1/* Convert a `struct tm' to a time_t value.
2   Copyright (C) 1993-1999, 2002-2005, 2006, 2007 Free Software Foundation, Inc.
3   This file is part of the GNU C Library.
4   Contributed by Paul Eggert <eggert@twinsun.com>.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3, or (at your option)
9   any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License along
17   with this program; if not, write to the Free Software Foundation,
18   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
19
20/* Define this to have a standalone program to test this implementation of
21   mktime.  */
22/* #define DEBUG 1 */
23
24#ifndef _LIBC
25# include <config.h>
26#endif
27
28/* Assume that leap seconds are possible, unless told otherwise.
29   If the host has a `zic' command with a `-L leapsecondfilename' option,
30   then it supports leap seconds; otherwise it probably doesn't.  */
31#ifndef LEAP_SECONDS_POSSIBLE
32# define LEAP_SECONDS_POSSIBLE 1
33#endif
34
35#include <time.h>
36
37#include <limits.h>
38
39#include <string.h>		/* For the real memcpy prototype.  */
40
41#if DEBUG
42# include <stdio.h>
43# include <stdlib.h>
44/* Make it work even if the system's libc has its own mktime routine.  */
45# define mktime my_mktime
46#endif /* DEBUG */
47
48/* Shift A right by B bits portably, by dividing A by 2**B and
49   truncating towards minus infinity.  A and B should be free of side
50   effects, and B should be in the range 0 <= B <= INT_BITS - 2, where
51   INT_BITS is the number of useful bits in an int.  GNU code can
52   assume that INT_BITS is at least 32.
53
54   ISO C99 says that A >> B is implementation-defined if A < 0.  Some
55   implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
56   right in the usual way when A < 0, so SHR falls back on division if
57   ordinary A >> B doesn't seem to be the usual signed shift.  */
58#define SHR(a, b)	\
59  (-1 >> 1 == -1	\
60   ? (a) >> (b)		\
61   : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0))
62
63/* The extra casts in the following macros work around compiler bugs,
64   e.g., in Cray C 5.0.3.0.  */
65
66/* True if the arithmetic type T is an integer type.  bool counts as
67   an integer.  */
68#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
69
70/* True if negative values of the signed integer type T use two's
71   complement, ones' complement, or signed magnitude representation,
72   respectively.  Much GNU code assumes two's complement, but some
73   people like to be portable to all possible C hosts.  */
74#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
75#define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
76#define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
77
78/* True if the arithmetic type T is signed.  */
79#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
80
81/* The maximum and minimum values for the integer type T.  These
82   macros have undefined behavior if T is signed and has padding bits.
83   If this is a problem for you, please let us know how to fix it for
84   your host.  */
85#define TYPE_MINIMUM(t) \
86  ((t) (! TYPE_SIGNED (t) \
87	? (t) 0 \
88	: TYPE_SIGNED_MAGNITUDE (t) \
89	? ~ (t) 0 \
90	: ~ (t) 0 << (sizeof (t) * CHAR_BIT - 1)))
91#define TYPE_MAXIMUM(t) \
92  ((t) (! TYPE_SIGNED (t) \
93	? (t) -1 \
94	: ~ (~ (t) 0 << (sizeof (t) * CHAR_BIT - 1))))
95
96#ifndef TIME_T_MIN
97# define TIME_T_MIN TYPE_MINIMUM (time_t)
98#endif
99#ifndef TIME_T_MAX
100# define TIME_T_MAX TYPE_MAXIMUM (time_t)
101#endif
102#define TIME_T_MIDPOINT (SHR (TIME_T_MIN + TIME_T_MAX, 1) + 1)
103
104/* Verify a requirement at compile-time (unlike assert, which is runtime).  */
105#define verify(name, assertion) struct name { char a[(assertion) ? 1 : -1]; }
106
107verify (time_t_is_integer, TYPE_IS_INTEGER (time_t));
108verify (twos_complement_arithmetic, TYPE_TWOS_COMPLEMENT (int));
109/* The code also assumes that signed integer overflow silently wraps
110   around, but this assumption can't be stated without causing a
111   diagnostic on some hosts.  */
112
113#define EPOCH_YEAR 1970
114#define TM_YEAR_BASE 1900
115verify (base_year_is_a_multiple_of_100, TM_YEAR_BASE % 100 == 0);
116
117/* Return 1 if YEAR + TM_YEAR_BASE is a leap year.  */
118static inline int
119leapyear (long int year)
120{
121  /* Don't add YEAR to TM_YEAR_BASE, as that might overflow.
