1/* Integrated Register Allocator (IRA) intercommunication header file.
2   Copyright (C) 2006-2015 Free Software Foundation, Inc.
3   Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#ifndef GCC_IRA_INT_H
22#define GCC_IRA_INT_H
23
24#include "cfgloop.h"
25#include "ira.h"
26#include "alloc-pool.h"
27
28/* To provide consistency in naming, all IRA external variables,
29   functions, common typedefs start with prefix ira_.  */
30
31#ifdef ENABLE_CHECKING
32#define ENABLE_IRA_CHECKING
33#endif
34
35#ifdef ENABLE_IRA_CHECKING
36#define ira_assert(c) gcc_assert (c)
37#else
38/* Always define and include C, so that warnings for empty body in an
39  'if' statement and unused variable do not occur.  */
40#define ira_assert(c) ((void)(0 && (c)))
41#endif
42
43/* Compute register frequency from edge frequency FREQ.  It is
44   analogous to REG_FREQ_FROM_BB.  When optimizing for size, or
45   profile driven feedback is available and the function is never
46   executed, frequency is always equivalent.  Otherwise rescale the
47   edge frequency.  */
48#define REG_FREQ_FROM_EDGE_FREQ(freq)				   \
49  (optimize_function_for_size_p (cfun)				   \
50   ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX)		   \
51   ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
52
53/* A modified value of flag `-fira-verbose' used internally.  */
54extern int internal_flag_ira_verbose;
55
56/* Dump file of the allocator if it is not NULL.  */
57extern FILE *ira_dump_file;
58
59/* Typedefs for pointers to allocno live range, allocno, and copy of
60   allocnos.  */
61typedef struct live_range *live_range_t;
62typedef struct ira_allocno *ira_allocno_t;
63typedef struct ira_allocno_pref *ira_pref_t;
64typedef struct ira_allocno_copy *ira_copy_t;
65typedef struct ira_object *ira_object_t;
66
67/* Definition of vector of allocnos and copies.  */
68
69/* Typedef for pointer to the subsequent structure.  */
70typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
71
72typedef unsigned short move_table[N_REG_CLASSES];
73
74/* In general case, IRA is a regional allocator.  The regions are
75   nested and form a tree.  Currently regions are natural loops.  The
76   following structure describes loop tree node (representing basic
77   block or loop).  We need such tree because the loop tree from
78   cfgloop.h is not convenient for the optimization: basic blocks are
79   not a part of the tree from cfgloop.h.  We also use the nodes for
80   storing additional information about basic blocks/loops for the
81   register allocation purposes.  */
82struct ira_loop_tree_node
83{
84  /* The node represents basic block if children == NULL.  */
85  basic_block bb;    /* NULL for loop.  */
86  /* NULL for BB or for loop tree root if we did not build CFG loop tree.  */
87  struct loop *loop;
88  /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89     SUBLOOP_NEXT is always NULL for BBs.  */
90  ira_loop_tree_node_t subloop_next, next;
91  /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92     the node.  They are NULL for BBs.  */
93  ira_loop_tree_node_t subloops, children;
94  /* The node immediately containing given node.  */
95  ira_loop_tree_node_t parent;
96
97  /* Loop level in range [0, ira_loop_tree_height).  */
98  int level;
99
100  /* All the following members are defined only for nodes representing
101     loops.  */
102
103  /* The loop number from CFG loop tree.  The root number is 0.  */
104  int loop_num;
105
106  /* True if the loop was marked for removal from the register
107     allocation.  */
108  bool to_remove_p;
109
110  /* Allocnos in the loop corresponding to their regnos.  If it is
111     NULL the loop does not form a separate register allocation region
112     (e.g. because it has abnormal enter/exit edges and we can not put
113     code for register shuffling on the edges if a different
114     allocation is used for a pseudo-register on different sides of
115     the edges).  Caps are not in the map (remember we can have more
116     one cap with the same regno in a region).  */
117  ira_allocno_t *regno_allocno_map;
118
119  /* True if there is an entry to given loop not from its parent (or
120     grandparent) basic block.  For example, it is possible for two
121     adjacent loops inside another loop.  */
122  bool entered_from_non_parent_p;
123
124  /* Maximal register pressure inside loop for given register class
125     (defined only for the pressure classes).  */
126  int reg_pressure[N_REG_CLASSES];
127
128  /* Numbers of allocnos referred or living in the loop node (except
129     for its subloops).  */
130  bitmap all_allocnos;
131
132  /* Numbers of allocnos living at the loop borders.  */
133  bitmap border_allocnos;
134
135  /* Regnos of pseudos modified in the loop node (including its
136     subloops).  */
137  bitmap modified_regnos;
138
139  /* Numbers of copies referred in the corresponding loop.  */
140  bitmap local_copies;
141};
142
143/* The root of the loop tree corresponding to the all function.  */
144extern ira_loop_tree_node_t ira_loop_tree_root;
145
146/* Height of the loop tree.  */
147extern int ira_loop_tree_height;
148
149/* All nodes representing basic blocks are referred through the
150   following array.  We can not use basic block member `aux' for this
151   because it is used for insertion of insns on edges.  */
152extern ira_loop_tree_node_t ira_bb_nodes;
153
154/* Two access macros to the nodes representing basic blocks.  */
155#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
156#define IRA_BB_NODE_BY_INDEX(index) __extension__			\
157(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]);		\
158     if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
159       {								\
160         fprintf (stderr,						\
161                  "\n%s: %d: error in %s: it is not a block node\n",	\
162                  __FILE__, __LINE__, __FUNCTION__);			\
163         gcc_unreachable ();						\
164       }								\
165     _node; }))
166#else
167#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
168#endif
169
170#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
171
172/* All nodes representing loops are referred through the following
173   array.  */
174extern ira_loop_tree_node_t ira_loop_nodes;
175
176/* Two access macros to the nodes representing loops.  */
177#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
178#define IRA_LOOP_NODE_BY_INDEX(index) __extension__			\
179(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);	\
180     if (_node->children == NULL || _node->bb != NULL			\
181         || (_node->loop == NULL && current_loops != NULL))		\
182       {								\
183         fprintf (stderr,						\
184                  "\n%s: %d: error in %s: it is not a loop node\n",	\
185                  __FILE__, __LINE__, __FUNCTION__);			\
186         gcc_unreachable ();						\
187       }								\
188     _node; }))
189#else
190#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
191#endif
192
193#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
194
195
196/* The structure describes program points where a given allocno lives.
