1/* CTRC functionality */
2/* Author:
3   Rudolf Cornelissen 11/2002-9/2005
4*/
5
6#define MODULE_BIT 0x00040000
7
8#include "std.h"
9
10/*Adjust passed parameters to a valid mode line*/
11status_t eng_crtc_validate_timing(
12	uint16 *hd_e,uint16 *hs_s,uint16 *hs_e,uint16 *ht,
13	uint16 *vd_e,uint16 *vs_s,uint16 *vs_e,uint16 *vt
14)
15{
16/* horizontal */
17	/* make all parameters multiples of 8 */
18	*hd_e &= 0xfff8;
19	*hs_s &= 0xfff8;
20	*hs_e &= 0xfff8;
21	*ht   &= 0xfff8;
22
23	/* confine to required number of bits, taking logic into account */
24	if (*hd_e > ((0x00ff - 2) << 3)) *hd_e = ((0x00ff - 2) << 3);
25	if (*hs_s > ((0x01ff - 1) << 3)) *hs_s = ((0x01ff - 1) << 3);
26	if (*hs_e > ( 0x01ff      << 3)) *hs_e = ( 0x01ff      << 3);
27	if (*ht   > ((0x01ff + 5) << 3)) *ht   = ((0x01ff + 5) << 3);
28
29	/* NOTE: keep horizontal timing at multiples of 8! */
30	/* confine to a reasonable width */
31	if (*hd_e < 640) *hd_e = 640;
32	/* assuming all VIA unichrome cards to have same max. constraint.. */
33	//fixme: checkout correct max...
34	if (*hd_e > 1600) *hd_e = 1600;
35
36	/* if hor. total does not leave room for a sensible sync pulse, increase it! */
37	if (*ht < (*hd_e + 80)) *ht = (*hd_e + 80);
38
39	/* if hor. total does not adhere to max. blanking pulse width, decrease it! */
40	if (*ht > (*hd_e + 0x3f8)) *ht = (*hd_e + 0x3f8);
41
42	/* make sure sync pulse is not during display */
43	if (*hs_e > (*ht - 8)) *hs_e = (*ht - 8);
44	if (*hs_s < (*hd_e + 8)) *hs_s = (*hd_e + 8);
45
46	/* correct sync pulse if it is too long:
47	 * there are only 5 bits available to save this in the card registers! */
48	if (*hs_e > (*hs_s + 0xf8)) *hs_e = (*hs_s + 0xf8);
49
50/*vertical*/
51	/* confine to required number of bits, taking logic into account */
52	if (*vd_e > (0x7ff - 2)) *vd_e = (0x7ff - 2);
53	if (*vs_s > (0x7ff - 1)) *vs_s = (0x7ff - 1);
54	if (*vs_e >  0x7ff     ) *vs_e =  0x7ff     ;
55	if (*vt   > (0x7ff + 2)) *vt   = (0x7ff + 2);
56
57	/* confine to a reasonable height */
58	if (*vd_e < 480) *vd_e = 480;
59	/* assuming all VIA unichrome cards to have same max. constraint.. */
60	//fixme: checkout correct max...
