1/*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 *
4 * Use of this software is governed by the MIT license
5 *
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
9
10#include <isl_ctx_private.h>
11#include <isl_map_private.h>
12#include <isl/ilp.h>
13#include "isl_sample.h"
14#include <isl/seq.h>
15#include "isl_equalities.h"
16#include <isl_aff_private.h>
17#include <isl_local_space_private.h>
18#include <isl_mat_private.h>
19#include <isl_val_private.h>
20
21/* Given a basic set "bset", construct a basic set U such that for
22 * each element x in U, the whole unit box positioned at x is inside
23 * the given basic set.
24 * Note that U may not contain all points that satisfy this property.
25 *
26 * We simply add the sum of all negative coefficients to the constant
27 * term.  This ensures that if x satisfies the resulting constraints,
28 * then x plus any sum of unit vectors satisfies the original constraints.
29 */
30static struct isl_basic_set *unit_box_base_points(struct isl_basic_set *bset)
31{
32	int i, j, k;
33	struct isl_basic_set *unit_box = NULL;
34	unsigned total;
35
36	if (!bset)
37		goto error;
38
39	if (bset->n_eq != 0) {
40		unit_box = isl_basic_set_empty_like(bset);
41		isl_basic_set_free(bset);
42		return unit_box;
43	}
44
45	total = isl_basic_set_total_dim(bset);
46	unit_box = isl_basic_set_alloc_space(isl_basic_set_get_space(bset),
47					0, 0, bset->n_ineq);
48
49	for (i = 0; i < bset->n_ineq; ++i) {
50		k = isl_basic_set_alloc_inequality(unit_box);
51		if (k < 0)
52			goto error;
53		isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total);
54		for (j = 0; j < total; ++j) {
55			if (isl_int_is_nonneg(unit_box->ineq[k][1 + j]))
56				continue;
57			isl_int_add(unit_box->ineq[k][0],
58				unit_box->ineq[k][0], unit_box->ineq[k][1 + j]);
59		}
60	}
61
62	isl_basic_set_free(bset);
63	return unit_box;
64error:
65	isl_basic_set_free(bset);
66	isl_basic_set_free(unit_box);
67	return NULL;
68}
69
70/* Find an integer point in "bset", preferably one that is
71 * close to minimizing "f".
72 *
73 * We first check if we can easily put unit boxes inside bset.
74 * If so, we take the best base point of any of the unit boxes we can find
75 * and round it up to the nearest integer.
76 * If not, we simply pick any integer point in "bset".
77 */
78static struct isl_vec *initial_solution(struct isl_basic_set *bset, isl_int *f)
79{
80	enum isl_lp_result res;
81	struct isl_basic_set *unit_box;
82	struct isl_vec *sol;
83
84	unit_box = unit_box_base_points(isl_basic_set_copy(bset));
85
86	res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one,
87					NULL, NULL, &sol);
88	if (res == isl_lp_ok) {
89		isl_basic_set_free(unit_box);
90		return isl_vec_ceil(sol);
91	}
92
93	isl_basic_set_free(unit_box);
94
95	return isl_basic_set_sample_vec(isl_basic_set_copy(bset));
96}
97
98/* Restrict "bset" to those points with values for f in the interval [l, u].
99 */
100static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
101	isl_int *f, isl_int l, isl_int u)
102{
103	int k;
104	unsigned total;
105
106	total = isl_basic_set_total_dim(bset);
107	bset = isl_basic_set_extend_constraints(bset, 0, 2);
108
109	k = isl_basic_set_alloc_inequality(bset);
110	if (k < 0)
111		goto error;
112	isl_seq_cpy(bset->ineq[k], f, 1 + total);
113	isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l);
114
115	k = isl_basic_set_alloc_inequality(bset);
116	if (k < 0)
117		goto error;
118	isl_seq_neg(bset->ineq[k], f, 1 + total);
119	isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u);
120
121	return bset;
122error:
123	isl_basic_set_free(bset);
124	return NULL;
125}
126
127/* Find an integer point in "bset" that minimizes f (in any) such that
128 * the value of f lies inside the interval [l, u].
129 * Return this integer point if it can be found.
130 * Otherwise, return sol.
131 *
132 * We perform a number of steps until l > u.
