1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2   Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
3
4   This file is part of GDB.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 59 Temple Place - Suite 330,
19   Boston, MA 02111-1307, USA.  */
20
21#include "defs.h"
22#include "gdb_string.h"
23#include "inferior.h"
24#include "gdbcore.h"
25#include "arch-utils.h"
26#include "regcache.h"
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "dis-asm.h"
32#include "gdb_assert.h"
33#include "sim-regno.h"
34#include "gdb/sim-frv.h"
35#include "opcodes/frv-desc.h"	/* for the H_SPR_... enums */
36#include "symtab.h"
37#include "elf-bfd.h"
38#include "elf/frv.h"
39#include "osabi.h"
40#include "infcall.h"
41#include "frv-tdep.h"
42
43extern void _initialize_frv_tdep (void);
44
45static gdbarch_init_ftype frv_gdbarch_init;
46
47static gdbarch_register_name_ftype frv_register_name;
48static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
49static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
50static gdbarch_skip_prologue_ftype frv_skip_prologue;
51
52
53struct frv_unwind_cache		/* was struct frame_extra_info */
54  {
55    /* The previous frame's inner-most stack address.  Used as this
56       frame ID's stack_addr.  */
57    CORE_ADDR prev_sp;
58
59    /* The frame's base, optionally used by the high-level debug info.  */
60    CORE_ADDR base;
61
62    /* Table indicating the location of each and every register.  */
63    struct trad_frame_saved_reg *saved_regs;
64  };
65
66/* A structure describing a particular variant of the FRV.
67   We allocate and initialize one of these structures when we create
68   the gdbarch object for a variant.
69
70   At the moment, all the FR variants we support differ only in which
71   registers are present; the portable code of GDB knows that
72   registers whose names are the empty string don't exist, so the
73   `register_names' array captures all the per-variant information we
74   need.
75
76   in the future, if we need to have per-variant maps for raw size,
77   virtual type, etc., we should replace register_names with an array
78   of structures, each of which gives all the necessary info for one
79   register.  Don't stick parallel arrays in here --- that's so
80   Fortran.  */
81struct gdbarch_tdep
82{
83  /* Which ABI is in use?  */
84  enum frv_abi frv_abi;
85
86  /* How many general-purpose registers does this variant have?  */
87  int num_gprs;
88
89  /* How many floating-point registers does this variant have?  */
90  int num_fprs;
91
92  /* How many hardware watchpoints can it support?  */
93  int num_hw_watchpoints;
94
95  /* How many hardware breakpoints can it support?  */
96  int num_hw_breakpoints;
97
98  /* Register names.  */
99  char **register_names;
100};
101
102#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
103
104/* Return the FR-V ABI associated with GDBARCH.  */
105enum frv_abi
106frv_abi (struct gdbarch *gdbarch)
107{
108  return gdbarch_tdep (gdbarch)->frv_abi;
109}
110
111/* Fetch the interpreter and executable loadmap addresses (for shared
112   library support) for the FDPIC ABI.  Return 0 if successful, -1 if
113   not.  (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.)  */
114int
115frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
116                             CORE_ADDR *exec_addr)
117{
118  if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
119    return -1;
120  else
121    {
122      if (interp_addr != NULL)
123	{
124	  ULONGEST val;
125	  regcache_cooked_read_unsigned (current_regcache,
126					 fdpic_loadmap_interp_regnum, &val);
127	  *interp_addr = val;
128	}
129      if (exec_addr != NULL)
130	{
131	  ULONGEST val;
132	  regcache_cooked_read_unsigned (current_regcache,
133					 fdpic_loadmap_exec_regnum, &val);
134	  *exec_addr = val;
135	}
136      return 0;
137    }
138}
139
140/* Allocate a new variant structure, and set up default values for all
141   the fields.  */
142static struct gdbarch_tdep *
143new_variant (void)
144{
145  struct gdbarch_tdep *var;
146  int r;
147  char buf[20];
148
149  var = xmalloc (sizeof (*var));
150  memset (var, 0, sizeof (*var));
151
152  var->frv_abi = FRV_ABI_EABI;
153  var->num_gprs = 64;
154  var->num_fprs = 64;
155  var->num_hw_watchpoints = 0;
156  var->num_hw_breakpoints = 0;
157
158  /* By default, don't supply any general-purpose or floating-point
159     register names.  */
160  var->register_names
161    = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
162                         * sizeof (char *));
163  for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
164    var->register_names[r] = "";
165
166  /* Do, however, supply default names for the known special-purpose
167     registers.  */
168
169  var->register_names[pc_regnum] = "pc";
170  var->register_names[lr_regnum] = "lr";
171  var->register_names[lcr_regnum] = "lcr";
172
173  var->register_names[psr_regnum] = "psr";
174  var->register_names[ccr_regnum] = "ccr";
175  var->register_names[cccr_regnum] = "cccr";
176  var->register_names[tbr_regnum] = "tbr";
177
178  /* Debug registers.  */
179  var->register_names[brr_regnum] = "brr";
180  var->register_names[dbar0_regnum] = "dbar0";
181  var->register_names[dbar1_regnum] = "dbar1";
182  var->register_names[dbar2_regnum] = "dbar2";
183  var->register_names[dbar3_regnum] = "dbar3";
184
185  /* iacc0 (Only found on MB93405.)  */
186  var->register_names[iacc0h_regnum] = "iacc0h";
187  var->register_names[iacc0l_regnum] = "iacc0l";
188  var->register_names[iacc0_regnum] = "iacc0";
189
190  /* fsr0 (Found on FR555 and FR501.)  */
191  var->register_names[fsr0_regnum] = "fsr0";
192
193  /* acc0 - acc7.  The architecture provides for the possibility of many
194     more (up to 64 total), but we don't want to make that big of a hole
195     in the G packet.  If we need more in the future, we'll add them
196     elsewhere.  */
197  for (r = acc0_regnum; r <= acc7_regnum; r++)
198    {
199      char *buf;
200      buf = xstrprintf ("acc%d", r - acc0_regnum);
201      var->register_names[r] = buf;
202    }
203
204  /* accg0 - accg7: These are one byte registers.  The remote protocol
205     provides the raw values packed four into a slot.  accg0123 and
206     accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
207     We don't provide names for accg0123 and accg4567 since the user will
208     likely not want to see these raw values.  */
209
210  for (r = accg0_regnum; r <= accg7_regnum; r++)
211    {
212      char *buf;
213      buf = xstrprintf ("accg%d", r - accg0_regnum);
214      var->register_names[r] = buf;
215    }