61	if (*vd_e > 1200) *vd_e = 1200;
62
63	/*if vertical total does not leave room for a sync pulse, increase it!*/
64	if (*vt < (*vd_e + 3)) *vt = (*vd_e + 3);
65
66	/* if vert. total does not adhere to max. blanking pulse width, decrease it! */
67	if (*vt > (*vd_e + 0xff)) *vt = (*vd_e + 0xff);
68
69	/* make sure sync pulse is not during display */
70	if (*vs_e > (*vt - 1)) *vs_e = (*vt - 1);
71	if (*vs_s < (*vd_e + 1)) *vs_s = (*vd_e + 1);
72
73	/* correct sync pulse if it is too long:
74	 * there are only 4 bits available to save this in the card registers! */
75	if (*vs_e > (*vs_s + 0x0f)) *vs_e = (*vs_s + 0x0f);
76
77	return B_OK;
78}
79
80/*set a mode line - inputs are in pixels*/
81status_t eng_crtc_set_timing(display_mode target)
82{
83	uint16 fifolimit = 0;
84	uint8 temp;
85
86	uint32 htotal;		/*total horizontal total VCLKs*/
87	uint32 hdisp_e;            /*end of horizontal display (begins at 0)*/
88	uint32 hsync_s;            /*begin of horizontal sync pulse*/
89	uint32 hsync_e;            /*end of horizontal sync pulse*/
90	uint32 hblnk_s;            /*begin horizontal blanking*/
91	uint32 hblnk_e;            /*end horizontal blanking*/
92
93	uint32 vtotal;		/*total vertical total scanlines*/
94	uint32 vdisp_e;            /*end of vertical display*/
95	uint32 vsync_s;            /*begin of vertical sync pulse*/
96	uint32 vsync_e;            /*end of vertical sync pulse*/
97	uint32 vblnk_s;            /*begin vertical blanking*/
98	uint32 vblnk_e;            /*end vertical blanking*/
99
100	uint32 linecomp;	/*split screen and vdisp_e interrupt*/
101
102	LOG(4,("CRTC: setting timing\n"));
103
104	/* setup tuned internal modeline for flatpanel if connected and active */
105	/* notes:
106	 * - the CRTC modeline must end earlier than the panel modeline to keep correct
107	 *   sync going;
108	 * - if the CRTC modeline ends too soon, pixelnoise will occur in 8 (or so) pixel
109	 *   wide horizontal stripes. This can be observed earliest on fullscreen overlay,
110	 *   and if it gets worse, also normal desktop output will suffer. The stripes
111	 *   are mainly visible at the left of the screen, over the entire screen height. */
112	if (0)//si->ps.tmds1_active)
113	{
114		LOG(2,("CRTC: DFP active: tuning modeline\n"));
115
116		/* horizontal timing */
117		target.timing.h_sync_start =
118			((uint16)((si->ps.p1_timing.h_sync_start / ((float)si->ps.p1_timing.h_display)) *
119			target.timing.h_display)) & 0xfff8;
120
121		target.timing.h_sync_end =
122			((uint16)((si->ps.p1_timing.h_sync_end / ((float)si->ps.p1_timing.h_display)) *
123			target.timing.h_display)) & 0xfff8;
124
125		target.timing.h_total =
126			(((uint16)((si->ps.p1_timing.h_total / ((float)si->ps.p1_timing.h_display)) *
127			target.timing.h_display)) & 0xfff8) - 8;
128
129		/* in native mode the CRTC needs some extra time to keep synced correctly;
130		 * OTOH the overlay unit distorts if we reserve too much time! */
131		if (target.timing.h_display == si->ps.p1_timing.h_display)
132		{
133			/* NV11 timing has different constraints than later cards */
134			if (si->ps.card_type == NV11)
135				target.timing.h_total -= 56;
136			else
137				/* confirmed NV34 with 1680x1050 panel */
138				target.timing.h_total -= 32;
139		}
140
141		if (target.timing.h_sync_start == target.timing.h_display)
142			target.timing.h_sync_start += 8;
143		if (target.timing.h_sync_end == target.timing.h_total)
144			target.timing.h_sync_end -= 8;
145
146		/* vertical timing */
147		target.timing.v_sync_start =
148			((uint16)((si->ps.p1_timing.v_sync_start / ((float)si->ps.p1_timing.v_display)) *
149			target.timing.v_display));
150
151		target.timing.v_sync_end =
152			((uint16)((si->ps.p1_timing.v_sync_end / ((float)si->ps.p1_timing.v_display)) *
153			target.timing.v_display));
154
155		target.timing.v_total =
156			((uint16)((si->ps.p1_timing.v_total / ((float)si->ps.p1_timing.v_display)) *
157			target.timing.v_display)) - 1;
158
159		if (target.timing.v_sync_start == target.timing.v_display)
160			target.timing.v_sync_start += 1;
161		if (target.timing.v_sync_end == target.timing.v_total)
162			target.timing.v_sync_end -= 1;
163
164		/* disable GPU scaling testmode so automatic scaling will be done */
165		DACW(FP_DEBUG1, 0);
166	}
167
168	/* Modify parameters as required by standard VGA */
169	htotal = ((target.timing.h_total >> 3) - 5);
170	hdisp_e = ((target.timing.h_display >> 3) - 1);
171	hblnk_s = hdisp_e;
172	hblnk_e = (htotal + 4);//0;
173	hsync_s = (target.timing.h_sync_start >> 3);
174	hsync_e = (target.timing.h_sync_end >> 3);
175
176	vtotal = target.timing.v_total - 2;
177	vdisp_e = target.timing.v_display - 1;
178	vblnk_s = vdisp_e;
179	vblnk_e = (vtotal + 1);
180	vsync_s = target.timing.v_sync_start;//-1;
181	vsync_e = target.timing.v_sync_end;//-1;
182
183	/* prevent memory adress counter from being reset (linecomp may not occur).
