1/* RTL-based forward propagation pass for GNU compiler.
2   Copyright (C) 2005-2015 Free Software Foundation, Inc.
3   Contributed by Paolo Bonzini and Steven Bosscher.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "diagnostic-core.h"
26
27#include "sparseset.h"
28#include "rtl.h"
29#include "tm_p.h"
30#include "insn-config.h"
31#include "recog.h"
32#include "flags.h"
33#include "obstack.h"
34#include "predict.h"
35#include "vec.h"
36#include "hashtab.h"
37#include "hash-set.h"
38#include "machmode.h"
39#include "hard-reg-set.h"
40#include "input.h"
41#include "function.h"
42#include "dominance.h"
43#include "cfg.h"
44#include "cfgrtl.h"
45#include "cfgcleanup.h"
46#include "basic-block.h"
47#include "df.h"
48#include "target.h"
49#include "cfgloop.h"
50#include "tree-pass.h"
51#include "domwalk.h"
52#include "emit-rtl.h"
53#include "rtl-iter.h"
54
55
56/* This pass does simple forward propagation and simplification when an
57   operand of an insn can only come from a single def.  This pass uses
58   df.c, so it is global.  However, we only do limited analysis of
59   available expressions.
60
61   1) The pass tries to propagate the source of the def into the use,
62   and checks if the result is independent of the substituted value.
63   For example, the high word of a (zero_extend:DI (reg:SI M)) is always
64   zero, independent of the source register.
65
66   In particular, we propagate constants into the use site.  Sometimes
67   RTL expansion did not put the constant in the same insn on purpose,
68   to satisfy a predicate, and the result will fail to be recognized;
69   but this happens rarely and in this case we can still create a
70   REG_EQUAL note.  For multi-word operations, this
71
72      (set (subreg:SI (reg:DI 120) 0) (const_int 0))
73      (set (subreg:SI (reg:DI 120) 4) (const_int -1))
74      (set (subreg:SI (reg:DI 122) 0)
75         (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
76      (set (subreg:SI (reg:DI 122) 4)
77         (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
78
79   can be simplified to the much simpler
80
81      (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
82      (set (subreg:SI (reg:DI 122) 4) (const_int -1))
83
84   This particular propagation is also effective at putting together
85   complex addressing modes.  We are more aggressive inside MEMs, in
86   that all definitions are propagated if the use is in a MEM; if the
87   result is a valid memory address we check address_cost to decide
88   whether the substitution is worthwhile.
89
90   2) The pass propagates register copies.  This is not as effective as
91   the copy propagation done by CSE's canon_reg, which works by walking
92   the instruction chain, it can help the other transformations.
93
94   We should consider removing this optimization, and instead reorder the
95   RTL passes, because GCSE does this transformation too.  With some luck,
96   the CSE pass at the end of rest_of_handle_gcse could also go away.
97
98   3) The pass looks for paradoxical subregs that are actually unnecessary.
99   Things like this:
100
101     (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
102     (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
103     (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
104                                (subreg:SI (reg:QI 121) 0)))
105
106   are very common on machines that can only do word-sized operations.
107   For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
108   if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
109   we can replace the paradoxical subreg with simply (reg:WIDE M).  The
110   above will simplify this to
111
112     (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
113     (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
114     (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
115
116   where the first two insns are now dead.
117
118   We used to use reaching definitions to find which uses have a
119   single reaching definition (sounds obvious...), but this is too
120   complex a problem in nasty testcases like PR33928.  Now we use the
121   multiple definitions problem in df-problems.c.  The similarity
122   between that problem and SSA form creation is taken further, in
123   that fwprop does a dominator walk to create its chains; however,
124   instead of creating a PHI function where multiple definitions meet
125   I just punt and record only singleton use-def chains, which is
126   all that is needed by fwprop.  */
127
128
129static int num_changes;
130
131static vec<df_ref> use_def_ref;
132static vec<df_ref> reg_defs;
133static vec<df_ref> reg_defs_stack;
134
135/* The MD bitmaps are trimmed to include only live registers to cut
136   memory usage on testcases like insn-recog.c.  Track live registers
137   in the basic block and do not perform forward propagation if the
138   destination is a dead pseudo occurring in a note.  */
139static bitmap local_md;
140static bitmap local_lr;
141
142/* Return the only def in USE's use-def chain, or NULL if there is
143   more than one def in the chain.  */
144
145static inline df_ref
146get_def_for_use (df_ref use)
147{
148  return use_def_ref[DF_REF_ID (use)];
149}
150
151
152/* Update the reg_defs vector with non-partial definitions in DEF_REC.
153   TOP_FLAG says which artificials uses should be used, when DEF_REC
154   is an artificial def vector.  LOCAL_MD is modified as after a
155   df_md_simulate_* function; we do more or less the same processing
156   done there, so we do not use those functions.  */
157
158#define DF_MD_GEN_FLAGS \
159	(DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
160
161static void
162process_defs (df_ref def, int top_flag)
163{
164  for (; def; def = DF_REF_NEXT_LOC (def))
165    {
166      df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
167      unsigned int dregno;
168
169      if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
170	continue;
171
172      dregno = DF_REF_REGNO (def);
173      if (curr_def)
174	reg_defs_stack.safe_push (curr_def);
175      else
176	{
177	  /* Do not store anything if "transitioning" from NULL to NULL.  But
178             otherwise, push a special entry on the stack to tell the
179	     leave_block callback that the entry in reg_defs was NULL.  */
180	  if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
181	    ;
182	  else
183	    reg_defs_stack.safe_push (def);
184	}
185
186      if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
187	{
188	  bitmap_set_bit (local_md, dregno);
189	  reg_defs[dregno] = NULL;
190	}
191      else
192	{
193	  bitmap_clear_bit (local_md, dregno);
194	  reg_defs[dregno] = def;
195	}
196    }
197}
198
199
200/* Fill the use_def_ref vector with values for the uses in USE_REC,
201   taking reaching definitions info from LOCAL_MD and REG_DEFS.
