1! { dg-do compile }
2! { dg-require-effective-target vect_double }
3
4module lfk_prec
5 integer, parameter :: dp=kind(1.d0)
6end module lfk_prec
7
8!***********************************************
9
10SUBROUTINE kernel(tk)
11!***********************************************************************
12!                                                                      *
13!            KERNEL     executes 24 samples of Fortran computation     *
14!               TK(1) - total cpu time to execute only the 24 kernels. *
15!               TK(2) - total Flops executed by the 24 Kernels         *
16!***********************************************************************
17!                                                                      *
18!     L. L. N. L.   F O R T R A N   K E R N E L S:   M F L O P S       *
19!                                                                      *
20!   These kernels measure  Fortran  numerical  computation rates for a *
21!   spectrum of  CPU-limited  computational  structures.  Mathematical *
22!   through-put is measured  in  units  of  millions of floating-point *
23!   operations executed per Second, called Mega-Flops/Sec.             *
24!                                                                      *
25!   This program  measures  a realistic  CPU performance range for the *
26!   Fortran programming system  on  a  given day.  The CPU performance *
27!   rates depend  strongly  on  the maturity of the Fortran compiler's *
28!   ability to translate Fortran code into efficient machine code.     *
29!   [ The CPU hardware  capability  apart  from  compiler maturity (or *
30!   availability), could be measured (or simulated) by programming the *
31!   kernels in assembly  or machine code directly.  These measurements *
32!   can also  serve  as a framework for tracking the maturation of the *
33!   Fortran compiler during system development.]                       *
34!                                                                      *
35!     Fonzi's Law: There is not now and there never will be a language *
36!                  in which it is the least bit difficult to write     *
37!                  bad programs.                                       *
38!                                                    F.H.MCMAHON  1972 *
39!***********************************************************************
40
41!     l1 :=  param-dimension governs the size of most 1-d arrays
42!     l2 :=  param-dimension governs the size of most 2-d arrays
43
44!     Loop :=  multiple pass control to execute kernel long enough to ti
45!    me.
46!     n  :=  DO loop control for each kernel.  Controls are set in subr.
47!     SIZES
48
49!     ******************************************************************
50use lfk_prec
51implicit double precision  (a-h,o-z)
52!IBM  IMPLICIT  REAL*8           (A-H,O-Z)
53
54REAL(kind=dp), INTENT(inout)                        :: tk
55INTEGER :: test !!,AND
56
57COMMON/alpha/mk,ik,im,ml,il,mruns,nruns,jr,iovec,npfs(8,3,47)
58COMMON/beta/tic,times(8,3,47),see(5,3,8,3),terrs(8,3,47),csums(8,3  &
59    ,47),fopn(8,3,47),dos(8,3,47)
60
61COMMON/spaces/ion,j5,k2,k3,loop1,laps,loop,m,kr,lp,n13h,ibuf,nx,l,  &
62    npass,nfail,n,n1,n2,n13,n213,n813,n14,n16,n416,n21,nt1,nt2,last,idebug  &
63    ,mpy,loop2,mucho,mpylim,intbuf(16)
64
65COMMON/spacer/a11,a12,a13,a21,a22,a23,a31,a32,a33,ar,br,c0,cr,di,dk  &
66    ,dm22,dm23,dm24,dm25,dm26,dm27,dm28,dn,e3,e6,expmax,flx,q,qa,r,ri  &
67    ,s,scale,sig,stb5,t,xnc,xnei,xnm