184	 * set all bits, otherwise distortion stripes may appear onscreen (VIA) */
185	linecomp = 0xffff;
186
187	/* Note for laptop and DVI flatpanels:
188	 * CRTC timing has a seperate set of registers from flatpanel timing.
189	 * The flatpanel timing registers have scaling registers that are used to match
190	 * these two modelines. */
191	{
192		LOG(4,("CRTC: Setting full timing...\n"));
193
194		/* log the mode that will be set */
195		LOG(2,("CRTC:\n\tHTOT:%x\n\tHDISPEND:%x\n\tHBLNKS:%x\n\tHBLNKE:%x\n\tHSYNCS:%x\n\tHSYNCE:%x\n\t",htotal,hdisp_e,hblnk_s,hblnk_e,hsync_s,hsync_e));
196		LOG(2,("VTOT:%x\n\tVDISPEND:%x\n\tVBLNKS:%x\n\tVBLNKE:%x\n\tVSYNCS:%x\n\tVSYNCE:%x\n",vtotal,vdisp_e,vblnk_s,vblnk_e,vsync_s,vsync_e));
197
198		/* actually program the card! */
199		/* unlock CRTC registers at index 0-7 */
200		CRTCW(VSYNCE, (CRTCR(VSYNCE) & 0x7f));
201		/* horizontal standard VGA regs */
202		CRTCW(HTOTAL, (htotal & 0xff));
203		CRTCW(HDISPE, (hdisp_e & 0xff));
204		CRTCW(HBLANKS, (hblnk_s & 0xff));
205		/* also unlock vertical retrace registers in advance */
206		CRTCW(HBLANKE, ((hblnk_e & 0x1f) | 0x80));
207		CRTCW(HSYNCS, (hsync_s & 0xff));
208		CRTCW(HSYNCE, ((hsync_e & 0x1f) | ((hblnk_e & 0x20) << 2)));
209
210		/* vertical standard VGA regs */
211		CRTCW(VTOTAL, (vtotal & 0xff));
212		CRTCW(OVERFLOW,
213		(
214			((vtotal & 0x100) >> (8 - 0)) | ((vtotal & 0x200) >> (9 - 5)) |
215			((vdisp_e & 0x100) >> (8 - 1)) | ((vdisp_e & 0x200) >> (9 - 6)) |
216			((vsync_s & 0x100) >> (8 - 2)) | ((vsync_s & 0x200) >> (9 - 7)) |
217			((vblnk_s & 0x100) >> (8 - 3)) | ((linecomp & 0x0100) >> (8 - 4))
218		));
219		CRTCW(PRROWSCN, 0x00); /* not used */
220		CRTCW(MAXSCLIN, (((vblnk_s & 0x200) >> (9 - 5)) | ((linecomp & 0x0200) >> (9 - 6))));
221		CRTCW(VSYNCS, (vsync_s & 0xff));
222		CRTCW(VSYNCE, ((CRTCR(VSYNCE) & 0xf0) | (vsync_e & 0x0f)));
223		CRTCW(VDISPE, (vdisp_e & 0xff));
224		CRTCW(VBLANKS, (vblnk_s & 0xff));
225		CRTCW(VBLANKE, (vblnk_e & 0xff));
226		CRTCW(LINECOMP, (linecomp & 0xff));
227
228		/* horizontal extended regs */