202   TOP_FLAG says which artificials uses should be used, when USE_REC
203   is an artificial use vector.  */
204
205static void
206process_uses (df_ref use, int top_flag)
207{
208  for (; use; use = DF_REF_NEXT_LOC (use))
209    if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
210      {
211        unsigned int uregno = DF_REF_REGNO (use);
212        if (reg_defs[uregno]
213	    && !bitmap_bit_p (local_md, uregno)
214	    && bitmap_bit_p (local_lr, uregno))
215	  use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
216      }
217}
218
219class single_def_use_dom_walker : public dom_walker
220{
221public:
222  single_def_use_dom_walker (cdi_direction direction)
223    : dom_walker (direction) {}
224  virtual void before_dom_children (basic_block);
225  virtual void after_dom_children (basic_block);
226};
227
228void
229single_def_use_dom_walker::before_dom_children (basic_block bb)
230{
231  int bb_index = bb->index;
232  struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
233  struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
234  rtx_insn *insn;
235
236  bitmap_copy (local_md, &md_bb_info->in);
237  bitmap_copy (local_lr, &lr_bb_info->in);
238
239  /* Push a marker for the leave_block callback.  */
240  reg_defs_stack.safe_push (NULL);
241
242  process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
243  process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
244
245  /* We don't call df_simulate_initialize_forwards, as it may overestimate
246     the live registers if there are unused artificial defs.  We prefer
247     liveness to be underestimated.  */
248
249  FOR_BB_INSNS (bb, insn)
250    if (INSN_P (insn))
251      {
252        unsigned int uid = INSN_UID (insn);
253        process_uses (DF_INSN_UID_USES (uid), 0);
254        process_uses (DF_INSN_UID_EQ_USES (uid), 0);
255        process_defs (DF_INSN_UID_DEFS (uid), 0);
256	df_simulate_one_insn_forwards (bb, insn, local_lr);
257      }
258
259  process_uses (df_get_artificial_uses (bb_index), 0);
260  process_defs (df_get_artificial_defs (bb_index), 0);
261}
262
263/* Pop the definitions created in this basic block when leaving its
264   dominated parts.  */
265
266void
267single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
268{
269  df_ref saved_def;
270  while ((saved_def = reg_defs_stack.pop ()) != NULL)
271    {
272      unsigned int dregno = DF_REF_REGNO (saved_def);
273
274      /* See also process_defs.  */
275      if (saved_def == reg_defs[dregno])
276	reg_defs[dregno] = NULL;
277      else
278	reg_defs[dregno] = saved_def;
279    }
280}
281
282
283/* Build a vector holding the reaching definitions of uses reached by a
284   single dominating definition.  */
285
286static void
287build_single_def_use_links (void)
288{
289  /* We use the multiple definitions problem to compute our restricted
290     use-def chains.  */
291  df_set_flags (DF_EQ_NOTES);
292  df_md_add_problem ();
293  df_note_add_problem ();
294  df_analyze ();
295  df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
296
297  use_def_ref.create (DF_USES_TABLE_SIZE ());
298  use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
299
300  reg_defs.create (max_reg_num ());
301  reg_defs.safe_grow_cleared (max_reg_num ());
302
303  reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
304  local_md = BITMAP_ALLOC (NULL);
305  local_lr = BITMAP_ALLOC (NULL);
306
307  /* Walk the dominator tree looking for single reaching definitions
308     dominating the uses.  This is similar to how SSA form is built.  */
309  single_def_use_dom_walker (CDI_DOMINATORS)
310    .walk (cfun->cfg->x_entry_block_ptr);
311
312  BITMAP_FREE (local_lr);
313  BITMAP_FREE (local_md);
314  reg_defs.release ();
315  reg_defs_stack.release ();
316}
317
318
319/* Do not try to replace constant addresses or addresses of local and
320   argument slots.  These MEM expressions are made only once and inserted
321   in many instructions, as well as being used to control symbol table
322   output.  It is not safe to clobber them.
323
324   There are some uncommon cases where the address is already in a register
325   for some reason, but we cannot take advantage of that because we have
326   no easy way to unshare the MEM.  In addition, looking up all stack
327   addresses is costly.  */
328
329static bool
330can_simplify_addr (rtx addr)
331{
332  rtx reg;
333
334  if (CONSTANT_ADDRESS_P (addr))
335    return false;
336
337  if (GET_CODE (addr) == PLUS)
338    reg = XEXP (addr, 0);
339  else
340    reg = addr;
341
342  return (!REG_P (reg)
343	  || (REGNO (reg) != FRAME_POINTER_REGNUM
344	      && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
345	      && REGNO (reg) != ARG_POINTER_REGNUM));
346}
347
348/* Returns a canonical version of X for the address, from the point of view,
349   that all multiplications are represented as MULT instead of the multiply
350   by a power of 2 being represented as ASHIFT.
351
352   Every ASHIFT we find has been made by simplify_gen_binary and was not
353   there before, so it is not shared.  So we can do this in place.  */
354
355static void
356canonicalize_address (rtx x)
357{
358  for (;;)
359    switch (GET_CODE (x))
360      {
361      case ASHIFT:
362        if (CONST_INT_P (XEXP (x, 1))
363            && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
364            && INTVAL (XEXP (x, 1)) >= 0)
365	  {
366	    HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
367	    PUT_CODE (x, MULT);
368	    XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
369					GET_MODE (x));
370	  }
371
372	x = XEXP (x, 0);
373        break;
374
375      case PLUS:
376        if (GET_CODE (XEXP (x, 0)) == PLUS
377	    || GET_CODE (XEXP (x, 0)) == ASHIFT
378	    || GET_CODE (XEXP (x, 0)) == CONST)
379	  canonicalize_address (XEXP (x, 0));
380
381	x = XEXP (x, 1);
382        break;
383
384      case CONST:
385	x = XEXP (x, 0);
386        break;
387
388      default:
389        return;
390      }
391}
392
393/* OLD is a memory address.  Return whether it is good to use NEW instead,
394   for a memory access in the given MODE.  */
395
396static bool
397should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
398			addr_space_t as, bool speed)
399{
400  int gain;
401
402  if (rtx_equal_p (old_rtx, new_rtx)
403      || !memory_address_addr_space_p (mode, new_rtx, as))
404    return false;
405
406  /* Copy propagation is always ok.  */
407  if (REG_P (old_rtx) && REG_P (new_rtx))
408    return true;
409
410  /* Prefer the new address if it is less expensive.  */
411  gain = (address_cost (old_rtx, mode, as, speed)
412	  - address_cost (new_rtx, mode, as, speed));
413
414  /* If the addresses have equivalent cost, prefer the new address
415     if it has the highest `set_src_cost'.  That has the potential of
416     eliminating the most insns without additional costs, and it
417     is the same that cse.c used to do.  */
418  if (gain == 0)
419    gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
420
421  return (gain > 0);
422}
423
424
425/* Flags for the last parameter of propagate_rtx_1.  */
426
427enum {
428  /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
429     if it is false, propagate_rtx_1 returns false if, for at least
430     one occurrence OLD, it failed to collapse the result to a constant.