216
217  /* msr0 and msr1.  */
218
219  var->register_names[msr0_regnum] = "msr0";
220  var->register_names[msr1_regnum] = "msr1";
221
222  /* gner and fner registers.  */
223  var->register_names[gner0_regnum] = "gner0";
224  var->register_names[gner1_regnum] = "gner1";
225  var->register_names[fner0_regnum] = "fner0";
226  var->register_names[fner1_regnum] = "fner1";
227
228  return var;
229}
230
231
232/* Indicate that the variant VAR has NUM_GPRS general-purpose
233   registers, and fill in the names array appropriately.  */
234static void
235set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
236{
237  int r;
238
239  var->num_gprs = num_gprs;
240
241  for (r = 0; r < num_gprs; ++r)
242    {
243      char buf[20];
244
245      sprintf (buf, "gr%d", r);
246      var->register_names[first_gpr_regnum + r] = xstrdup (buf);
247    }
248}
249
250
251/* Indicate that the variant VAR has NUM_FPRS floating-point
252   registers, and fill in the names array appropriately.  */
253static void
254set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
255{
256  int r;
257
258  var->num_fprs = num_fprs;
259
260  for (r = 0; r < num_fprs; ++r)
261    {
262      char buf[20];
263
264      sprintf (buf, "fr%d", r);
265      var->register_names[first_fpr_regnum + r] = xstrdup (buf);
266    }
267}
268
269static void
270set_variant_abi_fdpic (struct gdbarch_tdep *var)
271{
272  var->frv_abi = FRV_ABI_FDPIC;
273  var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
274  var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
275}
276
277static void
278set_variant_scratch_registers (struct gdbarch_tdep *var)
279{
280  var->register_names[scr0_regnum] = xstrdup ("scr0");
281  var->register_names[scr1_regnum] = xstrdup ("scr1");
282  var->register_names[scr2_regnum] = xstrdup ("scr2");
283  var->register_names[scr3_regnum] = xstrdup ("scr3");
284}
285
286static const char *
287frv_register_name (int reg)
288{
289  if (reg < 0)
290    return "?toosmall?";
291  if (reg >= frv_num_regs + frv_num_pseudo_regs)
292    return "?toolarge?";
293
294  return CURRENT_VARIANT->register_names[reg];
295}
296
297
298static struct type *
299frv_register_type (struct gdbarch *gdbarch, int reg)
300{
301  if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
302    return builtin_type_float;
303  else if (reg == iacc0_regnum)
304    return builtin_type_int64;
305  else
306    return builtin_type_int32;
307}
308
309static void
310frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
311                          int reg, void *buffer)
312{
313  if (reg == iacc0_regnum)
314    {
315      regcache_raw_read (regcache, iacc0h_regnum, buffer);
316      regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
317    }
318  else if (accg0_regnum <= reg && reg <= accg7_regnum)
319    {
320      /* The accg raw registers have four values in each slot with the
321         lowest register number occupying the first byte.  */
322
323      int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
324      int byte_num = (reg - accg0_regnum) % 4;
325      bfd_byte buf[4];
326
327      regcache_raw_read (regcache, raw_regnum, buf);
328      memset (buffer, 0, 4);
329      /* FR-V is big endian, so put the requested byte in the first byte
330         of the buffer allocated to hold the pseudo-register.  */
331      ((bfd_byte *) buffer)[0] = buf[byte_num];
332    }
333}
334
335static void
336frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
337                          int reg, const void *buffer)
338{
339  if (reg == iacc0_regnum)
340    {
341      regcache_raw_write (regcache, iacc0h_regnum, buffer);
342      regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
343    }
344  else if (accg0_regnum <= reg && reg <= accg7_regnum)
345    {
346      /* The accg raw registers have four values in each slot with the
347         lowest register number occupying the first byte.  */
348
349      int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
350      int byte_num = (reg - accg0_regnum) % 4;
351      char buf[4];
352
353      regcache_raw_read (regcache, raw_regnum, buf);
354      buf[byte_num] = ((bfd_byte *) buffer)[0];
355      regcache_raw_write (regcache, raw_regnum, buf);
356    }
357}
358
359static int
360frv_register_sim_regno (int reg)
361{
362  static const int spr_map[] =
363    {
364      H_SPR_PSR,		/* psr_regnum */
365      H_SPR_CCR,		/* ccr_regnum */
366      H_SPR_CCCR,		/* cccr_regnum */
367      -1,			/* fdpic_loadmap_exec_regnum */
368      -1,			/* fdpic_loadmap_interp_regnum */
369      -1,			/* 134 */
370      H_SPR_TBR,		/* tbr_regnum */
371      H_SPR_BRR,		/* brr_regnum */
372      H_SPR_DBAR0,		/* dbar0_regnum */
373      H_SPR_DBAR1,		/* dbar1_regnum */
374      H_SPR_DBAR2,		/* dbar2_regnum */
375      H_SPR_DBAR3,		/* dbar3_regnum */
376      H_SPR_SCR0,		/* scr0_regnum */
377      H_SPR_SCR1,		/* scr1_regnum */
378      H_SPR_SCR2,		/* scr2_regnum */
379      H_SPR_SCR3,		/* scr3_regnum */
380      H_SPR_LR,			/* lr_regnum */
381      H_SPR_LCR,		/* lcr_regnum */
382      H_SPR_IACC0H,		/* iacc0h_regnum */
383      H_SPR_IACC0L,		/* iacc0l_regnum */
384      H_SPR_FSR0,		/* fsr0_regnum */
385      /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs.  */
386      -1,			/* acc0_regnum */
387      -1,			/* acc1_regnum */
388      -1,			/* acc2_regnum */
389      -1,			/* acc3_regnum */
390      -1,			/* acc4_regnum */
391      -1,			/* acc5_regnum */
392      -1,			/* acc6_regnum */
393      -1,			/* acc7_regnum */
394      -1,			/* acc0123_regnum */
395      -1,			/* acc4567_regnum */
396      H_SPR_MSR0,		/* msr0_regnum */
397      H_SPR_MSR1,		/* msr1_regnum */
398      H_SPR_GNER0,		/* gner0_regnum */
399      H_SPR_GNER1,		/* gner1_regnum */
400      H_SPR_FNER0,		/* fner0_regnum */
401      H_SPR_FNER1,		/* fner1_regnum */
402    };
403
404  gdb_assert (reg >= 0 && reg < NUM_REGS);
405
406  if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
407    return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
408  else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
409    return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
410  else if (pc_regnum == reg)
411    return SIM_FRV_PC_REGNUM;
412  else if (reg >= first_spr_regnum
413           && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
414    {
415      int spr_reg_offset = spr_map[reg - first_spr_regnum];
416
417      if (spr_reg_offset < 0)
418	return SIM_REGNO_DOES_NOT_EXIST;
419      else
420	return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
421    }
422
423  internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