229		CRTCW(HTIMEXT1, (CRTCR(HTIMEXT1) & 0xc8) |
230			(
231		 	((linecomp & 0x1c00) >> (10 - 0)) |
232			((hblnk_e & 0x040) >> (6 - 5)) |
233			((hsync_s & 0x100) >> (8 - 4))
234			));
235		CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) & 0xf7) | ((htotal & 0x100) >> (8 - 3)));
236
237		/* vertical extended regs */
238		CRTCW(VTIMEXT_PIT, (CRTCR(VTIMEXT_PIT) & 0xe0) |
239			(
240		 	((vtotal & 0x400) >> (10 - 0)) |
241			((vsync_s & 0x400) >> (10 - 1)) |
242			((vdisp_e & 0x400) >> (10 - 2)) |
243			((vblnk_s & 0x400) >> (10 - 3)) |
244			((linecomp & 0x2000) >> (13 - 4))
245			));
246
247		/* setup HSYNC & VSYNC polarity */
248		LOG(2,("CRTC: sync polarity: "));
249		temp = ENG_REG8(RG8_MISCR);
250		if (target.timing.flags & B_POSITIVE_HSYNC)
251		{
252			LOG(2,("H:pos "));
253			temp &= ~0x40;
254		}
255		else
256		{
257			LOG(2,("H:neg "));
258			temp |= 0x40;
259		}
260		if (target.timing.flags & B_POSITIVE_VSYNC)
261		{
262			LOG(2,("V:pos "));
263			temp &= ~0x80;
264		}
265		else
266		{
267			LOG(2,("V:neg "));
268			temp |= 0x80;
269		}
270		ENG_REG8(RG8_MISCW) = temp;
271
272		LOG(2,(", MISC reg readback: $%02x\n", ENG_REG8(RG8_MISCR)));
273
274		/* setup CRTC FIFO depth, method 'extrapolated' from VBE BIOS behaviour */
275		switch (target.space)
276		{
277		case B_CMAP8:
278			fifolimit = 0x0001;
279			break;
280		case B_RGB15_LITTLE:
281		case B_RGB16_LITTLE:
282			fifolimit = 0x0002;
283			break;
284		case B_RGB24_LITTLE:
285			fifolimit = 0x0003;
286			break;
287		case B_RGB32_LITTLE:
288			fifolimit = 0x0004;
289			break;
290		}
291		fifolimit *= target.timing.h_display;
292		fifolimit >>= 4;
293		fifolimit += 4;
294		SEQW(FETCHCNTLO, (fifolimit & 0x00fe));
295		SEQW(FETCHCNTHI, (((SEQR(FETCHCNTHI)) & 0xfc) | ((fifolimit & 0x0300) >> 8)));
296	}
297
298	/* always disable interlaced operation */
299	/* (interlace is supported on upto and including NV10, NV15, and NV30 and up) */
300//	CRTCW(INTERLACE, 0xff);
301
302	/* disable CRTC slaved mode unless a panel is in use */
303	// fixme: this kills TVout when it was in use...
