1/* Target-dependent costs for expmed.c.
2   Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option; any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#ifndef EXPMED_H
21#define EXPMED_H 1
22
23#include "insn-codes.h"
24
25enum alg_code {
26  alg_unknown,
27  alg_zero,
28  alg_m, alg_shift,
29  alg_add_t_m2,
30  alg_sub_t_m2,
31  alg_add_factor,
32  alg_sub_factor,
33  alg_add_t2_m,
34  alg_sub_t2_m,
35  alg_impossible
36};
37
38/* This structure holds the "cost" of a multiply sequence.  The
39   "cost" field holds the total rtx_cost of every operator in the
40   synthetic multiplication sequence, hence cost(a op b) is defined
41   as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
42   The "latency" field holds the minimum possible latency of the
43   synthetic multiply, on a hypothetical infinitely parallel CPU.
44   This is the critical path, or the maximum height, of the expression
45   tree which is the sum of rtx_costs on the most expensive path from
46   any leaf to the root.  Hence latency(a op b) is defined as zero for
47   leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise.  */
48
49struct mult_cost {
50  short cost;     /* Total rtx_cost of the multiplication sequence.  */
51  short latency;  /* The latency of the multiplication sequence.  */
52};
53
54/* This macro is used to compare a pointer to a mult_cost against an
55   single integer "rtx_cost" value.  This is equivalent to the macro
56   CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}.  */
57#define MULT_COST_LESS(X,Y) ((X)->cost < (Y)	\
58			     || ((X)->cost == (Y) && (X)->latency < (Y)))
59
60/* This macro is used to compare two pointers to mult_costs against
61   each other.  The macro returns true if X is cheaper than Y.
62   Currently, the cheaper of two mult_costs is the one with the
63   lower "cost".  If "cost"s are tied, the lower latency is cheaper.  */
64#define CHEAPER_MULT_COST(X,Y)  ((X)->cost < (Y)->cost		\
65				 || ((X)->cost == (Y)->cost	\
66				     && (X)->latency < (Y)->latency))
67
68/* This structure records a sequence of operations.
69   `ops' is the number of operations recorded.
70   `cost' is their total cost.
71   The operations are stored in `op' and the corresponding
72   logarithms of the integer coefficients in `log'.
73
74   These are the operations:
75   alg_zero		total := 0;
76   alg_m		total := multiplicand;
77   alg_shift		total := total * coeff
78   alg_add_t_m2		total := total + multiplicand * coeff;
79   alg_sub_t_m2		total := total - multiplicand * coeff;
80   alg_add_factor	total := total * coeff + total;
81   alg_sub_factor	total := total * coeff - total;
82   alg_add_t2_m		total := total * coeff + multiplicand;
83   alg_sub_t2_m		total := total * coeff - multiplicand;
84
85   The first operand must be either alg_zero or alg_m.  */
86
87struct algorithm
88{
89  struct mult_cost cost;
90  short ops;
91  /* The size of the OP and LOG fields are not directly related to the
92     word size, but the worst-case algorithms will be if we have few
93     consecutive ones or zeros, i.e., a multiplicand like 10101010101...
94     In that case we will generate shift-by-2, add, shift-by-2, add,...,
95     in total wordsize operations.  */
96  enum alg_code op[MAX_BITS_PER_WORD];
97  char log[MAX_BITS_PER_WORD];
98};
99
100/* The entry for our multiplication cache/hash table.  */
101struct alg_hash_entry {
102  /* The number we are multiplying by.  */
103  unsigned HOST_WIDE_INT t;
104
105  /* The mode in which we are multiplying something by T.  */
106  machine_mode mode;
107
108  /* The best multiplication algorithm for t.  */
109  enum alg_code alg;
110
111  /* The cost of multiplication if ALG_CODE is not alg_impossible.
