1/*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 *
4 * Use of this software is governed by the MIT license
5 *
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
9
10#include <isl_ctx_private.h>
11#include <isl_map_private.h>
12#include "isl_sample.h"
13#include "isl_sample_piplib.h"
14#include <isl/vec.h>
15#include <isl/mat.h>
16#include <isl/seq.h>
17#include "isl_equalities.h"
18#include "isl_tab.h"
19#include "isl_basis_reduction.h"
20#include <isl_factorization.h>
21#include <isl_point_private.h>
22#include <isl_options_private.h>
23
24static struct isl_vec *empty_sample(struct isl_basic_set *bset)
25{
26	struct isl_vec *vec;
27
28	vec = isl_vec_alloc(bset->ctx, 0);
29	isl_basic_set_free(bset);
30	return vec;
31}
32
33/* Construct a zero sample of the same dimension as bset.
34 * As a special case, if bset is zero-dimensional, this
35 * function creates a zero-dimensional sample point.
36 */
37static struct isl_vec *zero_sample(struct isl_basic_set *bset)
38{
39	unsigned dim;
40	struct isl_vec *sample;
41
42	dim = isl_basic_set_total_dim(bset);
43	sample = isl_vec_alloc(bset->ctx, 1 + dim);
44	if (sample) {
45		isl_int_set_si(sample->el[0], 1);
46		isl_seq_clr(sample->el + 1, dim);
47	}
48	isl_basic_set_free(bset);
49	return sample;
50}
51
52static struct isl_vec *interval_sample(struct isl_basic_set *bset)
53{
54	int i;
55	isl_int t;
56	struct isl_vec *sample;
57
58	bset = isl_basic_set_simplify(bset);
59	if (!bset)
60		return NULL;
61	if (isl_basic_set_plain_is_empty(bset))
62		return empty_sample(bset);
63	if (bset->n_eq == 0 && bset->n_ineq == 0)
64		return zero_sample(bset);
65
66	sample = isl_vec_alloc(bset->ctx, 2);
67	if (!sample)
68		goto error;
69	if (!bset)
70		return NULL;
71	isl_int_set_si(sample->block.data[0], 1);
72
73	if (bset->n_eq > 0) {
74		isl_assert(bset->ctx, bset->n_eq == 1, goto error);
75		isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
76		if (isl_int_is_one(bset->eq[0][1]))
77			isl_int_neg(sample->el[1], bset->eq[0][0]);
78		else {
79			isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
80				   goto error);
81			isl_int_set(sample->el[1], bset->eq[0][0]);
82		}
83		isl_basic_set_free(bset);
84		return sample;
85	}
86
87	isl_int_init(t);
88	if (isl_int_is_one(bset->ineq[0][1]))
89		isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
90	else
91		isl_int_set(sample->block.data[1], bset->ineq[0][0]);
92	for (i = 1; i < bset->n_ineq; ++i) {
93		isl_seq_inner_product(sample->block.data,
94					bset->ineq[i], 2, &t);
95		if (isl_int_is_neg(t))
96			break;
97	}
98	isl_int_clear(t);
99	if (i < bset->n_ineq) {
100		isl_vec_free(sample);
101		return empty_sample(bset);
102	}
103
104	isl_basic_set_free(bset);
105	return sample;
106error:
107	isl_basic_set_free(bset);
108	isl_vec_free(sample);
109	return NULL;
110}
111
112static struct isl_mat *independent_bounds(struct isl_basic_set *bset)
113{
114	int i, j, n;
115	struct isl_mat *dirs = NULL;
116	struct isl_mat *bounds = NULL;
117	unsigned dim;
118
119	if (!bset)
120		return NULL;
121
122	dim = isl_basic_set_n_dim(bset);
123	bounds = isl_mat_alloc(bset->ctx, 1+dim, 1+dim);
124	if (!bounds)
125		return NULL;
126
127	isl_int_set_si(bounds->row[0][0], 1);
128	isl_seq_clr(bounds->row[0]+1, dim);
129	bounds->n_row = 1;
130
131	if (bset->n_ineq == 0)
132		return bounds;
133
134	dirs = isl_mat_alloc(bset->ctx, dim, dim);
135	if (!dirs) {
136		isl_mat_free(bounds);
137		return NULL;
138	}
139	isl_seq_cpy(dirs->row[0], bset->ineq[0]+1, dirs->n_col);
140	isl_seq_cpy(bounds->row[1], bset->ineq[0], bounds->n_col);
141	for (j = 1, n = 1; n < dim && j < bset->n_ineq; ++j) {
142		int pos;
143
144		isl_seq_cpy(dirs->row[n], bset->ineq[j]+1, dirs->n_col);
145
146		pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
147		if (pos < 0)
148			continue;
149		for (i = 0; i < n; ++i) {
150			int pos_i;
151			pos_i = isl_seq_first_non_zero(dirs->row[i], dirs->n_col);
152			if (pos_i < pos)
153				continue;
154			if (pos_i > pos)
155				break;
156			isl_seq_elim(dirs->row[n], dirs->row[i], pos,
157					dirs->n_col, NULL);
158			pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
159			if (pos < 0)
160				break;
161		}
162		if (pos < 0)
163			continue;
164		if (i < n) {
165			int k;
166			isl_int *t = dirs->row[n];
167			for (k = n; k > i; --k)
168				dirs->row[k] = dirs->row[k-1];
169			dirs->row[i] = t;
170		}
171		++n;
172		isl_seq_cpy(bounds->row[n], bset->ineq[j], bounds->n_col);
173	}
174	isl_mat_free(dirs);
175	bounds->n_row = 1+n;
176	return bounds;
177}
178
179static void swap_inequality(struct isl_basic_set *bset, int a, int b)
180{
181	isl_int *t = bset->ineq[a];
182	bset->ineq[a] = bset->ineq[b];
183	bset->ineq[b] = t;
184}
185
186/* Skew into positive orthant and project out lineality space.
187 *
188 * We perform a unimodular transformation that turns a selected
189 * maximal set of linearly independent bounds into constraints
190 * on the first dimensions that impose that these first dimensions
191 * are non-negative.  In particular, the constraint matrix is lower
192 * triangular with positive entries on the diagonal and negative
193 * entries below.