304//	if (!si->ps.tmds1_active) CRTCW(PIXEL, (CRTCR(PIXEL) & 0x7f));
305
306	/* setup flatpanel if connected and active */
307	if (0)//si->ps.tmds1_active)
308	{
309		uint32 iscale_x, iscale_y;
310
311		/* calculate inverse scaling factors used by hardware in 20.12 format */
312		iscale_x = (((1 << 12) * target.timing.h_display) / si->ps.p1_timing.h_display);
313		iscale_y = (((1 << 12) * target.timing.v_display) / si->ps.p1_timing.v_display);
314
315		/* unblock flatpanel timing programming (or something like that..) */
316		CRTCW(FP_HTIMING, 0);
317		CRTCW(FP_VTIMING, 0);
318		LOG(2,("CRTC: FP_HTIMING reg readback: $%02x\n", CRTCR(FP_HTIMING)));
319		LOG(2,("CRTC: FP_VTIMING reg readback: $%02x\n", CRTCR(FP_VTIMING)));
320
321		/* enable full width visibility on flatpanel */
322		DACW(FP_HVALID_S, 0);
323		DACW(FP_HVALID_E, (si->ps.p1_timing.h_display - 1));
324		/* enable full height visibility on flatpanel */
325		DACW(FP_VVALID_S, 0);
326		DACW(FP_VVALID_E, (si->ps.p1_timing.v_display - 1));
327
328		/* nVidia cards support upscaling except on ??? */
329		/* NV11 cards can upscale after all! */
330		if (0)//si->ps.card_type == NV11)
331		{
332			/* disable last fetched line limiting */
333			DACW(FP_DEBUG2, 0x00000000);
334			/* inform panel to scale if needed */
335			if ((iscale_x != (1 << 12)) || (iscale_y != (1 << 12)))
336			{
337				LOG(2,("CRTC: DFP needs to do scaling\n"));
338				DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) | 0x00000100));
339			}
340			else
341			{
342				LOG(2,("CRTC: no scaling for DFP needed\n"));
343				DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) & 0xfffffeff));
344			}
345		}
346		else
347		{
348			float dm_aspect;
349
350			LOG(2,("CRTC: GPU scales for DFP if needed\n"));
351
352			/* calculate display mode aspect */
353			dm_aspect = (target.timing.h_display / ((float)target.timing.v_display));
354
355			/* limit last fetched line if vertical scaling is done */
356			if (iscale_y != (1 << 12))
357				DACW(FP_DEBUG2, ((1 << 28) | ((target.timing.v_display - 1) << 16)));
358			else
359				DACW(FP_DEBUG2, 0x00000000);
360
361			/* inform panel not to scale */
362			DACW(FP_TG_CTRL, (DACR(FP_TG_CTRL) & 0xfffffeff));
363
364			/* GPU scaling is automatically setup by hardware, so only modify this
365			 * scalingfactor for non 4:3 (1.33) aspect panels;
366			 * let's consider 1280x1024 1:33 aspect (it's 1.25 aspect actually!) */
367
368			/* correct for widescreen panels relative to mode...
369			 * (so if panel is more widescreen than mode being set) */
370			/* BTW: known widescreen panels:
371			 * 1280 x  800 (1.60),
372			 * 1440 x  900 (1.60),
373			 * 1680 x 1050 (1.60),
374			 * 1920 x 1200 (1.60). */
375			/* known 4:3 aspect non-standard resolution panels:
376			 * 1400 x 1050 (1.33). */
377			/* NOTE:
378			 * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */
379			if ((iscale_x != (1 << 12)) && (si->ps.panel1_aspect > (dm_aspect + 0.10)))
380			{
381				uint16 diff;
382
383				LOG(2,("CRTC: (relative) widescreen panel: tuning horizontal scaling\n"));
384
385				/* X-scaling should be the same as Y-scaling */
386				iscale_x = iscale_y;
387				/* enable testmode (b12) and program modified X-scaling factor */