112     Otherwise, the cost within which multiplication by T is
113     impossible.  */
114  struct mult_cost cost;
115
116  /* Optimized for speed? */
117  bool speed;
118};
119
120/* The number of cache/hash entries.  */
121#if HOST_BITS_PER_WIDE_INT == 64
122#define NUM_ALG_HASH_ENTRIES 1031
123#else
124#define NUM_ALG_HASH_ENTRIES 307
125#endif
126
127#define NUM_MODE_INT \
128  (MAX_MODE_INT - MIN_MODE_INT + 1)
129#define NUM_MODE_PARTIAL_INT \
130  (MIN_MODE_PARTIAL_INT == VOIDmode ? 0 \
131   : MAX_MODE_PARTIAL_INT - MIN_MODE_PARTIAL_INT + 1)
132#define NUM_MODE_VECTOR_INT \
133  (MIN_MODE_VECTOR_INT == VOIDmode ? 0 \
134   : MAX_MODE_VECTOR_INT - MIN_MODE_VECTOR_INT + 1)
135
136#define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT)
137#define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT)
138
139struct expmed_op_cheap {
140  bool cheap[2][NUM_MODE_IPV_INT];
141};
142
143struct expmed_op_costs {
144  int cost[2][NUM_MODE_IPV_INT];
145};
146
147/* Target-dependent globals.  */
148struct target_expmed {
149  /* Each entry of ALG_HASH caches alg_code for some integer.  This is
150     actually a hash table.  If we have a collision, that the older
151     entry is kicked out.  */
152  struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES];
153
154  /* True if x_alg_hash might already have been used.  */
155  bool x_alg_hash_used_p;
156
157  /* Nonzero means divides or modulus operations are relatively cheap for
158     powers of two, so don't use branches; emit the operation instead.
159     Usually, this will mean that the MD file will emit non-branch
160     sequences.  */
161  struct expmed_op_cheap x_sdiv_pow2_cheap;
162  struct expmed_op_cheap x_smod_pow2_cheap;
163
164  /* Cost of various pieces of RTL.  Note that some of these are indexed by
165     shift count and some by mode.  */
166  int x_zero_cost[2];
167  struct expmed_op_costs x_add_cost;
168  struct expmed_op_costs x_neg_cost;
169  struct expmed_op_costs x_shift_cost[MAX_BITS_PER_WORD];
170  struct expmed_op_costs x_shiftadd_cost[MAX_BITS_PER_WORD];
171  struct expmed_op_costs x_shiftsub0_cost[MAX_BITS_PER_WORD];
172  struct expmed_op_costs x_shiftsub1_cost[MAX_BITS_PER_WORD];
173  struct expmed_op_costs x_mul_cost;
174  struct expmed_op_costs x_sdiv_cost;
175  struct expmed_op_costs x_udiv_cost;
176  int x_mul_widen_cost[2][NUM_MODE_INT];
177  int x_mul_highpart_cost[2][NUM_MODE_INT];
178
179  /* Conversion costs are only defined between two scalar integer modes
180     of different sizes.  The first machine mode is the destination mode,
181     and the second is the source mode.  */
182  int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT];
183};
184
185extern struct target_expmed default_target_expmed;
186#if SWITCHABLE_TARGET
187extern struct target_expmed *this_target_expmed;
188#else
189#define this_target_expmed (&default_target_expmed)
190#endif
191
192/* Return a pointer to the alg_hash_entry at IDX.  */
193
194static inline struct alg_hash_entry *
195alg_hash_entry_ptr (int idx)
196{
197  return &this_target_expmed->x_alg_hash[idx];
198}
199
200/* Return true if the x_alg_hash field might have been used.  */
201
202static inline bool
203alg_hash_used_p (void)
204{
205  return this_target_expmed->x_alg_hash_used_p;
206}
207
208/* Set whether the x_alg_hash field might have been used.  */
209
210static inline void
211set_alg_hash_used_p (bool usedp)
212{
213  this_target_expmed->x_alg_hash_used_p = usedp;
214}
215
216/* Compute an index into the cost arrays by mode class.  */
217
218static inline int
219expmed_mode_index (machine_mode mode)
220{
221  switch (GET_MODE_CLASS (mode))
222    {
223    case MODE_INT:
224      return mode - MIN_MODE_INT;
