1@c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2@c This is part of the GCC manual.
3@c For copying conditions, see the file gcc.texi.
4
5@ignore
6@c man begin INCLUDE
7@include gcc-vers.texi
8@c man end
9
10@c man begin COPYRIGHT
11Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13Permission is granted to copy, distribute and/or modify this document
14under the terms of the GNU Free Documentation License, Version 1.3 or
15any later version published by the Free Software Foundation; with the
16Invariant Sections being ``GNU General Public License'' and ``Funding
17Free Software'', the Front-Cover texts being (a) (see below), and with
18the Back-Cover Texts being (b) (see below).  A copy of the license is
19included in the gfdl(7) man page.
20
21(a) The FSF's Front-Cover Text is:
22
23     A GNU Manual
24
25(b) The FSF's Back-Cover Text is:
26
27     You have freedom to copy and modify this GNU Manual, like GNU
28     software.  Copies published by the Free Software Foundation raise
29     funds for GNU development.
30@c man end
31@c Set file name and title for the man page.
32@setfilename gcc
33@settitle GNU project C and C++ compiler
34@c man begin SYNOPSIS
35gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36    [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37    [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38    [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39    [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40    [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41    [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43Only the most useful options are listed here; see below for the
44remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45@c man end
46@c man begin SEEALSO
47gpl(7), gfdl(7), fsf-funding(7),
48cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50@file{ld}, @file{binutils} and @file{gdb}.
51@c man end
52@c man begin BUGS
53For instructions on reporting bugs, see
54@w{@value{BUGURL}}.
55@c man end
56@c man begin AUTHOR
57See the Info entry for @command{gcc}, or
58@w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59for contributors to GCC@.
60@c man end
61@end ignore
62
63@node Invoking GCC
64@chapter GCC Command Options
65@cindex GCC command options
66@cindex command options
67@cindex options, GCC command
68
69@c man begin DESCRIPTION
70When you invoke GCC, it normally does preprocessing, compilation,
71assembly and linking.  The ``overall options'' allow you to stop this
72process at an intermediate stage.  For example, the @option{-c} option
73says not to run the linker.  Then the output consists of object files
74output by the assembler.
75
76Other options are passed on to one stage of processing.  Some options
77control the preprocessor and others the compiler itself.  Yet other
78options control the assembler and linker; most of these are not
79documented here, since you rarely need to use any of them.
80
81@cindex C compilation options
82Most of the command-line options that you can use with GCC are useful
83for C programs; when an option is only useful with another language
84(usually C++), the explanation says so explicitly.  If the description
85for a particular option does not mention a source language, you can use
86that option with all supported languages.
87
88@cindex C++ compilation options
89@xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90options for compiling C++ programs.
91
92@cindex grouping options
93@cindex options, grouping
94The @command{gcc} program accepts options and file names as operands.  Many
95options have multi-letter names; therefore multiple single-letter options
96may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97-v}}.
98
99@cindex order of options
100@cindex options, order
101You can mix options and other arguments.  For the most part, the order
102you use doesn't matter.  Order does matter when you use several
103options of the same kind; for example, if you specify @option{-L} more
104than once, the directories are searched in the order specified.  Also,
105the placement of the @option{-l} option is significant.
106
107Many options have long names starting with @samp{-f} or with
108@samp{-W}---for example,
109@option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
110these have both positive and negative forms; the negative form of
111@option{-ffoo} is @option{-fno-foo}.  This manual documents
112only one of these two forms, whichever one is not the default.
113
114@c man end
115
116@xref{Option Index}, for an index to GCC's options.
117
118@menu
119* Option Summary::      Brief list of all options, without explanations.
120* Overall Options::     Controlling the kind of output:
121                        an executable, object files, assembler files,
122                        or preprocessed source.
123* Invoking G++::        Compiling C++ programs.
124* C Dialect Options::   Controlling the variant of C language compiled.
125* C++ Dialect Options:: Variations on C++.
126* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127                        and Objective-C++.
128* Language Independent Options:: Controlling how diagnostics should be
129                        formatted.
130* Warning Options::     How picky should the compiler be?
131* Debugging Options::   Symbol tables, measurements, and debugging dumps.
132* Optimize Options::    How much optimization?
133* Preprocessor Options:: Controlling header files and macro definitions.
134                         Also, getting dependency information for Make.
135* Assembler Options::   Passing options to the assembler.
136* Link Options::        Specifying libraries and so on.
137* Directory Options::   Where to find header files and libraries.
138                        Where to find the compiler executable files.
139* Spec Files::          How to pass switches to sub-processes.
140* Target Options::      Running a cross-compiler, or an old version of GCC.
141* Submodel Options::    Specifying minor hardware or convention variations,
142                        such as 68010 vs 68020.
143* Code Gen Options::    Specifying conventions for function calls, data layout
144                        and register usage.
145* Environment Variables:: Env vars that affect GCC.
146* Precompiled Headers:: Compiling a header once, and using it many times.
147@end menu
148
149@c man begin OPTIONS
150
151@node Option Summary
152@section Option Summary
153
154Here is a summary of all the options, grouped by type.  Explanations are
155in the following sections.
156
157@table @emph
158@item Overall Options
159@xref{Overall Options,,Options Controlling the Kind of Output}.
160@gccoptlist{-c  -S  -E  -o @var{file}  -no-canonical-prefixes  @gol
161-pipe  -pass-exit-codes  @gol
162-x @var{language}  -v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  @gol
163--version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg}  @gol
164-fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166@item C Language Options
167@xref{C Dialect Options,,Options Controlling C Dialect}.
168@gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
169-aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170-fno-asm  -fno-builtin  -fno-builtin-@var{function} @gol
171-fhosted  -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172-fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173-fallow-single-precision  -fcond-mismatch -flax-vector-conversions @gol
174-fsigned-bitfields  -fsigned-char @gol
175-funsigned-bitfields  -funsigned-char}
176
177@item C++ Language Options
178@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179@gccoptlist{-fabi-version=@var{n}  -fno-access-control  -fcheck-new @gol
180-fconstexpr-depth=@var{n}  -ffriend-injection @gol
181-fno-elide-constructors @gol
182-fno-enforce-eh-specs @gol
183-ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
184-fno-implicit-templates @gol
185-fno-implicit-inline-templates @gol
186-fno-implement-inlines  -fms-extensions @gol
187-fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
188-fno-optional-diags  -fpermissive @gol
189-fno-pretty-templates @gol
190-frepo  -fno-rtti -fsized-deallocation @gol
191-fstats  -ftemplate-backtrace-limit=@var{n} @gol
192-ftemplate-depth=@var{n} @gol
193-fno-threadsafe-statics  -fuse-cxa-atexit @gol
194-fno-weak  -nostdinc++ @gol
195-fvisibility-inlines-hidden @gol
196-fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197-fvtv-counts -fvtv-debug @gol
198-fvisibility-ms-compat @gol
199-fext-numeric-literals @gol
200-Wabi=@var{n}  -Wabi-tag  -Wconversion-null  -Wctor-dtor-privacy @gol
201-Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
202-Wnoexcept -Wnon-virtual-dtor  -Wreorder @gol
203-Weffc++  -Wstrict-null-sentinel @gol
204-Wno-non-template-friend  -Wold-style-cast @gol
205-Woverloaded-virtual  -Wno-pmf-conversions @gol
206-Wsign-promo}
207
208@item Objective-C and Objective-C++ Language Options
209@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
210Objective-C and Objective-C++ Dialects}.
211@gccoptlist{-fconstant-string-class=@var{class-name} @gol
212-fgnu-runtime  -fnext-runtime @gol
213-fno-nil-receivers @gol
214-fobjc-abi-version=@var{n} @gol
215-fobjc-call-cxx-cdtors @gol
216-fobjc-direct-dispatch @gol
217-fobjc-exceptions @gol
218-fobjc-gc @gol
219-fobjc-nilcheck @gol
220-fobjc-std=objc1 @gol
221-fno-local-ivars @gol
222-fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
223-freplace-objc-classes @gol
224-fzero-link @gol
225-gen-decls @gol
226-Wassign-intercept @gol
227-Wno-protocol  -Wselector @gol
228-Wstrict-selector-match @gol
229-Wundeclared-selector}
230
231@item Language Independent Options
232@xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
233@gccoptlist{-fmessage-length=@var{n}  @gol
234-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
235-fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
236-fno-diagnostics-show-option -fno-diagnostics-show-caret}
237
238@item Warning Options
239@xref{Warning Options,,Options to Request or Suppress Warnings}.
240@gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
241-pedantic-errors @gol
242-w  -Wextra  -Wall  -Waddress  -Waggregate-return  @gol
243-Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
244-Wbool-compare @gol
245-Wno-attributes -Wno-builtin-macro-redefined @gol
246-Wc90-c99-compat -Wc99-c11-compat @gol
247-Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align  -Wcast-qual  @gol
248-Wchar-subscripts -Wclobbered  -Wcomment -Wconditionally-supported  @gol
249-Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp  @gol
250-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
251-Wdisabled-optimization @gol
252-Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
253-Wno-div-by-zero -Wdouble-promotion -Wempty-body  -Wenum-compare @gol
254-Wno-endif-labels -Werror  -Werror=* @gol
255-Wfatal-errors  -Wfloat-equal  -Wformat  -Wformat=2 @gol
256-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
257-Wformat-security  -Wformat-signedness  -Wformat-y2k @gol
258-Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
259-Wignored-qualifiers  -Wincompatible-pointer-types @gol
260-Wimplicit  -Wimplicit-function-declaration  -Wimplicit-int @gol
261-Winit-self  -Winline  -Wno-int-conversion @gol
262-Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
263-Winvalid-pch -Wlarger-than=@var{len}  -Wunsafe-loop-optimizations @gol
264-Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
265-Wmain -Wmaybe-uninitialized -Wmemset-transposed-args -Wmissing-braces @gol
266-Wmissing-field-initializers -Wmissing-include-dirs @gol
267-Wno-multichar  -Wnonnull  -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
268 -Wodr  -Wno-overflow  -Wopenmp-simd @gol
269-Woverlength-strings  -Wpacked  -Wpacked-bitfield-compat  -Wpadded @gol
270-Wparentheses  -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
271-Wpointer-arith  -Wno-pointer-to-int-cast @gol
272-Wredundant-decls  -Wno-return-local-addr @gol
273-Wreturn-type  -Wsequence-point  -Wshadow  -Wno-shadow-ivar @gol
274-Wshift-count-negative -Wshift-count-overflow @gol
275-Wsign-compare  -Wsign-conversion -Wfloat-conversion @gol
276-Wsizeof-pointer-memaccess  -Wsizeof-array-argument @gol
277-Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
278-Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
279-Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
280-Wsuggest-final-types @gol -Wsuggest-final-methods @gol -Wsuggest-override @gol
281-Wmissing-format-attribute @gol
282-Wswitch  -Wswitch-default  -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
283-Wsystem-headers  -Wtrampolines  -Wtrigraphs  -Wtype-limits  -Wundef @gol
284-Wuninitialized  -Wunknown-pragmas  -Wno-pragmas @gol
285-Wunsuffixed-float-constants  -Wunused  -Wunused-function @gol
286-Wunused-label  -Wunused-local-typedefs -Wunused-parameter @gol
287-Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
288-Wunused-but-set-parameter -Wunused-but-set-variable @gol
289-Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
290-Wvla -Wvolatile-register-var  -Wwrite-strings @gol
291-Wzero-as-null-pointer-constant}
292
293@item C and Objective-C-only Warning Options
294@gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
295-Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
296-Wold-style-declaration  -Wold-style-definition @gol
297-Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
298-Wdeclaration-after-statement -Wpointer-sign}
299
300@item Debugging Options
301@xref{Debugging Options,,Options for Debugging Your Program or GCC}.
302@gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
303-fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
304-fasan-shadow-offset=@var{number} -fsanitize-undefined-trap-on-error @gol
305-fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
306-fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
307-fchkp-narrow-to-innermost-array -fchkp-optimize @gol
308-fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
309-fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
310-fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
311-fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
312-fchkp-instrument-calls -fchkp-instrument-marked-only @gol
313-fchkp-use-wrappers @gol
314-fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
315-fdisable-ipa-@var{pass_name} @gol
316-fdisable-rtl-@var{pass_name} @gol
317-fdisable-rtl-@var{pass-name}=@var{range-list} @gol
318-fdisable-tree-@var{pass_name} @gol
319-fdisable-tree-@var{pass-name}=@var{range-list} @gol
320-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
321-fdump-translation-unit@r{[}-@var{n}@r{]} @gol
322-fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
323-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
324-fdump-passes @gol
325-fdump-statistics @gol
326-fdump-tree-all @gol
327-fdump-tree-original@r{[}-@var{n}@r{]}  @gol
328-fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
329-fdump-tree-cfg -fdump-tree-alias @gol
330-fdump-tree-ch @gol
331-fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
332-fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
333-fdump-tree-gimple@r{[}-raw@r{]} @gol
334-fdump-tree-dom@r{[}-@var{n}@r{]} @gol
335-fdump-tree-dse@r{[}-@var{n}@r{]} @gol
336-fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
337-fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
338-fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
339-fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
340-fdump-tree-nrv -fdump-tree-vect @gol
341-fdump-tree-sink @gol
342-fdump-tree-sra@r{[}-@var{n}@r{]} @gol
343-fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
344-fdump-tree-fre@r{[}-@var{n}@r{]} @gol
345-fdump-tree-vtable-verify @gol
346-fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
347-fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
348-fdump-final-insns=@var{file} @gol
349-fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
350-feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
351-feliminate-unused-debug-symbols -femit-class-debug-always @gol
352-fenable-@var{kind}-@var{pass} @gol
353-fenable-@var{kind}-@var{pass}=@var{range-list} @gol
354-fdebug-types-section -fmem-report-wpa @gol
355-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
356-fopt-info @gol
357-fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
358-frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
359-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
360-fstack-usage  -ftest-coverage  -ftime-report -fvar-tracking @gol
361-fvar-tracking-assignments  -fvar-tracking-assignments-toggle @gol
362-g  -g@var{level}  -gtoggle  -gcoff  -gdwarf-@var{version} @gol
363-ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
364-gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
365-gvms  -gxcoff  -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
366-fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
367-fdebug-prefix-map=@var{old}=@var{new} @gol
368-femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
369-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
370-p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name @gol
371-print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
372-print-prog-name=@var{program}  -print-search-dirs  -Q @gol
373-print-sysroot -print-sysroot-headers-suffix @gol
374-save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
375
376@item Optimization Options
377@xref{Optimize Options,,Options that Control Optimization}.
378@gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
379-falign-jumps[=@var{n}] @gol
380-falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
381-fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
382-fauto-inc-dec -fbranch-probabilities @gol
383-fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
384-fbtr-bb-exclusive -fcaller-saves @gol
385-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
386-fcompare-elim -fcprop-registers -fcrossjumping @gol
387-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
388-fcx-limited-range @gol
389-fdata-sections -fdce -fdelayed-branch @gol
390-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
391-fdevirtualize-at-ltrans -fdse @gol
392-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
393-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
394-fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
395-fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
396-fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
397-fif-conversion2 -findirect-inlining @gol
398-finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
399-finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
400-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
401-fira-algorithm=@var{algorithm} @gol
402-fira-region=@var{region} -fira-hoist-pressure @gol
403-fira-loop-pressure -fno-ira-share-save-slots @gol
404-fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
405-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
406-fivopts -fkeep-inline-functions -fkeep-static-consts @gol
407-flive-range-shrinkage @gol
408-floop-block -floop-interchange -floop-strip-mine @gol  
409-floop-unroll-and-jam -floop-nest-optimize @gol
410-floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
411-flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
412-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
413-fmove-loop-invariants -fno-branch-count-reg @gol
414-fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
415-fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
416-fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
417-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
418-fomit-frame-pointer -foptimize-sibling-calls @gol
419-fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
420-fprefetch-loop-arrays -fprofile-report @gol
421-fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
422-fprofile-generate=@var{path} @gol
423-fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
424-fprofile-reorder-functions @gol
425-freciprocal-math -free -frename-registers -freorder-blocks @gol
426-freorder-blocks-and-partition -freorder-functions @gol
427-frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
428-frounding-math -fsched2-use-superblocks -fsched-pressure @gol
429-fsched-spec-load -fsched-spec-load-dangerous @gol
430-fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
431-fsched-group-heuristic -fsched-critical-path-heuristic @gol
432-fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
433-fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
434-fschedule-fusion @gol
435-fschedule-insns -fschedule-insns2 -fsection-anchors @gol
436-fselective-scheduling -fselective-scheduling2 @gol
437-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
438-fsemantic-interposition @gol
439-fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
440-fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
441-fstack-protector -fstack-protector-all -fstack-protector-strong @gol
442-fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
443-fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
444-ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
445-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
446-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
447-ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
448-ftree-loop-if-convert-stores -ftree-loop-im @gol
449-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
450-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
451-ftree-loop-vectorize @gol
452-ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
453-ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
454-ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
455-ftree-vectorize -ftree-vrp @gol
456-funit-at-a-time -funroll-all-loops -funroll-loops @gol
457-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
458-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
459-fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
460--param @var{name}=@var{value}
461-O  -O0  -O1  -O2  -O3  -Os -Ofast -Og}
462
463@item Preprocessor Options
464@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
465@gccoptlist{-A@var{question}=@var{answer} @gol
466-A-@var{question}@r{[}=@var{answer}@r{]} @gol
467-C  -dD  -dI  -dM  -dN @gol
468-D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H @gol
469-idirafter @var{dir} @gol
470-include @var{file}  -imacros @var{file} @gol
471-iprefix @var{file}  -iwithprefix @var{dir} @gol
472-iwithprefixbefore @var{dir}  -isystem @var{dir} @gol
473-imultilib @var{dir} -isysroot @var{dir} @gol
474-M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  @gol
475-P  -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
476-remap -trigraphs  -undef  -U@var{macro}  @gol
477-Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
478
479@item Assembler Option
480@xref{Assembler Options,,Passing Options to the Assembler}.
481@gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
482
483@item Linker Options
484@xref{Link Options,,Options for Linking}.
485@gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker} -l@var{library} @gol
486-nostartfiles  -nodefaultlibs  -nostdlib -pie -rdynamic @gol
487-s  -static -static-libgcc -static-libstdc++ @gol
488-static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
489-static-libmpx -static-libmpxwrappers @gol
490-shared -shared-libgcc  -symbolic @gol
491-T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
492-u @var{symbol} -z @var{keyword}}
493
494@item Directory Options
495@xref{Directory Options,,Options for Directory Search}.
496@gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
497-iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
498--sysroot=@var{dir} --no-sysroot-suffix}
499
500@item Machine Dependent Options
501@xref{Submodel Options,,Hardware Models and Configurations}.
502@c This list is ordered alphanumerically by subsection name.
503@c Try and put the significant identifier (CPU or system) first,
504@c so users have a clue at guessing where the ones they want will be.
505
506@emph{AArch64 Options}
507@gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
508-mgeneral-regs-only @gol
509-mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
510-mstrict-align @gol
511-momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
512-mtls-dialect=desc  -mtls-dialect=traditional @gol
513-mfix-cortex-a53-835769  -mno-fix-cortex-a53-835769 @gol
514-mfix-cortex-a53-843419  -mno-fix-cortex-a53-843419 @gol
515-march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}}
516
517@emph{Adapteva Epiphany Options}
518@gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
519-mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
520-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
521-mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
522-mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
523-msplit-vecmove-early -m1reg-@var{reg}}
524
525@emph{ARC Options}
526@gccoptlist{-mbarrel-shifter @gol
527-mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
528-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
529-mea -mno-mpy -mmul32x16 -mmul64 @gol
530-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
531-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
532-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
533-mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
534-mucb-mcount -mvolatile-cache @gol
535-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
536-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
537-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
538-mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
539-mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
540-mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
541
542@emph{ARM Options}
543@gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
544-mabi=@var{name} @gol
545-mapcs-stack-check  -mno-apcs-stack-check @gol
546-mapcs-float  -mno-apcs-float @gol
547-mapcs-reentrant  -mno-apcs-reentrant @gol
548-msched-prolog  -mno-sched-prolog @gol
549-mlittle-endian  -mbig-endian @gol
550-mfloat-abi=@var{name} @gol
551-mfp16-format=@var{name}
552-mthumb-interwork  -mno-thumb-interwork @gol
553-mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
554-mtune=@var{name} -mprint-tune-info @gol
555-mstructure-size-boundary=@var{n} @gol
556-mabort-on-noreturn @gol
557-mlong-calls  -mno-long-calls @gol
558-msingle-pic-base  -mno-single-pic-base @gol
559-mpic-register=@var{reg} @gol
560-mnop-fun-dllimport @gol
561-mpoke-function-name @gol
562-mthumb  -marm @gol
563-mtpcs-frame  -mtpcs-leaf-frame @gol
564-mcaller-super-interworking  -mcallee-super-interworking @gol
565-mtp=@var{name} -mtls-dialect=@var{dialect} @gol
566-mword-relocations @gol
567-mfix-cortex-m3-ldrd @gol
568-munaligned-access @gol
569-mneon-for-64bits @gol
570-mslow-flash-data @gol
571-masm-syntax-unified @gol
572-mrestrict-it}
573
574@emph{AVR Options}
575@gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
576-mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
577-mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
578
579@emph{Blackfin Options}
580@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
581-msim -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
582-mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
583-mlow-64k -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
584-mno-id-shared-library  -mshared-library-id=@var{n} @gol
585-mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
586-msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
587-mfast-fp -minline-plt -mmulticore  -mcorea  -mcoreb  -msdram @gol
588-micplb}
589
590@emph{C6X Options}
591@gccoptlist{-mbig-endian  -mlittle-endian -march=@var{cpu} @gol
592-msim -msdata=@var{sdata-type}}
593
594@emph{CRIS Options}
595@gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
596-mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
597-metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
598-mstack-align  -mdata-align  -mconst-align @gol
599-m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
600-melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
601-mmul-bug-workaround  -mno-mul-bug-workaround}
602
603@emph{CR16 Options}
604@gccoptlist{-mmac @gol
605-mcr16cplus -mcr16c @gol
606-msim -mint32 -mbit-ops
607-mdata-model=@var{model}}
608
609@emph{Darwin Options}
610@gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
611-arch_only  -bind_at_load  -bundle  -bundle_loader @gol
612-client_name  -compatibility_version  -current_version @gol
613-dead_strip @gol
614-dependency-file  -dylib_file  -dylinker_install_name @gol
615-dynamic  -dynamiclib  -exported_symbols_list @gol
616-filelist  -flat_namespace  -force_cpusubtype_ALL @gol
617-force_flat_namespace  -headerpad_max_install_names @gol
618-iframework @gol
619-image_base  -init  -install_name  -keep_private_externs @gol
620-multi_module  -multiply_defined  -multiply_defined_unused @gol
621-noall_load   -no_dead_strip_inits_and_terms @gol
622-nofixprebinding -nomultidefs  -noprebind  -noseglinkedit @gol
623-pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
624-private_bundle  -read_only_relocs  -sectalign @gol
625-sectobjectsymbols  -whyload  -seg1addr @gol
626-sectcreate  -sectobjectsymbols  -sectorder @gol
627-segaddr -segs_read_only_addr -segs_read_write_addr @gol
628-seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
629-segprot  -segs_read_only_addr  -segs_read_write_addr @gol
630-single_module  -static  -sub_library  -sub_umbrella @gol
631-twolevel_namespace  -umbrella  -undefined @gol
632-unexported_symbols_list  -weak_reference_mismatches @gol
633-whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
634-mkernel -mone-byte-bool}
635
636@emph{DEC Alpha Options}
637@gccoptlist{-mno-fp-regs  -msoft-float @gol
638-mieee  -mieee-with-inexact  -mieee-conformant @gol
639-mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
640-mtrap-precision=@var{mode}  -mbuild-constants @gol
641-mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
642-mbwx  -mmax  -mfix  -mcix @gol
643-mfloat-vax  -mfloat-ieee @gol
644-mexplicit-relocs  -msmall-data  -mlarge-data @gol
645-msmall-text  -mlarge-text @gol
646-mmemory-latency=@var{time}}
647
648@emph{FR30 Options}
649@gccoptlist{-msmall-model -mno-lsim}
650
651@emph{FRV Options}
652@gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
653-mhard-float  -msoft-float @gol
654-malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
655-mdouble  -mno-double @gol
656-mmedia  -mno-media  -mmuladd  -mno-muladd @gol
657-mfdpic  -minline-plt -mgprel-ro  -multilib-library-pic @gol
658-mlinked-fp  -mlong-calls  -malign-labels @gol
659-mlibrary-pic  -macc-4  -macc-8 @gol
660-mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
661-moptimize-membar -mno-optimize-membar @gol
662-mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
663-mvliw-branch  -mno-vliw-branch @gol
664-mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
665-mno-nested-cond-exec  -mtomcat-stats @gol
666-mTLS -mtls @gol
667-mcpu=@var{cpu}}
668
669@emph{GNU/Linux Options}
670@gccoptlist{-mglibc -muclibc -mbionic -mandroid @gol
671-tno-android-cc -tno-android-ld}
672
673@emph{H8/300 Options}
674@gccoptlist{-mrelax  -mh  -ms  -mn  -mexr -mno-exr  -mint32  -malign-300}
675
676@emph{HPPA Options}
677@gccoptlist{-march=@var{architecture-type} @gol
678-mdisable-fpregs  -mdisable-indexing @gol
679-mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
680-mfixed-range=@var{register-range} @gol
681-mjump-in-delay -mlinker-opt -mlong-calls @gol
682-mlong-load-store  -mno-disable-fpregs @gol
683-mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
684-mno-jump-in-delay  -mno-long-load-store @gol
685-mno-portable-runtime  -mno-soft-float @gol
686-mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
687-mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
688-mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
689-munix=@var{unix-std}  -nolibdld  -static  -threads}
690
691@emph{IA-64 Options}
692@gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
693-mvolatile-asm-stop  -mregister-names  -msdata -mno-sdata @gol
694-mconstant-gp  -mauto-pic  -mfused-madd @gol
695-minline-float-divide-min-latency @gol
696-minline-float-divide-max-throughput @gol
697-mno-inline-float-divide @gol
698-minline-int-divide-min-latency @gol
699-minline-int-divide-max-throughput  @gol
700-mno-inline-int-divide @gol
701-minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
702-mno-inline-sqrt @gol
703-mdwarf2-asm -mearly-stop-bits @gol
704-mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
705-mtune=@var{cpu-type} -milp32 -mlp64 @gol
706-msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
707-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
708-msched-spec-ldc -msched-spec-control-ldc @gol
709-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
710-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
711-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
712-msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
713
714@emph{LM32 Options}
715@gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
716-msign-extend-enabled -muser-enabled}
717
718@emph{M32R/D Options}
719@gccoptlist{-m32r2 -m32rx -m32r @gol
720-mdebug @gol
721-malign-loops -mno-align-loops @gol
722-missue-rate=@var{number} @gol
723-mbranch-cost=@var{number} @gol
724-mmodel=@var{code-size-model-type} @gol
725-msdata=@var{sdata-type} @gol
726-mno-flush-func -mflush-func=@var{name} @gol
727-mno-flush-trap -mflush-trap=@var{number} @gol
728-G @var{num}}
729
730@emph{M32C Options}
731@gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
732
733@emph{M680x0 Options}
734@gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
735-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
736-m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
737-mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
738-mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
739-mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
740-malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
741-mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
742-mxgot -mno-xgot}
743
744@emph{MCore Options}
745@gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
746-mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
747-m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
748-mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
749-mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
750
751@emph{MeP Options}
752@gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
753-mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
754-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
755-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
756-mtiny=@var{n}}
757
758@emph{MicroBlaze Options}
759@gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
760-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
761-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
762-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
763-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
764
765@emph{MIPS Options}
766@gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
767-mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
768-mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
769-mips16  -mno-mips16  -mflip-mips16 @gol
770-minterlink-compressed -mno-interlink-compressed @gol
771-minterlink-mips16  -mno-interlink-mips16 @gol
772-mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
773-mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
774-mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
775-mno-float  -msingle-float  -mdouble-float @gol
776-modd-spreg -mno-odd-spreg @gol
777-mabs=@var{mode}  -mnan=@var{encoding} @gol
778-mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
779-mmcu -mmno-mcu @gol
780-meva -mno-eva @gol
781-mvirt -mno-virt @gol
782-mxpa -mno-xpa @gol
783-mmicromips -mno-micromips @gol
784-mfpu=@var{fpu-type} @gol
785-msmartmips  -mno-smartmips @gol
786-mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
787-mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
788-mlong64  -mlong32  -msym32  -mno-sym32 @gol
789-G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
790-mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
791-membedded-data  -mno-embedded-data @gol
792-muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
793-mcode-readable=@var{setting} @gol
794-msplit-addresses  -mno-split-addresses @gol
795-mexplicit-relocs  -mno-explicit-relocs @gol
796-mcheck-zero-division  -mno-check-zero-division @gol
797-mdivide-traps  -mdivide-breaks @gol
798-mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
799-mmad -mno-mad -mimadd -mno-imadd -mfused-madd  -mno-fused-madd  -nocpp @gol
800-mfix-24k -mno-fix-24k @gol
801-mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
802-mfix-r10000 -mno-fix-r10000  -mfix-rm7000 -mno-fix-rm7000 @gol
803-mfix-vr4120  -mno-fix-vr4120 @gol
804-mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
805-mflush-func=@var{func}  -mno-flush-func @gol
806-mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
807-mfp-exceptions -mno-fp-exceptions @gol
808-mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
809-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
810
811@emph{MMIX Options}
812@gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
813-mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
814-melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
815-mno-base-addresses  -msingle-exit  -mno-single-exit}
816
817@emph{MN10300 Options}
818@gccoptlist{-mmult-bug  -mno-mult-bug @gol
819-mno-am33 -mam33 -mam33-2 -mam34 @gol
820-mtune=@var{cpu-type} @gol
821-mreturn-pointer-on-d0 @gol
822-mno-crt0  -mrelax -mliw -msetlb}
823
824@emph{Moxie Options}
825@gccoptlist{-meb -mel -mmul.x -mno-crt0}
826
827@emph{MSP430 Options}
828@gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
829-mhwmult= -minrt}
830
831@emph{NDS32 Options}
832@gccoptlist{-mbig-endian -mlittle-endian @gol
833-mreduced-regs -mfull-regs @gol
834-mcmov -mno-cmov @gol
835-mperf-ext -mno-perf-ext @gol
836-mv3push -mno-v3push @gol
837-m16bit -mno-16bit @gol
838-misr-vector-size=@var{num} @gol
839-mcache-block-size=@var{num} @gol
840-march=@var{arch} @gol
841-mcmodel=@var{code-model} @gol
842-mctor-dtor -mrelax}
843
844@emph{Nios II Options}
845@gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
846-mel -meb @gol
847-mno-bypass-cache -mbypass-cache @gol
848-mno-cache-volatile -mcache-volatile @gol
849-mno-fast-sw-div -mfast-sw-div @gol
850-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
851-mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
852-mcustom-fpu-cfg=@var{name} @gol
853-mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name}}
854
855@emph{Nvidia PTX Options}
856@gccoptlist{-m32 -m64 -mmainkernel}
857
858@emph{PDP-11 Options}
859@gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
860-mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
861-mint16  -mno-int32  -mfloat32  -mno-float64 @gol
862-mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
863-mbranch-expensive  -mbranch-cheap @gol
864-munix-asm  -mdec-asm}
865
866@emph{picoChip Options}
867@gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
868-msymbol-as-address -mno-inefficient-warnings}
869
870@emph{PowerPC Options}
871See RS/6000 and PowerPC Options.
872
873@emph{RL78 Options}
874@gccoptlist{-msim -mmul=none -mmul=g13 -mmul=rl78 @gol
875-m64bit-doubles -m32bit-doubles}
876
877@emph{RS/6000 and PowerPC Options}
878@gccoptlist{-mcpu=@var{cpu-type} @gol
879-mtune=@var{cpu-type} @gol
880-mcmodel=@var{code-model} @gol
881-mpowerpc64 @gol
882-maltivec  -mno-altivec @gol
883-mpowerpc-gpopt  -mno-powerpc-gpopt @gol
884-mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
885-mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb -mpopcntd -mno-popcntd @gol
886-mfprnd  -mno-fprnd @gol
887-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
888-mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
889-m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
890-malign-power  -malign-natural @gol
891-msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
892-msingle-float -mdouble-float -msimple-fpu @gol
893-mstring  -mno-string  -mupdate  -mno-update @gol
894-mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
895-mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
896-mstrict-align  -mno-strict-align  -mrelocatable @gol
897-mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
898-mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
899-mdynamic-no-pic  -maltivec -mswdiv  -msingle-pic-base @gol
900-mprioritize-restricted-insns=@var{priority} @gol
901-msched-costly-dep=@var{dependence_type} @gol
902-minsert-sched-nops=@var{scheme} @gol
903-mcall-sysv  -mcall-netbsd @gol
904-maix-struct-return  -msvr4-struct-return @gol
905-mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
906-mblock-move-inline-limit=@var{num} @gol
907-misel -mno-isel @gol
908-misel=yes  -misel=no @gol
909-mspe -mno-spe @gol
910-mspe=yes  -mspe=no @gol
911-mpaired @gol
912-mgen-cell-microcode -mwarn-cell-microcode @gol
913-mvrsave -mno-vrsave @gol
914-mmulhw -mno-mulhw @gol
915-mdlmzb -mno-dlmzb @gol
916-mfloat-gprs=yes  -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
917-mprototype  -mno-prototype @gol
918-msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
919-msdata=@var{opt}  -mvxworks  -G @var{num}  -pthread @gol
920-mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
921-mno-recip-precision @gol
922-mveclibabi=@var{type} -mfriz -mno-friz @gol
923-mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
924-msave-toc-indirect -mno-save-toc-indirect @gol
925-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
926-mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
927-mquad-memory -mno-quad-memory @gol
928-mquad-memory-atomic -mno-quad-memory-atomic @gol
929-mcompat-align-parm -mno-compat-align-parm @gol
930-mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
931-mupper-regs -mno-upper-regs}
932
933@emph{RX Options}
934@gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
935-mcpu=@gol
936-mbig-endian-data -mlittle-endian-data @gol
937-msmall-data @gol
938-msim  -mno-sim@gol
939-mas100-syntax -mno-as100-syntax@gol
940-mrelax@gol
941-mmax-constant-size=@gol
942-mint-register=@gol
943-mpid@gol
944-mno-warn-multiple-fast-interrupts@gol
945-msave-acc-in-interrupts}
946
947@emph{S/390 and zSeries Options}
948@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
949-mhard-float  -msoft-float  -mhard-dfp -mno-hard-dfp @gol
950-mlong-double-64 -mlong-double-128 @gol
951-mbackchain  -mno-backchain -mpacked-stack  -mno-packed-stack @gol
952-msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle @gol
953-m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
954-mtpf-trace -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
955-mwarn-framesize  -mwarn-dynamicstack  -mstack-size -mstack-guard @gol
956-mhotpatch=@var{halfwords},@var{halfwords}}
957
958@emph{Score Options}
959@gccoptlist{-meb -mel @gol
960-mnhwloop @gol
961-muls @gol
962-mmac @gol
963-mscore5 -mscore5u -mscore7 -mscore7d}
964
965@emph{SH Options}
966@gccoptlist{-m1  -m2  -m2e @gol
967-m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
968-m3  -m3e @gol
969-m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
970-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
971-m5-64media  -m5-64media-nofpu @gol
972-m5-32media  -m5-32media-nofpu @gol
973-m5-compact  -m5-compact-nofpu @gol
974-mb  -ml  -mdalign  -mrelax @gol
975-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
976-mieee -mno-ieee -mbitops  -misize  -minline-ic_invalidate -mpadstruct @gol
977-mspace -mprefergot  -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
978-mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
979-mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
980-maccumulate-outgoing-args -minvalid-symbols @gol
981-matomic-model=@var{atomic-model} @gol
982-mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
983-mcbranch-force-delay-slot @gol
984-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
985-mpretend-cmove -mtas}
986
987@emph{Solaris 2 Options}
988@gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text  -mno-impure-text @gol
989-pthreads -pthread}
990
991@emph{SPARC Options}
992@gccoptlist{-mcpu=@var{cpu-type} @gol
993-mtune=@var{cpu-type} @gol
994-mcmodel=@var{code-model} @gol
995-mmemory-model=@var{mem-model} @gol
996-m32  -m64  -mapp-regs  -mno-app-regs @gol
997-mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
998-mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
999-mhard-quad-float  -msoft-quad-float @gol
1000-mstack-bias  -mno-stack-bias @gol
1001-munaligned-doubles  -mno-unaligned-doubles @gol
1002-muser-mode  -mno-user-mode @gol
1003-mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1004-mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1005-mcbcond -mno-cbcond @gol
1006-mfmaf  -mno-fmaf  -mpopc  -mno-popc @gol
1007-mfix-at697f -mfix-ut699}
1008
1009@emph{SPU Options}
1010@gccoptlist{-mwarn-reloc -merror-reloc @gol
1011-msafe-dma -munsafe-dma @gol
1012-mbranch-hints @gol
1013-msmall-mem -mlarge-mem -mstdmain @gol
1014-mfixed-range=@var{register-range} @gol
1015-mea32 -mea64 @gol
1016-maddress-space-conversion -mno-address-space-conversion @gol
1017-mcache-size=@var{cache-size} @gol
1018-matomic-updates -mno-atomic-updates}
1019
1020@emph{System V Options}
1021@gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1022
1023@emph{TILE-Gx Options}
1024@gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1025-mcmodel=@var{code-model}}
1026
1027@emph{TILEPro Options}
1028@gccoptlist{-mcpu=@var{cpu} -m32}
1029
1030@emph{V850 Options}
1031@gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1032-mprolog-function  -mno-prolog-function  -mspace @gol
1033-mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1034-mapp-regs  -mno-app-regs @gol
1035-mdisable-callt  -mno-disable-callt @gol
1036-mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1037-mv850e -mv850 -mv850e3v5 @gol
1038-mloop @gol
1039-mrelax @gol
1040-mlong-jumps @gol
1041-msoft-float @gol
1042-mhard-float @gol
1043-mgcc-abi @gol
1044-mrh850-abi @gol
1045-mbig-switch}
1046
1047@emph{VAX Options}
1048@gccoptlist{-mg  -mgnu  -munix}
1049
1050@emph{Visium Options}
1051@gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1052-mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1053
1054@emph{VMS Options}
1055@gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1056-mpointer-size=@var{size}}
1057
1058@emph{VxWorks Options}
1059@gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1060-Xbind-lazy  -Xbind-now}
1061
1062@emph{x86 Options}
1063@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1064-mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1065-mfpmath=@var{unit} @gol
1066-masm=@var{dialect}  -mno-fancy-math-387 @gol
1067-mno-fp-ret-in-387  -msoft-float @gol
1068-mno-wide-multiply  -mrtd  -malign-double @gol
1069-mpreferred-stack-boundary=@var{num} @gol
1070-mincoming-stack-boundary=@var{num} @gol
1071-mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1072-mrecip -mrecip=@var{opt} @gol
1073-mvzeroupper -mprefer-avx128 @gol
1074-mmmx  -msse  -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1075-mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1076-maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1077-mclflushopt -mxsavec -mxsaves @gol
1078-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1079-mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mthreads @gol
1080-mno-align-stringops  -minline-all-stringops @gol
1081-minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1082-mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1083-mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1084-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1085-mregparm=@var{num}  -msseregparm @gol
1086-mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1087-mpc32 -mpc64 -mpc80 -mstackrealign @gol
1088-momit-leaf-frame-pointer  -mno-red-zone -mno-tls-direct-seg-refs @gol
1089-mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1090-m32 -m64 -mx32 -m16 -mlarge-data-threshold=@var{num} @gol
1091-msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1092-mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1093-malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1094
1095@emph{x86 Windows Options}
1096@gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1097-mnop-fun-dllimport -mthread @gol
1098-municode -mwin32 -mwindows -fno-set-stack-executable}
1099
1100@emph{Xstormy16 Options}
1101@gccoptlist{-msim}
1102
1103@emph{Xtensa Options}
1104@gccoptlist{-mconst16 -mno-const16 @gol
1105-mfused-madd  -mno-fused-madd @gol
1106-mforce-no-pic @gol
1107-mserialize-volatile  -mno-serialize-volatile @gol
1108-mtext-section-literals  -mno-text-section-literals @gol
1109-mtarget-align  -mno-target-align @gol
1110-mlongcalls  -mno-longcalls}
1111
1112@emph{zSeries Options}
1113See S/390 and zSeries Options.
1114
1115@item Code Generation Options
1116@xref{Code Gen Options,,Options for Code Generation Conventions}.
1117@gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
1118-ffixed-@var{reg}  -fexceptions @gol
1119-fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
1120-fasynchronous-unwind-tables @gol
1121-fno-gnu-unique @gol
1122-finhibit-size-directive  -finstrument-functions @gol
1123-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1124-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1125-fno-common  -fno-ident @gol
1126-fpcc-struct-return  -fpic  -fPIC -fpie -fPIE @gol
1127-fno-jump-tables @gol
1128-frecord-gcc-switches @gol
1129-freg-struct-return  -fshort-enums @gol
1130-fshort-double  -fshort-wchar @gol
1131-fverbose-asm  -fpack-struct[=@var{n}]  -fstack-check @gol
1132-fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
1133-fno-stack-limit -fsplit-stack @gol
1134-fleading-underscore  -ftls-model=@var{model} @gol
1135-fstack-reuse=@var{reuse_level} @gol
1136-ftrapv  -fwrapv  -fbounds-check @gol
1137-fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1138-fstrict-volatile-bitfields -fsync-libcalls}
1139@end table
1140
1141
1142@node Overall Options
1143@section Options Controlling the Kind of Output
1144
1145Compilation can involve up to four stages: preprocessing, compilation
1146proper, assembly and linking, always in that order.  GCC is capable of
1147preprocessing and compiling several files either into several
1148assembler input files, or into one assembler input file; then each
1149assembler input file produces an object file, and linking combines all
1150the object files (those newly compiled, and those specified as input)
1151into an executable file.
1152
1153@cindex file name suffix
1154For any given input file, the file name suffix determines what kind of
1155compilation is done:
1156
1157@table @gcctabopt
1158@item @var{file}.c
1159C source code that must be preprocessed.
1160
1161@item @var{file}.i
1162C source code that should not be preprocessed.
1163
1164@item @var{file}.ii
1165C++ source code that should not be preprocessed.
1166
1167@item @var{file}.m
1168Objective-C source code.  Note that you must link with the @file{libobjc}
1169library to make an Objective-C program work.
1170
1171@item @var{file}.mi
1172Objective-C source code that should not be preprocessed.
1173
1174@item @var{file}.mm
1175@itemx @var{file}.M
1176Objective-C++ source code.  Note that you must link with the @file{libobjc}
1177library to make an Objective-C++ program work.  Note that @samp{.M} refers
1178to a literal capital M@.
1179
1180@item @var{file}.mii
1181Objective-C++ source code that should not be preprocessed.
1182
1183@item @var{file}.h
1184C, C++, Objective-C or Objective-C++ header file to be turned into a
1185precompiled header (default), or C, C++ header file to be turned into an
1186Ada spec (via the @option{-fdump-ada-spec} switch).
1187
1188@item @var{file}.cc
1189@itemx @var{file}.cp
1190@itemx @var{file}.cxx
1191@itemx @var{file}.cpp
1192@itemx @var{file}.CPP
1193@itemx @var{file}.c++
1194@itemx @var{file}.C
1195C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1196the last two letters must both be literally @samp{x}.  Likewise,
1197@samp{.C} refers to a literal capital C@.
1198
1199@item @var{file}.mm
1200@itemx @var{file}.M
1201Objective-C++ source code that must be preprocessed.
1202
1203@item @var{file}.mii
1204Objective-C++ source code that should not be preprocessed.
1205
1206@item @var{file}.hh
1207@itemx @var{file}.H
1208@itemx @var{file}.hp
1209@itemx @var{file}.hxx
1210@itemx @var{file}.hpp
1211@itemx @var{file}.HPP
1212@itemx @var{file}.h++
1213@itemx @var{file}.tcc
1214C++ header file to be turned into a precompiled header or Ada spec.
1215
1216@item @var{file}.f
1217@itemx @var{file}.for
1218@itemx @var{file}.ftn
1219Fixed form Fortran source code that should not be preprocessed.
1220
1221@item @var{file}.F
1222@itemx @var{file}.FOR
1223@itemx @var{file}.fpp
1224@itemx @var{file}.FPP
1225@itemx @var{file}.FTN
1226Fixed form Fortran source code that must be preprocessed (with the traditional
1227preprocessor).
1228
1229@item @var{file}.f90
1230@itemx @var{file}.f95
1231@itemx @var{file}.f03
1232@itemx @var{file}.f08
1233Free form Fortran source code that should not be preprocessed.
1234
1235@item @var{file}.F90
1236@itemx @var{file}.F95
1237@itemx @var{file}.F03
1238@itemx @var{file}.F08
1239Free form Fortran source code that must be preprocessed (with the
1240traditional preprocessor).
1241
1242@item @var{file}.go
1243Go source code.
1244
1245@c FIXME: Descriptions of Java file types.
1246@c @var{file}.java
1247@c @var{file}.class
1248@c @var{file}.zip
1249@c @var{file}.jar
1250
1251@item @var{file}.ads
1252Ada source code file that contains a library unit declaration (a
1253declaration of a package, subprogram, or generic, or a generic
1254instantiation), or a library unit renaming declaration (a package,
1255generic, or subprogram renaming declaration).  Such files are also
1256called @dfn{specs}.
1257
1258@item @var{file}.adb
1259Ada source code file containing a library unit body (a subprogram or
1260package body).  Such files are also called @dfn{bodies}.
1261
1262@c GCC also knows about some suffixes for languages not yet included:
1263@c Pascal:
1264@c @var{file}.p
1265@c @var{file}.pas
1266@c Ratfor:
1267@c @var{file}.r
1268
1269@item @var{file}.s
1270Assembler code.
1271
1272@item @var{file}.S
1273@itemx @var{file}.sx
1274Assembler code that must be preprocessed.
1275
1276@item @var{other}
1277An object file to be fed straight into linking.
1278Any file name with no recognized suffix is treated this way.
1279@end table
1280
1281@opindex x
1282You can specify the input language explicitly with the @option{-x} option:
1283
1284@table @gcctabopt
1285@item -x @var{language}
1286Specify explicitly the @var{language} for the following input files
1287(rather than letting the compiler choose a default based on the file
1288name suffix).  This option applies to all following input files until
1289the next @option{-x} option.  Possible values for @var{language} are:
1290@smallexample
1291c  c-header  cpp-output
1292c++  c++-header  c++-cpp-output
1293objective-c  objective-c-header  objective-c-cpp-output
1294objective-c++ objective-c++-header objective-c++-cpp-output
1295assembler  assembler-with-cpp
1296ada
1297f77  f77-cpp-input f95  f95-cpp-input
1298go
1299java
1300@end smallexample
1301
1302@item -x none
1303Turn off any specification of a language, so that subsequent files are
1304handled according to their file name suffixes (as they are if @option{-x}
1305has not been used at all).
1306
1307@item -pass-exit-codes
1308@opindex pass-exit-codes
1309Normally the @command{gcc} program exits with the code of 1 if any
1310phase of the compiler returns a non-success return code.  If you specify
1311@option{-pass-exit-codes}, the @command{gcc} program instead returns with
1312the numerically highest error produced by any phase returning an error
1313indication.  The C, C++, and Fortran front ends return 4 if an internal
1314compiler error is encountered.
1315@end table
1316
1317If you only want some of the stages of compilation, you can use
1318@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1319one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1320@command{gcc} is to stop.  Note that some combinations (for example,
1321@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1322
1323@table @gcctabopt
1324@item -c
1325@opindex c
1326Compile or assemble the source files, but do not link.  The linking
1327stage simply is not done.  The ultimate output is in the form of an
1328object file for each source file.
1329
1330By default, the object file name for a source file is made by replacing
1331the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1332
1333Unrecognized input files, not requiring compilation or assembly, are
1334ignored.
1335
1336@item -S
1337@opindex S
1338Stop after the stage of compilation proper; do not assemble.  The output
1339is in the form of an assembler code file for each non-assembler input
1340file specified.
1341
1342By default, the assembler file name for a source file is made by
1343replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1344
1345Input files that don't require compilation are ignored.
1346
1347@item -E
1348@opindex E
1349Stop after the preprocessing stage; do not run the compiler proper.  The
1350output is in the form of preprocessed source code, which is sent to the
1351standard output.
1352
1353Input files that don't require preprocessing are ignored.
1354
1355@cindex output file option
1356@item -o @var{file}
1357@opindex o
1358Place output in file @var{file}.  This applies to whatever
1359sort of output is being produced, whether it be an executable file,
1360an object file, an assembler file or preprocessed C code.
1361
1362If @option{-o} is not specified, the default is to put an executable
1363file in @file{a.out}, the object file for
1364@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1365assembler file in @file{@var{source}.s}, a precompiled header file in
1366@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1367standard output.
1368
1369@item -v
1370@opindex v
1371Print (on standard error output) the commands executed to run the stages
1372of compilation.  Also print the version number of the compiler driver
1373program and of the preprocessor and the compiler proper.
1374
1375@item -###
1376@opindex ###
1377Like @option{-v} except the commands are not executed and arguments
1378are quoted unless they contain only alphanumeric characters or @code{./-_}.
1379This is useful for shell scripts to capture the driver-generated command lines.
1380
1381@item -pipe
1382@opindex pipe
1383Use pipes rather than temporary files for communication between the
1384various stages of compilation.  This fails to work on some systems where
1385the assembler is unable to read from a pipe; but the GNU assembler has
1386no trouble.
1387
1388@item --help
1389@opindex help
1390Print (on the standard output) a description of the command-line options
1391understood by @command{gcc}.  If the @option{-v} option is also specified
1392then @option{--help} is also passed on to the various processes
1393invoked by @command{gcc}, so that they can display the command-line options
1394they accept.  If the @option{-Wextra} option has also been specified
1395(prior to the @option{--help} option), then command-line options that
1396have no documentation associated with them are also displayed.
1397
1398@item --target-help
1399@opindex target-help
1400Print (on the standard output) a description of target-specific command-line
1401options for each tool.  For some targets extra target-specific
1402information may also be printed.
1403
1404@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1405Print (on the standard output) a description of the command-line
1406options understood by the compiler that fit into all specified classes
1407and qualifiers.  These are the supported classes:
1408
1409@table @asis
1410@item @samp{optimizers}
1411Display all of the optimization options supported by the
1412compiler.
1413
1414@item @samp{warnings}
1415Display all of the options controlling warning messages
1416produced by the compiler.
1417
1418@item @samp{target}
1419Display target-specific options.  Unlike the
1420@option{--target-help} option however, target-specific options of the
1421linker and assembler are not displayed.  This is because those
1422tools do not currently support the extended @option{--help=} syntax.
1423
1424@item @samp{params}
1425Display the values recognized by the @option{--param}
1426option.
1427
1428@item @var{language}
1429Display the options supported for @var{language}, where
1430@var{language} is the name of one of the languages supported in this
1431version of GCC@.
1432
1433@item @samp{common}
1434Display the options that are common to all languages.
1435@end table
1436
1437These are the supported qualifiers:
1438
1439@table @asis
1440@item @samp{undocumented}
1441Display only those options that are undocumented.
1442
1443@item @samp{joined}
1444Display options taking an argument that appears after an equal
1445sign in the same continuous piece of text, such as:
1446@samp{--help=target}.
1447
1448@item @samp{separate}
1449Display options taking an argument that appears as a separate word
1450following the original option, such as: @samp{-o output-file}.
1451@end table
1452
1453Thus for example to display all the undocumented target-specific
1454switches supported by the compiler, use:
1455
1456@smallexample
1457--help=target,undocumented
1458@end smallexample
1459
1460The sense of a qualifier can be inverted by prefixing it with the
1461@samp{^} character, so for example to display all binary warning
1462options (i.e., ones that are either on or off and that do not take an
1463argument) that have a description, use:
1464
1465@smallexample
1466--help=warnings,^joined,^undocumented
1467@end smallexample
1468
1469The argument to @option{--help=} should not consist solely of inverted
1470qualifiers.
