1/* mpn_mul_n -- Multiply two natural numbers of length n.
2
3Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
4
5This file is part of the GNU MP Library.
6
7The GNU MP Library is free software; you can redistribute it and/or modify
8it under the terms of the GNU Lesser General Public License as published by
9the Free Software Foundation; either version 2.1 of the License, or (at your
10option) any later version.
11
12The GNU MP Library is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
15License for more details.
16
17You should have received a copy of the GNU Lesser General Public License
18along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
20MA 02111-1307, USA. */
21
22#include "gmp.h"
23#include "gmp-impl.h"
24
25/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
26   both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
27   always stored.  Return the most significant limb.
28
29   Argument constraints:
30   1. PRODP != UP and PRODP != VP, i.e. the destination
31      must be distinct from the multiplier and the multiplicand.  */
32
33/* If KARATSUBA_THRESHOLD is not already defined, define it to a
34   value which is good on most machines.  */
35#ifndef KARATSUBA_THRESHOLD
36#define KARATSUBA_THRESHOLD 32
37#endif
38
39/* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */
40#if KARATSUBA_THRESHOLD < 2
41#undef KARATSUBA_THRESHOLD
42#define KARATSUBA_THRESHOLD 2
43#endif
44
45/* Handle simple cases with traditional multiplication.
46
47   This is the most critical code of multiplication.  All multiplies rely
48   on this, both small and huge.  Small ones arrive here immediately.  Huge
49   ones arrive here as this is the base case for Karatsuba's recursive
50   algorithm below.  */
51
52void
53#if __STDC__
54impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
55#else
56impn_mul_n_basecase (prodp, up, vp, size)
57     mp_ptr prodp;
58     mp_srcptr up;
59     mp_srcptr vp;
60     mp_size_t size;
61#endif
62{
63  mp_size_t i;
64  mp_limb_t cy_limb;
65  mp_limb_t v_limb;
66
67  /* Multiply by the first limb in V separately, as the result can be
68     stored (not added) to PROD.  We also avoid a loop for zeroing.  */
69  v_limb = vp[0];
70  if (v_limb <= 1)
71    {
72      if (v_limb == 1)
73	MPN_COPY (prodp, up, size);
74      else
75	MPN_ZERO (prodp, size);
76      cy_limb = 0;
77    }
78  else
79    cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
80
81  prodp[size] = cy_limb;
82  prodp++;
83
84  /* For each iteration in the outer loop, multiply one limb from
85     U with one limb from V, and add it to PROD.  */
86  for (i = 1; i < size; i++)
87    {
88      v_limb = vp[i];
89      if (v_limb <= 1)
90	{
91	  cy_limb = 0;
92	  if (v_limb == 1)
93	    cy_limb = mpn_add_n (prodp, prodp, up, size);
94	}
95      else
96	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
97
98      prodp[size] = cy_limb;
99      prodp++;
100    }
101}
102
103void
104#if __STDC__
105impn_mul_n (mp_ptr prodp,
106	     mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
107#else
108impn_mul_n (prodp, up, vp, size, tspace)
109     mp_ptr prodp;
110     mp_srcptr up;
111     mp_srcptr vp;
112     mp_size_t size;
113     mp_ptr tspace;
114#endif
115{
116  if ((size & 1) != 0)
117    {
118      /* The size is odd, the code code below doesn't handle that.
119	 Multiply the least significant (size - 1) limbs with a recursive
120	 call, and handle the most significant limb of S1 and S2
121	 separately.  */
122      /* A slightly faster way to do this would be to make the Karatsuba
123	 code below behave as if the size were even, and let it check for
124	 odd size in the end.  I.e., in essence move this code to the end.
