1/*
2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010      INRIA Saclay
5 *
6 * Use of this software is governed by the MIT license
7 *
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14 */
15
16#include <isl_ctx_private.h>
17#include <isl_map_private.h>
18#include <isl/set.h>
19#include <isl/seq.h>
20#include <isl_morph.h>
21#include <isl_factorization.h>
22#include <isl_vertices_private.h>
23#include <isl_polynomial_private.h>
24#include <isl_options_private.h>
25#include <isl_bernstein.h>
26
27struct bernstein_data {
28	enum isl_fold type;
29	isl_qpolynomial *poly;
30	int check_tight;
31
32	isl_cell *cell;
33
34	isl_qpolynomial_fold *fold;
35	isl_qpolynomial_fold *fold_tight;
36	isl_pw_qpolynomial_fold *pwf;
37	isl_pw_qpolynomial_fold *pwf_tight;
38};
39
40static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
41{
42	unsigned nvar;
43	unsigned nparam;
44	int i;
45
46	nvar = isl_basic_set_dim(vertex, isl_dim_set);
47	nparam = isl_basic_set_dim(vertex, isl_dim_param);
48	for (i = 0; i < nvar; ++i) {
49		int r = nvar - 1 - i;
50		if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
51		    !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
52			return 0;
53	}
54
55	return 1;
56}
57
58static __isl_give isl_qpolynomial *vertex_coordinate(
59	__isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *dim)
60{
61	unsigned nvar;
62	unsigned nparam;
63	int r;
64	isl_int denom;
65	isl_qpolynomial *v;
66
67	nvar = isl_basic_set_dim(vertex, isl_dim_set);
68	nparam = isl_basic_set_dim(vertex, isl_dim_param);
69	r = nvar - 1 - i;
70
71	isl_int_init(denom);
72	isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
73	isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
74
75	if (isl_int_is_pos(denom))
76		isl_seq_neg(vertex->eq[r], vertex->eq[r],
77				1 + isl_basic_set_total_dim(vertex));
78	else
79		isl_int_neg(denom, denom);
80
81	v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
82	isl_int_clear(denom);
83
84	return v;
85error:
86	isl_space_free(dim);
87	isl_int_clear(denom);
88	return NULL;
89}
90
91/* Check whether the bound associated to the selection "k" is tight,
92 * which is the case if we select exactly one vertex and if that vertex
93 * is integral for all values of the parameters.
94 */
95static int is_tight(int *k, int n, int d, isl_cell *cell)
96{
97	int i;
98
99	for (i = 0; i < n; ++i) {
100		int v;
101		if (k[i] != d) {
102			if (k[i])
103				return 0;
104			continue;
105		}
106		v = cell->ids[n - 1 - i];
107		return vertex_is_integral(cell->vertices->v[v].vertex);
108	}
109
110	return 0;
111}
112
113static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
114	int *k, int n, int d, struct bernstein_data *data)
115{
116	isl_qpolynomial_fold *fold;
117
118	fold = isl_qpolynomial_fold_alloc(data->type, b);
119
120	if (data->check_tight && is_tight(k, n, d, data->cell))
121		data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
122							data->fold_tight, fold);
123	else
124		data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
125							data->fold, fold);
126}
127
128/* Extract the coefficients of the Bernstein base polynomials and store
129 * them in data->fold and data->fold_tight.
130 *
131 * In particular, the coefficient of each monomial
132 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
133 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
134 *
135 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
136 * multinom[i] contains the partial multinomial coefficient.