431     For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
432     collapse to zero if replacing (reg:M B) with (reg:M A).
433
434     PR_CAN_APPEAR is disregarded inside MEMs: in that case,
435     propagate_rtx_1 just tries to make cheaper and valid memory
436     addresses.  */
437  PR_CAN_APPEAR = 1,
438
439  /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
440     outside memory addresses.  This is needed because propagate_rtx_1 does
441     not do any analysis on memory; thus it is very conservative and in general
442     it will fail if non-read-only MEMs are found in the source expression.
443
444     PR_HANDLE_MEM is set when the source of the propagation was not
445     another MEM.  Then, it is safe not to treat non-read-only MEMs as
446     ``opaque'' objects.  */
447  PR_HANDLE_MEM = 2,
448
449  /* Set when costs should be optimized for speed.  */
450  PR_OPTIMIZE_FOR_SPEED = 4
451};
452
453
454/* Replace all occurrences of OLD in *PX with NEW and try to simplify the
455   resulting expression.  Replace *PX with a new RTL expression if an
456   occurrence of OLD was found.
457
458   This is only a wrapper around simplify-rtx.c: do not add any pattern
459   matching code here.  (The sole exception is the handling of LO_SUM, but
460   that is because there is no simplify_gen_* function for LO_SUM).  */
461
462static bool
463propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
464{
465  rtx x = *px, tem = NULL_RTX, op0, op1, op2;
466  enum rtx_code code = GET_CODE (x);
467  machine_mode mode = GET_MODE (x);
468  machine_mode op_mode;
469  bool can_appear = (flags & PR_CAN_APPEAR) != 0;
470  bool valid_ops = true;
471
472  if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
473    {
474      /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
475	 they have side effects or not).  */
476      *px = (side_effects_p (x)
477	     ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
478	     : gen_rtx_SCRATCH (GET_MODE (x)));
479      return false;
480    }
481
482  /* If X is OLD_RTX, return NEW_RTX.  But not if replacing only within an
483     address, and we are *not* inside one.  */
484  if (x == old_rtx)
485    {
486      *px = new_rtx;
487      return can_appear;
488    }
489
490  /* If this is an expression, try recursive substitution.  */
491  switch (GET_RTX_CLASS (code))
492    {
493    case RTX_UNARY:
494      op0 = XEXP (x, 0);
495      op_mode = GET_MODE (op0);
496      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
497      if (op0 == XEXP (x, 0))
498	return true;
499      tem = simplify_gen_unary (code, mode, op0, op_mode);
500      break;
501
502    case RTX_BIN_ARITH:
503    case RTX_COMM_ARITH:
504      op0 = XEXP (x, 0);
505      op1 = XEXP (x, 1);
506      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
507      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
508      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
509	return true;
510      tem = simplify_gen_binary (code, mode, op0, op1);
511      break;
512
513    case RTX_COMPARE:
514    case RTX_COMM_COMPARE:
515      op0 = XEXP (x, 0);
516      op1 = XEXP (x, 1);
517      op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
518      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
519      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
520      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
521	return true;
522      tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
523      break;
524
525    case RTX_TERNARY:
526    case RTX_BITFIELD_OPS:
527      op0 = XEXP (x, 0);
528      op1 = XEXP (x, 1);
529      op2 = XEXP (x, 2);
530      op_mode = GET_MODE (op0);
531      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
532      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
533      valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
534      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
535	return true;
536      if (op_mode == VOIDmode)
537	op_mode = GET_MODE (op0);
538      tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
539      break;
540
541    case RTX_EXTRA:
542      /* The only case we try to handle is a SUBREG.  */
543      if (code == SUBREG)
544	{
545          op0 = XEXP (x, 0);
546	  valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
547          if (op0 == XEXP (x, 0))
548	    return true;
549	  tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
550				     SUBREG_BYTE (x));
551	}
552      break;
553
554    case RTX_OBJ:
555      if (code == MEM && x != new_rtx)
556	{
557	  rtx new_op0;
558	  op0 = XEXP (x, 0);
559
560	  /* There are some addresses that we cannot work on.  */
561	  if (!can_simplify_addr (op0))
562	    return true;
563
564	  op0 = new_op0 = targetm.delegitimize_address (op0);
565	  valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
566					flags | PR_CAN_APPEAR);
567
568	  /* Dismiss transformation that we do not want to carry on.  */
569	  if (!valid_ops
570	      || new_op0 == op0
571	      || !(GET_MODE (new_op0) == GET_MODE (op0)
572		   || GET_MODE (new_op0) == VOIDmode))
573	    return true;
574
575	  canonicalize_address (new_op0);
576
577	  /* Copy propagations are always ok.  Otherwise check the costs.  */
578	  if (!(REG_P (old_rtx) && REG_P (new_rtx))
579	      && !should_replace_address (op0, new_op0, GET_MODE (x),
580					  MEM_ADDR_SPACE (x),
581	      			 	  flags & PR_OPTIMIZE_FOR_SPEED))
582	    return true;
583
584	  tem = replace_equiv_address_nv (x, new_op0);
585	}
586
587      else if (code == LO_SUM)
588	{
589          op0 = XEXP (x, 0);
590          op1 = XEXP (x, 1);
591
592	  /* The only simplification we do attempts to remove references to op0
593	     or make it constant -- in both cases, op0's invalidity will not
594	     make the result invalid.  */
595	  propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
596	  valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
597          if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
598	    return true;
599
600	  /* (lo_sum (high x) x) -> x  */
601	  if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
602	    tem = op1;
603	  else
604	    tem = gen_rtx_LO_SUM (mode, op0, op1);
605
606	  /* OP1 is likely not a legitimate address, otherwise there would have
607	     been no LO_SUM.  We want it to disappear if it is invalid, return
608	     false in that case.  */
609	  return memory_address_p (mode, tem);
610	}
611
612      else if (code == REG)
613	{
614	  if (rtx_equal_p (x, old_rtx))
615	    {
616              *px = new_rtx;
617              return can_appear;
618	    }
619	}
620      break;
621
622    default:
623      break;
624    }
625
626  /* No change, no trouble.  */
627  if (tem == NULL_RTX)
628    return true;
629
630  *px = tem;
631
632  /* The replacement we made so far is valid, if all of the recursive
633     replacements were valid, or we could simplify everything to
634     a constant.  */
635  return valid_ops || can_appear || CONSTANT_P (tem);
636}
637
638
639/* Return true if X constains a non-constant mem.  */
640
641static bool
642varying_mem_p (const_rtx x)
643{
644  subrtx_iterator::array_type array;
645  FOR_EACH_SUBRTX (iter, array, x, NONCONST)
646    if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
647      return true;
648  return false;
649}
650
651
652/* Replace all occurrences of OLD in X with NEW and try to simplify the
653   resulting expression (in mode MODE).  Return a new expression if it is
654   a constant, otherwise X.