125	 Doing so would save us a recursive call, and potentially make the
126	 stack grow a lot less.  */
127
128      mp_size_t esize = size - 1;	/* even size */
129      mp_limb_t cy_limb;
130
131      MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
132      cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
133      prodp[esize + esize] = cy_limb;
134      cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
135
136      prodp[esize + size] = cy_limb;
137    }
138  else
139    {
140      /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
141
142	 Split U in two pieces, U1 and U0, such that
143	 U = U0 + U1*(B**n),
144	 and V in V1 and V0, such that
145	 V = V0 + V1*(B**n).
146
147	 UV is then computed recursively using the identity
148
149		2n   n          n                     n
150	 UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
151			1 1        1  0   0  1              0 0
152
153	 Where B = 2**BITS_PER_MP_LIMB.  */
154
155      mp_size_t hsize = size >> 1;
156      mp_limb_t cy;
157      int negflg;
158
159      /*** Product H.	 ________________  ________________
160			|_____U1 x V1____||____U0 x V0_____|  */
161      /* Put result in upper part of PROD and pass low part of TSPACE
162	 as new TSPACE.  */
163      MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
164
165      /*** Product M.	 ________________
166			|_(U1-U0)(V0-V1)_|  */
167      if (mpn_cmp (up + hsize, up, hsize) >= 0)
168	{
169	  mpn_sub_n (prodp, up + hsize, up, hsize);
170	  negflg = 0;
171	}
172      else
173	{
174	  mpn_sub_n (prodp, up, up + hsize, hsize);
175	  negflg = 1;
176	}
177      if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
178	{
179	  mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
180	  negflg ^= 1;
181	}
182      else
183	{
184	  mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
185	  /* No change of NEGFLG.  */
186	}
187      /* Read temporary operands from low part of PROD.
188	 Put result in low part of TSPACE using upper part of TSPACE
189	 as new TSPACE.  */
190      MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
191
192      /*** Add/copy product H.  */
193      MPN_COPY (prodp + hsize, prodp + size, hsize);
194      cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
195
196      /*** Add product M (if NEGFLG M is a negative number).  */
197      if (negflg)
198	cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
199      else
200	cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
201
202      /*** Product L.	 ________________  ________________
203			|________________||____U0 x V0_____|  */
204      /* Read temporary operands from low part of PROD.
205	 Put result in low part of TSPACE using upper part of TSPACE
206	 as new TSPACE.  */
207      MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
208
209      /*** Add/copy Product L (twice).  */
210
211      cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
212      if (cy)
213	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
214
215      MPN_COPY (prodp, tspace, hsize);
216      cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
217      if (cy)
218	mpn_add_1 (prodp + size, prodp + size, size, 1);
219    }
220}
221
222void
223#if __STDC__
224impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size)
225#else
226impn_sqr_n_basecase (prodp, up, size)
227     mp_ptr prodp;
228     mp_srcptr up;
229     mp_size_t size;
230#endif
231{
232  mp_size_t i;
233  mp_limb_t cy_limb;
234  mp_limb_t v_limb;
235
236  /* Multiply by the first limb in V separately, as the result can be
237     stored (not added) to PROD.  We also avoid a loop for zeroing.  */
238  v_limb = up[0];
239  if (v_limb <= 1)
240    {
241      if (v_limb == 1)
242	MPN_COPY (prodp, up, size);
243      else
244	MPN_ZERO (prodp, size);
245      cy_limb = 0;
246    }
247  else
248    cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
249
250  prodp[size] = cy_limb;
251  prodp++;
252
253  /* For each iteration in the outer loop, multiply one limb from
254     U with one limb from V, and add it to PROD.  */
255  for (i = 1; i < size; i++)
256    {
257      v_limb = up[i];
258      if (v_limb <= 1)
259	{
260	  cy_limb = 0;
261	  if (v_limb == 1)
262	    cy_limb = mpn_add_n (prodp, prodp, up, size);
263	}
264      else
265	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
266
267      prodp[size] = cy_limb;
268      prodp++;
269    }
270}
271
272void
273#if __STDC__
274impn_sqr_n (mp_ptr prodp,
275	     mp_srcptr up, mp_size_t size, mp_ptr tspace)
276#else
277impn_sqr_n (prodp, up, size, tspace)
278     mp_ptr prodp;
279     mp_srcptr up;
280     mp_size_t size;
281     mp_ptr tspace;
282#endif
283{
284  if ((size & 1) != 0)
285    {
286      /* The size is odd, the code code below doesn't handle that.
