1/* Subroutines for manipulating rtx's in semantically interesting ways.
2   Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "diagnostic-core.h"
26#include "rtl.h"
27#include "hash-set.h"
28#include "machmode.h"
29#include "vec.h"
30#include "double-int.h"
31#include "input.h"
32#include "alias.h"
33#include "symtab.h"
34#include "wide-int.h"
35#include "inchash.h"
36#include "real.h"
37#include "tree.h"
38#include "stor-layout.h"
39#include "tm_p.h"
40#include "flags.h"
41#include "except.h"
42#include "hard-reg-set.h"
43#include "function.h"
44#include "hashtab.h"
45#include "statistics.h"
46#include "fixed-value.h"
47#include "insn-config.h"
48#include "expmed.h"
49#include "dojump.h"
50#include "explow.h"
51#include "calls.h"
52#include "emit-rtl.h"
53#include "varasm.h"
54#include "stmt.h"
55#include "expr.h"
56#include "insn-codes.h"
57#include "optabs.h"
58#include "libfuncs.h"
59#include "ggc.h"
60#include "recog.h"
61#include "langhooks.h"
62#include "target.h"
63#include "common/common-target.h"
64#include "output.h"
65
66static rtx break_out_memory_refs (rtx);
67
68
69/* Truncate and perhaps sign-extend C as appropriate for MODE.  */
70
71HOST_WIDE_INT
72trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
73{
74  int width = GET_MODE_PRECISION (mode);
75
76  /* You want to truncate to a _what_?  */
77  gcc_assert (SCALAR_INT_MODE_P (mode)
78	      || POINTER_BOUNDS_MODE_P (mode));
79
80  /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
81  if (mode == BImode)
82    return c & 1 ? STORE_FLAG_VALUE : 0;
83
84  /* Sign-extend for the requested mode.  */
85
86  if (width < HOST_BITS_PER_WIDE_INT)
87    {
88      HOST_WIDE_INT sign = 1;
89      sign <<= width - 1;
90      c &= (sign << 1) - 1;
91      c ^= sign;
92      c -= sign;
93    }
94
95  return c;
96}
97
98/* Return an rtx for the sum of X and the integer C, given that X has
99   mode MODE.  INPLACE is true if X can be modified inplace or false
100   if it must be treated as immutable.  */
101
102rtx
103plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
104	       bool inplace)
105{
106  RTX_CODE code;
107  rtx y;
108  rtx tem;
109  int all_constant = 0;
110
111  gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
112
113  if (c == 0)
114    return x;
115
116 restart:
117
118  code = GET_CODE (x);
119  y = x;
120
121  switch (code)
122    {
123    CASE_CONST_SCALAR_INT:
124      return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
125				   mode);
126    case MEM:
127      /* If this is a reference to the constant pool, try replacing it with
128	 a reference to a new constant.  If the resulting address isn't
129	 valid, don't return it because we have no way to validize it.  */
130      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
131	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
132	{
133	  tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
134	  tem = force_const_mem (GET_MODE (x), tem);
135	  if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
136	    return tem;
137	}
138      break;
139
140    case CONST:
141      /* If adding to something entirely constant, set a flag
142	 so that we can add a CONST around the result.  */
143      if (inplace && shared_const_p (x))
144	inplace = false;
145      x = XEXP (x, 0);
146      all_constant = 1;
147      goto restart;
148
149    case SYMBOL_REF:
150    case LABEL_REF:
151      all_constant = 1;
152      break;
153
154    case PLUS:
155      /* The interesting case is adding the integer to a sum.  Look
156	 for constant term in the sum and combine with C.  For an
157	 integer constant term or a constant term that is not an
158	 explicit integer, we combine or group them together anyway.
159
160	 We may not immediately return from the recursive call here, lest
161	 all_constant gets lost.  */
162
163      if (CONSTANT_P (XEXP (x, 1)))
164	{
165	  rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
166	  if (term == const0_rtx)
167	    x = XEXP (x, 0);
168	  else if (inplace)
169	    XEXP (x, 1) = term;
170	  else
171	    x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
172	  c = 0;
173	}
174      else if (rtx *const_loc = find_constant_term_loc (&y))
175	{
176	  if (!inplace)
177	    {
178	      /* We need to be careful since X may be shared and we can't
179		 modify it in place.  */
180	      x = copy_rtx (x);
181	      const_loc = find_constant_term_loc (&x);
182	    }
183	  *const_loc = plus_constant (mode, *const_loc, c, true);
184	  c = 0;
185	}
186      break;
187
188    default:
189      break;
190    }
191
192  if (c != 0)
193    x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
194
195  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
196    return x;
197  else if (all_constant)
198    return gen_rtx_CONST (mode, x);
199  else
200    return x;
201}
202
203/* If X is a sum, return a new sum like X but lacking any constant terms.
204   Add all the removed constant terms into *CONSTPTR.
205   X itself is not altered.  The result != X if and only if
206   it is not isomorphic to X.  */
207
208rtx
209eliminate_constant_term (rtx x, rtx *constptr)
210{
211  rtx x0, x1;
212  rtx tem;
213
214  if (GET_CODE (x) != PLUS)
215    return x;
216
217  /* First handle constants appearing at this level explicitly.  */
218  if (CONST_INT_P (XEXP (x, 1))
219      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
220						XEXP (x, 1)))
221      && CONST_INT_P (tem))
222    {
223      *constptr = tem;
224      return eliminate_constant_term (XEXP (x, 0), constptr);
225    }
226
227  tem = const0_rtx;
228  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
229  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
230  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
231      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
232						*constptr, tem))
233      && CONST_INT_P (tem))
234    {
235      *constptr = tem;
236      return gen_rtx_PLUS (GET_MODE (x), x0, x1);
237    }
238
239  return x;
240}
241
242
243/* Return a copy of X in which all memory references
244   and all constants that involve symbol refs
245   have been replaced with new temporary registers.
246   Also emit code to load the memory locations and constants
247   into those registers.
248
249   If X contains no such constants or memory references,
250   X itself (not a copy) is returned.
251
252   If a constant is found in the address that is not a legitimate constant
253   in an insn, it is left alone in the hope that it might be valid in the
254   address.