197   If the live ranges of two allocnos are intersected, the allocnos
198   are in conflict.  */
199struct live_range
200{
201  /* Object whose live range is described by given structure.  */
202  ira_object_t object;
203  /* Program point range.  */
204  int start, finish;
205  /* Next structure describing program points where the allocno
206     lives.  */
207  live_range_t next;
208  /* Pointer to structures with the same start/finish.  */
209  live_range_t start_next, finish_next;
210};
211
212/* Program points are enumerated by numbers from range
213   0..IRA_MAX_POINT-1.  There are approximately two times more program
214   points than insns.  Program points are places in the program where
215   liveness info can be changed.  In most general case (there are more
216   complicated cases too) some program points correspond to places
217   where input operand dies and other ones correspond to places where
218   output operands are born.  */
219extern int ira_max_point;
220
221/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222   live ranges with given start/finish point.  */
223extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
224
225/* A structure representing conflict information for an allocno
226   (or one of its subwords).  */
227struct ira_object
228{
229  /* The allocno associated with this record.  */
230  ira_allocno_t allocno;
231  /* Vector of accumulated conflicting conflict_redords with NULL end
232     marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
233     otherwise.  */
234  void *conflicts_array;
235  /* Pointer to structures describing at what program point the
236     object lives.  We always maintain the list in such way that *the
237     ranges in the list are not intersected and ordered by decreasing
238     their program points*.  */
239  live_range_t live_ranges;
240  /* The subword within ALLOCNO which is represented by this object.
241     Zero means the lowest-order subword (or the entire allocno in case
242     it is not being tracked in subwords).  */
243  int subword;
244  /* Allocated size of the conflicts array.  */
245  unsigned int conflicts_array_size;
246  /* A unique number for every instance of this structure, which is used
247     to represent it in conflict bit vectors.  */
248  int id;
249  /* Before building conflicts, MIN and MAX are initialized to
250     correspondingly minimal and maximal points of the accumulated
251     live ranges.  Afterwards, they hold the minimal and maximal ids
252     of other ira_objects that this one can conflict with.  */
253  int min, max;
254  /* Initial and accumulated hard registers conflicting with this
255     object and as a consequences can not be assigned to the allocno.
256     All non-allocatable hard regs and hard regs of register classes
257     different from given allocno one are included in the sets.  */
258  HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
259  /* Number of accumulated conflicts in the vector of conflicting
260     objects.  */
261  int num_accumulated_conflicts;
262  /* TRUE if conflicts are represented by a vector of pointers to
263     ira_object structures.  Otherwise, we use a bit vector indexed
264     by conflict ID numbers.  */
265  unsigned int conflict_vec_p : 1;
266};
267
268/* A structure representing an allocno (allocation entity).  Allocno
269   represents a pseudo-register in an allocation region.  If
270   pseudo-register does not live in a region but it lives in the
271   nested regions, it is represented in the region by special allocno
272   called *cap*.  There may be more one cap representing the same
273   pseudo-register in region.  It means that the corresponding
274   pseudo-register lives in more one non-intersected subregion.  */
275struct ira_allocno
276{
277  /* The allocno order number starting with 0.  Each allocno has an
278     unique number and the number is never changed for the
279     allocno.  */
280  int num;
281  /* Regno for allocno or cap.  */
282  int regno;
283  /* Mode of the allocno which is the mode of the corresponding
284     pseudo-register.  */
285  ENUM_BITFIELD (machine_mode) mode : 8;
286  /* Widest mode of the allocno which in at least one case could be
287     for paradoxical subregs where wmode > mode.  */
288  ENUM_BITFIELD (machine_mode) wmode : 8;
289  /* Register class which should be used for allocation for given
290     allocno.  NO_REGS means that we should use memory.  */
291  ENUM_BITFIELD (reg_class) aclass : 16;
292  /* During the reload, value TRUE means that we should not reassign a
293     hard register to the allocno got memory earlier.  It is set up
294     when we removed memory-memory move insn before each iteration of
295     the reload.  */
296  unsigned int dont_reassign_p : 1;
297#ifdef STACK_REGS
298  /* Set to TRUE if allocno can't be assigned to the stack hard
299     register correspondingly in this region and area including the
300     region and all its subregions recursively.  */
301  unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
302#endif
303  /* TRUE value means that there is no sense to spill the allocno
304     during coloring because the spill will result in additional
305     reloads in reload pass.  */
306  unsigned int bad_spill_p : 1;
307  /* TRUE if a hard register or memory has been assigned to the
308     allocno.  */
309  unsigned int assigned_p : 1;
310  /* TRUE if conflicts for given allocno are represented by vector of
311     pointers to the conflicting allocnos.  Otherwise, we use a bit
312     vector where a bit with given index represents allocno with the
313     same number.  */
314  unsigned int conflict_vec_p : 1;
315  /* Hard register assigned to given allocno.  Negative value means
316     that memory was allocated to the allocno.  During the reload,
317     spilled allocno has value equal to the corresponding stack slot
318     number (0, ...) - 2.  Value -1 is used for allocnos spilled by the
319     reload (at this point pseudo-register has only one allocno) which
320     did not get stack slot yet.  */
321  signed int hard_regno : 16;
322  /* Allocnos with the same regno are linked by the following member.
323     Allocnos corresponding to inner loops are first in the list (it
324     corresponds to depth-first traverse of the loops).  */
325  ira_allocno_t next_regno_allocno;
326  /* There may be different allocnos with the same regno in different
327     regions.  Allocnos are bound to the corresponding loop tree node.
328     Pseudo-register may have only one regular allocno with given loop
329     tree node but more than one cap (see comments above).  */
330  ira_loop_tree_node_t loop_tree_node;
331  /* Accumulated usage references of the allocno.  Here and below,
332     word 'accumulated' means info for given region and all nested
333     subregions.  In this case, 'accumulated' means sum of references
334     of the corresponding pseudo-register in this region and in all
335     nested subregions recursively. */
336  int nrefs;
337  /* Accumulated frequency of usage of the allocno.  */
338  int freq;
339  /* Minimal accumulated and updated costs of usage register of the
340     allocno class.  */
341  int class_cost, updated_class_cost;
342  /* Minimal accumulated, and updated costs of memory for the allocno.
343     At the allocation start, the original and updated costs are
344     equal.  The updated cost may be changed after finishing
345     allocation in a region and starting allocation in a subregion.