194 * If "bset" has a lineality space then these constraints (and therefore
195 * all constraints in bset) only involve the first dimensions.
196 * The remaining dimensions then do not appear in any constraints and
197 * we can select any value for them, say zero.  We therefore project
198 * out this final dimensions and plug in the value zero later.  This
199 * is accomplished by simply dropping the final columns of
200 * the unimodular transformation.
201 */
202static struct isl_basic_set *isl_basic_set_skew_to_positive_orthant(
203	struct isl_basic_set *bset, struct isl_mat **T)
204{
205	struct isl_mat *U = NULL;
206	struct isl_mat *bounds = NULL;
207	int i, j;
208	unsigned old_dim, new_dim;
209
210	*T = NULL;
211	if (!bset)
212		return NULL;
213
214	isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
215	isl_assert(bset->ctx, bset->n_div == 0, goto error);
216	isl_assert(bset->ctx, bset->n_eq == 0, goto error);
217
218	old_dim = isl_basic_set_n_dim(bset);
219	/* Try to move (multiples of) unit rows up. */
220	for (i = 0, j = 0; i < bset->n_ineq; ++i) {
221		int pos = isl_seq_first_non_zero(bset->ineq[i]+1, old_dim);
222		if (pos < 0)
223			continue;
224		if (isl_seq_first_non_zero(bset->ineq[i]+1+pos+1,
225						old_dim-pos-1) >= 0)
226			continue;
227		if (i != j)
228			swap_inequality(bset, i, j);
229		++j;
230	}
231	bounds = independent_bounds(bset);
232	if (!bounds)
233		goto error;
234	new_dim = bounds->n_row - 1;
235	bounds = isl_mat_left_hermite(bounds, 1, &U, NULL);
236	if (!bounds)
237		goto error;
238	U = isl_mat_drop_cols(U, 1 + new_dim, old_dim - new_dim);
239	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
240	if (!bset)
241		goto error;
242	*T = U;
243	isl_mat_free(bounds);
244	return bset;
245error:
246	isl_mat_free(bounds);
247	isl_mat_free(U);
248	isl_basic_set_free(bset);
249	return NULL;
250}
251
252/* Find a sample integer point, if any, in bset, which is known
253 * to have equalities.  If bset contains no integer points, then
254 * return a zero-length vector.
255 * We simply remove the known equalities, compute a sample
256 * in the resulting bset, using the specified recurse function,
257 * and then transform the sample back to the original space.
258 */
259static struct isl_vec *sample_eq(struct isl_basic_set *bset,
260	struct isl_vec *(*recurse)(struct isl_basic_set *))
261{
262	struct isl_mat *T;
263	struct isl_vec *sample;
264
265	if (!bset)
266		return NULL;
267
268	bset = isl_basic_set_remove_equalities(bset, &T, NULL);
269	sample = recurse(bset);
270	if (!sample || sample->size == 0)
271		isl_mat_free(T);
272	else
273		sample = isl_mat_vec_product(T, sample);
274	return sample;
275}
276
277/* Return a matrix containing the equalities of the tableau
278 * in constraint form.  The tableau is assumed to have
279 * an associated bset that has been kept up-to-date.
280 */
281static struct isl_mat *tab_equalities(struct isl_tab *tab)
282{
283	int i, j;
284	int n_eq;
285	struct isl_mat *eq;
286	struct isl_basic_set *bset;
287
288	if (!tab)
289		return NULL;
290
291	bset = isl_tab_peek_bset(tab);
292	isl_assert(tab->mat->ctx, bset, return NULL);
293
294	n_eq = tab->n_var - tab->n_col + tab->n_dead;
295	if (tab->empty || n_eq == 0)
296		return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
297	if (n_eq == tab->n_var)
298		return isl_mat_identity(tab->mat->ctx, tab->n_var);
299
300	eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
301	if (!eq)
302		return NULL;
303	for (i = 0, j = 0; i < tab->n_con; ++i) {
304		if (tab->con[i].is_row)
305			continue;
306		if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
307			continue;
308		if (i < bset->n_eq)
309			isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
310		else
311			isl_seq_cpy(eq->row[j],
312				    bset->ineq[i - bset->n_eq] + 1, tab->n_var);
313		++j;
314	}
315	isl_assert(bset->ctx, j == n_eq, goto error);
316	return eq;
317error:
318	isl_mat_free(eq);
319	return NULL;
320}
321
322/* Compute and return an initial basis for the bounded tableau "tab".
323 *
324 * If the tableau is either full-dimensional or zero-dimensional,
325 * the we simply return an identity matrix.
326 * Otherwise, we construct a basis whose first directions correspond
327 * to equalities.
328 */
329static struct isl_mat *initial_basis(struct isl_tab *tab)
330{
331	int n_eq;
332	struct isl_mat *eq;
333	struct isl_mat *Q;
334
335	tab->n_unbounded = 0;
336	tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead;
337	if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
338		return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);
339
340	eq = tab_equalities(tab);
341	eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
342	if (!eq)
343		return NULL;
344	isl_mat_free(eq);
345
346	Q = isl_mat_lin_to_aff(Q);
347	return Q;
348}
349
350/* Compute the minimum of the current ("level") basis row over "tab"
351 * and store the result in position "level" of "min".
352 */
353static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab,
354	__isl_keep isl_vec *min, int level)
355{
356	return isl_tab_min(tab, tab->basis->row[1 + level],
357			    ctx->one, &min->el[level], NULL, 0);
358}
359
360/* Compute the maximum of the current ("level") basis row over "tab"
361 * and store the result in position "level" of "max".