424}
425
426static const unsigned char *
427frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
428{
429  static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
430  *lenp = sizeof (breakpoint);
431  return breakpoint;
432}
433
434/* Define the maximum number of instructions which may be packed into a
435   bundle (VLIW instruction).  */
436static const int max_instrs_per_bundle = 8;
437
438/* Define the size (in bytes) of an FR-V instruction.  */
439static const int frv_instr_size = 4;
440
441/* Adjust a breakpoint's address to account for the FR-V architecture's
442   constraint that a break instruction must not appear as any but the
443   first instruction in the bundle.  */
444static CORE_ADDR
445frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
446{
447  int count = max_instrs_per_bundle;
448  CORE_ADDR addr = bpaddr - frv_instr_size;
449  CORE_ADDR func_start = get_pc_function_start (bpaddr);
450
451  /* Find the end of the previous packing sequence.  This will be indicated
452     by either attempting to access some inaccessible memory or by finding
453     an instruction word whose packing bit is set to one. */
454  while (count-- > 0 && addr >= func_start)
455    {
456      char instr[frv_instr_size];
457      int status;
458
459      status = deprecated_read_memory_nobpt (addr, instr, sizeof instr);
460
461      if (status != 0)
462	break;
463
464      /* This is a big endian architecture, so byte zero will have most
465         significant byte.  The most significant bit of this byte is the
466         packing bit.  */
467      if (instr[0] & 0x80)
468	break;
469
470      addr -= frv_instr_size;
471    }
472
473  if (count > 0)
474    bpaddr = addr + frv_instr_size;
475
476  return bpaddr;
477}
478
479
480/* Return true if REG is a caller-saves ("scratch") register,
481   false otherwise.  */
482static int
483is_caller_saves_reg (int reg)
484{
485  return ((4 <= reg && reg <= 7)
486          || (14 <= reg && reg <= 15)
487          || (32 <= reg && reg <= 47));
488}
489
490
491/* Return true if REG is a callee-saves register, false otherwise.  */
492static int
493is_callee_saves_reg (int reg)
494{
495  return ((16 <= reg && reg <= 31)
496          || (48 <= reg && reg <= 63));
497}
498
499
500/* Return true if REG is an argument register, false otherwise.  */
501static int
502is_argument_reg (int reg)
503{
504  return (8 <= reg && reg <= 13);
505}
506
507/* Scan an FR-V prologue, starting at PC, until frame->PC.
508   If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
509   We assume FRAME's saved_regs array has already been allocated and cleared.
510   Return the first PC value after the prologue.
511
512   Note that, for unoptimized code, we almost don't need this function
513   at all; all arguments and locals live on the stack, so we just need
514   the FP to find everything.  The catch: structures passed by value
515   have their addresses living in registers; they're never spilled to
516   the stack.  So if you ever want to be able to get to these
517   arguments in any frame but the top, you'll need to do this serious
518   prologue analysis.  */
519static CORE_ADDR
520frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
521                      struct frv_unwind_cache *info)
522{
523  /* When writing out instruction bitpatterns, we use the following
524     letters to label instruction fields:
525     P - The parallel bit.  We don't use this.
526     J - The register number of GRj in the instruction description.
527     K - The register number of GRk in the instruction description.
528     I - The register number of GRi.
529     S - a signed imediate offset.
530     U - an unsigned immediate offset.
531
532     The dots below the numbers indicate where hex digit boundaries
533     fall, to make it easier to check the numbers.  */
534
535  /* Non-zero iff we've seen the instruction that initializes the
536     frame pointer for this function's frame.  */
537  int fp_set = 0;
538
539  /* If fp_set is non_zero, then this is the distance from
540     the stack pointer to frame pointer: fp = sp + fp_offset.  */
541  int fp_offset = 0;
542
543  /* Total size of frame prior to any alloca operations. */
544  int framesize = 0;
545
546  /* Flag indicating if lr has been saved on the stack.  */
547  int lr_saved_on_stack = 0;
548
549  /* The number of the general-purpose register we saved the return
550     address ("link register") in, or -1 if we haven't moved it yet.  */
551  int lr_save_reg = -1;
552
553  /* Offset (from sp) at which lr has been saved on the stack.  */
554
555  int lr_sp_offset = 0;
556
557  /* If gr_saved[i] is non-zero, then we've noticed that general
558     register i has been saved at gr_sp_offset[i] from the stack
559     pointer.  */
560  char gr_saved[64];
561  int gr_sp_offset[64];
562
563  /* The address of the most recently scanned prologue instruction.  */
564  CORE_ADDR last_prologue_pc;
565
566  /* The address of the next instruction. */
567  CORE_ADDR next_pc;
568
569  /* The upper bound to of the pc values to scan.  */
570  CORE_ADDR lim_pc;
571
572  memset (gr_saved, 0, sizeof (gr_saved));
573
574  last_prologue_pc = pc;
575
576  /* Try to compute an upper limit (on how far to scan) based on the
577     line number info.  */
578  lim_pc = skip_prologue_using_sal (pc);
579  /* If there's no line number info, lim_pc will be 0.  In that case,
580     set the limit to be 100 instructions away from pc.  Hopefully, this
581     will be far enough away to account for the entire prologue.  Don't
582     worry about overshooting the end of the function.  The scan loop
583     below contains some checks to avoid scanning unreasonably far.  */
584  if (lim_pc == 0)
585    lim_pc = pc + 400;
586
587  /* If we have a frame, we don't want to scan past the frame's pc.  This
588     will catch those cases where the pc is in the prologue.  */
589  if (next_frame)
590    {
591      CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
592      if (frame_pc < lim_pc)
593	lim_pc = frame_pc;
594    }
595
596  /* Scan the prologue.  */
597  while (pc < lim_pc)
598    {
599      char buf[frv_instr_size];
600      LONGEST op;
601
602      if (target_read_memory (pc, buf, sizeof buf) != 0)
603	break;
604      op = extract_signed_integer (buf, sizeof buf);
605
606      next_pc = pc + 4;
607
608      /* The tests in this chain of ifs should be in order of
609	 decreasing selectivity, so that more particular patterns get
610	 to fire before less particular patterns.  */
611
612      /* Some sort of control transfer instruction: stop scanning prologue.