68
69COMMON/space0/time(47),csum(47),ww(47),wt(47),ticks,fr(9),terr1(47  &
70    ),sumw(7),start,skale(47),bias(47),ws(95),total(47),flopn(47),iq(7  &
71    ),npf,npfs1(47)
72
73COMMON/spacei/wtp(3),mul(3),ispan(47,3),ipass(47,3)
74
75!     ******************************************************************
76
77
78INTEGER :: e,f,zone
79COMMON/ispace/e(96),f(96),ix(1001),ir(1001),zone(300)
80
81COMMON/space1/u(1001),v(1001),w(1001),x(1001),y(1001),z(1001),g(1001)  &
82    ,du1(101),du2(101),du3(101),grd(1001),dex(1001),xi(1001),ex(1001)  &
83    ,ex1(1001),dex1(1001),vx(1001),xx(1001),rx(1001),rh(2048),vsp(101)  &
84    ,vstp(101),vxne(101),vxnd(101),ve3(101),vlr(101),vlin(101),b5(101)  &
85    ,plan(300),d(300),sa(101),sb(101)
86
87COMMON/space2/p(4,512),px(25,101),cx(25,101),vy(101,25),vh(101,7),  &
88    vf(101,7),vg(101,7),vs(101,7),za(101,7),zp(101,7),zq(101,7),zr(101  &
89    ,7),zm(101,7),zb(101,7),zu(101,7),zv(101,7),zz(101,7),b(64,64),c(64,64)  &
90    ,h(64,64),u1(5,101,2),u2(5,101,2),u3(5,101,2)
91
92!     ******************************************************************
93
94dimension zx(1023),xz(447,3),tk(6),mtmp(1)
95EQUIVALENCE(zx(1),z(1)),(xz(1,1),x(1))
96double precision temp
97logical ltmp
98
99
100!     ******************************************************************
101
102!     STANDARD PRODUCT COMPILER DIRECTIVES MAY BE USED FOR OPTIMIZATION
103
104
105
106
107
108CALL trace('KERNEL  ')
109
110CALL SPACE
111
112mpy= 1
113mpysav= mpylim
114loop2= 1
115mpylim= loop2
116l= 1
117loop= 1
118lp= loop
119it0= test(0)
120loop2= mpysav
121mpylim= loop2
122do
123
124!***********************************************************************
125!***  KERNEL 1      HYDRO FRAGMENT
126!***********************************************************************
127
128  x(:n)= q+y(:n)*(r*zx(11:n+10)+t*zx(12:n+11))
129IF(test(1) <= 0)THEN
130  EXIT
131END IF
132END DO
133
134do
135!                   we must execute    DO k= 1,n  repeatedly for accurat
136!    e timing
137
138!***********************************************************************
139!***  KERNEL 2      ICCG EXCERPT (INCOMPLETE CHOLESKY - CONJUGATE GRADIE
140!    NT)
141!***********************************************************************
142
143
144ii= n
145ipntp= 0
146
147do while(ii >  1)
148ipnt= ipntp
149ipntp= ipntp+ii
150ii= ishft(ii,-1)
151i= ipntp+1
152!dir$ vector always
153       x(ipntp+2:ipntp+ii+1)=x(ipnt+2:ipntp:2)-v(ipnt+2:ipntp:2) &
154     &*x(ipnt+1:ipntp-1:2)-v(ipnt+3:ipntp+1:2)*x(ipnt+3:ipntp+1:2)
155END DO
156IF(test(2) <= 0)THEN
157  EXIT
158END IF
159END DO
160
161do
162
163!***********************************************************************
164!***  KERNEL 3      INNER PRODUCT
165!***********************************************************************
166
167
168q= dot_product(z(:n),x(:n))
169IF(test(3) <= 0)THEN
170  EXIT
171END IF
172END DO
173m= (1001-7)/2
174
175!***********************************************************************
176!***  KERNEL 4      BANDED LINEAR EQUATIONS
177!***********************************************************************
178
179fw= 1.000D-25
180
181do
182!dir$ vector always
183 xz(6,:3)= y(5)*(xz(6,:3)+matmul(y(5:n:5), xz(:n/5,:3)))
184
185IF(test(4) <= 0)THEN
186  EXIT
187END IF
188END DO
189
190do
191
192!***********************************************************************
193!***  KERNEL 5      TRI-DIAGONAL ELIMINATION, BELOW DIAGONAL (NO VECTORS
194!    )
195!***********************************************************************