122     Also, work even if YEAR is negative.  */
123  return
124    ((year & 3) == 0
125     && (year % 100 != 0
126	 || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3)));
127}
128
129/* How many days come before each month (0-12).  */
130#ifndef _LIBC
131static
132#endif
133const unsigned short int __mon_yday[2][13] =
134  {
135    /* Normal years.  */
136    { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
137    /* Leap years.  */
138    { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
139  };
140
141
142#ifndef _LIBC
143/* Portable standalone applications should supply a <time.h> that
144   declares a POSIX-compliant localtime_r, for the benefit of older
145   implementations that lack localtime_r or have a nonstandard one.
146   See the gnulib time_r module for one way to implement this.  */
147# undef __localtime_r
148# define __localtime_r localtime_r
149# define __mktime_internal mktime_internal
150#endif
151
152/* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) -
153   (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks
154   were not adjusted between the time stamps.
155
156   The YEAR values uses the same numbering as TP->tm_year.  Values
157   need not be in the usual range.  However, YEAR1 must not be less
158   than 2 * INT_MIN or greater than 2 * INT_MAX.
159
160   The result may overflow.  It is the caller's responsibility to
161   detect overflow.  */
162
163static inline time_t
164ydhms_diff (long int year1, long int yday1, int hour1, int min1, int sec1,
165	    int year0, int yday0, int hour0, int min0, int sec0)
166{
167  verify (C99_integer_division, -1 / 2 == 0);
168  verify (long_int_year_and_yday_are_wide_enough,
169	  INT_MAX <= LONG_MAX / 2 || TIME_T_MAX <= UINT_MAX);
170
171  /* Compute intervening leap days correctly even if year is negative.
172     Take care to avoid integer overflow here.  */
173  int a4 = SHR (year1, 2) + SHR (TM_YEAR_BASE, 2) - ! (year1 & 3);
174  int b4 = SHR (year0, 2) + SHR (TM_YEAR_BASE, 2) - ! (year0 & 3);
175  int a100 = a4 / 25 - (a4 % 25 < 0);
176  int b100 = b4 / 25 - (b4 % 25 < 0);
177  int a400 = SHR (a100, 2);
178  int b400 = SHR (b100, 2);
179  int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
180
181  /* Compute the desired time in time_t precision.  Overflow might
182     occur here.  */
183  time_t tyear1 = year1;
184  time_t years = tyear1 - year0;
185  time_t days = 365 * years + yday1 - yday0 + intervening_leap_days;
186  time_t hours = 24 * days + hour1 - hour0;
187  time_t minutes = 60 * hours + min1 - min0;
188  time_t seconds = 60 * minutes + sec1 - sec0;
189  return seconds;
190}
191
192
193/* Return a time_t value corresponding to (YEAR-YDAY HOUR:MIN:SEC),
194   assuming that *T corresponds to *TP and that no clock adjustments
195   occurred between *TP and the desired time.
196   If TP is null, return a value not equal to *T; this avoids false matches.
197   If overflow occurs, yield the minimal or maximal value, except do not
198   yield a value equal to *T.  */
199static time_t
200guess_time_tm (long int year, long int yday, int hour, int min, int sec,
201	       const time_t *t, const struct tm *tp)
202{
203  if (tp)
204    {
205      time_t d = ydhms_diff (year, yday, hour, min, sec,
206			     tp->tm_year, tp->tm_yday,
207			     tp->tm_hour, tp->tm_min, tp->tm_sec);
208      time_t t1 = *t + d;
209      if ((t1 < *t) == (TYPE_SIGNED (time_t) ? d < 0 : TIME_T_MAX / 2 < d))
210	return t1;
211    }
212
213  /* Overflow occurred one way or another.  Return the nearest result
214     that is actually in range, except don't report a zero difference
215     if the actual difference is nonzero, as that would cause a false
216     match; and don't oscillate between two values, as that would
217     confuse the spring-forward gap detector.  */
218  return (*t < TIME_T_MIDPOINT
219	  ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN)
220	  : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX));
221}
222
223/* Use CONVERT to convert *T to a broken down time in *TP.