133 * In each step, we look for an integer point with value in either
134 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
135 * The choice depends on whether we have found an integer point in the
136 * previous step.  If so, we look for the next point in half of the remaining
137 * interval.
138 * If we find a point, the current solution is updated and u is set
139 * to its value minus 1.
140 * If no point can be found, we update l to the upper bound of the interval
141 * we checked (u or l+floor(u-l-1/2)) plus 1.
142 */
143static struct isl_vec *solve_ilp_search(struct isl_basic_set *bset,
144	isl_int *f, isl_int *opt, struct isl_vec *sol, isl_int l, isl_int u)
145{
146	isl_int tmp;
147	int divide = 1;
148
149	isl_int_init(tmp);
150
151	while (isl_int_le(l, u)) {
152		struct isl_basic_set *slice;
153		struct isl_vec *sample;
154
155		if (!divide)
156			isl_int_set(tmp, u);
157		else {
158			isl_int_sub(tmp, u, l);
159			isl_int_fdiv_q_ui(tmp, tmp, 2);
160			isl_int_add(tmp, tmp, l);
161		}
162		slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp);
163		sample = isl_basic_set_sample_vec(slice);
164		if (!sample) {
165			isl_vec_free(sol);
166			sol = NULL;
167			break;
168		}
169		if (sample->size > 0) {
170			isl_vec_free(sol);
171			sol = sample;
172			isl_seq_inner_product(f, sol->el, sol->size, opt);
173			isl_int_sub_ui(u, *opt, 1);
174			divide = 1;
175		} else {
176			isl_vec_free(sample);
177			if (!divide)
178				break;
179			isl_int_add_ui(l, tmp, 1);
180			divide = 0;
181		}
182	}
183
184	isl_int_clear(tmp);
185
186	return sol;
187}
188
189/* Find an integer point in "bset" that minimizes f (if any).
190 * If sol_p is not NULL then the integer point is returned in *sol_p.
191 * The optimal value of f is returned in *opt.
192 *
193 * The algorithm maintains a currently best solution and an interval [l, u]
194 * of values of f for which integer solutions could potentially still be found.
195 * The initial value of the best solution so far is any solution.
196 * The initial value of l is minimal value of f over the rationals
197 * (rounded up to the nearest integer).
198 * The initial value of u is the value of f at the initial solution minus 1.
199 *
200 * We then call solve_ilp_search to perform a binary search on the interval.
201 */
202static enum isl_lp_result solve_ilp(struct isl_basic_set *bset,
203				      isl_int *f, isl_int *opt,
204				      struct isl_vec **sol_p)
205{
206	enum isl_lp_result res;
207	isl_int l, u;
208	struct isl_vec *sol;
209
210	res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one,
211					opt, NULL, &sol);
212	if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) {
213		if (sol_p)
214			*sol_p = sol;
215		else
216			isl_vec_free(sol);
217		return isl_lp_ok;
218	}
219	isl_vec_free(sol);
220	if (res == isl_lp_error || res == isl_lp_empty)
221		return res;
222
223	sol = initial_solution(bset, f);
224	if (!sol)
225		return isl_lp_error;
226	if (sol->size == 0) {
227		isl_vec_free(sol);
228		return isl_lp_empty;
229	}
230	if (res == isl_lp_unbounded) {
231		isl_vec_free(sol);
232		return isl_lp_unbounded;
233	}
234
235	isl_int_init(l);
236	isl_int_init(u);
237
238	isl_int_set(l, *opt);
239
240	isl_seq_inner_product(f, sol->el, sol->size, opt);
241	isl_int_sub_ui(u, *opt, 1);
242
243	sol = solve_ilp_search(bset, f, opt, sol, l, u);
244	if (!sol)
245		res = isl_lp_error;
246
247	isl_int_clear(l);
248	isl_int_clear(u);
249
250	if (sol_p)
251		*sol_p = sol;
252	else
253		isl_vec_free(sol);
254
255	return res;
256}
257
258static enum isl_lp_result solve_ilp_with_eq(struct isl_basic_set *bset, int max,
259				      isl_int *f, isl_int *opt,
260				      struct isl_vec **sol_p)
261{
262	unsigned dim;
263	enum isl_lp_result res;
264	struct isl_mat *T = NULL;
265	struct isl_vec *v;
266
267	bset = isl_basic_set_copy(bset);
268	dim = isl_basic_set_total_dim(bset);
269	v = isl_vec_alloc(bset->ctx, 1 + dim);
270	if (!v)
271		goto error;
272	isl_seq_cpy(v->el, f, 1 + dim);
273	bset = isl_basic_set_remove_equalities(bset, &T, NULL);
274	v = isl_vec_mat_product(v, isl_mat_copy(T));
275	if (!v)
276		goto error;
277	res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p);
278	isl_vec_free(v);
279	if (res == isl_lp_ok && sol_p) {
280		*sol_p = isl_mat_vec_product(T, *sol_p);
281		if (!*sol_p)
282			res = isl_lp_error;
283	} else
284		isl_mat_free(T);
285	isl_basic_set_free(bset);
286	return res;
287error:
288	isl_mat_free(T);
289	isl_basic_set_free(bset);
290	return isl_lp_error;
291}
292
293/* Find an integer point in "bset" that minimizes (or maximizes if max is set)
294 * f (if any).