655
656   Simplifications where occurrences of NEW collapse to a constant are always
657   accepted.  All simplifications are accepted if NEW is a pseudo too.
658   Otherwise, we accept simplifications that have a lower or equal cost.  */
659
660static rtx
661propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
662	       bool speed)
663{
664  rtx tem;
665  bool collapsed;
666  int flags;
667
668  if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
669    return NULL_RTX;
670
671  flags = 0;
672  if (REG_P (new_rtx)
673      || CONSTANT_P (new_rtx)
674      || (GET_CODE (new_rtx) == SUBREG
675	  && REG_P (SUBREG_REG (new_rtx))
676	  && (GET_MODE_SIZE (mode)
677	      <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
678    flags |= PR_CAN_APPEAR;
679  if (!varying_mem_p (new_rtx))
680    flags |= PR_HANDLE_MEM;
681
682  if (speed)
683    flags |= PR_OPTIMIZE_FOR_SPEED;
684
685  tem = x;
686  collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
687  if (tem == x || !collapsed)
688    return NULL_RTX;
689
690  /* gen_lowpart_common will not be able to process VOIDmode entities other
691     than CONST_INTs.  */
692  if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
693    return NULL_RTX;
694
695  if (GET_MODE (tem) == VOIDmode)
696    tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
697  else
698    gcc_assert (GET_MODE (tem) == mode);
699
700  return tem;
701}
702
703
704
705
706/* Return true if the register from reference REF is killed
707   between FROM to (but not including) TO.  */
708
709static bool
710local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
711{
712  rtx_insn *insn;
713
714  for (insn = from; insn != to; insn = NEXT_INSN (insn))
715    {
716      df_ref def;
717      if (!INSN_P (insn))
718	continue;
719
720      FOR_EACH_INSN_DEF (def, insn)
721	if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
722	  return true;
723    }
724  return false;
725}
726
727
728/* Check if the given DEF is available in INSN.  This would require full
729   computation of available expressions; we check only restricted conditions:
730   - if DEF is the sole definition of its register, go ahead;
731   - in the same basic block, we check for no definitions killing the
732     definition of DEF_INSN;
733   - if USE's basic block has DEF's basic block as the sole predecessor,
734     we check if the definition is killed after DEF_INSN or before
735     TARGET_INSN insn, in their respective basic blocks.  */
736static bool
737use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
738{
739  basic_block def_bb = BLOCK_FOR_INSN (def_insn);
740  basic_block target_bb = BLOCK_FOR_INSN (target_insn);
741  int regno;
742  df_ref def;
743
744  /* We used to have a def reaching a use that is _before_ the def,
745     with the def not dominating the use even though the use and def
746     are in the same basic block, when a register may be used
747     uninitialized in a loop.  This should not happen anymore since
748     we do not use reaching definitions, but still we test for such
749     cases and assume that DEF is not available.  */
750  if (def_bb == target_bb
751      ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
752      : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
753    return true;
754
755  /* Check if the reg in USE has only one definition.  We already
756     know that this definition reaches use, or we wouldn't be here.