137 */
138static void extract_coefficients(isl_qpolynomial *poly,
139	__isl_keep isl_set *dom, struct bernstein_data *data)
140{
141	int i;
142	int d;
143	int n;
144	isl_ctx *ctx;
145	isl_qpolynomial **c = NULL;
146	int *k = NULL;
147	int *left = NULL;
148	isl_vec *multinom = NULL;
149
150	if (!poly)
151		return;
152
153	ctx = isl_qpolynomial_get_ctx(poly);
154	n = isl_qpolynomial_dim(poly, isl_dim_in);
155	d = isl_qpolynomial_degree(poly);
156	isl_assert(ctx, n >= 2, return);
157
158	c = isl_calloc_array(ctx, isl_qpolynomial *, n);
159	k = isl_alloc_array(ctx, int, n);
160	left = isl_alloc_array(ctx, int, n);
161	multinom = isl_vec_alloc(ctx, n);
162	if (!c || !k || !left || !multinom)
163		goto error;
164
165	isl_int_set_si(multinom->el[0], 1);
166	for (k[0] = d; k[0] >= 0; --k[0]) {
167		int i = 1;
168		isl_qpolynomial_free(c[0]);
169		c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
170		left[0] = d - k[0];
171		k[1] = -1;
172		isl_int_set(multinom->el[1], multinom->el[0]);
173		while (i > 0) {
174			if (i == n - 1) {
175				int j;
176				isl_space *dim;
177				isl_qpolynomial *b;
178				isl_qpolynomial *f;
179				for (j = 2; j <= left[i - 1]; ++j)
180					isl_int_divexact_ui(multinom->el[i],
181						multinom->el[i], j);
182				b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
183					n - 1 - i, left[i - 1]);
184				b = isl_qpolynomial_project_domain_on_params(b);
185				dim = isl_qpolynomial_get_domain_space(b);
186				f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one,
187					multinom->el[i]);
188				b = isl_qpolynomial_mul(b, f);
189				k[n - 1] = left[n - 2];
190				add_fold(b, dom, k, n, d, data);
191				--i;
192				continue;
193			}
194			if (k[i] >= left[i - 1]) {
195				--i;
196				continue;
197			}
198			++k[i];
199			if (k[i])
200				isl_int_divexact_ui(multinom->el[i],
201					multinom->el[i], k[i]);
202			isl_qpolynomial_free(c[i]);
203			c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
204					n - 1 - i, k[i]);
205			left[i] = left[i - 1] - k[i];
206			k[i + 1] = -1;
207			isl_int_set(multinom->el[i + 1], multinom->el[i]);
208			++i;
209		}
210		isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
211	}
212
213	for (i = 0; i < n; ++i)
214		isl_qpolynomial_free(c[i]);
215
216	isl_vec_free(multinom);
217	free(left);
218	free(k);
219	free(c);
220	return;
221error:
222	isl_vec_free(multinom);
223	free(left);
224	free(k);
225	if (c)
226		for (i = 0; i < n; ++i)
227			isl_qpolynomial_free(c[i]);
228	free(c);
229	return;
230}
231
232/* Perform bernstein expansion on the parametric vertices that are active
233 * on "cell".
234 *
235 * data->poly has been homogenized in the calling function.
236 *
237 * We plug in the barycentric coordinates for the set variables
238 *
239 *		\vec x = \sum_i \alpha_i v_i(\vec p)
240 *
241 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
242 * Next, we extract the coefficients of the Bernstein base polynomials.