196
197
198tmp= x(1)
199DO i= 2,n
200  tmp= z(i)*(y(i)-tmp)
201  x(i)= tmp
202END DO
203IF(test(5) <= 0)THEN
204  EXIT
205END IF
206END DO
207
208do
209
210!***********************************************************************
211!***  KERNEL 6      GENERAL LINEAR RECURRENCE EQUATIONS
212!***********************************************************************
213
214
215DO i= 2,n
216  w(i)= 0.0100D0+dot_product(b(i,:i-1),w(i-1:1:-1))
217END DO
218IF(test(6) <= 0)THEN
219  EXIT
220END IF
221END DO
222
223do
224
225!***********************************************************************
226!***  KERNEL 7      EQUATION OF STATE FRAGMENT
227!***********************************************************************
228
229
230  x(:n)= u(:n)+r*(z(:n)+r*y(:n))+t*(u(4:n+3)+r*(u(3:n+2)+r*u(2:n+1))+t*(  &
231      u(7:n+6)+q*(u(6:n+5)+q*u(5:n+4))))
232IF(test(7) <= 0)THEN
233  EXIT
234END IF
235END DO
236
237do
238
239
240!***********************************************************************
241!***  KERNEL 8      A.D.I. INTEGRATION
242!***********************************************************************
243
244
245nl1= 1
246nl2= 2
247fw= 2.000D0
248  DO ky= 2,n
249DO kx= 2,3
250    du1ky= u1(kx,ky+1,nl1)-u1(kx,ky-1,nl1)
251    du2ky= u2(kx,ky+1,nl1)-u2(kx,ky-1,nl1)
252    du3ky= u3(kx,ky+1,nl1)-u3(kx,ky-1,nl1)
253    u1(kx,ky,nl2)= u1(kx,ky,nl1)+a11*du1ky+a12*du2ky+a13  &
254        *du3ky+sig*(u1(kx+1,ky,nl1)-fw*u1(kx,ky,nl1)+u1(kx-1,ky,nl1))
255    u2(kx,ky,nl2)= u2(kx,ky,nl1)+a21*du1ky+a22*du2ky+a23  &
256        *du3ky+sig*(u2(kx+1,ky,nl1)-fw*u2(kx,ky,nl1)+u2(kx-1,ky,nl1))
257    u3(kx,ky,nl2)= u3(kx,ky,nl1)+a31*du1ky+a32*du2ky+a33  &
258        *du3ky+sig*(u3(kx+1,ky,nl1)-fw*u3(kx,ky,nl1)+u3(kx-1,ky,nl1))
259  END DO
260END DO
261IF(test(8) <= 0)THEN
262  EXIT
263END IF
264END DO
265
266do
267
268!***********************************************************************
269!***  KERNEL 9      INTEGRATE PREDICTORS
270!***********************************************************************
271
272
273  px(1,:n)= dm28*px(13,:n)+px(3,:n)+dm27*px(12,:n)+dm26*px(11,:n)+dm25*px(10  &
274      ,:n)+dm24*px(9,:n)+dm23*px(8,:n)+dm22*px(7,:n)+c0*(px(5,:n)+px(6,:n))
275IF(test(9) <= 0)THEN
276  EXIT
277END IF
278END DO
279
280do
281
282!***********************************************************************
283!***  KERNEL 10     DIFFERENCE PREDICTORS
284!***********************************************************************
285
286!dir$ unroll(2)
287	  do k= 1,n
288	      br= cx(5,k)-px(5,k)
289	      px(5,k)= cx(5,k)
290	      cr= br-px(6,k)
291	      px(6,k)= br
292	      ar= cr-px(7,k)
293	      px(7,k)= cr
294	      br= ar-px(8,k)
295	      px(8,k)= ar
296	      cr= br-px(9,k)
297	      px(9,k)= br
298	      ar= cr-px(10,k)
299	      px(10,k)= cr
300	      br= ar-px(11,k)
301	      px(11,k)= ar
302	      cr= br-px(12,k)
303	      px(12,k)= br
304	      px(14,k)= cr-px(13,k)
305	      px(13,k)= cr
306	    enddo
307IF(test(10) <= 0)THEN
308  EXIT
309END IF
310END DO
311
312do
313
314!***********************************************************************
315!***  KERNEL 11     FIRST SUM.   PARTIAL SUMS.              (NO VECTORS)
316!***********************************************************************
317
318
319temp= 0
320DO k= 1,n
321  temp= temp+y(k)
322  x(k)= temp
323END DO
324IF(test(11) <= 0)THEN
325  EXIT
326END IF
327END DO
328
329do
330
331!***********************************************************************
332!***  KERNEL 12     FIRST DIFF.