225    case MODE_PARTIAL_INT:
226      /* If there are no partial integer modes, help the compiler
227	 to figure out this will never happen.  See PR59934.  */
228      if (MIN_MODE_PARTIAL_INT != VOIDmode)
229	return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT;
230      break;
231    case MODE_VECTOR_INT:
232      /* If there are no vector integer modes, help the compiler
233	 to figure out this will never happen.  See PR59934.  */
234      if (MIN_MODE_VECTOR_INT != VOIDmode)
235	return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT;
236      break;
237    default:
238      break;
239    }
240  gcc_unreachable ();
241}
242
243/* Return a pointer to a boolean contained in EOC indicating whether
244   a particular operation performed in MODE is cheap when optimizing
245   for SPEED.  */
246
247static inline bool *
248expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed,
249		     machine_mode mode)
250{
251  int idx = expmed_mode_index (mode);
252  return &eoc->cheap[speed][idx];
253}
254
255/* Return a pointer to a cost contained in COSTS when a particular
256   operation is performed in MODE when optimizing for SPEED.  */
257
258static inline int *
259expmed_op_cost_ptr (struct expmed_op_costs *costs, bool speed,
260		    machine_mode mode)
261{
262  int idx = expmed_mode_index (mode);
263  return &costs->cost[speed][idx];
264}
265
266/* Subroutine of {set_,}sdiv_pow2_cheap.  Not to be used otherwise.  */
267
268static inline bool *
269sdiv_pow2_cheap_ptr (bool speed, machine_mode mode)
270{
271  return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap,
272			      speed, mode);
273}
274
275/* Set whether a signed division by a power of 2 is cheap in MODE
276   when optimizing for SPEED.  */
277
278static inline void
279set_sdiv_pow2_cheap (bool speed, machine_mode mode, bool cheap_p)
280{
281  *sdiv_pow2_cheap_ptr (speed, mode) = cheap_p;
282}
283
284/* Return whether a signed division by a power of 2 is cheap in MODE
285   when optimizing for SPEED.  */
286
287static inline bool
288sdiv_pow2_cheap (bool speed, machine_mode mode)
289{
290  return *sdiv_pow2_cheap_ptr (speed, mode);
291}
292
293/* Subroutine of {set_,}smod_pow2_cheap.  Not to be used otherwise.  */
294
295static inline bool *
296smod_pow2_cheap_ptr (bool speed, machine_mode mode)
297{
298  return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap,
299			      speed, mode);
300}
301
302/* Set whether a signed modulo by a power of 2 is CHEAP in MODE when
303   optimizing for SPEED.  */
304
305static inline void
306set_smod_pow2_cheap (bool speed, machine_mode mode, bool cheap)
307{
308  *smod_pow2_cheap_ptr (speed, mode) = cheap;
309}
310
311/* Return whether a signed modulo by a power of 2 is cheap in MODE
312   when optimizing for SPEED.  */
313
314static inline bool
315smod_pow2_cheap (bool speed, machine_mode mode)
316{
317  return *smod_pow2_cheap_ptr (speed, mode);
318}
319
320/* Subroutine of {set_,}zero_cost.  Not to be used otherwise.  */
321
322static inline int *
323zero_cost_ptr (bool speed)
324{
325  return &this_target_expmed->x_zero_cost[speed];
326}
327
328/* Set the COST of loading zero when optimizing for SPEED.  */
329
330static inline void
331set_zero_cost (bool speed, int cost)
332{
333  *zero_cost_ptr (speed) = cost;
334}
335
336/* Return the COST of loading zero when optimizing for SPEED.  */
337
338static inline int
339zero_cost (bool speed)
340{
341  return *zero_cost_ptr (speed);
342}
343
344/* Subroutine of {set_,}add_cost.  Not to be used otherwise.  */
345
346static inline int *
347add_cost_ptr (bool speed, machine_mode mode)
348{
349  return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode);
350}