346     The change reflects the cost of spill/restore code on the
347     subregion border if we assign memory to the pseudo in the
348     subregion.  */
349  int memory_cost, updated_memory_cost;
350  /* Accumulated number of points where the allocno lives and there is
351     excess pressure for its class.  Excess pressure for a register
352     class at some point means that there are more allocnos of given
353     register class living at the point than number of hard-registers
354     of the class available for the allocation.  */
355  int excess_pressure_points_num;
356  /* Allocno hard reg preferences.  */
357  ira_pref_t allocno_prefs;
358  /* Copies to other non-conflicting allocnos.  The copies can
359     represent move insn or potential move insn usually because of two
360     operand insn constraints.  */
361  ira_copy_t allocno_copies;
362  /* It is a allocno (cap) representing given allocno on upper loop tree
363     level.  */
364  ira_allocno_t cap;
365  /* It is a link to allocno (cap) on lower loop level represented by
366     given cap.  Null if given allocno is not a cap.  */
367  ira_allocno_t cap_member;
368  /* The number of objects tracked in the following array.  */
369  int num_objects;
370  /* An array of structures describing conflict information and live
371     ranges for each object associated with the allocno.  There may be
372     more than one such object in cases where the allocno represents a
373     multi-word register.  */
374  ira_object_t objects[2];
375  /* Accumulated frequency of calls which given allocno
376     intersects.  */
377  int call_freq;
378  /* Accumulated number of the intersected calls.  */
379  int calls_crossed_num;
380  /* The number of calls across which it is live, but which should not
381     affect register preferences.  */
382  int cheap_calls_crossed_num;
383  /* Registers clobbered by intersected calls.  */
384   HARD_REG_SET crossed_calls_clobbered_regs;
385  /* Array of usage costs (accumulated and the one updated during
386     coloring) for each hard register of the allocno class.  The
387     member value can be NULL if all costs are the same and equal to
388     CLASS_COST.  For example, the costs of two different hard
389     registers can be different if one hard register is callee-saved
390     and another one is callee-used and the allocno lives through
391     calls.  Another example can be case when for some insn the
392     corresponding pseudo-register value should be put in specific
393     register class (e.g. AREG for x86) which is a strict subset of
394     the allocno class (GENERAL_REGS for x86).  We have updated costs
395     to reflect the situation when the usage cost of a hard register
396     is decreased because the allocno is connected to another allocno
397     by a copy and the another allocno has been assigned to the hard
398     register.  */
399  int *hard_reg_costs, *updated_hard_reg_costs;
400  /* Array of decreasing costs (accumulated and the one updated during
401     coloring) for allocnos conflicting with given allocno for hard
402     regno of the allocno class.  The member value can be NULL if all
403     costs are the same.  These costs are used to reflect preferences
404     of other allocnos not assigned yet during assigning to given
405     allocno.  */
406  int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
407  /* Different additional data.  It is used to decrease size of
408     allocno data footprint.  */
409  void *add_data;
410};
411
412
413/* All members of the allocno structures should be accessed only
414   through the following macros.  */
415#define ALLOCNO_NUM(A) ((A)->num)
416#define ALLOCNO_REGNO(A) ((A)->regno)
417#define ALLOCNO_REG(A) ((A)->reg)
418#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
419#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
420#define ALLOCNO_CAP(A) ((A)->cap)
421#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
422#define ALLOCNO_NREFS(A) ((A)->nrefs)
423#define ALLOCNO_FREQ(A) ((A)->freq)
424#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
425#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
426#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
427#define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
428#define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
429  ((A)->crossed_calls_clobbered_regs)
430#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
431#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
432#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
433#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
434#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
435#ifdef STACK_REGS
436#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
437#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
438#endif
439#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
440#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
441#define ALLOCNO_MODE(A) ((A)->mode)
442#define ALLOCNO_WMODE(A) ((A)->wmode)
443#define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
444#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
445#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
446#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
447#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
448  ((A)->conflict_hard_reg_costs)
449#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
450  ((A)->updated_conflict_hard_reg_costs)
451#define ALLOCNO_CLASS(A) ((A)->aclass)
452#define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
453#define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
454#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
455#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
456#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
457  ((A)->excess_pressure_points_num)
458#define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
459#define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
460#define ALLOCNO_ADD_DATA(A) ((A)->add_data)
461
462/* Typedef for pointer to the subsequent structure.  */
463typedef struct ira_emit_data *ira_emit_data_t;
464
465/* Allocno bound data used for emit pseudo live range split insns and
466   to flattening IR.  */
467struct ira_emit_data
468{
469  /* TRUE if the allocno assigned to memory was a destination of
470     removed move (see ira-emit.c) at loop exit because the value of
471     the corresponding pseudo-register is not changed inside the
472     loop.  */
473  unsigned int mem_optimized_dest_p : 1;
474  /* TRUE if the corresponding pseudo-register has disjoint live
475     ranges and the other allocnos of the pseudo-register except this
476     one changed REG.  */
477  unsigned int somewhere_renamed_p : 1;
478  /* TRUE if allocno with the same REGNO in a subregion has been
479     renamed, in other words, got a new pseudo-register.  */
480  unsigned int child_renamed_p : 1;
481  /* Final rtx representation of the allocno.  */
482  rtx reg;
483  /* Non NULL if we remove restoring value from given allocno to
484     MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
485     allocno value is not changed inside the loop.  */
486  ira_allocno_t mem_optimized_dest;
487};
488
489#define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
490
491/* Data used to emit live range split insns and to flattening IR.  */
492extern ira_emit_data_t ira_allocno_emit_data;
493
494/* Abbreviation for frequent emit data access.  */
495static inline rtx
496allocno_emit_reg (ira_allocno_t a)
497{
498  return ALLOCNO_EMIT_DATA (a)->reg;
499}
500
501#define OBJECT_ALLOCNO(O) ((O)->allocno)
502#define OBJECT_SUBWORD(O) ((O)->subword)