333!***********************************************************************
334
335  x(:n)= y(2:n+1)-y(:n)
336IF(test(12) <= 0)THEN
337  EXIT
338END IF
339END DO
340fw= 1.000D0
341
342!***********************************************************************
343!***  KERNEL 13      2-D PIC   Particle In Cell
344!***********************************************************************
345
346
347do
348
349! rounding modes for integerizing make no difference here
350	  do k= 1,n
351	      i1= 1+iand(int(p(1,k)),63)
352	      j1= 1+iand(int(p(2,k)),63)
353	      p(3,k)= p(3,k)+b(i1,j1)
354	      p(1,k)= p(1,k)+p(3,k)
355	      i2= iand(int(p(1,k)),63)
356	      p(1,k)= p(1,k)+y(i2+32)
357	      p(4,k)= p(4,k)+c(i1,j1)
358	      p(2,k)= p(2,k)+p(4,k)
359	      j2= iand(int(p(2,k)),63)
360	      p(2,k)= p(2,k)+z(j2+32)
361	      i2= i2+e(i2+32)
362	      j2= j2+f(j2+32)
363	      h(i2,j2)= h(i2,j2)+fw
364	    enddo
365IF(test(13) <= 0)THEN
366  EXIT
367END IF
368END DO
369fw= 1.000D0
370
371!***********************************************************************
372!***  KERNEL 14      1-D PIC   Particle In Cell
373!***********************************************************************
374
375
376
377do
378
379  ix(:n)= grd(:n)
380!dir$ ivdep
381  vx(:n)= ex(ix(:n))-ix(:n)*dex(ix(:n))
382  ir(:n)= vx(:n)+flx
383  rx(:n)= vx(:n)+flx-ir(:n)
384  ir(:n)= iand(ir(:n),2047)+1
385  xx(:n)= rx(:n)+ir(:n)
386DO k= 1,n
387      rh(ir(k))= rh(ir(k))+fw-rx(k)
388      rh(ir(k)+1)= rh(ir(k)+1)+rx(k)
389END DO
390IF(test(14) <= 0)THEN
391  EXIT
392END IF
393END DO
394
395do
396
397!***********************************************************************
398!***  KERNEL 15     CASUAL FORTRAN.  DEVELOPMENT VERSION.
399!***********************************************************************
400
401
402!       CASUAL ORDERING OF SCALAR OPERATIONS IS TYPICAL PRACTICE.
403!       THIS EXAMPLE DEMONSTRATES THE NON-TRIVIAL TRANSFORMATION
404!       REQUIRED TO MAP INTO AN EFFICIENT MACHINE IMPLEMENTATION.
405
406
407ng= 7
408nz= n
409ar= 0.05300D0
410br= 0.07300D0
411!$omp parallel do private(t,j,k,r,s,i,ltmp) if(nz>98)
412do j= 2,ng-1
413  do k= 2,nz
414    i= merge(k-1,k,vf(k,j) <  vf((k-1),j))
415    t= merge(br,ar,vh(k,(j+1)) <= vh(k,j))
416    r= MAX(vh(i,j),vh(i,j+1))
417    s= vf(i,j)
418    vy(k,j)= t/s*SQRT(vg(k,j)**2+r*r)
419    if(k < nz)then
420	ltmp=vf(k,j) >= vf(k,(j-1))
421	i= merge(j,j-1,ltmp)
422	t= merge(ar,br,ltmp)
423	r= MAX(vg(k,i),vg(k+1,i))
424	s= vf(k,i)
425	vs(k,j)= t/s*SQRT(vh(k,j)**2+r*r)
426    endif
427  END do
428  vs(nz,j)= 0.0D0
429END do
430  vy(2:nz,ng)= 0.0D0
431IF(test(15) <= 0)THEN
432  EXIT
433END IF
434END DO
435ii= n/3
436
437!***********************************************************************
438!***  KERNEL 16     MONTE CARLO SEARCH LOOP
439!***********************************************************************
440
441lb= ii+ii
442k2= 0
443k3= 0
444
445do
446DO m= 1,zone(1)
447  j2= (n+n)*(m-1)+1
448  DO k= 1,n
449    k2= k2+1
450    j4= j2+k+k
451    j5= zone(j4)
452    IF(j5 >= n)THEN
453      IF(j5 == n)THEN
454        EXIT
455      END IF
456      k3= k3+1
457      IF(d(j5) <  d(j5-1)*(t-d(j5-2))**2+(s-d(j5-3))**2+ (r-d(j5-4))**2)THEN
458        go to 200
459      END IF
460      IF(d(j5) == d(j5-1)*(t-d(j5-2))**2+(s-d(j5-3))**2+ (r-d(j5-4))**2)THEN
461        EXIT
462      END IF
463    ELSE
464      IF(j5-n+lb <  0)THEN
465        IF(plan(j5) <  t)THEN
466          go to 200
467        END IF
468        IF(plan(j5) == t)THEN
469          EXIT
470        END IF
471      ELSE
472        IF(j5-n+ii <  0)THEN
473          IF(plan(j5) <  s)THEN
474            go to 200
475          END IF
476          IF(plan(j5) == s)THEN
477            EXIT
478          END IF
479        ELSE
480          IF(plan(j5) <  r)THEN
481            go to 200
482          END IF
483          IF(plan(j5) == r)THEN
484            EXIT
485          END IF
486        END IF
487      END IF
488    END IF
489    IF(zone(j4-1) <= 0)THEN
490      go to 200
491    END IF
492  END DO
493  EXIT
494  200             IF(zone(j4-1) == 0)THEN
495    EXIT
496  END IF
497END DO
498IF(test(16) <= 0)THEN
499  EXIT
500END IF
501END DO
502dw= 5.0000D0/3.0000D0
503
504!***********************************************************************
505!***  KERNEL 17     IMPLICIT, CONDITIONAL COMPUTATION       (NO VECTORS)
506!***********************************************************************
507
508!         RECURSIVE-DOUBLING VECTOR TECHNIQUES CAN NOT BE USED
509!         BECAUSE CONDITIONAL OPERATIONS APPLY TO EACH ELEMENT.