613	 Integer Conditional Branch:
614	  X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
615	 Floating-point / media Conditional Branch:
616	  X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
617	 LCR Conditional Branch to LR
618	  X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
619	 Integer conditional Branches to LR
620	  X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
621	  X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
622	 Floating-point/Media Branches to LR
623	  X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
624	  X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
625	 Jump and Link
626	  X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
627	  X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
628	 Call
629	  X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
630	 Return from Trap
631	  X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
632	 Integer Conditional Trap
633	  X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
634	  X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
635	 Floating-point /media Conditional Trap
636	  X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
637	  X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
638	 Break
639	  X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
640	 Media Trap
641	  X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
642      if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
643          || (op & 0x01f80000) == 0x00300000  /* Jump and Link */
644	  || (op & 0x01f80000) == 0x00100000  /* Return from Trap, Trap */
645	  || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
646	{
647	  /* Stop scanning; not in prologue any longer.  */
648	  break;
649	}
650
651      /* Loading something from memory into fp probably means that
652         we're in the epilogue.  Stop scanning the prologue.
653         ld @(GRi, GRk), fp
654	 X 000010 0000010 XXXXXX 000100 XXXXXX
655	 ldi @(GRi, d12), fp
656	 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
657      else if ((op & 0x7ffc0fc0) == 0x04080100
658               || (op & 0x7ffc0000) == 0x04c80000)
659	{
660	  break;
661	}
662
663      /* Setting the FP from the SP:
664	 ori sp, 0, fp
665	 P 000010 0100010 000001 000000000000 = 0x04881000
666	 0 111111 1111111 111111 111111111111 = 0x7fffffff
667             .    .   .    .   .    .   .   .
668	 We treat this as part of the prologue.  */
669      else if ((op & 0x7fffffff) == 0x04881000)
670	{
671	  fp_set = 1;
672	  fp_offset = 0;
673	  last_prologue_pc = next_pc;
674	}
675
676      /* Move the link register to the scratch register grJ, before saving:
677         movsg lr, grJ
678         P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
679         0 111111 1111111 111111 111111 000000 = 0x7fffffc0
680             .    .   .    .   .    .    .   .
681	 We treat this as part of the prologue.  */
682      else if ((op & 0x7fffffc0) == 0x080d01c0)
683        {
684          int gr_j = op & 0x3f;
685
686          /* If we're moving it to a scratch register, that's fine.  */
687          if (is_caller_saves_reg (gr_j))
688	    {
689	      lr_save_reg = gr_j;
690	      last_prologue_pc = next_pc;
691	    }
692        }
693
694      /* To save multiple callee-saves registers on the stack, at
695         offset zero:
696
697	 std grK,@(sp,gr0)
698	 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
699	 0 000000 1111111 111111 111111 111111 = 0x01ffffff
700
701	 stq grK,@(sp,gr0)
702	 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
703	 0 000000 1111111 111111 111111 111111 = 0x01ffffff
704             .    .   .    .   .    .    .   .
705         We treat this as part of the prologue, and record the register's
706	 saved address in the frame structure.  */
707      else if ((op & 0x01ffffff) == 0x000c10c0
708            || (op & 0x01ffffff) == 0x000c1100)
709	{
710	  int gr_k = ((op >> 25) & 0x3f);
711	  int ope  = ((op >> 6)  & 0x3f);
712          int count;
713	  int i;
714
715          /* Is it an std or an stq?  */
716          if (ope == 0x03)
717            count = 2;
718          else
719            count = 4;
720
721	  /* Is it really a callee-saves register?  */
722	  if (is_callee_saves_reg (gr_k))
723	    {
724	      for (i = 0; i < count; i++)
725	        {
726		  gr_saved[gr_k + i] = 1;
727		  gr_sp_offset[gr_k + i] = 4 * i;
728		}
729	      last_prologue_pc = next_pc;
730	    }
731	}
732
733      /* Adjusting the stack pointer.  (The stack pointer is GR1.)
734	 addi sp, S, sp
735         P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
736         0 111111 1111111 111111 000000000000 = 0x7ffff000
737             .    .   .    .   .    .   .   .
738	 We treat this as part of the prologue.  */
739      else if ((op & 0x7ffff000) == 0x02401000)
740        {
741	  if (framesize == 0)
742	    {
743	      /* Sign-extend the twelve-bit field.
744		 (Isn't there a better way to do this?)  */
745	      int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
746
747	      framesize -= s;
748	      last_prologue_pc = pc;
749	    }
750	  else
751	    {
752	      /* If the prologue is being adjusted again, we've
753	         likely gone too far; i.e. we're probably in the
754		 epilogue.  */
755	      break;
756	    }
757	}
758
759      /* Setting the FP to a constant distance from the SP:
760	 addi sp, S, fp
761         P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
762         0 111111 1111111 111111 000000000000 = 0x7ffff000
763             .    .   .    .   .    .   .   .
764	 We treat this as part of the prologue.  */
765      else if ((op & 0x7ffff000) == 0x04401000)
766	{
767	  /* Sign-extend the twelve-bit field.
768	     (Isn't there a better way to do this?)  */
769	  int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
770	  fp_set = 1;
771	  fp_offset = s;
772	  last_prologue_pc = pc;
773	}
774
775      /* To spill an argument register to a scratch register:
776	    ori GRi, 0, GRk
777	 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
778	 0 000000 1111111 000000 111111111111 = 0x01fc0fff
779	     .    .   .    .   .    .   .   .