362 */
363static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab,
364	__isl_keep isl_vec *max, int level)
365{
366	enum isl_lp_result res;
367	unsigned dim = tab->n_var;
368
369	isl_seq_neg(tab->basis->row[1 + level] + 1,
370		    tab->basis->row[1 + level] + 1, dim);
371	res = isl_tab_min(tab, tab->basis->row[1 + level],
372		    ctx->one, &max->el[level], NULL, 0);
373	isl_seq_neg(tab->basis->row[1 + level] + 1,
374		    tab->basis->row[1 + level] + 1, dim);
375	isl_int_neg(max->el[level], max->el[level]);
376
377	return res;
378}
379
380/* Perform a greedy search for an integer point in the set represented
381 * by "tab", given that the minimal rational value (rounded up to the
382 * nearest integer) at "level" is smaller than the maximal rational
383 * value (rounded down to the nearest integer).
384 *
385 * Return 1 if we have found an integer point (if tab->n_unbounded > 0
386 * then we may have only found integer values for the bounded dimensions
387 * and it is the responsibility of the caller to extend this solution
388 * to the unbounded dimensions).
389 * Return 0 if greedy search did not result in a solution.
390 * Return -1 if some error occurred.
391 *
392 * We assign a value half-way between the minimum and the maximum
393 * to the current dimension and check if the minimal value of the
394 * next dimension is still smaller than (or equal) to the maximal value.
395 * We continue this process until either
396 * - the minimal value (rounded up) is greater than the maximal value
397 *	(rounded down).  In this case, greedy search has failed.
398 * - we have exhausted all bounded dimensions, meaning that we have
399 *	found a solution.
400 * - the sample value of the tableau is integral.
401 * - some error has occurred.
402 */
403static int greedy_search(isl_ctx *ctx, struct isl_tab *tab,
404	__isl_keep isl_vec *min, __isl_keep isl_vec *max, int level)
405{
406	struct isl_tab_undo *snap;
407	enum isl_lp_result res;
408
409	snap = isl_tab_snap(tab);
410
411	do {
412		isl_int_add(tab->basis->row[1 + level][0],
413			    min->el[level], max->el[level]);
414		isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],
415			    tab->basis->row[1 + level][0], 2);
416		isl_int_neg(tab->basis->row[1 + level][0],
417			    tab->basis->row[1 + level][0]);
418		if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
419			return -1;
420		isl_int_set_si(tab->basis->row[1 + level][0], 0);
421
422		if (++level >= tab->n_var - tab->n_unbounded)
423			return 1;
424		if (isl_tab_sample_is_integer(tab))
425			return 1;
426
427		res = compute_min(ctx, tab, min, level);
428		if (res == isl_lp_error)
429			return -1;
430		if (res != isl_lp_ok)
431			isl_die(ctx, isl_error_internal,
432				"expecting bounded rational solution",
433				return -1);
434		res = compute_max(ctx, tab, max, level);
435		if (res == isl_lp_error)
436			return -1;
437		if (res != isl_lp_ok)
438			isl_die(ctx, isl_error_internal,
439				"expecting bounded rational solution",
440				return -1);
441	} while (isl_int_le(min->el[level], max->el[level]));
442
443	if (isl_tab_rollback(tab, snap) < 0)
444		return -1;
445
446	return 0;
447}
448
449/* Given a tableau representing a set, find and return
450 * an integer point in the set, if there is any.
451 *
452 * We perform a depth first search
453 * for an integer point, by scanning all possible values in the range
454 * attained by a basis vector, where an initial basis may have been set
455 * by the calling function.  Otherwise an initial basis that exploits
456 * the equalities in the tableau is created.
457 * tab->n_zero is currently ignored and is clobbered by this function.
458 *
459 * The tableau is allowed to have unbounded direction, but then
460 * the calling function needs to set an initial basis, with the
461 * unbounded directions last and with tab->n_unbounded set
462 * to the number of unbounded directions.
463 * Furthermore, the calling functions needs to add shifted copies
464 * of all constraints involving unbounded directions to ensure
465 * that any feasible rational value in these directions can be rounded
466 * up to yield a feasible integer value.
467 * In particular, let B define the given basis x' = B x
468 * and let T be the inverse of B, i.e., X = T x'.
469 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
470 * or a T x' + c >= 0 in terms of the given basis.  Assume that
471 * the bounded directions have an integer value, then we can safely
472 * round up the values for the unbounded directions if we make sure
473 * that x' not only satisfies the original constraint, but also
474 * the constraint "a T x' + c + s >= 0" with s the sum of all
475 * negative values in the last n_unbounded entries of "a T".
476 * The calling function therefore needs to add the constraint
477 * a x + c + s >= 0.  The current function then scans the first
478 * directions for an integer value and once those have been found,
479 * it can compute "T ceil(B x)" to yield an integer point in the set.
480 * Note that during the search, the first rows of B may be changed
481 * by a basis reduction, but the last n_unbounded rows of B remain
482 * unaltered and are also not mixed into the first rows.
483 *
484 * The search is implemented iteratively.  "level" identifies the current
485 * basis vector.  "init" is true if we want the first value at the current
486 * level and false if we want the next value.
487 *
488 * At the start of each level, we first check if we can find a solution
489 * using greedy search.  If not, we continue with the exhaustive search.
490 *
491 * The initial basis is the identity matrix.  If the range in some direction
492 * contains more than one integer value, we perform basis reduction based
493 * on the value of ctx->opt->gbr
494 *	- ISL_GBR_NEVER:	never perform basis reduction
495 *	- ISL_GBR_ONCE:		only perform basis reduction the first
496 *				time such a range is encountered
497 *	- ISL_GBR_ALWAYS:	always perform basis reduction when
498 *				such a range is encountered
499 *
500 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
501 * reduction computation to return early.  That is, as soon as it
502 * finds a reasonable first direction.