757     However, this is invalid for hard registers because if they are
758     live at the beginning of the function it does not mean that we
759     have an uninitialized access.  */
760  regno = DF_REF_REGNO (use);
761  def = DF_REG_DEF_CHAIN (regno);
762  if (def
763      && DF_REF_NEXT_REG (def) == NULL
764      && regno >= FIRST_PSEUDO_REGISTER)
765    return false;
766
767  /* Check locally if we are in the same basic block.  */
768  if (def_bb == target_bb)
769    return local_ref_killed_between_p (use, def_insn, target_insn);
770
771  /* Finally, if DEF_BB is the sole predecessor of TARGET_BB.  */
772  if (single_pred_p (target_bb)
773      && single_pred (target_bb) == def_bb)
774    {
775      df_ref x;
776
777      /* See if USE is killed between DEF_INSN and the last insn in the
778	 basic block containing DEF_INSN.  */
779      x = df_bb_regno_last_def_find (def_bb, regno);
780      if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
781	return true;
782
783      /* See if USE is killed between TARGET_INSN and the first insn in the
784	 basic block containing TARGET_INSN.  */
785      x = df_bb_regno_first_def_find (target_bb, regno);
786      if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
787	return true;
788
789      return false;
790    }
791
792  /* Otherwise assume the worst case.  */
793  return true;
794}
795
796
797/* Check if all uses in DEF_INSN can be used in TARGET_INSN.  This
798   would require full computation of available expressions;
799   we check only restricted conditions, see use_killed_between.  */
800static bool
801all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
802{
803  df_ref use;
804  struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
805  rtx def_set = single_set (def_insn);
806  rtx_insn *next;
807
808  gcc_assert (def_set);
809
810  /* If target_insn comes right after def_insn, which is very common
811     for addresses, we can use a quicker test.  Ignore debug insns
812     other than target insns for this.  */
813  next = NEXT_INSN (def_insn);
814  while (next && next != target_insn && DEBUG_INSN_P (next))
815    next = NEXT_INSN (next);
816  if (next == target_insn && REG_P (SET_DEST (def_set)))
817    {
818      rtx def_reg = SET_DEST (def_set);
819
820      /* If the insn uses the reg that it defines, the substitution is
821         invalid.  */
822      FOR_EACH_INSN_INFO_USE (use, insn_info)
823	if (rtx_equal_p (DF_REF_REG (use), def_reg))
824	  return false;
825      FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
826	if (rtx_equal_p (DF_REF_REG (use), def_reg))
827	  return false;
828    }
829  else
830    {
831      rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
832
833      /* Look at all the uses of DEF_INSN, and see if they are not
834	 killed between DEF_INSN and TARGET_INSN.  */
835      FOR_EACH_INSN_INFO_USE (use, insn_info)
836	{
837	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
838	    return false;
839	  if (use_killed_between (use, def_insn, target_insn))
840	    return false;
841	}
842      FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
843	{
844	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
845	    return false;
846	  if (use_killed_between (use, def_insn, target_insn))
847	    return false;
848	}
849    }
850
851  return true;
852}
853
854
855static df_ref *active_defs;
856#ifdef ENABLE_CHECKING
857static sparseset active_defs_check;
858#endif
859
860/* Fill the ACTIVE_DEFS array with the use->def link for the registers
861   mentioned in USE_REC.  Register the valid entries in ACTIVE_DEFS_CHECK
862   too, for checking purposes.  */
863
864static void
865register_active_defs (df_ref use)
866{
867  for (; use; use = DF_REF_NEXT_LOC (use))
868    {
869      df_ref def = get_def_for_use (use);
870      int regno = DF_REF_REGNO (use);
871
872#ifdef ENABLE_CHECKING
873      sparseset_set_bit (active_defs_check, regno);
874#endif
875      active_defs[regno] = def;
876    }
877}
878
879
880/* Build the use->def links that we use to update the dataflow info
881   for new uses.  Note that building the links is very cheap and if
882   it were done earlier, they could be used to rule out invalid
883   propagations (in addition to what is done in all_uses_available_at).
884   I'm not doing this yet, though.  */
885
886static void
887update_df_init (rtx_insn *def_insn, rtx_insn *insn)
888{
889#ifdef ENABLE_CHECKING
890  sparseset_clear (active_defs_check);
891#endif
892  register_active_defs (DF_INSN_USES (def_insn));
893  register_active_defs (DF_INSN_USES (insn));
894  register_active_defs (DF_INSN_EQ_USES (insn));
895}
896
897
898/* Update the USE_DEF_REF array for the given use, using the active definitions
899   in the ACTIVE_DEFS array to match pseudos to their def. */
900
901static inline void
902update_uses (df_ref use)
903{
904  for (; use; use = DF_REF_NEXT_LOC (use))
905    {
906      int regno = DF_REF_REGNO (use);
907
908      /* Set up the use-def chain.  */
909      if (DF_REF_ID (use) >= (int) use_def_ref.length ())
910        use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
911
912#ifdef ENABLE_CHECKING
913      gcc_assert (sparseset_bit_p (active_defs_check, regno));
914#endif
915      use_def_ref[DF_REF_ID (use)] = active_defs[regno];
916    }
917}
918
919
920/* Update the USE_DEF_REF array for the uses in INSN.  Only update note
921   uses if NOTES_ONLY is true.  */
922
923static void
924update_df (rtx_insn *insn, rtx note)
925{
926  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
927
928  if (note)
929    {
930      df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
931      df_notes_rescan (insn);
932    }
933  else
934    {
935      df_uses_create (&PATTERN (insn), insn, 0);
936      df_insn_rescan (insn);
937      update_uses (DF_INSN_INFO_USES (insn_info));
938    }
939
940  update_uses (DF_INSN_INFO_EQ_USES (insn_info));
941}
942
943
944/* Try substituting NEW into LOC, which originated from forward propagation
945   of USE's value from DEF_INSN.  SET_REG_EQUAL says whether we are
946   substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
947   new insn is not recognized.  Return whether the substitution was
948   performed.  */
949
950static bool
951try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
952		  bool set_reg_equal)
953{
954  rtx_insn *insn = DF_REF_INSN (use);
955  rtx set = single_set (insn);
956  rtx note = NULL_RTX;
957  bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