780	 For the time being, we treat this as a prologue instruction,
781	 assuming that GRi is an argument register.  This one's kind
782	 of suspicious, because it seems like it could be part of a
783	 legitimate body instruction.  But we only come here when the
784	 source info wasn't helpful, so we have to do the best we can.
785	 Hopefully once GCC and GDB agree on how to emit line number
786	 info for prologues, then this code will never come into play.  */
787      else if ((op & 0x01fc0fff) == 0x00880000)
788	{
789	  int gr_i = ((op >> 12) & 0x3f);
790
791          /* Make sure that the source is an arg register; if it is, we'll
792	     treat it as a prologue instruction.  */
793	  if (is_argument_reg (gr_i))
794	    last_prologue_pc = next_pc;
795	}
796
797      /* To spill 16-bit values to the stack:
798	     sthi GRk, @(fp, s)
799	 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
800	 0 000000 1111111 111111 000000000000 = 0x01fff000
801             .    .   .    .   .    .   .   .
802         And for 8-bit values, we use STB instructions.
803	     stbi GRk, @(fp, s)
804	 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
805	 0 000000 1111111 111111 000000000000 = 0x01fff000
806	     .    .   .    .   .    .   .   .
807         We check that GRk is really an argument register, and treat
808         all such as part of the prologue.  */
809      else if (   (op & 0x01fff000) == 0x01442000
810	       || (op & 0x01fff000) == 0x01402000)
811	{
812	  int gr_k = ((op >> 25) & 0x3f);
813
814          /* Make sure that GRk is really an argument register; treat
815	     it as a prologue instruction if so.  */
816	  if (is_argument_reg (gr_k))
817	    last_prologue_pc = next_pc;
818	}
819
820      /* To save multiple callee-saves register on the stack, at a
821         non-zero offset:
822
823	 stdi GRk, @(sp, s)
824	 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
825	 0 000000 1111111 111111 000000000000 = 0x01fff000
826             .    .   .    .   .    .   .   .
827	 stqi GRk, @(sp, s)
828	 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
829	 0 000000 1111111 111111 000000000000 = 0x01fff000
830	     .    .   .    .   .    .   .   .
831         We treat this as part of the prologue, and record the register's
832	 saved address in the frame structure.  */
833      else if ((op & 0x01fff000) == 0x014c1000
834            || (op & 0x01fff000) == 0x01501000)
835	{
836	  int gr_k = ((op >> 25) & 0x3f);
837          int count;
838	  int i;
839
840          /* Is it a stdi or a stqi?  */
841          if ((op & 0x01fff000) == 0x014c1000)
842            count = 2;
843          else
844            count = 4;
845
846	  /* Is it really a callee-saves register?  */
847	  if (is_callee_saves_reg (gr_k))
848	    {
849	      /* Sign-extend the twelve-bit field.
850		 (Isn't there a better way to do this?)  */
851	      int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
852
853	      for (i = 0; i < count; i++)
854		{
855		  gr_saved[gr_k + i] = 1;
856		  gr_sp_offset[gr_k + i] = s + (4 * i);
857		}
858	      last_prologue_pc = next_pc;
859	    }
860	}
861
862      /* Storing any kind of integer register at any constant offset
863         from any other register.
864
865	 st GRk, @(GRi, gr0)
866         P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
867         0 000000 1111111 000000 111111 111111 = 0x01fc0fff
868             .    .   .    .   .    .    .   .
869	 sti GRk, @(GRi, d12)
870	 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
871	 0 000000 1111111 000000 000000000000 = 0x01fc0000
872             .    .   .    .   .    .   .   .
873         These could be almost anything, but a lot of prologue
874         instructions fall into this pattern, so let's decode the
875         instruction once, and then work at a higher level.  */
876      else if (((op & 0x01fc0fff) == 0x000c0080)
877            || ((op & 0x01fc0000) == 0x01480000))
878        {
879          int gr_k = ((op >> 25) & 0x3f);
880          int gr_i = ((op >> 12) & 0x3f);
881          int offset;
882
883          /* Are we storing with gr0 as an offset, or using an
884             immediate value?  */
885          if ((op & 0x01fc0fff) == 0x000c0080)
886            offset = 0;
887          else
888            offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
889
890          /* If the address isn't relative to the SP or FP, it's not a
891             prologue instruction.  */
892          if (gr_i != sp_regnum && gr_i != fp_regnum)
893	    {
894	      /* Do nothing; not a prologue instruction.  */
895	    }
896
897          /* Saving the old FP in the new frame (relative to the SP).  */
898          else if (gr_k == fp_regnum && gr_i == sp_regnum)
899	    {
900	      gr_saved[fp_regnum] = 1;
901              gr_sp_offset[fp_regnum] = offset;
902	      last_prologue_pc = next_pc;
903	    }
904
905          /* Saving callee-saves register(s) on the stack, relative to
906             the SP.  */
907          else if (gr_i == sp_regnum
908                   && is_callee_saves_reg (gr_k))
909            {
910              gr_saved[gr_k] = 1;
911	      if (gr_i == sp_regnum)
912		gr_sp_offset[gr_k] = offset;
913	      else
914		gr_sp_offset[gr_k] = offset + fp_offset;
915	      last_prologue_pc = next_pc;
916            }
917
918          /* Saving the scratch register holding the return address.  */
919          else if (lr_save_reg != -1
920                   && gr_k == lr_save_reg)
921	    {
922	      lr_saved_on_stack = 1;
923	      if (gr_i == sp_regnum)
924		lr_sp_offset = offset;
925	      else
926	        lr_sp_offset = offset + fp_offset;
927	      last_prologue_pc = next_pc;
928	    }
929
930          /* Spilling int-sized arguments to the stack.  */
931          else if (is_argument_reg (gr_k))
932	    last_prologue_pc = next_pc;
933        }
934      pc = next_pc;
935    }
936
937  if (next_frame && info)
938    {
939      int i;
940      ULONGEST this_base;
941
942      /* If we know the relationship between the stack and frame
943         pointers, record the addresses of the registers we noticed.