510
511fw= 1.0000D0/3.0000D0
512tw= 1.0300D0/3.0700D0
513
514do
515scale= dw
516rtmp= fw
517e6= tw
518DO k= n,2,-1
519  e3= rtmp*vlr(k)+vlin(k)
520  xnei= vxne(k)
521  vxnd(k)= e6
522  xnc= scale*e3
523!                                      SELECT MODEL
524  IF(max(rtmp,xnei) <= xnc)THEN
525!                                      LINEAR MODEL
526    ve3(k)= e3
527    rtmp= e3+e3-rtmp
528    vxne(k)= e3+e3-xnei
529  ELSE
530    rtmp= rtmp*vsp(k)+vstp(k)
531!                                      STEP MODEL
532    vxne(k)= rtmp
533    ve3(k)= rtmp
534  END IF
535    e6= rtmp
536END DO
537xnm= rtmp
538IF(test(17) <= 0)THEN
539  EXIT
540END IF
541END DO
542
543do
544
545!***********************************************************************
546!***  KERNEL 18     2-D EXPLICIT HYDRODYNAMICS FRAGMENT
547!***********************************************************************
548
549
550t= 0.003700D0
551s= 0.004100D0
552kn= 6
553jn= n
554  zb(2:jn,2:kn)=(zr(2:jn,2:kn)+zr(2:jn,:kn-1))/(zm(2:jn,2:kn)+zm(:jn-1,2:kn)) &
555	*(zp(:jn-1,2:kn)-zp(2:jn,2:kn)+(zq(:jn-1,2:kn)-zq(2:jn,2:kn)))
556  za(2:jn,2:kn)=(zr(2:jn,2:kn)+zr(:jn-1,2:kn))/(zm(:jn-1,2:kn)+zm(:jn-1,3:kn+1))  &
557	*(zp(:jn-1,3:kn+1)-zp(:jn-1,2:kn)+(zq(:jn-1,3:kn+1)-zq(:jn-1,2:kn)))
558  zu(2:jn,2:kn)= zu(2:jn,2:kn)+ &
559	s*(za(2:jn,2:kn)*(zz(2:jn,2:kn)-zz(3:jn+1,2:kn)) &
560	-za(:jn-1,2:kn)*(zz(2:jn,2:kn)-zz(:jn-1,2:kn)) &
561	-zb(2:jn,2:kn)*(zz(2:jn,2:kn)-zz(2:jn,:kn-1))+ &
562	zb(2:jn,3:kn+1)*(zz(2:jn, 2:kn)-zz(2:jn,3:kn+1)))
563  zv(2:jn,2:kn)= zv(2:jn,2:kn)+ &
564	s*(za(2:jn,2:kn)*(zr(2:jn,2:kn)-zr(3:jn+1,2:kn)) &
565	-za(:jn-1,2:kn)*(zr(2:jn,2:kn)-zr(:jn-1,2:kn)) &
566	-zb(2:jn,2:kn)*(zr(2:jn,2:kn)-zr(2:jn,:kn-1))+ &
567	zb(2:jn,3:kn+1)*(zr(2:jn, 2:kn)-zr(2:jn,3:kn+1)))
568  zr(2:jn,2:kn)= zr(2:jn,2:kn)+t*zu(2:jn,2:kn)
569  zz(2:jn,2:kn)= zz(2:jn,2:kn)+t*zv(2:jn,2:kn)
570IF(test(18) <= 0)THEN
571  EXIT
572END IF
573END DO
574
575do
576
577!***********************************************************************
578!***  KERNEL 19      GENERAL LINEAR RECURRENCE EQUATIONS    (NO VECTORS)
579!***********************************************************************
580
581kb5i= 0
582
583DO k= 1,n
584  b5(k+kb5i)= sa(k)+stb5*sb(k)
585  stb5= b5(k+kb5i)-stb5
586END DO
587DO k= n,1,-1
588  b5(k+kb5i)= sa(k)+stb5*sb(k)
589  stb5= b5(k+kb5i)-stb5
590END DO
591IF(test(19) <= 0)THEN
592  EXIT
593END IF
594END DO
595dw= 0.200D0
596
597!***********************************************************************
598!***  KERNEL 20     DISCRETE ORDINATES TRANSPORT: RECURRENCE (NO VECTORS
599!***********************************************************************
600
601
602do
603
604rtmp= xx(1)
605DO k= 1,n