958  int old_cost = 0;
959  bool ok;
960
961  update_df_init (def_insn, insn);
962
963  /* forward_propagate_subreg may be operating on an instruction with
964     multiple sets.  If so, assume the cost of the new instruction is
965     not greater than the old one.  */
966  if (set)
967    old_cost = set_src_cost (SET_SRC (set), speed);
968  if (dump_file)
969    {
970      fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
971      print_inline_rtx (dump_file, *loc, 2);
972      fprintf (dump_file, "\n with ");
973      print_inline_rtx (dump_file, new_rtx, 2);
974      fprintf (dump_file, "\n");
975    }
976
977  validate_unshare_change (insn, loc, new_rtx, true);
978  if (!verify_changes (0))
979    {
980      if (dump_file)
981	fprintf (dump_file, "Changes to insn %d not recognized\n",
982		 INSN_UID (insn));
983      ok = false;
984    }
985
986  else if (DF_REF_TYPE (use) == DF_REF_REG_USE
987	   && set
988	   && set_src_cost (SET_SRC (set), speed) > old_cost)
989    {
990      if (dump_file)
991	fprintf (dump_file, "Changes to insn %d not profitable\n",
992		 INSN_UID (insn));
993      ok = false;
994    }
995
996  else
997    {
998      if (dump_file)
999	fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1000      ok = true;
1001    }
1002
1003  if (ok)
1004    {
1005      confirm_change_group ();
1006      num_changes++;
1007    }
1008  else
1009    {
1010      cancel_changes (0);
1011
1012      /* Can also record a simplified value in a REG_EQUAL note,
1013	 making a new one if one does not already exist.  */
1014      if (set_reg_equal)
1015	{
1016	  if (dump_file)
1017	    fprintf (dump_file, " Setting REG_EQUAL note\n");
1018
1019	  note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1020	}
1021    }
1022
1023  if ((ok || note) && !CONSTANT_P (new_rtx))
1024    update_df (insn, note);
1025
1026  return ok;
1027}
1028
1029/* For the given single_set INSN, containing SRC known to be a
1030   ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1031   is redundant due to the register being set by a LOAD_EXTEND_OP
1032   load from memory.  */
1033
1034static bool
1035free_load_extend (rtx src, rtx_insn *insn)
1036{
1037  rtx reg;
1038  df_ref def, use;
1039
1040  reg = XEXP (src, 0);
1041#ifdef LOAD_EXTEND_OP
1042  if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1043#endif
1044    return false;
1045
1046  FOR_EACH_INSN_USE (use, insn)
1047    if (!DF_REF_IS_ARTIFICIAL (use)
1048	&& DF_REF_TYPE (use) == DF_REF_REG_USE
1049	&& DF_REF_REG (use) == reg)
1050      break;
1051  if (!use)
1052    return false;
1053
1054  def = get_def_for_use (use);
1055  if (!def)
1056    return false;
1057
1058  if (DF_REF_IS_ARTIFICIAL (def))
1059    return false;
1060
1061  if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1062    {
1063      rtx patt = PATTERN (DF_REF_INSN (def));
1064
1065      if (GET_CODE (patt) == SET
1066	  && GET_CODE (SET_SRC (patt)) == MEM
1067	  && rtx_equal_p (SET_DEST (patt), reg))
1068	return true;
1069    }
1070  return false;
1071}
1072
1073/* If USE is a subreg, see if it can be replaced by a pseudo.  */
1074
1075static bool
1076forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1077{
1078  rtx use_reg = DF_REF_REG (use);
1079  rtx_insn *use_insn;
1080  rtx src;
1081
1082  /* Only consider subregs... */
1083  machine_mode use_mode = GET_MODE (use_reg);
1084  if (GET_CODE (use_reg) != SUBREG
1085      || !REG_P (SET_DEST (def_set)))
1086    return false;
1087
1088  /* If this is a paradoxical SUBREG...  */
1089  if (GET_MODE_SIZE (use_mode)
1090      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1091    {
1092      /* If this is a paradoxical SUBREG, we have no idea what value the
1093	 extra bits would have.  However, if the operand is equivalent to
1094	 a SUBREG whose operand is the same as our mode, and all the modes
1095	 are within a word, we can just use the inner operand because
1096	 these SUBREGs just say how to treat the register.  */
1097      use_insn = DF_REF_INSN (use);
1098      src = SET_SRC (def_set);
1099      if (GET_CODE (src) == SUBREG
1100	  && REG_P (SUBREG_REG (src))
1101	  && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1102	  && GET_MODE (SUBREG_REG (src)) == use_mode
1103	  && subreg_lowpart_p (src)
1104	  && all_uses_available_at (def_insn, use_insn))
1105	return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1106				 def_insn, false);
1107    }
1108
1109  /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1110     is the low part of the reg being extended then just use the inner
1111     operand.  Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1112     be removed due to it matching a LOAD_EXTEND_OP load from memory,
1113     or due to the operation being a no-op when applied to registers.
1114     For example, if we have:
1115
1116	 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1117	 B: (... (subreg:SI (reg:DI X)) ...)
1118
1119     and mode_rep_extended says that Y is already sign-extended,
1120     the backend will typically allow A to be combined with the
1121     definition of Y or, failing that, allow A to be deleted after
1122     reload through register tying.  Introducing more uses of Y
1123     prevents both optimisations.  */
1124  else if (subreg_lowpart_p (use_reg))
1125    {
1126      use_insn = DF_REF_INSN (use);
1127      src = SET_SRC (def_set);
1128      if ((GET_CODE (src) == ZERO_EXTEND
1129	   || GET_CODE (src) == SIGN_EXTEND)
1130	  && REG_P (XEXP (src, 0))
1131	  && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1132	  && GET_MODE (XEXP (src, 0)) == use_mode
1133	  && !free_load_extend (src, def_insn)
1134	  && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1135	      != (int) GET_CODE (src))
1136	  && all_uses_available_at (def_insn, use_insn))
1137	return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1138				 def_insn, false);
1139    }
1140
1141  return false;
1142}
1143
1144/* Try to replace USE with SRC (defined in DEF_INSN) in __asm.  */
1145
1146static bool
1147forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1148{
1149  rtx_insn *use_insn = DF_REF_INSN (use);
1150  rtx src, use_pat, asm_operands, new_rtx, *loc;
1151  int speed_p, i;
1152  df_ref uses;
1153
1154  gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1155
1156  src = SET_SRC (def_set);
1157  use_pat = PATTERN (use_insn);
1158
1159  /* In __asm don't replace if src might need more registers than
1160     reg, as that could increase register pressure on the __asm.  */