1471
1472Combining several classes is possible, although this usually
1473restricts the output so much that there is nothing to display.  One
1474case where it does work, however, is when one of the classes is
1475@var{target}.  For example, to display all the target-specific
1476optimization options, use:
1477
1478@smallexample
1479--help=target,optimizers
1480@end smallexample
1481
1482The @option{--help=} option can be repeated on the command line.  Each
1483successive use displays its requested class of options, skipping
1484those that have already been displayed.
1485
1486If the @option{-Q} option appears on the command line before the
1487@option{--help=} option, then the descriptive text displayed by
1488@option{--help=} is changed.  Instead of describing the displayed
1489options, an indication is given as to whether the option is enabled,
1490disabled or set to a specific value (assuming that the compiler
1491knows this at the point where the @option{--help=} option is used).
1492
1493Here is a truncated example from the ARM port of @command{gcc}:
1494
1495@smallexample
1496  % gcc -Q -mabi=2 --help=target -c
1497  The following options are target specific:
1498  -mabi=                                2
1499  -mabort-on-noreturn                   [disabled]
1500  -mapcs                                [disabled]
1501@end smallexample
1502
1503The output is sensitive to the effects of previous command-line
1504options, so for example it is possible to find out which optimizations
1505are enabled at @option{-O2} by using:
1506
1507@smallexample
1508-Q -O2 --help=optimizers
1509@end smallexample
1510
1511Alternatively you can discover which binary optimizations are enabled
1512by @option{-O3} by using:
1513
1514@smallexample
1515gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1516gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1517diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1518@end smallexample
1519
1520@item -no-canonical-prefixes
1521@opindex no-canonical-prefixes
1522Do not expand any symbolic links, resolve references to @samp{/../}
1523or @samp{/./}, or make the path absolute when generating a relative
1524prefix.
1525
1526@item --version
1527@opindex version
1528Display the version number and copyrights of the invoked GCC@.
1529
1530@item -wrapper
1531@opindex wrapper
1532Invoke all subcommands under a wrapper program.  The name of the
1533wrapper program and its parameters are passed as a comma separated
1534list.
1535
1536@smallexample
1537gcc -c t.c -wrapper gdb,--args
1538@end smallexample
1539
1540@noindent
1541This invokes all subprograms of @command{gcc} under
1542@samp{gdb --args}, thus the invocation of @command{cc1} is
1543@samp{gdb --args cc1 @dots{}}.
1544
1545@item -fplugin=@var{name}.so
1546@opindex fplugin
1547Load the plugin code in file @var{name}.so, assumed to be a
1548shared object to be dlopen'd by the compiler.  The base name of
1549the shared object file is used to identify the plugin for the
1550purposes of argument parsing (See
1551@option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1552Each plugin should define the callback functions specified in the
1553Plugins API.
1554
1555@item -fplugin-arg-@var{name}-@var{key}=@var{value}
1556@opindex fplugin-arg
1557Define an argument called @var{key} with a value of @var{value}
1558for the plugin called @var{name}.
1559
1560@item -fdump-ada-spec@r{[}-slim@r{]}
1561@opindex fdump-ada-spec
1562For C and C++ source and include files, generate corresponding Ada specs.
1563@xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1564GNAT User's Guide}, which provides detailed documentation on this feature.
1565
1566@item -fada-spec-parent=@var{unit}
1567@opindex fada-spec-parent
1568In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1569Ada specs as child units of parent @var{unit}.
1570
1571@item -fdump-go-spec=@var{file}
1572@opindex fdump-go-spec
1573For input files in any language, generate corresponding Go
1574declarations in @var{file}.  This generates Go @code{const},
1575@code{type}, @code{var}, and @code{func} declarations which may be a
1576useful way to start writing a Go interface to code written in some
1577other language.
1578
1579@include @value{srcdir}/../libiberty/at-file.texi
1580@end table
1581
1582@node Invoking G++
1583@section Compiling C++ Programs
1584
1585@cindex suffixes for C++ source
1586@cindex C++ source file suffixes
1587C++ source files conventionally use one of the suffixes @samp{.C},
1588@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1589@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1590@samp{.H}, or (for shared template code) @samp{.tcc}; and
1591preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1592files with these names and compiles them as C++ programs even if you
1593call the compiler the same way as for compiling C programs (usually
1594with the name @command{gcc}).
1595
1596@findex g++
1597@findex c++
1598However, the use of @command{gcc} does not add the C++ library.
1599@command{g++} is a program that calls GCC and automatically specifies linking
1600against the C++ library.  It treats @samp{.c},
1601@samp{.h} and @samp{.i} files as C++ source files instead of C source
1602files unless @option{-x} is used.  This program is also useful when
1603precompiling a C header file with a @samp{.h} extension for use in C++
1604compilations.  On many systems, @command{g++} is also installed with
1605the name @command{c++}.
1606
1607@cindex invoking @command{g++}
1608When you compile C++ programs, you may specify many of the same
1609command-line options that you use for compiling programs in any
1610language; or command-line options meaningful for C and related
1611languages; or options that are meaningful only for C++ programs.
1612@xref{C Dialect Options,,Options Controlling C Dialect}, for
1613explanations of options for languages related to C@.
1614@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1615explanations of options that are meaningful only for C++ programs.
1616
1617@node C Dialect Options
1618@section Options Controlling C Dialect
1619@cindex dialect options
1620@cindex language dialect options
1621@cindex options, dialect
1622
1623The following options control the dialect of C (or languages derived
1624from C, such as C++, Objective-C and Objective-C++) that the compiler
1625accepts:
1626
1627@table @gcctabopt
1628@cindex ANSI support
1629@cindex ISO support
1630@item -ansi
1631@opindex ansi
1632In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1633equivalent to @option{-std=c++98}.
1634
1635This turns off certain features of GCC that are incompatible with ISO
1636C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1637such as the @code{asm} and @code{typeof} keywords, and
1638predefined macros such as @code{unix} and @code{vax} that identify the
1639type of system you are using.  It also enables the undesirable and
1640rarely used ISO trigraph feature.  For the C compiler,
1641it disables recognition of C++ style @samp{//} comments as well as
1642the @code{inline} keyword.
1643
1644The alternate keywords @code{__asm__}, @code{__extension__},
1645@code{__inline__} and @code{__typeof__} continue to work despite
1646@option{-ansi}.  You would not want to use them in an ISO C program, of
1647course, but it is useful to put them in header files that might be included
1648in compilations done with @option{-ansi}.  Alternate predefined macros
1649such as @code{__unix__} and @code{__vax__} are also available, with or
1650without @option{-ansi}.
1651
1652The @option{-ansi} option does not cause non-ISO programs to be
1653rejected gratuitously.  For that, @option{-Wpedantic} is required in
1654addition to @option{-ansi}.  @xref{Warning Options}.
1655
1656The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1657option is used.  Some header files may notice this macro and refrain
1658from declaring certain functions or defining certain macros that the
1659ISO standard doesn't call for; this is to avoid interfering with any
1660programs that might use these names for other things.
1661
1662Functions that are normally built in but do not have semantics
1663defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1664functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
1665built-in functions provided by GCC}, for details of the functions
1666affected.
1667
1668@item -std=
1669@opindex std
1670Determine the language standard. @xref{Standards,,Language Standards
1671Supported by GCC}, for details of these standard versions.  This option
1672is currently only supported when compiling C or C++.
1673
1674The compiler can accept several base standards, such as @samp{c90} or
1675@samp{c++98}, and GNU dialects of those standards, such as
1676@samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
1677compiler accepts all programs following that standard plus those
1678using GNU extensions that do not contradict it.  For example,
1679@option{-std=c90} turns off certain features of GCC that are
1680incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1681keywords, but not other GNU extensions that do not have a meaning in
1682ISO C90, such as omitting the middle term of a @code{?:}
1683expression. On the other hand, when a GNU dialect of a standard is
1684specified, all features supported by the compiler are enabled, even when
1685those features change the meaning of the base standard.  As a result, some
1686strict-conforming programs may be rejected.  The particular standard
1687is used by @option{-Wpedantic} to identify which features are GNU
1688extensions given that version of the standard. For example
1689@option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1690comments, while @option{-std=gnu99 -Wpedantic} does not.
1691
1692A value for this option must be provided; possible values are
1693
1694@table @samp
1695@item c90
1696@itemx c89
1697@itemx iso9899:1990
1698Support all ISO C90 programs (certain GNU extensions that conflict
1699with ISO C90 are disabled). Same as @option{-ansi} for C code.
1700
1701@item iso9899:199409
1702ISO C90 as modified in amendment 1.
1703
1704@item c99
1705@itemx c9x
1706@itemx iso9899:1999
1707@itemx iso9899:199x
1708ISO C99.  This standard is substantially completely supported, modulo
1709bugs and floating-point issues
1710(mainly but not entirely relating to optional C99 features from
1711Annexes F and G).  See
1712@w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1713names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1714
1715@item c11
1716@itemx c1x
1717@itemx iso9899:2011
1718ISO C11, the 2011 revision of the ISO C standard.  This standard is
1719substantially completely supported, modulo bugs, floating-point issues
1720(mainly but not entirely relating to optional C11 features from
1721Annexes F and G) and the optional Annexes K (Bounds-checking
1722interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
1723
1724@item gnu90
1725@itemx gnu89
1726GNU dialect of ISO C90 (including some C99 features).
1727
1728@item gnu99
1729@itemx gnu9x
1730GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
1731
1732@item gnu11
1733@itemx gnu1x
1734GNU dialect of ISO C11.  This is the default for C code.
1735The name @samp{gnu1x} is deprecated.
1736
1737@item c++98
1738@itemx c++03
1739The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1740additional defect reports. Same as @option{-ansi} for C++ code.
1741
1742@item gnu++98
1743@itemx gnu++03
1744GNU dialect of @option{-std=c++98}.  This is the default for
1745C++ code.
1746
1747@item c++11
1748@itemx c++0x
1749The 2011 ISO C++ standard plus amendments.
1750The name @samp{c++0x} is deprecated.
1751
1752@item gnu++11
1753@itemx gnu++0x
1754GNU dialect of @option{-std=c++11}.
1755The name @samp{gnu++0x} is deprecated.
1756
1757@item c++14
1758@itemx c++1y
1759The 2014 ISO C++ standard plus amendments.
1760The name @samp{c++1y} is deprecated.
1761
1762@item gnu++14
1763@itemx gnu++1y
1764GNU dialect of @option{-std=c++14}.
1765The name @samp{gnu++1y} is deprecated.
1766
1767@item c++1z
1768The next revision of the ISO C++ standard, tentatively planned for
17692017.  Support is highly experimental, and will almost certainly
1770change in incompatible ways in future releases.
1771
1772@item gnu++1z
1773GNU dialect of @option{-std=c++1z}.  Support is highly experimental,
1774and will almost certainly change in incompatible ways in future
1775releases.
1776@end table
1777
1778@item -fgnu89-inline
1779@opindex fgnu89-inline
1780The option @option{-fgnu89-inline} tells GCC to use the traditional
1781GNU semantics for @code{inline} functions when in C99 mode.
1782@xref{Inline,,An Inline Function is As Fast As a Macro}.
1783Using this option is roughly equivalent to adding the
1784@code{gnu_inline} function attribute to all inline functions
1785(@pxref{Function Attributes}).
1786
1787The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1788C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1789specifies the default behavior).  
1790This option is not supported in @option{-std=c90} or
1791@option{-std=gnu90} mode.
1792
1793The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1794@code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1795in effect for @code{inline} functions.  @xref{Common Predefined
1796Macros,,,cpp,The C Preprocessor}.
1797
1798@item -aux-info @var{filename}
1799@opindex aux-info
1800Output to the given filename prototyped declarations for all functions
1801declared and/or defined in a translation unit, including those in header
1802files.  This option is silently ignored in any language other than C@.
1803
1804Besides declarations, the file indicates, in comments, the origin of
1805each declaration (source file and line), whether the declaration was
1806implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1807@samp{O} for old, respectively, in the first character after the line
1808number and the colon), and whether it came from a declaration or a
1809definition (@samp{C} or @samp{F}, respectively, in the following
1810character).  In the case of function definitions, a K&R-style list of
1811arguments followed by their declarations is also provided, inside
1812comments, after the declaration.
1813
1814@item -fallow-parameterless-variadic-functions
1815@opindex fallow-parameterless-variadic-functions
1816Accept variadic functions without named parameters.
1817
1818Although it is possible to define such a function, this is not very
1819useful as it is not possible to read the arguments.  This is only
1820supported for C as this construct is allowed by C++.
1821
1822@item -fno-asm
1823@opindex fno-asm
1824Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1825keyword, so that code can use these words as identifiers.  You can use
1826the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1827instead.  @option{-ansi} implies @option{-fno-asm}.
1828
1829In C++, this switch only affects the @code{typeof} keyword, since
1830@code{asm} and @code{inline} are standard keywords.  You may want to
1831use the @option{-fno-gnu-keywords} flag instead, which has the same
1832effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1833switch only affects the @code{asm} and @code{typeof} keywords, since
1834@code{inline} is a standard keyword in ISO C99.
1835
1836@item -fno-builtin
1837@itemx -fno-builtin-@var{function}
1838@opindex fno-builtin
1839@cindex built-in functions
1840Don't recognize built-in functions that do not begin with
1841@samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
1842functions provided by GCC}, for details of the functions affected,
1843including those which are not built-in functions when @option{-ansi} or
1844@option{-std} options for strict ISO C conformance are used because they
1845do not have an ISO standard meaning.
1846
1847GCC normally generates special code to handle certain built-in functions
1848more efficiently; for instance, calls to @code{alloca} may become single
1849instructions which adjust the stack directly, and calls to @code{memcpy}
1850may become inline copy loops.  The resulting code is often both smaller
1851and faster, but since the function calls no longer appear as such, you
1852cannot set a breakpoint on those calls, nor can you change the behavior
1853of the functions by linking with a different library.  In addition,
1854when a function is recognized as a built-in function, GCC may use
1855information about that function to warn about problems with calls to
1856that function, or to generate more efficient code, even if the
1857resulting code still contains calls to that function.  For example,
1858warnings are given with @option{-Wformat} for bad calls to
1859@code{printf} when @code{printf} is built in and @code{strlen} is
1860known not to modify global memory.
1861
1862With the @option{-fno-builtin-@var{function}} option
1863only the built-in function @var{function} is
1864disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
1865function is named that is not built-in in this version of GCC, this
1866option is ignored.  There is no corresponding
1867@option{-fbuiltin-@var{function}} option; if you wish to enable
1868built-in functions selectively when using @option{-fno-builtin} or
1869@option{-ffreestanding}, you may define macros such as:
1870
1871@smallexample
1872#define abs(n)          __builtin_abs ((n))
1873#define strcpy(d, s)    __builtin_strcpy ((d), (s))
1874@end smallexample
1875
1876@item -fhosted
1877@opindex fhosted
1878@cindex hosted environment
1879
1880Assert that compilation targets a hosted environment.  This implies
1881@option{-fbuiltin}.  A hosted environment is one in which the
1882entire standard library is available, and in which @code{main} has a return
1883type of @code{int}.  Examples are nearly everything except a kernel.
1884This is equivalent to @option{-fno-freestanding}.
1885
1886@item -ffreestanding
1887@opindex ffreestanding
1888@cindex hosted environment
1889
1890Assert that compilation targets a freestanding environment.  This
1891implies @option{-fno-builtin}.  A freestanding environment
1892is one in which the standard library may not exist, and program startup may
1893not necessarily be at @code{main}.  The most obvious example is an OS kernel.
1894This is equivalent to @option{-fno-hosted}.
1895
1896@xref{Standards,,Language Standards Supported by GCC}, for details of
1897freestanding and hosted environments.
1898
1899@item -fopenacc
1900@opindex fopenacc
1901@cindex OpenACC accelerator programming
1902Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1903@code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
1904compiler generates accelerated code according to the OpenACC Application
1905Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}.  This option
1906implies @option{-pthread}, and thus is only supported on targets that
1907have support for @option{-pthread}.
1908
1909Note that this is an experimental feature, incomplete, and subject to
1910change in future versions of GCC.  See
1911@w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1912
1913@item -fopenmp
1914@opindex fopenmp
1915@cindex OpenMP parallel
1916Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1917@code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
1918compiler generates parallel code according to the OpenMP Application
1919Program Interface v4.0 @w{@uref{http://www.openmp.org/}}.  This option
1920implies @option{-pthread}, and thus is only supported on targets that
1921have support for @option{-pthread}. @option{-fopenmp} implies
1922@option{-fopenmp-simd}.
1923
1924@item -fopenmp-simd
1925@opindex fopenmp-simd
1926@cindex OpenMP SIMD
1927@cindex SIMD
1928Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1929in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1930are ignored.
1931
1932@item -fcilkplus
1933@opindex fcilkplus
1934@cindex Enable Cilk Plus
1935Enable the usage of Cilk Plus language extension features for C/C++.
1936When the option @option{-fcilkplus} is specified, enable the usage of
1937the Cilk Plus Language extension features for C/C++.  The present
1938implementation follows ABI version 1.2.  This is an experimental
1939feature that is only partially complete, and whose interface may
1940change in future versions of GCC as the official specification
1941changes.  Currently, all features but @code{_Cilk_for} have been
1942implemented.
1943
1944@item -fgnu-tm
1945@opindex fgnu-tm
1946When the option @option{-fgnu-tm} is specified, the compiler
1947generates code for the Linux variant of Intel's current Transactional
1948Memory ABI specification document (Revision 1.1, May 6 2009).  This is
1949an experimental feature whose interface may change in future versions
1950of GCC, as the official specification changes.  Please note that not
1951all architectures are supported for this feature.
1952
1953For more information on GCC's support for transactional memory,
1954@xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1955Transactional Memory Library}.
1956
1957Note that the transactional memory feature is not supported with
1958non-call exceptions (@option{-fnon-call-exceptions}).
1959
1960@item -fms-extensions
1961@opindex fms-extensions
1962Accept some non-standard constructs used in Microsoft header files.
1963
1964In C++ code, this allows member names in structures to be similar
1965to previous types declarations.
1966
1967@smallexample
1968typedef int UOW;
1969struct ABC @{
1970  UOW UOW;
1971@};
1972@end smallexample
1973
1974Some cases of unnamed fields in structures and unions are only
1975accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
1976fields within structs/unions}, for details.
1977
1978Note that this option is off for all targets but x86 
1979targets using ms-abi.
1980
1981@item -fplan9-extensions
1982@opindex fplan9-extensions
1983Accept some non-standard constructs used in Plan 9 code.
1984
1985This enables @option{-fms-extensions}, permits passing pointers to
1986structures with anonymous fields to functions that expect pointers to
1987elements of the type of the field, and permits referring to anonymous
1988fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
1989struct/union fields within structs/unions}, for details.  This is only
1990supported for C, not C++.
1991
1992@item -trigraphs
1993@opindex trigraphs
1994Support ISO C trigraphs.  The @option{-ansi} option (and @option{-std}
1995options for strict ISO C conformance) implies @option{-trigraphs}.
1996
1997@cindex traditional C language
1998@cindex C language, traditional
1999@item -traditional
2000@itemx -traditional-cpp
2001@opindex traditional-cpp
2002@opindex traditional
2003Formerly, these options caused GCC to attempt to emulate a pre-standard
2004C compiler.  They are now only supported with the @option{-E} switch.
2005The preprocessor continues to support a pre-standard mode.  See the GNU
2006CPP manual for details.
2007
2008@item -fcond-mismatch
2009@opindex fcond-mismatch
2010Allow conditional expressions with mismatched types in the second and
2011third arguments.  The value of such an expression is void.  This option
2012is not supported for C++.
2013
2014@item -flax-vector-conversions
2015@opindex flax-vector-conversions
2016Allow implicit conversions between vectors with differing numbers of
2017elements and/or incompatible element types.  This option should not be
2018used for new code.
2019
2020@item -funsigned-char
2021@opindex funsigned-char
2022Let the type @code{char} be unsigned, like @code{unsigned char}.
2023
2024Each kind of machine has a default for what @code{char} should
2025be.  It is either like @code{unsigned char} by default or like
2026@code{signed char} by default.
2027
2028Ideally, a portable program should always use @code{signed char} or
2029@code{unsigned char} when it depends on the signedness of an object.
2030But many programs have been written to use plain @code{char} and
2031expect it to be signed, or expect it to be unsigned, depending on the
2032machines they were written for.  This option, and its inverse, let you
2033make such a program work with the opposite default.
2034
2035The type @code{char} is always a distinct type from each of
2036@code{signed char} or @code{unsigned char}, even though its behavior
2037is always just like one of those two.
2038
2039@item -fsigned-char
2040@opindex fsigned-char
2041Let the type @code{char} be signed, like @code{signed char}.
2042
2043Note that this is equivalent to @option{-fno-unsigned-char}, which is
2044the negative form of @option{-funsigned-char}.  Likewise, the option
2045@option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2046
2047@item -fsigned-bitfields
2048@itemx -funsigned-bitfields
2049@itemx -fno-signed-bitfields
2050@itemx -fno-unsigned-bitfields
2051@opindex fsigned-bitfields
2052@opindex funsigned-bitfields
2053@opindex fno-signed-bitfields
2054@opindex fno-unsigned-bitfields
2055These options control whether a bit-field is signed or unsigned, when the
2056declaration does not use either @code{signed} or @code{unsigned}.  By
2057default, such a bit-field is signed, because this is consistent: the
2058basic integer types such as @code{int} are signed types.
2059@end table
2060
2061@node C++ Dialect Options
2062@section Options Controlling C++ Dialect
2063
2064@cindex compiler options, C++
2065@cindex C++ options, command-line
2066@cindex options, C++
2067This section describes the command-line options that are only meaningful
2068for C++ programs.  You can also use most of the GNU compiler options
2069regardless of what language your program is in.  For example, you
2070might compile a file @file{firstClass.C} like this:
2071
2072@smallexample
2073g++ -g -frepo -O -c firstClass.C
2074@end smallexample
2075
2076@noindent
2077In this example, only @option{-frepo} is an option meant
2078only for C++ programs; you can use the other options with any
2079language supported by GCC@.
2080
2081Here is a list of options that are @emph{only} for compiling C++ programs:
2082
2083@table @gcctabopt
2084
2085@item -fabi-version=@var{n}
2086@opindex fabi-version
2087Use version @var{n} of the C++ ABI@.  The default is version 0.
2088
2089Version 0 refers to the version conforming most closely to
2090the C++ ABI specification.  Therefore, the ABI obtained using version 0
2091will change in different versions of G++ as ABI bugs are fixed.
2092
2093Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.  
2094
2095Version 2 is the version of the C++ ABI that first appeared in G++
20963.4, and was the default through G++ 4.9.
2097
2098Version 3 corrects an error in mangling a constant address as a
2099template argument.
2100
2101Version 4, which first appeared in G++ 4.5, implements a standard
2102mangling for vector types.
2103
2104Version 5, which first appeared in G++ 4.6, corrects the mangling of
2105attribute const/volatile on function pointer types, decltype of a
2106plain decl, and use of a function parameter in the declaration of
2107another parameter.
2108
2109Version 6, which first appeared in G++ 4.7, corrects the promotion
2110behavior of C++11 scoped enums and the mangling of template argument
2111packs, const/static_cast, prefix ++ and --, and a class scope function
2112used as a template argument.
2113
2114Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2115builtin type and corrects the mangling of lambdas in default argument
2116scope.
2117
2118Version 8, which first appeared in G++ 4.9, corrects the substitution
2119behavior of function types with function-cv-qualifiers.
2120
2121Version 9, which first appeared in G++ 5.2, corrects the alignment of
2122@code{nullptr_t}.
2123
2124See also @option{-Wabi}.
2125
2126@item -fabi-compat-version=@var{n}
2127@opindex fabi-compat-version
2128On targets that support strong aliases, G++
2129works around mangling changes by creating an alias with the correct
2130mangled name when defining a symbol with an incorrect mangled name.
2131This switch specifies which ABI version to use for the alias.
2132
2133With @option{-fabi-version=0} (the default), this defaults to 2.  If
2134another ABI version is explicitly selected, this defaults to 0.
2135
2136The compatibility version is also set by @option{-Wabi=@var{n}}.
2137
2138@item -fno-access-control
2139@opindex fno-access-control
2140Turn off all access checking.  This switch is mainly useful for working
2141around bugs in the access control code.
2142
2143@item -fcheck-new
2144@opindex fcheck-new
2145Check that the pointer returned by @code{operator new} is non-null
2146before attempting to modify the storage allocated.  This check is
2147normally unnecessary because the C++ standard specifies that
2148@code{operator new} only returns @code{0} if it is declared
2149@code{throw()}, in which case the compiler always checks the
2150return value even without this option.  In all other cases, when
2151@code{operator new} has a non-empty exception specification, memory
2152exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
2153@samp{new (nothrow)}.
2154
2155@item -fconstexpr-depth=@var{n}
2156@opindex fconstexpr-depth
2157Set the maximum nested evaluation depth for C++11 constexpr functions
2158to @var{n}.  A limit is needed to detect endless recursion during
2159constant expression evaluation.  The minimum specified by the standard
2160is 512.
2161
2162@item -fdeduce-init-list
2163@opindex fdeduce-init-list
2164Enable deduction of a template type parameter as
2165@code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2166
2167@smallexample
2168template <class T> auto forward(T t) -> decltype (realfn (t))
2169@{
2170  return realfn (t);
2171@}
2172
2173void f()
2174@{
2175  forward(@{1,2@}); // call forward<std::initializer_list<int>>
2176@}
2177@end smallexample
2178
2179This deduction was implemented as a possible extension to the
2180originally proposed semantics for the C++11 standard, but was not part
2181of the final standard, so it is disabled by default.  This option is
2182deprecated, and may be removed in a future version of G++.
2183
2184@item -ffriend-injection
2185@opindex ffriend-injection
2186Inject friend functions into the enclosing namespace, so that they are
2187visible outside the scope of the class in which they are declared.
2188Friend functions were documented to work this way in the old Annotated
2189C++ Reference Manual.  
2190However, in ISO C++ a friend function that is not declared
2191in an enclosing scope can only be found using argument dependent
2192lookup.  GCC defaults to the standard behavior.
2193
2194This option is for compatibility, and may be removed in a future
2195release of G++.
2196
2197@item -fno-elide-constructors
2198@opindex fno-elide-constructors
2199The C++ standard allows an implementation to omit creating a temporary
2200that is only used to initialize another object of the same type.
2201Specifying this option disables that optimization, and forces G++ to
2202call the copy constructor in all cases.
2203
2204@item -fno-enforce-eh-specs
2205@opindex fno-enforce-eh-specs
2206Don't generate code to check for violation of exception specifications
2207at run time.  This option violates the C++ standard, but may be useful
2208for reducing code size in production builds, much like defining
2209@code{NDEBUG}.  This does not give user code permission to throw
2210exceptions in violation of the exception specifications; the compiler
2211still optimizes based on the specifications, so throwing an
2212unexpected exception results in undefined behavior at run time.
2213
2214@item -fextern-tls-init
2215@itemx -fno-extern-tls-init
2216@opindex fextern-tls-init
2217@opindex fno-extern-tls-init
2218The C++11 and OpenMP standards allow @code{thread_local} and
2219@code{threadprivate} variables to have dynamic (runtime)
2220initialization.  To support this, any use of such a variable goes
2221through a wrapper function that performs any necessary initialization.
2222When the use and definition of the variable are in the same
2223translation unit, this overhead can be optimized away, but when the
2224use is in a different translation unit there is significant overhead
2225even if the variable doesn't actually need dynamic initialization.  If
2226the programmer can be sure that no use of the variable in a
2227non-defining TU needs to trigger dynamic initialization (either
2228because the variable is statically initialized, or a use of the
2229variable in the defining TU will be executed before any uses in
2230another TU), they can avoid this overhead with the
2231@option{-fno-extern-tls-init} option.
2232
2233On targets that support symbol aliases, the default is
2234@option{-fextern-tls-init}.  On targets that do not support symbol
2235aliases, the default is @option{-fno-extern-tls-init}.
2236
2237@item -ffor-scope
2238@itemx -fno-for-scope
2239@opindex ffor-scope
2240@opindex fno-for-scope
2241If @option{-ffor-scope} is specified, the scope of variables declared in
2242a @i{for-init-statement} is limited to the @code{for} loop itself,
2243as specified by the C++ standard.
2244If @option{-fno-for-scope} is specified, the scope of variables declared in
2245a @i{for-init-statement} extends to the end of the enclosing scope,
2246as was the case in old versions of G++, and other (traditional)
2247implementations of C++.
2248
2249If neither flag is given, the default is to follow the standard,
2250but to allow and give a warning for old-style code that would
2251otherwise be invalid, or have different behavior.
2252
2253@item -fno-gnu-keywords
2254@opindex fno-gnu-keywords
2255Do not recognize @code{typeof} as a keyword, so that code can use this
2256word as an identifier.  You can use the keyword @code{__typeof__} instead.
2257@option{-ansi} implies @option{-fno-gnu-keywords}.
2258
2259@item -fno-implicit-templates
2260@opindex fno-implicit-templates
2261Never emit code for non-inline templates that are instantiated
2262implicitly (i.e.@: by use); only emit code for explicit instantiations.
2263@xref{Template Instantiation}, for more information.
2264
2265@item -fno-implicit-inline-templates
2266@opindex fno-implicit-inline-templates
2267Don't emit code for implicit instantiations of inline templates, either.
2268The default is to handle inlines differently so that compiles with and
2269without optimization need the same set of explicit instantiations.
2270
2271@item -fno-implement-inlines
2272@opindex fno-implement-inlines
2273To save space, do not emit out-of-line copies of inline functions
2274controlled by @code{#pragma implementation}.  This causes linker
2275errors if these functions are not inlined everywhere they are called.
2276
2277@item -fms-extensions
2278@opindex fms-extensions
2279Disable Wpedantic warnings about constructs used in MFC, such as implicit
2280int and getting a pointer to member function via non-standard syntax.
2281
2282@item -fno-nonansi-builtins
2283@opindex fno-nonansi-builtins
2284Disable built-in declarations of functions that are not mandated by
2285ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
2286@code{index}, @code{bzero}, @code{conjf}, and other related functions.
2287
2288@item -fnothrow-opt
2289@opindex fnothrow-opt
2290Treat a @code{throw()} exception specification as if it were a
2291@code{noexcept} specification to reduce or eliminate the text size
2292overhead relative to a function with no exception specification.  If
2293the function has local variables of types with non-trivial
2294destructors, the exception specification actually makes the
2295function smaller because the EH cleanups for those variables can be
2296optimized away.  The semantic effect is that an exception thrown out of
2297a function with such an exception specification results in a call
2298to @code{terminate} rather than @code{unexpected}.
2299
2300@item -fno-operator-names
2301@opindex fno-operator-names
2302Do not treat the operator name keywords @code{and}, @code{bitand},
2303@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2304synonyms as keywords.
2305
2306@item -fno-optional-diags
2307@opindex fno-optional-diags
2308Disable diagnostics that the standard says a compiler does not need to
2309issue.  Currently, the only such diagnostic issued by G++ is the one for
2310a name having multiple meanings within a class.
2311
2312@item -fpermissive
2313@opindex fpermissive
2314Downgrade some diagnostics about nonconformant code from errors to
2315warnings.  Thus, using @option{-fpermissive} allows some
2316nonconforming code to compile.
2317
2318@item -fno-pretty-templates
2319@opindex fno-pretty-templates
2320When an error message refers to a specialization of a function
2321template, the compiler normally prints the signature of the
2322template followed by the template arguments and any typedefs or
2323typenames in the signature (e.g. @code{void f(T) [with T = int]}
2324rather than @code{void f(int)}) so that it's clear which template is
2325involved.  When an error message refers to a specialization of a class
2326template, the compiler omits any template arguments that match
2327the default template arguments for that template.  If either of these
2328behaviors make it harder to understand the error message rather than
2329easier, you can use @option{-fno-pretty-templates} to disable them.
2330
2331@item -frepo
2332@opindex frepo
2333Enable automatic template instantiation at link time.  This option also
2334implies @option{-fno-implicit-templates}.  @xref{Template
2335Instantiation}, for more information.
2336
2337@item -fno-rtti
2338@opindex fno-rtti
2339Disable generation of information about every class with virtual
2340functions for use by the C++ run-time type identification features
2341(@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
2342of the language, you can save some space by using this flag.  Note that
2343exception handling uses the same information, but G++ generates it as
2344needed. The @code{dynamic_cast} operator can still be used for casts that
2345do not require run-time type information, i.e.@: casts to @code{void *} or to
2346unambiguous base classes.
2347
2348@item -fsized-deallocation
2349@opindex fsized-deallocation
2350Enable the built-in global declarations
2351@smallexample
2352void operator delete (void *, std::size_t) noexcept;
2353void operator delete[] (void *, std::size_t) noexcept;
2354@end smallexample
2355as introduced in C++14.  This is useful for user-defined replacement
2356deallocation functions that, for example, use the size of the object
2357to make deallocation faster.  Enabled by default under
2358@option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
2359warns about places that might want to add a definition.
2360
2361@item -fstats
2362@opindex fstats
2363Emit statistics about front-end processing at the end of the compilation.
2364This information is generally only useful to the G++ development team.
2365
2366@item -fstrict-enums
2367@opindex fstrict-enums
2368Allow the compiler to optimize using the assumption that a value of
2369enumerated type can only be one of the values of the enumeration (as
2370defined in the C++ standard; basically, a value that can be
2371represented in the minimum number of bits needed to represent all the
2372enumerators).  This assumption may not be valid if the program uses a
2373cast to convert an arbitrary integer value to the enumerated type.
2374
2375@item -ftemplate-backtrace-limit=@var{n}
2376@opindex ftemplate-backtrace-limit
2377Set the maximum number of template instantiation notes for a single
2378warning or error to @var{n}.  The default value is 10.
2379
2380@item -ftemplate-depth=@var{n}
2381@opindex ftemplate-depth
2382Set the maximum instantiation depth for template classes to @var{n}.
2383A limit on the template instantiation depth is needed to detect
2384endless recursions during template class instantiation.  ANSI/ISO C++
2385conforming programs must not rely on a maximum depth greater than 17
2386(changed to 1024 in C++11).  The default value is 900, as the compiler
2387can run out of stack space before hitting 1024 in some situations.
2388
2389@item -fno-threadsafe-statics
2390@opindex fno-threadsafe-statics
2391Do not emit the extra code to use the routines specified in the C++
2392ABI for thread-safe initialization of local statics.  You can use this
2393option to reduce code size slightly in code that doesn't need to be
2394thread-safe.
2395
2396@item -fuse-cxa-atexit
2397@opindex fuse-cxa-atexit
2398Register destructors for objects with static storage duration with the
2399@code{__cxa_atexit} function rather than the @code{atexit} function.
2400This option is required for fully standards-compliant handling of static
2401destructors, but only works if your C library supports
2402@code{__cxa_atexit}.
2403
2404@item -fno-use-cxa-get-exception-ptr
2405@opindex fno-use-cxa-get-exception-ptr
2406Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
2407causes @code{std::uncaught_exception} to be incorrect, but is necessary
2408if the runtime routine is not available.
2409
2410@item -fvisibility-inlines-hidden
2411@opindex fvisibility-inlines-hidden
2412This switch declares that the user does not attempt to compare
2413pointers to inline functions or methods where the addresses of the two functions
2414are taken in different shared objects.
2415
2416The effect of this is that GCC may, effectively, mark inline methods with
2417@code{__attribute__ ((visibility ("hidden")))} so that they do not
2418appear in the export table of a DSO and do not require a PLT indirection
2419when used within the DSO@.  Enabling this option can have a dramatic effect
2420on load and link times of a DSO as it massively reduces the size of the
2421dynamic export table when the library makes heavy use of templates.
2422
2423The behavior of this switch is not quite the same as marking the
2424methods as hidden directly, because it does not affect static variables
2425local to the function or cause the compiler to deduce that
2426the function is defined in only one shared object.
2427
2428You may mark a method as having a visibility explicitly to negate the
2429effect of the switch for that method.  For example, if you do want to
2430compare pointers to a particular inline method, you might mark it as
2431having default visibility.  Marking the enclosing class with explicit
2432visibility has no effect.
2433
2434Explicitly instantiated inline methods are unaffected by this option
2435as their linkage might otherwise cross a shared library boundary.
2436@xref{Template Instantiation}.
2437
2438@item -fvisibility-ms-compat
2439@opindex fvisibility-ms-compat
2440This flag attempts to use visibility settings to make GCC's C++
2441linkage model compatible with that of Microsoft Visual Studio.
2442
2443The flag makes these changes to GCC's linkage model:
2444
2445@enumerate
2446@item
2447It sets the default visibility to @code{hidden}, like
2448@option{-fvisibility=hidden}.
2449
2450@item
2451Types, but not their members, are not hidden by default.
2452
2453@item
2454The One Definition Rule is relaxed for types without explicit
2455visibility specifications that are defined in more than one
2456shared object: those declarations are permitted if they are
2457permitted when this option is not used.
2458@end enumerate
2459
2460In new code it is better to use @option{-fvisibility=hidden} and
2461export those classes that are intended to be externally visible.
2462Unfortunately it is possible for code to rely, perhaps accidentally,
2463on the Visual Studio behavior.
2464
2465Among the consequences of these changes are that static data members
2466of the same type with the same name but defined in different shared
2467objects are different, so changing one does not change the other;
2468and that pointers to function members defined in different shared
2469objects may not compare equal.  When this flag is given, it is a
2470violation of the ODR to define types with the same name differently.
2471
2472@item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2473@opindex fvtable-verify
2474Turn on (or off, if using @option{-fvtable-verify=none}) the security
2475feature that verifies at run time, for every virtual call, that
2476the vtable pointer through which the call is made is valid for the type of
2477the object, and has not been corrupted or overwritten.  If an invalid vtable
2478pointer is detected at run time, an error is reported and execution of the
2479program is immediately halted.
2480
2481This option causes run-time data structures to be built at program startup,
2482which are used for verifying the vtable pointers.  
2483The options @samp{std} and @samp{preinit}
2484control the timing of when these data structures are built.  In both cases the
2485data structures are built before execution reaches @code{main}.  Using
2486@option{-fvtable-verify=std} causes the data structures to be built after
2487shared libraries have been loaded and initialized.
2488@option{-fvtable-verify=preinit} causes them to be built before shared
2489libraries have been loaded and initialized.
2490
2491If this option appears multiple times in the command line with different
2492values specified, @samp{none} takes highest priority over both @samp{std} and
2493@samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2494
2495@item -fvtv-debug
2496@opindex fvtv-debug
2497When used in conjunction with @option{-fvtable-verify=std} or 
2498@option{-fvtable-verify=preinit}, causes debug versions of the 
2499runtime functions for the vtable verification feature to be called.  
2500This flag also causes the compiler to log information about which 
2501vtable pointers it finds for each class.
2502This information is written to a file named @file{vtv_set_ptr_data.log} 
2503in the directory named by the environment variable @env{VTV_LOGS_DIR} 
2504if that is defined or the current working directory otherwise.
2505
2506Note:  This feature @emph{appends} data to the log file. If you want a fresh log
2507file, be sure to delete any existing one.
2508
2509@item -fvtv-counts
2510@opindex fvtv-counts
2511This is a debugging flag.  When used in conjunction with
2512@option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2513causes the compiler to keep track of the total number of virtual calls
2514it encounters and the number of verifications it inserts.  It also
2515counts the number of calls to certain run-time library functions
2516that it inserts and logs this information for each compilation unit.
2517The compiler writes this information to a file named
2518@file{vtv_count_data.log} in the directory named by the environment
2519variable @env{VTV_LOGS_DIR} if that is defined or the current working
2520directory otherwise.  It also counts the size of the vtable pointer sets
2521for each class, and writes this information to @file{vtv_class_set_sizes.log}
2522in the same directory.
2523
2524Note:  This feature @emph{appends} data to the log files.  To get fresh log
2525files, be sure to delete any existing ones.
2526
2527@item -fno-weak
2528@opindex fno-weak
2529Do not use weak symbol support, even if it is provided by the linker.
2530By default, G++ uses weak symbols if they are available.  This
2531option exists only for testing, and should not be used by end-users;
2532it results in inferior code and has no benefits.  This option may
2533be removed in a future release of G++.
2534
2535@item -nostdinc++
2536@opindex nostdinc++
2537Do not search for header files in the standard directories specific to
2538C++, but do still search the other standard directories.  (This option
2539is used when building the C++ library.)
2540@end table
2541
2542In addition, these optimization, warning, and code generation options
2543have meanings only for C++ programs:
2544
2545@table @gcctabopt
2546@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2547@opindex Wabi
2548@opindex Wno-abi
2549When an explicit @option{-fabi-version=@var{n}} option is used, causes
2550G++ to warn when it generates code that is probably not compatible with the
2551vendor-neutral C++ ABI@.  Since G++ now defaults to
2552@option{-fabi-version=0}, @option{-Wabi} has no effect unless either
2553an older ABI version is selected (with @option{-fabi-version=@var{n}})
2554or an older compatibility version is selected (with
2555@option{-Wabi=@var{n}} or @option{-fabi-compat-version=@var{n}}).
2556
2557Although an effort has been made to warn about
2558all such cases, there are probably some cases that are not warned about,
2559even though G++ is generating incompatible code.  There may also be
2560cases where warnings are emitted even though the code that is generated
2561is compatible.
2562
2563You should rewrite your code to avoid these warnings if you are
2564concerned about the fact that code generated by G++ may not be binary
2565compatible with code generated by other compilers.
2566
2567@option{-Wabi} can also be used with an explicit version number to
2568warn about compatibility with a particular @option{-fabi-version}
2569level, e.g. @option{-Wabi=2} to warn about changes relative to
2570@option{-fabi-version=2}.  Specifying a version number also sets
2571@option{-fabi-compat-version=@var{n}}.
2572
2573The known incompatibilities in @option{-fabi-version=2} (which was the
2574default from GCC 3.4 to 4.9) include:
2575
2576@itemize @bullet
2577
2578@item
2579A template with a non-type template parameter of reference type was
2580mangled incorrectly:
2581@smallexample
2582extern int N;
2583template <int &> struct S @{@};
2584void n (S<N>) @{2@}
2585@end smallexample
2586
2587This was fixed in @option{-fabi-version=3}.
2588
2589@item
2590SIMD vector types declared using @code{__attribute ((vector_size))} were
2591mangled in a non-standard way that does not allow for overloading of
2592functions taking vectors of different sizes.
2593
2594The mangling was changed in @option{-fabi-version=4}.
2595
2596@item
2597@code{__attribute ((const))} and @code{noreturn} were mangled as type
2598qualifiers, and @code{decltype} of a plain declaration was folded away.
2599
2600These mangling issues were fixed in @option{-fabi-version=5}.
2601
2602@item
2603Scoped enumerators passed as arguments to a variadic function are
2604promoted like unscoped enumerators, causing @code{va_arg} to complain.
2605On most targets this does not actually affect the parameter passing
2606ABI, as there is no way to pass an argument smaller than @code{int}.
2607
2608Also, the ABI changed the mangling of template argument packs,
2609@code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2610a class scope function used as a template argument.
2611
2612These issues were corrected in @option{-fabi-version=6}.
2613
2614@item
2615Lambdas in default argument scope were mangled incorrectly, and the
2616ABI changed the mangling of @code{nullptr_t}.
2617
2618These issues were corrected in @option{-fabi-version=7}.
2619
2620@item
2621When mangling a function type with function-cv-qualifiers, the
2622un-qualified function type was incorrectly treated as a substitution
2623candidate.
2624
2625This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2626
2627@item
2628@code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2629unaligned accesses.  Note that this did not affect the ABI of a
2630function with a @code{nullptr_t} parameter, as parameters have a
2631minimum alignment.
2632
2633This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2634@end itemize
2635
2636It also warns about psABI-related changes.  The known psABI changes at this
2637point include:
2638
2639@itemize @bullet
2640
2641@item
2642For SysV/x86-64, unions with @code{long double} members are 
2643passed in memory as specified in psABI.  For example:
2644
2645@smallexample
2646union U @{
2647  long double ld;
2648  int i;
2649@};
2650@end smallexample
2651
2652@noindent
2653@code{union U} is always passed in memory.
2654
2655@end itemize
2656
2657@item -Wabi-tag @r{(C++ and Objective-C++ only)}
2658@opindex Wabi-tag
2659@opindex -Wabi-tag
2660Warn when a type with an ABI tag is used in a context that does not
2661have that ABI tag.  See @ref{C++ Attributes} for more information
2662about ABI tags.
2663
2664@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2665@opindex Wctor-dtor-privacy
2666@opindex Wno-ctor-dtor-privacy
2667Warn when a class seems unusable because all the constructors or
2668destructors in that class are private, and it has neither friends nor
2669public static member functions.  Also warn if there are no non-private
2670methods, and there's at least one private member function that isn't
2671a constructor or destructor.
2672
2673@item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2674@opindex Wdelete-non-virtual-dtor
2675@opindex Wno-delete-non-virtual-dtor
2676Warn when @code{delete} is used to destroy an instance of a class that
2677has virtual functions and non-virtual destructor. It is unsafe to delete
2678an instance of a derived class through a pointer to a base class if the
2679base class does not have a virtual destructor.  This warning is enabled
2680by @option{-Wall}.
2681
2682@item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2683@opindex Wliteral-suffix
2684@opindex Wno-literal-suffix
2685Warn when a string or character literal is followed by a ud-suffix which does
2686not begin with an underscore.  As a conforming extension, GCC treats such
2687suffixes as separate preprocessing tokens in order to maintain backwards
2688compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2689For example:
2690
2691@smallexample
2692#define __STDC_FORMAT_MACROS
2693#include <inttypes.h>
2694#include <stdio.h>
2695
2696int main() @{
2697  int64_t i64 = 123;
2698  printf("My int64: %"PRId64"\n", i64);
2699@}
2700@end smallexample
2701
2702In this case, @code{PRId64} is treated as a separate preprocessing token.
2703
2704This warning is enabled by default.
2705
2706@item -Wnarrowing @r{(C++ and Objective-C++ only)}
2707@opindex Wnarrowing
2708@opindex Wno-narrowing
2709Warn when a narrowing conversion prohibited by C++11 occurs within
2710@samp{@{ @}}, e.g.
2711
2712@smallexample
2713int i = @{ 2.2 @}; // error: narrowing from double to int
2714@end smallexample
2715
2716This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2717
2718With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2719required by the standard.  Note that this does not affect the meaning
2720of well-formed code; narrowing conversions are still considered
2721ill-formed in SFINAE context.
2722
2723@item -Wnoexcept @r{(C++ and Objective-C++ only)}
2724@opindex Wnoexcept
2725@opindex Wno-noexcept
2726Warn when a noexcept-expression evaluates to false because of a call
2727to a function that does not have a non-throwing exception
2728specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2729the compiler to never throw an exception.
2730
2731@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2732@opindex Wnon-virtual-dtor
2733@opindex Wno-non-virtual-dtor
2734Warn when a class has virtual functions and an accessible non-virtual
2735destructor itself or in an accessible polymorphic base class, in which
2736case it is possible but unsafe to delete an instance of a derived
2737class through a pointer to the class itself or base class.  This
2738warning is automatically enabled if @option{-Weffc++} is specified.
2739
2740@item -Wreorder @r{(C++ and Objective-C++ only)}
2741@opindex Wreorder
2742@opindex Wno-reorder
2743@cindex reordering, warning
2744@cindex warning for reordering of member initializers
2745Warn when the order of member initializers given in the code does not
2746match the order in which they must be executed.  For instance:
2747
2748@smallexample
2749struct A @{
2750  int i;
2751  int j;
2752  A(): j (0), i (1) @{ @}
2753@};
2754@end smallexample
2755
2756@noindent
2757The compiler rearranges the member initializers for @code{i}
2758and @code{j} to match the declaration order of the members, emitting
2759a warning to that effect.  This warning is enabled by @option{-Wall}.
2760
2761@item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2762@opindex fext-numeric-literals
2763@opindex fno-ext-numeric-literals
2764Accept imaginary, fixed-point, or machine-defined
2765literal number suffixes as GNU extensions.
2766When this option is turned off these suffixes are treated
2767as C++11 user-defined literal numeric suffixes.
2768This is on by default for all pre-C++11 dialects and all GNU dialects:
2769@option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2770@option{-std=gnu++14}.
2771This option is off by default
2772for ISO C++11 onwards (@option{-std=c++11}, ...).
2773@end table
2774
2775The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2776
2777@table @gcctabopt
2778@item -Weffc++ @r{(C++ and Objective-C++ only)}
2779@opindex Weffc++
2780@opindex Wno-effc++
2781Warn about violations of the following style guidelines from Scott Meyers'
2782@cite{Effective C++} series of books:
2783
2784@itemize @bullet
2785@item
2786Define a copy constructor and an assignment operator for classes
2787with dynamically-allocated memory.
2788
2789@item
2790Prefer initialization to assignment in constructors.
2791
2792@item
2793Have @code{operator=} return a reference to @code{*this}.
2794
2795@item
2796Don't try to return a reference when you must return an object.
2797
2798@item
2799Distinguish between prefix and postfix forms of increment and
2800decrement operators.
2801
2802@item
2803Never overload @code{&&}, @code{||}, or @code{,}.
2804
2805@end itemize
2806
2807This option also enables @option{-Wnon-virtual-dtor}, which is also
2808one of the effective C++ recommendations.  However, the check is
2809extended to warn about the lack of virtual destructor in accessible
2810non-polymorphic bases classes too.
2811
2812When selecting this option, be aware that the standard library
2813headers do not obey all of these guidelines; use @samp{grep -v}
2814to filter out those warnings.
2815
2816@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2817@opindex Wstrict-null-sentinel
2818@opindex Wno-strict-null-sentinel
2819Warn about the use of an uncasted @code{NULL} as sentinel.  When
2820compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2821to @code{__null}.  Although it is a null pointer constant rather than a
2822null pointer, it is guaranteed to be of the same size as a pointer.
2823But this use is not portable across different compilers.
2824
2825@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2826@opindex Wno-non-template-friend
2827@opindex Wnon-template-friend
2828Disable warnings when non-templatized friend functions are declared
2829within a template.  Since the advent of explicit template specification
2830support in G++, if the name of the friend is an unqualified-id (i.e.,
2831@samp{friend foo(int)}), the C++ language specification demands that the
2832friend declare or define an ordinary, nontemplate function.  (Section
283314.5.3).  Before G++ implemented explicit specification, unqualified-ids
2834could be interpreted as a particular specialization of a templatized
2835function.  Because this non-conforming behavior is no longer the default
2836behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2837check existing code for potential trouble spots and is on by default.
2838This new compiler behavior can be turned off with
2839@option{-Wno-non-template-friend}, which keeps the conformant compiler code
2840but disables the helpful warning.
2841
2842@item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2843@opindex Wold-style-cast
2844@opindex Wno-old-style-cast
2845Warn if an old-style (C-style) cast to a non-void type is used within
2846a C++ program.  The new-style casts (@code{dynamic_cast},
2847@code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2848less vulnerable to unintended effects and much easier to search for.
2849
2850@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2851@opindex Woverloaded-virtual
2852@opindex Wno-overloaded-virtual
2853@cindex overloaded virtual function, warning
2854@cindex warning for overloaded virtual function
2855Warn when a function declaration hides virtual functions from a
2856base class.  For example, in:
2857
2858@smallexample
2859struct A @{
2860  virtual void f();
2861@};
2862
2863struct B: public A @{
2864  void f(int);
2865@};
2866@end smallexample
2867
2868the @code{A} class version of @code{f} is hidden in @code{B}, and code
2869like:
2870
2871@smallexample
2872B* b;
2873b->f();
2874@end smallexample
2875
2876@noindent
2877fails to compile.
2878
2879@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2880@opindex Wno-pmf-conversions
2881@opindex Wpmf-conversions
2882Disable the diagnostic for converting a bound pointer to member function
2883to a plain pointer.
