1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar9002/ar9287_reset.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21
22#include "opt_ah.h"
23
24#include "ah.h"
25#include "ah_internal.h"
26#include "ah_devid.h"
27
28#include "ah_eeprom_v14.h"
29#include "ah_eeprom_9287.h"
30
31#include "ar5416/ar5416.h"
32#include "ar5416/ar5416reg.h"
33#include "ar5416/ar5416phy.h"
34
35#include "ar9002/ar9287phy.h"
36#include "ar9002/ar9287an.h"
37
38#include "ar9002/ar9287_olc.h"
39#include "ar9002/ar9287_reset.h"
40
41/*
42 * Set the TX power calibration table per-chain.
43 *
44 * This only supports open-loop TX power control for the AR9287.
45 */
46static void
47ar9287SetPowerCalTable(struct ath_hal *ah,
48    const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
49{
50	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
51	uint8_t *pCalBChans = NULL;
52	uint16_t pdGainOverlap_t2;
53	uint16_t numPiers = 0, i;
54	uint16_t numXpdGain, xpdMask;
55	uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
56	uint32_t regChainOffset;
57	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
58	struct ar9287_eeprom *pEepData = &ee->ee_base;
59
60	xpdMask = pEepData->modalHeader.xpdGain;
61
62	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
63	    AR9287_EEP_MINOR_VER_2)
64		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
65	else
66		pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
67					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
68
69	/* Note: Kiwi should only be 2ghz.. */
70	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
71		pCalBChans = pEepData->calFreqPier2G;
72		numPiers = AR9287_NUM_2G_CAL_PIERS;
73		pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
74		AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
75	}
76	numXpdGain = 0;
77
78	/* Calculate the value of xpdgains from the xpdGain Mask */
79	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
80		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
81			if (numXpdGain >= AR5416_NUM_PD_GAINS)
82				break;
83			xpdGainValues[numXpdGain] =
84				(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
85			numXpdGain++;
86		}
87	}
88
89	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
90		      (numXpdGain - 1) & 0x3);
91	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
92		      xpdGainValues[0]);
93	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
94		      xpdGainValues[1]);
95	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
96		      xpdGainValues[2]);
97
98	for (i = 0; i < AR9287_MAX_CHAINS; i++) {
99		regChainOffset = i * 0x1000;
100
101		if (pEepData->baseEepHeader.txMask & (1 << i)) {
102			int8_t txPower;
103			pRawDatasetOpenLoop =
104			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
105				ar9287olcGetTxGainIndex(ah, chan,
106				    pRawDatasetOpenLoop,
107				    pCalBChans, numPiers,
108				    &txPower);
109				ar9287olcSetPDADCs(ah, txPower, i);
110		}
111	}
112
113	*pTxPowerIndexOffset = 0;
114}
115
116/* XXX hard-coded values? */
117#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
118
119/*
120 * ar9287SetPowerPerRateTable
121 *
122 * Sets the transmit power in the baseband for the given
123 * operating channel and mode.
124 *
125 * This is like the v14 EEPROM table except the 5GHz code.