255
256   X may contain no arithmetic except addition, subtraction and multiplication.
257   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
258
259static rtx
260break_out_memory_refs (rtx x)
261{
262  if (MEM_P (x)
263      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
264	  && GET_MODE (x) != VOIDmode))
265    x = force_reg (GET_MODE (x), x);
266  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
267	   || GET_CODE (x) == MULT)
268    {
269      rtx op0 = break_out_memory_refs (XEXP (x, 0));
270      rtx op1 = break_out_memory_refs (XEXP (x, 1));
271
272      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
273	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
274    }
275
276  return x;
277}
278
279/* Given X, a memory address in address space AS' pointer mode, convert it to
280   an address in the address space's address mode, or vice versa (TO_MODE says
281   which way).  We take advantage of the fact that pointers are not allowed to
282   overflow by commuting arithmetic operations over conversions so that address
283   arithmetic insns can be used. IN_CONST is true if this conversion is inside
284   a CONST.  */
285
286static rtx
287convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
288				     rtx x, addr_space_t as ATTRIBUTE_UNUSED,
289				     bool in_const ATTRIBUTE_UNUSED)
290{
291#ifndef POINTERS_EXTEND_UNSIGNED
292  gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
293  return x;
294#else /* defined(POINTERS_EXTEND_UNSIGNED) */
295  machine_mode pointer_mode, address_mode, from_mode;
296  rtx temp;
297  enum rtx_code code;
298
299  /* If X already has the right mode, just return it.  */
300  if (GET_MODE (x) == to_mode)
301    return x;
302
303  pointer_mode = targetm.addr_space.pointer_mode (as);
304  address_mode = targetm.addr_space.address_mode (as);
305  from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
306
307  /* Here we handle some special cases.  If none of them apply, fall through
308     to the default case.  */
309  switch (GET_CODE (x))
310    {
311    CASE_CONST_SCALAR_INT:
312      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
313	code = TRUNCATE;
314      else if (POINTERS_EXTEND_UNSIGNED < 0)
315	break;
316      else if (POINTERS_EXTEND_UNSIGNED > 0)
317	code = ZERO_EXTEND;
318      else
319	code = SIGN_EXTEND;
320      temp = simplify_unary_operation (code, to_mode, x, from_mode);
321      if (temp)
322	return temp;
323      break;
324
325    case SUBREG:
326      if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
327	  && GET_MODE (SUBREG_REG (x)) == to_mode)
328	return SUBREG_REG (x);
329      break;
330
331    case LABEL_REF:
332      temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
333      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
334      return temp;
335      break;
336
337    case SYMBOL_REF:
338      temp = shallow_copy_rtx (x);
339      PUT_MODE (temp, to_mode);
340      return temp;
341      break;
342
343    case CONST:
344      return gen_rtx_CONST (to_mode,
345			    convert_memory_address_addr_space_1
346			      (to_mode, XEXP (x, 0), as, true));
347      break;
348
349    case PLUS:
350    case MULT:
351      /* For addition we can safely permute the conversion and addition
352	 operation if one operand is a constant and converting the constant
353	 does not change it or if one operand is a constant and we are
354	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
355	 We can always safely permute them if we are making the address
356	 narrower. Inside a CONST RTL, this is safe for both pointers
357	 zero or sign extended as pointers cannot wrap. */
358      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
359	  || (GET_CODE (x) == PLUS
360	      && CONST_INT_P (XEXP (x, 1))
361	      && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
362		  || XEXP (x, 1) == convert_memory_address_addr_space_1
363				     (to_mode, XEXP (x, 1), as, in_const)
364                  || POINTERS_EXTEND_UNSIGNED < 0)))
365	return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
366			       convert_memory_address_addr_space_1
367				 (to_mode, XEXP (x, 0), as, in_const),
368			       XEXP (x, 1));
369      break;
370
371    default:
372      break;
373    }
374
375  return convert_modes (to_mode, from_mode,
376			x, POINTERS_EXTEND_UNSIGNED);
377#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
378}
379
380/* Given X, a memory address in address space AS' pointer mode, convert it to
381   an address in the address space's address mode, or vice versa (TO_MODE says
382   which way).  We take advantage of the fact that pointers are not allowed to
383   overflow by commuting arithmetic operations over conversions so that address
384   arithmetic insns can be used.  */
385
386rtx
387convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
388{
389  return convert_memory_address_addr_space_1 (to_mode, x, as, false);
390}
391
392
393/* Return something equivalent to X but valid as a memory address for something
394   of mode MODE in the named address space AS.  When X is not itself valid,
395   this works by copying X or subexpressions of it into registers.  */
396
397rtx
398memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
399{
400  rtx oldx = x;
401  machine_mode address_mode = targetm.addr_space.address_mode (as);
402
403  x = convert_memory_address_addr_space (address_mode, x, as);
404
405  /* By passing constant addresses through registers
406     we get a chance to cse them.  */
407  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
408    x = force_reg (address_mode, x);
409
410  /* We get better cse by rejecting indirect addressing at this stage.
411     Let the combiner create indirect addresses where appropriate.
412     For now, generate the code so that the subexpressions useful to share
413     are visible.  But not if cse won't be done!  */
414  else
415    {
416      if (! cse_not_expected && !REG_P (x))
417	x = break_out_memory_refs (x);
418
419      /* At this point, any valid address is accepted.  */
420      if (memory_address_addr_space_p (mode, x, as))
421	goto done;
422
423      /* If it was valid before but breaking out memory refs invalidated it,
424	 use it the old way.  */
425      if (memory_address_addr_space_p (mode, oldx, as))
426	{
427	  x = oldx;
428	  goto done;
429	}
430
431      /* Perform machine-dependent transformations on X
432	 in certain cases.  This is not necessary since the code
433	 below can handle all possible cases, but machine-dependent
434	 transformations can make better code.  */
435      {
436	rtx orig_x = x;
437	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
438	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
439	  goto done;
440      }
441
442      /* PLUS and MULT can appear in special ways
443	 as the result of attempts to make an address usable for indexing.
444	 Usually they are dealt with by calling force_operand, below.
445	 But a sum containing constant terms is special
446	 if removing them makes the sum a valid address:
447	 then we generate that address in a register
448	 and index off of it.  We do this because it often makes
449	 shorter code, and because the addresses thus generated
450	 in registers often become common subexpressions.  */
451      if (GET_CODE (x) == PLUS)
452	{
453	  rtx constant_term = const0_rtx;
454	  rtx y = eliminate_constant_term (x, &constant_term);
455	  if (constant_term == const0_rtx
456	      || ! memory_address_addr_space_p (mode, y, as))
457	    x = force_operand (x, NULL_RTX);
458	  else
459	    {
460	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
461	      if (! memory_address_addr_space_p (mode, y, as))
462		x = force_operand (x, NULL_RTX);
463	      else
464		x = y;
465	    }
466	}
467
468      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
469	x = force_operand (x, NULL_RTX);
470
471      /* If we have a register that's an invalid address,
472	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
473      else if (REG_P (x))
474	x = copy_to_reg (x);
475
476      /* Last resort: copy the value to a register, since
477	 the register is a valid address.  */
478      else
479	x = force_reg (address_mode, x);
480    }
481
482 done:
483
484  gcc_assert (memory_address_addr_space_p (mode, x, as));
485  /* If we didn't change the address, we are done.  Otherwise, mark
486     a reg as a pointer if we have REG or REG + CONST_INT.  */
487  if (oldx == x)
488    return x;
489  else if (REG_P (x))
490    mark_reg_pointer (x, BITS_PER_UNIT);
491  else if (GET_CODE (x) == PLUS
492	   && REG_P (XEXP (x, 0))
493	   && CONST_INT_P (XEXP (x, 1)))
494    mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
495
496  /* OLDX may have been the address on a temporary.  Update the address
497     to indicate that X is now used.  */
498  update_temp_slot_address (oldx, x);
499
500  return x;
501}
502
503/* If REF is a MEM with an invalid address, change it into a valid address.