388				DACW(FP_DEBUG1, (((iscale_x >> 1) & 0x00000fff) | (1 << 12)));
389				/* center/cut-off left and right side of screen */
390				diff = ((si->ps.p1_timing.h_display -
391						(target.timing.h_display * ((1 << 12) / ((float)iscale_x))))
392						/ 2);
393				DACW(FP_HVALID_S, diff);
394				DACW(FP_HVALID_E, ((si->ps.p1_timing.h_display - diff) - 1));
395			}
396			/* correct for portrait panels... */
397			/* NOTE:
398			 * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */
399			if ((iscale_y != (1 << 12)) && (si->ps.panel1_aspect < (dm_aspect - 0.10)))
400			{
401				LOG(2,("CRTC: (relative) portrait panel: should tune vertical scaling\n"));
402				/* fixme: implement if this kind of portrait panels exist on nVidia... */
403			}
404		}
405
406		/* do some logging.. */
407		LOG(2,("CRTC: FP_HVALID_S reg readback: $%08x\n", DACR(FP_HVALID_S)));
408		LOG(2,("CRTC: FP_HVALID_E reg readback: $%08x\n", DACR(FP_HVALID_E)));
409		LOG(2,("CRTC: FP_VVALID_S reg readback: $%08x\n", DACR(FP_VVALID_S)));
410		LOG(2,("CRTC: FP_VVALID_E reg readback: $%08x\n", DACR(FP_VVALID_E)));
411		LOG(2,("CRTC: FP_DEBUG0 reg readback: $%08x\n", DACR(FP_DEBUG0)));
412		LOG(2,("CRTC: FP_DEBUG1 reg readback: $%08x\n", DACR(FP_DEBUG1)));
413		LOG(2,("CRTC: FP_DEBUG2 reg readback: $%08x\n", DACR(FP_DEBUG2)));
414		LOG(2,("CRTC: FP_DEBUG3 reg readback: $%08x\n", DACR(FP_DEBUG3)));
415		LOG(2,("CRTC: FP_TG_CTRL reg readback: $%08x\n", DACR(FP_TG_CTRL)));
416	}
417
418	return B_OK;
419}
420
421status_t eng_crtc_depth(int mode)
422{
423	uint8 genctrl = 0;
424
425	/* set VCLK scaling */
426	/* genctrl bit use:
427		b7:	 %0 = PAL is 6-bit wide (on b0-5)
428			 %1 = PAL is 8-bit wide
429			Note:
430				3123Ax chips only support 6-bits. If we support that chip,
431				update PAL programming!
432		b6:	 ?
433		b5:	 %0 = distortions (stripes) only (tested 8-bit mode)
434			 %1 = OK
435		b4:  %0 = 15-bit color in 2 bytes/pixel mode;
436			 %1 = 16-bit color in 2 bytes/pixel mode.
437		b3-2:%00 = 1 byte /pixel;
438			 %01 = 2 bytes/pixel;
439			 %10 = 3 bytes/pixel; (assumed)
440			 %11 = 4 bytes/pixel.
441		b1:	 %0 = 4 bits/pixel;
442			 %1 = b3-2 scheme above.
443		b0:  ?
444	 */
445	switch(mode)
446	{
447	case BPP8:
448		/* indexed mode */
449		genctrl = 0xa2; //%1010 0010
450		break;
451	case BPP15:
452		/* direct mode */
453		genctrl = 0xa6; //%1010 0110
454		break;
455	case BPP16:
456		/* direct mode */
457		genctrl = 0xb6; //%1011 0110
458		break;
459	case BPP24:
460		/* direct mode */
461		//fixme? this is a guess..
462		genctrl = 0xaa; //%1010 1010
463		break;
464	case BPP32:
465		/* direct mode */
466		genctrl = 0xae; //%1010 1110
467		break;
468	}
469	/* setup bytes per pixel, and direct/indirect mode */
470	SEQW(COLDEPTH, genctrl);
471
472	return B_OK;
473}
474
475status_t eng_crtc_dpms(bool display, bool h, bool v)
476{
477	uint8 temp;
478
479	LOG(4,("CRTC: setting DPMS: "));
480
481	/* start synchronous reset: required before turning screen off! */
482	SEQW(RESET, 0x01);
483
484	/* turn screen off */
485	temp = SEQR(CLKMODE);
486	if (display)
487	{
488		SEQW(CLKMODE, (temp & ~0x20));
489
490		/* end synchronous reset if display should be enabled */
491		SEQW(RESET, 0x03);
492
493		//'safe mode' test! feedback needed with this 'setting'!