351
352/* Set the COST of computing an add in MODE when optimizing for SPEED.  */
353
354static inline void
355set_add_cost (bool speed, machine_mode mode, int cost)
356{
357  *add_cost_ptr (speed, mode) = cost;
358}
359
360/* Return the cost of computing an add in MODE when optimizing for SPEED.  */
361
362static inline int
363add_cost (bool speed, machine_mode mode)
364{
365  return *add_cost_ptr (speed, mode);
366}
367
368/* Subroutine of {set_,}neg_cost.  Not to be used otherwise.  */
369
370static inline int *
371neg_cost_ptr (bool speed, machine_mode mode)
372{
373  return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode);
374}
375
376/* Set the COST of computing a negation in MODE when optimizing for SPEED.  */
377
378static inline void
379set_neg_cost (bool speed, machine_mode mode, int cost)
380{
381  *neg_cost_ptr (speed, mode) = cost;
382}
383
384/* Return the cost of computing a negation in MODE when optimizing for
385   SPEED.  */
386
387static inline int
388neg_cost (bool speed, machine_mode mode)
389{
390  return *neg_cost_ptr (speed, mode);
391}
392
393/* Subroutine of {set_,}shift_cost.  Not to be used otherwise.  */
394
395static inline int *
396shift_cost_ptr (bool speed, machine_mode mode, int bits)
397{
398  return expmed_op_cost_ptr (&this_target_expmed->x_shift_cost[bits],
399			     speed, mode);
400}
401
402/* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED.  */
403
404static inline void
405set_shift_cost (bool speed, machine_mode mode, int bits, int cost)
406{
407  *shift_cost_ptr (speed, mode, bits) = cost;
408}
409
410/* Return the cost of doing a shift in MODE by BITS when optimizing for
411   SPEED.  */
412
413static inline int
414shift_cost (bool speed, machine_mode mode, int bits)
415{
416  return *shift_cost_ptr (speed, mode, bits);
417}
418
419/* Subroutine of {set_,}shiftadd_cost.  Not to be used otherwise.  */
420
421static inline int *
422shiftadd_cost_ptr (bool speed, machine_mode mode, int bits)
423{
424  return expmed_op_cost_ptr (&this_target_expmed->x_shiftadd_cost[bits],
425			     speed, mode);
426}
427
428/* Set the COST of doing a shift in MODE by BITS followed by an add when
429   optimizing for SPEED.  */
430
431static inline void
432set_shiftadd_cost (bool speed, machine_mode mode, int bits, int cost)
433{
434  *shiftadd_cost_ptr (speed, mode, bits) = cost;
435}
436
437/* Return the cost of doing a shift in MODE by BITS followed by an add
438   when optimizing for SPEED.  */
439
440static inline int
441shiftadd_cost (bool speed, machine_mode mode, int bits)
442{
443  return *shiftadd_cost_ptr (speed, mode, bits);
444}
445
446/* Subroutine of {set_,}shiftsub0_cost.  Not to be used otherwise.  */
447
448static inline int *
449shiftsub0_cost_ptr (bool speed, machine_mode mode, int bits)
450{
451  return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub0_cost[bits],
452			     speed, mode);
453}
454
455/* Set the COST of doing a shift in MODE by BITS and then subtracting a
456   value when optimizing for SPEED.  */
457
458static inline void
459set_shiftsub0_cost (bool speed, machine_mode mode, int bits, int cost)
460{
461  *shiftsub0_cost_ptr (speed, mode, bits) = cost;
462}
463
464/* Return the cost of doing a shift in MODE by BITS and then subtracting
465   a value when optimizing for SPEED.  */
466
467static inline int
468shiftsub0_cost (bool speed, machine_mode mode, int bits)
469{
470  return *shiftsub0_cost_ptr (speed, mode, bits);
471}
472
473/* Subroutine of {set_,}shiftsub1_cost.  Not to be used otherwise.  */
474
475static inline int *
476shiftsub1_cost_ptr (bool speed, machine_mode mode, int bits)
477{
478  return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub1_cost[bits],