944         Note that we have to do this as a separate step at the end,
945         because instructions may save relative to the SP, but we need
946         their addresses relative to the FP.  */
947      if (fp_set)
948	  frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
949      else
950	  frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
951
952      for (i = 0; i < 64; i++)
953	if (gr_saved[i])
954	  info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
955
956      info->prev_sp = this_base - fp_offset + framesize;
957      info->base = this_base;
958
959      /* If LR was saved on the stack, record its location.  */
960      if (lr_saved_on_stack)
961	info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
962
963      /* The call instruction moves the caller's PC in the callee's LR.
964	 Since this is an unwind, do the reverse.  Copy the location of LR
965	 into PC (the address / regnum) so that a request for PC will be
966	 converted into a request for the LR.  */
967      info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
968
969      /* Save the previous frame's computed SP value.  */
970      trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
971    }
972
973  return last_prologue_pc;
974}
975
976
977static CORE_ADDR
978frv_skip_prologue (CORE_ADDR pc)
979{
980  CORE_ADDR func_addr, func_end, new_pc;
981
982  new_pc = pc;
983
984  /* If the line table has entry for a line *within* the function
985     (i.e., not in the prologue, and not past the end), then that's
986     our location.  */
987  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
988    {
989      struct symtab_and_line sal;
990
991      sal = find_pc_line (func_addr, 0);
992
993      if (sal.line != 0 && sal.end < func_end)
994	{
995	  new_pc = sal.end;
996	}
997    }
998
999  /* The FR-V prologue is at least five instructions long (twenty bytes).
1000     If we didn't find a real source location past that, then
1001     do a full analysis of the prologue.  */
1002  if (new_pc < pc + 20)
1003    new_pc = frv_analyze_prologue (pc, 0, 0);
1004
1005  return new_pc;
1006}
1007
1008
1009static struct frv_unwind_cache *
1010frv_frame_unwind_cache (struct frame_info *next_frame,
1011			 void **this_prologue_cache)
1012{
1013  struct gdbarch *gdbarch = get_frame_arch (next_frame);
1014  CORE_ADDR pc;
1015  ULONGEST this_base;
1016  struct frv_unwind_cache *info;
1017
1018  if ((*this_prologue_cache))
1019    return (*this_prologue_cache);
1020
1021  info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1022  (*this_prologue_cache) = info;
1023  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1024
1025  /* Prologue analysis does the rest...  */
1026  frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
1027
1028  return info;
1029}
1030
1031static void
1032frv_extract_return_value (struct type *type, struct regcache *regcache,
1033                          void *valbuf)
1034{
1035  int len = TYPE_LENGTH (type);
1036
1037  if (len <= 4)
1038    {
1039      ULONGEST gpr8_val;
1040      regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1041      store_unsigned_integer (valbuf, len, gpr8_val);
1042    }
1043  else if (len == 8)
1044    {
1045      ULONGEST regval;
1046      regcache_cooked_read_unsigned (regcache, 8, &regval);
1047      store_unsigned_integer (valbuf, 4, regval);
1048      regcache_cooked_read_unsigned (regcache, 9, &regval);
1049      store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1050    }
1051  else
1052    internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
1053}
1054
1055static CORE_ADDR
1056frv_extract_struct_value_address (struct regcache *regcache)
1057{
1058  ULONGEST addr;
1059  regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1060  return addr;
1061}
1062
1063static void
1064frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1065{
1066  write_register (struct_return_regnum, addr);
1067}
1068
1069static CORE_ADDR
1070frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1071{
1072  /* Require dword alignment.  */
1073  return align_down (sp, 8);
1074}
1075
1076static CORE_ADDR
1077find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1078{
1079  CORE_ADDR descr;
1080  char valbuf[4];
1081
1082  descr = frv_fdpic_find_canonical_descriptor (entry_point);
1083
1084  if (descr != 0)
1085    return descr;
1086
1087  /* Construct a non-canonical descriptor from space allocated on
1088     the stack.  */
1089
1090  descr = value_as_long (value_allocate_space_in_inferior (8));
1091  store_unsigned_integer (valbuf, 4, entry_point);
1092  write_memory (descr, valbuf, 4);
1093  store_unsigned_integer (valbuf, 4,
1094                          frv_fdpic_find_global_pointer (entry_point));
1095  write_memory (descr + 4, valbuf, 4);
1096  return descr;
1097}
1098
1099static CORE_ADDR
1100frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1101                                struct target_ops *targ)
1102{
1103  CORE_ADDR entry_point;
1104  CORE_ADDR got_address;
1105
1106  entry_point = get_target_memory_unsigned (targ, addr, 4);
1107  got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1108
1109  if (got_address == frv_fdpic_find_global_pointer (entry_point))
1110    return entry_point;
1111  else
1112    return addr;
1113}
1114
1115static CORE_ADDR
1116frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1117                     struct regcache *regcache, CORE_ADDR bp_addr,
1118                     int nargs, struct value **args, CORE_ADDR sp,
1119		     int struct_return, CORE_ADDR struct_addr)
1120{
1121  int argreg;
1122  int argnum;
1123  char *val;
1124  char valbuf[4];
1125  struct value *arg;
1126  struct type *arg_type;
1127  int len;
1128  enum type_code typecode;
1129  CORE_ADDR regval;
1130  int stack_space;
1131  int stack_offset;
1132  enum frv_abi abi = frv_abi (gdbarch);
1133  CORE_ADDR func_addr = find_function_addr (function, NULL);
1134
1135#if 0
1136  printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1137	 nargs, (int) sp, struct_return, struct_addr);
1138#endif
1139
1140  stack_space = 0;
1141  for (argnum = 0; argnum < nargs; ++argnum)
1142    stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
1143
1144  stack_space -= (6 * 4);
1145  if (stack_space > 0)
1146    sp -= stack_space;
1147
1148  /* Make sure stack is dword aligned. */
1149  sp = align_down (sp, 8);
1150
1151  stack_offset = 0;
1152
1153  argreg = 8;
1154
1155  if (struct_return)