494		if (0)//si->ps.tmds1_active)
495		{
496			/* powerup both LVDS (laptop panellink) and TMDS (DVI panellink)
497			 * internal transmitters... */
498			/* note:
499			 * the powerbits in this register are hardwired to the DVI connectors,
500			 * instead of to the DACs! (confirmed NV34) */
501			//fixme...
502			DACW(FP_DEBUG0, (DACR(FP_DEBUG0) & 0xcfffffff));
503			/* ... and powerup external TMDS transmitter if it exists */
504			/* (confirmed OK on NV28 and NV34) */
505			CRTCW(0x59, (CRTCR(0x59) | 0x01));
506		}
507
508		LOG(4,("display on, "));
509	}
510	else
511	{
512		SEQW(CLKMODE, (temp | 0x20));
513
514		//'safe mode' test! feedback needed with this 'setting'!
515		if (0)//si->ps.tmds1_active)
516		{
517			/* powerdown both LVDS (laptop panellink) and TMDS (DVI panellink)
518			 * internal transmitters... */
519			/* note:
520			 * the powerbits in this register are hardwired to the DVI connectors,
521			 * instead of to the DACs! (confirmed NV34) */
522			//fixme...
523			DACW(FP_DEBUG0, (DACR(FP_DEBUG0) | 0x30000000));
524			/* ... and powerdown external TMDS transmitter if it exists */
525			/* (confirmed OK on NV28 and NV34) */
526			CRTCW(0x59, (CRTCR(0x59) & 0xfe));
527		}
528
529		LOG(4,("display off, "));
530	}
531
532	if (h)
533	{
534		CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) & 0xef));
535		LOG(4,("hsync enabled, "));
536	}
537	else
538	{
539		CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) | 0x10));
540		LOG(4,("hsync disabled, "));
541	}
542	if (v)
543	{
544		CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) & 0xdf));
545		LOG(4,("vsync enabled\n"));
546	}
547	else
548	{
549		CRTCW(HTIMEXT2, (CRTCR(HTIMEXT2) | 0x20));
550		LOG(4,("vsync disabled\n"));
551	}
552
553	return B_OK;
554}
555
556status_t eng_crtc_dpms_fetch(bool *display, bool *h, bool *v)
557{
558	*display = !(SEQR(CLKMODE) & 0x20);
559	*h = !(CRTCR(HTIMEXT2) & 0x10);
560	*v = !(CRTCR(HTIMEXT2) & 0x20);
561
562	LOG(4,("CTRC: fetched DPMS state: "));
563	if (*display) LOG(4,("display on, "));
564	else LOG(4,("display off, "));
565	if (*h) LOG(4,("hsync enabled, "));
566	else LOG(4,("hsync disabled, "));
567	if (*v) LOG(4,("vsync enabled\n"));
568	else LOG(4,("vsync disabled\n"));
569
570	return B_OK;
571}
572
573status_t eng_crtc_set_display_pitch()
574{
575	uint16 offset;
576
577	LOG(4,("CRTC: setting card pitch (offset between lines)\n"));
578
579	/* figure out offset value hardware needs */
580	offset = si->fbc.bytes_per_row >> 3;
581
582	LOG(2,("CRTC: offset register set to: $%04x\n", offset));
583
584	/* program the card */
585	CRTCW(PITCHL, (offset & 0x00ff));
586	CRTCW(VTIMEXT_PIT, (((CRTCR(VTIMEXT_PIT)) & 0x1f) | ((offset & 0x0700) >> 3)));
587
588	return B_OK;
589}
590
591status_t eng_crtc_set_display_start(uint32 startadd,uint8 bpp)
592{
593	LOG(4,("CRTC: setting card RAM to be displayed bpp %d\n", bpp));
594
595	LOG(2,("CRTC: startadd: $%08x\n", startadd));
596	LOG(2,("CRTC: frameRAM: $%08x\n", si->framebuffer));