479			     speed, mode);
480}
481
482/* Set the COST of subtracting a shift in MODE by BITS from a value when
483   optimizing for SPEED.  */
484
485static inline void
486set_shiftsub1_cost (bool speed, machine_mode mode, int bits, int cost)
487{
488  *shiftsub1_cost_ptr (speed, mode, bits) = cost;
489}
490
491/* Return the cost of subtracting a shift in MODE by BITS from a value
492   when optimizing for SPEED.  */
493
494static inline int
495shiftsub1_cost (bool speed, machine_mode mode, int bits)
496{
497  return *shiftsub1_cost_ptr (speed, mode, bits);
498}
499
500/* Subroutine of {set_,}mul_cost.  Not to be used otherwise.  */
501
502static inline int *
503mul_cost_ptr (bool speed, machine_mode mode)
504{
505  return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode);
506}
507
508/* Set the COST of doing a multiplication in MODE when optimizing for
509   SPEED.  */
510
511static inline void
512set_mul_cost (bool speed, machine_mode mode, int cost)
513{
514  *mul_cost_ptr (speed, mode) = cost;
515}
516
517/* Return the cost of doing a multiplication in MODE when optimizing
518   for SPEED.  */
519
520static inline int
521mul_cost (bool speed, machine_mode mode)
522{
523  return *mul_cost_ptr (speed, mode);
524}
525
526/* Subroutine of {set_,}sdiv_cost.  Not to be used otherwise.  */
527
528static inline int *
529sdiv_cost_ptr (bool speed, machine_mode mode)
530{
531  return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode);
532}
533
534/* Set the COST of doing a signed division in MODE when optimizing
535   for SPEED.  */
536
537static inline void
538set_sdiv_cost (bool speed, machine_mode mode, int cost)
539{
540  *sdiv_cost_ptr (speed, mode) = cost;
541}
542
543/* Return the cost of doing a signed division in MODE when optimizing
544   for SPEED.  */
545
546static inline int
547sdiv_cost (bool speed, machine_mode mode)
548{
549  return *sdiv_cost_ptr (speed, mode);
550}
551
552/* Subroutine of {set_,}udiv_cost.  Not to be used otherwise.  */
553
554static inline int *
555udiv_cost_ptr (bool speed, machine_mode mode)
556{
557  return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode);
558}
559
560/* Set the COST of doing an unsigned division in MODE when optimizing
561   for SPEED.  */
562
563static inline void
564set_udiv_cost (bool speed, machine_mode mode, int cost)
565{
566  *udiv_cost_ptr (speed, mode) = cost;
567}
568
569/* Return the cost of doing an unsigned division in MODE when
570   optimizing for SPEED.  */
571
572static inline int
573udiv_cost (bool speed, machine_mode mode)
574{
575  return *udiv_cost_ptr (speed, mode);
576}
577
578/* Subroutine of {set_,}mul_widen_cost.  Not to be used otherwise.  */
579
580static inline int *
581mul_widen_cost_ptr (bool speed, machine_mode mode)
582{
583  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
584
585  return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT];
586}
587
588/* Set the COST for computing a widening multiplication in MODE when
589   optimizing for SPEED.  */
590
591static inline void
592set_mul_widen_cost (bool speed, machine_mode mode, int cost)
593{
594  *mul_widen_cost_ptr (speed, mode) = cost;
595}
596
597/* Return the cost for computing a widening multiplication in MODE when
598   optimizing for SPEED.  */
599
600static inline int
601mul_widen_cost (bool speed, machine_mode mode)
602{
603  return *mul_widen_cost_ptr (speed, mode);
604}
605
606/* Subroutine of {set_,}mul_highpart_cost.  Not to be used otherwise.  */
607
608static inline int *
609mul_highpart_cost_ptr (bool speed, machine_mode mode)
610{
611  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
612
613  return &this_target_expmed->x_mul_highpart_cost[speed][mode - MIN_MODE_INT];