1156    regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1157                                    struct_addr);
1158
1159  for (argnum = 0; argnum < nargs; ++argnum)
1160    {
1161      arg = args[argnum];
1162      arg_type = check_typedef (VALUE_TYPE (arg));
1163      len = TYPE_LENGTH (arg_type);
1164      typecode = TYPE_CODE (arg_type);
1165
1166      if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1167	{
1168	  store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1169	  typecode = TYPE_CODE_PTR;
1170	  len = 4;
1171	  val = valbuf;
1172	}
1173      else if (abi == FRV_ABI_FDPIC
1174	       && len == 4
1175               && typecode == TYPE_CODE_PTR
1176               && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1177	{
1178	  /* The FDPIC ABI requires function descriptors to be passed instead
1179	     of entry points.  */
1180	  store_unsigned_integer
1181	    (valbuf, 4,
1182	     find_func_descr (gdbarch,
1183	                      extract_unsigned_integer (VALUE_CONTENTS (arg),
1184			                                4)));
1185	  typecode = TYPE_CODE_PTR;
1186	  len = 4;
1187	  val = valbuf;
1188	}
1189      else
1190	{
1191	  val = (char *) VALUE_CONTENTS (arg);
1192	}
1193
1194      while (len > 0)
1195	{
1196	  int partial_len = (len < 4 ? len : 4);
1197
1198	  if (argreg < 14)
1199	    {
1200	      regval = extract_unsigned_integer (val, partial_len);
1201#if 0
1202	      printf("  Argnum %d data %x -> reg %d\n",
1203		     argnum, (int) regval, argreg);
1204#endif
1205	      regcache_cooked_write_unsigned (regcache, argreg, regval);
1206	      ++argreg;
1207	    }
1208	  else
1209	    {
1210#if 0
1211	      printf("  Argnum %d data %x -> offset %d (%x)\n",
1212		     argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1213#endif
1214	      write_memory (sp + stack_offset, val, partial_len);
1215	      stack_offset += align_up (partial_len, 4);
1216	    }
1217	  len -= partial_len;
1218	  val += partial_len;
1219	}
1220    }
1221
1222  /* Set the return address.  For the frv, the return breakpoint is
1223     always at BP_ADDR.  */
1224  regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1225
1226  if (abi == FRV_ABI_FDPIC)
1227    {
1228      /* Set the GOT register for the FDPIC ABI.  */
1229      regcache_cooked_write_unsigned
1230	(regcache, first_gpr_regnum + 15,
1231         frv_fdpic_find_global_pointer (func_addr));
1232    }
1233
1234  /* Finally, update the SP register.  */
1235  regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1236
1237  return sp;
1238}
1239
1240static void
1241frv_store_return_value (struct type *type, struct regcache *regcache,
1242                        const void *valbuf)
1243{
1244  int len = TYPE_LENGTH (type);
1245
1246  if (len <= 4)
1247    {
1248      bfd_byte val[4];
1249      memset (val, 0, sizeof (val));
1250      memcpy (val + (4 - len), valbuf, len);
1251      regcache_cooked_write (regcache, 8, val);
1252    }
1253  else if (len == 8)
1254    {
1255      regcache_cooked_write (regcache, 8, valbuf);
1256      regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1257    }
1258  else
1259    internal_error (__FILE__, __LINE__,
1260                    "Don't know how to return a %d-byte value.", len);
1261}
1262
1263
1264/* Hardware watchpoint / breakpoint support for the FR500
1265   and FR400.  */
1266
1267int
1268frv_check_watch_resources (int type, int cnt, int ot)
1269{
1270  struct gdbarch_tdep *var = CURRENT_VARIANT;
1271
1272  /* Watchpoints not supported on simulator.  */
1273  if (strcmp (target_shortname, "sim") == 0)
1274    return 0;
1275
1276  if (type == bp_hardware_breakpoint)
1277    {
1278      if (var->num_hw_breakpoints == 0)
1279	return 0;
1280      else if (cnt <= var->num_hw_breakpoints)
1281	return 1;
1282    }
1283  else
1284    {
1285      if (var->num_hw_watchpoints == 0)
1286	return 0;
1287      else if (ot)
1288	return -1;
1289      else if (cnt <= var->num_hw_watchpoints)
1290	return 1;
1291    }
1292  return -1;
1293}
1294
1295
1296int
1297frv_stopped_data_address (CORE_ADDR *addr_p)
1298{
1299  CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1300
1301  brr = read_register (brr_regnum);
1302  dbar0 = read_register (dbar0_regnum);
1303  dbar1 = read_register (dbar1_regnum);
1304  dbar2 = read_register (dbar2_regnum);
1305  dbar3 = read_register (dbar3_regnum);
1306
1307  if (brr & (1<<11))
1308    *addr_p = dbar0;
1309  else if (brr & (1<<10))
1310    *addr_p = dbar1;
1311  else if (brr & (1<<9))
1312    *addr_p = dbar2;
1313  else if (brr & (1<<8))
1314    *addr_p = dbar3;
1315  else
1316    return 0;
1317
1318  return 1;
1319}
1320
1321int
1322frv_have_stopped_data_address (void)
1323{
1324  CORE_ADDR addr = 0;
1325  return frv_stopped_data_address (&addr);
1326}
1327
1328static CORE_ADDR
1329frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1330{
1331  return frame_unwind_register_unsigned (next_frame, pc_regnum);
1332}
1333
1334/* Given a GDB frame, determine the address of the calling function's
1335   frame.  This will be used to create a new GDB frame struct.  */
1336
1337static void
1338frv_frame_this_id (struct frame_info *next_frame,
1339		    void **this_prologue_cache, struct frame_id *this_id)
1340{
1341  struct frv_unwind_cache *info
1342    = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1343  CORE_ADDR base;
1344  CORE_ADDR func;
1345  struct minimal_symbol *msym_stack;
1346  struct frame_id id;
1347
1348  /* The FUNC is easy.  */
1349  func = frame_func_unwind (next_frame);
1350
1351  /* Check if the stack is empty.  */
1352  msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1353  if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1354    return;
1355
1356  /* Hopefully the prologue analysis either correctly determined the
1357     frame's base (which is the SP from the previous frame), or set
1358     that base to "NULL".  */
1359  base = info->prev_sp;
1360  if (base == 0)
1361    return;
1362
1363  id = frame_id_build (base, func);
1364  (*this_id) = id;
1365}
1366
1367static void
1368frv_frame_prev_register (struct frame_info *next_frame,
1369			  void **this_prologue_cache,
1370			  int regnum, int *optimizedp,
1371			  enum lval_type *lvalp, CORE_ADDR *addrp,
1372			  int *realnump, void *bufferp)
1373{
1374  struct frv_unwind_cache *info
1375    = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1376  trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1377				optimizedp, lvalp, addrp, realnump, bufferp);
1378}
1379