295 * If sol_p is not NULL then the integer point is returned in *sol_p.
296 * The optimal value of f is returned in *opt.
297 *
298 * If there is any equality among the points in "bset", then we first
299 * project it out.  Otherwise, we continue with solve_ilp above.
300 */
301enum isl_lp_result isl_basic_set_solve_ilp(struct isl_basic_set *bset, int max,
302				      isl_int *f, isl_int *opt,
303				      struct isl_vec **sol_p)
304{
305	unsigned dim;
306	enum isl_lp_result res;
307
308	if (!bset)
309		return isl_lp_error;
310	if (sol_p)
311		*sol_p = NULL;
312
313	isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
314
315	if (isl_basic_set_plain_is_empty(bset))
316		return isl_lp_empty;
317
318	if (bset->n_eq)
319		return solve_ilp_with_eq(bset, max, f, opt, sol_p);
320
321	dim = isl_basic_set_total_dim(bset);
322
323	if (max)
324		isl_seq_neg(f, f, 1 + dim);
325
326	res = solve_ilp(bset, f, opt, sol_p);
327
328	if (max) {
329		isl_seq_neg(f, f, 1 + dim);
330		isl_int_neg(*opt, *opt);
331	}
332
333	return res;
334error:
335	isl_basic_set_free(bset);
336	return isl_lp_error;
337}
338
339static enum isl_lp_result basic_set_opt(__isl_keep isl_basic_set *bset, int max,
340	__isl_keep isl_aff *obj, isl_int *opt)
341{
342	enum isl_lp_result res;
343
344	if (!obj)
345		return isl_lp_error;
346	bset = isl_basic_set_copy(bset);
347	bset = isl_basic_set_underlying_set(bset);
348	res = isl_basic_set_solve_ilp(bset, max, obj->v->el + 1, opt, NULL);
349	isl_basic_set_free(bset);
350	return res;
351}
352
353static __isl_give isl_mat *extract_divs(__isl_keep isl_basic_set *bset)
354{
355	int i;
356	isl_ctx *ctx = isl_basic_set_get_ctx(bset);
357	isl_mat *div;
358
359	div = isl_mat_alloc(ctx, bset->n_div,
360			    1 + 1 + isl_basic_set_total_dim(bset));
361	if (!div)
362		return NULL;
363
364	for (i = 0; i < bset->n_div; ++i)
365		isl_seq_cpy(div->row[i], bset->div[i], div->n_col);
366
367	return div;
368}
369
370enum isl_lp_result isl_basic_set_opt(__isl_keep isl_basic_set *bset, int max,
371	__isl_keep isl_aff *obj, isl_int *opt)
372{
373	int *exp1 = NULL;
374	int *exp2 = NULL;
375	isl_ctx *ctx;
376	isl_mat *bset_div = NULL;
377	isl_mat *div = NULL;
378	enum isl_lp_result res;
379	int bset_n_div, obj_n_div;
380
381	if (!bset || !obj)
382		return isl_lp_error;
383
384	ctx = isl_aff_get_ctx(obj);
385	if (!isl_space_is_equal(bset->dim, obj->ls->dim))
386		isl_die(ctx, isl_error_invalid,
387			"spaces don't match", return isl_lp_error);
388	if (!isl_int_is_one(obj->v->el[0]))
389		isl_die(ctx, isl_error_unsupported,
390			"expecting integer affine expression",
391			return isl_lp_error);
392
393	bset_n_div = isl_basic_set_dim(bset, isl_dim_div);
394	obj_n_div = isl_aff_dim(obj, isl_dim_div);
395	if (bset_n_div == 0 && obj_n_div == 0)
396		return basic_set_opt(bset, max, obj, opt);
397
398	bset = isl_basic_set_copy(bset);
399	obj = isl_aff_copy(obj);
400
401	bset_div = extract_divs(bset);
402	exp1 = isl_alloc_array(ctx, int, bset_n_div);
403	exp2 = isl_alloc_array(ctx, int, obj_n_div);
404	if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2))
405		goto error;
406
407	div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2);
408