2884
2885@item -Wsign-promo @r{(C++ and Objective-C++ only)}
2886@opindex Wsign-promo
2887@opindex Wno-sign-promo
2888Warn when overload resolution chooses a promotion from unsigned or
2889enumerated type to a signed type, over a conversion to an unsigned type of
2890the same size.  Previous versions of G++ tried to preserve
2891unsignedness, but the standard mandates the current behavior.
2892@end table
2893
2894@node Objective-C and Objective-C++ Dialect Options
2895@section Options Controlling Objective-C and Objective-C++ Dialects
2896
2897@cindex compiler options, Objective-C and Objective-C++
2898@cindex Objective-C and Objective-C++ options, command-line
2899@cindex options, Objective-C and Objective-C++
2900(NOTE: This manual does not describe the Objective-C and Objective-C++
2901languages themselves.  @xref{Standards,,Language Standards
2902Supported by GCC}, for references.)
2903
2904This section describes the command-line options that are only meaningful
2905for Objective-C and Objective-C++ programs.  You can also use most of
2906the language-independent GNU compiler options.
2907For example, you might compile a file @file{some_class.m} like this:
2908
2909@smallexample
2910gcc -g -fgnu-runtime -O -c some_class.m
2911@end smallexample
2912
2913@noindent
2914In this example, @option{-fgnu-runtime} is an option meant only for
2915Objective-C and Objective-C++ programs; you can use the other options with
2916any language supported by GCC@.
2917
2918Note that since Objective-C is an extension of the C language, Objective-C
2919compilations may also use options specific to the C front-end (e.g.,
2920@option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
2921C++-specific options (e.g., @option{-Wabi}).
2922
2923Here is a list of options that are @emph{only} for compiling Objective-C
2924and Objective-C++ programs:
2925
2926@table @gcctabopt
2927@item -fconstant-string-class=@var{class-name}
2928@opindex fconstant-string-class
2929Use @var{class-name} as the name of the class to instantiate for each
2930literal string specified with the syntax @code{@@"@dots{}"}.  The default
2931class name is @code{NXConstantString} if the GNU runtime is being used, and
2932@code{NSConstantString} if the NeXT runtime is being used (see below).  The
2933@option{-fconstant-cfstrings} option, if also present, overrides the
2934@option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
2935to be laid out as constant CoreFoundation strings.
2936
2937@item -fgnu-runtime
2938@opindex fgnu-runtime
2939Generate object code compatible with the standard GNU Objective-C
2940runtime.  This is the default for most types of systems.
2941
2942@item -fnext-runtime
2943@opindex fnext-runtime
2944Generate output compatible with the NeXT runtime.  This is the default
2945for NeXT-based systems, including Darwin and Mac OS X@.  The macro
2946@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
2947used.
2948
2949@item -fno-nil-receivers
2950@opindex fno-nil-receivers
2951Assume that all Objective-C message dispatches (@code{[receiver
2952message:arg]}) in this translation unit ensure that the receiver is
2953not @code{nil}.  This allows for more efficient entry points in the
2954runtime to be used.  This option is only available in conjunction with
2955the NeXT runtime and ABI version 0 or 1.
2956
2957@item -fobjc-abi-version=@var{n}
2958@opindex fobjc-abi-version
2959Use version @var{n} of the Objective-C ABI for the selected runtime.
2960This option is currently supported only for the NeXT runtime.  In that
2961case, Version 0 is the traditional (32-bit) ABI without support for
2962properties and other Objective-C 2.0 additions.  Version 1 is the
2963traditional (32-bit) ABI with support for properties and other
2964Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
2965nothing is specified, the default is Version 0 on 32-bit target
2966machines, and Version 2 on 64-bit target machines.
2967
2968@item -fobjc-call-cxx-cdtors
2969@opindex fobjc-call-cxx-cdtors
2970For each Objective-C class, check if any of its instance variables is a
2971C++ object with a non-trivial default constructor.  If so, synthesize a
2972special @code{- (id) .cxx_construct} instance method which runs
2973non-trivial default constructors on any such instance variables, in order,
2974and then return @code{self}.  Similarly, check if any instance variable
2975is a C++ object with a non-trivial destructor, and if so, synthesize a
2976special @code{- (void) .cxx_destruct} method which runs
2977all such default destructors, in reverse order.
2978
2979The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
2980methods thusly generated only operate on instance variables
2981declared in the current Objective-C class, and not those inherited
2982from superclasses.  It is the responsibility of the Objective-C
2983runtime to invoke all such methods in an object's inheritance
2984hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
2985by the runtime immediately after a new object instance is allocated;
2986the @code{- (void) .cxx_destruct} methods are invoked immediately
2987before the runtime deallocates an object instance.
2988
2989As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
2990support for invoking the @code{- (id) .cxx_construct} and
2991@code{- (void) .cxx_destruct} methods.
2992
2993@item -fobjc-direct-dispatch
2994@opindex fobjc-direct-dispatch
2995Allow fast jumps to the message dispatcher.  On Darwin this is
2996accomplished via the comm page.
2997
2998@item -fobjc-exceptions
2999@opindex fobjc-exceptions
3000Enable syntactic support for structured exception handling in
3001Objective-C, similar to what is offered by C++ and Java.  This option
3002is required to use the Objective-C keywords @code{@@try},
3003@code{@@throw}, @code{@@catch}, @code{@@finally} and
3004@code{@@synchronized}.  This option is available with both the GNU
3005runtime and the NeXT runtime (but not available in conjunction with
3006the NeXT runtime on Mac OS X 10.2 and earlier).
3007
3008@item -fobjc-gc
3009@opindex fobjc-gc
3010Enable garbage collection (GC) in Objective-C and Objective-C++
3011programs.  This option is only available with the NeXT runtime; the
3012GNU runtime has a different garbage collection implementation that
3013does not require special compiler flags.
3014
3015@item -fobjc-nilcheck
3016@opindex fobjc-nilcheck
3017For the NeXT runtime with version 2 of the ABI, check for a nil
3018receiver in method invocations before doing the actual method call.
3019This is the default and can be disabled using
3020@option{-fno-objc-nilcheck}.  Class methods and super calls are never
3021checked for nil in this way no matter what this flag is set to.
3022Currently this flag does nothing when the GNU runtime, or an older
3023version of the NeXT runtime ABI, is used.
3024
3025@item -fobjc-std=objc1
3026@opindex fobjc-std
3027Conform to the language syntax of Objective-C 1.0, the language
3028recognized by GCC 4.0.  This only affects the Objective-C additions to
3029the C/C++ language; it does not affect conformance to C/C++ standards,
3030which is controlled by the separate C/C++ dialect option flags.  When
3031this option is used with the Objective-C or Objective-C++ compiler,
3032any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3033This is useful if you need to make sure that your Objective-C code can
3034be compiled with older versions of GCC@.
3035
3036@item -freplace-objc-classes
3037@opindex freplace-objc-classes
3038Emit a special marker instructing @command{ld(1)} not to statically link in
3039the resulting object file, and allow @command{dyld(1)} to load it in at
3040run time instead.  This is used in conjunction with the Fix-and-Continue
3041debugging mode, where the object file in question may be recompiled and
3042dynamically reloaded in the course of program execution, without the need
3043to restart the program itself.  Currently, Fix-and-Continue functionality
3044is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3045and later.
3046
3047@item -fzero-link
3048@opindex fzero-link
3049When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3050to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3051compile time) with static class references that get initialized at load time,
3052which improves run-time performance.  Specifying the @option{-fzero-link} flag
3053suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3054to be retained.  This is useful in Zero-Link debugging mode, since it allows
3055for individual class implementations to be modified during program execution.
3056The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3057regardless of command-line options.
3058
3059@item -fno-local-ivars
3060@opindex fno-local-ivars
3061@opindex flocal-ivars
3062By default instance variables in Objective-C can be accessed as if
3063they were local variables from within the methods of the class they're
3064declared in.  This can lead to shadowing between instance variables
3065and other variables declared either locally inside a class method or
3066globally with the same name.  Specifying the @option{-fno-local-ivars}
3067flag disables this behavior thus avoiding variable shadowing issues.
3068
3069@item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3070@opindex fivar-visibility
3071Set the default instance variable visibility to the specified option
3072so that instance variables declared outside the scope of any access
3073modifier directives default to the specified visibility.
3074
3075@item -gen-decls
3076@opindex gen-decls
3077Dump interface declarations for all classes seen in the source file to a
3078file named @file{@var{sourcename}.decl}.
3079
3080@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3081@opindex Wassign-intercept
3082@opindex Wno-assign-intercept
3083Warn whenever an Objective-C assignment is being intercepted by the
3084garbage collector.
3085
3086@item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3087@opindex Wno-protocol
3088@opindex Wprotocol
3089If a class is declared to implement a protocol, a warning is issued for
3090every method in the protocol that is not implemented by the class.  The
3091default behavior is to issue a warning for every method not explicitly
3092implemented in the class, even if a method implementation is inherited
3093from the superclass.  If you use the @option{-Wno-protocol} option, then
3094methods inherited from the superclass are considered to be implemented,
3095and no warning is issued for them.
3096
3097@item -Wselector @r{(Objective-C and Objective-C++ only)}
3098@opindex Wselector
3099@opindex Wno-selector
3100Warn if multiple methods of different types for the same selector are
3101found during compilation.  The check is performed on the list of methods
3102in the final stage of compilation.  Additionally, a check is performed
3103for each selector appearing in a @code{@@selector(@dots{})}
3104expression, and a corresponding method for that selector has been found
3105during compilation.  Because these checks scan the method table only at
3106the end of compilation, these warnings are not produced if the final
3107stage of compilation is not reached, for example because an error is
3108found during compilation, or because the @option{-fsyntax-only} option is
3109being used.
3110
3111@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3112@opindex Wstrict-selector-match
3113@opindex Wno-strict-selector-match
3114Warn if multiple methods with differing argument and/or return types are
3115found for a given selector when attempting to send a message using this
3116selector to a receiver of type @code{id} or @code{Class}.  When this flag
3117is off (which is the default behavior), the compiler omits such warnings
3118if any differences found are confined to types that share the same size
3119and alignment.
3120
3121@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3122@opindex Wundeclared-selector
3123@opindex Wno-undeclared-selector
3124Warn if a @code{@@selector(@dots{})} expression referring to an
3125undeclared selector is found.  A selector is considered undeclared if no
3126method with that name has been declared before the
3127@code{@@selector(@dots{})} expression, either explicitly in an
3128@code{@@interface} or @code{@@protocol} declaration, or implicitly in
3129an @code{@@implementation} section.  This option always performs its
3130checks as soon as a @code{@@selector(@dots{})} expression is found,
3131while @option{-Wselector} only performs its checks in the final stage of
3132compilation.  This also enforces the coding style convention
3133that methods and selectors must be declared before being used.
3134
3135@item -print-objc-runtime-info
3136@opindex print-objc-runtime-info
3137Generate C header describing the largest structure that is passed by
3138value, if any.
3139
3140@end table
3141
3142@node Language Independent Options
3143@section Options to Control Diagnostic Messages Formatting
3144@cindex options to control diagnostics formatting
3145@cindex diagnostic messages
3146@cindex message formatting
3147
3148Traditionally, diagnostic messages have been formatted irrespective of
3149the output device's aspect (e.g.@: its width, @dots{}).  You can use the
3150options described below
3151to control the formatting algorithm for diagnostic messages, 
3152e.g.@: how many characters per line, how often source location
3153information should be reported.  Note that some language front ends may not
3154honor these options.
3155
3156@table @gcctabopt
3157@item -fmessage-length=@var{n}
3158@opindex fmessage-length
3159Try to format error messages so that they fit on lines of about
3160@var{n} characters.  If @var{n} is zero, then no line-wrapping is
3161done; each error message appears on a single line.  This is the
3162default for all front ends.
3163
3164@item -fdiagnostics-show-location=once
3165@opindex fdiagnostics-show-location
3166Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
3167reporter to emit source location information @emph{once}; that is, in
3168case the message is too long to fit on a single physical line and has to
3169be wrapped, the source location won't be emitted (as prefix) again,
3170over and over, in subsequent continuation lines.  This is the default
3171behavior.
3172
3173@item -fdiagnostics-show-location=every-line
3174Only meaningful in line-wrapping mode.  Instructs the diagnostic
3175messages reporter to emit the same source location information (as
3176prefix) for physical lines that result from the process of breaking
3177a message which is too long to fit on a single line.
3178
3179@item -fdiagnostics-color[=@var{WHEN}]
3180@itemx -fno-diagnostics-color
3181@opindex fdiagnostics-color
3182@cindex highlight, color, colour
3183@vindex GCC_COLORS @r{environment variable}
3184Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
3185or @samp{auto}.  The default depends on how the compiler has been configured,
3186it can be any of the above @var{WHEN} options or also @samp{never}
3187if @env{GCC_COLORS} environment variable isn't present in the environment,
3188and @samp{auto} otherwise.
3189@samp{auto} means to use color only when the standard error is a terminal.
3190The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3191aliases for @option{-fdiagnostics-color=always} and
3192@option{-fdiagnostics-color=never}, respectively.
3193
3194The colors are defined by the environment variable @env{GCC_COLORS}.
3195Its value is a colon-separated list of capabilities and Select Graphic
3196Rendition (SGR) substrings. SGR commands are interpreted by the
3197terminal or terminal emulator.  (See the section in the documentation
3198of your text terminal for permitted values and their meanings as
3199character attributes.)  These substring values are integers in decimal
3200representation and can be concatenated with semicolons.
3201Common values to concatenate include
3202@samp{1} for bold,
3203@samp{4} for underline,
3204@samp{5} for blink,
3205@samp{7} for inverse,
3206@samp{39} for default foreground color,
3207@samp{30} to @samp{37} for foreground colors,
3208@samp{90} to @samp{97} for 16-color mode foreground colors,
3209@samp{38;5;0} to @samp{38;5;255}
3210for 88-color and 256-color modes foreground colors,
3211@samp{49} for default background color,
3212@samp{40} to @samp{47} for background colors,
3213@samp{100} to @samp{107} for 16-color mode background colors,
3214and @samp{48;5;0} to @samp{48;5;255}
3215for 88-color and 256-color modes background colors.
3216
3217The default @env{GCC_COLORS} is
3218@smallexample
3219error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3220@end smallexample
3221@noindent
3222where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3223@samp{01;36} is bold cyan, @samp{01;32} is bold green and
3224@samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3225string disables colors.
3226Supported capabilities are as follows.
3227
3228@table @code
3229@item error=
3230@vindex error GCC_COLORS @r{capability}
3231SGR substring for error: markers.
3232
3233@item warning=
3234@vindex warning GCC_COLORS @r{capability}
3235SGR substring for warning: markers.
3236
3237@item note=
3238@vindex note GCC_COLORS @r{capability}
3239SGR substring for note: markers.
3240
3241@item caret=
3242@vindex caret GCC_COLORS @r{capability}
3243SGR substring for caret line.
3244
3245@item locus=
3246@vindex locus GCC_COLORS @r{capability}
3247SGR substring for location information, @samp{file:line} or
3248@samp{file:line:column} etc.
3249
3250@item quote=
3251@vindex quote GCC_COLORS @r{capability}
3252SGR substring for information printed within quotes.
3253@end table
3254
3255@item -fno-diagnostics-show-option
3256@opindex fno-diagnostics-show-option
3257@opindex fdiagnostics-show-option
3258By default, each diagnostic emitted includes text indicating the
3259command-line option that directly controls the diagnostic (if such an
3260option is known to the diagnostic machinery).  Specifying the
3261@option{-fno-diagnostics-show-option} flag suppresses that behavior.
3262
3263@item -fno-diagnostics-show-caret
3264@opindex fno-diagnostics-show-caret
3265@opindex fdiagnostics-show-caret
3266By default, each diagnostic emitted includes the original source line
3267and a caret '^' indicating the column.  This option suppresses this
3268information.  The source line is truncated to @var{n} characters, if
3269the @option{-fmessage-length=n} option is given.  When the output is done
3270to the terminal, the width is limited to the width given by the
3271@env{COLUMNS} environment variable or, if not set, to the terminal width.
3272
3273@end table
3274
3275@node Warning Options
3276@section Options to Request or Suppress Warnings
3277@cindex options to control warnings
3278@cindex warning messages
3279@cindex messages, warning
3280@cindex suppressing warnings
3281
3282Warnings are diagnostic messages that report constructions that
3283are not inherently erroneous but that are risky or suggest there
3284may have been an error.
3285
3286The following language-independent options do not enable specific
3287warnings but control the kinds of diagnostics produced by GCC@.
3288
3289@table @gcctabopt
3290@cindex syntax checking
3291@item -fsyntax-only
3292@opindex fsyntax-only
3293Check the code for syntax errors, but don't do anything beyond that.
3294
3295@item -fmax-errors=@var{n}
3296@opindex fmax-errors
3297Limits the maximum number of error messages to @var{n}, at which point
3298GCC bails out rather than attempting to continue processing the source
3299code.  If @var{n} is 0 (the default), there is no limit on the number
3300of error messages produced.  If @option{-Wfatal-errors} is also
3301specified, then @option{-Wfatal-errors} takes precedence over this
3302option.
3303
3304@item -w
3305@opindex w
3306Inhibit all warning messages.
3307
3308@item -Werror
3309@opindex Werror
3310@opindex Wno-error
3311Make all warnings into errors.
3312
3313@item -Werror=
3314@opindex Werror=
3315@opindex Wno-error=
3316Make the specified warning into an error.  The specifier for a warning
3317is appended; for example @option{-Werror=switch} turns the warnings
3318controlled by @option{-Wswitch} into errors.  This switch takes a
3319negative form, to be used to negate @option{-Werror} for specific
3320warnings; for example @option{-Wno-error=switch} makes
3321@option{-Wswitch} warnings not be errors, even when @option{-Werror}
3322is in effect.
3323
3324The warning message for each controllable warning includes the
3325option that controls the warning.  That option can then be used with
3326@option{-Werror=} and @option{-Wno-error=} as described above.
3327(Printing of the option in the warning message can be disabled using the
3328@option{-fno-diagnostics-show-option} flag.)
3329
3330Note that specifying @option{-Werror=}@var{foo} automatically implies
3331@option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
3332imply anything.
3333
3334@item -Wfatal-errors
3335@opindex Wfatal-errors
3336@opindex Wno-fatal-errors
3337This option causes the compiler to abort compilation on the first error
3338occurred rather than trying to keep going and printing further error
3339messages.
3340
3341@end table
3342
3343You can request many specific warnings with options beginning with
3344@samp{-W}, for example @option{-Wimplicit} to request warnings on
3345implicit declarations.  Each of these specific warning options also
3346has a negative form beginning @samp{-Wno-} to turn off warnings; for
3347example, @option{-Wno-implicit}.  This manual lists only one of the
3348two forms, whichever is not the default.  For further
3349language-specific options also refer to @ref{C++ Dialect Options} and
3350@ref{Objective-C and Objective-C++ Dialect Options}.
3351
3352Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3353options, such as @option{-Wunused}, which may turn on further options,
3354such as @option{-Wunused-value}. The combined effect of positive and
3355negative forms is that more specific options have priority over less
3356specific ones, independently of their position in the command-line. For
3357options of the same specificity, the last one takes effect. Options
3358enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3359as if they appeared at the end of the command-line.
3360
3361When an unrecognized warning option is requested (e.g.,
3362@option{-Wunknown-warning}), GCC emits a diagnostic stating
3363that the option is not recognized.  However, if the @option{-Wno-} form
3364is used, the behavior is slightly different: no diagnostic is
3365produced for @option{-Wno-unknown-warning} unless other diagnostics
3366are being produced.  This allows the use of new @option{-Wno-} options
3367with old compilers, but if something goes wrong, the compiler
3368warns that an unrecognized option is present.
3369
3370@table @gcctabopt
3371@item -Wpedantic
3372@itemx -pedantic
3373@opindex pedantic
3374@opindex Wpedantic
3375Issue all the warnings demanded by strict ISO C and ISO C++;
3376reject all programs that use forbidden extensions, and some other
3377programs that do not follow ISO C and ISO C++.  For ISO C, follows the
3378version of the ISO C standard specified by any @option{-std} option used.
3379
3380Valid ISO C and ISO C++ programs should compile properly with or without
3381this option (though a rare few require @option{-ansi} or a
3382@option{-std} option specifying the required version of ISO C)@.  However,
3383without this option, certain GNU extensions and traditional C and C++
3384features are supported as well.  With this option, they are rejected.
3385
3386@option{-Wpedantic} does not cause warning messages for use of the
3387alternate keywords whose names begin and end with @samp{__}.  Pedantic
3388warnings are also disabled in the expression that follows
3389@code{__extension__}.  However, only system header files should use
3390these escape routes; application programs should avoid them.
3391@xref{Alternate Keywords}.
3392
3393Some users try to use @option{-Wpedantic} to check programs for strict ISO
3394C conformance.  They soon find that it does not do quite what they want:
3395it finds some non-ISO practices, but not all---only those for which
3396ISO C @emph{requires} a diagnostic, and some others for which
3397diagnostics have been added.
3398
3399A feature to report any failure to conform to ISO C might be useful in
3400some instances, but would require considerable additional work and would
3401be quite different from @option{-Wpedantic}.  We don't have plans to
3402support such a feature in the near future.
3403
3404Where the standard specified with @option{-std} represents a GNU
3405extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3406corresponding @dfn{base standard}, the version of ISO C on which the GNU
3407extended dialect is based.  Warnings from @option{-Wpedantic} are given
3408where they are required by the base standard.  (It does not make sense
3409for such warnings to be given only for features not in the specified GNU
3410C dialect, since by definition the GNU dialects of C include all
3411features the compiler supports with the given option, and there would be
3412nothing to warn about.)
3413
3414@item -pedantic-errors
3415@opindex pedantic-errors
3416Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3417requires a diagnostic, in some cases where there is undefined behavior
3418at compile-time and in some other cases that do not prevent compilation
3419of programs that are valid according to the standard. This is not
3420equivalent to @option{-Werror=pedantic}, since there are errors enabled
3421by this option and not enabled by the latter and vice versa.
3422
3423@item -Wall
3424@opindex Wall
3425@opindex Wno-all
3426This enables all the warnings about constructions that some users
3427consider questionable, and that are easy to avoid (or modify to
3428prevent the warning), even in conjunction with macros.  This also
3429enables some language-specific warnings described in @ref{C++ Dialect
3430Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3431
3432@option{-Wall} turns on the following warning flags:
3433
3434@gccoptlist{-Waddress   @gol
3435-Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
3436-Wc++11-compat  -Wc++14-compat@gol
3437-Wchar-subscripts  @gol
3438-Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3439-Wimplicit-int @r{(C and Objective-C only)} @gol
3440-Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3441-Wcomment  @gol
3442-Wformat   @gol
3443-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
3444-Wmaybe-uninitialized @gol
3445-Wmissing-braces @r{(only for C/ObjC)} @gol
3446-Wnonnull  @gol
3447-Wopenmp-simd @gol
3448-Wparentheses  @gol
3449-Wpointer-sign  @gol
3450-Wreorder   @gol
3451-Wreturn-type  @gol
3452-Wsequence-point  @gol
3453-Wsign-compare @r{(only in C++)}  @gol
3454-Wstrict-aliasing  @gol
3455-Wstrict-overflow=1  @gol
3456-Wswitch  @gol
3457-Wtrigraphs  @gol
3458-Wuninitialized  @gol
3459-Wunknown-pragmas  @gol
3460-Wunused-function  @gol
3461-Wunused-label     @gol
3462-Wunused-value     @gol
3463-Wunused-variable  @gol
3464-Wvolatile-register-var @gol
3465}
3466
3467Note that some warning flags are not implied by @option{-Wall}.  Some of
3468them warn about constructions that users generally do not consider
3469questionable, but which occasionally you might wish to check for;
3470others warn about constructions that are necessary or hard to avoid in
3471some cases, and there is no simple way to modify the code to suppress
3472the warning. Some of them are enabled by @option{-Wextra} but many of
3473them must be enabled individually.
3474
3475@item -Wextra
3476@opindex W
3477@opindex Wextra
3478@opindex Wno-extra
3479This enables some extra warning flags that are not enabled by
3480@option{-Wall}. (This option used to be called @option{-W}.  The older
3481name is still supported, but the newer name is more descriptive.)
3482
3483@gccoptlist{-Wclobbered  @gol
3484-Wempty-body  @gol
3485-Wignored-qualifiers @gol
3486-Wmissing-field-initializers  @gol
3487-Wmissing-parameter-type @r{(C only)}  @gol
3488-Wold-style-declaration @r{(C only)}  @gol
3489-Woverride-init  @gol
3490-Wsign-compare  @gol
3491-Wtype-limits  @gol
3492-Wuninitialized  @gol
3493-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3494-Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}  @gol
3495}
3496
3497The option @option{-Wextra} also prints warning messages for the
3498following cases:
3499
3500@itemize @bullet
3501
3502@item
3503A pointer is compared against integer zero with @code{<}, @code{<=},
3504@code{>}, or @code{>=}.
3505
3506@item
3507(C++ only) An enumerator and a non-enumerator both appear in a
3508conditional expression.
3509
3510@item
3511(C++ only) Ambiguous virtual bases.
3512
3513@item
3514(C++ only) Subscripting an array that has been declared @code{register}.
3515
3516@item
3517(C++ only) Taking the address of a variable that has been declared
3518@code{register}.
3519
3520@item
3521(C++ only) A base class is not initialized in a derived class's copy
3522constructor.
3523
3524@end itemize
3525
3526@item -Wchar-subscripts
3527@opindex Wchar-subscripts
3528@opindex Wno-char-subscripts
3529Warn if an array subscript has type @code{char}.  This is a common cause
3530of error, as programmers often forget that this type is signed on some
3531machines.
3532This warning is enabled by @option{-Wall}.
3533
3534@item -Wcomment
3535@opindex Wcomment
3536@opindex Wno-comment
3537Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3538comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3539This warning is enabled by @option{-Wall}.
3540
3541@item -Wno-coverage-mismatch
3542@opindex Wno-coverage-mismatch
3543Warn if feedback profiles do not match when using the
3544@option{-fprofile-use} option.
3545If a source file is changed between compiling with @option{-fprofile-gen} and
3546with @option{-fprofile-use}, the files with the profile feedback can fail
3547to match the source file and GCC cannot use the profile feedback
3548information.  By default, this warning is enabled and is treated as an
3549error.  @option{-Wno-coverage-mismatch} can be used to disable the
3550warning or @option{-Wno-error=coverage-mismatch} can be used to
3551disable the error.  Disabling the error for this warning can result in
3552poorly optimized code and is useful only in the
3553case of very minor changes such as bug fixes to an existing code-base.
3554Completely disabling the warning is not recommended.
3555
3556@item -Wno-cpp
3557@r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3558
3559Suppress warning messages emitted by @code{#warning} directives.
3560
3561@item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3562@opindex Wdouble-promotion
3563@opindex Wno-double-promotion
3564Give a warning when a value of type @code{float} is implicitly
3565promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
3566floating-point unit implement @code{float} in hardware, but emulate
3567@code{double} in software.  On such a machine, doing computations
3568using @code{double} values is much more expensive because of the
3569overhead required for software emulation.
3570
3571It is easy to accidentally do computations with @code{double} because
3572floating-point literals are implicitly of type @code{double}.  For
3573example, in:
3574@smallexample
3575@group
3576float area(float radius)
3577@{
3578   return 3.14159 * radius * radius;
3579@}
3580@end group
3581@end smallexample
3582the compiler performs the entire computation with @code{double}
3583because the floating-point literal is a @code{double}.
3584
3585@item -Wformat
3586@itemx -Wformat=@var{n}
3587@opindex Wformat
3588@opindex Wno-format
3589@opindex ffreestanding
3590@opindex fno-builtin
3591@opindex Wformat=
3592Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3593the arguments supplied have types appropriate to the format string
3594specified, and that the conversions specified in the format string make
3595sense.  This includes standard functions, and others specified by format
3596attributes (@pxref{Function Attributes}), in the @code{printf},
3597@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3598not in the C standard) families (or other target-specific families).
3599Which functions are checked without format attributes having been
3600specified depends on the standard version selected, and such checks of
3601functions without the attribute specified are disabled by
3602@option{-ffreestanding} or @option{-fno-builtin}.
3603
3604The formats are checked against the format features supported by GNU
3605libc version 2.2.  These include all ISO C90 and C99 features, as well
3606as features from the Single Unix Specification and some BSD and GNU
3607extensions.  Other library implementations may not support all these
3608features; GCC does not support warning about features that go beyond a
3609particular library's limitations.  However, if @option{-Wpedantic} is used
3610with @option{-Wformat}, warnings are given about format features not
3611in the selected standard version (but not for @code{strfmon} formats,
3612since those are not in any version of the C standard).  @xref{C Dialect
3613Options,,Options Controlling C Dialect}.
3614
3615@table @gcctabopt
3616@item -Wformat=1
3617@itemx -Wformat
3618@opindex Wformat
3619@opindex Wformat=1
3620Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3621@option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
3622@option{-Wformat} also checks for null format arguments for several
3623functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
3624aspects of this level of format checking can be disabled by the
3625options: @option{-Wno-format-contains-nul},
3626@option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3627@option{-Wformat} is enabled by @option{-Wall}.
3628
3629@item -Wno-format-contains-nul
3630@opindex Wno-format-contains-nul
3631@opindex Wformat-contains-nul
3632If @option{-Wformat} is specified, do not warn about format strings that
3633contain NUL bytes.
3634
3635@item -Wno-format-extra-args
3636@opindex Wno-format-extra-args
3637@opindex Wformat-extra-args
3638If @option{-Wformat} is specified, do not warn about excess arguments to a
3639@code{printf} or @code{scanf} format function.  The C standard specifies
3640that such arguments are ignored.
3641
3642Where the unused arguments lie between used arguments that are
3643specified with @samp{$} operand number specifications, normally
3644warnings are still given, since the implementation could not know what
3645type to pass to @code{va_arg} to skip the unused arguments.  However,
3646in the case of @code{scanf} formats, this option suppresses the
3647warning if the unused arguments are all pointers, since the Single
3648Unix Specification says that such unused arguments are allowed.
3649
3650@item -Wno-format-zero-length
3651@opindex Wno-format-zero-length
3652@opindex Wformat-zero-length
3653If @option{-Wformat} is specified, do not warn about zero-length formats.
3654The C standard specifies that zero-length formats are allowed.
3655
3656
3657@item -Wformat=2
3658@opindex Wformat=2
3659Enable @option{-Wformat} plus additional format checks.  Currently
3660equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3661-Wformat-y2k}.
3662
3663@item -Wformat-nonliteral
3664@opindex Wformat-nonliteral
3665@opindex Wno-format-nonliteral
3666If @option{-Wformat} is specified, also warn if the format string is not a
3667string literal and so cannot be checked, unless the format function
3668takes its format arguments as a @code{va_list}.
3669
3670@item -Wformat-security
3671@opindex Wformat-security
3672@opindex Wno-format-security
3673If @option{-Wformat} is specified, also warn about uses of format
3674functions that represent possible security problems.  At present, this
3675warns about calls to @code{printf} and @code{scanf} functions where the
3676format string is not a string literal and there are no format arguments,
3677as in @code{printf (foo);}.  This may be a security hole if the format
3678string came from untrusted input and contains @samp{%n}.  (This is
3679currently a subset of what @option{-Wformat-nonliteral} warns about, but
3680in future warnings may be added to @option{-Wformat-security} that are not
3681included in @option{-Wformat-nonliteral}.)
3682
3683@item -Wformat-signedness
3684@opindex Wformat-signedness
3685@opindex Wno-format-signedness
3686If @option{-Wformat} is specified, also warn if the format string
3687requires an unsigned argument and the argument is signed and vice versa.
3688
3689@item -Wformat-y2k
3690@opindex Wformat-y2k
3691@opindex Wno-format-y2k
3692If @option{-Wformat} is specified, also warn about @code{strftime}
3693formats that may yield only a two-digit year.
3694@end table
3695
3696@item -Wnonnull
3697@opindex Wnonnull
3698@opindex Wno-nonnull
3699Warn about passing a null pointer for arguments marked as
3700requiring a non-null value by the @code{nonnull} function attribute.
3701
3702@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
3703can be disabled with the @option{-Wno-nonnull} option.
3704
3705@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3706@opindex Winit-self
3707@opindex Wno-init-self
3708Warn about uninitialized variables that are initialized with themselves.
3709Note this option can only be used with the @option{-Wuninitialized} option.
3710
3711For example, GCC warns about @code{i} being uninitialized in the
3712following snippet only when @option{-Winit-self} has been specified:
3713@smallexample
3714@group
3715int f()
3716@{
3717  int i = i;
3718  return i;
3719@}
3720@end group
3721@end smallexample
3722
3723This warning is enabled by @option{-Wall} in C++.
3724
3725@item -Wimplicit-int @r{(C and Objective-C only)}
3726@opindex Wimplicit-int
3727@opindex Wno-implicit-int
3728Warn when a declaration does not specify a type.
3729This warning is enabled by @option{-Wall}.
3730
3731@item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3732@opindex Wimplicit-function-declaration
3733@opindex Wno-implicit-function-declaration
3734Give a warning whenever a function is used before being declared. In
3735C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3736enabled by default and it is made into an error by
3737@option{-pedantic-errors}. This warning is also enabled by
3738@option{-Wall}.
3739
3740@item -Wimplicit @r{(C and Objective-C only)}
3741@opindex Wimplicit
3742@opindex Wno-implicit
3743Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3744This warning is enabled by @option{-Wall}.
3745
3746@item -Wignored-qualifiers @r{(C and C++ only)}
3747@opindex Wignored-qualifiers
3748@opindex Wno-ignored-qualifiers
3749Warn if the return type of a function has a type qualifier
3750such as @code{const}.  For ISO C such a type qualifier has no effect,
3751since the value returned by a function is not an lvalue.
3752For C++, the warning is only emitted for scalar types or @code{void}.
3753ISO C prohibits qualified @code{void} return types on function
3754definitions, so such return types always receive a warning
3755even without this option.
3756
3757This warning is also enabled by @option{-Wextra}.
3758
3759@item -Wmain
3760@opindex Wmain
3761@opindex Wno-main
3762Warn if the type of @code{main} is suspicious.  @code{main} should be
3763a function with external linkage, returning int, taking either zero
3764arguments, two, or three arguments of appropriate types.  This warning
3765is enabled by default in C++ and is enabled by either @option{-Wall}
3766or @option{-Wpedantic}.
3767
3768@item -Wmissing-braces
3769@opindex Wmissing-braces
3770@opindex Wno-missing-braces
3771Warn if an aggregate or union initializer is not fully bracketed.  In
3772the following example, the initializer for @code{a} is not fully
3773bracketed, but that for @code{b} is fully bracketed.  This warning is
3774enabled by @option{-Wall} in C.
3775
3776@smallexample
3777int a[2][2] = @{ 0, 1, 2, 3 @};
3778int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3779@end smallexample
3780
3781This warning is enabled by @option{-Wall}.
3782
3783@item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3784@opindex Wmissing-include-dirs
3785@opindex Wno-missing-include-dirs
3786Warn if a user-supplied include directory does not exist.
3787
3788@item -Wparentheses
3789@opindex Wparentheses
3790@opindex Wno-parentheses
3791Warn if parentheses are omitted in certain contexts, such
3792as when there is an assignment in a context where a truth value
3793is expected, or when operators are nested whose precedence people
3794often get confused about.
3795
3796Also warn if a comparison like @code{x<=y<=z} appears; this is
3797equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3798interpretation from that of ordinary mathematical notation.
3799
3800Also warn about constructions where there may be confusion to which
3801@code{if} statement an @code{else} branch belongs.  Here is an example of
3802such a case:
3803
3804@smallexample
3805@group
3806@{
3807  if (a)
3808    if (b)
3809      foo ();
3810  else
3811    bar ();
3812@}
3813@end group
3814@end smallexample
3815
3816In C/C++, every @code{else} branch belongs to the innermost possible
3817@code{if} statement, which in this example is @code{if (b)}.  This is
3818often not what the programmer expected, as illustrated in the above
3819example by indentation the programmer chose.  When there is the
3820potential for this confusion, GCC issues a warning when this flag
3821is specified.  To eliminate the warning, add explicit braces around
3822the innermost @code{if} statement so there is no way the @code{else}
3823can belong to the enclosing @code{if}.  The resulting code
3824looks like this:
3825
3826@smallexample
3827@group
3828@{
3829  if (a)
3830    @{
3831      if (b)
3832        foo ();
3833      else
3834        bar ();
3835    @}
3836@}
3837@end group
3838@end smallexample
3839
3840Also warn for dangerous uses of the GNU extension to
3841@code{?:} with omitted middle operand. When the condition
3842in the @code{?}: operator is a boolean expression, the omitted value is
3843always 1.  Often programmers expect it to be a value computed
3844inside the conditional expression instead.
3845
3846This warning is enabled by @option{-Wall}.
3847
3848@item -Wsequence-point
3849@opindex Wsequence-point
3850@opindex Wno-sequence-point
3851Warn about code that may have undefined semantics because of violations
3852of sequence point rules in the C and C++ standards.
3853
3854The C and C++ standards define the order in which expressions in a C/C++
3855program are evaluated in terms of @dfn{sequence points}, which represent
3856a partial ordering between the execution of parts of the program: those
3857executed before the sequence point, and those executed after it.  These
3858occur after the evaluation of a full expression (one which is not part
3859of a larger expression), after the evaluation of the first operand of a
3860@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3861function is called (but after the evaluation of its arguments and the
3862expression denoting the called function), and in certain other places.
3863Other than as expressed by the sequence point rules, the order of
3864evaluation of subexpressions of an expression is not specified.  All
3865these rules describe only a partial order rather than a total order,
3866since, for example, if two functions are called within one expression
3867with no sequence point between them, the order in which the functions
3868are called is not specified.  However, the standards committee have
3869ruled that function calls do not overlap.
3870
3871It is not specified when between sequence points modifications to the
3872values of objects take effect.  Programs whose behavior depends on this
3873have undefined behavior; the C and C++ standards specify that ``Between
3874the previous and next sequence point an object shall have its stored
3875value modified at most once by the evaluation of an expression.
3876Furthermore, the prior value shall be read only to determine the value
3877to be stored.''.  If a program breaks these rules, the results on any
3878particular implementation are entirely unpredictable.
3879
3880Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
3881= b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
3882diagnosed by this option, and it may give an occasional false positive
3883result, but in general it has been found fairly effective at detecting
3884this sort of problem in programs.
3885
3886The standard is worded confusingly, therefore there is some debate
3887over the precise meaning of the sequence point rules in subtle cases.
3888Links to discussions of the problem, including proposed formal
3889definitions, may be found on the GCC readings page, at
3890@uref{http://gcc.gnu.org/@/readings.html}.
3891
3892This warning is enabled by @option{-Wall} for C and C++.
3893
3894@item -Wno-return-local-addr
3895@opindex Wno-return-local-addr
3896@opindex Wreturn-local-addr
3897Do not warn about returning a pointer (or in C++, a reference) to a
3898variable that goes out of scope after the function returns.
3899
3900@item -Wreturn-type
3901@opindex Wreturn-type
3902@opindex Wno-return-type
3903Warn whenever a function is defined with a return type that defaults
3904to @code{int}.  Also warn about any @code{return} statement with no
3905return value in a function whose return type is not @code{void}
3906(falling off the end of the function body is considered returning
3907without a value), and about a @code{return} statement with an
3908expression in a function whose return type is @code{void}.
3909
3910For C++, a function without return type always produces a diagnostic
3911message, even when @option{-Wno-return-type} is specified.  The only
3912exceptions are @code{main} and functions defined in system headers.
3913
3914This warning is enabled by @option{-Wall}.
3915
3916@item -Wshift-count-negative
3917@opindex Wshift-count-negative
3918@opindex Wno-shift-count-negative
3919Warn if shift count is negative. This warning is enabled by default.
3920
3921@item -Wshift-count-overflow
3922@opindex Wshift-count-overflow
3923@opindex Wno-shift-count-overflow
3924Warn if shift count >= width of type. This warning is enabled by default.
3925
3926@item -Wswitch
3927@opindex Wswitch
3928@opindex Wno-switch
3929Warn whenever a @code{switch} statement has an index of enumerated type
3930and lacks a @code{case} for one or more of the named codes of that
3931enumeration.  (The presence of a @code{default} label prevents this
3932warning.)  @code{case} labels outside the enumeration range also
3933provoke warnings when this option is used (even if there is a
3934@code{default} label).
3935This warning is enabled by @option{-Wall}.
3936
3937@item -Wswitch-default
3938@opindex Wswitch-default
3939@opindex Wno-switch-default
3940Warn whenever a @code{switch} statement does not have a @code{default}
3941case.
3942
3943@item -Wswitch-enum
3944@opindex Wswitch-enum
3945@opindex Wno-switch-enum
3946Warn whenever a @code{switch} statement has an index of enumerated type
3947and lacks a @code{case} for one or more of the named codes of that
3948enumeration.  @code{case} labels outside the enumeration range also
3949provoke warnings when this option is used.  The only difference
3950between @option{-Wswitch} and this option is that this option gives a
3951warning about an omitted enumeration code even if there is a
3952@code{default} label.
3953
3954@item -Wswitch-bool
3955@opindex Wswitch-bool
3956@opindex Wno-switch-bool
3957Warn whenever a @code{switch} statement has an index of boolean type.
3958It is possible to suppress this warning by casting the controlling
3959expression to a type other than @code{bool}.  For example:
3960@smallexample
3961@group
3962switch ((int) (a == 4))
3963  @{
3964  @dots{}
3965  @}
3966@end group
3967@end smallexample
3968This warning is enabled by default for C and C++ programs.
3969
3970@item -Wsync-nand @r{(C and C++ only)}
3971@opindex Wsync-nand
3972@opindex Wno-sync-nand
3973Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
3974built-in functions are used.  These functions changed semantics in GCC 4.4.
3975
3976@item -Wtrigraphs
3977@opindex Wtrigraphs
3978@opindex Wno-trigraphs
3979Warn if any trigraphs are encountered that might change the meaning of
3980the program (trigraphs within comments are not warned about).
3981This warning is enabled by @option{-Wall}.
3982
3983@item -Wunused-but-set-parameter
3984@opindex Wunused-but-set-parameter
3985@opindex Wno-unused-but-set-parameter
3986Warn whenever a function parameter is assigned to, but otherwise unused
3987(aside from its declaration).
3988
3989To suppress this warning use the @code{unused} attribute
3990(@pxref{Variable Attributes}).
3991
3992This warning is also enabled by @option{-Wunused} together with
3993@option{-Wextra}.
3994
3995@item -Wunused-but-set-variable
3996@opindex Wunused-but-set-variable
3997@opindex Wno-unused-but-set-variable
3998Warn whenever a local variable is assigned to, but otherwise unused
3999(aside from its declaration).
4000This warning is enabled by @option{-Wall}.
4001
4002To suppress this warning use the @code{unused} attribute
4003(@pxref{Variable Attributes}).
4004
4005This warning is also enabled by @option{-Wunused}, which is enabled
4006by @option{-Wall}.
4007
4008@item -Wunused-function
4009@opindex Wunused-function
4010@opindex Wno-unused-function
4011Warn whenever a static function is declared but not defined or a
4012non-inline static function is unused.
4013This warning is enabled by @option{-Wall}.
4014
4015@item -Wunused-label
4016@opindex Wunused-label
4017@opindex Wno-unused-label
4018Warn whenever a label is declared but not used.
4019This warning is enabled by @option{-Wall}.
4020
4021To suppress this warning use the @code{unused} attribute
4022(@pxref{Variable Attributes}).
4023
4024@item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4025@opindex Wunused-local-typedefs
4026Warn when a typedef locally defined in a function is not used.
4027This warning is enabled by @option{-Wall}.
4028
4029@item -Wunused-parameter
4030@opindex Wunused-parameter
4031@opindex Wno-unused-parameter
4032Warn whenever a function parameter is unused aside from its declaration.
4033
4034To suppress this warning use the @code{unused} attribute
4035(@pxref{Variable Attributes}).
4036
4037@item -Wno-unused-result
4038@opindex Wunused-result
4039@opindex Wno-unused-result
4040Do not warn if a caller of a function marked with attribute
4041@code{warn_unused_result} (@pxref{Function Attributes}) does not use
4042its return value. The default is @option{-Wunused-result}.
4043
4044@item -Wunused-variable
4045@opindex Wunused-variable
4046@opindex Wno-unused-variable
4047Warn whenever a local variable or non-constant static variable is unused
4048aside from its declaration.
4049This warning is enabled by @option{-Wall}.
4050
4051To suppress this warning use the @code{unused} attribute
4052(@pxref{Variable Attributes}).
4053
4054@item -Wunused-value
4055@opindex Wunused-value
4056@opindex Wno-unused-value
4057Warn whenever a statement computes a result that is explicitly not
4058used. To suppress this warning cast the unused expression to
4059@code{void}. This includes an expression-statement or the left-hand
4060side of a comma expression that contains no side effects. For example,
4061an expression such as @code{x[i,j]} causes a warning, while
4062@code{x[(void)i,j]} does not.
4063
4064This warning is enabled by @option{-Wall}.
4065
4066@item -Wunused
4067@opindex Wunused
4068@opindex Wno-unused
4069All the above @option{-Wunused} options combined.
4070
4071In order to get a warning about an unused function parameter, you must
4072either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4073@option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4074
4075@item -Wuninitialized
4076@opindex Wuninitialized
4077@opindex Wno-uninitialized
4078Warn if an automatic variable is used without first being initialized
4079or if a variable may be clobbered by a @code{setjmp} call. In C++,
4080warn if a non-static reference or non-static @code{const} member
4081appears in a class without constructors.
4082
4083If you want to warn about code that uses the uninitialized value of the
4084variable in its own initializer, use the @option{-Winit-self} option.
4085
4086These warnings occur for individual uninitialized or clobbered
4087elements of structure, union or array variables as well as for
4088variables that are uninitialized or clobbered as a whole.  They do
4089not occur for variables or elements declared @code{volatile}.  Because
4090these warnings depend on optimization, the exact variables or elements
4091for which there are warnings depends on the precise optimization
4092options and version of GCC used.
4093
4094Note that there may be no warning about a variable that is used only
4095to compute a value that itself is never used, because such
4096computations may be deleted by data flow analysis before the warnings
4097are printed.
4098
4099@item -Wmaybe-uninitialized
4100@opindex Wmaybe-uninitialized
4101@opindex Wno-maybe-uninitialized
4102For an automatic variable, if there exists a path from the function
4103entry to a use of the variable that is initialized, but there exist
4104some other paths for which the variable is not initialized, the compiler
4105emits a warning if it cannot prove the uninitialized paths are not
4106executed at run time. These warnings are made optional because GCC is
4107not smart enough to see all the reasons why the code might be correct
4108in spite of appearing to have an error.  Here is one example of how
4109this can happen:
4110
4111@smallexample
4112@group
4113@{
4114  int x;
4115  switch (y)
4116    @{
4117    case 1: x = 1;
4118      break;
4119    case 2: x = 4;
4120      break;
4121    case 3: x = 5;
4122    @}
4123  foo (x);
4124@}
4125@end group
4126@end smallexample
4127
4128@noindent
4129If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4130always initialized, but GCC doesn't know this. To suppress the
4131warning, you need to provide a default case with assert(0) or
4132similar code.
4133
4134@cindex @code{longjmp} warnings
4135This option also warns when a non-volatile automatic variable might be
4136changed by a call to @code{longjmp}.  These warnings as well are possible
4137only in optimizing compilation.
4138
4139The compiler sees only the calls to @code{setjmp}.  It cannot know
4140where @code{longjmp} will be called; in fact, a signal handler could
4141call it at any point in the code.  As a result, you may get a warning
4142even when there is in fact no problem because @code{longjmp} cannot
4143in fact be called at the place that would cause a problem.
4144
4145Some spurious warnings can be avoided if you declare all the functions
4146you use that never return as @code{noreturn}.  @xref{Function
4147Attributes}.
4148
4149This warning is enabled by @option{-Wall} or @option{-Wextra}.
4150
4151@item -Wunknown-pragmas
4152@opindex Wunknown-pragmas
4153@opindex Wno-unknown-pragmas
4154@cindex warning for unknown pragmas
4155@cindex unknown pragmas, warning
4156@cindex pragmas, warning of unknown
4157Warn when a @code{#pragma} directive is encountered that is not understood by 
4158GCC@.  If this command-line option is used, warnings are even issued
4159for unknown pragmas in system header files.  This is not the case if
4160the warnings are only enabled by the @option{-Wall} command-line option.
4161
4162@item -Wno-pragmas
4163@opindex Wno-pragmas
4164@opindex Wpragmas
4165Do not warn about misuses of pragmas, such as incorrect parameters,
4166invalid syntax, or conflicts between pragmas.  See also
4167@option{-Wunknown-pragmas}.
4168
4169@item -Wstrict-aliasing
4170@opindex Wstrict-aliasing
4171@opindex Wno-strict-aliasing
4172This option is only active when @option{-fstrict-aliasing} is active.
4173It warns about code that might break the strict aliasing rules that the
4174compiler is using for optimization.  The warning does not catch all
4175cases, but does attempt to catch the more common pitfalls.  It is
4176included in @option{-Wall}.
4177It is equivalent to @option{-Wstrict-aliasing=3}
4178
4179@item -Wstrict-aliasing=n
4180@opindex Wstrict-aliasing=n
4181This option is only active when @option{-fstrict-aliasing} is active.
4182It warns about code that might break the strict aliasing rules that the
4183compiler is using for optimization.
4184Higher levels correspond to higher accuracy (fewer false positives).
4185Higher levels also correspond to more effort, similar to the way @option{-O} 
4186works.
4187@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4188
4189Level 1: Most aggressive, quick, least accurate.
4190Possibly useful when higher levels
4191do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4192false negatives.  However, it has many false positives.
4193Warns for all pointer conversions between possibly incompatible types,
4194even if never dereferenced.  Runs in the front end only.
4195
4196Level 2: Aggressive, quick, not too precise.
4197May still have many false positives (not as many as level 1 though),
4198and few false negatives (but possibly more than level 1).
4199Unlike level 1, it only warns when an address is taken.  Warns about
4200incomplete types.  Runs in the front end only.
4201
4202Level 3 (default for @option{-Wstrict-aliasing}):
4203Should have very few false positives and few false
4204negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
4205Takes care of the common pun+dereference pattern in the front end:
4206@code{*(int*)&some_float}.
4207If optimization is enabled, it also runs in the back end, where it deals
4208with multiple statement cases using flow-sensitive points-to information.
4209Only warns when the converted pointer is dereferenced.
4210Does not warn about incomplete types.
4211
4212@item -Wstrict-overflow
4213@itemx -Wstrict-overflow=@var{n}
4214@opindex Wstrict-overflow
4215@opindex Wno-strict-overflow
4216This option is only active when @option{-fstrict-overflow} is active.
4217It warns about cases where the compiler optimizes based on the
4218assumption that signed overflow does not occur.  Note that it does not
4219warn about all cases where the code might overflow: it only warns
4220about cases where the compiler implements some optimization.  Thus
4221this warning depends on the optimization level.
4222
4223An optimization that assumes that signed overflow does not occur is
4224perfectly safe if the values of the variables involved are such that
4225overflow never does, in fact, occur.  Therefore this warning can
4226easily give a false positive: a warning about code that is not
4227actually a problem.  To help focus on important issues, several
4228warning levels are defined.  No warnings are issued for the use of
4229undefined signed overflow when estimating how many iterations a loop
4230requires, in particular when determining whether a loop will be
4231executed at all.
4232
4233@table @gcctabopt
4234@item -Wstrict-overflow=1
4235Warn about cases that are both questionable and easy to avoid.  For
4236example,  with @option{-fstrict-overflow}, the compiler simplifies
4237@code{x + 1 > x} to @code{1}.  This level of
4238@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4239are not, and must be explicitly requested.
4240
4241@item -Wstrict-overflow=2
4242Also warn about other cases where a comparison is simplified to a
4243constant.  For example: @code{abs (x) >= 0}.  This can only be
4244simplified when @option{-fstrict-overflow} is in effect, because
4245@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4246zero.  @option{-Wstrict-overflow} (with no level) is the same as
4247@option{-Wstrict-overflow=2}.