503#define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
504#define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
505#define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
506#define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
507#define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
508#define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
509#define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
510#define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
511#define OBJECT_MIN(O) ((O)->min)
512#define OBJECT_MAX(O) ((O)->max)
513#define OBJECT_CONFLICT_ID(O) ((O)->id)
514#define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
515
516/* Map regno -> allocnos with given regno (see comments for
517   allocno member `next_regno_allocno').  */
518extern ira_allocno_t *ira_regno_allocno_map;
519
520/* Array of references to all allocnos.  The order number of the
521   allocno corresponds to the index in the array.  Removed allocnos
522   have NULL element value.  */
523extern ira_allocno_t *ira_allocnos;
524
525/* The size of the previous array.  */
526extern int ira_allocnos_num;
527
528/* Map a conflict id to its corresponding ira_object structure.  */
529extern ira_object_t *ira_object_id_map;
530
531/* The size of the previous array.  */
532extern int ira_objects_num;
533
534/* The following structure represents a hard register preference of
535   allocno.  The preference represent move insns or potential move
536   insns usually because of two operand insn constraints.  One move
537   operand is a hard register.  */
538struct ira_allocno_pref
539{
540  /* The unique order number of the preference node starting with 0.  */
541  int num;
542  /* Preferred hard register.  */
543  int hard_regno;
544  /* Accumulated execution frequency of insns from which the
545     preference created.  */
546  int freq;
547  /* Given allocno.  */
548  ira_allocno_t allocno;
549  /* All preferences with the same allocno are linked by the following
550     member.  */
551  ira_pref_t next_pref;
552};
553
554/* Array of references to all allocno preferences.  The order number
555   of the preference corresponds to the index in the array.  */
556extern ira_pref_t *ira_prefs;
557
558/* Size of the previous array.  */
559extern int ira_prefs_num;
560
561/* The following structure represents a copy of two allocnos.  The
562   copies represent move insns or potential move insns usually because
563   of two operand insn constraints.  To remove register shuffle, we
564   also create copies between allocno which is output of an insn and
565   allocno becoming dead in the insn.  */
566struct ira_allocno_copy
567{
568  /* The unique order number of the copy node starting with 0.  */
569  int num;
570  /* Allocnos connected by the copy.  The first allocno should have
571     smaller order number than the second one.  */
572  ira_allocno_t first, second;
573  /* Execution frequency of the copy.  */
574  int freq;
575  bool constraint_p;
576  /* It is a move insn which is an origin of the copy.  The member
577     value for the copy representing two operand insn constraints or
578     for the copy created to remove register shuffle is NULL.  In last
579     case the copy frequency is smaller than the corresponding insn
580     execution frequency.  */
581  rtx_insn *insn;
582  /* All copies with the same allocno as FIRST are linked by the two
583     following members.  */
584  ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
585  /* All copies with the same allocno as SECOND are linked by the two
586     following members.  */
587  ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
588  /* Region from which given copy is originated.  */
589  ira_loop_tree_node_t loop_tree_node;
590};
591
592/* Array of references to all copies.  The order number of the copy
593   corresponds to the index in the array.  Removed copies have NULL
594   element value.  */
595extern ira_copy_t *ira_copies;
596
597/* Size of the previous array.  */
598extern int ira_copies_num;
599
600/* The following structure describes a stack slot used for spilled
601   pseudo-registers.  */
602struct ira_spilled_reg_stack_slot
603{
604  /* pseudo-registers assigned to the stack slot.  */
605  bitmap_head spilled_regs;
606  /* RTL representation of the stack slot.  */
607  rtx mem;
608  /* Size of the stack slot.  */
609  unsigned int width;
610};
611
612/* The number of elements in the following array.  */
613extern int ira_spilled_reg_stack_slots_num;
614
615/* The following array contains info about spilled pseudo-registers
616   stack slots used in current function so far.  */
617extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
618
619/* Correspondingly overall cost of the allocation, cost of the
620   allocnos assigned to hard-registers, cost of the allocnos assigned
621   to memory, cost of loads, stores and register move insns generated
622   for pseudo-register live range splitting (see ira-emit.c).  */
623extern int64_t ira_overall_cost;
624extern int64_t ira_reg_cost, ira_mem_cost;
625extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
626extern int ira_move_loops_num, ira_additional_jumps_num;
627
628
629/* This page contains a bitset implementation called 'min/max sets' used to
630   record conflicts in IRA.
631   They are named min/maxs set since we keep track of a minimum and a maximum
632   bit number for each set representing the bounds of valid elements.  Otherwise,
633   the implementation resembles sbitmaps in that we store an array of integers
634   whose bits directly represent the members of the set.  */
635
636/* The type used as elements in the array, and the number of bits in
637   this type.  */
638
639#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
640#define IRA_INT_TYPE HOST_WIDE_INT
641
642/* Set, clear or test bit number I in R, a bit vector of elements with
643   minimal index and maximal index equal correspondingly to MIN and
644   MAX.  */
645#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
646
647#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
648  (({ int _min = (MIN), _max = (MAX), _i = (I);				\
649     if (_i < _min || _i > _max)					\
650       {								\
651         fprintf (stderr,						\
652                  "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
653                  __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
654         gcc_unreachable ();						\
655       }								\
656     ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
657      |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
658
659
660#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
661  (({ int _min = (MIN), _max = (MAX), _i = (I);				\
662     if (_i < _min || _i > _max)					\
663       {								\
664         fprintf (stderr,						\
665                  "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
666                  __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
667         gcc_unreachable ();						\
668       }								\
669     ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
670      &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
671
672#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__	        \
673  (({ int _min = (MIN), _max = (MAX), _i = (I);				\
674     if (_i < _min || _i > _max)					\
675       {								\
676         fprintf (stderr,						\
677                  "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
678                  __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);	\
679         gcc_unreachable ();						\
680       }								\
681     ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]			\