503 */
504struct isl_vec *isl_tab_sample(struct isl_tab *tab)
505{
506	unsigned dim;
507	unsigned gbr;
508	struct isl_ctx *ctx;
509	struct isl_vec *sample;
510	struct isl_vec *min;
511	struct isl_vec *max;
512	enum isl_lp_result res;
513	int level;
514	int init;
515	int reduced;
516	struct isl_tab_undo **snap;
517
518	if (!tab)
519		return NULL;
520	if (tab->empty)
521		return isl_vec_alloc(tab->mat->ctx, 0);
522
523	if (!tab->basis)
524		tab->basis = initial_basis(tab);
525	if (!tab->basis)
526		return NULL;
527	isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
528		    return NULL);
529	isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
530		    return NULL);
531
532	ctx = tab->mat->ctx;
533	dim = tab->n_var;
534	gbr = ctx->opt->gbr;
535
536	if (tab->n_unbounded == tab->n_var) {
537		sample = isl_tab_get_sample_value(tab);
538		sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
539		sample = isl_vec_ceil(sample);
540		sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
541							sample);
542		return sample;
543	}
544
545	if (isl_tab_extend_cons(tab, dim + 1) < 0)
546		return NULL;
547
548	min = isl_vec_alloc(ctx, dim);
549	max = isl_vec_alloc(ctx, dim);
550	snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
551
552	if (!min || !max || !snap)
553		goto error;
554
555	level = 0;
556	init = 1;
557	reduced = 0;
558
559	while (level >= 0) {
560		if (init) {
561			int choice;
562
563			res = compute_min(ctx, tab, min, level);
564			if (res == isl_lp_error)
565				goto error;
566			if (res != isl_lp_ok)
567				isl_die(ctx, isl_error_internal,
568					"expecting bounded rational solution",
569					goto error);
570			if (isl_tab_sample_is_integer(tab))
571				break;
572			res = compute_max(ctx, tab, max, level);
573			if (res == isl_lp_error)
574				goto error;
575			if (res != isl_lp_ok)
576				isl_die(ctx, isl_error_internal,
577					"expecting bounded rational solution",
578					goto error);
579			if (isl_tab_sample_is_integer(tab))
580				break;
581			choice = isl_int_lt(min->el[level], max->el[level]);
582			if (choice) {
583				int g;
584				g = greedy_search(ctx, tab, min, max, level);
585				if (g < 0)
586					goto error;
587				if (g)
588					break;
589			}
590			if (!reduced && choice &&
591			    ctx->opt->gbr != ISL_GBR_NEVER) {
592				unsigned gbr_only_first;
593				if (ctx->opt->gbr == ISL_GBR_ONCE)
594					ctx->opt->gbr = ISL_GBR_NEVER;
595				tab->n_zero = level;
596				gbr_only_first = ctx->opt->gbr_only_first;
597				ctx->opt->gbr_only_first =
598					ctx->opt->gbr == ISL_GBR_ALWAYS;
599				tab = isl_tab_compute_reduced_basis(tab);
600				ctx->opt->gbr_only_first = gbr_only_first;
601				if (!tab || !tab->basis)
602					goto error;
603				reduced = 1;
604				continue;
605			}
606			reduced = 0;
607			snap[level] = isl_tab_snap(tab);
608		} else
609			isl_int_add_ui(min->el[level], min->el[level], 1);
610
611		if (isl_int_gt(min->el[level], max->el[level])) {
612			level--;
613			init = 0;
614			if (level >= 0)
615				if (isl_tab_rollback(tab, snap[level]) < 0)
616					goto error;
617			continue;
618		}
619		isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
620		if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
621			goto error;
622		isl_int_set_si(tab->basis->row[1 + level][0], 0);
623		if (level + tab->n_unbounded < dim - 1) {
624			++level;
625			init = 1;
626			continue;
627		}
628		break;
629	}
630
631	if (level >= 0) {
632		sample = isl_tab_get_sample_value(tab);
633		if (!sample)
634			goto error;
635		if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
636			sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
637						     sample);
638			sample = isl_vec_ceil(sample);
639			sample = isl_mat_vec_inverse_product(
640					isl_mat_copy(tab->basis), sample);
641		}
642	} else
643		sample = isl_vec_alloc(ctx, 0);
644
645	ctx->opt->gbr = gbr;
646	isl_vec_free(min);
647	isl_vec_free(max);
648	free(snap);
649	return sample;
650error:
651	ctx->opt->gbr = gbr;
652	isl_vec_free(min);
653	isl_vec_free(max);
654	free(snap);
655	return NULL;
656}
657
658static struct isl_vec *sample_bounded(struct isl_basic_set *bset);
659
660/* Compute a sample point of the given basic set, based on the given,
661 * non-trivial factorization.
662 */
663static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset,
664	__isl_take isl_factorizer *f)
665{
666	int i, n;
667	isl_vec *sample = NULL;
668	isl_ctx *ctx;
669	unsigned nparam;
670	unsigned nvar;
671
672	ctx = isl_basic_set_get_ctx(bset);
673	if (!ctx)
674		goto error;
675
676	nparam = isl_basic_set_dim(bset, isl_dim_param);
677	nvar = isl_basic_set_dim(bset, isl_dim_set);
678
679	sample = isl_vec_alloc(ctx, 1 + isl_basic_set_total_dim(bset));
680	if (!sample)
681		goto error;
682	isl_int_set_si(sample->el[0], 1);
683
684	bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
685
686	for (i = 0, n = 0; i < f->n_group; ++i) {
687		isl_basic_set *bset_i;
688		isl_vec *sample_i;
689
690		bset_i = isl_basic_set_copy(bset);
691		bset_i = isl_basic_set_drop_constraints_involving(bset_i,
692			    nparam + n + f->len[i], nvar - n - f->len[i]);
693		bset_i = isl_basic_set_drop_constraints_involving(bset_i,
694			    nparam, n);
695		bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
696			    n + f->len[i], nvar - n - f->len[i]);
697		bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
698
699		sample_i = sample_bounded(bset_i);
700		if (!sample_i)
701			goto error;
702		if (sample_i->size == 0) {
703			isl_basic_set_free(bset);
704			isl_factorizer_free(f);
705			isl_vec_free(sample);
706			return sample_i;
707		}
708		isl_seq_cpy(sample->el + 1 + nparam + n,
709			    sample_i->el + 1, f->len[i]);
710		isl_vec_free(sample_i);
711
712		n += f->len[i];
713	}
714
715	f->morph = isl_morph_inverse(f->morph);
716	sample = isl_morph_vec(isl_morph_copy(f->morph), sample);
717
718	isl_basic_set_free(bset);
719	isl_factorizer_free(f);
720	return sample;
721error:
722	isl_basic_set_free(bset);
723	isl_factorizer_free(f);
724	isl_vec_free(sample);
725	return NULL;
726}
727
728/* Given a basic set that is known to be bounded, find and return
729 * an integer point in the basic set, if there is any.