1161  uses = DF_INSN_USES (def_insn);
1162  if (uses && DF_REF_NEXT_LOC (uses))
1163    return false;
1164
1165  update_df_init (def_insn, use_insn);
1166  speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1167  asm_operands = NULL_RTX;
1168  switch (GET_CODE (use_pat))
1169    {
1170    case ASM_OPERANDS:
1171      asm_operands = use_pat;
1172      break;
1173    case SET:
1174      if (MEM_P (SET_DEST (use_pat)))
1175	{
1176	  loc = &SET_DEST (use_pat);
1177	  new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1178	  if (new_rtx)
1179	    validate_unshare_change (use_insn, loc, new_rtx, true);
1180	}
1181      asm_operands = SET_SRC (use_pat);
1182      break;
1183    case PARALLEL:
1184      for (i = 0; i < XVECLEN (use_pat, 0); i++)
1185	if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1186	  {
1187	    if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1188	      {
1189		loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1190		new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1191					 src, speed_p);
1192		if (new_rtx)
1193		  validate_unshare_change (use_insn, loc, new_rtx, true);
1194	      }
1195	    asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1196	  }
1197	else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1198	  asm_operands = XVECEXP (use_pat, 0, i);
1199      break;
1200    default:
1201      gcc_unreachable ();
1202    }
1203
1204  gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1205  for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1206    {
1207      loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1208      new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1209      if (new_rtx)
1210	validate_unshare_change (use_insn, loc, new_rtx, true);
1211    }
1212
1213  if (num_changes_pending () == 0 || !apply_change_group ())
1214    return false;
1215
1216  update_df (use_insn, NULL);
1217  num_changes++;
1218  return true;
1219}
1220
1221/* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1222   result.  */
1223
1224static bool
1225forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1226{
1227  rtx_insn *use_insn = DF_REF_INSN (use);
1228  rtx use_set = single_set (use_insn);
1229  rtx src, reg, new_rtx, *loc;
1230  bool set_reg_equal;
1231  machine_mode mode;
1232  int asm_use = -1;
1233
1234  if (INSN_CODE (use_insn) < 0)
1235    asm_use = asm_noperands (PATTERN (use_insn));
1236
1237  if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1238    return false;
1239
1240  /* Do not propagate into PC, CC0, etc.  */
1241  if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1242    return false;
1243
1244  /* If def and use are subreg, check if they match.  */
1245  reg = DF_REF_REG (use);
1246  if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1247    {
1248      if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1249	return false;
1250    }
1251  /* Check if the def had a subreg, but the use has the whole reg.  */
1252  else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1253    return false;
1254  /* Check if the use has a subreg, but the def had the whole reg.  Unlike the
1255     previous case, the optimization is possible and often useful indeed.  */
1256  else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1257    reg = SUBREG_REG (reg);
1258
1259  /* Make sure that we can treat REG as having the same mode as the
1260     source of DEF_SET.  */
1261  if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1262    return false;
1263
1264  /* Check if the substitution is valid (last, because it's the most
1265     expensive check!).  */
1266  src = SET_SRC (def_set);
1267  if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1268    return false;
1269
1270  /* Check if the def is loading something from the constant pool; in this
1271     case we would undo optimization such as compress_float_constant.
1272     Still, we can set a REG_EQUAL note.  */
1273  if (MEM_P (src) && MEM_READONLY_P (src))
1274    {
1275      rtx x = avoid_constant_pool_reference (src);
1276      if (x != src && use_set)
1277	{
1278          rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1279	  rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1280	  rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1281	  if (old_rtx != new_rtx)
1282            set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1283	}
1284      return false;
1285    }
1286
1287  if (asm_use >= 0)
1288    return forward_propagate_asm (use, def_insn, def_set, reg);
1289
1290  /* Else try simplifying.  */
1291
1292  if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1293    {
1294      loc = &SET_DEST (use_set);
1295      set_reg_equal = false;
1296    }
1297  else if (!use_set)
1298    {
1299      loc = &INSN_VAR_LOCATION_LOC (use_insn);
1300      set_reg_equal = false;
1301    }
1302  else
1303    {
1304      rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1305      if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1306	loc = &XEXP (note, 0);
1307      else
1308	loc = &SET_SRC (use_set);
1309
1310      /* Do not replace an existing REG_EQUAL note if the insn is not
1311	 recognized.  Either we're already replacing in the note, or we'll
1312	 separately try plugging the definition in the note and simplifying.
1313	 And only install a REQ_EQUAL note when the destination is a REG
1314	 that isn't mentioned in USE_SET, as the note would be invalid
1315	 otherwise.  We also don't want to install a note if we are merely
1316	 propagating a pseudo since verifying that this pseudo isn't dead
1317	 is a pain; moreover such a note won't help anything.  */
1318      set_reg_equal = (note == NULL_RTX
1319		       && REG_P (SET_DEST (use_set))
1320		       && !REG_P (src)
1321		       && !(GET_CODE (src) == SUBREG
1322			    && REG_P (SUBREG_REG (src)))
1323		       && !reg_mentioned_p (SET_DEST (use_set),
1324					    SET_SRC (use_set)));
1325    }
1326
1327  if (GET_MODE (*loc) == VOIDmode)
1328    mode = GET_MODE (SET_DEST (use_set));
1329  else
1330    mode = GET_MODE (*loc);
1331
1332  new_rtx = propagate_rtx (*loc, mode, reg, src,
1333  			   optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1334
1335  if (!new_rtx)
1336    return false;
1337
1338  return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1339}
1340
1341
1342/* Given a use USE of an insn, if it has a single reaching
1343   definition, try to forward propagate it into that insn.