287	 Multiply the least significant (size - 1) limbs with a recursive
288	 call, and handle the most significant limb of S1 and S2
289	 separately.  */
290      /* A slightly faster way to do this would be to make the Karatsuba
291	 code below behave as if the size were even, and let it check for
292	 odd size in the end.  I.e., in essence move this code to the end.
293	 Doing so would save us a recursive call, and potentially make the
294	 stack grow a lot less.  */
295
296      mp_size_t esize = size - 1;	/* even size */
297      mp_limb_t cy_limb;
298
299      MPN_SQR_N_RECURSE (prodp, up, esize, tspace);
300      cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]);
301      prodp[esize + esize] = cy_limb;
302      cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]);
303
304      prodp[esize + size] = cy_limb;
305    }
306  else
307    {
308      mp_size_t hsize = size >> 1;
309      mp_limb_t cy;
310
311      /*** Product H.	 ________________  ________________
312			|_____U1 x U1____||____U0 x U0_____|  */
313      /* Put result in upper part of PROD and pass low part of TSPACE
314	 as new TSPACE.  */
315      MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace);
316
317      /*** Product M.	 ________________
318			|_(U1-U0)(U0-U1)_|  */
319      if (mpn_cmp (up + hsize, up, hsize) >= 0)
320	{
321	  mpn_sub_n (prodp, up + hsize, up, hsize);
322	}
323      else
324	{
325	  mpn_sub_n (prodp, up, up + hsize, hsize);
326	}
327
328      /* Read temporary operands from low part of PROD.
329	 Put result in low part of TSPACE using upper part of TSPACE
330	 as new TSPACE.  */
331      MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size);
332
333      /*** Add/copy product H.  */
334      MPN_COPY (prodp + hsize, prodp + size, hsize);
335      cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
336
337      /*** Add product M (if NEGFLG M is a negative number).  */
338      cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
339
340      /*** Product L.	 ________________  ________________
341			|________________||____U0 x U0_____|  */
342      /* Read temporary operands from low part of PROD.
343	 Put result in low part of TSPACE using upper part of TSPACE
344	 as new TSPACE.  */
345      MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
346
347      /*** Add/copy Product L (twice).  */
348
349      cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
350      if (cy)
351	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
352
353      MPN_COPY (prodp, tspace, hsize);
354      cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
355      if (cy)
356	mpn_add_1 (prodp + size, prodp + size, size, 1);
357    }
358}
359
360/* This should be made into an inline function in gmp.h.  */
361void
362#if __STDC__
363mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
364#else
365mpn_mul_n (prodp, up, vp, size)
366     mp_ptr prodp;
367     mp_srcptr up;
368     mp_srcptr vp;
369     mp_size_t size;
370#endif
371{
372  TMP_DECL (marker);
373  TMP_MARK (marker);
374  if (up == vp)
375    {
376      if (size < KARATSUBA_THRESHOLD)
377	{
378	  impn_sqr_n_basecase (prodp, up, size);
379	}
380      else
381	{
382	  mp_ptr tspace;
383	  tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
384	  impn_sqr_n (prodp, up, size, tspace);
385	}
386    }
387  else
388    {
389      if (size < KARATSUBA_THRESHOLD)
390	{
391	  impn_mul_n_basecase (prodp, up, vp, size);
392	}
393      else
394	{
395	  mp_ptr tspace;
396	  tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
397	  impn_mul_n (prodp, up, vp, size, tspace);
398	}
399    }
400  TMP_FREE (marker);
401}
402