682      & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
683
684#else
685
686#define SET_MINMAX_SET_BIT(R, I, MIN, MAX)			\
687  ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
688   |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
689
690#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX)			\
691  ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
692   &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
693
694#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX)			\
695  ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]			\
696   & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
697
698#endif
699
700/* The iterator for min/max sets.  */
701struct minmax_set_iterator {
702
703  /* Array containing the bit vector.  */
704  IRA_INT_TYPE *vec;
705
706  /* The number of the current element in the vector.  */
707  unsigned int word_num;
708
709  /* The number of bits in the bit vector.  */
710  unsigned int nel;
711
712  /* The current bit index of the bit vector.  */
713  unsigned int bit_num;
714
715  /* Index corresponding to the 1st bit of the bit vector.   */
716  int start_val;
717
718  /* The word of the bit vector currently visited.  */
719  unsigned IRA_INT_TYPE word;
720};
721
722/* Initialize the iterator I for bit vector VEC containing minimal and
723   maximal values MIN and MAX.  */
724static inline void
725minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
726		      int max)
727{
728  i->vec = vec;
729  i->word_num = 0;
730  i->nel = max < min ? 0 : max - min + 1;
731  i->start_val = min;
732  i->bit_num = 0;
733  i->word = i->nel == 0 ? 0 : vec[0];
734}
735
736/* Return TRUE if we have more allocnos to visit, in which case *N is
737   set to the number of the element to be visited.  Otherwise, return
738   FALSE.  */
739static inline bool
740minmax_set_iter_cond (minmax_set_iterator *i, int *n)
741{
742  /* Skip words that are zeros.  */
743  for (; i->word == 0; i->word = i->vec[i->word_num])
744    {
745      i->word_num++;
746      i->bit_num = i->word_num * IRA_INT_BITS;
747
748      /* If we have reached the end, break.  */
749      if (i->bit_num >= i->nel)
750	return false;
751    }
752
753  /* Skip bits that are zero.  */
754  for (; (i->word & 1) == 0; i->word >>= 1)
755    i->bit_num++;
756
757  *n = (int) i->bit_num + i->start_val;
758
759  return true;
760}
761
762/* Advance to the next element in the set.  */
763static inline void
764minmax_set_iter_next (minmax_set_iterator *i)
765{
766  i->word >>= 1;
767  i->bit_num++;
768}
769
770/* Loop over all elements of a min/max set given by bit vector VEC and
771   their minimal and maximal values MIN and MAX.  In each iteration, N
772   is set to the number of next allocno.  ITER is an instance of
773   minmax_set_iterator used to iterate over the set.  */
774#define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER)	\
775  for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX));	\
776       minmax_set_iter_cond (&(ITER), &(N));			\
777       minmax_set_iter_next (&(ITER)))
778
779struct target_ira_int {
780  ~target_ira_int ();
781
782  void free_ira_costs ();
783  void free_register_move_costs ();
784
785  /* Initialized once.  It is a maximal possible size of the allocated
786     struct costs.  */
787  int x_max_struct_costs_size;
788
789  /* Allocated and initialized once, and used to initialize cost values
790     for each insn.  */
791  struct costs *x_init_cost;
792
793  /* Allocated once, and used for temporary purposes.  */
794  struct costs *x_temp_costs;
795
796  /* Allocated once, and used for the cost calculation.  */
797  struct costs *x_op_costs[MAX_RECOG_OPERANDS];
798  struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
799
800  /* Hard registers that can not be used for the register allocator for
801     all functions of the current compilation unit.  */
802  HARD_REG_SET x_no_unit_alloc_regs;
803
804  /* Map: hard regs X modes -> set of hard registers for storing value
805     of given mode starting with given hard register.  */
806  HARD_REG_SET (x_ira_reg_mode_hard_regset
807		[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
808
809  /* Maximum cost of moving from a register in one class to a register
810     in another class.  Based on TARGET_REGISTER_MOVE_COST.  */
811  move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
812
813  /* Similar, but here we don't have to move if the first index is a
814     subset of the second so in that case the cost is zero.  */
815  move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
816
817  /* Similar, but here we don't have to move if the first index is a
818     superset of the second so in that case the cost is zero.  */
819  move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
820
821  /* Keep track of the last mode we initialized move costs for.  */
822  int x_last_mode_for_init_move_cost;
823
824  /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
825     cost not minimal.  */
826  short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
827
828  /* Map class->true if class is a possible allocno class, false
829     otherwise. */
830  bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
831
832  /* Map class->true if class is a pressure class, false otherwise. */
833  bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
834
835  /* Array of the number of hard registers of given class which are
836     available for allocation.  The order is defined by the hard
837     register numbers.  */
838  short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
839
840  /* Index (in ira_class_hard_regs; for given register class and hard
841     register (in general case a hard register can belong to several
842     register classes;.  The index is negative for hard registers
843     unavailable for the allocation.  */
844  short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
845
846  /* Index [CL][M] contains R if R appears somewhere in a register of the form:
847
848         (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
849
850     For example, if:
851
852     - (reg:M 2) is valid and occupies two registers;
853     - register 2 belongs to CL; and
854     - register 3 belongs to the same pressure class as CL
855
856     then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
857     in the set.  */
858  HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
859
860  /* The value is number of elements in the subsequent array.  */
861  int x_ira_important_classes_num;
862
863  /* The array containing all non-empty classes.  Such classes is
864     important for calculation of the hard register usage costs.  */
865  enum reg_class x_ira_important_classes[N_REG_CLASSES];
866
867  /* The array containing indexes of important classes in the previous
868     array.  The array elements are defined only for important
869     classes.  */
870  int x_ira_important_class_nums[N_REG_CLASSES];
871
872  /* Map class->true if class is an uniform class, false otherwise.  */
873  bool x_ira_uniform_class_p[N_REG_CLASSES];
874
875  /* The biggest important class inside of intersection of the two
876     classes (that is calculated taking only hard registers available
877     for allocation into account;.  If the both classes contain no hard
878     registers available for allocation, the value is calculated with
879     taking all hard-registers including fixed ones into account.  */
880  enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
881
882  /* Classes with end marker LIM_REG_CLASSES which are intersected with
883     given class (the first index).  That includes given class itself.