126 */
127static HAL_BOOL
128ar9287SetPowerPerRateTable(struct ath_hal *ah,
129    struct ar9287_eeprom *pEepData,
130    const struct ieee80211_channel *chan,
131    int16_t *ratesArray, uint16_t cfgCtl,
132    uint16_t AntennaReduction,
133    uint16_t twiceMaxRegulatoryPower,
134    uint16_t powerLimit)
135{
136#define	N(a)	(sizeof(a)/sizeof(a[0]))
137/* Local defines to distinguish between extension and control CTL's */
138#define EXT_ADDITIVE (0x8000)
139#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
140#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
141#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
142
143	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
144	int i;
145	int16_t  twiceLargestAntenna;
146	struct cal_ctl_data_ar9287 *rep;
147	CAL_TARGET_POWER_LEG targetPowerOfdm;
148	CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
149	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
150	CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
151	CAL_TARGET_POWER_HT  targetPowerHt20;
152	CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
153	int16_t scaledPower, minCtlPower;
154
155#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
156	static const uint16_t ctlModesFor11g[] = {
157	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
158	};
159	const uint16_t *pCtlMode;
160	uint16_t numCtlModes, ctlMode, freq;
161	CHAN_CENTERS centers;
162
163	ar5416GetChannelCenters(ah,  chan, &centers);
164
165	/* Compute TxPower reduction due to Antenna Gain */
166
167	twiceLargestAntenna = AH_MAX(
168	    pEepData->modalHeader.antennaGainCh[0],
169	    pEepData->modalHeader.antennaGainCh[1]);
170
171	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
172
173	/* XXX setup for 5212 use (really used?) */
174	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
175
176	/*
177	 * scaledPower is the minimum of the user input power level and
178	 * the regulatory allowed power level
179	 */
180	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
181
182	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
183	/* TODO: better value than these? */
184	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
185	case 1:
186		break;
187	case 2:
188		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
189		break;
190	default:
191		return AH_FALSE; /* Unsupported number of chains */
192	}
193
194	scaledPower = AH_MAX(0, scaledPower);
195
196	/* Get target powers from EEPROM - our baseline for TX Power */
197	/* XXX assume channel is 2ghz */
198	if (1) {
199		/* Setup for CTL modes */
200		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
201		pCtlMode = ctlModesFor11g;
202
203		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
204				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
205		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
206				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
207		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
208				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
209
210		if (IEEE80211_IS_CHAN_HT40(chan)) {
211			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
212
213			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
214				AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
215			/* Get target powers for extension channels */
216			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
217				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
218			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
219				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
220		}
221	}
222
223	/*
224	 * For MIMO, need to apply regulatory caps individually across dynamically
225	 * running modes: CCK, OFDM, HT20, HT40
226	 *
227	 * The outer loop walks through each possible applicable runtime mode.
228	 * The inner loop walks through each ctlIndex entry in EEPROM.
229	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
230	 *
231	 */
232	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
233		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
234		    (pCtlMode[ctlMode] == CTL_2GHT40);
235		if (isHt40CtlMode) {
236			freq = centers.ctl_center;
237		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
238			freq = centers.ext_center;
239		} else {
240			freq = centers.ctl_center;
241		}
242
243		/* walk through each CTL index stored in EEPROM */
244		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
245			uint16_t twiceMinEdgePower;
246
247			/* compare test group from regulatory channel list with test mode from pCtlMode list */
248			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
249				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
250				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
251				rep = &(pEepData->ctlData[i]);
252				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
253							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
254							IEEE80211_IS_CHAN_2GHZ(chan));
255				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
256					/* Find the minimum of all CTL edge powers that apply to this channel */
257					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
258				} else {
259					/* specific */
260					twiceMaxEdgePower = twiceMinEdgePower;
261					break;
262				}
263			}
264		}
265		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
266		/* Apply ctl mode to correct target power set */
267		switch(pCtlMode[ctlMode]) {
268		case CTL_11B:
269			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
270				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
271			}
272			break;
273		case CTL_11A:
274		case CTL_11G:
275			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
276				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
277			}
278			break;
279		case CTL_5GHT20:
280		case CTL_2GHT20:
281			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
282				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
283			}
284			break;
285		case CTL_11B_EXT:
286			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
287			break;
288		case CTL_11A_EXT:
289		case CTL_11G_EXT:
290			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
291			break;
292		case CTL_5GHT40:
293		case CTL_2GHT40:
294			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
295				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
296			}
297			break;
298		default:
299			return AH_FALSE;
300			break;
301		}
302	} /* end ctl mode checking */
303
304	/* Set rates Array from collected data */
305	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
306	    &targetPowerCck,
307	    &targetPowerCckExt,
308	    &targetPowerOfdm,
309	    &targetPowerOfdmExt,
310	    &targetPowerHt20,
311	    &targetPowerHt40);
312	return AH_TRUE;
313#undef EXT_ADDITIVE
314#undef CTL_11A_EXT
315#undef CTL_11G_EXT
316#undef CTL_11B_EXT
317#undef SUB_NUM_CTL_MODES_AT_5G_40
318#undef SUB_NUM_CTL_MODES_AT_2G_40
319#undef N
320}
321
322#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
323
324/*
325 * This is based off of the AR5416/AR9285 code and likely could
326 * be unified in the future.