504   Pass through anything else unchanged.  REF must be an unshared rtx and
505   the function may modify it in-place.  */
506
507rtx
508validize_mem (rtx ref)
509{
510  if (!MEM_P (ref))
511    return ref;
512  ref = use_anchored_address (ref);
513  if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
514				   MEM_ADDR_SPACE (ref)))
515    return ref;
516
517  return replace_equiv_address (ref, XEXP (ref, 0), true);
518}
519
520/* If X is a memory reference to a member of an object block, try rewriting
521   it to use an anchor instead.  Return the new memory reference on success
522   and the old one on failure.  */
523
524rtx
525use_anchored_address (rtx x)
526{
527  rtx base;
528  HOST_WIDE_INT offset;
529  machine_mode mode;
530
531  if (!flag_section_anchors)
532    return x;
533
534  if (!MEM_P (x))
535    return x;
536
537  /* Split the address into a base and offset.  */
538  base = XEXP (x, 0);
539  offset = 0;
540  if (GET_CODE (base) == CONST
541      && GET_CODE (XEXP (base, 0)) == PLUS
542      && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
543    {
544      offset += INTVAL (XEXP (XEXP (base, 0), 1));
545      base = XEXP (XEXP (base, 0), 0);
546    }
547
548  /* Check whether BASE is suitable for anchors.  */
549  if (GET_CODE (base) != SYMBOL_REF
550      || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
551      || SYMBOL_REF_ANCHOR_P (base)
552      || SYMBOL_REF_BLOCK (base) == NULL
553      || !targetm.use_anchors_for_symbol_p (base))
554    return x;
555
556  /* Decide where BASE is going to be.  */
557  place_block_symbol (base);
558
559  /* Get the anchor we need to use.  */
560  offset += SYMBOL_REF_BLOCK_OFFSET (base);
561  base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
562			     SYMBOL_REF_TLS_MODEL (base));
563
564  /* Work out the offset from the anchor.  */
565  offset -= SYMBOL_REF_BLOCK_OFFSET (base);
566
567  /* If we're going to run a CSE pass, force the anchor into a register.
568     We will then be able to reuse registers for several accesses, if the
569     target costs say that that's worthwhile.  */
570  mode = GET_MODE (base);
571  if (!cse_not_expected)
572    base = force_reg (mode, base);
573
574  return replace_equiv_address (x, plus_constant (mode, base, offset));
575}
576
577/* Copy the value or contents of X to a new temp reg and return that reg.  */
578
579rtx
580copy_to_reg (rtx x)
581{
582  rtx temp = gen_reg_rtx (GET_MODE (x));
583
584  /* If not an operand, must be an address with PLUS and MULT so
585     do the computation.  */
586  if (! general_operand (x, VOIDmode))
587    x = force_operand (x, temp);
588
589  if (x != temp)
590    emit_move_insn (temp, x);
591
592  return temp;
593}
594
595/* Like copy_to_reg but always give the new register mode Pmode
596   in case X is a constant.  */
597
598rtx
599copy_addr_to_reg (rtx x)
600{
601  return copy_to_mode_reg (Pmode, x);
602}
603
604/* Like copy_to_reg but always give the new register mode MODE
605   in case X is a constant.  */
606
607rtx
608copy_to_mode_reg (machine_mode mode, rtx x)
609{
610  rtx temp = gen_reg_rtx (mode);
611
612  /* If not an operand, must be an address with PLUS and MULT so
613     do the computation.  */
614  if (! general_operand (x, VOIDmode))
615    x = force_operand (x, temp);
616
617  gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
618  if (x != temp)
619    emit_move_insn (temp, x);
620  return temp;
621}
622
623/* Load X into a register if it is not already one.
624   Use mode MODE for the register.
625   X should be valid for mode MODE, but it may be a constant which
626   is valid for all integer modes; that's why caller must specify MODE.
627
628   The caller must not alter the value in the register we return,
629   since we mark it as a "constant" register.  */
630
631rtx
632force_reg (machine_mode mode, rtx x)
633{
634  rtx temp, set;
635  rtx_insn *insn;
636
637  if (REG_P (x))
638    return x;
639
640  if (general_operand (x, mode))
641    {
642      temp = gen_reg_rtx (mode);
643      insn = emit_move_insn (temp, x);
644    }
645  else
646    {
647      temp = force_operand (x, NULL_RTX);
648      if (REG_P (temp))
649	insn = get_last_insn ();
650      else
651	{
652	  rtx temp2 = gen_reg_rtx (mode);
653	  insn = emit_move_insn (temp2, temp);
654	  temp = temp2;
655	}
656    }
657
658  /* Let optimizers know that TEMP's value never changes
659     and that X can be substituted for it.  Don't get confused
660     if INSN set something else (such as a SUBREG of TEMP).  */
661  if (CONSTANT_P (x)
662      && (set = single_set (insn)) != 0
663      && SET_DEST (set) == temp
664      && ! rtx_equal_p (x, SET_SRC (set)))
665    set_unique_reg_note (insn, REG_EQUAL, x);
666
667  /* Let optimizers know that TEMP is a pointer, and if so, the
668     known alignment of that pointer.  */
669  {
670    unsigned align = 0;
671    if (GET_CODE (x) == SYMBOL_REF)
672      {
673        align = BITS_PER_UNIT;
674	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
675	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
676      }
677    else if (GET_CODE (x) == LABEL_REF)
678      align = BITS_PER_UNIT;
679    else if (GET_CODE (x) == CONST
680	     && GET_CODE (XEXP (x, 0)) == PLUS
681	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
682	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
683      {
684	rtx s = XEXP (XEXP (x, 0), 0);
685	rtx c = XEXP (XEXP (x, 0), 1);
686	unsigned sa, ca;
687
688	sa = BITS_PER_UNIT;
689	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
690	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
691
692	if (INTVAL (c) == 0)
693	  align = sa;
694	else
695	  {
696	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
697	    align = MIN (sa, ca);
698	  }
699      }
700
701    if (align || (MEM_P (x) && MEM_POINTER (x)))
702      mark_reg_pointer (temp, align);
703  }
704
705  return temp;
706}
707
708/* If X is a memory ref, copy its contents to a new temp reg and return
709   that reg.  Otherwise, return X.  */
710
711rtx
712force_not_mem (rtx x)
713{
714  rtx temp;
715
716  if (!MEM_P (x) || GET_MODE (x) == BLKmode)
717    return x;
718
719  temp = gen_reg_rtx (GET_MODE (x));
720
721  if (MEM_POINTER (x))
722    REG_POINTER (temp) = 1;
723
724  emit_move_insn (temp, x);
725  return temp;
726}
727
728/* Copy X to TARGET (if it's nonzero and a reg)
729   or to a new temp reg and return that reg.
730   MODE is the mode to use for X in case it is a constant.  */
731
732rtx
733copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
734{
735  rtx temp;
736
737  if (target && REG_P (target))
738    temp = target;
739  else
740    temp = gen_reg_rtx (mode);
741
742  emit_move_insn (temp, x);
743  return temp;
744}
745
746/* Return the mode to use to pass or return a scalar of TYPE and MODE.
747   PUNSIGNEDP points to the signedness of the type and may be adjusted
748   to show what signedness to use on extension operations.
749
750   FOR_RETURN is nonzero if the caller is promoting the return value
751   of FNDECL, else it is for promoting args.  */
752
753machine_mode
754promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
755		       const_tree funtype, int for_return)
756{
757  /* Called without a type node for a libcall.  */
758  if (type == NULL_TREE)
759    {
760      if (INTEGRAL_MODE_P (mode))
761	return targetm.calls.promote_function_mode (NULL_TREE, mode,
762						    punsignedp, funtype,
763						    for_return);
764      else
765	return mode;
766    }
767
768  switch (TREE_CODE (type))
769    {
770    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
771    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
772    case POINTER_TYPE:   case REFERENCE_TYPE:
773      return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
774						  for_return);
775
776    default:
777      return mode;
778    }
779}
780/* Return the mode to use to store a scalar of TYPE and MODE.