1380static const struct frame_unwind frv_frame_unwind = {
1381  NORMAL_FRAME,
1382  frv_frame_this_id,
1383  frv_frame_prev_register
1384};
1385
1386static const struct frame_unwind *
1387frv_frame_sniffer (struct frame_info *next_frame)
1388{
1389  return &frv_frame_unwind;
1390}
1391
1392static CORE_ADDR
1393frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1394{
1395  struct frv_unwind_cache *info
1396    = frv_frame_unwind_cache (next_frame, this_cache);
1397  return info->base;
1398}
1399
1400static const struct frame_base frv_frame_base = {
1401  &frv_frame_unwind,
1402  frv_frame_base_address,
1403  frv_frame_base_address,
1404  frv_frame_base_address
1405};
1406
1407static CORE_ADDR
1408frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1409{
1410  return frame_unwind_register_unsigned (next_frame, sp_regnum);
1411}
1412
1413
1414/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1415   dummy frame.  The frame ID's base needs to match the TOS value
1416   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1417   breakpoint.  */
1418
1419static struct frame_id
1420frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1421{
1422  return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1423			 frame_pc_unwind (next_frame));
1424}
1425
1426static struct gdbarch *
1427frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1428{
1429  struct gdbarch *gdbarch;
1430  struct gdbarch_tdep *var;
1431  int elf_flags = 0;
1432
1433  /* Check to see if we've already built an appropriate architecture
1434     object for this executable.  */
1435  arches = gdbarch_list_lookup_by_info (arches, &info);
1436  if (arches)
1437    return arches->gdbarch;
1438
1439  /* Select the right tdep structure for this variant.  */
1440  var = new_variant ();
1441  switch (info.bfd_arch_info->mach)
1442    {
1443    case bfd_mach_frv:
1444    case bfd_mach_frvsimple:
1445    case bfd_mach_fr500:
1446    case bfd_mach_frvtomcat:
1447    case bfd_mach_fr550:
1448      set_variant_num_gprs (var, 64);
1449      set_variant_num_fprs (var, 64);
1450      break;
1451
1452    case bfd_mach_fr400:
1453    case bfd_mach_fr450:
1454      set_variant_num_gprs (var, 32);
1455      set_variant_num_fprs (var, 32);
1456      break;
1457
1458    default:
1459      /* Never heard of this variant.  */
1460      return 0;
1461    }
1462
1463  /* Extract the ELF flags, if available.  */
1464  if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1465    elf_flags = elf_elfheader (info.abfd)->e_flags;
1466
1467  if (elf_flags & EF_FRV_FDPIC)
1468    set_variant_abi_fdpic (var);
1469
1470  if (elf_flags & EF_FRV_CPU_FR450)
1471    set_variant_scratch_registers (var);
1472
1473  gdbarch = gdbarch_alloc (&info, var);
1474
1475  set_gdbarch_short_bit (gdbarch, 16);
1476  set_gdbarch_int_bit (gdbarch, 32);
1477  set_gdbarch_long_bit (gdbarch, 32);
1478  set_gdbarch_long_long_bit (gdbarch, 64);
1479  set_gdbarch_float_bit (gdbarch, 32);
1480  set_gdbarch_double_bit (gdbarch, 64);
1481  set_gdbarch_long_double_bit (gdbarch, 64);
1482  set_gdbarch_ptr_bit (gdbarch, 32);
1483
1484  set_gdbarch_num_regs (gdbarch, frv_num_regs);
1485  set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1486
1487  set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1488  set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1489  set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1490
1491  set_gdbarch_register_name (gdbarch, frv_register_name);
1492  set_gdbarch_register_type (gdbarch, frv_register_type);
1493  set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1494
1495  set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1496  set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1497
1498  set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1499  set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1500  set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1501
1502  set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
1503  set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1504
1505  set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1506  set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1507  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1508
1509  /* Frame stuff.  */
1510  set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1511  set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1512  set_gdbarch_frame_align (gdbarch, frv_frame_align);
1513  frame_base_set_default (gdbarch, &frv_frame_base);
1514  /* We set the sniffer lower down after the OSABI hooks have been
1515     established.  */
1516
1517  /* Settings for calling functions in the inferior.  */
1518  set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1519  set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1520
1521  /* Settings that should be unnecessary.  */
1522  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1523
1524  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1525
1526  set_gdbarch_remote_translate_xfer_address
1527    (gdbarch, generic_remote_translate_xfer_address);
1528
1529  /* Hardware watchpoint / breakpoint support.  */
1530  switch (info.bfd_arch_info->mach)
1531    {
1532    case bfd_mach_frv:
1533    case bfd_mach_frvsimple:
1534    case bfd_mach_fr500:
1535    case bfd_mach_frvtomcat:
1536      /* fr500-style hardware debugging support.  */
1537      var->num_hw_watchpoints = 4;
1538      var->num_hw_breakpoints = 4;
1539      break;
1540
1541    case bfd_mach_fr400:
1542    case bfd_mach_fr450:
1543      /* fr400-style hardware debugging support.  */
1544      var->num_hw_watchpoints = 2;
1545      var->num_hw_breakpoints = 4;
1546      break;
1547
1548    default:
1549      /* Otherwise, assume we don't have hardware debugging support.  */
1550      var->num_hw_watchpoints = 0;
1551      var->num_hw_breakpoints = 0;
1552      break;
1553    }
1554
1555  set_gdbarch_print_insn (gdbarch, print_insn_frv);
1556  if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1557    set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1558					    frv_convert_from_func_ptr_addr);
1559
1560  /* Hook in ABI-specific overrides, if they have been registered.  */
1561  gdbarch_init_osabi (info, gdbarch);
1562
1563  /* Set the fallback (prologue based) frame sniffer.  */
1564  frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1565
1566  return gdbarch;
1567}
1568
1569void
1570_initialize_frv_tdep (void)
1571{
1572  register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1573}
1574