224   If *T is out of range for conversion, adjust it so that
225   it is the nearest in-range value and then convert that.  */
226static struct tm *
227ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
228		time_t *t, struct tm *tp)
229{
230  struct tm *r = convert (t, tp);
231
232  if (!r && *t)
233    {
234      time_t bad = *t;
235      time_t ok = 0;
236
237      /* BAD is a known unconvertible time_t, and OK is a known good one.
238	 Use binary search to narrow the range between BAD and OK until
239	 they differ by 1.  */
240      while (bad != ok + (bad < 0 ? -1 : 1))
241	{
242	  time_t mid = *t = (bad < 0
243			     ? bad + ((ok - bad) >> 1)
244			     : ok + ((bad - ok) >> 1));
245	  r = convert (t, tp);
246	  if (r)
247	    ok = mid;
248	  else
249	    bad = mid;
250	}
251
252      if (!r && ok)
253	{
254	  /* The last conversion attempt failed;
255	     revert to the most recent successful attempt.  */
256	  *t = ok;
257	  r = convert (t, tp);
258	}
259    }
260
261  return r;
262}
263
264
265/* Convert *TP to a time_t value, inverting
266   the monotonic and mostly-unit-linear conversion function CONVERT.
267   Use *OFFSET to keep track of a guess at the offset of the result,
268   compared to what the result would be for UTC without leap seconds.
269   If *OFFSET's guess is correct, only one CONVERT call is needed.
270   This function is external because it is used also by timegm.c.  */
271time_t
272__mktime_internal (struct tm *tp,
273		   struct tm *(*convert) (const time_t *, struct tm *),
274		   time_t *offset)
275{
276  time_t t, gt, t0, t1, t2;
277  struct tm tm;
278
279  /* The maximum number of probes (calls to CONVERT) should be enough
280     to handle any combinations of time zone rule changes, solar time,
281     leap seconds, and oscillations around a spring-forward gap.
282     POSIX.1 prohibits leap seconds, but some hosts have them anyway.  */
283  int remaining_probes = 6;
284
285  /* Time requested.  Copy it in case CONVERT modifies *TP; this can
286     occur if TP is localtime's returned value and CONVERT is localtime.  */
287  int sec = tp->tm_sec;
288  int min = tp->tm_min;
289  int hour = tp->tm_hour;
290  int mday = tp->tm_mday;
291  int mon = tp->tm_mon;
292  int year_requested = tp->tm_year;
293  int isdst = tp->tm_isdst;
294
295  /* 1 if the previous probe was DST.  */
296  int dst2;
297
298  /* Ensure that mon is in range, and set year accordingly.  */
299  int mon_remainder = mon % 12;
300  int negative_mon_remainder = mon_remainder < 0;
301  int mon_years = mon / 12 - negative_mon_remainder;
302  long int lyear_requested = year_requested;
303  long int year = lyear_requested + mon_years;
304
305  /* The other values need not be in range:
306     the remaining code handles minor overflows correctly,
307     assuming int and time_t arithmetic wraps around.
308     Major overflows are caught at the end.  */
309
310  /* Calculate day of year from year, month, and day of month.