597	LOG(2,("CRTC: framebuffer: $%08x\n", si->fbc.frame_buffer));
598
599	/* VIA: upto 32Mb RAM can be adressed */
600
601	/* set standard registers */
602	/* (VIA: startadress in 64bit words (b3 - b16): checked CLE266) */
603	CRTCW(FBSTADDL, ((startadd & 0x000001f8) >> 1));
604	CRTCW(FBSTADDH, ((startadd & 0x0001fe00) >> 9));
605	/* set extended bits: (b17-24) */
606	CRTCW(FBSTADDE, ((startadd & 0x01fe0000) >> 17));
607
608	/* VIA doesn't support pixelpanning (checked CLE266). */
609
610	return B_OK;
611}
612
613status_t eng_crtc_cursor_init()
614{
615	int i;
616	uint32 * fb;
617	/* cursor bitmap will be stored at the start of the framebuffer */
618	const uint32 curadd = 0;
619
620	/* background is white */
621	CRTCDW(CURSOR_BG, 0xffffffff);
622	/* foreground is black */
623	CRTCDW(CURSOR_FG, 0x00000000);
624	/* set cursor bitmap adress */
625	CRTCDW(CURSOR_MODE, (curadd & 0xfffffffc));
626
627	/* clear cursor (via cursor uses 4kb max) */
628	fb = (uint32 *) si->framebuffer + curadd;
629	for (i = 0; i < (4096/4); i += 2)
630	{
631		fb[i + 0] = 0x00000000;
632		fb[i + 1] = 0xffffffff;
633	}
634
635	/* activate hardware cursor */
636	eng_crtc_cursor_show();
637
638	return B_OK;
639}
640
641status_t eng_crtc_cursor_show()
642{
643	LOG(4,("CRTC: enabling cursor\n"));
644	/* b1 = 0 shows a 64x64 pixel map, b1 = 1 shows a 32x32 pixel map;
645	 * b0 = 0 disables the cursor, b0 = 1 enables the cursor. */
646	CRTCDW(CURSOR_MODE, (CRTCDR(CURSOR_MODE) | 0x00000003));
647
648	return B_OK;
649}
650
651status_t eng_crtc_cursor_hide()
652{
653	LOG(4,("CRTC: disabling cursor\n"));
654	CRTCDW(CURSOR_MODE, (CRTCDR(CURSOR_MODE) & 0xfffffffc));
655
656	return B_OK;
657}
658
659/*set up cursor shape*/
660status_t eng_crtc_cursor_define(uint8* andMask,uint8* xorMask)
661{
662	int y;
663	uint8 *cursor;
664
665	/* get a pointer to the cursor */
666	cursor = (uint8*) si->framebuffer;
667
668	/* pixmap is 4 bytes per row, two rows form pixeldata for one pixel in height */
669	for (y = 0; y < 16; y++)
670	{
671		cursor[0 + (y * 8)] = *xorMask++;
672		cursor[1 + (y * 8)] = *xorMask++;
673		cursor[4 + (y * 8)] = *andMask++;
674		cursor[5 + (y * 8)] = *andMask++;
675	}
676
677	return B_OK;
678//
679/*	for (y = 0; y < 1; y++)//hele hoogte invert
680	{
681		cursor[0 + (y*4)] = 0xff;//linker helft invert
682		cursor[0 + (1*4)] = 0xff;//rechter helft invert
683//invert = %11
684//black = %00
685
686//		cursor[0  + (y * 4)] = *xorMask++;
687//		cursor[32 + (y * 4)] = *xorMask++;
688//		cursor[64 + (y * 4)] = *xorMask++;
689//		cursor[96 + (y * 4)] = *xorMask++;
690	}
691*/
692}
693
694/* position the cursor */
695status_t eng_crtc_cursor_position(uint16 x, uint16 y)
696{
697	/* set cursor origin, b1-7 = Y offset; b17-23 = X offset
698	 * (? linux seems non-consistent) */
699	CRTCDW(CURSOR_ORG, 0x00000000);
700	/* update cursorposition */
701	CRTCDW(CURSOR_POS, (((x & 0x07ff) << 16) | (y & 0x07ff)));
702
703	return B_OK;
704}
705