781   PUNSIGNEDP points to the signedness of the type and may be adjusted
782   to show what signedness to use on extension operations.  */
783
784machine_mode
785promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
786	      int *punsignedp ATTRIBUTE_UNUSED)
787{
788#ifdef PROMOTE_MODE
789  enum tree_code code;
790  int unsignedp;
791#endif
792
793  /* For libcalls this is invoked without TYPE from the backends
794     TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
795     case.  */
796  if (type == NULL_TREE)
797    return mode;
798
799  /* FIXME: this is the same logic that was there until GCC 4.4, but we
800     probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
801     is not defined.  The affected targets are M32C, S390, SPARC.  */
802#ifdef PROMOTE_MODE
803  code = TREE_CODE (type);
804  unsignedp = *punsignedp;
805
806  switch (code)
807    {
808    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
809    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
810      PROMOTE_MODE (mode, unsignedp, type);
811      *punsignedp = unsignedp;
812      return mode;
813      break;
814
815#ifdef POINTERS_EXTEND_UNSIGNED
816    case REFERENCE_TYPE:
817    case POINTER_TYPE:
818      *punsignedp = POINTERS_EXTEND_UNSIGNED;
819      return targetm.addr_space.address_mode
820	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
821      break;
822#endif
823
824    default:
825      return mode;
826    }
827#else
828  return mode;
829#endif
830}
831
832
833/* Use one of promote_mode or promote_function_mode to find the promoted
834   mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
835   of DECL after promotion.  */
836
837machine_mode
838promote_decl_mode (const_tree decl, int *punsignedp)
839{
840  tree type = TREE_TYPE (decl);
841  int unsignedp = TYPE_UNSIGNED (type);
842  machine_mode mode = DECL_MODE (decl);
843  machine_mode pmode;
844
845  if (TREE_CODE (decl) == RESULT_DECL
846      || TREE_CODE (decl) == PARM_DECL)
847    pmode = promote_function_mode (type, mode, &unsignedp,
848                                   TREE_TYPE (current_function_decl), 2);
849  else
850    pmode = promote_mode (type, mode, &unsignedp);
851
852  if (punsignedp)
853    *punsignedp = unsignedp;
854  return pmode;
855}
856
857
858/* Controls the behaviour of {anti_,}adjust_stack.  */
859static bool suppress_reg_args_size;
860
861/* A helper for adjust_stack and anti_adjust_stack.  */
862
863static void
864adjust_stack_1 (rtx adjust, bool anti_p)
865{
866  rtx temp;
867  rtx_insn *insn;
868
869#ifndef STACK_GROWS_DOWNWARD
870  /* Hereafter anti_p means subtract_p.  */
871  anti_p = !anti_p;
872#endif
873
874  temp = expand_binop (Pmode,
875		       anti_p ? sub_optab : add_optab,
876		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
877		       OPTAB_LIB_WIDEN);
878
879  if (temp != stack_pointer_rtx)
880    insn = emit_move_insn (stack_pointer_rtx, temp);
881  else
882    {
883      insn = get_last_insn ();
884      temp = single_set (insn);
885      gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
886    }
887
888  if (!suppress_reg_args_size)
889    add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
890}
891
892/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
893   This pops when ADJUST is positive.  ADJUST need not be constant.  */
894
895void
896adjust_stack (rtx adjust)
897{
898  if (adjust == const0_rtx)
899    return;
900
901  /* We expect all variable sized adjustments to be multiple of
902     PREFERRED_STACK_BOUNDARY.  */
903  if (CONST_INT_P (adjust))
904    stack_pointer_delta -= INTVAL (adjust);
905
906  adjust_stack_1 (adjust, false);
907}
908
909/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
910   This pushes when ADJUST is positive.  ADJUST need not be constant.  */
911
912void
913anti_adjust_stack (rtx adjust)
914{
915  if (adjust == const0_rtx)
916    return;
917
918  /* We expect all variable sized adjustments to be multiple of
919     PREFERRED_STACK_BOUNDARY.  */
920  if (CONST_INT_P (adjust))
921    stack_pointer_delta += INTVAL (adjust);
922
923  adjust_stack_1 (adjust, true);
924}
925
926/* Round the size of a block to be pushed up to the boundary required
927   by this machine.  SIZE is the desired size, which need not be constant.  */
928
929static rtx
930round_push (rtx size)
931{
932  rtx align_rtx, alignm1_rtx;
933
934  if (!SUPPORTS_STACK_ALIGNMENT
935      || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
936    {
937      int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
938
939      if (align == 1)
940	return size;
941
942      if (CONST_INT_P (size))
943	{
944	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
945
946	  if (INTVAL (size) != new_size)
947	    size = GEN_INT (new_size);
948	  return size;
949	}
950
951      align_rtx = GEN_INT (align);
952      alignm1_rtx = GEN_INT (align - 1);
953    }
954  else
955    {
956      /* If crtl->preferred_stack_boundary might still grow, use
957	 virtual_preferred_stack_boundary_rtx instead.  This will be
958	 substituted by the right value in vregs pass and optimized
959	 during combine.  */
960      align_rtx = virtual_preferred_stack_boundary_rtx;
961      alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
962				   NULL_RTX);
963    }
964
965  /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
966     but we know it can't.  So add ourselves and then do
967     TRUNC_DIV_EXPR.  */
968  size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
969		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
970  size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
971			NULL_RTX, 1);
972  size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
973
974  return size;
975}
976
977/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
978   to a previously-created save area.  If no save area has been allocated,
979   this function will allocate one.  If a save area is specified, it
980   must be of the proper mode.  */
981
982void
983emit_stack_save (enum save_level save_level, rtx *psave)
984{
985  rtx sa = *psave;
986  /* The default is that we use a move insn and save in a Pmode object.  */
987  rtx (*fcn) (rtx, rtx) = gen_move_insn;
988  machine_mode mode = STACK_SAVEAREA_MODE (save_level);
989
990  /* See if this machine has anything special to do for this kind of save.  */
991  switch (save_level)
992    {
993#ifdef HAVE_save_stack_block
994    case SAVE_BLOCK:
995      if (HAVE_save_stack_block)
996	fcn = gen_save_stack_block;
997      break;
998#endif
999#ifdef HAVE_save_stack_function
1000    case SAVE_FUNCTION:
1001      if (HAVE_save_stack_function)
1002	fcn = gen_save_stack_function;
1003      break;
1004#endif
1005#ifdef HAVE_save_stack_nonlocal
1006    case SAVE_NONLOCAL:
1007      if (HAVE_save_stack_nonlocal)
1008	fcn = gen_save_stack_nonlocal;
1009      break;
1010#endif
1011    default:
1012      break;
1013    }
1014
1015  /* If there is no save area and we have to allocate one, do so.  Otherwise
1016     verify the save area is the proper mode.  */
1017
1018  if (sa == 0)
1019    {
1020      if (mode != VOIDmode)
1021	{
1022	  if (save_level == SAVE_NONLOCAL)
1023	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1024	  else
1025	    *psave = sa = gen_reg_rtx (mode);
1026	}
1027    }
1028
1029  do_pending_stack_adjust ();
1030  if (sa != 0)
1031    sa = validize_mem (sa);
1032  emit_insn (fcn (sa, stack_pointer_rtx));
1033}
1034
1035/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1036   area made by emit_stack_save.  If it is zero, we have nothing to do.  */
1037
1038void
1039emit_stack_restore (enum save_level save_level, rtx sa)
1040{
1041  /* The default is that we use a move insn.  */
1042  rtx (*fcn) (rtx, rtx) = gen_move_insn;
1043
1044  /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1045     STACK_POINTER and HARD_FRAME_POINTER.