311     The result need not be in range.  */
312  int mon_yday = ((__mon_yday[leapyear (year)]
313		   [mon_remainder + 12 * negative_mon_remainder])
314		  - 1);
315  long int lmday = mday;
316  long int yday = mon_yday + lmday;
317
318  time_t guessed_offset = *offset;
319
320  int sec_requested = sec;
321
322  if (LEAP_SECONDS_POSSIBLE)
323    {
324      /* Handle out-of-range seconds specially,
325	 since ydhms_tm_diff assumes every minute has 60 seconds.  */
326      if (sec < 0)
327	sec = 0;
328      if (59 < sec)
329	sec = 59;
330    }
331
332  /* Invert CONVERT by probing.  First assume the same offset as last
333     time.  */
334
335  t0 = ydhms_diff (year, yday, hour, min, sec,
336		   EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset);
337
338  if (TIME_T_MAX / INT_MAX / 366 / 24 / 60 / 60 < 3)
339    {
340      /* time_t isn't large enough to rule out overflows, so check
341	 for major overflows.  A gross check suffices, since if t0
342	 has overflowed, it is off by a multiple of TIME_T_MAX -
343	 TIME_T_MIN + 1.  So ignore any component of the difference
344	 that is bounded by a small value.  */
345
346      /* Approximate log base 2 of the number of time units per
347	 biennium.  A biennium is 2 years; use this unit instead of
348	 years to avoid integer overflow.  For example, 2 average
349	 Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds,
350	 which is 63113904 seconds, and rint (log2 (63113904)) is
351	 26.  */
352      int ALOG2_SECONDS_PER_BIENNIUM = 26;
353      int ALOG2_MINUTES_PER_BIENNIUM = 20;
354      int ALOG2_HOURS_PER_BIENNIUM = 14;
355      int ALOG2_DAYS_PER_BIENNIUM = 10;
356      int LOG2_YEARS_PER_BIENNIUM = 1;
357
358      int approx_requested_biennia =
359	(SHR (year_requested, LOG2_YEARS_PER_BIENNIUM)
360	 - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM)
361	 + SHR (mday, ALOG2_DAYS_PER_BIENNIUM)
362	 + SHR (hour, ALOG2_HOURS_PER_BIENNIUM)
363	 + SHR (min, ALOG2_MINUTES_PER_BIENNIUM)
364	 + (LEAP_SECONDS_POSSIBLE
365	    ? 0
366	    : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM)));
367
368      int approx_biennia = SHR (t0, ALOG2_SECONDS_PER_BIENNIUM);
369      int diff = approx_biennia - approx_requested_biennia;
370      int abs_diff = diff < 0 ? - diff : diff;
371
372      /* IRIX 4.0.5 cc miscaculates TIME_T_MIN / 3: it erroneously
373	 gives a positive value of 715827882.  Setting a variable
374	 first then doing math on it seems to work.
375	 (ghazi@caip.rutgers.edu) */
376      time_t time_t_max = TIME_T_MAX;
377      time_t time_t_min = TIME_T_MIN;
378      time_t overflow_threshold =
379	(time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM;
380
381      if (overflow_threshold < abs_diff)
382	{
383	  /* Overflow occurred.  Try repairing it; this might work if
384	     the time zone offset is enough to undo the overflow.  */
385	  time_t repaired_t0 = -1 - t0;
386	  approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM);
387	  diff = approx_biennia - approx_requested_biennia;
388	  abs_diff = diff < 0 ? - diff : diff;
389	  if (overflow_threshold < abs_diff)
390	    return -1;
391	  guessed_offset += repaired_t0 - t0;
392	  t0 = repaired_t0;
393	}
394    }
395
396  /* Repeatedly use the error to improve the guess.  */
397
398  for (t = t1 = t2 = t0, dst2 = 0;
399       (gt = guess_time_tm (year, yday, hour, min, sec, &t,
400			    ranged_convert (convert, &t, &tm)),
401	t != gt);
402       t1 = t2, t2 = t, t = gt, dst2 = tm.tm_isdst != 0)
403    if (t == t1 && t != t2
404	&& (tm.tm_isdst < 0
405	    || (isdst < 0
406		? dst2 <= (tm.tm_isdst != 0)
407		: (isdst != 0) != (tm.tm_isdst != 0))))
408      /* We can't possibly find a match, as we are oscillating
409	 between two values.  The requested time probably falls
410	 within a spring-forward gap of size GT - T.  Follow the common
411	 practice in this case, which is to return a time that is GT - T
412	 away from the requested time, preferring a time whose
413	 tm_isdst differs from the requested value.  (If no tm_isdst
414	 was requested and only one of the two values has a nonzero
415	 tm_isdst, prefer that value.)  In practice, this is more
416	 useful than returning -1.  */
417      goto offset_found;
418    else if (--remaining_probes == 0)
419      return -1;
420
421  /* We have a match.  Check whether tm.tm_isdst has the requested
422     value, if any.  */
423  if (isdst != tm.tm_isdst && 0 <= isdst && 0 <= tm.tm_isdst)
424    {
425      /* tm.tm_isdst has the wrong value.  Look for a neighboring
426	 time with the right value, and use its UTC offset.