409	bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1);
410	obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2);
411
412	res = basic_set_opt(bset, max, obj, opt);
413
414	isl_mat_free(bset_div);
415	isl_mat_free(div);
416	free(exp1);
417	free(exp2);
418	isl_basic_set_free(bset);
419	isl_aff_free(obj);
420
421	return res;
422error:
423	isl_mat_free(div);
424	isl_mat_free(bset_div);
425	free(exp1);
426	free(exp2);
427	isl_basic_set_free(bset);
428	isl_aff_free(obj);
429	return isl_lp_error;
430}
431
432/* Compute the minimum (maximum if max is set) of the integer affine
433 * expression obj over the points in set and put the result in *opt.
434 *
435 * The parameters are assumed to have been aligned.
436 */
437static enum isl_lp_result isl_set_opt_aligned(__isl_keep isl_set *set, int max,
438	__isl_keep isl_aff *obj, isl_int *opt)
439{
440	int i;
441	enum isl_lp_result res;
442	int empty = 1;
443	isl_int opt_i;
444
445	if (!set || !obj)
446		return isl_lp_error;
447	if (set->n == 0)
448		return isl_lp_empty;
449
450	res = isl_basic_set_opt(set->p[0], max, obj, opt);
451	if (res == isl_lp_error || res == isl_lp_unbounded)
452		return res;
453	if (set->n == 1)
454		return res;
455	if (res == isl_lp_ok)
456		empty = 0;
457
458	isl_int_init(opt_i);
459	for (i = 1; i < set->n; ++i) {
460		res = isl_basic_set_opt(set->p[i], max, obj, &opt_i);
461		if (res == isl_lp_error || res == isl_lp_unbounded) {
462			isl_int_clear(opt_i);
463			return res;
464		}
465		if (res == isl_lp_ok)
466			empty = 0;
467		if (max ? isl_int_gt(opt_i, *opt) : isl_int_lt(opt_i, *opt))
468			isl_int_set(*opt, opt_i);
469	}
470	isl_int_clear(opt_i);
471
472	return empty ? isl_lp_empty : isl_lp_ok;
473}
474
475/* Compute the minimum (maximum if max is set) of the integer affine
476 * expression obj over the points in set and put the result in *opt.
477 */
478enum isl_lp_result isl_set_opt(__isl_keep isl_set *set, int max,
479	__isl_keep isl_aff *obj, isl_int *opt)
480{
481	enum isl_lp_result res;
482
483	if (!set || !obj)
484		return isl_lp_error;
485
486	if (isl_space_match(set->dim, isl_dim_param,
487			    obj->ls->dim, isl_dim_param))
488		return isl_set_opt_aligned(set, max, obj, opt);
489
490	set = isl_set_copy(set);
491	obj = isl_aff_copy(obj);
492	set = isl_set_align_params(set, isl_aff_get_domain_space(obj));
493	obj = isl_aff_align_params(obj, isl_set_get_space(set));
494
495	res = isl_set_opt_aligned(set, max, obj, opt);
496
497	isl_set_free(set);
498	isl_aff_free(obj);
499
500	return res;
501}
502
503enum isl_lp_result isl_basic_set_max(__isl_keep isl_basic_set *bset,
504	__isl_keep isl_aff *obj, isl_int *opt)
505{
506	return isl_basic_set_opt(bset, 1, obj, opt);
507}
508
509enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
510	__isl_keep isl_aff *obj, isl_int *opt)
511{
512	return isl_set_opt(set, 1, obj, opt);
513}
514
515enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
516	__isl_keep isl_aff *obj, isl_int *opt)
517{
518	return isl_set_opt(set, 0, obj, opt);
519}
520
521/* Convert the result of a function that returns an isl_lp_result
522 * to an isl_val.  The numerator of "v" is set to the optimal value
523 * if lp_res is isl_lp_ok.  "max" is set if a maximum was computed.