1344   Return true if cfg cleanup will be needed.  */
1345
1346static bool
1347forward_propagate_into (df_ref use)
1348{
1349  df_ref def;
1350  rtx_insn *def_insn, *use_insn;
1351  rtx def_set;
1352  rtx parent;
1353
1354  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1355    return false;
1356  if (DF_REF_IS_ARTIFICIAL (use))
1357    return false;
1358
1359  /* Only consider uses that have a single definition.  */
1360  def = get_def_for_use (use);
1361  if (!def)
1362    return false;
1363  if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1364    return false;
1365  if (DF_REF_IS_ARTIFICIAL (def))
1366    return false;
1367
1368  /* Do not propagate loop invariant definitions inside the loop.  */
1369  if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1370    return false;
1371
1372  /* Check if the use is still present in the insn!  */
1373  use_insn = DF_REF_INSN (use);
1374  if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1375    parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1376  else
1377    parent = PATTERN (use_insn);
1378
1379  if (!reg_mentioned_p (DF_REF_REG (use), parent))
1380    return false;
1381
1382  def_insn = DF_REF_INSN (def);
1383  if (multiple_sets (def_insn))
1384    return false;
1385  def_set = single_set (def_insn);
1386  if (!def_set)
1387    return false;
1388
1389  /* Only try one kind of propagation.  If two are possible, we'll
1390     do it on the following iterations.  */
1391  if (forward_propagate_and_simplify (use, def_insn, def_set)
1392      || forward_propagate_subreg (use, def_insn, def_set))
1393    {
1394      if (cfun->can_throw_non_call_exceptions
1395	  && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1396	  && purge_dead_edges (DF_REF_BB (use)))
1397	return true;
1398    }
1399  return false;
1400}
1401
1402
1403static void
1404fwprop_init (void)
1405{
1406  num_changes = 0;
1407  calculate_dominance_info (CDI_DOMINATORS);
1408
1409  /* We do not always want to propagate into loops, so we have to find
1410     loops and be careful about them.  Avoid CFG modifications so that
1411     we don't have to update dominance information afterwards for
1412     build_single_def_use_links.  */
1413  loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1414
1415  build_single_def_use_links ();
1416  df_set_flags (DF_DEFER_INSN_RESCAN);
1417
1418  active_defs = XNEWVEC (df_ref, max_reg_num ());
1419#ifdef ENABLE_CHECKING
1420  active_defs_check = sparseset_alloc (max_reg_num ());
1421#endif
1422}
1423
1424static void
1425fwprop_done (void)
1426{
1427  loop_optimizer_finalize ();
1428
1429  use_def_ref.release ();
1430  free (active_defs);
1431#ifdef ENABLE_CHECKING
1432  sparseset_free (active_defs_check);
1433#endif
1434
1435  free_dominance_info (CDI_DOMINATORS);
1436  cleanup_cfg (0);
1437  delete_trivially_dead_insns (get_insns (), max_reg_num ());
1438
1439  if (dump_file)
1440    fprintf (dump_file,
1441	     "\nNumber of successful forward propagations: %d\n\n",
1442	     num_changes);
1443}
1444
1445
1446/* Main entry point.  */
1447
1448static bool
1449gate_fwprop (void)
1450{
1451  return optimize > 0 && flag_forward_propagate;
1452}
1453
1454static unsigned int
1455fwprop (void)
1456{
1457  unsigned i;
1458  bool need_cleanup = false;
1459
1460  fwprop_init ();
1461
1462  /* Go through all the uses.  df_uses_create will create new ones at the
1463     end, and we'll go through them as well.
1464
1465     Do not forward propagate addresses into loops until after unrolling.
1466     CSE did so because it was able to fix its own mess, but we are not.  */
1467
1468  for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1469    {
1470      df_ref use = DF_USES_GET (i);
1471      if (use)
1472	if (DF_REF_TYPE (use) == DF_REF_REG_USE
1473	    || DF_REF_BB (use)->loop_father == NULL
1474	    /* The outer most loop is not really a loop.  */
1475	    || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1476	  need_cleanup |= forward_propagate_into (use);
1477    }
1478
1479  fwprop_done ();
1480  if (need_cleanup)
1481    cleanup_cfg (0);
1482  return 0;
1483}
1484
1485namespace {
1486
1487const pass_data pass_data_rtl_fwprop =
1488{
1489  RTL_PASS, /* type */
1490  "fwprop1", /* name */
1491  OPTGROUP_NONE, /* optinfo_flags */
1492  TV_FWPROP, /* tv_id */
1493  0, /* properties_required */
1494  0, /* properties_provided */
1495  0, /* properties_destroyed */
1496  0, /* todo_flags_start */
1497  TODO_df_finish, /* todo_flags_finish */
1498};
1499
1500class pass_rtl_fwprop : public rtl_opt_pass
1501{
1502public:
1503  pass_rtl_fwprop (gcc::context *ctxt)
1504    : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1505  {}
1506
1507  /* opt_pass methods: */
1508  virtual bool gate (function *) { return gate_fwprop (); }
1509  virtual unsigned int execute (function *) { return fwprop (); }
1510
1511}; // class pass_rtl_fwprop
1512
1513} // anon namespace
1514
1515rtl_opt_pass *
1516make_pass_rtl_fwprop (gcc::context *ctxt)
1517{
1518  return new pass_rtl_fwprop (ctxt);
1519}
1520
1521static unsigned int
1522fwprop_addr (void)
1523{
1524  unsigned i;
1525  bool need_cleanup = false;
1526
1527  fwprop_init ();
1528
1529  /* Go through all the uses.  df_uses_create will create new ones at the
1530     end, and we'll go through them as well.  */
1531  for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1532    {
1533      df_ref use = DF_USES_GET (i);
1534      if (use)
1535	if (DF_REF_TYPE (use) != DF_REF_REG_USE
1536	    && DF_REF_BB (use)->loop_father != NULL
1537	    /* The outer most loop is not really a loop.  */
1538	    && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1539	  need_cleanup |= forward_propagate_into (use);
1540    }
1541
1542  fwprop_done ();
1543
1544  if (need_cleanup)
1545    cleanup_cfg (0);
1546  return 0;
1547}
1548
1549namespace {
1550
1551const pass_data pass_data_rtl_fwprop_addr =
1552{
1553  RTL_PASS, /* type */
1554  "fwprop2", /* name */
1555  OPTGROUP_NONE, /* optinfo_flags */
1556  TV_FWPROP, /* tv_id */
1557  0, /* properties_required */
1558  0, /* properties_provided */
1559  0, /* properties_destroyed */
1560  0, /* todo_flags_start */
1561  TODO_df_finish, /* todo_flags_finish */
1562};
1563
1564class pass_rtl_fwprop_addr : public rtl_opt_pass
1565{
1566public:
1567  pass_rtl_fwprop_addr (gcc::context *ctxt)
1568    : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1569  {}
1570
1571  /* opt_pass methods: */
1572  virtual bool gate (function *) { return gate_fwprop (); }
1573  virtual unsigned int execute (function *) { return fwprop_addr (); }
1574
1575}; // class pass_rtl_fwprop_addr
1576
1577} // anon namespace
1578
1579rtl_opt_pass *
1580make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1581{
1582  return new pass_rtl_fwprop_addr (ctxt);
1583}
1584