1046     If stack_realign_fp, the x86 backend emits a prologue that aligns only
1047     STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1048     aligned variables, which is reflected in ix86_can_eliminate.
1049     We normally still have the realigned STACK_POINTER that we can use.
1050     But if there is a stack restore still present at reload, it can trigger
1051     mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1052     FRAME_POINTER into a hard reg.
1053     To prevent this situation, we force need_drap if we emit a stack
1054     restore.  */
1055  if (SUPPORTS_STACK_ALIGNMENT)
1056    crtl->need_drap = true;
1057
1058  /* See if this machine has anything special to do for this kind of save.  */
1059  switch (save_level)
1060    {
1061#ifdef HAVE_restore_stack_block
1062    case SAVE_BLOCK:
1063      if (HAVE_restore_stack_block)
1064	fcn = gen_restore_stack_block;
1065      break;
1066#endif
1067#ifdef HAVE_restore_stack_function
1068    case SAVE_FUNCTION:
1069      if (HAVE_restore_stack_function)
1070	fcn = gen_restore_stack_function;
1071      break;
1072#endif
1073#ifdef HAVE_restore_stack_nonlocal
1074    case SAVE_NONLOCAL:
1075      if (HAVE_restore_stack_nonlocal)
1076	fcn = gen_restore_stack_nonlocal;
1077      break;
1078#endif
1079    default:
1080      break;
1081    }
1082
1083  if (sa != 0)
1084    {
1085      sa = validize_mem (sa);
1086      /* These clobbers prevent the scheduler from moving
1087	 references to variable arrays below the code
1088	 that deletes (pops) the arrays.  */
1089      emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1090      emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1091    }
1092
1093  discard_pending_stack_adjust ();
1094
1095  emit_insn (fcn (stack_pointer_rtx, sa));
1096}
1097
1098/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1099   function.  This function should be called whenever we allocate or
1100   deallocate dynamic stack space.  */
1101
1102void
1103update_nonlocal_goto_save_area (void)
1104{
1105  tree t_save;
1106  rtx r_save;
1107
1108  /* The nonlocal_goto_save_area object is an array of N pointers.  The
1109     first one is used for the frame pointer save; the rest are sized by
1110     STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1111     of the stack save area slots.  */
1112  t_save = build4 (ARRAY_REF,
1113		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1114		   cfun->nonlocal_goto_save_area,
1115		   integer_one_node, NULL_TREE, NULL_TREE);
1116  r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1117
1118  emit_stack_save (SAVE_NONLOCAL, &r_save);
1119}
1120
1121/* Return an rtx representing the address of an area of memory dynamically
1122   pushed on the stack.
1123
1124   Any required stack pointer alignment is preserved.
1125
1126   SIZE is an rtx representing the size of the area.
1127
1128   SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1129   parameter may be zero.  If so, a proper value will be extracted
1130   from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1131
1132   REQUIRED_ALIGN is the alignment (in bits) required for the region
1133   of memory.
1134
1135   If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1136   stack space allocated by the generated code cannot be added with itself
1137   in the course of the execution of the function.  It is always safe to
1138   pass FALSE here and the following criterion is sufficient in order to
1139   pass TRUE: every path in the CFG that starts at the allocation point and
1140   loops to it executes the associated deallocation code.  */
1141
1142rtx
1143allocate_dynamic_stack_space (rtx size, unsigned size_align,
1144			      unsigned required_align, bool cannot_accumulate)
1145{
1146  HOST_WIDE_INT stack_usage_size = -1;
1147  rtx_code_label *final_label;
1148  rtx final_target, target;
1149  unsigned extra_align = 0;
1150  bool must_align;
1151
1152  /* If we're asking for zero bytes, it doesn't matter what we point
1153     to since we can't dereference it.  But return a reasonable
1154     address anyway.  */
1155  if (size == const0_rtx)
1156    return virtual_stack_dynamic_rtx;
1157
1158  /* Otherwise, show we're calling alloca or equivalent.  */
1159  cfun->calls_alloca = 1;
1160
1161  /* If stack usage info is requested, look into the size we are passed.
1162     We need to do so this early to avoid the obfuscation that may be
1163     introduced later by the various alignment operations.  */
1164  if (flag_stack_usage_info)
1165    {
1166      if (CONST_INT_P (size))
1167	stack_usage_size = INTVAL (size);
1168      else if (REG_P (size))
1169        {
1170	  /* Look into the last emitted insn and see if we can deduce
1171	     something for the register.  */
1172	  rtx_insn *insn;
1173	  rtx set, note;
1174	  insn = get_last_insn ();
1175	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1176	    {
1177	      if (CONST_INT_P (SET_SRC (set)))
1178		stack_usage_size = INTVAL (SET_SRC (set));
1179	      else if ((note = find_reg_equal_equiv_note (insn))
1180		       && CONST_INT_P (XEXP (note, 0)))
1181		stack_usage_size = INTVAL (XEXP (note, 0));
1182	    }
1183	}
1184
1185      /* If the size is not constant, we can't say anything.  */
1186      if (stack_usage_size == -1)
1187	{
1188	  current_function_has_unbounded_dynamic_stack_size = 1;
1189	  stack_usage_size = 0;
1190	}
1191    }
1192
1193  /* Ensure the size is in the proper mode.  */
1194  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1195    size = convert_to_mode (Pmode, size, 1);
1196
1197  /* Adjust SIZE_ALIGN, if needed.  */
1198  if (CONST_INT_P (size))
1199    {
1200      unsigned HOST_WIDE_INT lsb;
1201
1202      lsb = INTVAL (size);
1203      lsb &= -lsb;
1204
1205      /* Watch out for overflow truncating to "unsigned".  */
1206      if (lsb > UINT_MAX / BITS_PER_UNIT)
1207	size_align = 1u << (HOST_BITS_PER_INT - 1);
1208      else
1209	size_align = (unsigned)lsb * BITS_PER_UNIT;
1210    }
1211  else if (size_align < BITS_PER_UNIT)
1212    size_align = BITS_PER_UNIT;
1213
1214  /* We can't attempt to minimize alignment necessary, because we don't
1215     know the final value of preferred_stack_boundary yet while executing
1216     this code.  */
1217  if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1218    crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1219
1220  /* We will need to ensure that the address we return is aligned to
1221     REQUIRED_ALIGN.  If STACK_DYNAMIC_OFFSET is defined, we don't
1222     always know its final value at this point in the compilation (it
1223     might depend on the size of the outgoing parameter lists, for
1224     example), so we must align the value to be returned in that case.
1225     (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1226     STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1227     We must also do an alignment operation on the returned value if
1228     the stack pointer alignment is less strict than REQUIRED_ALIGN.