884     This is calculated taking only hard registers available for
885     allocation into account.  */
886  enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
887
888  /* The biggest (smallest) important class inside of (covering) union
889     of the two classes (that is calculated taking only hard registers
890     available for allocation into account).  If the both classes
891     contain no hard registers available for allocation, the value is
892     calculated with taking all hard-registers including fixed ones
893     into account.  In other words, the value is the corresponding
894     reg_class_subunion (reg_class_superunion) value.  */
895  enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
896  enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
897
898  /* For each reg class, table listing all the classes contained in it
899     (excluding the class itself.  Non-allocatable registers are
900     excluded from the consideration).  */
901  enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
902
903  /* Array whose values are hard regset of hard registers for which
904     move of the hard register in given mode into itself is
905     prohibited.  */
906  HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
907
908  /* Flag of that the above array has been initialized.  */
909  bool x_ira_prohibited_mode_move_regs_initialized_p;
910};
911
912extern struct target_ira_int default_target_ira_int;
913#if SWITCHABLE_TARGET
914extern struct target_ira_int *this_target_ira_int;
915#else
916#define this_target_ira_int (&default_target_ira_int)
917#endif
918
919#define ira_reg_mode_hard_regset \
920  (this_target_ira_int->x_ira_reg_mode_hard_regset)
921#define ira_register_move_cost \
922  (this_target_ira_int->x_ira_register_move_cost)
923#define ira_max_memory_move_cost \
924  (this_target_ira_int->x_ira_max_memory_move_cost)
925#define ira_may_move_in_cost \
926  (this_target_ira_int->x_ira_may_move_in_cost)
927#define ira_may_move_out_cost \
928  (this_target_ira_int->x_ira_may_move_out_cost)
929#define ira_reg_allocno_class_p \
930  (this_target_ira_int->x_ira_reg_allocno_class_p)
931#define ira_reg_pressure_class_p \
932  (this_target_ira_int->x_ira_reg_pressure_class_p)
933#define ira_non_ordered_class_hard_regs \
934  (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
935#define ira_class_hard_reg_index \
936  (this_target_ira_int->x_ira_class_hard_reg_index)
937#define ira_useful_class_mode_regs \
938  (this_target_ira_int->x_ira_useful_class_mode_regs)
939#define ira_important_classes_num \
940  (this_target_ira_int->x_ira_important_classes_num)
941#define ira_important_classes \
942  (this_target_ira_int->x_ira_important_classes)
943#define ira_important_class_nums \
944  (this_target_ira_int->x_ira_important_class_nums)
945#define ira_uniform_class_p \
946  (this_target_ira_int->x_ira_uniform_class_p)
947#define ira_reg_class_intersect \
948  (this_target_ira_int->x_ira_reg_class_intersect)
949#define ira_reg_class_super_classes \
950  (this_target_ira_int->x_ira_reg_class_super_classes)
951#define ira_reg_class_subunion \
952  (this_target_ira_int->x_ira_reg_class_subunion)
953#define ira_reg_class_superunion \
954  (this_target_ira_int->x_ira_reg_class_superunion)
955#define ira_prohibited_mode_move_regs \
956  (this_target_ira_int->x_ira_prohibited_mode_move_regs)
957
958/* ira.c: */
959
960extern void *ira_allocate (size_t);
961extern void ira_free (void *addr);
962extern bitmap ira_allocate_bitmap (void);
963extern void ira_free_bitmap (bitmap);
964extern void ira_print_disposition (FILE *);
965extern void ira_debug_disposition (void);
966extern void ira_debug_allocno_classes (void);
967extern void ira_init_register_move_cost (machine_mode);
968extern void ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts);
969extern int ira_get_dup_out_num (int op_num, HARD_REG_SET &alts);
970
971/* ira-build.c */
972
973/* The current loop tree node and its regno allocno map.  */
974extern ira_loop_tree_node_t ira_curr_loop_tree_node;
975extern ira_allocno_t *ira_curr_regno_allocno_map;
976
977extern void ira_debug_pref (ira_pref_t);
978extern void ira_debug_prefs (void);
979extern void ira_debug_allocno_prefs (ira_allocno_t);
980
981extern void ira_debug_copy (ira_copy_t);
982extern void debug (ira_allocno_copy &ref);
983extern void debug (ira_allocno_copy *ptr);
984
985extern void ira_debug_copies (void);
986extern void ira_debug_allocno_copies (ira_allocno_t);
987extern void debug (ira_allocno &ref);
988extern void debug (ira_allocno *ptr);
989
990extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
991				    void (*) (ira_loop_tree_node_t),
992				    void (*) (ira_loop_tree_node_t));
993extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
994extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
995extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
996extern void ira_create_allocno_objects (ira_allocno_t);
997extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
998extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
999extern void ira_allocate_conflict_vec (ira_object_t, int);
1000extern void ira_allocate_object_conflicts (ira_object_t, int);
1001extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
1002extern void ira_print_expanded_allocno (ira_allocno_t);
1003extern void ira_add_live_range_to_object (ira_object_t, int, int);
1004extern live_range_t ira_create_live_range (ira_object_t, int, int,
1005					   live_range_t);
1006extern live_range_t ira_copy_live_range_list (live_range_t);
1007extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1008extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1009extern void ira_finish_live_range (live_range_t);
1010extern void ira_finish_live_range_list (live_range_t);
1011extern void ira_free_allocno_updated_costs (ira_allocno_t);
1012extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1013extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1014extern void ira_remove_pref (ira_pref_t);
1015extern void ira_remove_allocno_prefs (ira_allocno_t);
1016extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
1017				   int, bool, rtx_insn *,
1018				   ira_loop_tree_node_t);
1019extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
1020					bool, rtx_insn *,
1021					ira_loop_tree_node_t);
1022
1023extern int *ira_allocate_cost_vector (reg_class_t);
1024extern void ira_free_cost_vector (int *, reg_class_t);
1025
1026extern void ira_flattening (int, int);
1027extern bool ira_build (void);
1028extern void ira_destroy (void);
1029
1030/* ira-costs.c */
1031extern void ira_init_costs_once (void);
1032extern void ira_init_costs (void);
1033extern void ira_costs (void);
1034extern void ira_tune_allocno_costs (void);
1035
1036/* ira-lives.c */
1037
1038extern void ira_rebuild_start_finish_chains (void);
1039extern void ira_print_live_range_list (FILE *, live_range_t);
1040extern void debug (live_range &ref);
1041extern void debug (live_range *ptr);
1042extern void ira_debug_live_range_list (live_range_t);
1043extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1044extern void ira_debug_live_ranges (void);