427
428	 Heuristic: probe the adjacent timestamps in both directions,
429	 looking for the desired isdst.  This should work for all real
430	 time zone histories in the tz database.  */
431
432      /* Distance between probes when looking for a DST boundary.  In
433	 tzdata2003a, the shortest period of DST is 601200 seconds
434	 (e.g., America/Recife starting 2000-10-08 01:00), and the
435	 shortest period of non-DST surrounded by DST is 694800
436	 seconds (Africa/Tunis starting 1943-04-17 01:00).  Use the
437	 minimum of these two values, so we don't miss these short
438	 periods when probing.  */
439      int stride = 601200;
440
441      /* The longest period of DST in tzdata2003a is 536454000 seconds
442	 (e.g., America/Jujuy starting 1946-10-01 01:00).  The longest
443	 period of non-DST is much longer, but it makes no real sense
444	 to search for more than a year of non-DST, so use the DST
445	 max.  */
446      int duration_max = 536454000;
447
448      /* Search in both directions, so the maximum distance is half
449	 the duration; add the stride to avoid off-by-1 problems.  */
450      int delta_bound = duration_max / 2 + stride;
451
452      int delta, direction;
453
454      for (delta = stride; delta < delta_bound; delta += stride)
455	for (direction = -1; direction <= 1; direction += 2)
456	  {
457	    time_t ot = t + delta * direction;
458	    if ((ot < t) == (direction < 0))
459	      {
460		struct tm otm;
461		ranged_convert (convert, &ot, &otm);
462		if (otm.tm_isdst == isdst)
463		  {
464		    /* We found the desired tm_isdst.
465		       Extrapolate back to the desired time.  */
466		    t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm);
467		    ranged_convert (convert, &t, &tm);
468		    goto offset_found;
469		  }
470	      }
471	  }
472    }
473
474 offset_found:
475  *offset = guessed_offset + t - t0;
476
477  if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec)
478    {
479      /* Adjust time to reflect the tm_sec requested, not the normalized value.
480	 Also, repair any damage from a false match due to a leap second.  */
481      int sec_adjustment = (sec == 0 && tm.tm_sec == 60) - sec;
482      t1 = t + sec_requested;
483      t2 = t1 + sec_adjustment;
484      if (((t1 < t) != (sec_requested < 0))
485	  | ((t2 < t1) != (sec_adjustment < 0))
486	  | ! convert (&t2, &tm))
487	return -1;
488      t = t2;
489    }
490
491  *tp = tm;
492  return t;
493}
494
495
496/* FIXME: This should use a signed type wide enough to hold any UTC
497   offset in seconds.  'int' should be good enough for GNU code.  We
498   can't fix this unilaterally though, as other modules invoke
499   __mktime_internal.  */
500static time_t localtime_offset;
501
502/* Convert *TP to a time_t value.  */
503time_t
504mktime (struct tm *tp)
505{
506#ifdef _LIBC
507  /* POSIX.1 8.1.1 requires that whenever mktime() is called, the
508     time zone names contained in the external variable `tzname' shall
509     be set as if the tzset() function had been called.  */
510  __tzset ();
511#endif
512
513  return __mktime_internal (tp, __localtime_r, &localtime_offset);
514}
515
516#ifdef weak_alias
517weak_alias (mktime, timelocal)
518#endif
519
520#ifdef _LIBC
521libc_hidden_def (mktime)
522libc_hidden_weak (timelocal)
523#endif
524
525#if DEBUG
526
527static int
528not_equal_tm (const struct tm *a, const struct tm *b)
529{
530  return ((a->tm_sec ^ b->tm_sec)