1229
1230     If we have to align, we must leave space in SIZE for the hole
1231     that might result from the alignment operation.  */
1232
1233  must_align = (crtl->preferred_stack_boundary < required_align);
1234  if (must_align)
1235    {
1236      if (required_align > PREFERRED_STACK_BOUNDARY)
1237	extra_align = PREFERRED_STACK_BOUNDARY;
1238      else if (required_align > STACK_BOUNDARY)
1239	extra_align = STACK_BOUNDARY;
1240      else
1241	extra_align = BITS_PER_UNIT;
1242    }
1243
1244  /* ??? STACK_POINTER_OFFSET is always defined now.  */
1245#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1246  must_align = true;
1247  extra_align = BITS_PER_UNIT;
1248#endif
1249
1250  if (must_align)
1251    {
1252      unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1253
1254      size = plus_constant (Pmode, size, extra);
1255      size = force_operand (size, NULL_RTX);
1256
1257      if (flag_stack_usage_info)
1258	stack_usage_size += extra;
1259
1260      if (extra && size_align > extra_align)
1261	size_align = extra_align;
1262    }
1263
1264  /* Round the size to a multiple of the required stack alignment.
1265     Since the stack if presumed to be rounded before this allocation,
1266     this will maintain the required alignment.
1267
1268     If the stack grows downward, we could save an insn by subtracting
1269     SIZE from the stack pointer and then aligning the stack pointer.
1270     The problem with this is that the stack pointer may be unaligned
1271     between the execution of the subtraction and alignment insns and
1272     some machines do not allow this.  Even on those that do, some
1273     signal handlers malfunction if a signal should occur between those
1274     insns.  Since this is an extremely rare event, we have no reliable
1275     way of knowing which systems have this problem.  So we avoid even
1276     momentarily mis-aligning the stack.  */
1277  if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1278    {
1279      size = round_push (size);
1280
1281      if (flag_stack_usage_info)
1282	{
1283	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1284	  stack_usage_size = (stack_usage_size + align - 1) / align * align;
1285	}
1286    }
1287
1288  target = gen_reg_rtx (Pmode);
1289
1290  /* The size is supposed to be fully adjusted at this point so record it
1291     if stack usage info is requested.  */
1292  if (flag_stack_usage_info)
1293    {
1294      current_function_dynamic_stack_size += stack_usage_size;
1295
1296      /* ??? This is gross but the only safe stance in the absence
1297	 of stack usage oriented flow analysis.  */
1298      if (!cannot_accumulate)
1299	current_function_has_unbounded_dynamic_stack_size = 1;
1300    }
1301
1302  final_label = NULL;
1303  final_target = NULL_RTX;
1304
1305  /* If we are splitting the stack, we need to ask the backend whether
1306     there is enough room on the current stack.  If there isn't, or if
1307     the backend doesn't know how to tell is, then we need to call a
1308     function to allocate memory in some other way.  This memory will
1309     be released when we release the current stack segment.  The
1310     effect is that stack allocation becomes less efficient, but at
1311     least it doesn't cause a stack overflow.  */
1312  if (flag_split_stack)
1313    {
1314      rtx_code_label *available_label;
1315      rtx ask, space, func;
1316
1317      available_label = NULL;
1318
1319#ifdef HAVE_split_stack_space_check
1320      if (HAVE_split_stack_space_check)
1321	{
1322	  available_label = gen_label_rtx ();
1323
1324	  /* This instruction will branch to AVAILABLE_LABEL if there
1325	     are SIZE bytes available on the stack.  */
1326	  emit_insn (gen_split_stack_space_check (size, available_label));
1327	}
1328#endif
1329
1330      /* The __morestack_allocate_stack_space function will allocate
1331	 memory using malloc.  If the alignment of the memory returned
1332	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1333	 make sure we allocate enough space.  */
1334      if (MALLOC_ABI_ALIGNMENT >= required_align)
1335	ask = size;
1336      else
1337	{
1338	  ask = expand_binop (Pmode, add_optab, size,
1339			      gen_int_mode (required_align / BITS_PER_UNIT - 1,
1340					    Pmode),
1341			      NULL_RTX, 1, OPTAB_LIB_WIDEN);
1342	  must_align = true;
1343	}
1344
1345      func = init_one_libfunc ("__morestack_allocate_stack_space");
1346
1347      space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1348				       1, ask, Pmode);
1349
1350      if (available_label == NULL_RTX)
1351	return space;
1352
1353      final_target = gen_reg_rtx (Pmode);
1354
1355      emit_move_insn (final_target, space);
1356
1357      final_label = gen_label_rtx ();
1358      emit_jump (final_label);
1359
1360      emit_label (available_label);
1361    }
1362
1363  do_pending_stack_adjust ();
1364
1365 /* We ought to be called always on the toplevel and stack ought to be aligned
1366    properly.  */
1367  gcc_assert (!(stack_pointer_delta
1368		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1369
1370  /* If needed, check that we have the required amount of stack.  Take into
1371     account what has already been checked.  */
1372  if (STACK_CHECK_MOVING_SP)
1373    ;
1374  else if (flag_stack_check == GENERIC_STACK_CHECK)
1375    probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1376		       size);
1377  else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1378    probe_stack_range (STACK_CHECK_PROTECT, size);
1379
1380  /* Don't let anti_adjust_stack emit notes.  */
1381  suppress_reg_args_size = true;
1382
1383  /* Perform the required allocation from the stack.  Some systems do
1384     this differently than simply incrementing/decrementing from the
1385     stack pointer, such as acquiring the space by calling malloc().  */
1386#ifdef HAVE_allocate_stack
1387  if (HAVE_allocate_stack)
1388    {
1389      struct expand_operand ops[2];
1390      /* We don't have to check against the predicate for operand 0 since
1391	 TARGET is known to be a pseudo of the proper mode, which must
1392	 be valid for the operand.  */
1393      create_fixed_operand (&ops[0], target);
1394      create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1395      expand_insn (CODE_FOR_allocate_stack, 2, ops);
1396    }
1397  else
1398#endif
1399    {
1400      int saved_stack_pointer_delta;
1401
1402#ifndef STACK_GROWS_DOWNWARD
1403      emit_move_insn (target, virtual_stack_dynamic_rtx);
1404#endif
1405
1406      /* Check stack bounds if necessary.  */
1407      if (crtl->limit_stack)
1408	{
1409	  rtx available;
1410	  rtx_code_label *space_available = gen_label_rtx ();
1411#ifdef STACK_GROWS_DOWNWARD
1412	  available = expand_binop (Pmode, sub_optab,
1413				    stack_pointer_rtx, stack_limit_rtx,
1414				    NULL_RTX, 1, OPTAB_WIDEN);
1415#else
1416	  available = expand_binop (Pmode, sub_optab,
1417				    stack_limit_rtx, stack_pointer_rtx,
1418				    NULL_RTX, 1, OPTAB_WIDEN);
1419#endif
1420	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1421				   space_available);
1422#ifdef HAVE_trap
1423	  if (HAVE_trap)
1424	    emit_insn (gen_trap ());
1425	  else
1426#endif
1427	    error ("stack limits not supported on this target");
1428	  emit_barrier ();
1429	  emit_label (space_available);
1430	}
1431
1432      saved_stack_pointer_delta = stack_pointer_delta;
1433
1434      if (flag_stack_check && STACK_CHECK_MOVING_SP)
1435	anti_adjust_stack_and_probe (size, false);
1436      else
1437	anti_adjust_stack (size);
1438
1439      /* Even if size is constant, don't modify stack_pointer_delta.