614}
615
616/* Set the COST for computing the high part of a multiplication in MODE
617   when optimizing for SPEED.  */
618
619static inline void
620set_mul_highpart_cost (bool speed, machine_mode mode, int cost)
621{
622  *mul_highpart_cost_ptr (speed, mode) = cost;
623}
624
625/* Return the cost for computing the high part of a multiplication in MODE
626   when optimizing for SPEED.  */
627
628static inline int
629mul_highpart_cost (bool speed, machine_mode mode)
630{
631  return *mul_highpart_cost_ptr (speed, mode);
632}
633
634/* Subroutine of {set_,}convert_cost.  Not to be used otherwise.  */
635
636static inline int *
637convert_cost_ptr (machine_mode to_mode, machine_mode from_mode,
638		  bool speed)
639{
640  int to_idx = expmed_mode_index (to_mode);
641  int from_idx = expmed_mode_index (from_mode);
642
643  gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1));
644  gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1));
645
646  return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx];
647}
648
649/* Set the COST for converting from FROM_MODE to TO_MODE when optimizing
650   for SPEED.  */
651
652static inline void
653set_convert_cost (machine_mode to_mode, machine_mode from_mode,
654		  bool speed, int cost)
655{
656  *convert_cost_ptr (to_mode, from_mode, speed) = cost;
657}
658
659/* Return the cost for converting from FROM_MODE to TO_MODE when optimizing
660   for SPEED.  */
661
662static inline int
663convert_cost (machine_mode to_mode, machine_mode from_mode,
664	      bool speed)
665{
666  return *convert_cost_ptr (to_mode, from_mode, speed);
667}
668
669extern int mult_by_coeff_cost (HOST_WIDE_INT, machine_mode, bool);
670extern rtx emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
671			enum machine_mode mode, enum machine_mode compare_mode,
672			int unsignedp, rtx x, rtx y, int normalizep,
673			enum machine_mode target_mode);
674
675/* Arguments MODE, RTX: return an rtx for the negation of that value.
676   May emit insns.  */
677extern rtx negate_rtx (machine_mode, rtx);
678
679/* Expand a logical AND operation.  */
680extern rtx expand_and (machine_mode, rtx, rtx, rtx);
681
682/* Emit a store-flag operation.  */
683extern rtx emit_store_flag (rtx, enum rtx_code, rtx, rtx, machine_mode,
684			    int, int);
685
686/* Like emit_store_flag, but always succeeds.  */
687extern rtx emit_store_flag_force (rtx, enum rtx_code, rtx, rtx,
688				  machine_mode, int, int);
689
690/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
691   replace division by D, and put the least significant N bits of the result
692   in *MULTIPLIER_PTR and return the most significant bit.  */
693extern unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
694						 int, unsigned HOST_WIDE_INT *,
695						 int *, int *);
696
697#ifdef TREE_CODE
698extern rtx expand_variable_shift (enum tree_code, machine_mode,
699				  rtx, tree, rtx, int);
700extern rtx expand_shift (enum tree_code, machine_mode, rtx, int, rtx,
701			     int);
702extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx,
703			  rtx, int);
704#endif
705
706extern void store_bit_field (rtx, unsigned HOST_WIDE_INT,
707			     unsigned HOST_WIDE_INT,
708			     unsigned HOST_WIDE_INT,
709			     unsigned HOST_WIDE_INT,
710			     machine_mode, rtx);
711extern rtx extract_bit_field (rtx, unsigned HOST_WIDE_INT,
712			      unsigned HOST_WIDE_INT, int, rtx,
713			      machine_mode, machine_mode);
714extern rtx extract_low_bits (machine_mode, machine_mode, rtx);
715extern rtx expand_mult (machine_mode, rtx, rtx, rtx, int);
716extern rtx expand_mult_highpart_adjust (machine_mode, rtx, rtx, rtx, rtx, int);
717
718#endif  // EXPMED_H
719