1045extern void ira_create_allocno_live_ranges (void);
1046extern void ira_compress_allocno_live_ranges (void);
1047extern void ira_finish_allocno_live_ranges (void);
1048extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *,
1049					       alternative_mask);
1050
1051/* ira-conflicts.c */
1052extern void ira_debug_conflicts (bool);
1053extern void ira_build_conflicts (void);
1054
1055/* ira-color.c */
1056extern void ira_debug_hard_regs_forest (void);
1057extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1058extern void ira_reassign_conflict_allocnos (int);
1059extern void ira_initiate_assign (void);
1060extern void ira_finish_assign (void);
1061extern void ira_color (void);
1062
1063/* ira-emit.c */
1064extern void ira_initiate_emit_data (void);
1065extern void ira_finish_emit_data (void);
1066extern void ira_emit (bool);
1067
1068
1069
1070/* Return true if equivalence of pseudo REGNO is not a lvalue.  */
1071static inline bool
1072ira_equiv_no_lvalue_p (int regno)
1073{
1074  if (regno >= ira_reg_equiv_len)
1075    return false;
1076  return (ira_reg_equiv[regno].constant != NULL_RTX
1077	  || ira_reg_equiv[regno].invariant != NULL_RTX
1078	  || (ira_reg_equiv[regno].memory != NULL_RTX
1079	      && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1080}
1081
1082
1083
1084/* Initialize register costs for MODE if necessary.  */
1085static inline void
1086ira_init_register_move_cost_if_necessary (machine_mode mode)
1087{
1088  if (ira_register_move_cost[mode] == NULL)
1089    ira_init_register_move_cost (mode);
1090}
1091
1092
1093
1094/* The iterator for all allocnos.  */
1095struct ira_allocno_iterator {
1096  /* The number of the current element in IRA_ALLOCNOS.  */
1097  int n;
1098};
1099
1100/* Initialize the iterator I.  */
1101static inline void
1102ira_allocno_iter_init (ira_allocno_iterator *i)
1103{
1104  i->n = 0;
1105}
1106
1107/* Return TRUE if we have more allocnos to visit, in which case *A is
1108   set to the allocno to be visited.  Otherwise, return FALSE.  */
1109static inline bool
1110ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1111{
1112  int n;
1113
1114  for (n = i->n; n < ira_allocnos_num; n++)
1115    if (ira_allocnos[n] != NULL)
1116      {
1117	*a = ira_allocnos[n];
1118	i->n = n + 1;
1119	return true;
1120      }
1121  return false;
1122}
1123
1124/* Loop over all allocnos.  In each iteration, A is set to the next
1125   allocno.  ITER is an instance of ira_allocno_iterator used to iterate
1126   the allocnos.  */
1127#define FOR_EACH_ALLOCNO(A, ITER)			\
1128  for (ira_allocno_iter_init (&(ITER));			\
1129       ira_allocno_iter_cond (&(ITER), &(A));)
1130
1131/* The iterator for all objects.  */
1132struct ira_object_iterator {
1133  /* The number of the current element in ira_object_id_map.  */
1134  int n;
1135};
1136
1137/* Initialize the iterator I.  */
1138static inline void
1139ira_object_iter_init (ira_object_iterator *i)
1140{
1141  i->n = 0;
1142}
1143
1144/* Return TRUE if we have more objects to visit, in which case *OBJ is
1145   set to the object to be visited.  Otherwise, return FALSE.  */
1146static inline bool
1147ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1148{
1149  int n;
1150
1151  for (n = i->n; n < ira_objects_num; n++)
1152    if (ira_object_id_map[n] != NULL)
1153      {
1154	*obj = ira_object_id_map[n];
1155	i->n = n + 1;
1156	return true;
1157      }
1158  return false;
1159}
1160
1161/* Loop over all objects.  In each iteration, OBJ is set to the next
1162   object.  ITER is an instance of ira_object_iterator used to iterate
1163   the objects.  */
1164#define FOR_EACH_OBJECT(OBJ, ITER)			\
1165  for (ira_object_iter_init (&(ITER));			\
1166       ira_object_iter_cond (&(ITER), &(OBJ));)
1167
1168/* The iterator for objects associated with an allocno.  */
1169struct ira_allocno_object_iterator {
1170  /* The number of the element the allocno's object array.  */
1171  int n;
1172};
1173
1174/* Initialize the iterator I.  */
1175static inline void
1176ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1177{
1178  i->n = 0;
1179}
1180
1181/* Return TRUE if we have more objects to visit in allocno A, in which
1182   case *O is set to the object to be visited.  Otherwise, return
1183   FALSE.  */
1184static inline bool
1185ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1186			      ira_object_t *o)
1187{
1188  int n = i->n++;
1189  if (n < ALLOCNO_NUM_OBJECTS (a))
1190    {
1191      *o = ALLOCNO_OBJECT (a, n);
1192      return true;
1193    }
1194  return false;
1195}
1196
1197/* Loop over all objects associated with allocno A.  In each
1198   iteration, O is set to the next object.  ITER is an instance of
1199   ira_allocno_object_iterator used to iterate the conflicts.  */
1200#define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER)			\
1201  for (ira_allocno_object_iter_init (&(ITER));			\
1202       ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1203
1204
1205/* The iterator for prefs.  */
1206struct ira_pref_iterator {
1207  /* The number of the current element in IRA_PREFS.  */
1208  int n;
1209};
1210
1211/* Initialize the iterator I.  */
1212static inline void
1213ira_pref_iter_init (ira_pref_iterator *i)
1214{
1215  i->n = 0;
1216}
1217
1218/* Return TRUE if we have more prefs to visit, in which case *PREF is
1219   set to the pref to be visited.  Otherwise, return FALSE.  */
1220static inline bool
1221ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1222{
1223  int n;
1224
1225  for (n = i->n; n < ira_prefs_num; n++)
1226    if (ira_prefs[n] != NULL)
1227      {
1228	*pref = ira_prefs[n];
1229	i->n = n + 1;
1230	return true;
1231      }
1232  return false;
1233}
1234
1235/* Loop over all prefs.  In each iteration, P is set to the next
1236   pref.  ITER is an instance of ira_pref_iterator used to iterate
1237   the prefs.  */
1238#define FOR_EACH_PREF(P, ITER)				\
1239  for (ira_pref_iter_init (&(ITER));			\
1240       ira_pref_iter_cond (&(ITER), &(P));)
1241
1242
1243/* The iterator for copies.  */
1244struct ira_copy_iterator {
1245  /* The number of the current element in IRA_COPIES.  */
1246  int n;
1247};
1248
1249/* Initialize the iterator I.  */
1250static inline void
1251ira_copy_iter_init (ira_copy_iterator *i)
1252{
1253  i->n = 0;
1254}
1255
1256/* Return TRUE if we have more copies to visit, in which case *CP is
1257   set to the copy to be visited.  Otherwise, return FALSE.  */
1258static inline bool
1259ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1260{
1261  int n;
1262
1263  for (n = i->n; n < ira_copies_num; n++)
1264    if (ira_copies[n] != NULL)
1265      {
1266	*cp = ira_copies[n];
1267	i->n = n + 1;
1268	return true;
1269      }
1270  return false;
1271}
1272
1273/* Loop over all copies.  In each iteration, C is set to the next
1274   copy.  ITER is an instance of ira_copy_iterator used to iterate
1275   the copies.  */
1276#define FOR_EACH_COPY(C, ITER)				\
1277  for (ira_copy_iter_init (&(ITER));			\
1278       ira_copy_iter_cond (&(ITER), &(C));)
1279
1280/* The iterator for object conflicts.  */
1281struct ira_object_conflict_iterator {
1282