1440	 The constant size alloca should preserve
1441	 crtl->preferred_stack_boundary alignment.  */
1442      stack_pointer_delta = saved_stack_pointer_delta;
1443
1444#ifdef STACK_GROWS_DOWNWARD
1445      emit_move_insn (target, virtual_stack_dynamic_rtx);
1446#endif
1447    }
1448
1449  suppress_reg_args_size = false;
1450
1451  /* Finish up the split stack handling.  */
1452  if (final_label != NULL_RTX)
1453    {
1454      gcc_assert (flag_split_stack);
1455      emit_move_insn (final_target, target);
1456      emit_label (final_label);
1457      target = final_target;
1458    }
1459
1460  if (must_align)
1461    {
1462      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1463	 but we know it can't.  So add ourselves and then do
1464	 TRUNC_DIV_EXPR.  */
1465      target = expand_binop (Pmode, add_optab, target,
1466			     gen_int_mode (required_align / BITS_PER_UNIT - 1,
1467					   Pmode),
1468			     NULL_RTX, 1, OPTAB_LIB_WIDEN);
1469      target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1470			      gen_int_mode (required_align / BITS_PER_UNIT,
1471					    Pmode),
1472			      NULL_RTX, 1);
1473      target = expand_mult (Pmode, target,
1474			    gen_int_mode (required_align / BITS_PER_UNIT,
1475					  Pmode),
1476			    NULL_RTX, 1);
1477    }
1478
1479  /* Now that we've committed to a return value, mark its alignment.  */
1480  mark_reg_pointer (target, required_align);
1481
1482  /* Record the new stack level for nonlocal gotos.  */
1483  if (cfun->nonlocal_goto_save_area != 0)
1484    update_nonlocal_goto_save_area ();
1485
1486  return target;
1487}
1488
1489/* A front end may want to override GCC's stack checking by providing a
1490   run-time routine to call to check the stack, so provide a mechanism for
1491   calling that routine.  */
1492
1493static GTY(()) rtx stack_check_libfunc;
1494
1495void
1496set_stack_check_libfunc (const char *libfunc_name)
1497{
1498  gcc_assert (stack_check_libfunc == NULL_RTX);
1499  stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1500}
1501
1502/* Emit one stack probe at ADDRESS, an address within the stack.  */
1503
1504void
1505emit_stack_probe (rtx address)
1506{
1507#ifdef HAVE_probe_stack_address
1508  if (HAVE_probe_stack_address)
1509    emit_insn (gen_probe_stack_address (address));
1510  else
1511#endif
1512    {
1513      rtx memref = gen_rtx_MEM (word_mode, address);
1514
1515      MEM_VOLATILE_P (memref) = 1;
1516
1517      /* See if we have an insn to probe the stack.  */
1518#ifdef HAVE_probe_stack
1519      if (HAVE_probe_stack)
1520        emit_insn (gen_probe_stack (memref));
1521      else
1522#endif
1523        emit_move_insn (memref, const0_rtx);
1524    }
1525}
1526
1527/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1528   FIRST is a constant and size is a Pmode RTX.  These are offsets from
1529   the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1530   or subtract them from the stack pointer.  */
1531
1532#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1533
1534#ifdef STACK_GROWS_DOWNWARD
1535#define STACK_GROW_OP MINUS
1536#define STACK_GROW_OPTAB sub_optab
1537#define STACK_GROW_OFF(off) -(off)
1538#else
1539#define STACK_GROW_OP PLUS
1540#define STACK_GROW_OPTAB add_optab
1541#define STACK_GROW_OFF(off) (off)
1542#endif
1543
1544void
1545probe_stack_range (HOST_WIDE_INT first, rtx size)
1546{
1547  /* First ensure SIZE is Pmode.  */
1548  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1549    size = convert_to_mode (Pmode, size, 1);
1550
1551  /* Next see if we have a function to check the stack.  */
1552  if (stack_check_libfunc)
1553    {
1554      rtx addr = memory_address (Pmode,
1555				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1556					         stack_pointer_rtx,
1557					         plus_constant (Pmode,
1558								size, first)));
1559      emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1560			 Pmode);
1561    }
1562
1563  /* Next see if we have an insn to check the stack.  */
1564#ifdef HAVE_check_stack
1565  else if (HAVE_check_stack)
1566    {
1567      struct expand_operand ops[1];
1568      rtx addr = memory_address (Pmode,
1569				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1570					         stack_pointer_rtx,
1571					         plus_constant (Pmode,
1572								size, first)));
1573      bool success;
1574      create_input_operand (&ops[0], addr, Pmode);
1575      success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1576      gcc_assert (success);
1577    }
1578#endif
1579
1580  /* Otherwise we have to generate explicit probes.  If we have a constant
1581     small number of them to generate, that's the easy case.  */
1582  else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1583    {
1584      HOST_WIDE_INT isize = INTVAL (size), i;
1585      rtx addr;
1586
1587      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1588	 it exceeds SIZE.  If only one probe is needed, this will not
1589	 generate any code.  Then probe at FIRST + SIZE.  */
1590      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1591	{
1592	  addr = memory_address (Pmode,
1593				 plus_constant (Pmode, stack_pointer_rtx,
1594				 		STACK_GROW_OFF (first + i)));
1595	  emit_stack_probe (addr);
1596	}
1597
1598      addr = memory_address (Pmode,
1599			     plus_constant (Pmode, stack_pointer_rtx,
1600					    STACK_GROW_OFF (first + isize)));
1601      emit_stack_probe (addr);
1602    }
1603
1604  /* In the variable case, do the same as above, but in a loop.  Note that we
1605     must be extra careful with variables wrapping around because we might be
1606     at the very top (or the very bottom) of the address space and we have to
1607     be able to handle this case properly; in particular, we use an equality
1608     test for the loop condition.  */
1609  else
1610    {
1611      rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1612      rtx_code_label *loop_lab = gen_label_rtx ();
1613      rtx_code_label *end_lab = gen_label_rtx ();
1614
1615      /* Step 1: round SIZE to the previous multiple of the interval.  */
1616
1617      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1618      rounded_size
1619	= simplify_gen_binary (AND, Pmode, size,
1620			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1621      rounded_size_op = force_operand (rounded_size, NULL_RTX);
1622
1623
1624      /* Step 2: compute initial and final value of the loop counter.  */
1625
1626      /* TEST_ADDR = SP + FIRST.  */
1627      test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1628					 	 stack_pointer_rtx,
1629						 gen_int_mode (first, Pmode)),
1630				 NULL_RTX);
1631
1632      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1633      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1634						 test_addr,
1635						 rounded_size_op), NULL_RTX);
1636
1637
1638      /* Step 3: the loop
1639
1640	 while (TEST_ADDR != LAST_ADDR)
1641	   {
1642	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1643	     probe at TEST_ADDR
1644	   }
1645
1646	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1647	 until it is equal to ROUNDED_SIZE.  */
1648
1649      emit_label (loop_lab);
1650
1651      /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1652      emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1653			       end_lab);
1654
1655      /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1656      temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1657			   gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1658			   1, OPTAB_WIDEN);
1659
1660      gcc_assert (temp == test_addr);
1661
1662      /* Probe at TEST_ADDR.  */
1663      emit_stack_probe (test_addr);
1664
1665      emit_jump (loop_lab);
1666
1667      emit_label (end_lab);
1668
1669
1670      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1671	 that SIZE is equal to ROUNDED_SIZE.  */
1672
1673      /* TEMP = SIZE - ROUNDED_SIZE.  */
1674      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1675      if (temp != const0_rtx)
1676	{
1677	  rtx addr;