606  di= y(k)*(rtmp+dk)-g(k)
607  dn=merge( max(s,min(z(k)*(rtmp+dk)/di,t)),dw,di /= 0.0)
608  x(k)= ((w(k)+v(k)*dn)*rtmp+u(k))/(vx(k)+v(k)*dn)
609  rtmp= ((w(k)-vx(k))*rtmp+u(k))*DN/(vx(k)+v(k)*dn)+ rtmp
610 xx(k+1)= rtmp
611END DO
612IF(test(20) <= 0)THEN
613  EXIT
614END IF
615END DO
616
617do
618
619!***********************************************************************
620!***  KERNEL 21     MATRIX*MATRIX PRODUCT
621!***********************************************************************
622
623    px(:25,:n)= px(:25,:n)+matmul(vy(:25,:25),cx(:25,:n))
624IF(test(21) <= 0)THEN
625  EXIT
626END IF
627END DO
628expmax= 20.0000D0
629
630
631!***********************************************************************
632!***  KERNEL 22     PLANCKIAN DISTRIBUTION
633!***********************************************************************
634
635!      EXPMAX= 234.500d0
636fw= 1.00000D0
637u(n)= 0.99000D0*expmax*v(n)
638
639do
640
641  y(:n)= u(:n)/v(:n)
642  w(:n)= x(:n)/(EXP(y(:n))-fw)
643IF(test(22) <= 0)THEN
644  EXIT
645END IF
646END DO
647fw= 0.17500D0
648
649!***********************************************************************
650!***  KERNEL 23     2-D IMPLICIT HYDRODYNAMICS FRAGMENT
651!***********************************************************************
652
653
654do
655
656      DO k= 2,n
657	 do j=2,6
658	     za(k,j)= za(k,j)+fw*(za(k,j+1)*zr(k,j)-za(k,j)+		&
659     &		zv(k,j)*za(k-1,j)+(zz(k,j)+za(k+1,j)*			&
660     &		zu(k,j)+za(k,j-1)*zb(k,j)))
661      END DO
662    END DO
663IF(test(23) <= 0)THEN
664  EXIT
665END IF
666END DO
667x(n/2)= -1.000D+10
668
669!***********************************************************************
670!***  KERNEL 24     FIND LOCATION OF FIRST MINIMUM IN ARRAY
671!***********************************************************************
672
673!      X( n/2)= -1.000d+50
674
675do
676 m= minloc(x(:n),DIM=1)
677
678IF(test(24) == 0)THEN
679  EXIT
680END IF
681END DO
682sum= 0.00D0
683som= 0.00D0
684DO k= 1,mk
685  sum= sum+time(k)
686  times(jr,il,k)= time(k)
687  terrs(jr,il,k)= terr1(k)
688  npfs(jr,il,k)= npfs1(k)
689  csums(jr,il,k)= csum(k)
690  dos(jr,il,k)= total(k)
691  fopn(jr,il,k)= flopn(k)
692  som= som+flopn(k)*total(k)
693END DO
694tk(1)= tk(1)+sum
695tk(2)= tk(2)+som
696!                        Dumpout Checksums:  file "chksum"
697!     WRITE ( 7,706) jr, il
698! 706 FORMAT(1X,2I3)
699!     WRITE ( 7,707) ( CSUM(k), k= 1,mk)
700! 707 FORMAT(5X,'&',1PE23.16,',',1PE23.16,',',1PE23.16,',')
701
702CALL track('KERNEL  ')
703RETURN
704END SUBROUTINE kernel
705
706! { dg-final { scan-tree-dump-times "vectorized 19 loops" 1 "vect" } }
707! { dg-final { cleanup-tree-dump "vect" } }
708