243 */
244static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
245{
246	int i, j;
247	struct bernstein_data *data = (struct bernstein_data *)user;
248	isl_space *dim_param;
249	isl_space *dim_dst;
250	isl_qpolynomial *poly = data->poly;
251	unsigned nvar;
252	int n_vertices;
253	isl_qpolynomial **subs;
254	isl_pw_qpolynomial_fold *pwf;
255	isl_set *dom;
256	isl_ctx *ctx;
257
258	if (!poly)
259		goto error;
260
261	nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1;
262	n_vertices = cell->n_vertices;
263
264	ctx = isl_qpolynomial_get_ctx(poly);
265	if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
266		return isl_cell_foreach_simplex(cell,
267					    &bernstein_coefficients_cell, user);
268
269	subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
270	if (!subs)
271		goto error;
272
273	dim_param = isl_basic_set_get_space(cell->dom);
274	dim_dst = isl_qpolynomial_get_domain_space(poly);
275	dim_dst = isl_space_add_dims(dim_dst, isl_dim_set, n_vertices);
276
277	for (i = 0; i < 1 + nvar; ++i)
278		subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst));
279
280	for (i = 0; i < n_vertices; ++i) {
281		isl_qpolynomial *c;
282		c = isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst), isl_dim_set,
283					1 + nvar + i);
284		for (j = 0; j < nvar; ++j) {
285			int k = cell->ids[i];
286			isl_qpolynomial *v;
287			v = vertex_coordinate(cell->vertices->v[k].vertex, j,
288						isl_space_copy(dim_param));
289			v = isl_qpolynomial_add_dims(v, isl_dim_in,
290							1 + nvar + n_vertices);
291			v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
292			subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
293		}
294		subs[0] = isl_qpolynomial_add(subs[0], c);
295	}
296	isl_space_free(dim_dst);
297
298	poly = isl_qpolynomial_copy(poly);
299
300	poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
301	poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
302	poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
303
304	data->cell = cell;
305	dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
306	data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(dim_param));
307	data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
308	extract_coefficients(poly, dom, data);
309
310	pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
311					    data->fold);
312	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
313	pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
314	data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
315
316	isl_qpolynomial_free(poly);
317	isl_cell_free(cell);
318	for (i = 0; i < 1 + nvar; ++i)
319		isl_qpolynomial_free(subs[i]);
320	free(subs);
321	return 0;
322error:
323	isl_cell_free(cell);
324	return -1;
325}
326
327/* Base case of applying bernstein expansion.
328 *
329 * We compute the chamber decomposition of the parametric polytope "bset"
330 * and then perform bernstein expansion on the parametric vertices
331 * that are active on each chamber.
332 */
333static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
334	__isl_take isl_basic_set *bset,
335	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
336{
337	unsigned nvar;
338	isl_space *dim;
339	isl_pw_qpolynomial_fold *pwf;
340	isl_vertices *vertices;
341	int covers;
342
343	nvar = isl_basic_set_dim(bset, isl_dim_set);
344	if (nvar == 0) {
345		isl_set *dom;
346		isl_qpolynomial_fold *fold;
347
348		fold = isl_qpolynomial_fold_alloc(data->type, poly);
349		dom = isl_set_from_basic_set(bset);
350		if (tight)
351			*tight = 1;
352		pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
353		return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
354	}
355
356	if (isl_qpolynomial_is_zero(poly)) {
357		isl_set *dom;
358		isl_qpolynomial_fold *fold;
359		fold = isl_qpolynomial_fold_alloc(data->type, poly);
360		dom = isl_set_from_basic_set(bset);
361		pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
362		if (tight)
363			*tight = 1;
364		return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
365	}
366
367	dim = isl_basic_set_get_space(bset);
368	dim = isl_space_params(dim);
369	dim = isl_space_from_domain(dim);
370	dim = isl_space_add_dims(dim, isl_dim_set, 1);
371	data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), data->type);
372	data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
373	data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
374	vertices = isl_basic_set_compute_vertices(bset);
375	isl_vertices_foreach_disjoint_cell(vertices,
376		&bernstein_coefficients_cell, data);
377	isl_vertices_free(vertices);
378	isl_qpolynomial_free(data->poly);
379
380	isl_basic_set_free(bset);
381	isl_qpolynomial_free(poly);
382
383	covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
384	if (covers < 0)
385		goto error;
386
387	if (tight)
388		*tight = covers;
389
390	if (covers) {
391		isl_pw_qpolynomial_fold_free(data->pwf);
392		return data->pwf_tight;
393	}
394
395	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
396
397	return data->pwf;
398error:
399	isl_pw_qpolynomial_fold_free(data->pwf_tight);
400	isl_pw_qpolynomial_fold_free(data->pwf);
401	return NULL;
402}
403
404/* Apply bernstein expansion recursively by working in on len[i]
405 * set variables at a time, with i ranging from n_group - 1 to 0.