531	  | (a->tm_min ^ b->tm_min)
532	  | (a->tm_hour ^ b->tm_hour)
533	  | (a->tm_mday ^ b->tm_mday)
534	  | (a->tm_mon ^ b->tm_mon)
535	  | (a->tm_year ^ b->tm_year)
536	  | (a->tm_yday ^ b->tm_yday)
537	  | (a->tm_isdst ^ b->tm_isdst));
538}
539
540static void
541print_tm (const struct tm *tp)
542{
543  if (tp)
544    printf ("%04d-%02d-%02d %02d:%02d:%02d yday %03d wday %d isdst %d",
545	    tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday,
546	    tp->tm_hour, tp->tm_min, tp->tm_sec,
547	    tp->tm_yday, tp->tm_wday, tp->tm_isdst);
548  else
549    printf ("0");
550}
551
552static int
553check_result (time_t tk, struct tm tmk, time_t tl, const struct tm *lt)
554{
555  if (tk != tl || !lt || not_equal_tm (&tmk, lt))
556    {
557      printf ("mktime (");
558      print_tm (lt);
559      printf (")\nyields (");
560      print_tm (&tmk);
561      printf (") == %ld, should be %ld\n", (long int) tk, (long int) tl);
562      return 1;
563    }
564
565  return 0;
566}
567
568int
569main (int argc, char **argv)
570{
571  int status = 0;
572  struct tm tm, tmk, tml;
573  struct tm *lt;
574  time_t tk, tl, tl1;
575  char trailer;
576
577  if ((argc == 3 || argc == 4)
578      && (sscanf (argv[1], "%d-%d-%d%c",
579		  &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer)
580	  == 3)
581      && (sscanf (argv[2], "%d:%d:%d%c",
582		  &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer)
583	  == 3))
584    {
585      tm.tm_year -= TM_YEAR_BASE;
586      tm.tm_mon--;
587      tm.tm_isdst = argc == 3 ? -1 : atoi (argv[3]);
588      tmk = tm;
589      tl = mktime (&tmk);
590      lt = localtime (&tl);
591      if (lt)
592	{
593	  tml = *lt;
594	  lt = &tml;
595	}
596      printf ("mktime returns %ld == ", (long int) tl);
597      print_tm (&tmk);
598      printf ("\n");
599      status = check_result (tl, tmk, tl, lt);
600    }
601  else if (argc == 4 || (argc == 5 && strcmp (argv[4], "-") == 0))
602    {
603      time_t from = atol (argv[1]);
604      time_t by = atol (argv[2]);
605      time_t to = atol (argv[3]);
606
607      if (argc == 4)
608	for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
609	  {
610	    lt = localtime (&tl);
611	    if (lt)
612	      {
613		tmk = tml = *lt;
614		tk = mktime (&tmk);
615		status |= check_result (tk, tmk, tl, &tml);
616	      }
617	    else
618	      {
619		printf ("localtime (%ld) yields 0\n", (long int) tl);
620		status = 1;
621	      }
622	    tl1 = tl + by;
623	    if ((tl1 < tl) != (by < 0))
624	      break;
625	  }
626      else
627	for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
628	  {
629	    /* Null benchmark.  */
630	    lt = localtime (&tl);
631	    if (lt)
632	      {
633		tmk = tml = *lt;
634		tk = tl;
635		status |= check_result (tk, tmk, tl, &tml);
636	      }
637	    else
638	      {
639		printf ("localtime (%ld) yields 0\n", (long int) tl);
640		status = 1;
641	      }
642	    tl1 = tl + by;
643	    if ((tl1 < tl) != (by < 0))
644	      break;
645	  }
646    }
647  else
648    printf ("Usage:\
649\t%s YYYY-MM-DD HH:MM:SS [ISDST] # Test given time.\n\
650\t%s FROM BY TO # Test values FROM, FROM+BY, ..., TO.\n\
651\t%s FROM BY TO - # Do not test those values (for benchmark).\n",
652	    argv[0], argv[0], argv[0]);
653
654  return status;
655}
656
657#endif /* DEBUG */
658
659/*
660Local Variables:
661compile-command: "gcc -DDEBUG -Wall -W -O -g mktime.c -o mktime"
662End:
663*/
664