327 */
328HAL_BOOL
329ar9287SetTransmitPower(struct ath_hal *ah,
330	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
331{
332#define	POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
333#define	N(a)	    (sizeof (a) / sizeof (a[0]))
334
335	const struct modal_eep_ar9287_header *pModal;
336	struct ath_hal_5212 *ahp = AH5212(ah);
337	int16_t	     txPowerIndexOffset = 0;
338	int		 i;
339
340	uint16_t	    cfgCtl;
341	uint16_t	    powerLimit;
342	uint16_t	    twiceAntennaReduction;
343	uint16_t	    twiceMaxRegulatoryPower;
344	int16_t	     maxPower;
345	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
346	struct ar9287_eeprom *pEepData = &ee->ee_base;
347
348	AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
349
350	/* Setup info for the actual eeprom */
351	OS_MEMZERO(AH5416(ah)->ah_ratesArray,
352	  sizeof(AH5416(ah)->ah_ratesArray));
353	cfgCtl = ath_hal_getctl(ah, chan);
354	powerLimit = chan->ic_maxregpower * 2;
355	twiceAntennaReduction = chan->ic_maxantgain;
356	twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
357	    AH_PRIVATE(ah)->ah_powerLimit);
358	pModal = &pEepData->modalHeader;
359	HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
360	    __func__,chan->ic_freq, cfgCtl );
361
362	/* XXX Assume Minor is v2 or later */
363	AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
364
365	/* Fetch per-rate power table for the given channel */
366	if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
367	    &AH5416(ah)->ah_ratesArray[0],
368	    cfgCtl,
369	    twiceAntennaReduction,
370	    twiceMaxRegulatoryPower, powerLimit)) {
371		HALDEBUG(ah, HAL_DEBUG_ANY,
372		    "%s: unable to set tx power per rate table\n", __func__);
373		return AH_FALSE;
374	}
375
376	/* Set TX power control calibration curves for each TX chain */
377	ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
378
379	/* Calculate maximum power level */
380	maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
381	    AH5416(ah)->ah_ratesArray[rateHt20_0]);
382	maxPower = AH_MAX(maxPower,
383	    AH5416(ah)->ah_ratesArray[rate1l]);
384
385	if (IEEE80211_IS_CHAN_HT40(chan))
386		maxPower = AH_MAX(maxPower,
387		    AH5416(ah)->ah_ratesArray[rateHt40_0]);
388
389	ahp->ah_tx6PowerInHalfDbm = maxPower;
390	AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
391	ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
392
393	/*
394	 * txPowerIndexOffset is set by the SetPowerTable() call -
395	 *  adjust the rate table (0 offset if rates EEPROM not loaded)
396	 */
397	/* XXX what about the pwrTableOffset? */
398	for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
399		AH5416(ah)->ah_ratesArray[i] =
400		    (int16_t)(txPowerIndexOffset +
401		      AH5416(ah)->ah_ratesArray[i]);
402		/* -5 dBm offset for Merlin and later; this includes Kiwi */
403		AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
404		if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
405			AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
406		if (AH5416(ah)->ah_ratesArray[i] < 0)
407			AH5416(ah)->ah_ratesArray[i] = 0;
408	}
409
410#ifdef AH_EEPROM_DUMP
411	ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
412#endif
413
414	/*
415	 * Adjust the HT40 power to meet the correct target TX power
416	 * for 40MHz mode, based on TX power curves that are established
417	 * for 20MHz mode.
418	 *
419	 * XXX handle overflow/too high power level?