730 *
731 * After handling some trivial cases, we construct a tableau
732 * and then use isl_tab_sample to find a sample, passing it
733 * the identity matrix as initial basis.
734 */
735static struct isl_vec *sample_bounded(struct isl_basic_set *bset)
736{
737	unsigned dim;
738	struct isl_ctx *ctx;
739	struct isl_vec *sample;
740	struct isl_tab *tab = NULL;
741	isl_factorizer *f;
742
743	if (!bset)
744		return NULL;
745
746	if (isl_basic_set_plain_is_empty(bset))
747		return empty_sample(bset);
748
749	dim = isl_basic_set_total_dim(bset);
750	if (dim == 0)
751		return zero_sample(bset);
752	if (dim == 1)
753		return interval_sample(bset);
754	if (bset->n_eq > 0)
755		return sample_eq(bset, sample_bounded);
756
757	f = isl_basic_set_factorizer(bset);
758	if (!f)
759		goto error;
760	if (f->n_group != 0)
761		return factored_sample(bset, f);
762	isl_factorizer_free(f);
763
764	ctx = bset->ctx;
765
766	tab = isl_tab_from_basic_set(bset, 1);
767	if (tab && tab->empty) {
768		isl_tab_free(tab);
769		ISL_F_SET(bset, ISL_BASIC_SET_EMPTY);
770		sample = isl_vec_alloc(bset->ctx, 0);
771		isl_basic_set_free(bset);
772		return sample;
773	}
774
775	if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
776		if (isl_tab_detect_implicit_equalities(tab) < 0)
777			goto error;
778
779	sample = isl_tab_sample(tab);
780	if (!sample)
781		goto error;
782
783	if (sample->size > 0) {
784		isl_vec_free(bset->sample);
785		bset->sample = isl_vec_copy(sample);
786	}
787
788	isl_basic_set_free(bset);
789	isl_tab_free(tab);
790	return sample;
791error:
792	isl_basic_set_free(bset);
793	isl_tab_free(tab);
794	return NULL;
795}
796
797/* Given a basic set "bset" and a value "sample" for the first coordinates
798 * of bset, plug in these values and drop the corresponding coordinates.
799 *
800 * We do this by computing the preimage of the transformation
801 *
802 *	     [ 1 0 ]
803 *	x =  [ s 0 ] x'
804 *	     [ 0 I ]
805 *
806 * where [1 s] is the sample value and I is the identity matrix of the
807 * appropriate dimension.
808 */
809static struct isl_basic_set *plug_in(struct isl_basic_set *bset,
810	struct isl_vec *sample)
811{
812	int i;
813	unsigned total;
814	struct isl_mat *T;
815
816	if (!bset || !sample)
817		goto error;
818
819	total = isl_basic_set_total_dim(bset);
820	T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
821	if (!T)
822		goto error;
823
824	for (i = 0; i < sample->size; ++i) {
825		isl_int_set(T->row[i][0], sample->el[i]);
826		isl_seq_clr(T->row[i] + 1, T->n_col - 1);
827	}
828	for (i = 0; i < T->n_col - 1; ++i) {
829		isl_seq_clr(T->row[sample->size + i], T->n_col);
830		isl_int_set_si(T->row[sample->size + i][1 + i], 1);
831	}
832	isl_vec_free(sample);
833
834	bset = isl_basic_set_preimage(bset, T);
835	return bset;
836error:
837	isl_basic_set_free(bset);
838	isl_vec_free(sample);
839	return NULL;
840}
841
842/* Given a basic set "bset", return any (possibly non-integer) point
843 * in the basic set.
844 */
845static struct isl_vec *rational_sample(struct isl_basic_set *bset)
846{
847	struct isl_tab *tab;
848	struct isl_vec *sample;
849
850	if (!bset)
851		return NULL;
852
853	tab = isl_tab_from_basic_set(bset, 0);
854	sample = isl_tab_get_sample_value(tab);
855	isl_tab_free(tab);
856
857	isl_basic_set_free(bset);
858
859	return sample;
860}
861
862/* Given a linear cone "cone" and a rational point "vec",
863 * construct a polyhedron with shifted copies of the constraints in "cone",
864 * i.e., a polyhedron with "cone" as its recession cone, such that each
865 * point x in this polyhedron is such that the unit box positioned at x
866 * lies entirely inside the affine cone 'vec + cone'.
867 * Any rational point in this polyhedron may therefore be rounded up
868 * to yield an integer point that lies inside said affine cone.
869 *
870 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
871 * point "vec" by v/d.
872 * Let b_i = <a_i, v>.  Then the affine cone 'vec + cone' is given
873 * by <a_i, x> - b/d >= 0.
874 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
875 * We prefer this polyhedron over the actual affine cone because it doesn't
876 * require a scaling of the constraints.
877 * If each of the vertices of the unit cube positioned at x lies inside
878 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
879 * We therefore impose that x' = x + \sum e_i, for any selection of unit
880 * vectors lies inside the polyhedron, i.e.,
881 *
882 *	<a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
883 *
884 * The most stringent of these constraints is the one that selects
885 * all negative a_i, so the polyhedron we are looking for has constraints
886 *
887 *	<a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
888 *
889 * Note that if cone were known to have only non-negative rays
890 * (which can be accomplished by a unimodular transformation),
891 * then we would only have to check the points x' = x + e_i
892 * and we only have to add the smallest negative a_i (if any)
893 * instead of the sum of all negative a_i.