1283  /* TRUE if the conflicts are represented by vector of allocnos.  */
1284  bool conflict_vec_p;
1285
1286  /* The conflict vector or conflict bit vector.  */
1287  void *vec;
1288
1289  /* The number of the current element in the vector (of type
1290     ira_object_t or IRA_INT_TYPE).  */
1291  unsigned int word_num;
1292
1293  /* The bit vector size.  It is defined only if
1294     OBJECT_CONFLICT_VEC_P is FALSE.  */
1295  unsigned int size;
1296
1297  /* The current bit index of bit vector.  It is defined only if
1298     OBJECT_CONFLICT_VEC_P is FALSE.  */
1299  unsigned int bit_num;
1300
1301  /* The object id corresponding to the 1st bit of the bit vector.  It
1302     is defined only if OBJECT_CONFLICT_VEC_P is FALSE.  */
1303  int base_conflict_id;
1304
1305  /* The word of bit vector currently visited.  It is defined only if
1306     OBJECT_CONFLICT_VEC_P is FALSE.  */
1307  unsigned IRA_INT_TYPE word;
1308};
1309
1310/* Initialize the iterator I with ALLOCNO conflicts.  */
1311static inline void
1312ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1313			       ira_object_t obj)
1314{
1315  i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1316  i->vec = OBJECT_CONFLICT_ARRAY (obj);
1317  i->word_num = 0;
1318  if (i->conflict_vec_p)
1319    i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1320  else
1321    {
1322      if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1323	i->size = 0;
1324      else
1325	i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1326		    + IRA_INT_BITS)
1327		   / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1328      i->bit_num = 0;
1329      i->base_conflict_id = OBJECT_MIN (obj);
1330      i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1331    }
1332}
1333
1334/* Return TRUE if we have more conflicting allocnos to visit, in which
1335   case *A is set to the allocno to be visited.  Otherwise, return
1336   FALSE.  */
1337static inline bool
1338ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1339			       ira_object_t *pobj)
1340{
1341  ira_object_t obj;
1342
1343  if (i->conflict_vec_p)
1344    {
1345      obj = ((ira_object_t *) i->vec)[i->word_num++];
1346      if (obj == NULL)
1347	return false;
1348    }
1349  else
1350    {
1351      unsigned IRA_INT_TYPE word = i->word;
1352      unsigned int bit_num = i->bit_num;
1353
1354      /* Skip words that are zeros.  */
1355      for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1356	{
1357	  i->word_num++;
1358
1359	  /* If we have reached the end, break.  */
1360	  if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1361	    return false;
1362
1363	  bit_num = i->word_num * IRA_INT_BITS;
1364	}
1365
1366      /* Skip bits that are zero.  */
1367      for (; (word & 1) == 0; word >>= 1)
1368	bit_num++;
1369
1370      obj = ira_object_id_map[bit_num + i->base_conflict_id];
1371      i->bit_num = bit_num + 1;
1372      i->word = word >> 1;
1373    }
1374
1375  *pobj = obj;
1376  return true;
1377}
1378
1379/* Loop over all objects conflicting with OBJ.  In each iteration,
1380   CONF is set to the next conflicting object.  ITER is an instance
1381   of ira_object_conflict_iterator used to iterate the conflicts.  */
1382#define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER)			\
1383  for (ira_object_conflict_iter_init (&(ITER), (OBJ));			\
1384       ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1385
1386
1387
1388/* The function returns TRUE if at least one hard register from ones
1389   starting with HARD_REGNO and containing value of MODE are in set
1390   HARD_REGSET.  */
1391static inline bool
1392ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode,
1393				 HARD_REG_SET hard_regset)
1394{
1395  int i;
1396
1397  gcc_assert (hard_regno >= 0);
1398  for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1399    if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1400      return true;
1401  return false;
1402}
1403
1404/* Return number of hard registers in hard register SET.  */
1405static inline int
1406hard_reg_set_size (HARD_REG_SET set)
1407{
1408  int i, size;
1409
1410  for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1411    if (TEST_HARD_REG_BIT (set, i))
1412      size++;
1413  return size;
1414}
1415
1416/* The function returns TRUE if hard registers starting with
1417   HARD_REGNO and containing value of MODE are fully in set
1418   HARD_REGSET.  */
1419static inline bool
1420ira_hard_reg_in_set_p (int hard_regno, machine_mode mode,
1421		       HARD_REG_SET hard_regset)
1422{
1423  int i;
1424
1425  ira_assert (hard_regno >= 0);
1426  for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1427    if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1428      return false;
1429  return true;
1430}
1431
1432
1433
1434/* To save memory we use a lazy approach for allocation and
1435   initialization of the cost vectors.  We do this only when it is
1436   really necessary.  */
1437
1438/* Allocate cost vector *VEC for hard registers of ACLASS and
1439   initialize the elements by VAL if it is necessary */
1440static inline void
1441ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1442{
1443  int i, *reg_costs;
1444  int len;
1445
1446  if (*vec != NULL)
1447    return;
1448  *vec = reg_costs = ira_allocate_cost_vector (aclass);
1449  len = ira_class_hard_regs_num[(int) aclass];
1450  for (i = 0; i < len; i++)
1451    reg_costs[i] = val;
1452}
1453
1454/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1455   values of vector SRC into the vector if it is necessary */
1456static inline void
1457ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1458{
1459  int len;
1460
1461  if (*vec != NULL || src == NULL)
1462    return;
1463  *vec = ira_allocate_cost_vector (aclass);
1464  len = ira_class_hard_regs_num[aclass];
1465  memcpy (*vec, src, sizeof (int) * len);
1466}
1467
1468/* Allocate cost vector *VEC for hard registers of ACLASS and add
1469   values of vector SRC into the vector if it is necessary */
1470static inline void
1471ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1472{
1473  int i, len;
1474
1475  if (src == NULL)
1476    return;
1477  len = ira_class_hard_regs_num[aclass];
1478  if (*vec == NULL)
1479    {
1480      *vec = ira_allocate_cost_vector (aclass);
1481      memset (*vec, 0, sizeof (int) * len);
1482    }
1483  for (i = 0; i < len; i++)
1484    (*vec)[i] += src[i];
1485}
1486
1487/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1488   values of vector SRC into the vector or initialize it by VAL (if
1489   SRC is null).  */
1490static inline void
1491ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1492				    int val, int *src)
1493{
1494  int i, *reg_costs;
1495  int len;
1496
1497  if (*vec != NULL)
1498    return;
1499  *vec = reg_costs = ira_allocate_cost_vector (aclass);
1500  len = ira_class_hard_regs_num[aclass];
1501  if (src != NULL)
1502    memcpy (reg_costs, src, sizeof (int) * len);
1503  else
1504    {
1505      for (i = 0; i < len; i++)
1506	reg_costs[i] = val;
1507    }
1508}
1509
1510extern rtx ira_create_new_reg (rtx);
1511extern int first_moveable_pseudo, last_moveable_pseudo;
1512
1513#endif /* GCC_IRA_INT_H */
1514