420	 */
421	if (IEEE80211_IS_CHAN_HT40(chan)) {
422		AH5416(ah)->ah_ratesArray[rateHt40_0] +=
423		  AH5416(ah)->ah_ht40PowerIncForPdadc;
424		AH5416(ah)->ah_ratesArray[rateHt40_1] +=
425		  AH5416(ah)->ah_ht40PowerIncForPdadc;
426		AH5416(ah)->ah_ratesArray[rateHt40_2] +=
427		  AH5416(ah)->ah_ht40PowerIncForPdadc;
428		AH5416(ah)->ah_ratesArray[rateHt40_3] +=
429		  AH5416(ah)->ah_ht40PowerIncForPdadc;
430		AH5416(ah)->ah_ratesArray[rateHt40_4] +=
431		  AH5416(ah)->ah_ht40PowerIncForPdadc;
432		AH5416(ah)->ah_ratesArray[rateHt40_5] +=
433		  AH5416(ah)->ah_ht40PowerIncForPdadc;
434		AH5416(ah)->ah_ratesArray[rateHt40_6] +=
435		  AH5416(ah)->ah_ht40PowerIncForPdadc;
436		AH5416(ah)->ah_ratesArray[rateHt40_7] +=
437		  AH5416(ah)->ah_ht40PowerIncForPdadc;
438	}
439
440	/* Write the TX power rate registers */
441	ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
442
443	return AH_TRUE;
444#undef POW_SM
445#undef N
446}
447
448/*
449 * Read EEPROM header info and program the device for correct operation
450 * given the channel value.
451 */
452HAL_BOOL
453ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
454{
455	const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
456	const struct ar9287_eeprom *eep = &ee->ee_base;
457	const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
458	uint16_t antWrites[AR9287_ANT_16S];
459	uint32_t regChainOffset, regval;
460	uint8_t txRxAttenLocal;
461	int i, j, offset_num;
462
463	pModal = &eep->modalHeader;
464
465	antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
466	antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
467	antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
468	antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
469	antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
470	antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
471	antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
472	antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
473
474	offset_num = 8;
475
476	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
477		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
478		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
479		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
480		antWrites[j++] = 0;
481		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
482		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
483		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
484		antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
485	}
486
487	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
488
489	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
490		regChainOffset = i * 0x1000;
491
492		OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
493			  pModal->antCtrlChain[i]);
494
495		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
496			  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
497			      + regChainOffset)
498			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
499			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
500			  SM(pModal->iqCalICh[i],
501			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
502			  SM(pModal->iqCalQCh[i],
503			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
504
505		txRxAttenLocal = pModal->txRxAttenCh[i];
506
507		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
508			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
509			      pModal->bswMargin[i]);
510		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
511			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
512			      pModal->bswAtten[i]);
513		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
514			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
515			      txRxAttenLocal);
516		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
517			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
518			      pModal->rxTxMarginCh[i]);
519	}
520
521	if (IEEE80211_IS_CHAN_HT40(chan))
522		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
523			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
524	else
525		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
526			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
527
528	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
529		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
530
531	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
532		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
533		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
534		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
535		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
536
537	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
538		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
539
540	OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
541		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
542	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
543		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
544
545	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
546	regval &= ~(AR9287_AN_RF2G3_DB1 |
547		    AR9287_AN_RF2G3_DB2 |
548		    AR9287_AN_RF2G3_OB_CCK |
549		    AR9287_AN_RF2G3_OB_PSK |
550		    AR9287_AN_RF2G3_OB_QAM |
551		    AR9287_AN_RF2G3_OB_PAL_OFF);
552	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
553		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
554		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
555		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
556		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
557		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
558
559	/* Analog write - requires a 100usec delay */
560	OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
561
562	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
563	regval &= ~(AR9287_AN_RF2G3_DB1 |
564		    AR9287_AN_RF2G3_DB2 |
565		    AR9287_AN_RF2G3_OB_CCK |
566		    AR9287_AN_RF2G3_OB_PSK |
567		    AR9287_AN_RF2G3_OB_QAM |
568		    AR9287_AN_RF2G3_OB_PAL_OFF);
569	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
570		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
571		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
572		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
573		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
574		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
575
576	OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
577
578	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
579	    AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
580	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
581	    AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
582
583	OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
584	    AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
585
586	return AH_TRUE;
587}
588