4248
4249@item -Wstrict-overflow=3
4250Also warn about other cases where a comparison is simplified.  For
4251example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4252
4253@item -Wstrict-overflow=4
4254Also warn about other simplifications not covered by the above cases.
4255For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4256
4257@item -Wstrict-overflow=5
4258Also warn about cases where the compiler reduces the magnitude of a
4259constant involved in a comparison.  For example: @code{x + 2 > y} is
4260simplified to @code{x + 1 >= y}.  This is reported only at the
4261highest warning level because this simplification applies to many
4262comparisons, so this warning level gives a very large number of
4263false positives.
4264@end table
4265
4266@item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4267@opindex Wsuggest-attribute=
4268@opindex Wno-suggest-attribute=
4269Warn for cases where adding an attribute may be beneficial. The
4270attributes currently supported are listed below.
4271
4272@table @gcctabopt
4273@item -Wsuggest-attribute=pure
4274@itemx -Wsuggest-attribute=const
4275@itemx -Wsuggest-attribute=noreturn
4276@opindex Wsuggest-attribute=pure
4277@opindex Wno-suggest-attribute=pure
4278@opindex Wsuggest-attribute=const
4279@opindex Wno-suggest-attribute=const
4280@opindex Wsuggest-attribute=noreturn
4281@opindex Wno-suggest-attribute=noreturn
4282
4283Warn about functions that might be candidates for attributes
4284@code{pure}, @code{const} or @code{noreturn}.  The compiler only warns for
4285functions visible in other compilation units or (in the case of @code{pure} and
4286@code{const}) if it cannot prove that the function returns normally. A function
4287returns normally if it doesn't contain an infinite loop or return abnormally
4288by throwing, calling @code{abort} or trapping.  This analysis requires option
4289@option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4290higher.  Higher optimization levels improve the accuracy of the analysis.
4291
4292@item -Wsuggest-attribute=format
4293@itemx -Wmissing-format-attribute
4294@opindex Wsuggest-attribute=format
4295@opindex Wmissing-format-attribute
4296@opindex Wno-suggest-attribute=format
4297@opindex Wno-missing-format-attribute
4298@opindex Wformat
4299@opindex Wno-format
4300
4301Warn about function pointers that might be candidates for @code{format}
4302attributes.  Note these are only possible candidates, not absolute ones.
4303GCC guesses that function pointers with @code{format} attributes that
4304are used in assignment, initialization, parameter passing or return
4305statements should have a corresponding @code{format} attribute in the
4306resulting type.  I.e.@: the left-hand side of the assignment or
4307initialization, the type of the parameter variable, or the return type
4308of the containing function respectively should also have a @code{format}
4309attribute to avoid the warning.
4310
4311GCC also warns about function definitions that might be
4312candidates for @code{format} attributes.  Again, these are only
4313possible candidates.  GCC guesses that @code{format} attributes
4314might be appropriate for any function that calls a function like
4315@code{vprintf} or @code{vscanf}, but this might not always be the
4316case, and some functions for which @code{format} attributes are
4317appropriate may not be detected.
4318@end table
4319
4320@item -Wsuggest-final-types
4321@opindex Wno-suggest-final-types
4322@opindex Wsuggest-final-types
4323Warn about types with virtual methods where code quality would be improved
4324if the type were declared with the C++11 @code{final} specifier, 
4325or, if possible,
4326declared in an anonymous namespace. This allows GCC to more aggressively
4327devirtualize the polymorphic calls. This warning is more effective with link
4328time optimization, where the information about the class hierarchy graph is
4329more complete.
4330
4331@item -Wsuggest-final-methods
4332@opindex Wno-suggest-final-methods
4333@opindex Wsuggest-final-methods
4334Warn about virtual methods where code quality would be improved if the method
4335were declared with the C++11 @code{final} specifier, 
4336or, if possible, its type were
4337declared in an anonymous namespace or with the @code{final} specifier.
4338This warning is
4339more effective with link time optimization, where the information about the
4340class hierarchy graph is more complete. It is recommended to first consider
4341suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4342annotations.
4343
4344@item -Wsuggest-override
4345Warn about overriding virtual functions that are not marked with the override
4346keyword.
4347
4348@item -Warray-bounds
4349@itemx -Warray-bounds=@var{n}
4350@opindex Wno-array-bounds
4351@opindex Warray-bounds
4352This option is only active when @option{-ftree-vrp} is active
4353(default for @option{-O2} and above). It warns about subscripts to arrays
4354that are always out of bounds. This warning is enabled by @option{-Wall}.
4355
4356@table @gcctabopt
4357@item -Warray-bounds=1
4358This is the warning level of @option{-Warray-bounds} and is enabled
4359by @option{-Wall}; higher levels are not, and must be explicitly requested.
4360
4361@item -Warray-bounds=2
4362This warning level also warns about out of bounds access for
4363arrays at the end of a struct and for arrays accessed through
4364pointers. This warning level may give a larger number of
4365false positives and is deactivated by default.
4366@end table
4367
4368
4369@item -Wbool-compare
4370@opindex Wno-bool-compare
4371@opindex Wbool-compare
4372Warn about boolean expression compared with an integer value different from
4373@code{true}/@code{false}.  For instance, the following comparison is
4374always false:
4375@smallexample
4376int n = 5;
4377@dots{}
4378if ((n > 1) == 2) @{ @dots{} @}
4379@end smallexample
4380This warning is enabled by @option{-Wall}.
4381
4382@item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4383@opindex Wno-discarded-qualifiers
4384@opindex Wdiscarded-qualifiers
4385Do not warn if type qualifiers on pointers are being discarded.
4386Typically, the compiler warns if a @code{const char *} variable is
4387passed to a function that takes a @code{char *} parameter.  This option
4388can be used to suppress such a warning.
4389
4390@item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4391@opindex Wno-discarded-array-qualifiers
4392@opindex Wdiscarded-array-qualifiers
4393Do not warn if type qualifiers on arrays which are pointer targets
4394are being discarded. Typically, the compiler warns if a
4395@code{const int (*)[]} variable is passed to a function that
4396takes a @code{int (*)[]} parameter.  This option can be used to
4397suppress such a warning.
4398
4399@item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4400@opindex Wno-incompatible-pointer-types
4401@opindex Wincompatible-pointer-types
4402Do not warn when there is a conversion between pointers that have incompatible
4403types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
4404which warns for pointer argument passing or assignment with different
4405signedness.
4406
4407@item -Wno-int-conversion @r{(C and Objective-C only)}
4408@opindex Wno-int-conversion
4409@opindex Wint-conversion
4410Do not warn about incompatible integer to pointer and pointer to integer
4411conversions.  This warning is about implicit conversions; for explicit
4412conversions the warnings @option{-Wno-int-to-pointer-cast} and
4413@option{-Wno-pointer-to-int-cast} may be used.
4414
4415@item -Wno-div-by-zero
4416@opindex Wno-div-by-zero
4417@opindex Wdiv-by-zero
4418Do not warn about compile-time integer division by zero.  Floating-point
4419division by zero is not warned about, as it can be a legitimate way of
4420obtaining infinities and NaNs.
4421
4422@item -Wsystem-headers
4423@opindex Wsystem-headers
4424@opindex Wno-system-headers
4425@cindex warnings from system headers
4426@cindex system headers, warnings from
4427Print warning messages for constructs found in system header files.
4428Warnings from system headers are normally suppressed, on the assumption
4429that they usually do not indicate real problems and would only make the
4430compiler output harder to read.  Using this command-line option tells
4431GCC to emit warnings from system headers as if they occurred in user
4432code.  However, note that using @option{-Wall} in conjunction with this
4433option does @emph{not} warn about unknown pragmas in system
4434headers---for that, @option{-Wunknown-pragmas} must also be used.
4435
4436@item -Wtrampolines
4437@opindex Wtrampolines
4438@opindex Wno-trampolines
4439Warn about trampolines generated for pointers to nested functions.
4440A trampoline is a small piece of data or code that is created at run
4441time on the stack when the address of a nested function is taken, and is
4442used to call the nested function indirectly.  For some targets, it is
4443made up of data only and thus requires no special treatment.  But, for
4444most targets, it is made up of code and thus requires the stack to be
4445made executable in order for the program to work properly.
4446
4447@item -Wfloat-equal
4448@opindex Wfloat-equal
4449@opindex Wno-float-equal
4450Warn if floating-point values are used in equality comparisons.
4451
4452The idea behind this is that sometimes it is convenient (for the
4453programmer) to consider floating-point values as approximations to
4454infinitely precise real numbers.  If you are doing this, then you need
4455to compute (by analyzing the code, or in some other way) the maximum or
4456likely maximum error that the computation introduces, and allow for it
4457when performing comparisons (and when producing output, but that's a
4458different problem).  In particular, instead of testing for equality, you
4459should check to see whether the two values have ranges that overlap; and
4460this is done with the relational operators, so equality comparisons are
4461probably mistaken.
4462
4463@item -Wtraditional @r{(C and Objective-C only)}
4464@opindex Wtraditional
4465@opindex Wno-traditional
4466Warn about certain constructs that behave differently in traditional and
4467ISO C@.  Also warn about ISO C constructs that have no traditional C
4468equivalent, and/or problematic constructs that should be avoided.
4469
4470@itemize @bullet
4471@item
4472Macro parameters that appear within string literals in the macro body.
4473In traditional C macro replacement takes place within string literals,
4474but in ISO C it does not.
4475
4476@item
4477In traditional C, some preprocessor directives did not exist.
4478Traditional preprocessors only considered a line to be a directive
4479if the @samp{#} appeared in column 1 on the line.  Therefore
4480@option{-Wtraditional} warns about directives that traditional C
4481understands but ignores because the @samp{#} does not appear as the
4482first character on the line.  It also suggests you hide directives like
4483@code{#pragma} not understood by traditional C by indenting them.  Some
4484traditional implementations do not recognize @code{#elif}, so this option
4485suggests avoiding it altogether.
4486
4487@item
4488A function-like macro that appears without arguments.
4489
4490@item
4491The unary plus operator.
4492
4493@item
4494The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4495constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
4496constants.)  Note, these suffixes appear in macros defined in the system
4497headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4498Use of these macros in user code might normally lead to spurious
4499warnings, however GCC's integrated preprocessor has enough context to
4500avoid warning in these cases.
4501
4502@item
4503A function declared external in one block and then used after the end of
4504the block.
4505
4506@item
4507A @code{switch} statement has an operand of type @code{long}.
4508
4509@item
4510A non-@code{static} function declaration follows a @code{static} one.
4511This construct is not accepted by some traditional C compilers.
4512
4513@item
4514The ISO type of an integer constant has a different width or
4515signedness from its traditional type.  This warning is only issued if
4516the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
4517typically represent bit patterns, are not warned about.
4518
4519@item
4520Usage of ISO string concatenation is detected.
4521
4522@item
4523Initialization of automatic aggregates.
4524
4525@item
4526Identifier conflicts with labels.  Traditional C lacks a separate
4527namespace for labels.
4528
4529@item
4530Initialization of unions.  If the initializer is zero, the warning is
4531omitted.  This is done under the assumption that the zero initializer in
4532user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4533initializer warnings and relies on default initialization to zero in the
4534traditional C case.
4535
4536@item
4537Conversions by prototypes between fixed/floating-point values and vice
4538versa.  The absence of these prototypes when compiling with traditional
4539C causes serious problems.  This is a subset of the possible
4540conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4541
4542@item
4543Use of ISO C style function definitions.  This warning intentionally is
4544@emph{not} issued for prototype declarations or variadic functions
4545because these ISO C features appear in your code when using
4546libiberty's traditional C compatibility macros, @code{PARAMS} and
4547@code{VPARAMS}.  This warning is also bypassed for nested functions
4548because that feature is already a GCC extension and thus not relevant to
4549traditional C compatibility.
4550@end itemize
4551
4552@item -Wtraditional-conversion @r{(C and Objective-C only)}
4553@opindex Wtraditional-conversion
4554@opindex Wno-traditional-conversion
4555Warn if a prototype causes a type conversion that is different from what
4556would happen to the same argument in the absence of a prototype.  This
4557includes conversions of fixed point to floating and vice versa, and
4558conversions changing the width or signedness of a fixed-point argument
4559except when the same as the default promotion.
4560
4561@item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4562@opindex Wdeclaration-after-statement
4563@opindex Wno-declaration-after-statement
4564Warn when a declaration is found after a statement in a block.  This
4565construct, known from C++, was introduced with ISO C99 and is by default
4566allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Declarations}.
4567
4568@item -Wundef
4569@opindex Wundef
4570@opindex Wno-undef
4571Warn if an undefined identifier is evaluated in an @code{#if} directive.
4572
4573@item -Wno-endif-labels
4574@opindex Wno-endif-labels
4575@opindex Wendif-labels
4576Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4577
4578@item -Wshadow
4579@opindex Wshadow
4580@opindex Wno-shadow
4581Warn whenever a local variable or type declaration shadows another
4582variable, parameter, type, class member (in C++), or instance variable
4583(in Objective-C) or whenever a built-in function is shadowed. Note
4584that in C++, the compiler warns if a local variable shadows an
4585explicit typedef, but not if it shadows a struct/class/enum.
4586
4587@item -Wno-shadow-ivar @r{(Objective-C only)}
4588@opindex Wno-shadow-ivar
4589@opindex Wshadow-ivar
4590Do not warn whenever a local variable shadows an instance variable in an
4591Objective-C method.
4592
4593@item -Wlarger-than=@var{len}
4594@opindex Wlarger-than=@var{len}
4595@opindex Wlarger-than-@var{len}
4596Warn whenever an object of larger than @var{len} bytes is defined.
4597
4598@item -Wframe-larger-than=@var{len}
4599@opindex Wframe-larger-than
4600Warn if the size of a function frame is larger than @var{len} bytes.
4601The computation done to determine the stack frame size is approximate
4602and not conservative.
4603The actual requirements may be somewhat greater than @var{len}
4604even if you do not get a warning.  In addition, any space allocated
4605via @code{alloca}, variable-length arrays, or related constructs
4606is not included by the compiler when determining
4607whether or not to issue a warning.
4608
4609@item -Wno-free-nonheap-object
4610@opindex Wno-free-nonheap-object
4611@opindex Wfree-nonheap-object
4612Do not warn when attempting to free an object that was not allocated
4613on the heap.
4614
4615@item -Wstack-usage=@var{len}
4616@opindex Wstack-usage
4617Warn if the stack usage of a function might be larger than @var{len} bytes.
4618The computation done to determine the stack usage is conservative.
4619Any space allocated via @code{alloca}, variable-length arrays, or related
4620constructs is included by the compiler when determining whether or not to
4621issue a warning.
4622
4623The message is in keeping with the output of @option{-fstack-usage}.
4624
4625@itemize
4626@item
4627If the stack usage is fully static but exceeds the specified amount, it's:
4628
4629@smallexample
4630  warning: stack usage is 1120 bytes
4631@end smallexample
4632@item
4633If the stack usage is (partly) dynamic but bounded, it's:
4634
4635@smallexample
4636  warning: stack usage might be 1648 bytes
4637@end smallexample
4638@item
4639If the stack usage is (partly) dynamic and not bounded, it's:
4640
4641@smallexample
4642  warning: stack usage might be unbounded
4643@end smallexample
4644@end itemize
4645
4646@item -Wunsafe-loop-optimizations
4647@opindex Wunsafe-loop-optimizations
4648@opindex Wno-unsafe-loop-optimizations
4649Warn if the loop cannot be optimized because the compiler cannot
4650assume anything on the bounds of the loop indices.  With
4651@option{-funsafe-loop-optimizations} warn if the compiler makes
4652such assumptions.
4653
4654@item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4655@opindex Wno-pedantic-ms-format
4656@opindex Wpedantic-ms-format
4657When used in combination with @option{-Wformat}
4658and @option{-pedantic} without GNU extensions, this option
4659disables the warnings about non-ISO @code{printf} / @code{scanf} format
4660width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4661which depend on the MS runtime.
4662
4663@item -Wpointer-arith
4664@opindex Wpointer-arith
4665@opindex Wno-pointer-arith
4666Warn about anything that depends on the ``size of'' a function type or
4667of @code{void}.  GNU C assigns these types a size of 1, for
4668convenience in calculations with @code{void *} pointers and pointers
4669to functions.  In C++, warn also when an arithmetic operation involves
4670@code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
4671
4672@item -Wtype-limits
4673@opindex Wtype-limits
4674@opindex Wno-type-limits
4675Warn if a comparison is always true or always false due to the limited
4676range of the data type, but do not warn for constant expressions.  For
4677example, warn if an unsigned variable is compared against zero with
4678@code{<} or @code{>=}.  This warning is also enabled by
4679@option{-Wextra}.
4680
4681@item -Wbad-function-cast @r{(C and Objective-C only)}
4682@opindex Wbad-function-cast
4683@opindex Wno-bad-function-cast
4684Warn when a function call is cast to a non-matching type.
4685For example, warn if a call to a function returning an integer type 
4686is cast to a pointer type.
4687
4688@item -Wc90-c99-compat @r{(C and Objective-C only)}
4689@opindex Wc90-c99-compat
4690@opindex Wno-c90-c99-compat
4691Warn about features not present in ISO C90, but present in ISO C99.
4692For instance, warn about use of variable length arrays, @code{long long}
4693type, @code{bool} type, compound literals, designated initializers, and so
4694on.  This option is independent of the standards mode.  Warnings are disabled
4695in the expression that follows @code{__extension__}.
4696
4697@item -Wc99-c11-compat @r{(C and Objective-C only)}
4698@opindex Wc99-c11-compat
4699@opindex Wno-c99-c11-compat
4700Warn about features not present in ISO C99, but present in ISO C11.
4701For instance, warn about use of anonymous structures and unions,
4702@code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4703@code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4704and so on.  This option is independent of the standards mode.  Warnings are
4705disabled in the expression that follows @code{__extension__}.
4706
4707@item -Wc++-compat @r{(C and Objective-C only)}
4708@opindex Wc++-compat
4709Warn about ISO C constructs that are outside of the common subset of
4710ISO C and ISO C++, e.g.@: request for implicit conversion from
4711@code{void *} to a pointer to non-@code{void} type.
4712
4713@item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4714@opindex Wc++11-compat
4715Warn about C++ constructs whose meaning differs between ISO C++ 1998
4716and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4717in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
4718enabled by @option{-Wall}.
4719
4720@item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4721@opindex Wc++14-compat
4722Warn about C++ constructs whose meaning differs between ISO C++ 2011
4723and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
4724
4725@item -Wcast-qual
4726@opindex Wcast-qual
4727@opindex Wno-cast-qual
4728Warn whenever a pointer is cast so as to remove a type qualifier from
4729the target type.  For example, warn if a @code{const char *} is cast
4730to an ordinary @code{char *}.
4731
4732Also warn when making a cast that introduces a type qualifier in an
4733unsafe way.  For example, casting @code{char **} to @code{const char **}
4734is unsafe, as in this example:
4735
4736@smallexample
4737  /* p is char ** value.  */
4738  const char **q = (const char **) p;
4739  /* Assignment of readonly string to const char * is OK.  */
4740  *q = "string";
4741  /* Now char** pointer points to read-only memory.  */
4742  **p = 'b';
4743@end smallexample
4744
4745@item -Wcast-align
4746@opindex Wcast-align
4747@opindex Wno-cast-align
4748Warn whenever a pointer is cast such that the required alignment of the
4749target is increased.  For example, warn if a @code{char *} is cast to
4750an @code{int *} on machines where integers can only be accessed at
4751two- or four-byte boundaries.
4752
4753@item -Wwrite-strings
4754@opindex Wwrite-strings
4755@opindex Wno-write-strings
4756When compiling C, give string constants the type @code{const
4757char[@var{length}]} so that copying the address of one into a
4758non-@code{const} @code{char *} pointer produces a warning.  These
4759warnings help you find at compile time code that can try to write
4760into a string constant, but only if you have been very careful about
4761using @code{const} in declarations and prototypes.  Otherwise, it is
4762just a nuisance. This is why we did not make @option{-Wall} request
4763these warnings.
4764
4765When compiling C++, warn about the deprecated conversion from string
4766literals to @code{char *}.  This warning is enabled by default for C++
4767programs.
4768
4769@item -Wclobbered
4770@opindex Wclobbered
4771@opindex Wno-clobbered
4772Warn for variables that might be changed by @code{longjmp} or
4773@code{vfork}.  This warning is also enabled by @option{-Wextra}.
4774
4775@item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4776@opindex Wconditionally-supported
4777@opindex Wno-conditionally-supported
4778Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4779
4780@item -Wconversion
4781@opindex Wconversion
4782@opindex Wno-conversion
4783Warn for implicit conversions that may alter a value. This includes
4784conversions between real and integer, like @code{abs (x)} when
4785@code{x} is @code{double}; conversions between signed and unsigned,
4786like @code{unsigned ui = -1}; and conversions to smaller types, like
4787@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4788((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4789changed by the conversion like in @code{abs (2.0)}.  Warnings about
4790conversions between signed and unsigned integers can be disabled by
4791using @option{-Wno-sign-conversion}.
4792
4793For C++, also warn for confusing overload resolution for user-defined
4794conversions; and conversions that never use a type conversion
4795operator: conversions to @code{void}, the same type, a base class or a
4796reference to them. Warnings about conversions between signed and
4797unsigned integers are disabled by default in C++ unless
4798@option{-Wsign-conversion} is explicitly enabled.
4799
4800@item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4801@opindex Wconversion-null
4802@opindex Wno-conversion-null
4803Do not warn for conversions between @code{NULL} and non-pointer
4804types. @option{-Wconversion-null} is enabled by default.
4805
4806@item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4807@opindex Wzero-as-null-pointer-constant
4808@opindex Wno-zero-as-null-pointer-constant
4809Warn when a literal '0' is used as null pointer constant.  This can
4810be useful to facilitate the conversion to @code{nullptr} in C++11.
4811
4812@item -Wdate-time
4813@opindex Wdate-time
4814@opindex Wno-date-time
4815Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
4816are encountered as they might prevent bit-wise-identical reproducible
4817compilations.
4818
4819@item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
4820@opindex Wdelete-incomplete
4821@opindex Wno-delete-incomplete
4822Warn when deleting a pointer to incomplete type, which may cause
4823undefined behavior at runtime.  This warning is enabled by default.
4824
4825@item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4826@opindex Wuseless-cast
4827@opindex Wno-useless-cast
4828Warn when an expression is casted to its own type.
4829
4830@item -Wempty-body
4831@opindex Wempty-body
4832@opindex Wno-empty-body
4833Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
4834while} statement.  This warning is also enabled by @option{-Wextra}.
4835
4836@item -Wenum-compare
4837@opindex Wenum-compare
4838@opindex Wno-enum-compare
4839Warn about a comparison between values of different enumerated types.
4840In C++ enumeral mismatches in conditional expressions are also
4841diagnosed and the warning is enabled by default.  In C this warning is 
4842enabled by @option{-Wall}.
4843
4844@item -Wjump-misses-init @r{(C, Objective-C only)}
4845@opindex Wjump-misses-init
4846@opindex Wno-jump-misses-init
4847Warn if a @code{goto} statement or a @code{switch} statement jumps
4848forward across the initialization of a variable, or jumps backward to a
4849label after the variable has been initialized.  This only warns about
4850variables that are initialized when they are declared.  This warning is
4851only supported for C and Objective-C; in C++ this sort of branch is an
4852error in any case.
4853
4854@option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
4855can be disabled with the @option{-Wno-jump-misses-init} option.
4856
4857@item -Wsign-compare
4858@opindex Wsign-compare
4859@opindex Wno-sign-compare
4860@cindex warning for comparison of signed and unsigned values
4861@cindex comparison of signed and unsigned values, warning
4862@cindex signed and unsigned values, comparison warning
4863Warn when a comparison between signed and unsigned values could produce
4864an incorrect result when the signed value is converted to unsigned.
4865This warning is also enabled by @option{-Wextra}; to get the other warnings
4866of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
4867
4868@item -Wsign-conversion
4869@opindex Wsign-conversion
4870@opindex Wno-sign-conversion
4871Warn for implicit conversions that may change the sign of an integer
4872value, like assigning a signed integer expression to an unsigned
4873integer variable. An explicit cast silences the warning. In C, this
4874option is enabled also by @option{-Wconversion}.
4875
4876@item -Wfloat-conversion
4877@opindex Wfloat-conversion
4878@opindex Wno-float-conversion
4879Warn for implicit conversions that reduce the precision of a real value.
4880This includes conversions from real to integer, and from higher precision
4881real to lower precision real values.  This option is also enabled by
4882@option{-Wconversion}.
4883
4884@item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4885@opindex Wsized-deallocation
4886@opindex Wno-sized-deallocation
4887Warn about a definition of an unsized deallocation function
4888@smallexample
4889void operator delete (void *) noexcept;
4890void operator delete[] (void *) noexcept;
4891@end smallexample
4892without a definition of the corresponding sized deallocation function
4893@smallexample
4894void operator delete (void *, std::size_t) noexcept;
4895void operator delete[] (void *, std::size_t) noexcept;
4896@end smallexample
4897or vice versa.  Enabled by @option{-Wextra} along with
4898@option{-fsized-deallocation}.
4899
4900@item -Wsizeof-pointer-memaccess
4901@opindex Wsizeof-pointer-memaccess
4902@opindex Wno-sizeof-pointer-memaccess
4903Warn for suspicious length parameters to certain string and memory built-in
4904functions if the argument uses @code{sizeof}.  This warning warns e.g.@:
4905about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
4906but a pointer, and suggests a possible fix, or about
4907@code{memcpy (&foo, ptr, sizeof (&foo));}.  This warning is enabled by
4908@option{-Wall}.
4909
4910@item -Wsizeof-array-argument
4911@opindex Wsizeof-array-argument
4912@opindex Wno-sizeof-array-argument
4913Warn when the @code{sizeof} operator is applied to a parameter that is
4914declared as an array in a function definition.  This warning is enabled by
4915default for C and C++ programs.
4916
4917@item -Wmemset-transposed-args
4918@opindex Wmemset-transposed-args
4919@opindex Wno-memset-transposed-args
4920Warn for suspicious calls to the @code{memset} built-in function, if the
4921second argument is not zero and the third argument is zero.  This warns e.g.@
4922about @code{memset (buf, sizeof buf, 0)} where most probably
4923@code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostics
4924is only emitted if the third argument is literal zero.  If it is some
4925expression that is folded to zero, a cast of zero to some type, etc., 
4926it is far less likely that the user has mistakenly exchanged the arguments 
4927and no warning is emitted.  This warning is enabled by @option{-Wall}.
4928
4929@item -Waddress
4930@opindex Waddress
4931@opindex Wno-address
4932Warn about suspicious uses of memory addresses. These include using
4933the address of a function in a conditional expression, such as
4934@code{void func(void); if (func)}, and comparisons against the memory
4935address of a string literal, such as @code{if (x == "abc")}.  Such
4936uses typically indicate a programmer error: the address of a function
4937always evaluates to true, so their use in a conditional usually
4938indicate that the programmer forgot the parentheses in a function
4939call; and comparisons against string literals result in unspecified
4940behavior and are not portable in C, so they usually indicate that the
4941programmer intended to use @code{strcmp}.  This warning is enabled by
4942@option{-Wall}.
4943
4944@item -Wlogical-op
4945@opindex Wlogical-op
4946@opindex Wno-logical-op
4947Warn about suspicious uses of logical operators in expressions.
4948This includes using logical operators in contexts where a
4949bit-wise operator is likely to be expected.
4950
4951@item -Wlogical-not-parentheses
4952@opindex Wlogical-not-parentheses
4953@opindex Wno-logical-not-parentheses
4954Warn about logical not used on the left hand side operand of a comparison.
4955This option does not warn if the RHS operand is of a boolean type.  Its
4956purpose is to detect suspicious code like the following:
4957@smallexample
4958int a;
4959@dots{}
4960if (!a > 1) @{ @dots{} @}
4961@end smallexample
4962
4963It is possible to suppress the warning by wrapping the LHS into
4964parentheses:
4965@smallexample
4966if ((!a) > 1) @{ @dots{} @}
4967@end smallexample
4968
4969This warning is enabled by @option{-Wall}.
4970
4971@item -Waggregate-return
4972@opindex Waggregate-return
4973@opindex Wno-aggregate-return
4974Warn if any functions that return structures or unions are defined or
4975called.  (In languages where you can return an array, this also elicits
4976a warning.)
4977
4978@item -Wno-aggressive-loop-optimizations
4979@opindex Wno-aggressive-loop-optimizations
4980@opindex Waggressive-loop-optimizations
4981Warn if in a loop with constant number of iterations the compiler detects
4982undefined behavior in some statement during one or more of the iterations.
4983
4984@item -Wno-attributes
4985@opindex Wno-attributes
4986@opindex Wattributes
4987Do not warn if an unexpected @code{__attribute__} is used, such as
4988unrecognized attributes, function attributes applied to variables,
4989etc.  This does not stop errors for incorrect use of supported
4990attributes.
4991
4992@item -Wno-builtin-macro-redefined
4993@opindex Wno-builtin-macro-redefined
4994@opindex Wbuiltin-macro-redefined
4995Do not warn if certain built-in macros are redefined.  This suppresses
4996warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
4997@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
4998
4999@item -Wstrict-prototypes @r{(C and Objective-C only)}
5000@opindex Wstrict-prototypes
5001@opindex Wno-strict-prototypes
5002Warn if a function is declared or defined without specifying the
5003argument types.  (An old-style function definition is permitted without
5004a warning if preceded by a declaration that specifies the argument
5005types.)
5006
5007@item -Wold-style-declaration @r{(C and Objective-C only)}
5008@opindex Wold-style-declaration
5009@opindex Wno-old-style-declaration
5010Warn for obsolescent usages, according to the C Standard, in a
5011declaration. For example, warn if storage-class specifiers like
5012@code{static} are not the first things in a declaration.  This warning
5013is also enabled by @option{-Wextra}.
5014
5015@item -Wold-style-definition @r{(C and Objective-C only)}
5016@opindex Wold-style-definition
5017@opindex Wno-old-style-definition
5018Warn if an old-style function definition is used.  A warning is given
5019even if there is a previous prototype.
5020
5021@item -Wmissing-parameter-type @r{(C and Objective-C only)}
5022@opindex Wmissing-parameter-type
5023@opindex Wno-missing-parameter-type
5024A function parameter is declared without a type specifier in K&R-style
5025functions:
5026
5027@smallexample
5028void foo(bar) @{ @}
5029@end smallexample
5030
5031This warning is also enabled by @option{-Wextra}.
5032
5033@item -Wmissing-prototypes @r{(C and Objective-C only)}
5034@opindex Wmissing-prototypes
5035@opindex Wno-missing-prototypes
5036Warn if a global function is defined without a previous prototype
5037declaration.  This warning is issued even if the definition itself
5038provides a prototype.  Use this option to detect global functions
5039that do not have a matching prototype declaration in a header file.
5040This option is not valid for C++ because all function declarations
5041provide prototypes and a non-matching declaration declares an
5042overload rather than conflict with an earlier declaration.
5043Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5044
5045@item -Wmissing-declarations
5046@opindex Wmissing-declarations
5047@opindex Wno-missing-declarations
5048Warn if a global function is defined without a previous declaration.
5049Do so even if the definition itself provides a prototype.
5050Use this option to detect global functions that are not declared in
5051header files.  In C, no warnings are issued for functions with previous
5052non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5053missing prototypes.  In C++, no warnings are issued for function templates,
5054or for inline functions, or for functions in anonymous namespaces.
5055
5056@item -Wmissing-field-initializers
5057@opindex Wmissing-field-initializers
5058@opindex Wno-missing-field-initializers
5059@opindex W
5060@opindex Wextra
5061@opindex Wno-extra
5062Warn if a structure's initializer has some fields missing.  For
5063example, the following code causes such a warning, because
5064@code{x.h} is implicitly zero:
5065
5066@smallexample
5067struct s @{ int f, g, h; @};
5068struct s x = @{ 3, 4 @};
5069@end smallexample
5070
5071This option does not warn about designated initializers, so the following
5072modification does not trigger a warning:
5073
5074@smallexample
5075struct s @{ int f, g, h; @};
5076struct s x = @{ .f = 3, .g = 4 @};
5077@end smallexample
5078
5079In C++ this option does not warn either about the empty @{ @}
5080initializer, for example:
5081
5082@smallexample
5083struct s @{ int f, g, h; @};
5084s x = @{ @};
5085@end smallexample
5086
5087This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
5088warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5089
5090@item -Wno-multichar
5091@opindex Wno-multichar
5092@opindex Wmultichar
5093Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5094Usually they indicate a typo in the user's code, as they have
5095implementation-defined values, and should not be used in portable code.
5096
5097@item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5098@opindex Wnormalized=
5099@opindex Wnormalized
5100@opindex Wno-normalized
5101@cindex NFC
5102@cindex NFKC
5103@cindex character set, input normalization
5104In ISO C and ISO C++, two identifiers are different if they are
5105different sequences of characters.  However, sometimes when characters
5106outside the basic ASCII character set are used, you can have two
5107different character sequences that look the same.  To avoid confusion,
5108the ISO 10646 standard sets out some @dfn{normalization rules} which
5109when applied ensure that two sequences that look the same are turned into
5110the same sequence.  GCC can warn you if you are using identifiers that
5111have not been normalized; this option controls that warning.
5112
5113There are four levels of warning supported by GCC@.  The default is
5114@option{-Wnormalized=nfc}, which warns about any identifier that is
5115not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
5116recommended form for most uses.  It is equivalent to
5117@option{-Wnormalized}.
5118
5119Unfortunately, there are some characters allowed in identifiers by
5120ISO C and ISO C++ that, when turned into NFC, are not allowed in 
5121identifiers.  That is, there's no way to use these symbols in portable
5122ISO C or C++ and have all your identifiers in NFC@.
5123@option{-Wnormalized=id} suppresses the warning for these characters.
5124It is hoped that future versions of the standards involved will correct
5125this, which is why this option is not the default.
5126
5127You can switch the warning off for all characters by writing
5128@option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
5129only do this if you are using some other normalization scheme (like
5130``D''), because otherwise you can easily create bugs that are
5131literally impossible to see.
5132
5133Some characters in ISO 10646 have distinct meanings but look identical
5134in some fonts or display methodologies, especially once formatting has
5135been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5136LETTER N'', displays just like a regular @code{n} that has been
5137placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
5138normalization scheme to convert all these into a standard form as
5139well, and GCC warns if your code is not in NFKC if you use
5140@option{-Wnormalized=nfkc}.  This warning is comparable to warning
5141about every identifier that contains the letter O because it might be
5142confused with the digit 0, and so is not the default, but may be
5143useful as a local coding convention if the programming environment 
5144cannot be fixed to display these characters distinctly.
5145
5146@item -Wno-deprecated
5147@opindex Wno-deprecated
5148@opindex Wdeprecated
5149Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
5150
5151@item -Wno-deprecated-declarations
5152@opindex Wno-deprecated-declarations
5153@opindex Wdeprecated-declarations
5154Do not warn about uses of functions (@pxref{Function Attributes}),
5155variables (@pxref{Variable Attributes}), and types (@pxref{Type
5156Attributes}) marked as deprecated by using the @code{deprecated}
5157attribute.
5158
5159@item -Wno-overflow
5160@opindex Wno-overflow
5161@opindex Woverflow
5162Do not warn about compile-time overflow in constant expressions.
5163
5164@item -Wno-odr
5165@opindex Wno-odr
5166@opindex Wodr
5167Warn about One Definition Rule violations during link-time optimization.
5168Requires @option{-flto-odr-type-merging} to be enabled.  Enabled by default.
5169
5170@item -Wopenmp-simd
5171@opindex Wopenm-simd
5172Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5173simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
5174option can be used to relax the cost model.
5175
5176@item -Woverride-init @r{(C and Objective-C only)}
5177@opindex Woverride-init
5178@opindex Wno-override-init
5179@opindex W
5180@opindex Wextra
5181@opindex Wno-extra
5182Warn if an initialized field without side effects is overridden when
5183using designated initializers (@pxref{Designated Inits, , Designated
5184Initializers}).
5185
5186This warning is included in @option{-Wextra}.  To get other
5187@option{-Wextra} warnings without this one, use @option{-Wextra
5188-Wno-override-init}.
5189
5190@item -Wpacked
5191@opindex Wpacked
5192@opindex Wno-packed
5193Warn if a structure is given the packed attribute, but the packed
5194attribute has no effect on the layout or size of the structure.
5195Such structures may be mis-aligned for little benefit.  For
5196instance, in this code, the variable @code{f.x} in @code{struct bar}
5197is misaligned even though @code{struct bar} does not itself
5198have the packed attribute:
5199
5200@smallexample
5201@group
5202struct foo @{
5203  int x;
5204  char a, b, c, d;
5205@} __attribute__((packed));
5206struct bar @{
5207  char z;
5208  struct foo f;
5209@};
5210@end group
5211@end smallexample
5212
5213@item -Wpacked-bitfield-compat
5214@opindex Wpacked-bitfield-compat
5215@opindex Wno-packed-bitfield-compat
5216The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5217on bit-fields of type @code{char}.  This has been fixed in GCC 4.4 but
5218the change can lead to differences in the structure layout.  GCC
5219informs you when the offset of such a field has changed in GCC 4.4.
5220For example there is no longer a 4-bit padding between field @code{a}
5221and @code{b} in this structure:
5222
5223@smallexample
5224struct foo
5225@{
5226  char a:4;
5227  char b:8;
5228@} __attribute__ ((packed));
5229@end smallexample
5230
5231This warning is enabled by default.  Use
5232@option{-Wno-packed-bitfield-compat} to disable this warning.
5233
5234@item -Wpadded
5235@opindex Wpadded
5236@opindex Wno-padded
5237Warn if padding is included in a structure, either to align an element
5238of the structure or to align the whole structure.  Sometimes when this
5239happens it is possible to rearrange the fields of the structure to
5240reduce the padding and so make the structure smaller.
5241
5242@item -Wredundant-decls
5243@opindex Wredundant-decls
5244@opindex Wno-redundant-decls
5245Warn if anything is declared more than once in the same scope, even in
5246cases where multiple declaration is valid and changes nothing.
5247
5248@item -Wnested-externs @r{(C and Objective-C only)}
5249@opindex Wnested-externs
5250@opindex Wno-nested-externs
5251Warn if an @code{extern} declaration is encountered within a function.
5252
5253@item -Wno-inherited-variadic-ctor
5254@opindex Winherited-variadic-ctor
5255@opindex Wno-inherited-variadic-ctor
5256Suppress warnings about use of C++11 inheriting constructors when the
5257base class inherited from has a C variadic constructor; the warning is
5258on by default because the ellipsis is not inherited.
5259
5260@item -Winline
5261@opindex Winline
5262@opindex Wno-inline
5263Warn if a function that is declared as inline cannot be inlined.
5264Even with this option, the compiler does not warn about failures to
5265inline functions declared in system headers.
5266
5267The compiler uses a variety of heuristics to determine whether or not
5268to inline a function.  For example, the compiler takes into account
5269the size of the function being inlined and the amount of inlining
5270that has already been done in the current function.  Therefore,
5271seemingly insignificant changes in the source program can cause the
5272warnings produced by @option{-Winline} to appear or disappear.
5273
5274@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5275@opindex Wno-invalid-offsetof
5276@opindex Winvalid-offsetof
5277Suppress warnings from applying the @code{offsetof} macro to a non-POD
5278type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
5279to a non-standard-layout type is undefined.  In existing C++ implementations,
5280however, @code{offsetof} typically gives meaningful results.
5281This flag is for users who are aware that they are
5282writing nonportable code and who have deliberately chosen to ignore the
5283warning about it.
5284
5285The restrictions on @code{offsetof} may be relaxed in a future version
5286of the C++ standard.
5287
5288@item -Wno-int-to-pointer-cast
5289@opindex Wno-int-to-pointer-cast
5290@opindex Wint-to-pointer-cast
5291Suppress warnings from casts to pointer type of an integer of a
5292different size. In C++, casting to a pointer type of smaller size is
5293an error. @option{Wint-to-pointer-cast} is enabled by default.
5294
5295
5296@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5297@opindex Wno-pointer-to-int-cast
5298@opindex Wpointer-to-int-cast
5299Suppress warnings from casts from a pointer to an integer type of a
5300different size.
5301
5302@item -Winvalid-pch
5303@opindex Winvalid-pch
5304@opindex Wno-invalid-pch
5305Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5306the search path but can't be used.
5307
5308@item -Wlong-long
5309@opindex Wlong-long
5310@opindex Wno-long-long
5311Warn if @code{long long} type is used.  This is enabled by either
5312@option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5313modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
5314
5315@item -Wvariadic-macros
5316@opindex Wvariadic-macros
5317@opindex Wno-variadic-macros
5318Warn if variadic macros are used in ISO C90 mode, or if the GNU
5319alternate syntax is used in ISO C99 mode.  This is enabled by either
5320@option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
5321messages, use @option{-Wno-variadic-macros}.
5322
5323@item -Wvarargs
5324@opindex Wvarargs
5325@opindex Wno-varargs
5326Warn upon questionable usage of the macros used to handle variable
5327arguments like @code{va_start}.  This is default.  To inhibit the
5328warning messages, use @option{-Wno-varargs}.
5329
5330@item -Wvector-operation-performance
5331@opindex Wvector-operation-performance
5332@opindex Wno-vector-operation-performance
5333Warn if vector operation is not implemented via SIMD capabilities of the
5334architecture.  Mainly useful for the performance tuning.
5335Vector operation can be implemented @code{piecewise}, which means that the
5336scalar operation is performed on every vector element; 
5337@code{in parallel}, which means that the vector operation is implemented
5338using scalars of wider type, which normally is more performance efficient;
5339and @code{as a single scalar}, which means that vector fits into a
5340scalar type.
5341
5342@item -Wno-virtual-move-assign
5343@opindex Wvirtual-move-assign
5344@opindex Wno-virtual-move-assign
5345Suppress warnings about inheriting from a virtual base with a
5346non-trivial C++11 move assignment operator.  This is dangerous because
5347if the virtual base is reachable along more than one path, it is
5348moved multiple times, which can mean both objects end up in the
5349moved-from state.  If the move assignment operator is written to avoid
5350moving from a moved-from object, this warning can be disabled.
5351
5352@item -Wvla
5353@opindex Wvla
5354@opindex Wno-vla
5355Warn if variable length array is used in the code.
5356@option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5357the variable length array.
5358
5359@item -Wvolatile-register-var
5360@opindex Wvolatile-register-var
5361@opindex Wno-volatile-register-var
5362Warn if a register variable is declared volatile.  The volatile
5363modifier does not inhibit all optimizations that may eliminate reads
5364and/or writes to register variables.  This warning is enabled by
5365@option{-Wall}.
5366
5367@item -Wdisabled-optimization
5368@opindex Wdisabled-optimization
5369@opindex Wno-disabled-optimization
5370Warn if a requested optimization pass is disabled.  This warning does
5371not generally indicate that there is anything wrong with your code; it
5372merely indicates that GCC's optimizers are unable to handle the code
5373effectively.  Often, the problem is that your code is too big or too
5374complex; GCC refuses to optimize programs when the optimization
5375itself is likely to take inordinate amounts of time.
5376
5377@item -Wpointer-sign @r{(C and Objective-C only)}
5378@opindex Wpointer-sign
5379@opindex Wno-pointer-sign
5380Warn for pointer argument passing or assignment with different signedness.
5381This option is only supported for C and Objective-C@.  It is implied by
5382@option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5383@option{-Wno-pointer-sign}.
5384
5385@item -Wstack-protector
5386@opindex Wstack-protector
5387@opindex Wno-stack-protector
5388This option is only active when @option{-fstack-protector} is active.  It
5389warns about functions that are not protected against stack smashing.
5390
5391@item -Woverlength-strings
5392@opindex Woverlength-strings
5393@opindex Wno-overlength-strings
5394Warn about string constants that are longer than the ``minimum
5395maximum'' length specified in the C standard.  Modern compilers
5396generally allow string constants that are much longer than the
5397standard's minimum limit, but very portable programs should avoid
5398using longer strings.
5399
5400The limit applies @emph{after} string constant concatenation, and does
5401not count the trailing NUL@.  In C90, the limit was 509 characters; in
5402C99, it was raised to 4095.  C++98 does not specify a normative
5403minimum maximum, so we do not diagnose overlength strings in C++@.
5404
5405This option is implied by @option{-Wpedantic}, and can be disabled with
5406@option{-Wno-overlength-strings}.
5407
5408@item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5409@opindex Wunsuffixed-float-constants
5410
5411Issue a warning for any floating constant that does not have
5412a suffix.  When used together with @option{-Wsystem-headers} it
5413warns about such constants in system header files.  This can be useful
5414when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5415from the decimal floating-point extension to C99.
5416
5417@item -Wno-designated-init @r{(C and Objective-C only)}
5418Suppress warnings when a positional initializer is used to initialize
5419a structure that has been marked with the @code{designated_init}
5420attribute.
5421
5422@end table
5423
5424@node Debugging Options
5425@section Options for Debugging Your Program or GCC
5426@cindex options, debugging
5427@cindex debugging information options
5428
5429GCC has various special options that are used for debugging
5430either your program or GCC:
5431
5432@table @gcctabopt
5433@item -g
5434@opindex g
5435Produce debugging information in the operating system's native format
5436(stabs, COFF, XCOFF, or DWARF 2)@.  GDB can work with this debugging
5437information.
5438
5439On most systems that use stabs format, @option{-g} enables use of extra
5440debugging information that only GDB can use; this extra information
5441makes debugging work better in GDB but probably makes other debuggers
5442crash or
5443refuse to read the program.  If you want to control for certain whether
5444to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5445@option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5446
5447GCC allows you to use @option{-g} with
5448@option{-O}.  The shortcuts taken by optimized code may occasionally
5449produce surprising results: some variables you declared may not exist
5450at all; flow of control may briefly move where you did not expect it;
5451some statements may not be executed because they compute constant
5452results or their values are already at hand; some statements may
5453execute in different places because they have been moved out of loops.
5454
5455Nevertheless it proves possible to debug optimized output.  This makes
5456it reasonable to use the optimizer for programs that might have bugs.
5457
5458The following options are useful when GCC is generated with the
5459capability for more than one debugging format.
5460
5461@item -gsplit-dwarf
5462@opindex gsplit-dwarf
5463Separate as much dwarf debugging information as possible into a
5464separate output file with the extension .dwo.  This option allows
5465the build system to avoid linking files with debug information.  To
5466be useful, this option requires a debugger capable of reading .dwo
5467files.
5468
5469@item -ggdb
5470@opindex ggdb
5471Produce debugging information for use by GDB@.  This means to use the
5472most expressive format available (DWARF 2, stabs, or the native format
5473if neither of those are supported), including GDB extensions if at all
5474possible.
5475
5476@item -gpubnames
5477@opindex gpubnames
5478Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5479
5480@item -ggnu-pubnames
5481@opindex ggnu-pubnames
5482Generate .debug_pubnames and .debug_pubtypes sections in a format
5483suitable for conversion into a GDB@ index.  This option is only useful
5484with a linker that can produce GDB@ index version 7.
5485
5486@item -gstabs
5487@opindex gstabs
5488Produce debugging information in stabs format (if that is supported),
5489without GDB extensions.  This is the format used by DBX on most BSD
5490systems.  On MIPS, Alpha and System V Release 4 systems this option
5491produces stabs debugging output that is not understood by DBX or SDB@.
5492On System V Release 4 systems this option requires the GNU assembler.
5493
5494@item -feliminate-unused-debug-symbols
5495@opindex feliminate-unused-debug-symbols
5496Produce debugging information in stabs format (if that is supported),
5497for only symbols that are actually used.
5498
5499@item -femit-class-debug-always
5500@opindex femit-class-debug-always
5501Instead of emitting debugging information for a C++ class in only one
5502object file, emit it in all object files using the class.  This option
5503should be used only with debuggers that are unable to handle the way GCC
5504normally emits debugging information for classes because using this
5505option increases the size of debugging information by as much as a
5506factor of two.
5507
5508@item -fdebug-types-section
5509@opindex fdebug-types-section
5510@opindex fno-debug-types-section
5511When using DWARF Version 4 or higher, type DIEs can be put into
5512their own @code{.debug_types} section instead of making them part of the
5513@code{.debug_info} section.  It is more efficient to put them in a separate
5514comdat sections since the linker can then remove duplicates.
5515But not all DWARF consumers support @code{.debug_types} sections yet
5516and on some objects @code{.debug_types} produces larger instead of smaller
5517debugging information.
5518
5519@item -gstabs+
5520@opindex gstabs+
5521Produce debugging information in stabs format (if that is supported),
5522using GNU extensions understood only by the GNU debugger (GDB)@.  The
5523use of these extensions is likely to make other debuggers crash or
5524refuse to read the program.
5525
5526@item -gcoff
5527@opindex gcoff
5528Produce debugging information in COFF format (if that is supported).
5529This is the format used by SDB on most System V systems prior to
5530System V Release 4.
5531
5532@item -gxcoff
5533@opindex gxcoff
5534Produce debugging information in XCOFF format (if that is supported).
5535This is the format used by the DBX debugger on IBM RS/6000 systems.
5536
5537@item -gxcoff+
5538@opindex gxcoff+
5539Produce debugging information in XCOFF format (if that is supported),
5540using GNU extensions understood only by the GNU debugger (GDB)@.  The
5541use of these extensions is likely to make other debuggers crash or
5542refuse to read the program, and may cause assemblers other than the GNU
5543assembler (GAS) to fail with an error.
5544
5545@item -gdwarf-@var{version}
5546@opindex gdwarf-@var{version}
5547Produce debugging information in DWARF format (if that is supported).
5548The value of @var{version} may be either 2, 3, 4 or 5; the default version
5549for most targets is 4.  DWARF Version 5 is only experimental.
5550
5551Note that with DWARF Version 2, some ports require and always
5552use some non-conflicting DWARF 3 extensions in the unwind tables.
5553
5554Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5555for maximum benefit.
5556
5557@item -grecord-gcc-switches
5558@opindex grecord-gcc-switches
5559This switch causes the command-line options used to invoke the
5560compiler that may affect code generation to be appended to the
5561DW_AT_producer attribute in DWARF debugging information.  The options
5562are concatenated with spaces separating them from each other and from
5563the compiler version.  See also @option{-frecord-gcc-switches} for another
5564way of storing compiler options into the object file.  This is the default.
5565
5566@item -gno-record-gcc-switches
5567@opindex gno-record-gcc-switches
5568Disallow appending command-line options to the DW_AT_producer attribute
5569in DWARF debugging information.
5570
5571@item -gstrict-dwarf
5572@opindex gstrict-dwarf
5573Disallow using extensions of later DWARF standard version than selected
5574with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
5575DWARF extensions from later standard versions is allowed.
5576
5577@item -gno-strict-dwarf
5578@opindex gno-strict-dwarf
5579Allow using extensions of later DWARF standard version than selected with
5580@option{-gdwarf-@var{version}}.
5581
5582@item -gz@r{[}=@var{type}@r{]}
5583@opindex gz
5584Produce compressed debug sections in DWARF format, if that is supported.
5585If @var{type} is not given, the default type depends on the capabilities
5586of the assembler and linker used.  @var{type} may be one of
5587@samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5588compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5589compression in traditional GNU format).  If the linker doesn't support
5590writing compressed debug sections, the option is rejected.  Otherwise,
5591if the assembler does not support them, @option{-gz} is silently ignored
5592when producing object files.
5593
5594@item -gvms
5595@opindex gvms
5596Produce debugging information in Alpha/VMS debug format (if that is
5597supported).  This is the format used by DEBUG on Alpha/VMS systems.
5598
5599@item -g@var{level}
5600@itemx -ggdb@var{level}
5601@itemx -gstabs@var{level}
5602@itemx -gcoff@var{level}
5603@itemx -gxcoff@var{level}
5604@itemx -gvms@var{level}
5605Request debugging information and also use @var{level} to specify how
5606much information.  The default level is 2.
5607
5608Level 0 produces no debug information at all.  Thus, @option{-g0} negates
5609@option{-g}.
5610
5611Level 1 produces minimal information, enough for making backtraces in
5612parts of the program that you don't plan to debug.  This includes
5613descriptions of functions and external variables, and line number
5614tables, but no information about local variables.