894 */
895static struct isl_basic_set *shift_cone(struct isl_basic_set *cone,
896	struct isl_vec *vec)
897{
898	int i, j, k;
899	unsigned total;
900
901	struct isl_basic_set *shift = NULL;
902
903	if (!cone || !vec)
904		goto error;
905
906	isl_assert(cone->ctx, cone->n_eq == 0, goto error);
907
908	total = isl_basic_set_total_dim(cone);
909
910	shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone),
911					0, 0, cone->n_ineq);
912
913	for (i = 0; i < cone->n_ineq; ++i) {
914		k = isl_basic_set_alloc_inequality(shift);
915		if (k < 0)
916			goto error;
917		isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
918		isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
919				      &shift->ineq[k][0]);
920		isl_int_cdiv_q(shift->ineq[k][0],
921			       shift->ineq[k][0], vec->el[0]);
922		isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
923		for (j = 0; j < total; ++j) {
924			if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
925				continue;
926			isl_int_add(shift->ineq[k][0],
927				    shift->ineq[k][0], shift->ineq[k][1 + j]);
928		}
929	}
930
931	isl_basic_set_free(cone);
932	isl_vec_free(vec);
933
934	return isl_basic_set_finalize(shift);
935error:
936	isl_basic_set_free(shift);
937	isl_basic_set_free(cone);
938	isl_vec_free(vec);
939	return NULL;
940}
941
942/* Given a rational point vec in a (transformed) basic set,
943 * such that cone is the recession cone of the original basic set,
944 * "round up" the rational point to an integer point.
945 *
946 * We first check if the rational point just happens to be integer.
947 * If not, we transform the cone in the same way as the basic set,
948 * pick a point x in this cone shifted to the rational point such that
949 * the whole unit cube at x is also inside this affine cone.
950 * Then we simply round up the coordinates of x and return the
951 * resulting integer point.
952 */
953static struct isl_vec *round_up_in_cone(struct isl_vec *vec,
954	struct isl_basic_set *cone, struct isl_mat *U)
955{
956	unsigned total;
957
958	if (!vec || !cone || !U)
959		goto error;
960
961	isl_assert(vec->ctx, vec->size != 0, goto error);
962	if (isl_int_is_one(vec->el[0])) {
963		isl_mat_free(U);
964		isl_basic_set_free(cone);
965		return vec;
966	}
967
968	total = isl_basic_set_total_dim(cone);
969	cone = isl_basic_set_preimage(cone, U);
970	cone = isl_basic_set_remove_dims(cone, isl_dim_set,
971					 0, total - (vec->size - 1));
972
973	cone = shift_cone(cone, vec);
974
975	vec = rational_sample(cone);
976	vec = isl_vec_ceil(vec);
977	return vec;
978error:
979	isl_mat_free(U);
980	isl_vec_free(vec);
981	isl_basic_set_free(cone);
982	return NULL;
983}
984
985/* Concatenate two integer vectors, i.e., two vectors with denominator
986 * (stored in element 0) equal to 1.
987 */
988static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2)
989{
990	struct isl_vec *vec;
991
992	if (!vec1 || !vec2)
993		goto error;
994	isl_assert(vec1->ctx, vec1->size > 0, goto error);
995	isl_assert(vec2->ctx, vec2->size > 0, goto error);
996	isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
997	isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
998
999	vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
1000	if (!vec)
1001		goto error;
1002
1003	isl_seq_cpy(vec->el, vec1->el, vec1->size);
1004	isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
1005
1006	isl_vec_free(vec1);
1007	isl_vec_free(vec2);
1008
1009	return vec;
1010error:
1011	isl_vec_free(vec1);
1012	isl_vec_free(vec2);
1013	return NULL;
1014}
1015
1016/* Give a basic set "bset" with recession cone "cone", compute and
1017 * return an integer point in bset, if any.
1018 *
1019 * If the recession cone is full-dimensional, then we know that
1020 * bset contains an infinite number of integer points and it is
1021 * fairly easy to pick one of them.
1022 * If the recession cone is not full-dimensional, then we first
1023 * transform bset such that the bounded directions appear as
1024 * the first dimensions of the transformed basic set.
1025 * We do this by using a unimodular transformation that transforms
1026 * the equalities in the recession cone to equalities on the first
1027 * dimensions.
1028 *
1029 * The transformed set is then projected onto its bounded dimensions.
1030 * Note that to compute this projection, we can simply drop all constraints
1031 * involving any of the unbounded dimensions since these constraints
1032 * cannot be combined to produce a constraint on the bounded dimensions.
1033 * To see this, assume that there is such a combination of constraints
1034 * that produces a constraint on the bounded dimensions.  This means
1035 * that some combination of the unbounded dimensions has both an upper
1036 * bound and a lower bound in terms of the bounded dimensions, but then
1037 * this combination would be a bounded direction too and would have been
1038 * transformed into a bounded dimensions.
1039 *
1040 * We then compute a sample value in the bounded dimensions.
1041 * If no such value can be found, then the original set did not contain
1042 * any integer points and we are done.
1043 * Otherwise, we plug in the value we found in the bounded dimensions,
1044 * project out these bounded dimensions and end up with a set with
1045 * a full-dimensional recession cone.
1046 * A sample point in this set is computed by "rounding up" any
1047 * rational point in the set.
1048 *
1049 * The sample points in the bounded and unbounded dimensions are
1050 * then combined into a single sample point and transformed back
1051 * to the original space.