524 *
525 * Return "v" with denominator set to 1 if lp_res is isl_lp_ok.
526 * Return NULL on error.
527 * Return a NaN if lp_res is isl_lp_empty.
528 * Return infinity or negative infinity if lp_res is isl_lp_unbounded,
529 * depending on "max".
530 */
531static __isl_give isl_val *convert_lp_result(enum isl_lp_result lp_res,
532	__isl_take isl_val *v, int max)
533{
534	isl_ctx *ctx;
535
536	if (lp_res == isl_lp_ok) {
537		isl_int_set_si(v->d, 1);
538		return isl_val_normalize(v);
539	}
540	ctx = isl_val_get_ctx(v);
541	isl_val_free(v);
542	if (lp_res == isl_lp_error)
543		return NULL;
544	if (lp_res == isl_lp_empty)
545		return isl_val_nan(ctx);
546	if (max)
547		return isl_val_infty(ctx);
548	else
549		return isl_val_neginfty(ctx);
550}
551
552/* Return the minimum (maximum if max is set) of the integer affine
553 * expression "obj" over the points in "bset".
554 *
555 * Return infinity or negative infinity if the optimal value is unbounded and
556 * NaN if "bset" is empty.
557 *
558 * Call isl_basic_set_opt and translate the results.
559 */
560__isl_give isl_val *isl_basic_set_opt_val(__isl_keep isl_basic_set *bset,
561	int max, __isl_keep isl_aff *obj)
562{
563	isl_ctx *ctx;
564	isl_val *res;
565	enum isl_lp_result lp_res;
566
567	if (!bset || !obj)
568		return NULL;
569
570	ctx = isl_aff_get_ctx(obj);
571	res = isl_val_alloc(ctx);
572	if (!res)
573		return NULL;
574	lp_res = isl_basic_set_opt(bset, max, obj, &res->n);
575	return convert_lp_result(lp_res, res, max);
576}
577
578/* Return the maximum of the integer affine
579 * expression "obj" over the points in "bset".
580 *
581 * Return infinity or negative infinity if the optimal value is unbounded and
582 * NaN if "bset" is empty.
583 */
584__isl_give isl_val *isl_basic_set_max_val(__isl_keep isl_basic_set *bset,
585	__isl_keep isl_aff *obj)
586{
587	return isl_basic_set_opt_val(bset, 1, obj);
588}
589
590/* Return the minimum (maximum if max is set) of the integer affine
591 * expression "obj" over the points in "set".
592 *
593 * Return infinity or negative infinity if the optimal value is unbounded and
594 * NaN if "bset" is empty.
595 *
596 * Call isl_set_opt and translate the results.
597 */
598__isl_give isl_val *isl_set_opt_val(__isl_keep isl_set *set, int max,
599	__isl_keep isl_aff *obj)
600{
601	isl_ctx *ctx;
602	isl_val *res;
603	enum isl_lp_result lp_res;
604
605	if (!set || !obj)
606		return NULL;
607
608	ctx = isl_aff_get_ctx(obj);
609	res = isl_val_alloc(ctx);
610	if (!res)
611		return NULL;
612	lp_res = isl_set_opt(set, max, obj, &res->n);
613	return convert_lp_result(lp_res, res, max);
614}
615
616/* Return the minimum of the integer affine
617 * expression "obj" over the points in "set".
618 *
619 * Return infinity or negative infinity if the optimal value is unbounded and
620 * NaN if "bset" is empty.
621 */
622__isl_give isl_val *isl_set_min_val(__isl_keep isl_set *set,
623	__isl_keep isl_aff *obj)
624{
625	return isl_set_opt_val(set, 0, obj);
626}
627
628/* Return the maximum of the integer affine
629 * expression "obj" over the points in "set".
630 *
631 * Return infinity or negative infinity if the optimal value is unbounded and
632 * NaN if "bset" is empty.
633 */
634__isl_give isl_val *isl_set_max_val(__isl_keep isl_set *set,
635	__isl_keep isl_aff *obj)
636{
637	return isl_set_opt_val(set, 1, obj);
638}
639