1678
1679	  if (CONST_INT_P (temp))
1680	    {
1681	      /* Use [base + disp} addressing mode if supported.  */
1682	      HOST_WIDE_INT offset = INTVAL (temp);
1683	      addr = memory_address (Pmode,
1684				     plus_constant (Pmode, last_addr,
1685						    STACK_GROW_OFF (offset)));
1686	    }
1687	  else
1688	    {
1689	      /* Manual CSE if the difference is not known at compile-time.  */
1690	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1691	      addr = memory_address (Pmode,
1692				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1693						     last_addr, temp));
1694	    }
1695
1696	  emit_stack_probe (addr);
1697	}
1698    }
1699
1700  /* Make sure nothing is scheduled before we are done.  */
1701  emit_insn (gen_blockage ());
1702}
1703
1704/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1705   while probing it.  This pushes when SIZE is positive.  SIZE need not
1706   be constant.  If ADJUST_BACK is true, adjust back the stack pointer
1707   by plus SIZE at the end.  */
1708
1709void
1710anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1711{
1712  /* We skip the probe for the first interval + a small dope of 4 words and
1713     probe that many bytes past the specified size to maintain a protection
1714     area at the botton of the stack.  */
1715  const int dope = 4 * UNITS_PER_WORD;
1716
1717  /* First ensure SIZE is Pmode.  */
1718  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1719    size = convert_to_mode (Pmode, size, 1);
1720
1721  /* If we have a constant small number of probes to generate, that's the
1722     easy case.  */
1723  if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1724    {
1725      HOST_WIDE_INT isize = INTVAL (size), i;
1726      bool first_probe = true;
1727
1728      /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1729	 values of N from 1 until it exceeds SIZE.  If only one probe is
1730	 needed, this will not generate any code.  Then adjust and probe
1731	 to PROBE_INTERVAL + SIZE.  */
1732      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1733	{
1734	  if (first_probe)
1735	    {
1736	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1737	      first_probe = false;
1738	    }
1739	  else
1740	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1741	  emit_stack_probe (stack_pointer_rtx);
1742	}
1743
1744      if (first_probe)
1745	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1746      else
1747	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1748      emit_stack_probe (stack_pointer_rtx);
1749    }
1750
1751  /* In the variable case, do the same as above, but in a loop.  Note that we
1752     must be extra careful with variables wrapping around because we might be
1753     at the very top (or the very bottom) of the address space and we have to
1754     be able to handle this case properly; in particular, we use an equality
1755     test for the loop condition.  */
1756  else
1757    {
1758      rtx rounded_size, rounded_size_op, last_addr, temp;
1759      rtx_code_label *loop_lab = gen_label_rtx ();
1760      rtx_code_label *end_lab = gen_label_rtx ();
1761
1762
1763      /* Step 1: round SIZE to the previous multiple of the interval.  */
1764
1765      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1766      rounded_size
1767	= simplify_gen_binary (AND, Pmode, size,
1768			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1769      rounded_size_op = force_operand (rounded_size, NULL_RTX);
1770
1771
1772      /* Step 2: compute initial and final value of the loop counter.  */
1773
1774      /* SP = SP_0 + PROBE_INTERVAL.  */
1775      anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1776
1777      /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
1778      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1779						 stack_pointer_rtx,
1780						 rounded_size_op), NULL_RTX);
1781
1782
1783      /* Step 3: the loop
1784
1785	 while (SP != LAST_ADDR)
1786	   {
1787	     SP = SP + PROBE_INTERVAL
1788	     probe at SP
1789	   }
1790
1791	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1792	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
1793
1794      emit_label (loop_lab);
1795
1796      /* Jump to END_LAB if SP == LAST_ADDR.  */
1797      emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1798			       Pmode, 1, end_lab);
1799
1800      /* SP = SP + PROBE_INTERVAL and probe at SP.  */
1801      anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1802      emit_stack_probe (stack_pointer_rtx);
1803
1804      emit_jump (loop_lab);
1805
1806      emit_label (end_lab);
1807
1808
1809      /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1810	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
1811
1812      /* TEMP = SIZE - ROUNDED_SIZE.  */
1813      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1814      if (temp != const0_rtx)
1815	{
1816	  /* Manual CSE if the difference is not known at compile-time.  */
1817	  if (GET_CODE (temp) != CONST_INT)
1818	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1819	  anti_adjust_stack (temp);
1820	  emit_stack_probe (stack_pointer_rtx);
1821	}
1822    }
1823
1824  /* Adjust back and account for the additional first interval.  */
1825  if (adjust_back)
1826    adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1827  else
1828    adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1829}
1830
1831/* Return an rtx representing the register or memory location
1832   in which a scalar value of data type VALTYPE
1833   was returned by a function call to function FUNC.
1834   FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1835   function is known, otherwise 0.
1836   OUTGOING is 1 if on a machine with register windows this function
1837   should return the register in which the function will put its result
1838   and 0 otherwise.  */
1839
1840rtx
1841hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1842		     int outgoing ATTRIBUTE_UNUSED)
1843{
1844  rtx val;
1845
1846  val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1847
1848  if (REG_P (val)
1849      && GET_MODE (val) == BLKmode)
1850    {
1851      unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1852      machine_mode tmpmode;
1853
1854      /* int_size_in_bytes can return -1.  We don't need a check here
1855	 since the value of bytes will then be large enough that no
1856	 mode will match anyway.  */
1857
1858      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1859	   tmpmode != VOIDmode;
1860	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1861	{
1862	  /* Have we found a large enough mode?  */
1863	  if (GET_MODE_SIZE (tmpmode) >= bytes)
1864	    break;
1865	}
1866
1867      /* No suitable mode found.  */
1868      gcc_assert (tmpmode != VOIDmode);
1869
1870      PUT_MODE (val, tmpmode);
1871    }
1872  return val;
1873}
1874
1875/* Return an rtx representing the register or memory location
1876   in which a scalar value of mode MODE was returned by a library call.  */
1877
1878rtx
1879hard_libcall_value (machine_mode mode, rtx fun)
1880{
1881  return targetm.calls.libcall_value (mode, fun);
1882}
1883
1884/* Look up the tree code for a given rtx code
1885   to provide the arithmetic operation for REAL_ARITHMETIC.
1886   The function returns an int because the caller may not know
1887   what `enum tree_code' means.  */
1888
1889int
1890rtx_to_tree_code (enum rtx_code code)
1891{
1892  enum tree_code tcode;
1893
1894  switch (code)
1895    {
1896    case PLUS:
1897      tcode = PLUS_EXPR;
1898      break;
1899    case MINUS:
1900      tcode = MINUS_EXPR;
1901      break;
1902    case MULT:
1903      tcode = MULT_EXPR;
1904      break;
1905    case DIV:
1906      tcode = RDIV_EXPR;
1907      break;
1908    case SMIN:
1909      tcode = MIN_EXPR;
1910      break;
1911    case SMAX:
1912      tcode = MAX_EXPR;
1913      break;
1914    default:
1915      tcode = LAST_AND_UNUSED_TREE_CODE;
1916      break;
1917    }
1918  return ((int) tcode);
1919}
1920
1921#include "gt-explow.h"
1922