5615
5616Level 3 includes extra information, such as all the macro definitions
5617present in the program.  Some debuggers support macro expansion when
5618you use @option{-g3}.
5619
5620@option{-gdwarf-2} does not accept a concatenated debug level, because
5621GCC used to support an option @option{-gdwarf} that meant to generate
5622debug information in version 1 of the DWARF format (which is very
5623different from version 2), and it would have been too confusing.  That
5624debug format is long obsolete, but the option cannot be changed now.
5625Instead use an additional @option{-g@var{level}} option to change the
5626debug level for DWARF.
5627
5628@item -gtoggle
5629@opindex gtoggle
5630Turn off generation of debug info, if leaving out this option
5631generates it, or turn it on at level 2 otherwise.  The position of this
5632argument in the command line does not matter; it takes effect after all
5633other options are processed, and it does so only once, no matter how
5634many times it is given.  This is mainly intended to be used with
5635@option{-fcompare-debug}.
5636
5637@item -fsanitize=address
5638@opindex fsanitize=address
5639Enable AddressSanitizer, a fast memory error detector.
5640Memory access instructions are instrumented to detect
5641out-of-bounds and use-after-free bugs.
5642See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
5643more details.  The run-time behavior can be influenced using the
5644@env{ASAN_OPTIONS} environment variable.  When set to @code{help=1},
5645the available options are shown at startup of the instrumended program.  See
5646@url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
5647for a list of supported options.
5648
5649@item -fsanitize=kernel-address
5650@opindex fsanitize=kernel-address
5651Enable AddressSanitizer for Linux kernel.
5652See @uref{https://github.com/google/kasan/wiki} for more details.
5653
5654@item -fsanitize=thread
5655@opindex fsanitize=thread
5656Enable ThreadSanitizer, a fast data race detector.
5657Memory access instructions are instrumented to detect
5658data race bugs.  See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
5659details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5660environment variable; see
5661@url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
5662supported options.
5663
5664@item -fsanitize=leak
5665@opindex fsanitize=leak
5666Enable LeakSanitizer, a memory leak detector.
5667This option only matters for linking of executables and if neither
5668@option{-fsanitize=address} nor @option{-fsanitize=thread} is used.  In that
5669case the executable is linked against a library that overrides @code{malloc}
5670and other allocator functions.  See
5671@uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
5672details.  The run-time behavior can be influenced using the
5673@env{LSAN_OPTIONS} environment variable.
5674
5675@item -fsanitize=undefined
5676@opindex fsanitize=undefined
5677Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5678Various computations are instrumented to detect undefined behavior
5679at runtime.  Current suboptions are:
5680
5681@table @gcctabopt
5682
5683@item -fsanitize=shift
5684@opindex fsanitize=shift
5685This option enables checking that the result of a shift operation is
5686not undefined.  Note that what exactly is considered undefined differs
5687slightly between C and C++, as well as between ISO C90 and C99, etc.
5688
5689@item -fsanitize=integer-divide-by-zero
5690@opindex fsanitize=integer-divide-by-zero
5691Detect integer division by zero as well as @code{INT_MIN / -1} division.
5692
5693@item -fsanitize=unreachable
5694@opindex fsanitize=unreachable
5695With this option, the compiler turns the @code{__builtin_unreachable}
5696call into a diagnostics message call instead.  When reaching the
5697@code{__builtin_unreachable} call, the behavior is undefined.
5698
5699@item -fsanitize=vla-bound
5700@opindex fsanitize=vla-bound
5701This option instructs the compiler to check that the size of a variable
5702length array is positive.
5703
5704@item -fsanitize=null
5705@opindex fsanitize=null
5706This option enables pointer checking.  Particularly, the application
5707built with this option turned on will issue an error message when it
5708tries to dereference a NULL pointer, or if a reference (possibly an
5709rvalue reference) is bound to a NULL pointer, or if a method is invoked
5710on an object pointed by a NULL pointer.
5711
5712@item -fsanitize=return
5713@opindex fsanitize=return
5714This option enables return statement checking.  Programs
5715built with this option turned on will issue an error message
5716when the end of a non-void function is reached without actually
5717returning a value.  This option works in C++ only.
5718
5719@item -fsanitize=signed-integer-overflow
5720@opindex fsanitize=signed-integer-overflow
5721This option enables signed integer overflow checking.  We check that
5722the result of @code{+}, @code{*}, and both unary and binary @code{-}
5723does not overflow in the signed arithmetics.  Note, integer promotion
5724rules must be taken into account.  That is, the following is not an
5725overflow:
5726@smallexample
5727signed char a = SCHAR_MAX;
5728a++;
5729@end smallexample
5730
5731@item -fsanitize=bounds
5732@opindex fsanitize=bounds
5733This option enables instrumentation of array bounds.  Various out of bounds
5734accesses are detected.  Flexible array members, flexible array member-like
5735arrays, and initializers of variables with static storage are not instrumented.
5736
5737@item -fsanitize=alignment
5738@opindex fsanitize=alignment
5739
5740This option enables checking of alignment of pointers when they are
5741dereferenced, or when a reference is bound to insufficiently aligned target,
5742or when a method or constructor is invoked on insufficiently aligned object.
5743
5744@item -fsanitize=object-size
5745@opindex fsanitize=object-size
5746This option enables instrumentation of memory references using the
5747@code{__builtin_object_size} function.  Various out of bounds pointer
5748accesses are detected.
5749
5750@item -fsanitize=float-divide-by-zero
5751@opindex fsanitize=float-divide-by-zero
5752Detect floating-point division by zero.  Unlike other similar options,
5753@option{-fsanitize=float-divide-by-zero} is not enabled by
5754@option{-fsanitize=undefined}, since floating-point division by zero can
5755be a legitimate way of obtaining infinities and NaNs.
5756
5757@item -fsanitize=float-cast-overflow
5758@opindex fsanitize=float-cast-overflow
5759This option enables floating-point type to integer conversion checking.
5760We check that the result of the conversion does not overflow.
5761Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5762not enabled by @option{-fsanitize=undefined}.
5763This option does not work well with @code{FE_INVALID} exceptions enabled.
5764
5765@item -fsanitize=nonnull-attribute
5766@opindex fsanitize=nonnull-attribute
5767
5768This option enables instrumentation of calls, checking whether null values
5769are not passed to arguments marked as requiring a non-null value by the
5770@code{nonnull} function attribute.
5771
5772@item -fsanitize=returns-nonnull-attribute
5773@opindex fsanitize=returns-nonnull-attribute
5774
5775This option enables instrumentation of return statements in functions
5776marked with @code{returns_nonnull} function attribute, to detect returning
5777of null values from such functions.
5778
5779@item -fsanitize=bool
5780@opindex fsanitize=bool
5781
5782This option enables instrumentation of loads from bool.  If a value other
5783than 0/1 is loaded, a run-time error is issued.
5784
5785@item -fsanitize=enum
5786@opindex fsanitize=enum
5787
5788This option enables instrumentation of loads from an enum type.  If
5789a value outside the range of values for the enum type is loaded,
5790a run-time error is issued.
5791
5792@item -fsanitize=vptr
5793@opindex fsanitize=vptr
5794
5795This option enables instrumentation of C++ member function calls, member
5796accesses and some conversions between pointers to base and derived classes,
5797to verify the referenced object has the correct dynamic type.
5798
5799@end table
5800
5801While @option{-ftrapv} causes traps for signed overflows to be emitted,
5802@option{-fsanitize=undefined} gives a diagnostic message.
5803This currently works only for the C family of languages.
5804
5805@item -fno-sanitize=all
5806@opindex fno-sanitize=all
5807
5808This option disables all previously enabled sanitizers.
5809@option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
5810together.
5811
5812@item -fasan-shadow-offset=@var{number}
5813@opindex fasan-shadow-offset
5814This option forces GCC to use custom shadow offset in AddressSanitizer checks.
5815It is useful for experimenting with different shadow memory layouts in
5816Kernel AddressSanitizer.
5817
5818@item -fsanitize-recover@r{[}=@var{opts}@r{]}
5819@opindex fsanitize-recover
5820@opindex fno-sanitize-recover
5821@option{-fsanitize-recover=} controls error recovery mode for sanitizers
5822mentioned in comma-separated list of @var{opts}.  Enabling this option
5823for a sanitizer component causes it to attempt to continue
5824running the program as if no error happened.  This means multiple
5825runtime errors can be reported in a single program run, and the exit
5826code of the program may indicate success even when errors
5827have been reported.  The @option{-fno-sanitize-recover=} option
5828can be used to alter
5829this behavior: only the first detected error is reported
5830and program then exits with a non-zero exit code.
5831
5832Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
5833except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
5834@option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
5835@option{-fsanitize=kernel-address}.  For these sanitizers error recovery is turned on by default.
5836@option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
5837accepted, the former enables recovery for all sanitizers that support it,
5838the latter disables recovery for all sanitizers that support it.
5839
5840Syntax without explicit @var{opts} parameter is deprecated.  It is equivalent to
5841@smallexample
5842-fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5843@end smallexample
5844@noindent
5845Similarly @option{-fno-sanitize-recover} is equivalent to
5846@smallexample
5847-fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5848@end smallexample
5849
5850@item -fsanitize-undefined-trap-on-error
5851@opindex fsanitize-undefined-trap-on-error
5852The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
5853report undefined behavior using @code{__builtin_trap} rather than
5854a @code{libubsan} library routine.  The advantage of this is that the
5855@code{libubsan} library is not needed and is not linked in, so this
5856is usable even in freestanding environments.
5857
5858@item -fcheck-pointer-bounds
5859@opindex fcheck-pointer-bounds
5860@opindex fno-check-pointer-bounds
5861@cindex Pointer Bounds Checker options
5862Enable Pointer Bounds Checker instrumentation.  Each memory reference
5863is instrumented with checks of the pointer used for memory access against
5864bounds associated with that pointer.  
5865
5866Currently there
5867is only an implementation for Intel MPX available, thus x86 target
5868and @option{-mmpx} are required to enable this feature.  
5869MPX-based instrumentation requires
5870a runtime library to enable MPX in hardware and handle bounds
5871violation signals.  By default when @option{-fcheck-pointer-bounds}
5872and @option{-mmpx} options are used to link a program, the GCC driver
5873links against the @file{libmpx} runtime library and @file{libmpxwrappers}
5874library.  It also passes '-z bndplt' to a linker in case it supports this
5875option (which is checked on libmpx configuration).  Note that old versions
5876of linker may ignore option.  Gold linker doesn't support '-z bndplt'
5877option.  With no '-z bndplt' support in linker all calls to dynamic libraries
5878lose passed bounds reducing overall protection level.  It's highly
5879recommended to use linker with '-z bndplt' support.  In case such linker
5880is not available it is adviced to always use @option{-static-libmpxwrappers}
5881for better protection level or use @option{-static} to completely avoid
5882external calls to dynamic libraries.  MPX-based instrumentation
5883may be used for debugging and also may be included in production code
5884to increase program security.  Depending on usage, you may
5885have different requirements for the runtime library.  The current version
5886of the MPX runtime library is more oriented for use as a debugging
5887tool.  MPX runtime library usage implies @option{-lpthread}.  See
5888also @option{-static-libmpx}.  The runtime library  behavior can be
5889influenced using various @env{CHKP_RT_*} environment variables.  See
5890@uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
5891for more details.
5892
5893Generated instrumentation may be controlled by various
5894@option{-fchkp-*} options and by the @code{bnd_variable_size}
5895structure field attribute (@pxref{Type Attributes}) and
5896@code{bnd_legacy}, and @code{bnd_instrument} function attributes
5897(@pxref{Function Attributes}).  GCC also provides a number of built-in
5898functions for controlling the Pointer Bounds Checker.  @xref{Pointer
5899Bounds Checker builtins}, for more information.
5900
5901@item -fchkp-check-incomplete-type
5902@opindex fchkp-check-incomplete-type
5903@opindex fno-chkp-check-incomplete-type
5904Generate pointer bounds checks for variables with incomplete type.
5905Enabled by default.  
5906
5907@item -fchkp-narrow-bounds
5908@opindex fchkp-narrow-bounds
5909@opindex fno-chkp-narrow-bounds
5910Controls bounds used by Pointer Bounds Checker for pointers to object
5911fields.  If narrowing is enabled then field bounds are used.  Otherwise
5912object bounds are used.  See also @option{-fchkp-narrow-to-innermost-array}
5913and @option{-fchkp-first-field-has-own-bounds}.  Enabled by default.
5914
5915@item -fchkp-first-field-has-own-bounds
5916@opindex fchkp-first-field-has-own-bounds
5917@opindex fno-chkp-first-field-has-own-bounds
5918Forces Pointer Bounds Checker to use narrowed bounds for the address of the
5919first field in the structure.  By default a pointer to the first field has
5920the same bounds as a pointer to the whole structure.
5921
5922@item -fchkp-narrow-to-innermost-array
5923@opindex fchkp-narrow-to-innermost-array
5924@opindex fno-chkp-narrow-to-innermost-array
5925Forces Pointer Bounds Checker to use bounds of the innermost arrays in
5926case of nested static array access.  By default this option is disabled and
5927bounds of the outermost array are used.
5928
5929@item -fchkp-optimize
5930@opindex fchkp-optimize
5931@opindex fno-chkp-optimize
5932Enables Pointer Bounds Checker optimizations.  Enabled by default at
5933optimization levels @option{-O}, @option{-O2}, @option{-O3}.
5934
5935@item -fchkp-use-fast-string-functions
5936@opindex fchkp-use-fast-string-functions
5937@opindex fno-chkp-use-fast-string-functions
5938Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
5939by Pointer Bounds Checker.  Disabled by default.
5940
5941@item -fchkp-use-nochk-string-functions
5942@opindex fchkp-use-nochk-string-functions
5943@opindex fno-chkp-use-nochk-string-functions
5944Enables use of @code{*_nochk} versions of string functions (not checking bounds)
5945by Pointer Bounds Checker.  Disabled by default.
5946
5947@item -fchkp-use-static-bounds
5948@opindex fchkp-use-static-bounds
5949@opindex fno-chkp-use-static-bounds
5950Allow Pointer Bounds Checker to generate static bounds holding
5951bounds of static variables.  Enabled by default.
5952
5953@item -fchkp-use-static-const-bounds
5954@opindex fchkp-use-static-const-bounds
5955@opindex fno-chkp-use-static-const-bounds
5956Use statically-initialized bounds for constant bounds instead of
5957generating them each time they are required.  By default enabled when
5958@option{-fchkp-use-static-bounds} is enabled.
5959
5960@item -fchkp-treat-zero-dynamic-size-as-infinite
5961@opindex fchkp-treat-zero-dynamic-size-as-infinite
5962@opindex fno-chkp-treat-zero-dynamic-size-as-infinite
5963With this option, objects with incomplete type whose
5964dynamically-obtained size is zero are treated as having infinite size
5965instead by Pointer Bounds
5966Checker.  This option may be helpful if a program is linked with a library
5967missing size information for some symbols.  Disabled by default.
5968
5969@item -fchkp-check-read
5970@opindex fchkp-check-read
5971@opindex fno-chkp-check-read
5972Instructs Pointer Bounds Checker to generate checks for all read
5973accesses to memory.  Enabled by default.
5974
5975@item -fchkp-check-write
5976@opindex fchkp-check-write
5977@opindex fno-chkp-check-write
5978Instructs Pointer Bounds Checker to generate checks for all write
5979accesses to memory.  Enabled by default.
5980
5981@item -fchkp-store-bounds
5982@opindex fchkp-store-bounds
5983@opindex fno-chkp-store-bounds
5984Instructs Pointer Bounds Checker to generate bounds stores for
5985pointer writes.  Enabled by default.
5986
5987@item -fchkp-instrument-calls
5988@opindex fchkp-instrument-calls
5989@opindex fno-chkp-instrument-calls
5990Instructs Pointer Bounds Checker to pass pointer bounds to calls.
5991Enabled by default.
5992
5993@item -fchkp-instrument-marked-only
5994@opindex fchkp-instrument-marked-only
5995@opindex fno-chkp-instrument-marked-only
5996Instructs Pointer Bounds Checker to instrument only functions
5997marked with the @code{bnd_instrument} attribute
5998(@pxref{Function Attributes}).  Disabled by default.
5999
6000@item -fchkp-use-wrappers
6001@opindex fchkp-use-wrappers
6002@opindex fno-chkp-use-wrappers
6003Allows Pointer Bounds Checker to replace calls to built-in functions
6004with calls to wrapper functions.  When @option{-fchkp-use-wrappers}
6005is used to link a program, the GCC driver automatically links
6006against @file{libmpxwrappers}.  See also @option{-static-libmpxwrappers}.
6007Enabled by default.
6008
6009@item -fdump-final-insns@r{[}=@var{file}@r{]}
6010@opindex fdump-final-insns
6011Dump the final internal representation (RTL) to @var{file}.  If the
6012optional argument is omitted (or if @var{file} is @code{.}), the name
6013of the dump file is determined by appending @code{.gkd} to the
6014compilation output file name.
6015
6016@item -fcompare-debug@r{[}=@var{opts}@r{]}
6017@opindex fcompare-debug
6018@opindex fno-compare-debug
6019If no error occurs during compilation, run the compiler a second time,
6020adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6021passed to the second compilation.  Dump the final internal
6022representation in both compilations, and print an error if they differ.
6023
6024If the equal sign is omitted, the default @option{-gtoggle} is used.
6025
6026The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6027and nonzero, implicitly enables @option{-fcompare-debug}.  If
6028@env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6029then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6030is used.
6031
6032@option{-fcompare-debug=}, with the equal sign but without @var{opts},
6033is equivalent to @option{-fno-compare-debug}, which disables the dumping
6034of the final representation and the second compilation, preventing even
6035@env{GCC_COMPARE_DEBUG} from taking effect.
6036
6037To verify full coverage during @option{-fcompare-debug} testing, set
6038@env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6039which GCC rejects as an invalid option in any actual compilation
6040(rather than preprocessing, assembly or linking).  To get just a
6041warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6042not overridden} will do.
6043
6044@item -fcompare-debug-second
6045@opindex fcompare-debug-second
6046This option is implicitly passed to the compiler for the second
6047compilation requested by @option{-fcompare-debug}, along with options to
6048silence warnings, and omitting other options that would cause
6049side-effect compiler outputs to files or to the standard output.  Dump
6050files and preserved temporary files are renamed so as to contain the
6051@code{.gk} additional extension during the second compilation, to avoid
6052overwriting those generated by the first.
6053
6054When this option is passed to the compiler driver, it causes the
6055@emph{first} compilation to be skipped, which makes it useful for little
6056other than debugging the compiler proper.
6057
6058@item -feliminate-dwarf2-dups
6059@opindex feliminate-dwarf2-dups
6060Compress DWARF 2 debugging information by eliminating duplicated
6061information about each symbol.  This option only makes sense when
6062generating DWARF 2 debugging information with @option{-gdwarf-2}.
6063
6064@item -femit-struct-debug-baseonly
6065@opindex femit-struct-debug-baseonly
6066Emit debug information for struct-like types
6067only when the base name of the compilation source file
6068matches the base name of file in which the struct is defined.
6069
6070This option substantially reduces the size of debugging information,
6071but at significant potential loss in type information to the debugger.
6072See @option{-femit-struct-debug-reduced} for a less aggressive option.
6073See @option{-femit-struct-debug-detailed} for more detailed control.
6074
6075This option works only with DWARF 2.
6076
6077@item -femit-struct-debug-reduced
6078@opindex femit-struct-debug-reduced
6079Emit debug information for struct-like types
6080only when the base name of the compilation source file
6081matches the base name of file in which the type is defined,
6082unless the struct is a template or defined in a system header.
6083
6084This option significantly reduces the size of debugging information,
6085with some potential loss in type information to the debugger.
6086See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6087See @option{-femit-struct-debug-detailed} for more detailed control.
6088
6089This option works only with DWARF 2.
6090
6091@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6092@opindex femit-struct-debug-detailed
6093Specify the struct-like types
6094for which the compiler generates debug information.
6095The intent is to reduce duplicate struct debug information
6096between different object files within the same program.
6097
6098This option is a detailed version of
6099@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6100which serves for most needs.
6101
6102A specification has the syntax@*
6103[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6104
6105The optional first word limits the specification to
6106structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6107A struct type is used directly when it is the type of a variable, member.
6108Indirect uses arise through pointers to structs.
6109That is, when use of an incomplete struct is valid, the use is indirect.
6110An example is
6111@samp{struct one direct; struct two * indirect;}.
6112
6113The optional second word limits the specification to
6114ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6115Generic structs are a bit complicated to explain.
6116For C++, these are non-explicit specializations of template classes,
6117or non-template classes within the above.
6118Other programming languages have generics,
6119but @option{-femit-struct-debug-detailed} does not yet implement them.
6120
6121The third word specifies the source files for those
6122structs for which the compiler should emit debug information.
6123The values @samp{none} and @samp{any} have the normal meaning.
6124The value @samp{base} means that
6125the base of name of the file in which the type declaration appears
6126must match the base of the name of the main compilation file.
6127In practice, this means that when compiling @file{foo.c}, debug information
6128is generated for types declared in that file and @file{foo.h},
6129but not other header files.
6130The value @samp{sys} means those types satisfying @samp{base}
6131or declared in system or compiler headers.
6132
6133You may need to experiment to determine the best settings for your application.
6134
6135The default is @option{-femit-struct-debug-detailed=all}.
6136
6137This option works only with DWARF 2.
6138
6139@item -fno-merge-debug-strings
6140@opindex fmerge-debug-strings
6141@opindex fno-merge-debug-strings
6142Direct the linker to not merge together strings in the debugging
6143information that are identical in different object files.  Merging is
6144not supported by all assemblers or linkers.  Merging decreases the size
6145of the debug information in the output file at the cost of increasing
6146link processing time.  Merging is enabled by default.
6147
6148@item -fdebug-prefix-map=@var{old}=@var{new}
6149@opindex fdebug-prefix-map
6150When compiling files in directory @file{@var{old}}, record debugging
6151information describing them as in @file{@var{new}} instead.
6152
6153@item -fno-dwarf2-cfi-asm
6154@opindex fdwarf2-cfi-asm
6155@opindex fno-dwarf2-cfi-asm
6156Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6157instead of using GAS @code{.cfi_*} directives.
6158
6159@cindex @command{prof}
6160@item -p
6161@opindex p
6162Generate extra code to write profile information suitable for the
6163analysis program @command{prof}.  You must use this option when compiling
6164the source files you want data about, and you must also use it when
6165linking.
6166
6167@cindex @command{gprof}
6168@item -pg
6169@opindex pg
6170Generate extra code to write profile information suitable for the
6171analysis program @command{gprof}.  You must use this option when compiling
6172the source files you want data about, and you must also use it when
6173linking.
6174
6175@item -Q
6176@opindex Q
6177Makes the compiler print out each function name as it is compiled, and
6178print some statistics about each pass when it finishes.
6179
6180@item -ftime-report
6181@opindex ftime-report
6182Makes the compiler print some statistics about the time consumed by each
6183pass when it finishes.
6184
6185@item -fmem-report
6186@opindex fmem-report
6187Makes the compiler print some statistics about permanent memory
6188allocation when it finishes.
6189
6190@item -fmem-report-wpa
6191@opindex fmem-report-wpa
6192Makes the compiler print some statistics about permanent memory
6193allocation for the WPA phase only.
6194
6195@item -fpre-ipa-mem-report
6196@opindex fpre-ipa-mem-report
6197@item -fpost-ipa-mem-report
6198@opindex fpost-ipa-mem-report
6199Makes the compiler print some statistics about permanent memory
6200allocation before or after interprocedural optimization.
6201
6202@item -fprofile-report
6203@opindex fprofile-report
6204Makes the compiler print some statistics about consistency of the
6205(estimated) profile and effect of individual passes.
6206
6207@item -fstack-usage
6208@opindex fstack-usage
6209Makes the compiler output stack usage information for the program, on a
6210per-function basis.  The filename for the dump is made by appending
6211@file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
6212the output file, if explicitly specified and it is not an executable,
6213otherwise it is the basename of the source file.  An entry is made up
6214of three fields:
6215
6216@itemize
6217@item
6218The name of the function.
6219@item
6220A number of bytes.
6221@item
6222One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6223@end itemize
6224
6225The qualifier @code{static} means that the function manipulates the stack
6226statically: a fixed number of bytes are allocated for the frame on function
6227entry and released on function exit; no stack adjustments are otherwise made
6228in the function.  The second field is this fixed number of bytes.
6229
6230The qualifier @code{dynamic} means that the function manipulates the stack
6231dynamically: in addition to the static allocation described above, stack
6232adjustments are made in the body of the function, for example to push/pop
6233arguments around function calls.  If the qualifier @code{bounded} is also
6234present, the amount of these adjustments is bounded at compile time and
6235the second field is an upper bound of the total amount of stack used by
6236the function.  If it is not present, the amount of these adjustments is
6237not bounded at compile time and the second field only represents the
6238bounded part.
6239
6240@item -fprofile-arcs
6241@opindex fprofile-arcs
6242Add code so that program flow @dfn{arcs} are instrumented.  During
6243execution the program records how many times each branch and call is
6244executed and how many times it is taken or returns.  When the compiled
6245program exits it saves this data to a file called
6246@file{@var{auxname}.gcda} for each source file.  The data may be used for
6247profile-directed optimizations (@option{-fbranch-probabilities}), or for
6248test coverage analysis (@option{-ftest-coverage}).  Each object file's
6249@var{auxname} is generated from the name of the output file, if
6250explicitly specified and it is not the final executable, otherwise it is
6251the basename of the source file.  In both cases any suffix is removed
6252(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6253@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6254@xref{Cross-profiling}.
6255
6256@cindex @command{gcov}
6257@item --coverage
6258@opindex coverage
6259
6260This option is used to compile and link code instrumented for coverage
6261analysis.  The option is a synonym for @option{-fprofile-arcs}
6262@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6263linking).  See the documentation for those options for more details.
6264
6265@itemize
6266
6267@item
6268Compile the source files with @option{-fprofile-arcs} plus optimization
6269and code generation options.  For test coverage analysis, use the
6270additional @option{-ftest-coverage} option.  You do not need to profile
6271every source file in a program.
6272
6273@item
6274Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6275(the latter implies the former).
6276
6277@item
6278Run the program on a representative workload to generate the arc profile
6279information.  This may be repeated any number of times.  You can run
6280concurrent instances of your program, and provided that the file system
6281supports locking, the data files will be correctly updated.  Also
6282@code{fork} calls are detected and correctly handled (double counting
6283will not happen).
6284
6285@item
6286For profile-directed optimizations, compile the source files again with
6287the same optimization and code generation options plus
6288@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6289Control Optimization}).
6290
6291@item
6292For test coverage analysis, use @command{gcov} to produce human readable
6293information from the @file{.gcno} and @file{.gcda} files.  Refer to the
6294@command{gcov} documentation for further information.
6295
6296@end itemize
6297
6298With @option{-fprofile-arcs}, for each function of your program GCC
6299creates a program flow graph, then finds a spanning tree for the graph.
6300Only arcs that are not on the spanning tree have to be instrumented: the
6301compiler adds code to count the number of times that these arcs are
6302executed.  When an arc is the only exit or only entrance to a block, the
6303instrumentation code can be added to the block; otherwise, a new basic
6304block must be created to hold the instrumentation code.
6305
6306@need 2000
6307@item -ftest-coverage
6308@opindex ftest-coverage
6309Produce a notes file that the @command{gcov} code-coverage utility
6310(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6311show program coverage.  Each source file's note file is called
6312@file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
6313above for a description of @var{auxname} and instructions on how to
6314generate test coverage data.  Coverage data matches the source files
6315more closely if you do not optimize.
6316
6317@item -fdbg-cnt-list
6318@opindex fdbg-cnt-list
6319Print the name and the counter upper bound for all debug counters.
6320
6321
6322@item -fdbg-cnt=@var{counter-value-list}
6323@opindex fdbg-cnt
6324Set the internal debug counter upper bound.  @var{counter-value-list}
6325is a comma-separated list of @var{name}:@var{value} pairs
6326which sets the upper bound of each debug counter @var{name} to @var{value}.
6327All debug counters have the initial upper bound of @code{UINT_MAX};
6328thus @code{dbg_cnt} returns true always unless the upper bound
6329is set by this option.
6330For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6331@code{dbg_cnt(dce)} returns true only for first 10 invocations.
6332
6333@item -fenable-@var{kind}-@var{pass}
6334@itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6335@opindex fdisable-
6336@opindex fenable-
6337
6338This is a set of options that are used to explicitly disable/enable
6339optimization passes.  These options are intended for use for debugging GCC.
6340Compiler users should use regular options for enabling/disabling
6341passes instead.
6342
6343@table @gcctabopt
6344
6345@item -fdisable-ipa-@var{pass}
6346Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
6347statically invoked in the compiler multiple times, the pass name should be
6348appended with a sequential number starting from 1.
6349
6350@item -fdisable-rtl-@var{pass}
6351@itemx -fdisable-rtl-@var{pass}=@var{range-list}
6352Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
6353statically invoked in the compiler multiple times, the pass name should be
6354appended with a sequential number starting from 1.  @var{range-list} is a 
6355comma-separated list of function ranges or assembler names.  Each range is a number
6356pair separated by a colon.  The range is inclusive in both ends.  If the range
6357is trivial, the number pair can be simplified as a single number.  If the
6358function's call graph node's @var{uid} falls within one of the specified ranges,
6359the @var{pass} is disabled for that function.  The @var{uid} is shown in the
6360function header of a dump file, and the pass names can be dumped by using
6361option @option{-fdump-passes}.
6362
6363@item -fdisable-tree-@var{pass}
6364@itemx -fdisable-tree-@var{pass}=@var{range-list}
6365Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
6366option arguments.
6367
6368@item -fenable-ipa-@var{pass}
6369Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
6370statically invoked in the compiler multiple times, the pass name should be
6371appended with a sequential number starting from 1.
6372
6373@item -fenable-rtl-@var{pass}
6374@itemx -fenable-rtl-@var{pass}=@var{range-list}
6375Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
6376description and examples.
6377
6378@item -fenable-tree-@var{pass}
6379@itemx -fenable-tree-@var{pass}=@var{range-list}
6380Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
6381of option arguments.
6382
6383@end table
6384
6385Here are some examples showing uses of these options.
6386
6387@smallexample
6388
6389# disable ccp1 for all functions
6390   -fdisable-tree-ccp1
6391# disable complete unroll for function whose cgraph node uid is 1
6392   -fenable-tree-cunroll=1
6393# disable gcse2 for functions at the following ranges [1,1],
6394# [300,400], and [400,1000]
6395# disable gcse2 for functions foo and foo2
6396   -fdisable-rtl-gcse2=foo,foo2
6397# disable early inlining
6398   -fdisable-tree-einline
6399# disable ipa inlining
6400   -fdisable-ipa-inline
6401# enable tree full unroll
6402   -fenable-tree-unroll
6403
6404@end smallexample
6405
6406@item -d@var{letters}
6407@itemx -fdump-rtl-@var{pass}
6408@itemx -fdump-rtl-@var{pass}=@var{filename}
6409@opindex d
6410@opindex fdump-rtl-@var{pass}
6411Says to make debugging dumps during compilation at times specified by
6412@var{letters}.  This is used for debugging the RTL-based passes of the
6413compiler.  The file names for most of the dumps are made by appending
6414a pass number and a word to the @var{dumpname}, and the files are
6415created in the directory of the output file. In case of
6416@option{=@var{filename}} option, the dump is output on the given file
6417instead of the pass numbered dump files. Note that the pass number is
6418computed statically as passes get registered into the pass manager.
6419Thus the numbering is not related to the dynamic order of execution of
6420passes.  In particular, a pass installed by a plugin could have a
6421number over 200 even if it executed quite early.  @var{dumpname} is
6422generated from the name of the output file, if explicitly specified
6423and it is not an executable, otherwise it is the basename of the
6424source file. These switches may have different effects when
6425@option{-E} is used for preprocessing.
6426
6427Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6428@option{-d} option @var{letters}.  Here are the possible
6429letters for use in @var{pass} and @var{letters}, and their meanings:
6430
6431@table @gcctabopt
6432
6433@item -fdump-rtl-alignments
6434@opindex fdump-rtl-alignments
6435Dump after branch alignments have been computed.
6436
6437@item -fdump-rtl-asmcons
6438@opindex fdump-rtl-asmcons
6439Dump after fixing rtl statements that have unsatisfied in/out constraints.
6440
6441@item -fdump-rtl-auto_inc_dec
6442@opindex fdump-rtl-auto_inc_dec
6443Dump after auto-inc-dec discovery.  This pass is only run on
6444architectures that have auto inc or auto dec instructions.
6445
6446@item -fdump-rtl-barriers
6447@opindex fdump-rtl-barriers
6448Dump after cleaning up the barrier instructions.
6449
6450@item -fdump-rtl-bbpart
6451@opindex fdump-rtl-bbpart
6452Dump after partitioning hot and cold basic blocks.
6453
6454@item -fdump-rtl-bbro
6455@opindex fdump-rtl-bbro
6456Dump after block reordering.
6457
6458@item -fdump-rtl-btl1
6459@itemx -fdump-rtl-btl2
6460@opindex fdump-rtl-btl2
6461@opindex fdump-rtl-btl2
6462@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6463after the two branch
6464target load optimization passes.
6465
6466@item -fdump-rtl-bypass
6467@opindex fdump-rtl-bypass
6468Dump after jump bypassing and control flow optimizations.
6469
6470@item -fdump-rtl-combine
6471@opindex fdump-rtl-combine
6472Dump after the RTL instruction combination pass.
6473
6474@item -fdump-rtl-compgotos
6475@opindex fdump-rtl-compgotos
6476Dump after duplicating the computed gotos.
6477
6478@item -fdump-rtl-ce1
6479@itemx -fdump-rtl-ce2
6480@itemx -fdump-rtl-ce3
6481@opindex fdump-rtl-ce1
6482@opindex fdump-rtl-ce2
6483@opindex fdump-rtl-ce3
6484@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6485@option{-fdump-rtl-ce3} enable dumping after the three
6486if conversion passes.
6487
6488@item -fdump-rtl-cprop_hardreg
6489@opindex fdump-rtl-cprop_hardreg
6490Dump after hard register copy propagation.
6491
6492@item -fdump-rtl-csa
6493@opindex fdump-rtl-csa
6494Dump after combining stack adjustments.
6495
6496@item -fdump-rtl-cse1
6497@itemx -fdump-rtl-cse2
6498@opindex fdump-rtl-cse1
6499@opindex fdump-rtl-cse2
6500@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6501the two common subexpression elimination passes.
6502
6503@item -fdump-rtl-dce
6504@opindex fdump-rtl-dce
6505Dump after the standalone dead code elimination passes.
6506
6507@item -fdump-rtl-dbr
6508@opindex fdump-rtl-dbr
6509Dump after delayed branch scheduling.
6510
6511@item -fdump-rtl-dce1
6512@itemx -fdump-rtl-dce2
6513@opindex fdump-rtl-dce1
6514@opindex fdump-rtl-dce2
6515@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6516the two dead store elimination passes.
6517
6518@item -fdump-rtl-eh
6519@opindex fdump-rtl-eh
6520Dump after finalization of EH handling code.
6521
6522@item -fdump-rtl-eh_ranges
6523@opindex fdump-rtl-eh_ranges
6524Dump after conversion of EH handling range regions.
6525
6526@item -fdump-rtl-expand
6527@opindex fdump-rtl-expand
6528Dump after RTL generation.
6529
6530@item -fdump-rtl-fwprop1
6531@itemx -fdump-rtl-fwprop2
6532@opindex fdump-rtl-fwprop1
6533@opindex fdump-rtl-fwprop2
6534@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6535dumping after the two forward propagation passes.
6536
6537@item -fdump-rtl-gcse1
6538@itemx -fdump-rtl-gcse2
6539@opindex fdump-rtl-gcse1
6540@opindex fdump-rtl-gcse2
6541@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6542after global common subexpression elimination.
6543
6544@item -fdump-rtl-init-regs
6545@opindex fdump-rtl-init-regs
6546Dump after the initialization of the registers.
6547
6548@item -fdump-rtl-initvals
6549@opindex fdump-rtl-initvals
6550Dump after the computation of the initial value sets.
6551
6552@item -fdump-rtl-into_cfglayout
6553@opindex fdump-rtl-into_cfglayout
6554Dump after converting to cfglayout mode.
6555
6556@item -fdump-rtl-ira
6557@opindex fdump-rtl-ira
6558Dump after iterated register allocation.
6559
6560@item -fdump-rtl-jump
6561@opindex fdump-rtl-jump
6562Dump after the second jump optimization.
6563
6564@item -fdump-rtl-loop2
6565@opindex fdump-rtl-loop2
6566@option{-fdump-rtl-loop2} enables dumping after the rtl
6567loop optimization passes.
6568
6569@item -fdump-rtl-mach
6570@opindex fdump-rtl-mach
6571Dump after performing the machine dependent reorganization pass, if that
6572pass exists.
6573
6574@item -fdump-rtl-mode_sw
6575@opindex fdump-rtl-mode_sw
6576Dump after removing redundant mode switches.
6577
6578@item -fdump-rtl-rnreg
6579@opindex fdump-rtl-rnreg
6580Dump after register renumbering.
6581
6582@item -fdump-rtl-outof_cfglayout
6583@opindex fdump-rtl-outof_cfglayout
6584Dump after converting from cfglayout mode.
6585
6586@item -fdump-rtl-peephole2
6587@opindex fdump-rtl-peephole2
6588Dump after the peephole pass.
6589
6590@item -fdump-rtl-postreload
6591@opindex fdump-rtl-postreload
6592Dump after post-reload optimizations.
6593
6594@item -fdump-rtl-pro_and_epilogue
6595@opindex fdump-rtl-pro_and_epilogue
6596Dump after generating the function prologues and epilogues.
6597
6598@item -fdump-rtl-sched1
6599@itemx -fdump-rtl-sched2
6600@opindex fdump-rtl-sched1
6601@opindex fdump-rtl-sched2
6602@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6603after the basic block scheduling passes.
6604
6605@item -fdump-rtl-ree
6606@opindex fdump-rtl-ree
6607Dump after sign/zero extension elimination.
6608
6609@item -fdump-rtl-seqabstr
6610@opindex fdump-rtl-seqabstr
6611Dump after common sequence discovery.
6612
6613@item -fdump-rtl-shorten
6614@opindex fdump-rtl-shorten
6615Dump after shortening branches.
6616
6617@item -fdump-rtl-sibling
6618@opindex fdump-rtl-sibling
6619Dump after sibling call optimizations.
6620
6621@item -fdump-rtl-split1
6622@itemx -fdump-rtl-split2
6623@itemx -fdump-rtl-split3
6624@itemx -fdump-rtl-split4
6625@itemx -fdump-rtl-split5
6626@opindex fdump-rtl-split1
6627@opindex fdump-rtl-split2
6628@opindex fdump-rtl-split3
6629@opindex fdump-rtl-split4
6630@opindex fdump-rtl-split5
6631These options enable dumping after five rounds of
6632instruction splitting.
6633
6634@item -fdump-rtl-sms
6635@opindex fdump-rtl-sms
6636Dump after modulo scheduling.  This pass is only run on some
6637architectures.
6638
6639@item -fdump-rtl-stack
6640@opindex fdump-rtl-stack
6641Dump after conversion from GCC's ``flat register file'' registers to the
6642x87's stack-like registers.  This pass is only run on x86 variants.
6643
6644@item -fdump-rtl-subreg1
6645@itemx -fdump-rtl-subreg2
6646@opindex fdump-rtl-subreg1
6647@opindex fdump-rtl-subreg2
6648@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6649the two subreg expansion passes.
6650
6651@item -fdump-rtl-unshare
6652@opindex fdump-rtl-unshare
6653Dump after all rtl has been unshared.
6654
6655@item -fdump-rtl-vartrack
6656@opindex fdump-rtl-vartrack
6657Dump after variable tracking.
6658
6659@item -fdump-rtl-vregs
6660@opindex fdump-rtl-vregs
6661Dump after converting virtual registers to hard registers.
6662
6663@item -fdump-rtl-web
6664@opindex fdump-rtl-web
6665Dump after live range splitting.
6666
6667@item -fdump-rtl-regclass
6668@itemx -fdump-rtl-subregs_of_mode_init
6669@itemx -fdump-rtl-subregs_of_mode_finish
6670@itemx -fdump-rtl-dfinit
6671@itemx -fdump-rtl-dfinish
6672@opindex fdump-rtl-regclass
6673@opindex fdump-rtl-subregs_of_mode_init
6674@opindex fdump-rtl-subregs_of_mode_finish
6675@opindex fdump-rtl-dfinit
6676@opindex fdump-rtl-dfinish
6677These dumps are defined but always produce empty files.
6678
6679@item -da
6680@itemx -fdump-rtl-all
6681@opindex da
6682@opindex fdump-rtl-all
6683Produce all the dumps listed above.
6684
6685@item -dA
6686@opindex dA
6687Annotate the assembler output with miscellaneous debugging information.
6688
6689@item -dD
6690@opindex dD
6691Dump all macro definitions, at the end of preprocessing, in addition to
6692normal output.
6693
6694@item -dH
6695@opindex dH
6696Produce a core dump whenever an error occurs.
6697
6698@item -dp
6699@opindex dp
6700Annotate the assembler output with a comment indicating which
6701pattern and alternative is used.  The length of each instruction is
6702also printed.
6703
6704@item -dP
6705@opindex dP
6706Dump the RTL in the assembler output as a comment before each instruction.
6707Also turns on @option{-dp} annotation.
6708
6709@item -dx
6710@opindex dx
6711Just generate RTL for a function instead of compiling it.  Usually used
6712with @option{-fdump-rtl-expand}.
6713@end table
6714
6715@item -fdump-noaddr
6716@opindex fdump-noaddr
6717When doing debugging dumps, suppress address output.  This makes it more
6718feasible to use diff on debugging dumps for compiler invocations with
6719different compiler binaries and/or different
6720text / bss / data / heap / stack / dso start locations.
6721
6722@item -freport-bug
6723@opindex freport-bug
6724Collect and dump debug information into temporary file if ICE in C/C++
6725compiler occured.
6726
6727@item -fdump-unnumbered
6728@opindex fdump-unnumbered
6729When doing debugging dumps, suppress instruction numbers and address output.
6730This makes it more feasible to use diff on debugging dumps for compiler
6731invocations with different options, in particular with and without
6732@option{-g}.
6733
6734@item -fdump-unnumbered-links
6735@opindex fdump-unnumbered-links
6736When doing debugging dumps (see @option{-d} option above), suppress
6737instruction numbers for the links to the previous and next instructions
6738in a sequence.
6739
6740@item -fdump-translation-unit @r{(C++ only)}
6741@itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6742@opindex fdump-translation-unit
6743Dump a representation of the tree structure for the entire translation
6744unit to a file.  The file name is made by appending @file{.tu} to the
6745source file name, and the file is created in the same directory as the
6746output file.  If the @samp{-@var{options}} form is used, @var{options}
6747controls the details of the dump as described for the
6748@option{-fdump-tree} options.
6749
6750@item -fdump-class-hierarchy @r{(C++ only)}
6751@itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6752@opindex fdump-class-hierarchy
6753Dump a representation of each class's hierarchy and virtual function
6754table layout to a file.  The file name is made by appending
6755@file{.class} to the source file name, and the file is created in the
6756same directory as the output file.  If the @samp{-@var{options}} form
6757is used, @var{options} controls the details of the dump as described
6758for the @option{-fdump-tree} options.
6759
6760@item -fdump-ipa-@var{switch}
6761@opindex fdump-ipa
6762Control the dumping at various stages of inter-procedural analysis
6763language tree to a file.  The file name is generated by appending a
6764switch specific suffix to the source file name, and the file is created
6765in the same directory as the output file.  The following dumps are
6766possible:
6767
6768@table @samp
6769@item all
6770Enables all inter-procedural analysis dumps.
6771
6772@item cgraph
6773Dumps information about call-graph optimization, unused function removal,
6774and inlining decisions.
6775
6776@item inline
6777Dump after function inlining.
6778
6779@end table
6780
6781@item -fdump-passes
6782@opindex fdump-passes
6783Dump the list of optimization passes that are turned on and off by
6784the current command-line options.
6785
6786@item -fdump-statistics-@var{option}
6787@opindex fdump-statistics
6788Enable and control dumping of pass statistics in a separate file.  The
6789file name is generated by appending a suffix ending in
6790@samp{.statistics} to the source file name, and the file is created in
6791the same directory as the output file.  If the @samp{-@var{option}}
6792form is used, @samp{-stats} causes counters to be summed over the
6793whole compilation unit while @samp{-details} dumps every event as
6794the passes generate them.  The default with no option is to sum
6795counters for each function compiled.
6796
6797@item -fdump-tree-@var{switch}
6798@itemx -fdump-tree-@var{switch}-@var{options}
6799@itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
6800@opindex fdump-tree
6801Control the dumping at various stages of processing the intermediate
6802language tree to a file.  The file name is generated by appending a
6803switch-specific suffix to the source file name, and the file is
6804created in the same directory as the output file. In case of
6805@option{=@var{filename}} option, the dump is output on the given file
6806instead of the auto named dump files.  If the @samp{-@var{options}}
6807form is used, @var{options} is a list of @samp{-} separated options
6808which control the details of the dump.  Not all options are applicable
6809to all dumps; those that are not meaningful are ignored.  The
6810following options are available
6811
6812@table @samp
6813@item address
6814Print the address of each node.  Usually this is not meaningful as it
6815changes according to the environment and source file.  Its primary use
6816is for tying up a dump file with a debug environment.
6817@item asmname
6818If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
6819in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
6820use working backward from mangled names in the assembly file.
6821@item slim
6822When dumping front-end intermediate representations, inhibit dumping
6823of members of a scope or body of a function merely because that scope
6824has been reached.  Only dump such items when they are directly reachable
6825by some other path.
6826
6827When dumping pretty-printed trees, this option inhibits dumping the
6828bodies of control structures.
6829
6830When dumping RTL, print the RTL in slim (condensed) form instead of
6831the default LISP-like representation.
6832@item raw
6833Print a raw representation of the tree.  By default, trees are
6834pretty-printed into a C-like representation.
6835@item details
6836Enable more detailed dumps (not honored by every dump option). Also
6837include information from the optimization passes.
6838@item stats
6839Enable dumping various statistics about the pass (not honored by every dump
6840option).
6841@item blocks
6842Enable showing basic block boundaries (disabled in raw dumps).
6843@item graph
6844For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
6845dump a representation of the control flow graph suitable for viewing with
6846GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
6847the file is pretty-printed as a subgraph, so that GraphViz can render them
6848all in a single plot.
6849
6850This option currently only works for RTL dumps, and the RTL is always
6851dumped in slim form.
6852@item vops
6853Enable showing virtual operands for every statement.
6854@item lineno
6855Enable showing line numbers for statements.
6856@item uid
6857Enable showing the unique ID (@code{DECL_UID}) for each variable.
6858@item verbose
6859Enable showing the tree dump for each statement.
6860@item eh
6861Enable showing the EH region number holding each statement.
6862@item scev
6863Enable showing scalar evolution analysis details.
6864@item optimized
6865Enable showing optimization information (only available in certain
6866passes).
6867@item missed
6868Enable showing missed optimization information (only available in certain
6869passes).
6870@item note
6871Enable other detailed optimization information (only available in
6872certain passes).
6873@item =@var{filename}
6874Instead of an auto named dump file, output into the given file
6875name. The file names @file{stdout} and @file{stderr} are treated
6876specially and are considered already open standard streams. For
6877example,
6878
6879@smallexample
6880gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
6881     -fdump-tree-pre=stderr file.c
6882@end smallexample
6883
6884outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
6885output on to @file{stderr}. If two conflicting dump filenames are
6886given for the same pass, then the latter option overrides the earlier
6887one.
6888
6889@item all
6890Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
6891and @option{lineno}.
6892
6893@item optall
6894Turn on all optimization options, i.e., @option{optimized},
6895@option{missed}, and @option{note}.
6896@end table
6897
6898The following tree dumps are possible:
6899@table @samp
6900
6901@item original
6902@opindex fdump-tree-original
6903Dump before any tree based optimization, to @file{@var{file}.original}.
6904
6905@item optimized
6906@opindex fdump-tree-optimized
6907Dump after all tree based optimization, to @file{@var{file}.optimized}.
6908
6909@item gimple
6910@opindex fdump-tree-gimple
6911Dump each function before and after the gimplification pass to a file.  The
6912file name is made by appending @file{.gimple} to the source file name.
6913
6914@item cfg
6915@opindex fdump-tree-cfg
6916Dump the control flow graph of each function to a file.  The file name is
6917made by appending @file{.cfg} to the source file name.
6918
6919@item ch
6920@opindex fdump-tree-ch
6921Dump each function after copying loop headers.  The file name is made by
6922appending @file{.ch} to the source file name.
6923
6924@item ssa
6925@opindex fdump-tree-ssa
6926Dump SSA related information to a file.  The file name is made by appending
6927@file{.ssa} to the source file name.
6928
6929@item alias
6930@opindex fdump-tree-alias
6931Dump aliasing information for each function.  The file name is made by
6932appending @file{.alias} to the source file name.
6933
6934@item ccp
6935@opindex fdump-tree-ccp
6936Dump each function after CCP@.  The file name is made by appending
6937@file{.ccp} to the source file name.
6938
6939@item storeccp
6940@opindex fdump-tree-storeccp
6941Dump each function after STORE-CCP@.  The file name is made by appending
6942@file{.storeccp} to the source file name.
6943
6944@item pre
6945@opindex fdump-tree-pre
6946Dump trees after partial redundancy elimination.  The file name is made
6947by appending @file{.pre} to the source file name.
6948
6949@item fre
6950@opindex fdump-tree-fre
6951Dump trees after full redundancy elimination.  The file name is made
6952by appending @file{.fre} to the source file name.
6953
6954@item copyprop
6955@opindex fdump-tree-copyprop
6956Dump trees after copy propagation.  The file name is made
6957by appending @file{.copyprop} to the source file name.
6958
6959@item store_copyprop
6960@opindex fdump-tree-store_copyprop
6961Dump trees after store copy-propagation.  The file name is made
6962by appending @file{.store_copyprop} to the source file name.
6963
6964@item dce
6965@opindex fdump-tree-dce
6966Dump each function after dead code elimination.  The file name is made by
6967appending @file{.dce} to the source file name.
6968
6969@item sra
6970@opindex fdump-tree-sra
6971Dump each function after performing scalar replacement of aggregates.  The
6972file name is made by appending @file{.sra} to the source file name.
6973
6974@item sink
6975@opindex fdump-tree-sink
6976Dump each function after performing code sinking.  The file name is made
6977by appending @file{.sink} to the source file name.
6978
6979@item dom
6980@opindex fdump-tree-dom
6981Dump each function after applying dominator tree optimizations.  The file
6982name is made by appending @file{.dom} to the source file name.
6983
6984@item dse
6985@opindex fdump-tree-dse
6986Dump each function after applying dead store elimination.  The file
6987name is made by appending @file{.dse} to the source file name.
6988
6989@item phiopt
6990@opindex fdump-tree-phiopt
6991Dump each function after optimizing PHI nodes into straightline code.  The file
6992name is made by appending @file{.phiopt} to the source file name.
6993
6994@item forwprop
6995@opindex fdump-tree-forwprop
6996Dump each function after forward propagating single use variables.  The file
6997name is made by appending @file{.forwprop} to the source file name.
6998
6999@item copyrename
7000@opindex fdump-tree-copyrename
7001Dump each function after applying the copy rename optimization.  The file
7002name is made by appending @file{.copyrename} to the source file name.
7003
7004@item nrv
7005@opindex fdump-tree-nrv
7006Dump each function after applying the named return value optimization on
7007generic trees.  The file name is made by appending @file{.nrv} to the source
7008file name.
7009
7010@item vect
7011@opindex fdump-tree-vect
7012Dump each function after applying vectorization of loops.  The file name is
7013made by appending @file{.vect} to the source file name.
7014
7015@item slp
7016@opindex fdump-tree-slp
7017Dump each function after applying vectorization of basic blocks.  The file name
7018is made by appending @file{.slp} to the source file name.
