_v0(struct vgic_its *its)
2564{
2565	int ret;
2566
2567	ret = vgic_its_save_device_tables(its);
2568	if (ret)
2569		return ret;
2570
2571	return vgic_its_save_collection_table(its);
2572}
2573
2574/**
2575 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2576 * to internal data structs according to V0 ABI
2577 *
2578 */
2579static int vgic_its_restore_tables_v0(struct vgic_its *its)
2580{
2581	int ret;
2582
2583	ret = vgic_its_restore_collection_table(its);
2584	if (ret)
2585		return ret;
2586
2587	ret = vgic_its_restore_device_tables(its);
2588	if (ret)
2589		vgic_its_free_collection_list(its->dev->kvm, its);
2590	return ret;
2591}
2592
2593static int vgic_its_commit_v0(struct vgic_its *its)
2594{
2595	const struct vgic_its_abi *abi;
2596
2597	abi = vgic_its_get_abi(its);
2598	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2599	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2600
2601	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2602					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2603
2604	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2605					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2606	return 0;
2607}
2608
2609static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2610{
2611	/* We need to keep the ABI specific field values */
2612	its->baser_coll_table &= ~GITS_BASER_VALID;
2613	its->baser_device_table &= ~GITS_BASER_VALID;
2614	its->cbaser = 0;
2615	its->creadr = 0;
2616	its->cwriter = 0;
2617	its->enabled = 0;
2618	vgic_its_free_device_list(kvm, its);
2619	vgic_its_free_collection_list(kvm, its);
2620}
2621
2622static int vgic_its_has_attr(struct kvm_device *dev,
2623			     struct kvm_device_attr *attr)
2624{
2625	switch (attr->group) {
2626	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2627		switch (attr->attr) {
2628		case KVM_VGIC_ITS_ADDR_TYPE:
2629			return 0;
2630		}
2631		break;
2632	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2633		switch (attr->attr) {
2634		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2635			return 0;
2636		case KVM_DEV_ARM_ITS_CTRL_RESET:
2637			return 0;
2638		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2639			return 0;
2640		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2641			return 0;
2642		}
2643		break;
2644	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2645		return vgic_its_has_attr_regs(dev, attr);
2646	}
2647	return -ENXIO;
2648}
2649
2650static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2651{
2652	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2653	int ret = 0;
2654
2655	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2656		return 0;
2657
2658	mutex_lock(&kvm->lock);
2659
2660	if (!lock_all_vcpus(kvm)) {
2661		mutex_unlock(&kvm->lock);
2662		return -EBUSY;
2663	}
2664
2665	mutex_lock(&kvm->arch.config_lock);
2666	mutex_lock(&its->its_lock);
2667
2668	switch (attr) {
2669	case KVM_DEV_ARM_ITS_CTRL_RESET:
2670		vgic_its_reset(kvm, its);
2671		break;
2672	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2673		ret = abi->save_tables(its);
2674		break;
2675	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2676		ret = abi->restore_tables(its);
2677		break;
2678	}
2679
2680	mutex_unlock(&its->its_lock);
2681	mutex_unlock(&kvm->arch.config_lock);
2682	unlock_all_vcpus(kvm);
2683	mutex_unlock(&kvm->lock);
2684	return ret;
2685}
2686
2687/*
2688 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2689 * without the running VCPU when dirty ring is enabled.
2690 *
2691 * The running VCPU is required to track dirty guest pages when dirty ring
2692 * is enabled. Otherwise, the backup bitmap should be used to track the
2693 * dirty guest pages. When vgic/its tables are being saved, the backup
2694 * bitmap is used to track the dirty guest pages due to the missed running
2695 * VCPU in the period.
2696 */
2697bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2698{
2699	struct vgic_dist *dist = &kvm->arch.vgic;
2700
2701	return dist->table_write_in_progress;
2702}
2703
2704static int vgic_its_set_attr(struct kvm_device *dev,
2705			     struct kvm_device_attr *attr)
2706{
2707	struct vgic_its *its = dev->private;
2708	int ret;
2709
2710	switch (attr->group) {
2711	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2712		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2713		unsigned long type = (unsigned long)attr->attr;
2714		u64 addr;
2715
2716		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2717			return -ENODEV;
2718
2719		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2720			return -EFAULT;
2721
2722		ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2723					 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2724		if (ret)
2725			return ret;
2726
2727		return vgic_register_its_iodev(dev->kvm, its, addr);
2728	}
2729	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2730		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2731	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2732		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2733		u64 reg;
2734
2735		if (get_user(reg, uaddr))
2736			return -EFAULT;
2737
2738		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2739	}
2740	}
2741	return -ENXIO;
2742}
2743
2744static int vgic_its_get_attr(struct kvm_device *dev,
2745			     struct kvm_device_attr *attr)
2746{
2747	switch (attr->group) {
2748	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2749		struct vgic_its *its = dev->private;
2750		u64 addr = its->vgic_its_base;
2751		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2752		unsigned long type = (unsigned long)attr->attr;
2753
2754		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2755			return -ENODEV;
2756
2757		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2758			return -EFAULT;
2759		break;
2760	}
2761	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2762		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2763		u64 reg;
2764		int ret;
2765
2766		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2767		if (ret)
2768			return ret;
2769		return put_user(reg, uaddr);
2770	}
2771	default:
2772		return -ENXIO;
2773	}
2774
2775	return 0;
2776}
2777
2778static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2779	.name = "kvm-arm-vgic-its",
2780	.create = vgic_its_create,
2781	.destroy = vgic_its_destroy,
2782	.set_attr = vgic_its_set_attr,
2783	.get_attr = vgic_its_get_attr,
2784	.has_attr = vgic_its_has_attr,
2785};
2786
2787int kvm_vgic_register_its_device(void)
2788{
2789	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2790				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2791}
2792