1052 */
1053__isl_give isl_vec *isl_basic_set_sample_with_cone(
1054	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
1055{
1056	unsigned total;
1057	unsigned cone_dim;
1058	struct isl_mat *M, *U;
1059	struct isl_vec *sample;
1060	struct isl_vec *cone_sample;
1061	struct isl_ctx *ctx;
1062	struct isl_basic_set *bounded;
1063
1064	if (!bset || !cone)
1065		goto error;
1066
1067	ctx = bset->ctx;
1068	total = isl_basic_set_total_dim(cone);
1069	cone_dim = total - cone->n_eq;
1070
1071	M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
1072	M = isl_mat_left_hermite(M, 0, &U, NULL);
1073	if (!M)
1074		goto error;
1075	isl_mat_free(M);
1076
1077	U = isl_mat_lin_to_aff(U);
1078	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
1079
1080	bounded = isl_basic_set_copy(bset);
1081	bounded = isl_basic_set_drop_constraints_involving(bounded,
1082						   total - cone_dim, cone_dim);
1083	bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
1084	sample = sample_bounded(bounded);
1085	if (!sample || sample->size == 0) {
1086		isl_basic_set_free(bset);
1087		isl_basic_set_free(cone);
1088		isl_mat_free(U);
1089		return sample;
1090	}
1091	bset = plug_in(bset, isl_vec_copy(sample));
1092	cone_sample = rational_sample(bset);
1093	cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
1094	sample = vec_concat(sample, cone_sample);
1095	sample = isl_mat_vec_product(U, sample);
1096	return sample;
1097error:
1098	isl_basic_set_free(cone);
1099	isl_basic_set_free(bset);
1100	return NULL;
1101}
1102
1103static void vec_sum_of_neg(struct isl_vec *v, isl_int *s)
1104{
1105	int i;
1106
1107	isl_int_set_si(*s, 0);
1108
1109	for (i = 0; i < v->size; ++i)
1110		if (isl_int_is_neg(v->el[i]))
1111			isl_int_add(*s, *s, v->el[i]);
1112}
1113
1114/* Given a tableau "tab", a tableau "tab_cone" that corresponds
1115 * to the recession cone and the inverse of a new basis U = inv(B),
1116 * with the unbounded directions in B last,
1117 * add constraints to "tab" that ensure any rational value
1118 * in the unbounded directions can be rounded up to an integer value.
1119 *
1120 * The new basis is given by x' = B x, i.e., x = U x'.
1121 * For any rational value of the last tab->n_unbounded coordinates
1122 * in the update tableau, the value that is obtained by rounding
1123 * up this value should be contained in the original tableau.
1124 * For any constraint "a x + c >= 0", we therefore need to add
1125 * a constraint "a x + c + s >= 0", with s the sum of all negative
1126 * entries in the last elements of "a U".
1127 *
1128 * Since we are not interested in the first entries of any of the "a U",
1129 * we first drop the columns of U that correpond to bounded directions.
1130 */
1131static int tab_shift_cone(struct isl_tab *tab,
1132	struct isl_tab *tab_cone, struct isl_mat *U)
1133{
1134	int i;
1135	isl_int v;
1136	struct isl_basic_set *bset = NULL;
1137
1138	if (tab && tab->n_unbounded == 0) {
1139		isl_mat_free(U);
1140		return 0;
1141	}
1142	isl_int_init(v);
1143	if (!tab || !tab_cone || !U)
1144		goto error;
1145	bset = isl_tab_peek_bset(tab_cone);
1146	U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
1147	for (i = 0; i < bset->n_ineq; ++i) {
1148		int ok;
1149		struct isl_vec *row = NULL;
1150		if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
1151			continue;
1152		row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
1153		if (!row)
1154			goto error;
1155		isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
1156		row = isl_vec_mat_product(row, isl_mat_copy(U));
1157		if (!row)
1158			goto error;
1159		vec_sum_of_neg(row, &v);
1160		isl_vec_free(row);
1161		if (isl_int_is_zero(v))
1162			continue;
1163		tab = isl_tab_extend(tab, 1);
1164		isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
1165		ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
1166		isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
1167		if (!ok)
1168			goto error;
1169	}
1170
1171	isl_mat_free(U);
1172	isl_int_clear(v);
1173	return 0;
1174error:
1175	isl_mat_free(U);
1176	isl_int_clear(v);
1177	return -1;
1178}
1179
1180/* Compute and return an initial basis for the possibly
1181 * unbounded tableau "tab".  "tab_cone" is a tableau
1182 * for the corresponding recession cone.
1183 * Additionally, add constraints to "tab" that ensure
1184 * that any rational value for the unbounded directions
1185 * can be rounded up to an integer value.
1186 *
1187 * If the tableau is bounded, i.e., if the recession cone
1188 * is zero-dimensional, then we just use inital_basis.
1189 * Otherwise, we construct a basis whose first directions
1190 * correspond to equalities, followed by bounded directions,
1191 * i.e., equalities in the recession cone.
1192 * The remaining directions are then unbounded.
1193 */
1194int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
1195	struct isl_tab *tab_cone)
1196{
1197	struct isl_mat *eq;
1198	struct isl_mat *cone_eq;
1199	struct isl_mat *U, *Q;
1200
1201	if (!tab || !tab_cone)
1202		return -1;
1203
1204	if (tab_cone->n_col == tab_cone->n_dead) {
1205		tab->basis = initial_basis(tab);
1206		return tab->basis ? 0 : -1;
1207	}
1208
1209	eq = tab_equalities(tab);
1210	if (!eq)
1211		return -1;
1212	tab->n_zero = eq->n_row;
1213	cone_eq = tab_equalities(tab_cone);
1214	eq = isl_mat_concat(eq, cone_eq);
1215	if (!eq)
1216		return -1;
1217	tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
1218	eq = isl_mat_left_hermite(eq, 0, &U, &Q);
1219	if (!eq)
1220		return -1;
1221	isl_mat_free(eq);
1222	tab->basis = isl_mat_lin_to_aff(Q);
1223	if (tab_shift_cone(tab, tab_cone, U) < 0)
1224		return -1;
1225	if (!tab->basis)
1226		return -1;
1227	return 0;
1228}
1229
1230/* Compute and return a sample point in bset using generalized basis
1231 * reduction.  We first check if the input set has a non-trivial
1232 * recession cone.  If so, we perform some extra preprocessing in
1233 * sample_with_cone.  Otherwise, we directly perform generalized basis
1234 * reduction.