7019
7020@item vrp
7021@opindex fdump-tree-vrp
7022Dump each function after Value Range Propagation (VRP).  The file name
7023is made by appending @file{.vrp} to the source file name.
7024
7025@item all
7026@opindex fdump-tree-all
7027Enable all the available tree dumps with the flags provided in this option.
7028@end table
7029
7030@item -fopt-info
7031@itemx -fopt-info-@var{options}
7032@itemx -fopt-info-@var{options}=@var{filename}
7033@opindex fopt-info
7034Controls optimization dumps from various optimization passes. If the
7035@samp{-@var{options}} form is used, @var{options} is a list of
7036@samp{-} separated option keywords to select the dump details and
7037optimizations.  
7038
7039The @var{options} can be divided into two groups: options describing the
7040verbosity of the dump, and options describing which optimizations
7041should be included. The options from both the groups can be freely
7042mixed as they are non-overlapping. However, in case of any conflicts,
7043the later options override the earlier options on the command
7044line. 
7045
7046The following options control the dump verbosity:
7047
7048@table @samp
7049@item optimized
7050Print information when an optimization is successfully applied. It is
7051up to a pass to decide which information is relevant. For example, the
7052vectorizer passes print the source location of loops which are
7053successfully vectorized.
7054@item missed
7055Print information about missed optimizations. Individual passes
7056control which information to include in the output. 
7057@item note
7058Print verbose information about optimizations, such as certain
7059transformations, more detailed messages about decisions etc.
7060@item all
7061Print detailed optimization information. This includes
7062@samp{optimized}, @samp{missed}, and @samp{note}.
7063@end table
7064
7065One or more of the following option keywords can be used to describe a
7066group of optimizations:
7067
7068@table @samp
7069@item ipa
7070Enable dumps from all interprocedural optimizations.
7071@item loop
7072Enable dumps from all loop optimizations.
7073@item inline
7074Enable dumps from all inlining optimizations.
7075@item vec
7076Enable dumps from all vectorization optimizations.
7077@item optall
7078Enable dumps from all optimizations. This is a superset of
7079the optimization groups listed above.
7080@end table
7081
7082If @var{options} is
7083omitted, it defaults to @samp{optimized-optall}, which means to dump all
7084info about successful optimizations from all the passes.  
7085
7086If the @var{filename} is provided, then the dumps from all the
7087applicable optimizations are concatenated into the @var{filename}.
7088Otherwise the dump is output onto @file{stderr}. Though multiple
7089@option{-fopt-info} options are accepted, only one of them can include
7090a @var{filename}. If other filenames are provided then all but the
7091first such option are ignored.
7092
7093Note that the output @var{filename} is overwritten
7094in case of multiple translation units. If a combined output from
7095multiple translation units is desired, @file{stderr} should be used
7096instead.
7097
7098In the following example, the optimization info is output to
7099@file{stderr}:
7100
7101@smallexample
7102gcc -O3 -fopt-info
7103@end smallexample
7104
7105This example:
7106@smallexample
7107gcc -O3 -fopt-info-missed=missed.all
7108@end smallexample
7109
7110@noindent
7111outputs missed optimization report from all the passes into
7112@file{missed.all}, and this one:
7113
7114@smallexample
7115gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7116@end smallexample
7117
7118@noindent
7119prints information about missed optimization opportunities from
7120vectorization passes on @file{stderr}.  
7121Note that @option{-fopt-info-vec-missed} is equivalent to 
7122@option{-fopt-info-missed-vec}.
7123
7124As another example,
7125@smallexample
7126gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7127@end smallexample
7128
7129@noindent
7130outputs information about missed optimizations as well as
7131optimized locations from all the inlining passes into
7132@file{inline.txt}.
7133
7134Finally, consider:
7135
7136@smallexample
7137gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7138@end smallexample
7139
7140@noindent
7141Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7142in conflict since only one output file is allowed. In this case, only
7143the first option takes effect and the subsequent options are
7144ignored. Thus only @file{vec.miss} is produced which contains
7145dumps from the vectorizer about missed opportunities.
7146
7147@item -frandom-seed=@var{string}
7148@opindex frandom-seed
7149This option provides a seed that GCC uses in place of
7150random numbers in generating certain symbol names
7151that have to be different in every compiled file.  It is also used to
7152place unique stamps in coverage data files and the object files that
7153produce them.  You can use the @option{-frandom-seed} option to produce
7154reproducibly identical object files.
7155
7156The @var{string} can either be a number (decimal, octal or hex) or an
7157arbitrary string (in which case it's converted to a number by
7158computing CRC32).
7159
7160The @var{string} should be different for every file you compile.
7161
7162@item -fsched-verbose=@var{n}
7163@opindex fsched-verbose
7164On targets that use instruction scheduling, this option controls the
7165amount of debugging output the scheduler prints.  This information is
7166written to standard error, unless @option{-fdump-rtl-sched1} or
7167@option{-fdump-rtl-sched2} is specified, in which case it is output
7168to the usual dump listing file, @file{.sched1} or @file{.sched2}
7169respectively.  However for @var{n} greater than nine, the output is
7170always printed to standard error.
7171
7172For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7173same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7174For @var{n} greater than one, it also output basic block probabilities,
7175detailed ready list information and unit/insn info.  For @var{n} greater
7176than two, it includes RTL at abort point, control-flow and regions info.
7177And for @var{n} over four, @option{-fsched-verbose} also includes
7178dependence info.
7179
7180@item -save-temps
7181@itemx -save-temps=cwd
7182@opindex save-temps
7183Store the usual ``temporary'' intermediate files permanently; place them
7184in the current directory and name them based on the source file.  Thus,
7185compiling @file{foo.c} with @option{-c -save-temps} produces files
7186@file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
7187preprocessed @file{foo.i} output file even though the compiler now
7188normally uses an integrated preprocessor.
7189
7190When used in combination with the @option{-x} command-line option,
7191@option{-save-temps} is sensible enough to avoid over writing an
7192input source file with the same extension as an intermediate file.
7193The corresponding intermediate file may be obtained by renaming the
7194source file before using @option{-save-temps}.
7195
7196If you invoke GCC in parallel, compiling several different source
7197files that share a common base name in different subdirectories or the
7198same source file compiled for multiple output destinations, it is
7199likely that the different parallel compilers will interfere with each
7200other, and overwrite the temporary files.  For instance:
7201
7202@smallexample
7203gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7204gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7205@end smallexample
7206
7207may result in @file{foo.i} and @file{foo.o} being written to
7208simultaneously by both compilers.
7209
7210@item -save-temps=obj
7211@opindex save-temps=obj
7212Store the usual ``temporary'' intermediate files permanently.  If the
7213@option{-o} option is used, the temporary files are based on the
7214object file.  If the @option{-o} option is not used, the
7215@option{-save-temps=obj} switch behaves like @option{-save-temps}.
7216
7217For example:
7218
7219@smallexample
7220gcc -save-temps=obj -c foo.c
7221gcc -save-temps=obj -c bar.c -o dir/xbar.o
7222gcc -save-temps=obj foobar.c -o dir2/yfoobar
7223@end smallexample
7224
7225@noindent
7226creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7227@file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7228@file{dir2/yfoobar.o}.
7229
7230@item -time@r{[}=@var{file}@r{]}
7231@opindex time
7232Report the CPU time taken by each subprocess in the compilation
7233sequence.  For C source files, this is the compiler proper and assembler
7234(plus the linker if linking is done).
7235
7236Without the specification of an output file, the output looks like this:
7237
7238@smallexample
7239# cc1 0.12 0.01
7240# as 0.00 0.01
7241@end smallexample
7242
7243The first number on each line is the ``user time'', that is time spent
7244executing the program itself.  The second number is ``system time'',
7245time spent executing operating system routines on behalf of the program.
7246Both numbers are in seconds.
7247
7248With the specification of an output file, the output is appended to the
7249named file, and it looks like this:
7250
7251@smallexample
72520.12 0.01 cc1 @var{options}
72530.00 0.01 as @var{options}
7254@end smallexample
7255
7256The ``user time'' and the ``system time'' are moved before the program
7257name, and the options passed to the program are displayed, so that one
7258can later tell what file was being compiled, and with which options.
7259
7260@item -fvar-tracking
7261@opindex fvar-tracking
7262Run variable tracking pass.  It computes where variables are stored at each
7263position in code.  Better debugging information is then generated
7264(if the debugging information format supports this information).
7265
7266It is enabled by default when compiling with optimization (@option{-Os},
7267@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7268the debug info format supports it.
7269
7270@item -fvar-tracking-assignments
7271@opindex fvar-tracking-assignments
7272@opindex fno-var-tracking-assignments
7273Annotate assignments to user variables early in the compilation and
7274attempt to carry the annotations over throughout the compilation all the
7275way to the end, in an attempt to improve debug information while
7276optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
7277
7278It can be enabled even if var-tracking is disabled, in which case
7279annotations are created and maintained, but discarded at the end.
7280By default, this flag is enabled together with @option{-fvar-tracking},
7281except when selective scheduling is enabled.
7282
7283@item -fvar-tracking-assignments-toggle
7284@opindex fvar-tracking-assignments-toggle
7285@opindex fno-var-tracking-assignments-toggle
7286Toggle @option{-fvar-tracking-assignments}, in the same way that
7287@option{-gtoggle} toggles @option{-g}.
7288
7289@item -print-file-name=@var{library}
7290@opindex print-file-name
7291Print the full absolute name of the library file @var{library} that
7292would be used when linking---and don't do anything else.  With this
7293option, GCC does not compile or link anything; it just prints the
7294file name.
7295
7296@item -print-multi-directory
7297@opindex print-multi-directory
7298Print the directory name corresponding to the multilib selected by any
7299other switches present in the command line.  This directory is supposed
7300to exist in @env{GCC_EXEC_PREFIX}.
7301
7302@item -print-multi-lib
7303@opindex print-multi-lib
7304Print the mapping from multilib directory names to compiler switches
7305that enable them.  The directory name is separated from the switches by
7306@samp{;}, and each switch starts with an @samp{@@} instead of the
7307@samp{-}, without spaces between multiple switches.  This is supposed to
7308ease shell processing.
7309
7310@item -print-multi-os-directory
7311@opindex print-multi-os-directory
7312Print the path to OS libraries for the selected
7313multilib, relative to some @file{lib} subdirectory.  If OS libraries are
7314present in the @file{lib} subdirectory and no multilibs are used, this is
7315usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7316sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7317@file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7318subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7319
7320@item -print-multiarch
7321@opindex print-multiarch
7322Print the path to OS libraries for the selected multiarch,
7323relative to some @file{lib} subdirectory.
7324
7325@item -print-prog-name=@var{program}
7326@opindex print-prog-name
7327Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7328
7329@item -print-libgcc-file-name
7330@opindex print-libgcc-file-name
7331Same as @option{-print-file-name=libgcc.a}.
7332
7333This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7334but you do want to link with @file{libgcc.a}.  You can do:
7335
7336@smallexample
7337gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7338@end smallexample
7339
7340@item -print-search-dirs
7341@opindex print-search-dirs
7342Print the name of the configured installation directory and a list of
7343program and library directories @command{gcc} searches---and don't do anything else.
7344
7345This is useful when @command{gcc} prints the error message
7346@samp{installation problem, cannot exec cpp0: No such file or directory}.
7347To resolve this you either need to put @file{cpp0} and the other compiler
7348components where @command{gcc} expects to find them, or you can set the environment
7349variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7350Don't forget the trailing @samp{/}.
7351@xref{Environment Variables}.
7352
7353@item -print-sysroot
7354@opindex print-sysroot
7355Print the target sysroot directory that is used during
7356compilation.  This is the target sysroot specified either at configure
7357time or using the @option{--sysroot} option, possibly with an extra
7358suffix that depends on compilation options.  If no target sysroot is
7359specified, the option prints nothing.
7360
7361@item -print-sysroot-headers-suffix
7362@opindex print-sysroot-headers-suffix
7363Print the suffix added to the target sysroot when searching for
7364headers, or give an error if the compiler is not configured with such
7365a suffix---and don't do anything else.
7366
7367@item -dumpmachine
7368@opindex dumpmachine
7369Print the compiler's target machine (for example,
7370@samp{i686-pc-linux-gnu})---and don't do anything else.
7371
7372@item -dumpversion
7373@opindex dumpversion
7374Print the compiler version (for example, @code{3.0})---and don't do
7375anything else.
7376
7377@item -dumpspecs
7378@opindex dumpspecs
7379Print the compiler's built-in specs---and don't do anything else.  (This
7380is used when GCC itself is being built.)  @xref{Spec Files}.
7381
7382@item -fno-eliminate-unused-debug-types
7383@opindex feliminate-unused-debug-types
7384@opindex fno-eliminate-unused-debug-types
7385Normally, when producing DWARF 2 output, GCC avoids producing debug symbol 
7386output for types that are nowhere used in the source file being compiled.
7387Sometimes it is useful to have GCC emit debugging
7388information for all types declared in a compilation
7389unit, regardless of whether or not they are actually used
7390in that compilation unit, for example 
7391if, in the debugger, you want to cast a value to a type that is
7392not actually used in your program (but is declared).  More often,
7393however, this results in a significant amount of wasted space.
7394@end table
7395
7396@node Optimize Options
7397@section Options That Control Optimization
7398@cindex optimize options
7399@cindex options, optimization
7400
7401These options control various sorts of optimizations.
7402
7403Without any optimization option, the compiler's goal is to reduce the
7404cost of compilation and to make debugging produce the expected
7405results.  Statements are independent: if you stop the program with a
7406breakpoint between statements, you can then assign a new value to any
7407variable or change the program counter to any other statement in the
7408function and get exactly the results you expect from the source
7409code.
7410
7411Turning on optimization flags makes the compiler attempt to improve
7412the performance and/or code size at the expense of compilation time
7413and possibly the ability to debug the program.
7414
7415The compiler performs optimization based on the knowledge it has of the
7416program.  Compiling multiple files at once to a single output file mode allows
7417the compiler to use information gained from all of the files when compiling
7418each of them.
7419
7420Not all optimizations are controlled directly by a flag.  Only
7421optimizations that have a flag are listed in this section.
7422
7423Most optimizations are only enabled if an @option{-O} level is set on
7424the command line.  Otherwise they are disabled, even if individual
7425optimization flags are specified.
7426
7427Depending on the target and how GCC was configured, a slightly different
7428set of optimizations may be enabled at each @option{-O} level than
7429those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
7430to find out the exact set of optimizations that are enabled at each level.
7431@xref{Overall Options}, for examples.
7432
7433@table @gcctabopt
7434@item -O
7435@itemx -O1
7436@opindex O
7437@opindex O1
7438Optimize.  Optimizing compilation takes somewhat more time, and a lot
7439more memory for a large function.
7440
7441With @option{-O}, the compiler tries to reduce code size and execution
7442time, without performing any optimizations that take a great deal of
7443compilation time.
7444
7445@option{-O} turns on the following optimization flags:
7446@gccoptlist{
7447-fauto-inc-dec @gol
7448-fbranch-count-reg @gol
7449-fcombine-stack-adjustments @gol
7450-fcompare-elim @gol
7451-fcprop-registers @gol
7452-fdce @gol
7453-fdefer-pop @gol
7454-fdelayed-branch @gol
7455-fdse @gol
7456-fforward-propagate @gol
7457-fguess-branch-probability @gol
7458-fif-conversion2 @gol
7459-fif-conversion @gol
7460-finline-functions-called-once @gol
7461-fipa-pure-const @gol
7462-fipa-profile @gol
7463-fipa-reference @gol
7464-fmerge-constants @gol
7465-fmove-loop-invariants @gol
7466-fshrink-wrap @gol
7467-fsplit-wide-types @gol
7468-ftree-bit-ccp @gol
7469-ftree-ccp @gol
7470-fssa-phiopt @gol
7471-ftree-ch @gol
7472-ftree-copy-prop @gol
7473-ftree-copyrename @gol
7474-ftree-dce @gol
7475-ftree-dominator-opts @gol
7476-ftree-dse @gol
7477-ftree-forwprop @gol
7478-ftree-fre @gol
7479-ftree-phiprop @gol
7480-ftree-sink @gol
7481-ftree-slsr @gol
7482-ftree-sra @gol
7483-ftree-pta @gol
7484-ftree-ter @gol
7485-funit-at-a-time}
7486
7487@option{-O} also turns on @option{-fomit-frame-pointer} on machines
7488where doing so does not interfere with debugging.
7489
7490@item -O2
7491@opindex O2
7492Optimize even more.  GCC performs nearly all supported optimizations
7493that do not involve a space-speed tradeoff.
7494As compared to @option{-O}, this option increases both compilation time
7495and the performance of the generated code.
7496
7497@option{-O2} turns on all optimization flags specified by @option{-O}.  It
7498also turns on the following optimization flags:
7499@gccoptlist{-fthread-jumps @gol
7500-falign-functions  -falign-jumps @gol
7501-falign-loops  -falign-labels @gol
7502-fcaller-saves @gol
7503-fcrossjumping @gol
7504-fcse-follow-jumps  -fcse-skip-blocks @gol
7505-fdelete-null-pointer-checks @gol
7506-fdevirtualize -fdevirtualize-speculatively @gol
7507-fexpensive-optimizations @gol
7508-fgcse  -fgcse-lm  @gol
7509-fhoist-adjacent-loads @gol
7510-finline-small-functions @gol
7511-findirect-inlining @gol
7512-fipa-cp @gol
7513-fipa-cp-alignment @gol
7514-fipa-sra @gol
7515-fipa-icf @gol
7516-fisolate-erroneous-paths-dereference @gol
7517-flra-remat @gol
7518-foptimize-sibling-calls @gol
7519-foptimize-strlen @gol
7520-fpartial-inlining @gol
7521-fpeephole2 @gol
7522-freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7523-frerun-cse-after-loop  @gol
7524-fsched-interblock  -fsched-spec @gol
7525-fschedule-insns  -fschedule-insns2 @gol
7526-fstrict-aliasing -fstrict-overflow @gol
7527-ftree-builtin-call-dce @gol
7528-ftree-switch-conversion -ftree-tail-merge @gol
7529-ftree-pre @gol
7530-ftree-vrp @gol
7531-fipa-ra}
7532
7533Please note the warning under @option{-fgcse} about
7534invoking @option{-O2} on programs that use computed gotos.
7535
7536@item -O3
7537@opindex O3
7538Optimize yet more.  @option{-O3} turns on all optimizations specified
7539by @option{-O2} and also turns on the @option{-finline-functions},
7540@option{-funswitch-loops}, @option{-fpredictive-commoning},
7541@option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7542@option{-ftree-loop-distribute-patterns},
7543@option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7544@option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7545
7546@item -O0
7547@opindex O0
7548Reduce compilation time and make debugging produce the expected
7549results.  This is the default.
7550
7551@item -Os
7552@opindex Os
7553Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
7554do not typically increase code size.  It also performs further
7555optimizations designed to reduce code size.
7556
7557@option{-Os} disables the following optimization flags:
7558@gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
7559-falign-labels  -freorder-blocks  -freorder-blocks-and-partition @gol
7560-fprefetch-loop-arrays}
7561
7562@item -Ofast
7563@opindex Ofast
7564Disregard strict standards compliance.  @option{-Ofast} enables all
7565@option{-O3} optimizations.  It also enables optimizations that are not
7566valid for all standard-compliant programs.
7567It turns on @option{-ffast-math} and the Fortran-specific
7568@option{-fno-protect-parens} and @option{-fstack-arrays}.
7569
7570@item -Og
7571@opindex Og
7572Optimize debugging experience.  @option{-Og} enables optimizations
7573that do not interfere with debugging. It should be the optimization
7574level of choice for the standard edit-compile-debug cycle, offering
7575a reasonable level of optimization while maintaining fast compilation
7576and a good debugging experience.
7577
7578If you use multiple @option{-O} options, with or without level numbers,
7579the last such option is the one that is effective.
7580@end table
7581
7582Options of the form @option{-f@var{flag}} specify machine-independent
7583flags.  Most flags have both positive and negative forms; the negative
7584form of @option{-ffoo} is @option{-fno-foo}.  In the table
7585below, only one of the forms is listed---the one you typically 
7586use.  You can figure out the other form by either removing @samp{no-}
7587or adding it.
7588
7589The following options control specific optimizations.  They are either
7590activated by @option{-O} options or are related to ones that are.  You
7591can use the following flags in the rare cases when ``fine-tuning'' of
7592optimizations to be performed is desired.
7593
7594@table @gcctabopt
7595@item -fno-defer-pop
7596@opindex fno-defer-pop
7597Always pop the arguments to each function call as soon as that function
7598returns.  For machines that must pop arguments after a function call,
7599the compiler normally lets arguments accumulate on the stack for several
7600function calls and pops them all at once.
7601
7602Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7603
7604@item -fforward-propagate
7605@opindex fforward-propagate
7606Perform a forward propagation pass on RTL@.  The pass tries to combine two
7607instructions and checks if the result can be simplified.  If loop unrolling
7608is active, two passes are performed and the second is scheduled after
7609loop unrolling.
7610
7611This option is enabled by default at optimization levels @option{-O},
7612@option{-O2}, @option{-O3}, @option{-Os}.
7613
7614@item -ffp-contract=@var{style}
7615@opindex ffp-contract
7616@option{-ffp-contract=off} disables floating-point expression contraction.
7617@option{-ffp-contract=fast} enables floating-point expression contraction
7618such as forming of fused multiply-add operations if the target has
7619native support for them.
7620@option{-ffp-contract=on} enables floating-point expression contraction
7621if allowed by the language standard.  This is currently not implemented
7622and treated equal to @option{-ffp-contract=off}.
7623
7624The default is @option{-ffp-contract=fast}.
7625
7626@item -fomit-frame-pointer
7627@opindex fomit-frame-pointer
7628Don't keep the frame pointer in a register for functions that
7629don't need one.  This avoids the instructions to save, set up and
7630restore frame pointers; it also makes an extra register available
7631in many functions.  @strong{It also makes debugging impossible on
7632some machines.}
7633
7634On some machines, such as the VAX, this flag has no effect, because
7635the standard calling sequence automatically handles the frame pointer
7636and nothing is saved by pretending it doesn't exist.  The
7637machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7638whether a target machine supports this flag.  @xref{Registers,,Register
7639Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7640
7641The default setting (when not optimizing for
7642size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7643@option{-fomit-frame-pointer}.  You can configure GCC with the
7644@option{--enable-frame-pointer} configure option to change the default.
7645
7646Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7647
7648@item -foptimize-sibling-calls
7649@opindex foptimize-sibling-calls
7650Optimize sibling and tail recursive calls.
7651
7652Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7653
7654@item -foptimize-strlen
7655@opindex foptimize-strlen
7656Optimize various standard C string functions (e.g. @code{strlen},
7657@code{strchr} or @code{strcpy}) and
7658their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7659
7660Enabled at levels @option{-O2}, @option{-O3}.
7661
7662@item -fno-inline
7663@opindex fno-inline
7664Do not expand any functions inline apart from those marked with
7665the @code{always_inline} attribute.  This is the default when not
7666optimizing.
7667
7668Single functions can be exempted from inlining by marking them
7669with the @code{noinline} attribute.
7670
7671@item -finline-small-functions
7672@opindex finline-small-functions
7673Integrate functions into their callers when their body is smaller than expected
7674function call code (so overall size of program gets smaller).  The compiler
7675heuristically decides which functions are simple enough to be worth integrating
7676in this way.  This inlining applies to all functions, even those not declared
7677inline.
7678
7679Enabled at level @option{-O2}.
7680
7681@item -findirect-inlining
7682@opindex findirect-inlining
7683Inline also indirect calls that are discovered to be known at compile
7684time thanks to previous inlining.  This option has any effect only
7685when inlining itself is turned on by the @option{-finline-functions}
7686or @option{-finline-small-functions} options.
7687
7688Enabled at level @option{-O2}.
7689
7690@item -finline-functions
7691@opindex finline-functions
7692Consider all functions for inlining, even if they are not declared inline.
7693The compiler heuristically decides which functions are worth integrating
7694in this way.
7695
7696If all calls to a given function are integrated, and the function is
7697declared @code{static}, then the function is normally not output as
7698assembler code in its own right.
7699
7700Enabled at level @option{-O3}.
7701
7702@item -finline-functions-called-once
7703@opindex finline-functions-called-once
7704Consider all @code{static} functions called once for inlining into their
7705caller even if they are not marked @code{inline}.  If a call to a given
7706function is integrated, then the function is not output as assembler code
7707in its own right.
7708
7709Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7710
7711@item -fearly-inlining
7712@opindex fearly-inlining
7713Inline functions marked by @code{always_inline} and functions whose body seems
7714smaller than the function call overhead early before doing
7715@option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
7716makes profiling significantly cheaper and usually inlining faster on programs
7717having large chains of nested wrapper functions.
7718
7719Enabled by default.
7720
7721@item -fipa-sra
7722@opindex fipa-sra
7723Perform interprocedural scalar replacement of aggregates, removal of
7724unused parameters and replacement of parameters passed by reference
7725by parameters passed by value.
7726
7727Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7728
7729@item -finline-limit=@var{n}
7730@opindex finline-limit
7731By default, GCC limits the size of functions that can be inlined.  This flag
7732allows coarse control of this limit.  @var{n} is the size of functions that
7733can be inlined in number of pseudo instructions.
7734
7735Inlining is actually controlled by a number of parameters, which may be
7736specified individually by using @option{--param @var{name}=@var{value}}.
7737The @option{-finline-limit=@var{n}} option sets some of these parameters
7738as follows:
7739
7740@table @gcctabopt
7741@item max-inline-insns-single
7742is set to @var{n}/2.
7743@item max-inline-insns-auto
7744is set to @var{n}/2.
7745@end table
7746
7747See below for a documentation of the individual
7748parameters controlling inlining and for the defaults of these parameters.
7749
7750@emph{Note:} there may be no value to @option{-finline-limit} that results
7751in default behavior.
7752
7753@emph{Note:} pseudo instruction represents, in this particular context, an
7754abstract measurement of function's size.  In no way does it represent a count
7755of assembly instructions and as such its exact meaning might change from one
7756release to an another.
7757
7758@item -fno-keep-inline-dllexport
7759@opindex fno-keep-inline-dllexport
7760This is a more fine-grained version of @option{-fkeep-inline-functions},
7761which applies only to functions that are declared using the @code{dllexport}
7762attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7763Functions}.)
7764
7765@item -fkeep-inline-functions
7766@opindex fkeep-inline-functions
7767In C, emit @code{static} functions that are declared @code{inline}
7768into the object file, even if the function has been inlined into all
7769of its callers.  This switch does not affect functions using the
7770@code{extern inline} extension in GNU C90@.  In C++, emit any and all
7771inline functions into the object file.
7772
7773@item -fkeep-static-consts
7774@opindex fkeep-static-consts
7775Emit variables declared @code{static const} when optimization isn't turned
7776on, even if the variables aren't referenced.
7777
7778GCC enables this option by default.  If you want to force the compiler to
7779check if a variable is referenced, regardless of whether or not
7780optimization is turned on, use the @option{-fno-keep-static-consts} option.
7781
7782@item -fmerge-constants
7783@opindex fmerge-constants
7784Attempt to merge identical constants (string constants and floating-point
7785constants) across compilation units.
7786
7787This option is the default for optimized compilation if the assembler and
7788linker support it.  Use @option{-fno-merge-constants} to inhibit this
7789behavior.
7790
7791Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7792
7793@item -fmerge-all-constants
7794@opindex fmerge-all-constants
7795Attempt to merge identical constants and identical variables.
7796
7797This option implies @option{-fmerge-constants}.  In addition to
7798@option{-fmerge-constants} this considers e.g.@: even constant initialized
7799arrays or initialized constant variables with integral or floating-point
7800types.  Languages like C or C++ require each variable, including multiple
7801instances of the same variable in recursive calls, to have distinct locations,
7802so using this option results in non-conforming
7803behavior.
7804
7805@item -fmodulo-sched
7806@opindex fmodulo-sched
7807Perform swing modulo scheduling immediately before the first scheduling
7808pass.  This pass looks at innermost loops and reorders their
7809instructions by overlapping different iterations.
7810
7811@item -fmodulo-sched-allow-regmoves
7812@opindex fmodulo-sched-allow-regmoves
7813Perform more aggressive SMS-based modulo scheduling with register moves
7814allowed.  By setting this flag certain anti-dependences edges are
7815deleted, which triggers the generation of reg-moves based on the
7816life-range analysis.  This option is effective only with
7817@option{-fmodulo-sched} enabled.
7818
7819@item -fno-branch-count-reg
7820@opindex fno-branch-count-reg
7821Do not use ``decrement and branch'' instructions on a count register,
7822but instead generate a sequence of instructions that decrement a
7823register, compare it against zero, then branch based upon the result.
7824This option is only meaningful on architectures that support such
7825instructions, which include x86, PowerPC, IA-64 and S/390.
7826
7827Enabled by default at @option{-O1} and higher.
7828
7829The default is @option{-fbranch-count-reg}.
7830
7831@item -fno-function-cse
7832@opindex fno-function-cse
7833Do not put function addresses in registers; make each instruction that
7834calls a constant function contain the function's address explicitly.
7835
7836This option results in less efficient code, but some strange hacks
7837that alter the assembler output may be confused by the optimizations
7838performed when this option is not used.
7839
7840The default is @option{-ffunction-cse}
7841
7842@item -fno-zero-initialized-in-bss
7843@opindex fno-zero-initialized-in-bss
7844If the target supports a BSS section, GCC by default puts variables that
7845are initialized to zero into BSS@.  This can save space in the resulting
7846code.
7847
7848This option turns off this behavior because some programs explicitly
7849rely on variables going to the data section---e.g., so that the
7850resulting executable can find the beginning of that section and/or make
7851assumptions based on that.
7852
7853The default is @option{-fzero-initialized-in-bss}.
7854
7855@item -fthread-jumps
7856@opindex fthread-jumps
7857Perform optimizations that check to see if a jump branches to a
7858location where another comparison subsumed by the first is found.  If
7859so, the first branch is redirected to either the destination of the
7860second branch or a point immediately following it, depending on whether
7861the condition is known to be true or false.
7862
7863Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7864
7865@item -fsplit-wide-types
7866@opindex fsplit-wide-types
7867When using a type that occupies multiple registers, such as @code{long
7868long} on a 32-bit system, split the registers apart and allocate them
7869independently.  This normally generates better code for those types,
7870but may make debugging more difficult.
7871
7872Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7873@option{-Os}.
7874
7875@item -fcse-follow-jumps
7876@opindex fcse-follow-jumps
7877In common subexpression elimination (CSE), scan through jump instructions
7878when the target of the jump is not reached by any other path.  For
7879example, when CSE encounters an @code{if} statement with an
7880@code{else} clause, CSE follows the jump when the condition
7881tested is false.
7882
7883Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7884
7885@item -fcse-skip-blocks
7886@opindex fcse-skip-blocks
7887This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7888follow jumps that conditionally skip over blocks.  When CSE
7889encounters a simple @code{if} statement with no else clause,
7890@option{-fcse-skip-blocks} causes CSE to follow the jump around the
7891body of the @code{if}.
7892
7893Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7894
7895@item -frerun-cse-after-loop
7896@opindex frerun-cse-after-loop
7897Re-run common subexpression elimination after loop optimizations are
7898performed.
7899
7900Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7901
7902@item -fgcse
7903@opindex fgcse
7904Perform a global common subexpression elimination pass.
7905This pass also performs global constant and copy propagation.
7906
7907@emph{Note:} When compiling a program using computed gotos, a GCC
7908extension, you may get better run-time performance if you disable
7909the global common subexpression elimination pass by adding
7910@option{-fno-gcse} to the command line.
7911
7912Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7913
7914@item -fgcse-lm
7915@opindex fgcse-lm
7916When @option{-fgcse-lm} is enabled, global common subexpression elimination
7917attempts to move loads that are only killed by stores into themselves.  This
7918allows a loop containing a load/store sequence to be changed to a load outside
7919the loop, and a copy/store within the loop.
7920
7921Enabled by default when @option{-fgcse} is enabled.
7922
7923@item -fgcse-sm
7924@opindex fgcse-sm
7925When @option{-fgcse-sm} is enabled, a store motion pass is run after
7926global common subexpression elimination.  This pass attempts to move
7927stores out of loops.  When used in conjunction with @option{-fgcse-lm},
7928loops containing a load/store sequence can be changed to a load before
7929the loop and a store after the loop.
7930
7931Not enabled at any optimization level.
7932
7933@item -fgcse-las
7934@opindex fgcse-las
7935When @option{-fgcse-las} is enabled, the global common subexpression
7936elimination pass eliminates redundant loads that come after stores to the
7937same memory location (both partial and full redundancies).
7938
7939Not enabled at any optimization level.
7940
7941@item -fgcse-after-reload
7942@opindex fgcse-after-reload
7943When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7944pass is performed after reload.  The purpose of this pass is to clean up
7945redundant spilling.
7946
7947@item -faggressive-loop-optimizations
7948@opindex faggressive-loop-optimizations
7949This option tells the loop optimizer to use language constraints to
7950derive bounds for the number of iterations of a loop.  This assumes that
7951loop code does not invoke undefined behavior by for example causing signed
7952integer overflows or out-of-bound array accesses.  The bounds for the
7953number of iterations of a loop are used to guide loop unrolling and peeling
7954and loop exit test optimizations.
7955This option is enabled by default.
7956
7957@item -funsafe-loop-optimizations
7958@opindex funsafe-loop-optimizations
7959This option tells the loop optimizer to assume that loop indices do not
7960overflow, and that loops with nontrivial exit condition are not
7961infinite.  This enables a wider range of loop optimizations even if
7962the loop optimizer itself cannot prove that these assumptions are valid.
7963If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
7964if it finds this kind of loop.
7965
7966@item -fcrossjumping
7967@opindex fcrossjumping
7968Perform cross-jumping transformation.
7969This transformation unifies equivalent code and saves code size.  The
7970resulting code may or may not perform better than without cross-jumping.
7971
7972Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7973
7974@item -fauto-inc-dec
7975@opindex fauto-inc-dec
7976Combine increments or decrements of addresses with memory accesses.
7977This pass is always skipped on architectures that do not have
7978instructions to support this.  Enabled by default at @option{-O} and
7979higher on architectures that support this.
7980
7981@item -fdce
7982@opindex fdce
7983Perform dead code elimination (DCE) on RTL@.
7984Enabled by default at @option{-O} and higher.
7985
7986@item -fdse
7987@opindex fdse
7988Perform dead store elimination (DSE) on RTL@.
7989Enabled by default at @option{-O} and higher.
7990
7991@item -fif-conversion
7992@opindex fif-conversion
7993Attempt to transform conditional jumps into branch-less equivalents.  This
7994includes use of conditional moves, min, max, set flags and abs instructions, and
7995some tricks doable by standard arithmetics.  The use of conditional execution
7996on chips where it is available is controlled by @option{-fif-conversion2}.
7997
7998Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7999
8000@item -fif-conversion2
8001@opindex fif-conversion2
8002Use conditional execution (where available) to transform conditional jumps into
8003branch-less equivalents.
8004
8005Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8006
8007@item -fdeclone-ctor-dtor
8008@opindex fdeclone-ctor-dtor
8009The C++ ABI requires multiple entry points for constructors and
8010destructors: one for a base subobject, one for a complete object, and
8011one for a virtual destructor that calls operator delete afterwards.
8012For a hierarchy with virtual bases, the base and complete variants are
8013clones, which means two copies of the function.  With this option, the
8014base and complete variants are changed to be thunks that call a common
8015implementation.
8016
8017Enabled by @option{-Os}.
8018
8019@item -fdelete-null-pointer-checks
8020@opindex fdelete-null-pointer-checks
8021Assume that programs cannot safely dereference null pointers, and that
8022no code or data element resides there.  This enables simple constant
8023folding optimizations at all optimization levels.  In addition, other
8024optimization passes in GCC use this flag to control global dataflow
8025analyses that eliminate useless checks for null pointers; these assume
8026that if a pointer is checked after it has already been dereferenced,
8027it cannot be null.
8028
8029Note however that in some environments this assumption is not true.
8030Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8031for programs that depend on that behavior.
8032
8033Some targets, especially embedded ones, disable this option at all levels.
8034Otherwise it is enabled at all levels: @option{-O0}, @option{-O1},
8035@option{-O2}, @option{-O3}, @option{-Os}.  Passes that use the information
8036are enabled independently at different optimization levels.
8037
8038@item -fdevirtualize
8039@opindex fdevirtualize
8040Attempt to convert calls to virtual functions to direct calls.  This
8041is done both within a procedure and interprocedurally as part of
8042indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8043propagation (@option{-fipa-cp}).
8044Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8045
8046@item -fdevirtualize-speculatively
8047@opindex fdevirtualize-speculatively
8048Attempt to convert calls to virtual functions to speculative direct calls.
8049Based on the analysis of the type inheritance graph, determine for a given call
8050the set of likely targets. If the set is small, preferably of size 1, change
8051the call into a conditional deciding between direct and indirect calls.  The
8052speculative calls enable more optimizations, such as inlining.  When they seem
8053useless after further optimization, they are converted back into original form.
8054
8055@item -fdevirtualize-at-ltrans
8056@opindex fdevirtualize-at-ltrans
8057Stream extra information needed for aggressive devirtualization when running
8058the link-time optimizer in local transformation mode.  
8059This option enables more devirtualization but
8060significantly increases the size of streamed data. For this reason it is
8061disabled by default.
8062
8063@item -fexpensive-optimizations
8064@opindex fexpensive-optimizations
8065Perform a number of minor optimizations that are relatively expensive.
8066
8067Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8068
8069@item -free
8070@opindex free
8071Attempt to remove redundant extension instructions.  This is especially
8072helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8073registers after writing to their lower 32-bit half.
8074
8075Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8076@option{-O3}, @option{-Os}.
8077
8078@item -fno-lifetime-dse
8079@opindex fno-lifetime-dse
8080In C++ the value of an object is only affected by changes within its
8081lifetime: when the constructor begins, the object has an indeterminate
8082value, and any changes during the lifetime of the object are dead when
8083the object is destroyed.  Normally dead store elimination will take
8084advantage of this; if your code relies on the value of the object
8085storage persisting beyond the lifetime of the object, you can use this
8086flag to disable this optimization.
8087
8088@item -flive-range-shrinkage
8089@opindex flive-range-shrinkage
8090Attempt to decrease register pressure through register live range
8091shrinkage.  This is helpful for fast processors with small or moderate
8092size register sets.
8093
8094@item -fira-algorithm=@var{algorithm}
8095@opindex fira-algorithm
8096Use the specified coloring algorithm for the integrated register
8097allocator.  The @var{algorithm} argument can be @samp{priority}, which
8098specifies Chow's priority coloring, or @samp{CB}, which specifies
8099Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
8100for all architectures, but for those targets that do support it, it is
8101the default because it generates better code.
8102
8103@item -fira-region=@var{region}
8104@opindex fira-region
8105Use specified regions for the integrated register allocator.  The
8106@var{region} argument should be one of the following:
8107
8108@table @samp
8109
8110@item all
8111Use all loops as register allocation regions.
8112This can give the best results for machines with a small and/or
8113irregular register set.
8114
8115@item mixed
8116Use all loops except for loops with small register pressure 
8117as the regions.  This value usually gives
8118the best results in most cases and for most architectures,
8119and is enabled by default when compiling with optimization for speed
8120(@option{-O}, @option{-O2}, @dots{}).
8121
8122@item one
8123Use all functions as a single region.  
8124This typically results in the smallest code size, and is enabled by default for
8125@option{-Os} or @option{-O0}.
8126
8127@end table
8128
8129@item -fira-hoist-pressure
8130@opindex fira-hoist-pressure
8131Use IRA to evaluate register pressure in the code hoisting pass for
8132decisions to hoist expressions.  This option usually results in smaller
8133code, but it can slow the compiler down.
8134
8135This option is enabled at level @option{-Os} for all targets.
8136
8137@item -fira-loop-pressure
8138@opindex fira-loop-pressure
8139Use IRA to evaluate register pressure in loops for decisions to move
8140loop invariants.  This option usually results in generation
8141of faster and smaller code on machines with large register files (>= 32
8142registers), but it can slow the compiler down.
8143
8144This option is enabled at level @option{-O3} for some targets.
8145
8146@item -fno-ira-share-save-slots
8147@opindex fno-ira-share-save-slots
8148Disable sharing of stack slots used for saving call-used hard
8149registers living through a call.  Each hard register gets a
8150separate stack slot, and as a result function stack frames are
8151larger.
8152
8153@item -fno-ira-share-spill-slots
8154@opindex fno-ira-share-spill-slots
8155Disable sharing of stack slots allocated for pseudo-registers.  Each
8156pseudo-register that does not get a hard register gets a separate
8157stack slot, and as a result function stack frames are larger.
8158
8159@item -fira-verbose=@var{n}
8160@opindex fira-verbose
8161Control the verbosity of the dump file for the integrated register allocator.
8162The default value is 5.  If the value @var{n} is greater or equal to 10,
8163the dump output is sent to stderr using the same format as @var{n} minus 10.
8164
8165@item -flra-remat
8166@opindex flra-remat
8167Enable CFG-sensitive rematerialization in LRA.  Instead of loading
8168values of spilled pseudos, LRA tries to rematerialize (recalculate)
8169values if it is profitable.
8170
8171Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8172
8173@item -fdelayed-branch
8174@opindex fdelayed-branch
8175If supported for the target machine, attempt to reorder instructions
8176to exploit instruction slots available after delayed branch
8177instructions.
8178
8179Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8180
8181@item -fschedule-insns
8182@opindex fschedule-insns
8183If supported for the target machine, attempt to reorder instructions to
8184eliminate execution stalls due to required data being unavailable.  This
8185helps machines that have slow floating point or memory load instructions
8186by allowing other instructions to be issued until the result of the load
8187or floating-point instruction is required.
8188
8189Enabled at levels @option{-O2}, @option{-O3}.
8190
8191@item -fschedule-insns2
8192@opindex fschedule-insns2
8193Similar to @option{-fschedule-insns}, but requests an additional pass of
8194instruction scheduling after register allocation has been done.  This is
8195especially useful on machines with a relatively small number of
8196registers and where memory load instructions take more than one cycle.
8197
8198Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8199
8200@item -fno-sched-interblock
8201@opindex fno-sched-interblock
8202Don't schedule instructions across basic blocks.  This is normally
8203enabled by default when scheduling before register allocation, i.e.@:
8204with @option{-fschedule-insns} or at @option{-O2} or higher.
8205
8206@item -fno-sched-spec
8207@opindex fno-sched-spec
8208Don't allow speculative motion of non-load instructions.  This is normally
8209enabled by default when scheduling before register allocation, i.e.@:
8210with @option{-fschedule-insns} or at @option{-O2} or higher.
8211
8212@item -fsched-pressure
8213@opindex fsched-pressure
8214Enable register pressure sensitive insn scheduling before register
8215allocation.  This only makes sense when scheduling before register
8216allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8217@option{-O2} or higher.  Usage of this option can improve the
8218generated code and decrease its size by preventing register pressure
8219increase above the number of available hard registers and subsequent
8220spills in register allocation.
8221
8222@item -fsched-spec-load
8223@opindex fsched-spec-load
8224Allow speculative motion of some load instructions.  This only makes
8225sense when scheduling before register allocation, i.e.@: with
8226@option{-fschedule-insns} or at @option{-O2} or higher.
8227
8228@item -fsched-spec-load-dangerous
8229@opindex fsched-spec-load-dangerous
8230Allow speculative motion of more load instructions.  This only makes
8231sense when scheduling before register allocation, i.e.@: with
8232@option{-fschedule-insns} or at @option{-O2} or higher.
8233
8234@item -fsched-stalled-insns
8235@itemx -fsched-stalled-insns=@var{n}
8236@opindex fsched-stalled-insns
8237Define how many insns (if any) can be moved prematurely from the queue
8238of stalled insns into the ready list during the second scheduling pass.
8239@option{-fno-sched-stalled-insns} means that no insns are moved
8240prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8241on how many queued insns can be moved prematurely.
8242@option{-fsched-stalled-insns} without a value is equivalent to
8243@option{-fsched-stalled-insns=1}.
8244
8245@item -fsched-stalled-insns-dep
8246@itemx -fsched-stalled-insns-dep=@var{n}
8247@opindex fsched-stalled-insns-dep
8248Define how many insn groups (cycles) are examined for a dependency
8249on a stalled insn that is a candidate for premature removal from the queue
8250of stalled insns.  This has an effect only during the second scheduling pass,
8251and only if @option{-fsched-stalled-insns} is used.
8252@option{-fno-sched-stalled-insns-dep} is equivalent to
8253@option{-fsched-stalled-insns-dep=0}.
8254@option{-fsched-stalled-insns-dep} without a value is equivalent to
8255@option{-fsched-stalled-insns-dep=1}.
8256
8257@item -fsched2-use-superblocks
8258@opindex fsched2-use-superblocks
8259When scheduling after register allocation, use superblock scheduling.
8260This allows motion across basic block boundaries,
8261resulting in faster schedules.  This option is experimental, as not all machine
8262descriptions used by GCC model the CPU closely enough to avoid unreliable
8263results from the algorithm.
8264
8265This only makes sense when scheduling after register allocation, i.e.@: with
8266@option{-fschedule-insns2} or at @option{-O2} or higher.
8267
8268@item -fsched-group-heuristic
8269@opindex fsched-group-heuristic
8270Enable the group heuristic in the scheduler.  This heuristic favors
8271the instruction that belongs to a schedule group.  This is enabled
8272by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8273or @option{-fschedule-insns2} or at @option{-O2} or higher.
8274
8275@item -fsched-critical-path-heuristic
8276@opindex fsched-critical-path-heuristic
8277Enable the critical-path heuristic in the scheduler.  This heuristic favors
8278instructions on the critical path.  This is enabled by default when
8279scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8280or @option{-fschedule-insns2} or at @option{-O2} or higher.
8281
8282@item -fsched-spec-insn-heuristic
8283@opindex fsched-spec-insn-heuristic
8284Enable the speculative instruction heuristic in the scheduler.  This
8285heuristic favors speculative instructions with greater dependency weakness.
8286This is enabled by default when scheduling is enabled, i.e.@:
8287with @option{-fschedule-insns} or @option{-fschedule-insns2}
8288or at @option{-O2} or higher.
8289
8290@item -fsched-rank-heuristic
8291@opindex fsched-rank-heuristic
8292Enable the rank heuristic in the scheduler.  This heuristic favors
8293the instruction belonging to a basic block with greater size or frequency.
8294This is enabled by default when scheduling is enabled, i.e.@:
8295with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8296at @option{-O2} or higher.
8297
8298@item -fsched-last-insn-heuristic
8299@opindex fsched-last-insn-heuristic
8300Enable the last-instruction heuristic in the scheduler.  This heuristic
8301favors the instruction that is less dependent on the last instruction
8302scheduled.  This is enabled by default when scheduling is enabled,
8303i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8304at @option{-O2} or higher.
8305
8306@item -fsched-dep-count-heuristic
8307@opindex fsched-dep-count-heuristic
8308Enable the dependent-count heuristic in the scheduler.  This heuristic
8309favors the instruction that has more instructions depending on it.
8310This is enabled by default when scheduling is enabled, i.e.@:
8311with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8312at @option{-O2} or higher.
8313
8314@item -freschedule-modulo-scheduled-loops
8315@opindex freschedule-modulo-scheduled-loops
8316Modulo scheduling is performed before traditional scheduling.  If a loop
8317is modulo scheduled, later scheduling passes may change its schedule.  
8318Use this option to control that behavior.
8319
8320@item -fselective-scheduling
8321@opindex fselective-scheduling
8322Schedule instructions using selective scheduling algorithm.  Selective
8323scheduling runs instead of the first scheduler pass.
8324
8325@item -fselective-scheduling2
8326@opindex fselective-scheduling2
8327Schedule instructions using selective scheduling algorithm.  Selective
8328scheduling runs instead of the second scheduler pass.
8329
8330@item -fsel-sched-pipelining
8331@opindex fsel-sched-pipelining
8332Enable software pipelining of innermost loops during selective scheduling.
8333This option has no effect unless one of @option{-fselective-scheduling} or
8334@option{-fselective-scheduling2} is turned on.
8335
8336@item -fsel-sched-pipelining-outer-loops
8337@opindex fsel-sched-pipelining-outer-loops
8338When pipelining loops during selective scheduling, also pipeline outer loops.
8339This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8340
8341@item -fsemantic-interposition
8342@opindex fsemantic-interposition
8343Some object formats, like ELF, allow interposing of symbols by the 
8344dynamic linker.
8345This means that for symbols exported from the DSO, the compiler cannot perform
8346interprocedural propagation, inlining and other optimizations in anticipation
8347that the function or variable in question may change. While this feature is
8348useful, for example, to rewrite memory allocation functions by a debugging
8349implementation, it is expensive in the terms of code quality.
8350With @option{-fno-semantic-interposition} the compiler assumes that 
8351if interposition happens for functions the overwriting function will have 
8352precisely the same semantics (and side effects). 
8353Similarly if interposition happens
8354for variables, the constructor of the variable will be the same. The flag
8355has no effect for functions explicitly declared inline 
8356(where it is never allowed for interposition to change semantics) 
8357and for symbols explicitly declared weak.
8358
8359@item -fshrink-wrap
8360@opindex fshrink-wrap
8361Emit function prologues only before parts of the function that need it,
8362rather than at the top of the function.  This flag is enabled by default at
8363@option{-O} and higher.
8364
8365@item -fcaller-saves
8366@opindex fcaller-saves
8367Enable allocation of values to registers that are clobbered by
8368function calls, by emitting extra instructions to save and restore the
8369registers around such calls.  Such allocation is done only when it
8370seems to result in better code.
8371
8372This option is always enabled by default on certain machines, usually
8373those which have no call-preserved registers to use instead.
8374
8375Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8376
8377@item -fcombine-stack-adjustments
8378@opindex fcombine-stack-adjustments
8379Tracks stack adjustments (pushes and pops) and stack memory references
8380and then tries to find ways to combine them.
8381
8382Enabled by default at @option{-O1} and higher.
8383
8384@item -fipa-ra
8385@opindex fipa-ra
8386Use caller save registers for allocation if those registers are not used by
8387any called function.  In that case it is not necessary to save and restore
8388them around calls.  This is only possible if called functions are part of
8389same compilation unit as current function and they are compiled before it.
8390
8391Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8392
8393@item -fconserve-stack
8394@opindex fconserve-stack
8395Attempt to minimize stack usage.  The compiler attempts to use less
8396stack space, even if that makes the program slower.  This option
8397implies setting the @option{large-stack-frame} parameter to 100
8398and the @option{large-stack-frame-growth} parameter to 400.
8399
8400@item -ftree-reassoc
8401@opindex ftree-reassoc
8402Perform reassociation on trees.  This flag is enabled by default
8403at @option{-O} and higher.
8404
8405@item -ftree-pre
8406@opindex ftree-pre
8407Perform partial redundancy elimination (PRE) on trees.  This flag is
8408enabled by default at @option{-O2} and @option{-O3}.
8409
8410@item -ftree-partial-pre
8411@opindex ftree-partial-pre
8412Make partial redundancy elimination (PRE) more aggressive.  This flag is
8413enabled by default at @option{-O3}.
8414
8415@item -ftree-forwprop
8416@opindex ftree-forwprop
8417Perform forward propagation on trees.  This flag is enabled by default
8418at @option{-O} and higher.
8419
8420@item -ftree-fre
8421@opindex ftree-fre
8422Perform full redundancy elimination (FRE) on trees.  The difference
8423between FRE and PRE is that FRE only considers expressions
8424that are computed on all paths leading to the redundant computation.
8425This analysis is faster than PRE, though it exposes fewer redundancies.
8426This flag is enabled by default at @option{-O} and higher.
8427
8428@item -ftree-phiprop
8429@opindex ftree-phiprop
8430Perform hoisting of loads from conditional pointers on trees.  This
8431pass is enabled by default at @option{-O} and higher.
8432
8433@item -fhoist-adjacent-loads
8434@opindex fhoist-adjacent-loads
8435Speculatively hoist loads from both branches of an if-then-else if the
8436loads are from adjacent locations in the same structure and the target
8437architecture has a conditional move instruction.  This flag is enabled
8438by default at @option{-O2} and higher.