406 */
407static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
408	__isl_take isl_pw_qpolynomial *pwqp,
409	int n_group, int *len, struct bernstein_data *data, int *tight)
410{
411	int i;
412	unsigned nparam;
413	unsigned nvar;
414	isl_pw_qpolynomial_fold *pwf;
415
416	if (!pwqp)
417		return NULL;
418
419	nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
420	nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
421
422	pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
423					isl_dim_in, 0, nvar - len[n_group - 1]);
424	pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
425
426	for (i = n_group - 2; i >= 0; --i) {
427		nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
428		pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
429				isl_dim_param, nparam - len[i], len[i]);
430		if (tight && !*tight)
431			tight = NULL;
432		pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
433	}
434
435	return pwf;
436}
437
438static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
439	__isl_take isl_basic_set *bset,
440	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
441{
442	isl_factorizer *f;
443	isl_set *set;
444	isl_pw_qpolynomial *pwqp;
445	isl_pw_qpolynomial_fold *pwf;
446
447	f = isl_basic_set_factorizer(bset);
448	if (!f)
449		goto error;
450	if (f->n_group == 0) {
451		isl_factorizer_free(f);
452		return  bernstein_coefficients_base(bset, poly, data, tight);
453	}
454
455	set = isl_set_from_basic_set(bset);
456	pwqp = isl_pw_qpolynomial_alloc(set, poly);
457	pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
458
459	pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
460						tight);
461
462	isl_factorizer_free(f);
463
464	return pwf;
465error:
466	isl_basic_set_free(bset);
467	isl_qpolynomial_free(poly);
468	return NULL;
469}
470
471static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
472	__isl_take isl_basic_set *bset,
473	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
474{
475	int i;
476	int *len;
477	unsigned nvar;
478	isl_pw_qpolynomial_fold *pwf;
479	isl_set *set;
480	isl_pw_qpolynomial *pwqp;
481
482	if (!bset || !poly)
483		goto error;
484
485	nvar = isl_basic_set_dim(bset, isl_dim_set);
486
487	len = isl_alloc_array(bset->ctx, int, nvar);
488	if (nvar && !len)
489		goto error;
490
491	for (i = 0; i < nvar; ++i)
492		len[i] = 1;
493
494	set = isl_set_from_basic_set(bset);
495	pwqp = isl_pw_qpolynomial_alloc(set, poly);
496
497	pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
498
499	free(len);
500
501	return pwf;
502error:
503	isl_basic_set_free(bset);
504	isl_qpolynomial_free(poly);
505	return NULL;
506}
507
508/* Compute a bound on the polynomial defined over the parametric polytope
509 * using bernstein expansion and store the result
510 * in bound->pwf and bound->pwf_tight.
511 *
512 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
513 * the polytope can be factorized and apply bernstein expansion recursively
514 * on the factors.
515 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
516 * bernstein expansion recursively on each dimension.
517 * Otherwise, we apply bernstein expansion on the entire polytope.
518 */
519int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
520	__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
521{
522	struct bernstein_data data;
523	isl_pw_qpolynomial_fold *pwf;
524	unsigned nvar;
525	int tight = 0;
526	int *tp = bound->check_tight ? &tight : NULL;
527
528	if (!bset || !poly)
529		goto error;
530
531	data.type = bound->type;
532	data.check_tight = bound->check_tight;
533
534	nvar = isl_basic_set_dim(bset, isl_dim_set);
535
536	if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
537		pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
538	else if (nvar > 1 &&
539	    (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
540		pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
541	else
542		pwf = bernstein_coefficients_base(bset, poly, &data, tp);
543
544	if (tight)
545		bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
546	else
547		bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
548
549	return 0;
550error:
551	isl_basic_set_free(bset);
552	isl_qpolynomial_free(poly);
553	return -1;
554}
555