1235 */
1236static struct isl_vec *gbr_sample(struct isl_basic_set *bset)
1237{
1238	unsigned dim;
1239	struct isl_basic_set *cone;
1240
1241	dim = isl_basic_set_total_dim(bset);
1242
1243	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
1244	if (!cone)
1245		goto error;
1246
1247	if (cone->n_eq < dim)
1248		return isl_basic_set_sample_with_cone(bset, cone);
1249
1250	isl_basic_set_free(cone);
1251	return sample_bounded(bset);
1252error:
1253	isl_basic_set_free(bset);
1254	return NULL;
1255}
1256
1257static struct isl_vec *pip_sample(struct isl_basic_set *bset)
1258{
1259	struct isl_mat *T;
1260	struct isl_ctx *ctx;
1261	struct isl_vec *sample;
1262
1263	bset = isl_basic_set_skew_to_positive_orthant(bset, &T);
1264	if (!bset)
1265		return NULL;
1266
1267	ctx = bset->ctx;
1268	sample = isl_pip_basic_set_sample(bset);
1269
1270	if (sample && sample->size != 0)
1271		sample = isl_mat_vec_product(T, sample);
1272	else
1273		isl_mat_free(T);
1274
1275	return sample;
1276}
1277
1278static struct isl_vec *basic_set_sample(struct isl_basic_set *bset, int bounded)
1279{
1280	struct isl_ctx *ctx;
1281	unsigned dim;
1282	if (!bset)
1283		return NULL;
1284
1285	ctx = bset->ctx;
1286	if (isl_basic_set_plain_is_empty(bset))
1287		return empty_sample(bset);
1288
1289	dim = isl_basic_set_n_dim(bset);
1290	isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
1291	isl_assert(ctx, bset->n_div == 0, goto error);
1292
1293	if (bset->sample && bset->sample->size == 1 + dim) {
1294		int contains = isl_basic_set_contains(bset, bset->sample);
1295		if (contains < 0)
1296			goto error;
1297		if (contains) {
1298			struct isl_vec *sample = isl_vec_copy(bset->sample);
1299			isl_basic_set_free(bset);
1300			return sample;
1301		}
1302	}
1303	isl_vec_free(bset->sample);
1304	bset->sample = NULL;
1305
1306	if (bset->n_eq > 0)
1307		return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
1308					       : isl_basic_set_sample_vec);
1309	if (dim == 0)
1310		return zero_sample(bset);
1311	if (dim == 1)
1312		return interval_sample(bset);
1313
1314	switch (bset->ctx->opt->ilp_solver) {
1315	case ISL_ILP_PIP:
1316		return pip_sample(bset);
1317	case ISL_ILP_GBR:
1318		return bounded ? sample_bounded(bset) : gbr_sample(bset);
1319	}
1320	isl_assert(bset->ctx, 0, );
1321error:
1322	isl_basic_set_free(bset);
1323	return NULL;
1324}
1325
1326__isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
1327{
1328	return basic_set_sample(bset, 0);
1329}
1330
1331/* Compute an integer sample in "bset", where the caller guarantees
1332 * that "bset" is bounded.
1333 */
1334struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset)
1335{
1336	return basic_set_sample(bset, 1);
1337}
1338
1339__isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
1340{
1341	int i;
1342	int k;
1343	struct isl_basic_set *bset = NULL;
1344	struct isl_ctx *ctx;
1345	unsigned dim;
1346
1347	if (!vec)
1348		return NULL;
1349	ctx = vec->ctx;
1350	isl_assert(ctx, vec->size != 0, goto error);
1351
1352	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
1353	if (!bset)
1354		goto error;
1355	dim = isl_basic_set_n_dim(bset);
1356	for (i = dim - 1; i >= 0; --i) {
1357		k = isl_basic_set_alloc_equality(bset);
1358		if (k < 0)
1359			goto error;
1360		isl_seq_clr(bset->eq[k], 1 + dim);
1361		isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
1362		isl_int_set(bset->eq[k][1 + i], vec->el[0]);
1363	}
1364	bset->sample = vec;
1365
1366	return bset;
1367error:
1368	isl_basic_set_free(bset);
1369	isl_vec_free(vec);
1370	return NULL;
1371}
1372
1373__isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
1374{
1375	struct isl_basic_set *bset;
1376	struct isl_vec *sample_vec;
1377
1378	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1379	sample_vec = isl_basic_set_sample_vec(bset);
1380	if (!sample_vec)
1381		goto error;
1382	if (sample_vec->size == 0) {
1383		struct isl_basic_map *sample;
1384		sample = isl_basic_map_empty_like(bmap);
1385		isl_vec_free(sample_vec);
1386		isl_basic_map_free(bmap);
1387		return sample;
1388	}
1389	bset = isl_basic_set_from_vec(sample_vec);
1390	return isl_basic_map_overlying_set(bset, bmap);
1391error:
1392	isl_basic_map_free(bmap);
1393	return NULL;
1394}
1395
1396__isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset)
1397{
1398	return isl_basic_map_sample(bset);
1399}
1400
1401__isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
1402{
1403	int i;
1404	isl_basic_map *sample = NULL;
1405
1406	if (!map)
1407		goto error;
1408
1409	for (i = 0; i < map->n; ++i) {
1410		sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
1411		if (!sample)
1412			goto error;
1413		if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
1414			break;
1415		isl_basic_map_free(sample);
1416	}
1417	if (i == map->n)
1418		sample = isl_basic_map_empty_like_map(map);
1419	isl_map_free(map);
1420	return sample;
1421error:
1422	isl_map_free(map);
1423	return NULL;
1424}
1425
1426__isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
1427{
1428	return (isl_basic_set *) isl_map_sample((isl_map *)set);
1429}
1430
1431__isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset)
1432{
1433	isl_vec *vec;
1434	isl_space *dim;
1435
1436	dim = isl_basic_set_get_space(bset);
1437	bset = isl_basic_set_underlying_set(bset);
1438	vec = isl_basic_set_sample_vec(bset);
1439
1440	return isl_point_alloc(dim, vec);
1441}
1442
1443__isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set)
1444{
1445	int i;
1446	isl_point *pnt;
1447
1448	if (!set)
1449		return NULL;
1450
1451	for (i = 0; i < set->n; ++i) {
1452		pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i]));
1453		if (!pnt)
1454			goto error;
1455		if (!isl_point_is_void(pnt))
1456			break;
1457		isl_point_free(pnt);
1458	}
1459	if (i == set->n)
1460		pnt = isl_point_void(isl_set_get_space(set));
1461
1462	isl_set_free(set);
1463	return pnt;
1464error:
1465	isl_set_free(set);
1466	return NULL;
1467}
1468