8439
8440@item -ftree-copy-prop
8441@opindex ftree-copy-prop
8442Perform copy propagation on trees.  This pass eliminates unnecessary
8443copy operations.  This flag is enabled by default at @option{-O} and
8444higher.
8445
8446@item -fipa-pure-const
8447@opindex fipa-pure-const
8448Discover which functions are pure or constant.
8449Enabled by default at @option{-O} and higher.
8450
8451@item -fipa-reference
8452@opindex fipa-reference
8453Discover which static variables do not escape the
8454compilation unit.
8455Enabled by default at @option{-O} and higher.
8456
8457@item -fipa-pta
8458@opindex fipa-pta
8459Perform interprocedural pointer analysis and interprocedural modification
8460and reference analysis.  This option can cause excessive memory and
8461compile-time usage on large compilation units.  It is not enabled by
8462default at any optimization level.
8463
8464@item -fipa-profile
8465@opindex fipa-profile
8466Perform interprocedural profile propagation.  The functions called only from
8467cold functions are marked as cold. Also functions executed once (such as
8468@code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8469functions and loop less parts of functions executed once are then optimized for
8470size.
8471Enabled by default at @option{-O} and higher.
8472
8473@item -fipa-cp
8474@opindex fipa-cp
8475Perform interprocedural constant propagation.
8476This optimization analyzes the program to determine when values passed
8477to functions are constants and then optimizes accordingly.
8478This optimization can substantially increase performance
8479if the application has constants passed to functions.
8480This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8481
8482@item -fipa-cp-clone
8483@opindex fipa-cp-clone
8484Perform function cloning to make interprocedural constant propagation stronger.
8485When enabled, interprocedural constant propagation performs function cloning
8486when externally visible function can be called with constant arguments.
8487Because this optimization can create multiple copies of functions,
8488it may significantly increase code size
8489(see @option{--param ipcp-unit-growth=@var{value}}).
8490This flag is enabled by default at @option{-O3}.
8491
8492@item -fipa-cp-alignment
8493@opindex -fipa-cp-alignment
8494When enabled, this optimization propagates alignment of function
8495parameters to support better vectorization and string operations.
8496
8497This flag is enabled by default at @option{-O2} and @option{-Os}.  It
8498requires that @option{-fipa-cp} is enabled.
8499
8500@item -fipa-icf
8501@opindex fipa-icf
8502Perform Identical Code Folding for functions and read-only variables.
8503The optimization reduces code size and may disturb unwind stacks by replacing
8504a function by equivalent one with a different name. The optimization works
8505more effectively with link time optimization enabled.
8506
8507Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8508works on different levels and thus the optimizations are not same - there are
8509equivalences that are found only by GCC and equivalences found only by Gold.
8510
8511This flag is enabled by default at @option{-O2} and @option{-Os}.
8512
8513@item -fisolate-erroneous-paths-dereference
8514@opindex fisolate-erroneous-paths-dereference
8515Detect paths that trigger erroneous or undefined behavior due to
8516dereferencing a null pointer.  Isolate those paths from the main control
8517flow and turn the statement with erroneous or undefined behavior into a trap.
8518This flag is enabled by default at @option{-O2} and higher.
8519
8520@item -fisolate-erroneous-paths-attribute
8521@opindex fisolate-erroneous-paths-attribute
8522Detect paths that trigger erroneous or undefined behavior due a null value
8523being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8524attribute.  Isolate those paths from the main control flow and turn the
8525statement with erroneous or undefined behavior into a trap.  This is not
8526currently enabled, but may be enabled by @option{-O2} in the future.
8527
8528@item -ftree-sink
8529@opindex ftree-sink
8530Perform forward store motion  on trees.  This flag is
8531enabled by default at @option{-O} and higher.
8532
8533@item -ftree-bit-ccp
8534@opindex ftree-bit-ccp
8535Perform sparse conditional bit constant propagation on trees and propagate
8536pointer alignment information.
8537This pass only operates on local scalar variables and is enabled by default
8538at @option{-O} and higher.  It requires that @option{-ftree-ccp} is enabled.
8539
8540@item -ftree-ccp
8541@opindex ftree-ccp
8542Perform sparse conditional constant propagation (CCP) on trees.  This
8543pass only operates on local scalar variables and is enabled by default
8544at @option{-O} and higher.
8545
8546@item -fssa-phiopt
8547@opindex fssa-phiopt
8548Perform pattern matching on SSA PHI nodes to optimize conditional
8549code.  This pass is enabled by default at @option{-O} and higher.
8550
8551@item -ftree-switch-conversion
8552@opindex ftree-switch-conversion
8553Perform conversion of simple initializations in a switch to
8554initializations from a scalar array.  This flag is enabled by default
8555at @option{-O2} and higher.
8556
8557@item -ftree-tail-merge
8558@opindex ftree-tail-merge
8559Look for identical code sequences.  When found, replace one with a jump to the
8560other.  This optimization is known as tail merging or cross jumping.  This flag
8561is enabled by default at @option{-O2} and higher.  The compilation time
8562in this pass can
8563be limited using @option{max-tail-merge-comparisons} parameter and
8564@option{max-tail-merge-iterations} parameter.
8565
8566@item -ftree-dce
8567@opindex ftree-dce
8568Perform dead code elimination (DCE) on trees.  This flag is enabled by
8569default at @option{-O} and higher.
8570
8571@item -ftree-builtin-call-dce
8572@opindex ftree-builtin-call-dce
8573Perform conditional dead code elimination (DCE) for calls to built-in functions
8574that may set @code{errno} but are otherwise side-effect free.  This flag is
8575enabled by default at @option{-O2} and higher if @option{-Os} is not also
8576specified.
8577
8578@item -ftree-dominator-opts
8579@opindex ftree-dominator-opts
8580Perform a variety of simple scalar cleanups (constant/copy
8581propagation, redundancy elimination, range propagation and expression
8582simplification) based on a dominator tree traversal.  This also
8583performs jump threading (to reduce jumps to jumps). This flag is
8584enabled by default at @option{-O} and higher.
8585
8586@item -ftree-dse
8587@opindex ftree-dse
8588Perform dead store elimination (DSE) on trees.  A dead store is a store into
8589a memory location that is later overwritten by another store without
8590any intervening loads.  In this case the earlier store can be deleted.  This
8591flag is enabled by default at @option{-O} and higher.
8592
8593@item -ftree-ch
8594@opindex ftree-ch
8595Perform loop header copying on trees.  This is beneficial since it increases
8596effectiveness of code motion optimizations.  It also saves one jump.  This flag
8597is enabled by default at @option{-O} and higher.  It is not enabled
8598for @option{-Os}, since it usually increases code size.
8599
8600@item -ftree-loop-optimize
8601@opindex ftree-loop-optimize
8602Perform loop optimizations on trees.  This flag is enabled by default
8603at @option{-O} and higher.
8604
8605@item -ftree-loop-linear
8606@opindex ftree-loop-linear
8607Perform loop interchange transformations on tree.  Same as
8608@option{-floop-interchange}.  To use this code transformation, GCC has
8609to be configured with @option{--with-isl} to enable the Graphite loop
8610transformation infrastructure.
8611
8612@item -floop-interchange
8613@opindex floop-interchange
8614Perform loop interchange transformations on loops.  Interchanging two
8615nested loops switches the inner and outer loops.  For example, given a
8616loop like:
8617@smallexample
8618DO J = 1, M
8619  DO I = 1, N
8620    A(J, I) = A(J, I) * C
8621  ENDDO
8622ENDDO
8623@end smallexample
8624@noindent
8625loop interchange transforms the loop as if it were written:
8626@smallexample
8627DO I = 1, N
8628  DO J = 1, M
8629    A(J, I) = A(J, I) * C
8630  ENDDO
8631ENDDO
8632@end smallexample
8633which can be beneficial when @code{N} is larger than the caches,
8634because in Fortran, the elements of an array are stored in memory
8635contiguously by column, and the original loop iterates over rows,
8636potentially creating at each access a cache miss.  This optimization
8637applies to all the languages supported by GCC and is not limited to
8638Fortran.  To use this code transformation, GCC has to be configured
8639with @option{--with-isl} to enable the Graphite loop transformation
8640infrastructure.
8641
8642@item -floop-strip-mine
8643@opindex floop-strip-mine
8644Perform loop strip mining transformations on loops.  Strip mining
8645splits a loop into two nested loops.  The outer loop has strides
8646equal to the strip size and the inner loop has strides of the
8647original loop within a strip.  The strip length can be changed
8648using the @option{loop-block-tile-size} parameter.  For example,
8649given a loop like:
8650@smallexample
8651DO I = 1, N
8652  A(I) = A(I) + C
8653ENDDO
8654@end smallexample
8655@noindent
8656loop strip mining transforms the loop as if it were written:
8657@smallexample
8658DO II = 1, N, 51
8659  DO I = II, min (II + 50, N)
8660    A(I) = A(I) + C
8661  ENDDO
8662ENDDO
8663@end smallexample
8664This optimization applies to all the languages supported by GCC and is
8665not limited to Fortran.  To use this code transformation, GCC has to
8666be configured with @option{--with-isl} to enable the Graphite loop
8667transformation infrastructure.
8668
8669@item -floop-block
8670@opindex floop-block
8671Perform loop blocking transformations on loops.  Blocking strip mines
8672each loop in the loop nest such that the memory accesses of the
8673element loops fit inside caches.  The strip length can be changed
8674using the @option{loop-block-tile-size} parameter.  For example, given
8675a loop like:
8676@smallexample
8677DO I = 1, N
8678  DO J = 1, M
8679    A(J, I) = B(I) + C(J)
8680  ENDDO
8681ENDDO
8682@end smallexample
8683@noindent
8684loop blocking transforms the loop as if it were written:
8685@smallexample
8686DO II = 1, N, 51
8687  DO JJ = 1, M, 51
8688    DO I = II, min (II + 50, N)
8689      DO J = JJ, min (JJ + 50, M)
8690        A(J, I) = B(I) + C(J)
8691      ENDDO
8692    ENDDO
8693  ENDDO
8694ENDDO
8695@end smallexample
8696which can be beneficial when @code{M} is larger than the caches,
8697because the innermost loop iterates over a smaller amount of data
8698which can be kept in the caches.  This optimization applies to all the
8699languages supported by GCC and is not limited to Fortran.  To use this
8700code transformation, GCC has to be configured with @option{--with-isl}
8701to enable the Graphite loop transformation infrastructure.
8702
8703@item -fgraphite-identity
8704@opindex fgraphite-identity
8705Enable the identity transformation for graphite.  For every SCoP we generate
8706the polyhedral representation and transform it back to gimple.  Using
8707@option{-fgraphite-identity} we can check the costs or benefits of the
8708GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
8709are also performed by the code generator ISL, like index splitting and
8710dead code elimination in loops.
8711
8712@item -floop-nest-optimize
8713@opindex floop-nest-optimize
8714Enable the ISL based loop nest optimizer.  This is a generic loop nest
8715optimizer based on the Pluto optimization algorithms.  It calculates a loop
8716structure optimized for data-locality and parallelism.  This option
8717is experimental.
8718
8719@item -floop-unroll-and-jam
8720@opindex floop-unroll-and-jam
8721Enable unroll and jam for the ISL based loop nest optimizer.  The unroll 
8722factor can be changed using the @option{loop-unroll-jam-size} parameter.
8723The unrolled dimension (counting from the most inner one) can be changed 
8724using the @option{loop-unroll-jam-depth} parameter.                 .
8725
8726@item -floop-parallelize-all
8727@opindex floop-parallelize-all
8728Use the Graphite data dependence analysis to identify loops that can
8729be parallelized.  Parallelize all the loops that can be analyzed to
8730not contain loop carried dependences without checking that it is
8731profitable to parallelize the loops.
8732
8733@item -fcheck-data-deps
8734@opindex fcheck-data-deps
8735Compare the results of several data dependence analyzers.  This option
8736is used for debugging the data dependence analyzers.
8737
8738@item -ftree-loop-if-convert
8739@opindex ftree-loop-if-convert
8740Attempt to transform conditional jumps in the innermost loops to
8741branch-less equivalents.  The intent is to remove control-flow from
8742the innermost loops in order to improve the ability of the
8743vectorization pass to handle these loops.  This is enabled by default
8744if vectorization is enabled.
8745
8746@item -ftree-loop-if-convert-stores
8747@opindex ftree-loop-if-convert-stores
8748Attempt to also if-convert conditional jumps containing memory writes.
8749This transformation can be unsafe for multi-threaded programs as it
8750transforms conditional memory writes into unconditional memory writes.
8751For example,
8752@smallexample
8753for (i = 0; i < N; i++)
8754  if (cond)
8755    A[i] = expr;
8756@end smallexample
8757is transformed to
8758@smallexample
8759for (i = 0; i < N; i++)
8760  A[i] = cond ? expr : A[i];
8761@end smallexample
8762potentially producing data races.
8763
8764@item -ftree-loop-distribution
8765@opindex ftree-loop-distribution
8766Perform loop distribution.  This flag can improve cache performance on
8767big loop bodies and allow further loop optimizations, like
8768parallelization or vectorization, to take place.  For example, the loop
8769@smallexample
8770DO I = 1, N
8771  A(I) = B(I) + C
8772  D(I) = E(I) * F
8773ENDDO
8774@end smallexample
8775is transformed to
8776@smallexample
8777DO I = 1, N
8778   A(I) = B(I) + C
8779ENDDO
8780DO I = 1, N
8781   D(I) = E(I) * F
8782ENDDO
8783@end smallexample
8784
8785@item -ftree-loop-distribute-patterns
8786@opindex ftree-loop-distribute-patterns
8787Perform loop distribution of patterns that can be code generated with
8788calls to a library.  This flag is enabled by default at @option{-O3}.
8789
8790This pass distributes the initialization loops and generates a call to
8791memset zero.  For example, the loop
8792@smallexample
8793DO I = 1, N
8794  A(I) = 0
8795  B(I) = A(I) + I
8796ENDDO
8797@end smallexample
8798is transformed to
8799@smallexample
8800DO I = 1, N
8801   A(I) = 0
8802ENDDO
8803DO I = 1, N
8804   B(I) = A(I) + I
8805ENDDO
8806@end smallexample
8807and the initialization loop is transformed into a call to memset zero.
8808
8809@item -ftree-loop-im
8810@opindex ftree-loop-im
8811Perform loop invariant motion on trees.  This pass moves only invariants that
8812are hard to handle at RTL level (function calls, operations that expand to
8813nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
8814operands of conditions that are invariant out of the loop, so that we can use
8815just trivial invariantness analysis in loop unswitching.  The pass also includes
8816store motion.
8817
8818@item -ftree-loop-ivcanon
8819@opindex ftree-loop-ivcanon
8820Create a canonical counter for number of iterations in loops for which
8821determining number of iterations requires complicated analysis.  Later
8822optimizations then may determine the number easily.  Useful especially
8823in connection with unrolling.
8824
8825@item -fivopts
8826@opindex fivopts
8827Perform induction variable optimizations (strength reduction, induction
8828variable merging and induction variable elimination) on trees.
8829
8830@item -ftree-parallelize-loops=n
8831@opindex ftree-parallelize-loops
8832Parallelize loops, i.e., split their iteration space to run in n threads.
8833This is only possible for loops whose iterations are independent
8834and can be arbitrarily reordered.  The optimization is only
8835profitable on multiprocessor machines, for loops that are CPU-intensive,
8836rather than constrained e.g.@: by memory bandwidth.  This option
8837implies @option{-pthread}, and thus is only supported on targets
8838that have support for @option{-pthread}.
8839
8840@item -ftree-pta
8841@opindex ftree-pta
8842Perform function-local points-to analysis on trees.  This flag is
8843enabled by default at @option{-O} and higher.
8844
8845@item -ftree-sra
8846@opindex ftree-sra
8847Perform scalar replacement of aggregates.  This pass replaces structure
8848references with scalars to prevent committing structures to memory too
8849early.  This flag is enabled by default at @option{-O} and higher.
8850
8851@item -ftree-copyrename
8852@opindex ftree-copyrename
8853Perform copy renaming on trees.  This pass attempts to rename compiler
8854temporaries to other variables at copy locations, usually resulting in
8855variable names which more closely resemble the original variables.  This flag
8856is enabled by default at @option{-O} and higher.
8857
8858@item -ftree-coalesce-inlined-vars
8859@opindex ftree-coalesce-inlined-vars
8860Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8861combine small user-defined variables too, but only if they are inlined
8862from other functions.  It is a more limited form of
8863@option{-ftree-coalesce-vars}.  This may harm debug information of such
8864inlined variables, but it keeps variables of the inlined-into
8865function apart from each other, such that they are more likely to
8866contain the expected values in a debugging session.
8867
8868@item -ftree-coalesce-vars
8869@opindex ftree-coalesce-vars
8870Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8871combine small user-defined variables too, instead of just compiler
8872temporaries.  This may severely limit the ability to debug an optimized
8873program compiled with @option{-fno-var-tracking-assignments}.  In the
8874negated form, this flag prevents SSA coalescing of user variables,
8875including inlined ones.  This option is enabled by default.
8876
8877@item -ftree-ter
8878@opindex ftree-ter
8879Perform temporary expression replacement during the SSA->normal phase.  Single
8880use/single def temporaries are replaced at their use location with their
8881defining expression.  This results in non-GIMPLE code, but gives the expanders
8882much more complex trees to work on resulting in better RTL generation.  This is
8883enabled by default at @option{-O} and higher.
8884
8885@item -ftree-slsr
8886@opindex ftree-slsr
8887Perform straight-line strength reduction on trees.  This recognizes related
8888expressions involving multiplications and replaces them by less expensive
8889calculations when possible.  This is enabled by default at @option{-O} and
8890higher.
8891
8892@item -ftree-vectorize
8893@opindex ftree-vectorize
8894Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8895and @option{-ftree-slp-vectorize} if not explicitly specified.
8896
8897@item -ftree-loop-vectorize
8898@opindex ftree-loop-vectorize
8899Perform loop vectorization on trees. This flag is enabled by default at
8900@option{-O3} and when @option{-ftree-vectorize} is enabled.
8901
8902@item -ftree-slp-vectorize
8903@opindex ftree-slp-vectorize
8904Perform basic block vectorization on trees. This flag is enabled by default at
8905@option{-O3} and when @option{-ftree-vectorize} is enabled.
8906
8907@item -fvect-cost-model=@var{model}
8908@opindex fvect-cost-model
8909Alter the cost model used for vectorization.  The @var{model} argument
8910should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8911With the @samp{unlimited} model the vectorized code-path is assumed
8912to be profitable while with the @samp{dynamic} model a runtime check
8913guards the vectorized code-path to enable it only for iteration
8914counts that will likely execute faster than when executing the original
8915scalar loop.  The @samp{cheap} model disables vectorization of
8916loops where doing so would be cost prohibitive for example due to
8917required runtime checks for data dependence or alignment but otherwise
8918is equal to the @samp{dynamic} model.
8919The default cost model depends on other optimization flags and is
8920either @samp{dynamic} or @samp{cheap}.
8921
8922@item -fsimd-cost-model=@var{model}
8923@opindex fsimd-cost-model
8924Alter the cost model used for vectorization of loops marked with the OpenMP
8925or Cilk Plus simd directive.  The @var{model} argument should be one of
8926@samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
8927have the same meaning as described in @option{-fvect-cost-model} and by
8928default a cost model defined with @option{-fvect-cost-model} is used.
8929
8930@item -ftree-vrp
8931@opindex ftree-vrp
8932Perform Value Range Propagation on trees.  This is similar to the
8933constant propagation pass, but instead of values, ranges of values are
8934propagated.  This allows the optimizers to remove unnecessary range
8935checks like array bound checks and null pointer checks.  This is
8936enabled by default at @option{-O2} and higher.  Null pointer check
8937elimination is only done if @option{-fdelete-null-pointer-checks} is
8938enabled.
8939
8940@item -fsplit-ivs-in-unroller
8941@opindex fsplit-ivs-in-unroller
8942Enables expression of values of induction variables in later iterations
8943of the unrolled loop using the value in the first iteration.  This breaks
8944long dependency chains, thus improving efficiency of the scheduling passes.
8945
8946A combination of @option{-fweb} and CSE is often sufficient to obtain the
8947same effect.  However, that is not reliable in cases where the loop body
8948is more complicated than a single basic block.  It also does not work at all
8949on some architectures due to restrictions in the CSE pass.
8950
8951This optimization is enabled by default.
8952
8953@item -fvariable-expansion-in-unroller
8954@opindex fvariable-expansion-in-unroller
8955With this option, the compiler creates multiple copies of some
8956local variables when unrolling a loop, which can result in superior code.
8957
8958@item -fpartial-inlining
8959@opindex fpartial-inlining
8960Inline parts of functions.  This option has any effect only
8961when inlining itself is turned on by the @option{-finline-functions}
8962or @option{-finline-small-functions} options.
8963
8964Enabled at level @option{-O2}.
8965
8966@item -fpredictive-commoning
8967@opindex fpredictive-commoning
8968Perform predictive commoning optimization, i.e., reusing computations
8969(especially memory loads and stores) performed in previous
8970iterations of loops.
8971
8972This option is enabled at level @option{-O3}.
8973
8974@item -fprefetch-loop-arrays
8975@opindex fprefetch-loop-arrays
8976If supported by the target machine, generate instructions to prefetch
8977memory to improve the performance of loops that access large arrays.
8978
8979This option may generate better or worse code; results are highly
8980dependent on the structure of loops within the source code.
8981
8982Disabled at level @option{-Os}.
8983
8984@item -fno-peephole
8985@itemx -fno-peephole2
8986@opindex fno-peephole
8987@opindex fno-peephole2
8988Disable any machine-specific peephole optimizations.  The difference
8989between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8990are implemented in the compiler; some targets use one, some use the
8991other, a few use both.
8992
8993@option{-fpeephole} is enabled by default.
8994@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8995
8996@item -fno-guess-branch-probability
8997@opindex fno-guess-branch-probability
8998Do not guess branch probabilities using heuristics.
8999
9000GCC uses heuristics to guess branch probabilities if they are
9001not provided by profiling feedback (@option{-fprofile-arcs}).  These
9002heuristics are based on the control flow graph.  If some branch probabilities
9003are specified by @code{__builtin_expect}, then the heuristics are
9004used to guess branch probabilities for the rest of the control flow graph,
9005taking the @code{__builtin_expect} info into account.  The interactions
9006between the heuristics and @code{__builtin_expect} can be complex, and in
9007some cases, it may be useful to disable the heuristics so that the effects
9008of @code{__builtin_expect} are easier to understand.
9009
9010The default is @option{-fguess-branch-probability} at levels
9011@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9012
9013@item -freorder-blocks
9014@opindex freorder-blocks
9015Reorder basic blocks in the compiled function in order to reduce number of
9016taken branches and improve code locality.
9017
9018Enabled at levels @option{-O2}, @option{-O3}.
9019
9020@item -freorder-blocks-and-partition
9021@opindex freorder-blocks-and-partition
9022In addition to reordering basic blocks in the compiled function, in order
9023to reduce number of taken branches, partitions hot and cold basic blocks
9024into separate sections of the assembly and .o files, to improve
9025paging and cache locality performance.
9026
9027This optimization is automatically turned off in the presence of
9028exception handling, for linkonce sections, for functions with a user-defined
9029section attribute and on any architecture that does not support named
9030sections.
9031
9032Enabled for x86 at levels @option{-O2}, @option{-O3}.
9033
9034@item -freorder-functions
9035@opindex freorder-functions
9036Reorder functions in the object file in order to
9037improve code locality.  This is implemented by using special
9038subsections @code{.text.hot} for most frequently executed functions and
9039@code{.text.unlikely} for unlikely executed functions.  Reordering is done by
9040the linker so object file format must support named sections and linker must
9041place them in a reasonable way.
9042
9043Also profile feedback must be available to make this option effective.  See
9044@option{-fprofile-arcs} for details.
9045
9046Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9047
9048@item -fstrict-aliasing
9049@opindex fstrict-aliasing
9050Allow the compiler to assume the strictest aliasing rules applicable to
9051the language being compiled.  For C (and C++), this activates
9052optimizations based on the type of expressions.  In particular, an
9053object of one type is assumed never to reside at the same address as an
9054object of a different type, unless the types are almost the same.  For
9055example, an @code{unsigned int} can alias an @code{int}, but not a
9056@code{void*} or a @code{double}.  A character type may alias any other
9057type.
9058
9059@anchor{Type-punning}Pay special attention to code like this:
9060@smallexample
9061union a_union @{
9062  int i;
9063  double d;
9064@};
9065
9066int f() @{
9067  union a_union t;
9068  t.d = 3.0;
9069  return t.i;
9070@}
9071@end smallexample
9072The practice of reading from a different union member than the one most
9073recently written to (called ``type-punning'') is common.  Even with
9074@option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9075is accessed through the union type.  So, the code above works as
9076expected.  @xref{Structures unions enumerations and bit-fields
9077implementation}.  However, this code might not:
9078@smallexample
9079int f() @{
9080  union a_union t;
9081  int* ip;
9082  t.d = 3.0;
9083  ip = &t.i;
9084  return *ip;
9085@}
9086@end smallexample
9087
9088Similarly, access by taking the address, casting the resulting pointer
9089and dereferencing the result has undefined behavior, even if the cast
9090uses a union type, e.g.:
9091@smallexample
9092int f() @{
9093  double d = 3.0;
9094  return ((union a_union *) &d)->i;
9095@}
9096@end smallexample
9097
9098The @option{-fstrict-aliasing} option is enabled at levels
9099@option{-O2}, @option{-O3}, @option{-Os}.
9100
9101@item -fstrict-overflow
9102@opindex fstrict-overflow
9103Allow the compiler to assume strict signed overflow rules, depending
9104on the language being compiled.  For C (and C++) this means that
9105overflow when doing arithmetic with signed numbers is undefined, which
9106means that the compiler may assume that it does not happen.  This
9107permits various optimizations.  For example, the compiler assumes
9108that an expression like @code{i + 10 > i} is always true for
9109signed @code{i}.  This assumption is only valid if signed overflow is
9110undefined, as the expression is false if @code{i + 10} overflows when
9111using twos complement arithmetic.  When this option is in effect any
9112attempt to determine whether an operation on signed numbers 
9113overflows must be written carefully to not actually involve overflow.
9114
9115This option also allows the compiler to assume strict pointer
9116semantics: given a pointer to an object, if adding an offset to that
9117pointer does not produce a pointer to the same object, the addition is
9118undefined.  This permits the compiler to conclude that @code{p + u >
9119p} is always true for a pointer @code{p} and unsigned integer
9120@code{u}.  This assumption is only valid because pointer wraparound is
9121undefined, as the expression is false if @code{p + u} overflows using
9122twos complement arithmetic.
9123
9124See also the @option{-fwrapv} option.  Using @option{-fwrapv} means
9125that integer signed overflow is fully defined: it wraps.  When
9126@option{-fwrapv} is used, there is no difference between
9127@option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9128integers.  With @option{-fwrapv} certain types of overflow are
9129permitted.  For example, if the compiler gets an overflow when doing
9130arithmetic on constants, the overflowed value can still be used with
9131@option{-fwrapv}, but not otherwise.
9132
9133The @option{-fstrict-overflow} option is enabled at levels
9134@option{-O2}, @option{-O3}, @option{-Os}.
9135
9136@item -falign-functions
9137@itemx -falign-functions=@var{n}
9138@opindex falign-functions
9139Align the start of functions to the next power-of-two greater than
9140@var{n}, skipping up to @var{n} bytes.  For instance,
9141@option{-falign-functions=32} aligns functions to the next 32-byte
9142boundary, but @option{-falign-functions=24} aligns to the next
914332-byte boundary only if this can be done by skipping 23 bytes or less.
9144
9145@option{-fno-align-functions} and @option{-falign-functions=1} are
9146equivalent and mean that functions are not aligned.
9147
9148Some assemblers only support this flag when @var{n} is a power of two;
9149in that case, it is rounded up.
9150
9151If @var{n} is not specified or is zero, use a machine-dependent default.
9152
9153Enabled at levels @option{-O2}, @option{-O3}.
9154
9155@item -falign-labels
9156@itemx -falign-labels=@var{n}
9157@opindex falign-labels
9158Align all branch targets to a power-of-two boundary, skipping up to
9159@var{n} bytes like @option{-falign-functions}.  This option can easily
9160make code slower, because it must insert dummy operations for when the
9161branch target is reached in the usual flow of the code.
9162
9163@option{-fno-align-labels} and @option{-falign-labels=1} are
9164equivalent and mean that labels are not aligned.
9165
9166If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9167are greater than this value, then their values are used instead.
9168
9169If @var{n} is not specified or is zero, use a machine-dependent default
9170which is very likely to be @samp{1}, meaning no alignment.
9171
9172Enabled at levels @option{-O2}, @option{-O3}.
9173
9174@item -falign-loops
9175@itemx -falign-loops=@var{n}
9176@opindex falign-loops
9177Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9178like @option{-falign-functions}.  If the loops are
9179executed many times, this makes up for any execution of the dummy
9180operations.
9181
9182@option{-fno-align-loops} and @option{-falign-loops=1} are
9183equivalent and mean that loops are not aligned.
9184
9185If @var{n} is not specified or is zero, use a machine-dependent default.
9186
9187Enabled at levels @option{-O2}, @option{-O3}.
9188
9189@item -falign-jumps
9190@itemx -falign-jumps=@var{n}
9191@opindex falign-jumps
9192Align branch targets to a power-of-two boundary, for branch targets
9193where the targets can only be reached by jumping, skipping up to @var{n}
9194bytes like @option{-falign-functions}.  In this case, no dummy operations
9195need be executed.
9196
9197@option{-fno-align-jumps} and @option{-falign-jumps=1} are
9198equivalent and mean that loops are not aligned.
9199
9200If @var{n} is not specified or is zero, use a machine-dependent default.
9201
9202Enabled at levels @option{-O2}, @option{-O3}.
9203
9204@item -funit-at-a-time
9205@opindex funit-at-a-time
9206This option is left for compatibility reasons. @option{-funit-at-a-time}
9207has no effect, while @option{-fno-unit-at-a-time} implies
9208@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9209
9210Enabled by default.
9211
9212@item -fno-toplevel-reorder
9213@opindex fno-toplevel-reorder
9214Do not reorder top-level functions, variables, and @code{asm}
9215statements.  Output them in the same order that they appear in the
9216input file.  When this option is used, unreferenced static variables
9217are not removed.  This option is intended to support existing code
9218that relies on a particular ordering.  For new code, it is better to
9219use attributes when possible.
9220
9221Enabled at level @option{-O0}.  When disabled explicitly, it also implies
9222@option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9223targets.
9224
9225@item -fweb
9226@opindex fweb
9227Constructs webs as commonly used for register allocation purposes and assign
9228each web individual pseudo register.  This allows the register allocation pass
9229to operate on pseudos directly, but also strengthens several other optimization
9230passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
9231however, make debugging impossible, since variables no longer stay in a
9232``home register''.
9233
9234Enabled by default with @option{-funroll-loops}.
9235
9236@item -fwhole-program
9237@opindex fwhole-program
9238Assume that the current compilation unit represents the whole program being
9239compiled.  All public functions and variables with the exception of @code{main}
9240and those merged by attribute @code{externally_visible} become static functions
9241and in effect are optimized more aggressively by interprocedural optimizers.
9242
9243This option should not be used in combination with @option{-flto}.
9244Instead relying on a linker plugin should provide safer and more precise
9245information.
9246
9247@item -flto[=@var{n}]
9248@opindex flto
9249This option runs the standard link-time optimizer.  When invoked
9250with source code, it generates GIMPLE (one of GCC's internal
9251representations) and writes it to special ELF sections in the object
9252file.  When the object files are linked together, all the function
9253bodies are read from these ELF sections and instantiated as if they
9254had been part of the same translation unit.
9255
9256To use the link-time optimizer, @option{-flto} and optimization
9257options should be specified at compile time and during the final link.
9258For example:
9259
9260@smallexample
9261gcc -c -O2 -flto foo.c
9262gcc -c -O2 -flto bar.c
9263gcc -o myprog -flto -O2 foo.o bar.o
9264@end smallexample
9265
9266The first two invocations to GCC save a bytecode representation
9267of GIMPLE into special ELF sections inside @file{foo.o} and
9268@file{bar.o}.  The final invocation reads the GIMPLE bytecode from
9269@file{foo.o} and @file{bar.o}, merges the two files into a single
9270internal image, and compiles the result as usual.  Since both
9271@file{foo.o} and @file{bar.o} are merged into a single image, this
9272causes all the interprocedural analyses and optimizations in GCC to
9273work across the two files as if they were a single one.  This means,
9274for example, that the inliner is able to inline functions in
9275@file{bar.o} into functions in @file{foo.o} and vice-versa.
9276
9277Another (simpler) way to enable link-time optimization is:
9278
9279@smallexample
9280gcc -o myprog -flto -O2 foo.c bar.c
9281@end smallexample
9282
9283The above generates bytecode for @file{foo.c} and @file{bar.c},
9284merges them together into a single GIMPLE representation and optimizes
9285them as usual to produce @file{myprog}.
9286
9287The only important thing to keep in mind is that to enable link-time
9288optimizations you need to use the GCC driver to perform the link-step.
9289GCC then automatically performs link-time optimization if any of the
9290objects involved were compiled with the @option{-flto} command-line option.  
9291You generally
9292should specify the optimization options to be used for link-time
9293optimization though GCC tries to be clever at guessing an
9294optimization level to use from the options used at compile-time
9295if you fail to specify one at link-time.  You can always override
9296the automatic decision to do link-time optimization at link-time
9297by passing @option{-fno-lto} to the link command.
9298
9299To make whole program optimization effective, it is necessary to make
9300certain whole program assumptions.  The compiler needs to know
9301what functions and variables can be accessed by libraries and runtime
9302outside of the link-time optimized unit.  When supported by the linker,
9303the linker plugin (see @option{-fuse-linker-plugin}) passes information
9304to the compiler about used and externally visible symbols.  When
9305the linker plugin is not available, @option{-fwhole-program} should be
9306used to allow the compiler to make these assumptions, which leads
9307to more aggressive optimization decisions.
9308
9309When @option{-fuse-linker-plugin} is not enabled then, when a file is
9310compiled with @option{-flto}, the generated object file is larger than
9311a regular object file because it contains GIMPLE bytecodes and the usual
9312final code (see @option{-ffat-lto-objects}.  This means that
9313object files with LTO information can be linked as normal object
9314files; if @option{-fno-lto} is passed to the linker, no
9315interprocedural optimizations are applied.  Note that when
9316@option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9317but you cannot perform a regular, non-LTO link on them.
9318
9319Additionally, the optimization flags used to compile individual files
9320are not necessarily related to those used at link time.  For instance,
9321
9322@smallexample
9323gcc -c -O0 -ffat-lto-objects -flto foo.c
9324gcc -c -O0 -ffat-lto-objects -flto bar.c
9325gcc -o myprog -O3 foo.o bar.o
9326@end smallexample
9327
9328This produces individual object files with unoptimized assembler
9329code, but the resulting binary @file{myprog} is optimized at
9330@option{-O3}.  If, instead, the final binary is generated with
9331@option{-fno-lto}, then @file{myprog} is not optimized.
9332
9333When producing the final binary, GCC only
9334applies link-time optimizations to those files that contain bytecode.
9335Therefore, you can mix and match object files and libraries with
9336GIMPLE bytecodes and final object code.  GCC automatically selects
9337which files to optimize in LTO mode and which files to link without
9338further processing.
9339
9340There are some code generation flags preserved by GCC when
9341generating bytecodes, as they need to be used during the final link
9342stage.  Generally options specified at link-time override those
9343specified at compile-time.
9344
9345If you do not specify an optimization level option @option{-O} at
9346link-time then GCC computes one based on the optimization levels
9347used when compiling the object files.  The highest optimization
9348level wins here.
9349
9350Currently, the following options and their setting are take from
9351the first object file that explicitely specified it: 
9352@option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9353@option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9354and all the @option{-m} target flags.
9355
9356Certain ABI changing flags are required to match in all compilation-units
9357and trying to override this at link-time with a conflicting value
9358is ignored.  This includes options such as @option{-freg-struct-return}
9359and @option{-fpcc-struct-return}. 
9360
9361Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9362@option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9363are passed through to the link stage and merged conservatively for
9364conflicting translation units.  Specifically
9365@option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9366precedence and for example @option{-ffp-contract=off} takes precedence
9367over @option{-ffp-contract=fast}.  You can override them at linke-time.
9368
9369It is recommended that you compile all the files participating in the
9370same link with the same options and also specify those options at
9371link time.
9372
9373If LTO encounters objects with C linkage declared with incompatible
9374types in separate translation units to be linked together (undefined
9375behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9376issued.  The behavior is still undefined at run time.  Similar
9377diagnostics may be raised for other languages.
9378
9379Another feature of LTO is that it is possible to apply interprocedural
9380optimizations on files written in different languages:
9381
9382@smallexample
9383gcc -c -flto foo.c
9384g++ -c -flto bar.cc
9385gfortran -c -flto baz.f90
9386g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9387@end smallexample
9388
9389Notice that the final link is done with @command{g++} to get the C++
9390runtime libraries and @option{-lgfortran} is added to get the Fortran
9391runtime libraries.  In general, when mixing languages in LTO mode, you
9392should use the same link command options as when mixing languages in a
9393regular (non-LTO) compilation.
9394
9395If object files containing GIMPLE bytecode are stored in a library archive, say
9396@file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9397are using a linker with plugin support.  To create static libraries suitable
9398for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9399and @command{ranlib}; 
9400to show the symbols of object files with GIMPLE bytecode, use
9401@command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
9402and @command{nm} have been compiled with plugin support.  At link time, use the the
9403flag @option{-fuse-linker-plugin} to ensure that the library participates in
9404the LTO optimization process:
9405
9406@smallexample
9407gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9408@end smallexample
9409
9410With the linker plugin enabled, the linker extracts the needed
9411GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9412to make them part of the aggregated GIMPLE image to be optimized.
9413
9414If you are not using a linker with plugin support and/or do not
9415enable the linker plugin, then the objects inside @file{libfoo.a}
9416are extracted and linked as usual, but they do not participate
9417in the LTO optimization process.  In order to make a static library suitable
9418for both LTO optimization and usual linkage, compile its object files with
9419@option{-flto} @option{-ffat-lto-objects}.
9420
9421Link-time optimizations do not require the presence of the whole program to
9422operate.  If the program does not require any symbols to be exported, it is
9423possible to combine @option{-flto} and @option{-fwhole-program} to allow
9424the interprocedural optimizers to use more aggressive assumptions which may
9425lead to improved optimization opportunities.
9426Use of @option{-fwhole-program} is not needed when linker plugin is
9427active (see @option{-fuse-linker-plugin}).
9428
9429The current implementation of LTO makes no
9430attempt to generate bytecode that is portable between different
9431types of hosts.  The bytecode files are versioned and there is a
9432strict version check, so bytecode files generated in one version of
9433GCC do not work with an older or newer version of GCC.
9434
9435Link-time optimization does not work well with generation of debugging
9436information.  Combining @option{-flto} with
9437@option{-g} is currently experimental and expected to produce unexpected
9438results.
9439
9440If you specify the optional @var{n}, the optimization and code
9441generation done at link time is executed in parallel using @var{n}
9442parallel jobs by utilizing an installed @command{make} program.  The
9443environment variable @env{MAKE} may be used to override the program
9444used.  The default value for @var{n} is 1.
9445
9446You can also specify @option{-flto=jobserver} to use GNU make's
9447job server mode to determine the number of parallel jobs. This
9448is useful when the Makefile calling GCC is already executing in parallel.
9449You must prepend a @samp{+} to the command recipe in the parent Makefile
9450for this to work.  This option likely only works if @env{MAKE} is
9451GNU make.
9452
9453@item -flto-partition=@var{alg}
9454@opindex flto-partition
9455Specify the partitioning algorithm used by the link-time optimizer.
9456The value is either @samp{1to1} to specify a partitioning mirroring
9457the original source files or @samp{balanced} to specify partitioning
9458into equally sized chunks (whenever possible) or @samp{max} to create
9459new partition for every symbol where possible.  Specifying @samp{none}
9460as an algorithm disables partitioning and streaming completely. 
9461The default value is @samp{balanced}. While @samp{1to1} can be used
9462as an workaround for various code ordering issues, the @samp{max}
9463partitioning is intended for internal testing only.
9464The value @samp{one} specifies that exactly one partition should be
9465used while the value @samp{none} bypasses partitioning and executes
9466the link-time optimization step directly from the WPA phase.
9467
9468@item -flto-odr-type-merging
9469@opindex flto-odr-type-merging
9470Enable streaming of mangled types names of C++ types and their unification
9471at linktime.  This increases size of LTO object files, but enable
9472diagnostics about One Definition Rule violations.
9473
9474@item -flto-compression-level=@var{n}
9475@opindex flto-compression-level
9476This option specifies the level of compression used for intermediate
9477language written to LTO object files, and is only meaningful in
9478conjunction with LTO mode (@option{-flto}).  Valid
9479values are 0 (no compression) to 9 (maximum compression).  Values
9480outside this range are clamped to either 0 or 9.  If the option is not
9481given, a default balanced compression setting is used.
9482
9483@item -flto-report
9484@opindex flto-report
9485Prints a report with internal details on the workings of the link-time
9486optimizer.  The contents of this report vary from version to version.
9487It is meant to be useful to GCC developers when processing object
9488files in LTO mode (via @option{-flto}).
9489
9490Disabled by default.
9491
9492@item -flto-report-wpa
9493@opindex flto-report-wpa
9494Like @option{-flto-report}, but only print for the WPA phase of Link
9495Time Optimization.
9496
9497@item -fuse-linker-plugin
9498@opindex fuse-linker-plugin
9499Enables the use of a linker plugin during link-time optimization.  This
9500option relies on plugin support in the linker, which is available in gold
9501or in GNU ld 2.21 or newer.
9502
9503This option enables the extraction of object files with GIMPLE bytecode out
9504of library archives. This improves the quality of optimization by exposing
9505more code to the link-time optimizer.  This information specifies what
9506symbols can be accessed externally (by non-LTO object or during dynamic
9507linking).  Resulting code quality improvements on binaries (and shared
9508libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9509See @option{-flto} for a description of the effect of this flag and how to
9510use it.
9511
9512This option is enabled by default when LTO support in GCC is enabled
9513and GCC was configured for use with
9514a linker supporting plugins (GNU ld 2.21 or newer or gold).
9515
9516@item -ffat-lto-objects
9517@opindex ffat-lto-objects
9518Fat LTO objects are object files that contain both the intermediate language
9519and the object code. This makes them usable for both LTO linking and normal
9520linking. This option is effective only when compiling with @option{-flto}
9521and is ignored at link time.
9522
9523@option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9524requires the complete toolchain to be aware of LTO. It requires a linker with
9525linker plugin support for basic functionality.  Additionally,
9526@command{nm}, @command{ar} and @command{ranlib}
9527need to support linker plugins to allow a full-featured build environment
9528(capable of building static libraries etc).  GCC provides the @command{gcc-ar},
9529@command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9530to these tools. With non fat LTO makefiles need to be modified to use them.
9531
9532The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9533support.
9534
9535@item -fcompare-elim
9536@opindex fcompare-elim
9537After register allocation and post-register allocation instruction splitting,
9538identify arithmetic instructions that compute processor flags similar to a
9539comparison operation based on that arithmetic.  If possible, eliminate the
9540explicit comparison operation.
9541
9542This pass only applies to certain targets that cannot explicitly represent
9543the comparison operation before register allocation is complete.
9544
9545Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9546
9547@item -fcprop-registers
9548@opindex fcprop-registers
9549After register allocation and post-register allocation instruction splitting,
9550perform a copy-propagation pass to try to reduce scheduling dependencies
9551and occasionally eliminate the copy.
9552
9553Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9554
9555@item -fprofile-correction
9556@opindex fprofile-correction
9557Profiles collected using an instrumented binary for multi-threaded programs may
9558be inconsistent due to missed counter updates. When this option is specified,
9559GCC uses heuristics to correct or smooth out such inconsistencies. By
9560default, GCC emits an error message when an inconsistent profile is detected.
9561
9562@item -fprofile-dir=@var{path}
9563@opindex fprofile-dir
9564
9565Set the directory to search for the profile data files in to @var{path}.
9566This option affects only the profile data generated by
9567@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9568and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9569and its related options.  Both absolute and relative paths can be used.
9570By default, GCC uses the current directory as @var{path}, thus the
9571profile data file appears in the same directory as the object file.
9572
9573@item -fprofile-generate
9574@itemx -fprofile-generate=@var{path}
9575@opindex fprofile-generate
9576
9577Enable options usually used for instrumenting application to produce
9578profile useful for later recompilation with profile feedback based
9579optimization.  You must use @option{-fprofile-generate} both when
9580compiling and when linking your program.
9581
9582The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9583
9584If @var{path} is specified, GCC looks at the @var{path} to find
9585the profile feedback data files. See @option{-fprofile-dir}.
9586
9587@item -fprofile-use
9588@itemx -fprofile-use=@var{path}
9589@opindex fprofile-use
9590Enable profile feedback-directed optimizations, 
9591and the following optimizations
9592which are generally profitable only with profile feedback available:
9593@option{-fbranch-probabilities}, @option{-fvpt},
9594@option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer}, 
9595@option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9596
9597By default, GCC emits an error message if the feedback profiles do not
9598match the source code.  This error can be turned into a warning by using
9599@option{-Wcoverage-mismatch}.  Note this may result in poorly optimized
9600code.
9601
9602If @var{path} is specified, GCC looks at the @var{path} to find
9603the profile feedback data files. See @option{-fprofile-dir}.
9604
9605@item -fauto-profile
9606@itemx -fauto-profile=@var{path}
9607@opindex fauto-profile
9608Enable sampling-based feedback-directed optimizations, 
9609and the following optimizations
9610which are generally profitable only with profile feedback available:
9611@option{-fbranch-probabilities}, @option{-fvpt},
9612@option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer}, 
9613@option{-ftree-vectorize},
9614@option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9615@option{-fpredictive-commoning}, @option{-funswitch-loops},
9616@option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9617
9618@var{path} is the name of a file containing AutoFDO profile information.
9619If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9620
9621Producing an AutoFDO profile data file requires running your program
9622with the @command{perf} utility on a supported GNU/Linux target system.
9623For more information, see @uref{https://perf.wiki.kernel.org/}.
9624
9625E.g.
9626@smallexample
9627perf record -e br_inst_retired:near_taken -b -o perf.data \
9628    -- your_program
9629@end smallexample
9630
9631Then use the @command{create_gcov} tool to convert the raw profile data
9632to a format that can be used by GCC.@  You must also supply the 
9633unstripped binary for your program to this tool.  
9634See @uref{https://github.com/google/autofdo}.
9635
9636E.g.
9637@smallexample
9638create_gcov --binary=your_program.unstripped --profile=perf.data \
9639    --gcov=profile.afdo
9640@end smallexample
9641@end table
9642
9643The following options control compiler behavior regarding floating-point 
9644arithmetic.  These options trade off between speed and
9645correctness.  All must be specifically enabled.
9646
9647@table @gcctabopt
9648@item -ffloat-store
9649@opindex ffloat-store
9650Do not store floating-point variables in registers, and inhibit other
9651options that might change whether a floating-point value is taken from a
9652register or memory.
9653
9654@cindex floating-point precision
9655This option prevents undesirable excess precision on machines such as
9656the 68000 where the floating registers (of the 68881) keep more
9657precision than a @code{double} is supposed to have.  Similarly for the
9658x86 architecture.  For most programs, the excess precision does only
9659good, but a few programs rely on the precise definition of IEEE floating
9660point.  Use @option{-ffloat-store} for such programs, after modifying
9661them to store all pertinent intermediate computations into variables.
9662
9663@item -fexcess-precision=@var{style}
9664@opindex fexcess-precision
9665This option allows further control over excess precision on machines
9666where floating-point registers have more precision than the IEEE
9667@code{float} and @code{double} types and the processor does not
9668support operations rounding to those types.  By default,
9669@option{-fexcess-precision=fast} is in effect; this means that
9670operations are carried out in the precision of the registers and that
9671it is unpredictable when rounding to the types specified in the source
9672code takes place.  When compiling C, if
9673@option{-fexcess-precision=standard} is specified then excess
9674precision follows the rules specified in ISO C99; in particular,
9675both casts and assignments cause values to be rounded to their
9676semantic types (whereas @option{-ffloat-store} only affects
9677assignments).  This option is enabled by default for C if a strict
9678conformance option such as @option{-std=c99} is used.
9679
9680@opindex mfpmath
9681@option{-fexcess-precision=standard} is not implemented for languages
9682other than C, and has no effect if
9683@option{-funsafe-math-optimizations} or @option{-ffast-math} is
9684specified.  On the x86, it also has no effect if @option{-mfpmath=sse}
9685or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9686semantics apply without excess precision, and in the latter, rounding
9687is unpredictable.
9688
9689@item -ffast-math
9690@opindex ffast-math
9691Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9692@option{-ffinite-math-only}, @option{-fno-rounding-math},
9693@option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9694
9695This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9696
9697This option is not turned on by any @option{-O} option besides
9698@option{-Ofast} since it can result in incorrect output for programs
9699that depend on an exact implementation of IEEE or ISO rules/specifications
9700for math functions. It may, however, yield faster code for programs
9701that do not require the guarantees of these specifications.
9702
9703@item -fno-math-errno
9704@opindex fno-math-errno
9705Do not set @code{errno} after calling math functions that are executed
9706with a single instruction, e.g., @code{sqrt}.  A program that relies on
9707IEEE exceptions for math error handling may want to use this flag
9708for speed while maintaining IEEE arithmetic compatibility.
9709
9710This option is not turned on by any @option{-O} option since
9711it can result in incorrect output for programs that depend on
9712an exact implementation of IEEE or ISO rules/specifications for
9713math functions. It may, however, yield faster code for programs
9714that do not require the guarantees of these specifications.
9715
9716The default is @option{-fmath-errno}.
9717
9718On Darwin systems, the math library never sets @code{errno}.  There is
9719therefore no reason for the compiler to consider the possibility that
9720it might, and @option{-fno-math-errno} is the default.
9721
9722@item -funsafe-math-optimizations
9723@opindex funsafe-math-optimizations
9724
9725Allow optimizations for floating-point arithmetic that (a) assume
9726that arguments and results are valid and (b) may violate IEEE or
9727ANSI standards.  When used at link-time, it may include libraries
9728or startup files that change the default FPU control word or other
9729similar optimizations.
9730
9731This option is not turned on by any @option{-O} option since
9732it can result in incorrect output for programs that depend on
9733an exact implementation of IEEE or ISO rules/specifications for
9734math functions. It may, however, yield faster code for programs
9735that do not require the guarantees of these specifications.
9736Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9737@option{-fassociative-math} and @option{-freciprocal-math}.
9738
9739The default is @option{-fno-unsafe-math-optimizations}.
9740
9741@item -fassociative-math
9742@opindex fassociative-math
9743
9744Allow re-association of operands in series of floating-point operations.
9745This violates the ISO C and C++ language standard by possibly changing
9746computation result.  NOTE: re-ordering may change the sign of zero as
9747well as ignore NaNs and inhibit or create underflow or overflow (and
9748thus cannot be used on code that relies on rounding behavior like
9749@code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
9750and thus may not be used when ordered comparisons are required.
9751This option requires that both @option{-fno-signed-zeros} and
9752@option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
9753much sense with @option{-frounding-math}. For Fortran the option
9754is automatically enabled when both @option{-fno-signed-zeros} and
9755@option{-fno-trapping-math} are in effect.
9756
9757The default is @option{-fno-associative-math}.
9758
9759@item -freciprocal-math
9760@opindex freciprocal-math
9761
9762Allow the reciprocal of a value to be used instead of dividing by
9763the value if this enables optimizations.  For example @code{x / y}
9764can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9765is subject to common subexpression elimination.  Note that this loses
9766precision and increases the number of flops operating on the value.
9767
9768The default is @option{-fno-reciprocal-math}.
9769
9770@item -ffinite-math-only
9771@opindex ffinite-math-only
9772Allow optimizations for floating-point arithmetic that assume
9773that arguments and results are not NaNs or +-Infs.
9774
9775This option is not turned on by any @option{-O} option since
9776it can result in incorrect output for programs that depend on
9777an exact implementation of IEEE or ISO rules/specifications for
9778math functions. It may, however, yield faster code for programs
9779that do not require the guarantees of these specifications.
9780
9781The default is @option{-fno-finite-math-only}.
9782
9783@item -fno-signed-zeros
9784@opindex fno-signed-zeros
9785Allow optimizations for floating-point arithmetic that ignore the
9786signedness of zero.  IEEE arithmetic specifies the behavior of
9787distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9788of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9789This option implies that the sign of a zero result isn't significant.
9790
9791The default is @option{-fsigned-zeros}.
9792
9793@item -fno-trapping-math
9794@opindex fno-trapping-math
9795Compile code assuming that floating-point operations cannot generate
9796user-visible traps.  These traps include division by zero, overflow,
9797underflow, inexact result and invalid operation.  This option requires
9798that @option{-fno-signaling-nans} be in effect.  Setting this option may
9799allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9800
9801This option should never be turned on by any @option{-O} option since
9802it can result in incorrect output for programs that depend on
9803an exact implementation of IEEE or ISO rules/specifications for
9804math functions.
9805
9806The default is @option{-ftrapping-math}.
9807
9808@item -frounding-math
9809@opindex frounding-math
9810Disable transformations and optimizations that assume default floating-point
9811rounding behavior.  This is round-to-zero for all floating point
9812to integer conversions, and round-to-nearest for all other arithmetic
9813truncations.  This option should be specified for programs that change
9814the FP rounding mode dynamically, or that may be executed with a
9815non-default rounding mode.  This option disables constant folding of
9816floating-point expressions at compile time (which may be affected by
9817rounding mode) and arithmetic transformations that are unsafe in the
9818presence of sign-dependent rounding modes.
9819
9820The default is @option{-fno-rounding-math}.
9821
9822This option is experimental and does not currently guarantee to
9823disable all GCC optimizations that are affected by rounding mode.
9824Future versions of GCC may provide finer control of this setting
9825using C99's @code{FENV_ACCESS} pragma.  This command-line option
9826will be used to specify the default state for @code{FENV_ACCESS}.
9827
9828@item -fsignaling-nans
9829@opindex fsignaling-nans
9830Compile code assuming that IEEE signaling NaNs may generate user-visible
9831traps during floating-point operations.  Setting this option disables
9832optimizations that may change the number of exceptions visible with
9833signaling NaNs.  This option implies @option{-ftrapping-math}.
9834
9835This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9836be defined.
9837
9838The default is @option{-fno-signaling-nans}.
9839
9840This option is experimental and does not currently guarantee to
9841disable all GCC optimizations that affect signaling NaN behavior.
9842
9843@item -fsingle-precision-constant
9844@opindex fsingle-precision-constant
9845Treat floating-point constants as single precision instead of
9846implicitly converting them to double-precision constants.
9847
9848@item -fcx-limited-range
9849@opindex fcx-limited-range
9850When enabled, this option states that a range reduction step is not
9851needed when performing complex division.  Also, there is no checking
9852whether the result of a complex multiplication or division is @code{NaN
9853+ I*NaN}, with an attempt to rescue the situation in that case.  The
9854default is @option{-fno-cx-limited-range}, but is enabled by
9855@option{-ffast-math}.
9856
9857This option controls the default setting of the ISO C99
9858@code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
9859all languages.
9860
9861@item -fcx-fortran-rules
9862@opindex fcx-fortran-rules
9863Complex multiplication and division follow Fortran rules.  Range
9864reduction is done as part of complex division, but there is no checking
9865whether the result of a complex multiplication or division is @code{NaN
9866+ I*NaN}, with an attempt to rescue the situation in that case.
9867
9868The default is @option{-fno-cx-fortran-rules}.
9869
9870@end table
9871
9872The following options control optimizations that may improve
9873performance, but are not enabled by any @option{-O} options.  This
9874section includes experimental options that may produce broken code.
9875
9876@table @gcctabopt
9877@item -fbranch-probabilities
9878@opindex fbranch-probabilities
9879After running a program compiled with @option{-fprofile-arcs}
9880(@pxref{Debugging Options,, Options for Debugging Your Program or
9881@command{gcc}}), you can compile it a second time using
9882@option{-fbranch-probabilities}, to improve optimizations based on
9883the number of times each branch was taken.  When a program
9884compiled with @option{-fprofile-arcs} exits, it saves arc execution
9885counts to a file called @file{@var{sourcename}.gcda} for each source
9886file.  The information in this data file is very dependent on the
9887structure of the generated code, so you must use the same source code
9888and the same optimization options for both compilations.
9889
9890With @option{-fbranch-probabilities}, GCC puts a
9891@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9892These can be used to improve optimization.  Currently, they are only
9893used in one place: in @file{reorg.c}, instead of guessing which path a
9894branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9895exactly determine which path is taken more often.
9896
9897@item -fprofile-values
9898@opindex fprofile-values
9899If combined with @option{-fprofile-arcs}, it adds code so that some
9900data about values of expressions in the program is gathered.
9901
9902With @option{-fbranch-probabilities}, it reads back the data gathered
9903from profiling values of expressions for usage in optimizations.
9904
9905Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9906
9907@item -fprofile-reorder-functions
9908@opindex fprofile-reorder-functions
9909Function reordering based on profile instrumentation collects
9910first time of execution of a function and orders these functions
9911in ascending order.
9912
9913Enabled with @option{-fprofile-use}.
9914
9915@item -fvpt
9916@opindex fvpt
9917If combined with @option{-fprofile-arcs}, this option instructs the compiler
9918to add code to gather information about values of expressions.
9919
9920With @option{-fbranch-probabilities}, it reads back the data gathered
9921and actually performs the optimizations based on them.
9922Currently the optimizations include specialization of division operations
9923using the knowledge about the value of the denominator.
9924
9925@item -frename-registers
9926@opindex frename-registers
9927Attempt to avoid false dependencies in scheduled code by making use
9928of registers left over after register allocation.  This optimization
9929most benefits processors with lots of registers.  Depending on the
9930debug information format adopted by the target, however, it can
9931make debugging impossible, since variables no longer stay in
9932a ``home register''.
9933
9934Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
9935
9936@item -fschedule-fusion
9937@opindex fschedule-fusion
9938Performs a target dependent pass over the instruction stream to schedule
9939instructions of same type together because target machine can execute them
9940more efficiently if they are adjacent to each other in the instruction flow.
9941
9942Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9943
9944@item -ftracer
9945@opindex ftracer
9946Perform tail duplication to enlarge superblock size.  This transformation
9947simplifies the control flow of the function allowing other optimizations to do
9948a better job.
9949
9950Enabled with @option{-fprofile-use}.
9951
9952@item -funroll-loops
9953@opindex funroll-loops
9954Unroll loops whose number of iterations can be determined at compile time or
9955upon entry to the loop.  @option{-funroll-loops} implies
9956@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9957It also turns on complete loop peeling (i.e.@: complete removal of loops with
9958a small constant number of iterations).  This option makes code larger, and may
9959or may not make it run faster.
9960
9961Enabled with @option{-fprofile-use}.
9962
9963@item -funroll-all-loops
9964@opindex funroll-all-loops
9965Unroll all loops, even if their number of iterations is uncertain when
9966the loop is entered.  This usually makes programs run more slowly.
9967@option{-funroll-all-loops} implies the same options as
9968@option{-funroll-loops}.
9969
9970@item -fpeel-loops
9971@opindex fpeel-loops
9972Peels loops for which there is enough information that they do not
9973roll much (from profile feedback).  It also turns on complete loop peeling
9974(i.e.@: complete removal of loops with small constant number of iterations).
9975
9976Enabled with @option{-fprofile-use}.
9977
9978@item -fmove-loop-invariants
9979@opindex fmove-loop-invariants
9980Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
9981at level @option{-O1}
9982
9983@item -funswitch-loops
9984@opindex funswitch-loops
9985Move branches with loop invariant conditions out of the loop, with duplicates
9986of the loop on both branches (modified according to result of the condition).
9987
9988@item -ffunction-sections
9989@itemx -fdata-sections
9990@opindex ffunction-sections
9991@opindex fdata-sections
9992Place each function or data item into its own section in the output
9993file if the target supports arbitrary sections.  The name of the
9994function or the name of the data item determines the section's name
9995in the output file.
9996
9997Use these options on systems where the linker can perform optimizations
9998to improve locality of reference in the instruction space.  Most systems
9999using the ELF object format and SPARC processors running Solaris 2 have
10000linkers with such optimizations.  AIX may have these optimizations in
10001the future.
10002
10003Only use these options when there are significant benefits from doing
10004so.  When you specify these options, the assembler and linker
10005create larger object and executable files and are also slower.
10006You cannot use @command{gprof} on all systems if you
10007specify this option, and you may have problems with debugging if
10008you specify both this option and @option{-g}.
10009
10010@item -fbranch-target-load-optimize
10011@opindex fbranch-target-load-optimize
10012Perform branch target register load optimization before prologue / epilogue
10013threading.
10014The use of target registers can typically be exposed only during reload,
10015thus hoisting loads out of loops and doing inter-block scheduling needs
10016a separate optimization pass.
10017
10018@item -fbranch-target-load-optimize2
10019@opindex fbranch-target-load-optimize2
10020Perform branch target register load optimization after prologue / epilogue
10021threading.
10022
10023@item -fbtr-bb-exclusive
10024@opindex fbtr-bb-exclusive
10025When performing branch target register load optimization, don't reuse
10026branch target registers within any basic block.
10027
10028@item -fstack-protector
10029@opindex fstack-protector
10030Emit extra code to check for buffer overflows, such as stack smashing
10031attacks.  This is done by adding a guard variable to functions with
10032vulnerable objects.  This includes functions that call @code{alloca}, and
10033functions with buffers larger than 8 bytes.  The guards are initialized
10034when a function is entered and then checked when the function exits.
10035If a guard check fails, an error message is printed and the program exits.
10036
10037@item -fstack-protector-all
10038@opindex fstack-protector-all
10039Like @option{-fstack-protector} except that all functions are protected.
10040
10041@item -fstack-protector-strong
10042@opindex fstack-protector-strong
10043Like @option{-fstack-protector} but includes additional functions to
10044be protected --- those that have local array definitions, or have
10045references to local frame addresses.
10046
10047@item -fstack-protector-explicit
10048@opindex fstack-protector-explicit
10049Like @option{-fstack-protector} but only protects those functions which
10050have the @code{stack_protect} attribute
10051
10052@item -fstdarg-opt
10053@opindex fstdarg-opt
10054Optimize the prologue of variadic argument functions with respect to usage of
10055those arguments.
10056
10057@item -fsection-anchors
10058@opindex fsection-anchors
10059Try to reduce the number of symbolic address calculations by using
10060shared ``anchor'' symbols to address nearby objects.  This transformation
10061can help to reduce the number of GOT entries and GOT accesses on some
10062targets.
10063
10064For example, the implementation of the following function @code{foo}:
10065
10066@smallexample
10067static int a, b, c;
10068int foo (void) @{ return a + b + c; @}
10069@end smallexample
10070
10071@noindent
10072usually calculates the addresses of all three variables, but if you
10073compile it with @option{-fsection-anchors}, it accesses the variables
10074from a common anchor point instead.  The effect is similar to the
10075following pseudocode (which isn't valid C):
10076
10077@smallexample
10078int foo (void)
10079@{
10080  register int *xr = &x;
10081  return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10082@}
10083@end smallexample
10084
10085Not all targets support this option.
10086
10087@item --param @var{name}=@var{value}
10088@opindex param
10089In some places, GCC uses various constants to control the amount of
10090optimization that is done.  For example, GCC does not inline functions
10091that contain more than a certain number of instructions.  You can
10092control some of these constants on the command line using the
10093@option{--param} option.
10094
10095The names of specific parameters, and the meaning of the values, are
10096tied to the internals of the compiler, and are subject to change
10097without notice in future releases.
10098
10099In each case, the @var{value} is an integer.  The allowable choices for
10100@var{name} are:
10101
10102@table @gcctabopt
10103@item predictable-branch-outcome
10104When branch is predicted to be taken with probability lower than this threshold
10105(in percent), then it is considered well predictable. The default is 10.
10106
10107@item max-crossjump-edges
10108The maximum number of incoming edges to consider for cross-jumping.
10109The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10110the number of edges incoming to each block.  Increasing values mean
10111more aggressive optimization, making the compilation time increase with
10112probably small improvement in executable size.
10113
10114@item min-crossjump-insns
10115The minimum number of instructions that must be matched at the end
10116of two blocks before cross-jumping is performed on them.  This
10117value is ignored in the case where all instructions in the block being
10118cross-jumped from are matched.  The default value is 5.
10119
10120@item max-grow-copy-bb-insns
10121The maximum code size expansion factor when copying basic blocks
10122instead of jumping.  The expansion is relative to a jump instruction.
10123The default value is 8.
10124
10125@item max-goto-duplication-insns
10126The maximum number of instructions to duplicate to a block that jumps
10127to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
10128passes, GCC factors computed gotos early in the compilation process,
10129and unfactors them as late as possible.  Only computed jumps at the
10130end of a basic blocks with no more than max-goto-duplication-insns are
10131unfactored.  The default value is 8.
10132
10133@item max-delay-slot-insn-search
10134The maximum number of instructions to consider when looking for an
10135instruction to fill a delay slot.  If more than this arbitrary number of
10136instructions are searched, the time savings from filling the delay slot
10137are minimal, so stop searching.  Increasing values mean more
10138aggressive optimization, making the compilation time increase with probably
10139small improvement in execution time.
10140
10141@item max-delay-slot-live-search
10142When trying to fill delay slots, the maximum number of instructions to
10143consider when searching for a block with valid live register
10144information.  Increasing this arbitrarily chosen value means more
10145aggressive optimization, increasing the compilation time.  This parameter
10146should be removed when the delay slot code is rewritten to maintain the
10147control-flow graph.
10148
10149@item max-gcse-memory
10150The approximate maximum amount of memory that can be allocated in
10151order to perform the global common subexpression elimination
10152optimization.  If more memory than specified is required, the
10153optimization is not done.
10154
10155@item max-gcse-insertion-ratio
10156If the ratio of expression insertions to deletions is larger than this value
10157for any expression, then RTL PRE inserts or removes the expression and thus
10158leaves partially redundant computations in the instruction stream.  The default value is 20.
10159
10160@item max-pending-list-length
10161The maximum number of pending dependencies scheduling allows
10162before flushing the current state and starting over.  Large functions
10163with few branches or calls can create excessively large lists which
10164needlessly consume memory and resources.
10165
10166@item max-modulo-backtrack-attempts
10167The maximum number of backtrack attempts the scheduler should make
10168when modulo scheduling a loop.  Larger values can exponentially increase
10169compilation time.
10170
10171@item max-inline-insns-single
10172Several parameters control the tree inliner used in GCC@.
10173This number sets the maximum number of instructions (counted in GCC's
10174internal representation) in a single function that the tree inliner
10175considers for inlining.  This only affects functions declared
10176inline and methods implemented in a class declaration (C++).
10177The default value is 400.
10178
10179@item max-inline-insns-auto
10180When you use @option{-finline-functions} (included in @option{-O3}),
10181a lot of functions that would otherwise not be considered for inlining
10182by the compiler are investigated.  To those functions, a different
10183(more restrictive) limit compared to functions declared inline can
10184be applied.
10185The default value is 40.
10186
10187@item inline-min-speedup
10188When estimated performance improvement of caller + callee runtime exceeds this
10189threshold (in precent), the function can be inlined regardless the limit on
10190@option{--param max-inline-insns-single} and @option{--param
10191max-inline-insns-auto}.
10192
10193@item large-function-insns
10194The limit specifying really large functions.  For functions larger than this
10195limit after inlining, inlining is constrained by
10196@option{--param large-function-growth}.  This parameter is useful primarily
10197to avoid extreme compilation time caused by non-linear algorithms used by the
10198back end.
10199The default value is 2700.
10200
10201@item large-function-growth
10202Specifies maximal growth of large function caused by inlining in percents.
10203The default value is 100 which limits large function growth to 2.0 times
10204the original size.
10205
10206@item large-unit-insns
10207The limit specifying large translation unit.  Growth caused by inlining of
10208units larger than this limit is limited by @option{--param inline-unit-growth}.
10209For small units this might be too tight.
10210For example, consider a unit consisting of function A
10211that is inline and B that just calls A three times.  If B is small relative to
10212A, the growth of unit is 300\% and yet such inlining is very sane.  For very
10213large units consisting of small inlineable functions, however, the overall unit
10214growth limit is needed to avoid exponential explosion of code size.  Thus for
10215smaller units, the size is increased to @option{--param large-unit-insns}
10216before applying @option{--param inline-unit-growth}.  The default is 10000.
10217
10218@item inline-unit-growth
10219Specifies maximal overall growth of the compilation unit caused by inlining.
10220The default value is 20 which limits unit growth to 1.2 times the original
10221size. Cold functions (either marked cold via an attribute or by profile
10222feedback) are not accounted into the unit size.
10223
10224@item ipcp-unit-growth
10225Specifies maximal overall growth of the compilation unit caused by
10226interprocedural constant propagation.  The default value is 10 which limits
10227unit growth to 1.1 times the original size.
10228
10229@item large-stack-frame
10230The limit specifying large stack frames.  While inlining the algorithm is trying
10231to not grow past this limit too much.  The default value is 256 bytes.
10232
10233@item large-stack-frame-growth
10234Specifies maximal growth of large stack frames caused by inlining in percents.
10235The default value is 1000 which limits large stack frame growth to 11 times
10236the original size.
10237
10238@item max-inline-insns-recursive
10239@itemx max-inline-insns-recursive-auto
10240Specifies the maximum number of instructions an out-of-line copy of a
10241self-recursive inline
10242function can grow into by performing recursive inlining.
10243
10244@option{--param max-inline-insns-recursive} applies to functions
10245declared inline.
10246For functions not declared inline, recursive inlining
10247happens only when @option{-finline-functions} (included in @option{-O3}) is
10248enabled; @option{--param max-inline-insns-recursive-auto} applies instead.  The
10249default value is 450.
10250
10251@item max-inline-recursive-depth
10252@itemx max-inline-recursive-depth-auto
10253Specifies the maximum recursion depth used for recursive inlining.
10254
10255@option{--param max-inline-recursive-depth} applies to functions
10256declared inline.  For functions not declared inline, recursive inlining
10257happens only when @option{-finline-functions} (included in @option{-O3}) is
10258enabled; @option{--param max-inline-recursive-depth-auto} applies instead.  The
10259default value is 8.
10260
10261@item min-inline-recursive-probability
10262Recursive inlining is profitable only for function having deep recursion
10263in average and can hurt for function having little recursion depth by
10264increasing the prologue size or complexity of function body to other
10265optimizers.
10266
10267When profile feedback is available (see @option{-fprofile-generate}) the actual
10268recursion depth can be guessed from probability that function recurses via a
10269given call expression.  This parameter limits inlining only to call expressions
10270whose probability exceeds the given threshold (in percents).
10271The default value is 10.
10272
10273@item early-inlining-insns
10274Specify growth that the early inliner can make.  In effect it increases
10275the amount of inlining for code having a large abstraction penalty.
10276The default value is 14.
10277
10278@item max-early-inliner-iterations
10279Limit of iterations of the early inliner.  This basically bounds
10280the number of nested indirect calls the early inliner can resolve.
10281Deeper chains are still handled by late inlining.
10282
10283@item comdat-sharing-probability
10284Probability (in percent) that C++ inline function with comdat visibility
10285are shared across multiple compilation units.  The default value is 20.
10286
10287@item profile-func-internal-id
10288A parameter to control whether to use function internal id in profile
10289database lookup. If the value is 0, the compiler uses an id that
10290is based on function assembler name and filename, which makes old profile
10291data more tolerant to source changes such as function reordering etc.
10292The default value is 0.
10293
10294@item min-vect-loop-bound
10295The minimum number of iterations under which loops are not vectorized
10296when @option{-ftree-vectorize} is used.  The number of iterations after
10297vectorization needs to be greater than the value specified by this option
10298to allow vectorization.  The default value is 0.
10299
10300@item gcse-cost-distance-ratio
10301Scaling factor in calculation of maximum distance an expression
10302can be moved by GCSE optimizations.  This is currently supported only in the
10303code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
10304is with simple expressions, i.e., the expressions that have cost
10305less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
10306hoisting of simple expressions.  The default value is 10.
10307
10308@item gcse-unrestricted-cost
10309Cost, roughly measured as the cost of a single typical machine
10310instruction, at which GCSE optimizations do not constrain
10311the distance an expression can travel.  This is currently
10312supported only in the code hoisting pass.  The lesser the cost,
10313the more aggressive code hoisting is.  Specifying 0 
10314allows all expressions to travel unrestricted distances.
10315The default value is 3.
10316
10317@item max-hoist-depth
10318The depth of search in the dominator tree for expressions to hoist.
10319This is used to avoid quadratic behavior in hoisting algorithm.
10320The value of 0 does not limit on the search, but may slow down compilation
10321of huge functions.  The default value is 30.
10322
10323@item max-tail-merge-comparisons
10324The maximum amount of similar bbs to compare a bb with.  This is used to
10325avoid quadratic behavior in tree tail merging.  The default value is 10.
10326
10327@item max-tail-merge-iterations
10328The maximum amount of iterations of the pass over the function.  This is used to
10329limit compilation time in tree tail merging.  The default value is 2.
10330
10331@item max-unrolled-insns
10332The maximum number of instructions that a loop may have to be unrolled.
10333If a loop is unrolled, this parameter also determines how many times
10334the loop code is unrolled.
10335
10336@item max-average-unrolled-insns
10337The maximum number of instructions biased by probabilities of their execution
10338that a loop may have to be unrolled.  If a loop is unrolled,
10339this parameter also determines how many times the loop code is unrolled.
10340
10341@item max-unroll-times
10342The maximum number of unrollings of a single loop.
10343
10344@item max-peeled-insns
10345The maximum number of instructions that a loop may have to be peeled.
10346If a loop is peeled, this parameter also determines how many times
10347the loop code is peeled.
10348
10349@item max-peel-times
10350The maximum number of peelings of a single loop.
10351
10352@item max-peel-branches
10353The maximum number of branches on the hot path through the peeled sequence.
10354
10355@item max-completely-peeled-insns
10356The maximum number of insns of a completely peeled loop.
10357
10358@item max-completely-peel-times
10359The maximum number of iterations of a loop to be suitable for complete peeling.
10360
10361@item max-completely-peel-loop-nest-depth
10362The maximum depth of a loop nest suitable for complete peeling.
10363
10364@item max-unswitch-insns
10365The maximum number of insns of an unswitched loop.
10366
10367@item max-unswitch-level
10368The maximum number of branches unswitched in a single loop.
10369
10370@item lim-expensive
10371The minimum cost of an expensive expression in the loop invariant motion.
10372
10373@item iv-consider-all-candidates-bound
10374Bound on number of candidates for induction variables, below which
10375all candidates are considered for each use in induction variable
10376optimizations.  If there are more candidates than this,
10377only the most relevant ones are considered to avoid quadratic time complexity.
10378
10379@item iv-max-considered-uses
10380The induction variable optimizations give up on loops that contain more
10381induction variable uses.
10382
10383@item iv-always-prune-cand-set-bound
10384If the number of candidates in the set is smaller than this value,
10385always try to remove unnecessary ivs from the set
10386when adding a new one.
10387
10388@item scev-max-expr-size
10389Bound on size of expressions used in the scalar evolutions analyzer.
10390Large expressions slow the analyzer.
10391
10392@item scev-max-expr-complexity
10393Bound on the complexity of the expressions in the scalar evolutions analyzer.
10394Complex expressions slow the analyzer.
10395
10396@item omega-max-vars
10397The maximum number of variables in an Omega constraint system.
10398The default value is 128.
10399
10400@item omega-max-geqs
10401The maximum number of inequalities in an Omega constraint system.
10402The default value is 256.
10403
10404@item omega-max-eqs
10405The maximum number of equalities in an Omega constraint system.
10406The default value is 128.
10407
10408@item omega-max-wild-cards
10409The maximum number of wildcard variables that the Omega solver is
10410able to insert.  The default value is 18.
10411
10412@item omega-hash-table-size
10413The size of the hash table in the Omega solver.  The default value is
10414550.
10415
10416@item omega-max-keys
10417The maximal number of keys used by the Omega solver.  The default
10418value is 500.
10419
10420@item omega-eliminate-redundant-constraints
10421When set to 1, use expensive methods to eliminate all redundant
10422constraints.  The default value is 0.
10423
10424@item vect-max-version-for-alignment-checks
10425The maximum number of run-time checks that can be performed when
10426doing loop versioning for alignment in the vectorizer.
10427
10428@item vect-max-version-for-alias-checks
10429The maximum number of run-time checks that can be performed when
10430doing loop versioning for alias in the vectorizer.
10431
10432@item vect-max-peeling-for-alignment
10433The maximum number of loop peels to enhance access alignment
10434for vectorizer. Value -1 means 'no limit'.
10435
10436@item max-iterations-to-track
10437The maximum number of iterations of a loop the brute-force algorithm
10438for analysis of the number of iterations of the loop tries to evaluate.
10439
10440@item hot-bb-count-ws-permille
10441A basic block profile count is considered hot if it contributes to 
10442the given permillage (i.e. 0...1000) of the entire profiled execution.
10443
10444@item hot-bb-frequency-fraction
10445Select fraction of the entry block frequency of executions of basic block in
10446function given basic block needs to have to be considered hot.
10447
10448@item max-predicted-iterations
10449The maximum number of loop iterations we predict statically.  This is useful
10450in cases where a function contains a single loop with known bound and
10451another loop with unknown bound.
10452The known number of iterations is predicted correctly, while
10453the unknown number of iterations average to roughly 10.  This means that the
10454loop without bounds appears artificially cold relative to the other one.
10455
10456@item builtin-expect-probability
10457Control the probability of the expression having the specified value. This
10458parameter takes a percentage (i.e. 0 ... 100) as input.
10459The default probability of 90 is obtained empirically.
10460
10461@item align-threshold
10462
10463Select fraction of the maximal frequency of executions of a basic block in
10464a function to align the basic block.
10465
10466@item align-loop-iterations
10467
10468A loop expected to iterate at least the selected number of iterations is
10469aligned.
10470
10471@item tracer-dynamic-coverage
10472@itemx tracer-dynamic-coverage-feedback
10473
10474This value is used to limit superblock formation once the given percentage of
10475executed instructions is covered.  This limits unnecessary code size
10476expansion.
10477
10478The @option{tracer-dynamic-coverage-feedback} parameter
10479is used only when profile
10480feedback is available.  The real profiles (as opposed to statically estimated
10481ones) are much less balanced allowing the threshold to be larger value.
10482
10483@item tracer-max-code-growth
10484Stop tail duplication once code growth has reached given percentage.  This is
10485a rather artificial limit, as most of the duplicates are eliminated later in
10486cross jumping, so it may be set to much higher values than is the desired code
10487growth.
10488
10489@item tracer-min-branch-ratio
10490
10491Stop reverse growth when the reverse probability of best edge is less than this
10492threshold (in percent).
10493
10494@item tracer-min-branch-ratio
10495@itemx tracer-min-branch-ratio-feedback
10496
10497Stop forward growth if the best edge has probability lower than this
10498threshold.
10499
10500Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10501compilation for profile feedback and one for compilation without.  The value
10502for compilation with profile feedback needs to be more conservative (higher) in
10503order to make tracer effective.
10504
10505@item max-cse-path-length
10506
10507The maximum number of basic blocks on path that CSE considers.
10508The default is 10.
10509
10510@item max-cse-insns
10511The maximum number of instructions CSE processes before flushing.
10512The default is 1000.
10513
10514@item ggc-min-expand
10515
10516GCC uses a garbage collector to manage its own memory allocation.  This
10517parameter specifies the minimum percentage by which the garbage
10518collector's heap should be allowed to expand between collections.
10519Tuning this may improve compilation speed; it has no effect on code
10520generation.
10521
10522The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10523RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
10524the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
10525GCC is not able to calculate RAM on a particular platform, the lower
10526bound of 30% is used.  Setting this parameter and
10527@option{ggc-min-heapsize} to zero causes a full collection to occur at
10528every opportunity.  This is extremely slow, but can be useful for
10529debugging.
10530
10531@item ggc-min-heapsize
10532
10533Minimum size of the garbage collector's heap before it begins bothering
10534to collect garbage.  The first collection occurs after the heap expands
10535by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
10536tuning this may improve compilation speed, and has no effect on code
10537generation.
10538
10539The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10540tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10541with a lower bound of 4096 (four megabytes) and an upper bound of
10542131072 (128 megabytes).  If GCC is not able to calculate RAM on a
10543particular platform, the lower bound is used.  Setting this parameter
10544very large effectively disables garbage collection.  Setting this
10545parameter and @option{ggc-min-expand} to zero causes a full collection
10546to occur at every opportunity.
10547
10548@item max-reload-search-insns
10549The maximum number of instruction reload should look backward for equivalent
10550register.  Increasing values mean more aggressive optimization, making the
10551compilation time increase with probably slightly better performance.
10552The default value is 100.
10553
10554@item max-cselib-memory-locations
10555The maximum number of memory locations cselib should take into account.
10556Increasing values mean more aggressive optimization, making the compilation time
10557increase with probably slightly better performance.  The default value is 500.
10558
10559@item reorder-blocks-duplicate
10560@itemx reorder-blocks-duplicate-feedback
10561
10562Used by the basic block reordering pass to decide whether to use unconditional
10563branch or duplicate the code on its destination.  Code is duplicated when its
10564estimated size is smaller than this value multiplied by the estimated size of
10565unconditional jump in the hot spots of the program.
10566
10567The @option{reorder-block-duplicate-feedback} parameter
10568is used only when profile
10569feedback is available.  It may be set to higher values than
10570@option{reorder-block-duplicate} since information about the hot spots is more
10571accurate.
10572
10573@item max-sched-ready-insns
10574The maximum number of instructions ready to be issued the scheduler should
10575consider at any given time during the first scheduling pass.  Increasing
10576values mean more thorough searches, making the compilation time increase
10577with probably little benefit.  The default value is 100.
10578
10579@item max-sched-region-blocks
10580The maximum number of blocks in a region to be considered for
10581interblock scheduling.  The default value is 10.
10582
10583@item max-pipeline-region-blocks
10584The maximum number of blocks in a region to be considered for
10585pipelining in the selective scheduler.  The default value is 15.
10586
10587@item max-sched-region-insns
10588The maximum number of insns in a region to be considered for
10589interblock scheduling.  The default value is 100.
10590
10591@item max-pipeline-region-insns
10592The maximum number of insns in a region to be considered for
10593pipelining in the selective scheduler.  The default value is 200.
10594
10595@item min-spec-prob
10596The minimum probability (in percents) of reaching a source block
10597for interblock speculative scheduling.  The default value is 40.
10598
10599@item max-sched-extend-regions-iters
10600The maximum number of iterations through CFG to extend regions.
10601A value of 0 (the default) disables region extensions.
10602
10603@item max-sched-insn-conflict-delay
10604The maximum conflict delay for an insn to be considered for speculative motion.
10605The default value is 3.
10606
10607@item sched-spec-prob-cutoff
10608The minimal probability of speculation success (in percents), so that
10609speculative insns are scheduled.
10610The default value is 40.
10611
10612@item sched-spec-state-edge-prob-cutoff
10613The minimum probability an edge must have for the scheduler to save its
10614state across it.
10615The default value is 10.
10616
10617@item sched-mem-true-dep-cost
10618Minimal distance (in CPU cycles) between store and load targeting same
10619memory locations.  The default value is 1.
10620
10621@item selsched-max-lookahead
10622The maximum size of the lookahead window of selective scheduling.  It is a
10623depth of search for available instructions.
10624The default value is 50.
10625
10626@item selsched-max-sched-times
10627The maximum number of times that an instruction is scheduled during
10628selective scheduling.  This is the limit on the number of iterations
10629through which the instruction may be pipelined.  The default value is 2.
10630
10631@item selsched-max-insns-to-rename
10632The maximum number of best instructions in the ready list that are considered
10633for renaming in the selective scheduler.  The default value is 2.
10634
10635@item sms-min-sc
10636The minimum value of stage count that swing modulo scheduler
10637generates.  The default value is 2.
10638
10639@item max-last-value-rtl
10640The maximum size measured as number of RTLs that can be recorded in an expression
10641in combiner for a pseudo register as last known value of that register.  The default
10642is 10000.
10643
10644@item max-combine-insns
10645The maximum number of instructions the RTL combiner tries to combine.
10646The default value is 2 at @option{-Og} and 4 otherwise.
10647
10648@item integer-share-limit
10649Small integer constants can use a shared data structure, reducing the
10650compiler's memory usage and increasing its speed.  This sets the maximum
10651value of a shared integer constant.  The default value is 256.
10652
10653@item ssp-buffer-size
10654The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10655protection when @option{-fstack-protection} is used.
10656
10657@item min-size-for-stack-sharing
10658The minimum size of variables taking part in stack slot sharing when not
10659optimizing. The default value is 32.
10660
10661@item max-jump-thread-duplication-stmts
10662Maximum number of statements allowed in a block that needs to be
10663duplicated when threading jumps.
10664
10665@item max-fields-for-field-sensitive
10666Maximum number of fields in a structure treated in
10667a field sensitive manner during pointer analysis.  The default is zero
10668for @option{-O0} and @option{-O1},
10669and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10670
10671@item prefetch-latency
10672Estimate on average number of instructions that are executed before
10673prefetch finishes.  The distance prefetched ahead is proportional
10674to this constant.  Increasing this number may also lead to less
10675streams being prefetched (see @option{simultaneous-prefetches}).
10676
10677@item simultaneous-prefetches
10678Maximum number of prefetches that can run at the same time.
10679
10680@item l1-cache-line-size
10681The size of cache line in L1 cache, in bytes.
10682
10683@item l1-cache-size
10684The size of L1 cache, in kilobytes.
10685
10686@item l2-cache-size
10687The size of L2 cache, in kilobytes.
10688
10689@item min-insn-to-prefetch-ratio
10690The minimum ratio between the number of instructions and the
10691number of prefetches to enable prefetching in a loop.
10692
10693@item prefetch-min-insn-to-mem-ratio
10694The minimum ratio between the number of instructions and the
10695number of memory references to enable prefetching in a loop.
10696
10697@item use-canonical-types
10698Whether the compiler should use the ``canonical'' type system.  By
10699default, this should always be 1, which uses a more efficient internal
10700mechanism for comparing types in C++ and Objective-C++.  However, if
10701bugs in the canonical type system are causing compilation failures,
10702set this value to 0 to disable canonical types.
10703
10704@item switch-conversion-max-branch-ratio
10705Switch initialization conversion refuses to create arrays that are
10706bigger than @option{switch-conversion-max-branch-ratio} times the number of
10707branches in the switch.
10708
10709@item max-partial-antic-length
10710Maximum length of the partial antic set computed during the tree
10711partial redundancy elimination optimization (@option{-ftree-pre}) when
10712optimizing at @option{-O3} and above.  For some sorts of source code
10713the enhanced partial redundancy elimination optimization can run away,
10714consuming all of the memory available on the host machine.  This
10715parameter sets a limit on the length of the sets that are computed,
10716which prevents the runaway behavior.  Setting a value of 0 for
10717this parameter allows an unlimited set length.
10718
10719@item sccvn-max-scc-size
10720Maximum size of a strongly connected component (SCC) during SCCVN
10721processing.  If this limit is hit, SCCVN processing for the whole
10722function is not done and optimizations depending on it are
10723disabled.  The default maximum SCC size is 10000.
10724
10725@item sccvn-max-alias-queries-per-access
10726Maximum number of alias-oracle queries we perform when looking for
10727redundancies for loads and stores.  If this limit is hit the search
10728is aborted and the load or store is not considered redundant.  The
10729number of queries is algorithmically limited to the number of
10730stores on all paths from the load to the function entry.
10731The default maxmimum number of queries is 1000.
10732
10733@item ira-max-loops-num
10734IRA uses regional register allocation by default.  If a function
10735contains more loops than the number given by this parameter, only at most
10736the given number of the most frequently-executed loops form regions
10737for regional register allocation.  The default value of the
10738parameter is 100.
10739
10740@item ira-max-conflict-table-size 
10741Although IRA uses a sophisticated algorithm to compress the conflict
10742table, the table can still require excessive amounts of memory for
10743huge functions.  If the conflict table for a function could be more
10744than the size in MB given by this parameter, the register allocator
10745instead uses a faster, simpler, and lower-quality
10746algorithm that does not require building a pseudo-register conflict table.  
10747The default value of the parameter is 2000.
10748
10749@item ira-loop-reserved-regs
10750IRA can be used to evaluate more accurate register pressure in loops
10751for decisions to move loop invariants (see @option{-O3}).  The number
10752of available registers reserved for some other purposes is given
10753by this parameter.  The default value of the parameter is 2, which is
10754the minimal number of registers needed by typical instructions.
10755This value is the best found from numerous experiments.
10756
10757@item lra-inheritance-ebb-probability-cutoff
10758LRA tries to reuse values reloaded in registers in subsequent insns.
10759This optimization is called inheritance.  EBB is used as a region to
10760do this optimization.  The parameter defines a minimal fall-through
10761edge probability in percentage used to add BB to inheritance EBB in
10762LRA.  The default value of the parameter is 40.  The value was chosen
10763from numerous runs of SPEC2000 on x86-64.
10764
10765@item loop-invariant-max-bbs-in-loop
10766Loop invariant motion can be very expensive, both in compilation time and
10767in amount of needed compile-time memory, with very large loops.  Loops
10768with more basic blocks than this parameter won't have loop invariant
10769motion optimization performed on them.  The default value of the
10770parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10771
10772@item loop-max-datarefs-for-datadeps
10773Building data dapendencies is expensive for very large loops.  This
10774parameter limits the number of data references in loops that are
10775considered for data dependence analysis.  These large loops are no
10776handled by the optimizations using loop data dependencies.
10777The default value is 1000.
10778
10779@item max-vartrack-size
10780Sets a maximum number of hash table slots to use during variable
10781tracking dataflow analysis of any function.  If this limit is exceeded
10782with variable tracking at assignments enabled, analysis for that
10783function is retried without it, after removing all debug insns from
10784the function.  If the limit is exceeded even without debug insns, var
10785tracking analysis is completely disabled for the function.  Setting
10786the parameter to zero makes it unlimited.
10787
10788@item max-vartrack-expr-depth
10789Sets a maximum number of recursion levels when attempting to map
10790variable names or debug temporaries to value expressions.  This trades
10791compilation time for more complete debug information.  If this is set too
10792low, value expressions that are available and could be represented in
10793debug information may end up not being used; setting this higher may
10794enable the compiler to find more complex debug expressions, but compile
10795time and memory use may grow.  The default is 12.
10796
10797@item min-nondebug-insn-uid
10798Use uids starting at this parameter for nondebug insns.  The range below
10799the parameter is reserved exclusively for debug insns created by
10800@option{-fvar-tracking-assignments}, but debug insns may get
10801(non-overlapping) uids above it if the reserved range is exhausted.
10802
10803@item ipa-sra-ptr-growth-factor
10804IPA-SRA replaces a pointer to an aggregate with one or more new
10805parameters only when their cumulative size is less or equal to
10806@option{ipa-sra-ptr-growth-factor} times the size of the original
10807pointer parameter.
10808
10809@item sra-max-scalarization-size-Ospeed
10810@item sra-max-scalarization-size-Osize
10811The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10812replace scalar parts of aggregates with uses of independent scalar
10813variables.  These parameters control the maximum size, in storage units,
10814of aggregate which is considered for replacement when compiling for
10815speed
10816(@option{sra-max-scalarization-size-Ospeed}) or size
10817(@option{sra-max-scalarization-size-Osize}) respectively.
10818
10819@item tm-max-aggregate-size
10820When making copies of thread-local variables in a transaction, this
10821parameter specifies the size in bytes after which variables are
10822saved with the logging functions as opposed to save/restore code
10823sequence pairs.  This option only applies when using
10824@option{-fgnu-tm}.
10825
10826@item graphite-max-nb-scop-params
10827To avoid exponential effects in the Graphite loop transforms, the
10828number of parameters in a Static Control Part (SCoP) is bounded.  The
10829default value is 10 parameters.  A variable whose value is unknown at
10830compilation time and defined outside a SCoP is a parameter of the SCoP.
10831
10832@item graphite-max-bbs-per-function
10833To avoid exponential effects in the detection of SCoPs, the size of
10834the functions analyzed by Graphite is bounded.  The default value is
10835100 basic blocks.
10836
10837@item loop-block-tile-size
10838Loop blocking or strip mining transforms, enabled with
10839@option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10840loop in the loop nest by a given number of iterations.  The strip
10841length can be changed using the @option{loop-block-tile-size}
10842parameter.  The default value is 51 iterations.
10843
10844@item loop-unroll-jam-size
10845Specify the unroll factor for the @option{-floop-unroll-and-jam} option.  The 
10846default value is 4.
10847
10848@item loop-unroll-jam-depth
10849Specify the dimension to be unrolled (counting from the most inner loop)
10850for the  @option{-floop-unroll-and-jam}.  The default value is 2.
10851
10852@item ipa-cp-value-list-size
10853IPA-CP attempts to track all possible values and types passed to a function's
10854parameter in order to propagate them and perform devirtualization.
10855@option{ipa-cp-value-list-size} is the maximum number of values and types it
10856stores per one formal parameter of a function.
10857
10858@item ipa-cp-eval-threshold
10859IPA-CP calculates its own score of cloning profitability heuristics
10860and performs those cloning opportunities with scores that exceed
10861@option{ipa-cp-eval-threshold}.
10862
10863@item ipa-cp-recursion-penalty
10864Percentage penalty the recursive functions will receive when they
10865are evaluated for cloning.
10866
10867@item ipa-cp-single-call-penalty
10868Percentage penalty functions containg a single call to another
10869function will receive when they are evaluated for cloning.
10870
10871
10872@item ipa-max-agg-items
10873IPA-CP is also capable to propagate a number of scalar values passed
10874in an aggregate. @option{ipa-max-agg-items} controls the maximum
10875number of such values per one parameter.
10876
10877@item ipa-cp-loop-hint-bonus
10878When IPA-CP determines that a cloning candidate would make the number
10879of iterations of a loop known, it adds a bonus of
10880@option{ipa-cp-loop-hint-bonus} to the profitability score of
10881the candidate.
10882
10883@item ipa-cp-array-index-hint-bonus
10884When IPA-CP determines that a cloning candidate would make the index of
10885an array access known, it adds a bonus of
10886@option{ipa-cp-array-index-hint-bonus} to the profitability
10887score of the candidate.
10888
10889@item ipa-max-aa-steps
10890During its analysis of function bodies, IPA-CP employs alias analysis
10891in order to track values pointed to by function parameters.  In order
10892not spend too much time analyzing huge functions, it gives up and
10893consider all memory clobbered after examining
10894@option{ipa-max-aa-steps} statements modifying memory.
10895
10896@item lto-partitions
10897Specify desired number of partitions produced during WHOPR compilation.
10898The number of partitions should exceed the number of CPUs used for compilation.
10899The default value is 32.
10900
10901@item lto-minpartition
10902Size of minimal partition for WHOPR (in estimated instructions).
10903This prevents expenses of splitting very small programs into too many
10904partitions.
10905
10906@item cxx-max-namespaces-for-diagnostic-help
10907The maximum number of namespaces to consult for suggestions when C++
10908name lookup fails for an identifier.  The default is 1000.
10909
10910@item sink-frequency-threshold
10911The maximum relative execution frequency (in percents) of the target block
10912relative to a statement's original block to allow statement sinking of a
10913statement.  Larger numbers result in more aggressive statement sinking.
10914The default value is 75.  A small positive adjustment is applied for
10915statements with memory operands as those are even more profitable so sink.
10916
10917@item max-stores-to-sink
10918The maximum number of conditional stores paires that can be sunk.  Set to 0
10919if either vectorization (@option{-ftree-vectorize}) or if-conversion
10920(@option{-ftree-loop-if-convert}) is disabled.  The default is 2.
10921
10922@item allow-store-data-races
10923Allow optimizers to introduce new data races on stores.
10924Set to 1 to allow, otherwise to 0.  This option is enabled by default
10925at optimization level @option{-Ofast}.
10926
10927@item case-values-threshold
10928The smallest number of different values for which it is best to use a
10929jump-table instead of a tree of conditional branches.  If the value is
109300, use the default for the machine.  The default is 0.
10931
10932@item tree-reassoc-width
10933Set the maximum number of instructions executed in parallel in
10934reassociated tree. This parameter overrides target dependent
10935heuristics used by default if has non zero value.
10936
10937@item sched-pressure-algorithm
10938Choose between the two available implementations of
10939@option{-fsched-pressure}.  Algorithm 1 is the original implementation
10940and is the more likely to prevent instructions from being reordered.
10941Algorithm 2 was designed to be a compromise between the relatively
10942conservative approach taken by algorithm 1 and the rather aggressive
10943approach taken by the default scheduler.  It relies more heavily on
10944having a regular register file and accurate register pressure classes.
10945See @file{haifa-sched.c} in the GCC sources for more details.
10946
10947The default choice depends on the target.
10948
10949@item max-slsr-cand-scan
10950Set the maximum number of existing candidates that are considered when
10951seeking a basis for a new straight-line strength reduction candidate.
10952
10953@item asan-globals
10954Enable buffer overflow detection for global objects.  This kind
10955of protection is enabled by default if you are using
10956@option{-fsanitize=address} option.
10957To disable global objects protection use @option{--param asan-globals=0}.
10958
10959@item asan-stack
10960Enable buffer overflow detection for stack objects.  This kind of
10961protection is enabled by default when using@option{-fsanitize=address}.
10962To disable stack protection use @option{--param asan-stack=0} option.
10963
10964@item asan-instrument-reads
10965Enable buffer overflow detection for memory reads.  This kind of
10966protection is enabled by default when using @option{-fsanitize=address}.
10967To disable memory reads protection use
10968@option{--param asan-instrument-reads=0}.
10969
10970@item asan-instrument-writes
10971Enable buffer overflow detection for memory writes.  This kind of
10972protection is enabled by default when using @option{-fsanitize=address}.
10973To disable memory writes protection use
10974@option{--param asan-instrument-writes=0} option.
10975
10976@item asan-memintrin
10977Enable detection for built-in functions.  This kind of protection
10978is enabled by default when using @option{-fsanitize=address}.
10979To disable built-in functions protection use
10980@option{--param asan-memintrin=0}.
10981
10982@item asan-use-after-return
10983Enable detection of use-after-return.  This kind of protection
10984is enabled by default when using @option{-fsanitize=address} option.
10985To disable use-after-return detection use 
10986@option{--param asan-use-after-return=0}.
10987
10988@item asan-instrumentation-with-call-threshold
10989If number of memory accesses in function being instrumented
10990is greater or equal to this number, use callbacks instead of inline checks.
10991E.g. to disable inline code use
10992@option{--param asan-instrumentation-with-call-threshold=0}.
10993
10994@item chkp-max-ctor-size
10995Static constructors generated by Pointer Bounds Checker may become very
10996large and significantly increase compile time at optimization level
10997@option{-O1} and higher.  This parameter is a maximum nubmer of statements
10998in a single generated constructor.  Default value is 5000.
10999
11000@item max-fsm-thread-path-insns
11001Maximum number of instructions to copy when duplicating blocks on a
11002finite state automaton jump thread path.  The default is 100.
11003
11004@item max-fsm-thread-length
11005Maximum number of basic blocks on a finite state automaton jump thread
11006path.  The default is 10.
11007
11008@item max-fsm-thread-paths
11009Maximum number of new jump thread paths to create for a finite state
11010automaton.  The default is 50.
11011
11012@end table
11013@end table
11014
11015@node Preprocessor Options
11016@section Options Controlling the Preprocessor
11017@cindex preprocessor options
11018@cindex options, preprocessor
11019
11020These options control the C preprocessor, which is run on each C source
11021file before actual compilation.
11022
11023If you use the @option{-E} option, nothing is done except preprocessing.
11024Some of these options make sense only together with @option{-E} because
11025they cause the preprocessor output to be unsuitable for actual
11026compilation.
11027
11028@table @gcctabopt
11029@item -Wp,@var{option}
11030@opindex Wp
11031You can use @option{-Wp,@var{option}} to bypass the compiler driver
11032and pass @var{option} directly through to the preprocessor.  If
11033@var{option} contains commas, it is split into multiple options at the
11034commas.  However, many options are modified, translated or interpreted
11035by the compiler driver before being passed to the preprocessor, and
11036@option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
11037interface is undocumented and subject to change, so whenever possible
11038you should avoid using @option{-Wp} and let the driver handle the
11039options instead.
11040
11041@item -Xpreprocessor @var{option}
11042@opindex Xpreprocessor
11043Pass @var{option} as an option to the preprocessor.  You can use this to
11044supply system-specific preprocessor options that GCC does not 
11045recognize.
11046
11047If you want to pass an option that takes an argument, you must use
11048@option{-Xpreprocessor} twice, once for the option and once for the argument.
11049
11050@item -no-integrated-cpp
11051@opindex no-integrated-cpp
11052Perform preprocessing as a separate pass before compilation.
11053By default, GCC performs preprocessing as an integrated part of
11054input tokenization and parsing.
11055If this option is provided, the appropriate language front end
11056(@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11057and Objective-C, respectively) is instead invoked twice,
11058once for preprocessing only and once for actual compilation
11059of the preprocessed input.
11060This option may be useful in conjunction with the @option{-B} or
11061@option{-wrapper} options to specify an alternate preprocessor or
11062perform additional processing of the program source between
11063normal preprocessing and compilation.
11064@end table
11065
11066@include cppopts.texi
11067
11068@node Assembler Options
11069@section Passing Options to the Assembler
11070
11071@c prevent bad page break with this line
11072You can pass options to the assembler.
11073
11074@table @gcctabopt
11075@item -Wa,@var{option}
11076@opindex Wa
11077Pass @var{option} as an option to the assembler.  If @var{option}
11078contains commas, it is split into multiple options at the commas.
11079
11080@item -Xassembler @var{option}
11081@opindex Xassembler
11082Pass @var{option} as an option to the assembler.  You can use this to
11083supply system-specific assembler options that GCC does not
11084recognize.
11085
11086If you want to pass an option that takes an argument, you must use
11087@option{-Xassembler} twice, once for the option and once for the argument.
11088
11089@end table
11090
11091@node Link Options
11092@section Options for Linking
11093@cindex link options
11094@cindex options, linking
11095
11096These options come into play when the compiler links object files into
11097an executable output file.  They are meaningless if the compiler is
11098not doing a link step.
11099
11100@table @gcctabopt
11101@cindex file names
11102@item @var{object-file-name}
11103A file name that does not end in a special recognized suffix is
11104considered to name an object file or library.  (Object files are
11105distinguished from libraries by the linker according to the file
11106contents.)  If linking is done, these object files are used as input
11107to the linker.
11108
11109@item -c
11110@itemx -S
11111@itemx -E
11112@opindex c
11113@opindex S
11114@opindex E
11115If any of these options is used, then the linker is not run, and
11116object file names should not be used as arguments.  @xref{Overall
11117Options}.
11118
11119@item -fuse-ld=bfd
11120@opindex fuse-ld=bfd
11121Use the @command{bfd} linker instead of the default linker.
11122
11123@item -fuse-ld=gold
11124@opindex fuse-ld=gold
11125Use the @command{gold} linker instead of the default linker.
11126
11127@cindex Libraries
11128@item -l@var{library}
11129@itemx -l @var{library}
11130@opindex l
11131Search the library named @var{library} when linking.  (The second
11132alternative with the library as a separate argument is only for
11133POSIX compliance and is not recommended.)
11134
11135It makes a difference where in the command you write this option; the
11136linker searches and processes libraries and object files in the order they
11137are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11138after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
11139to functions in @samp{z}, those functions may not be loaded.
11140
11141The linker searches a standard list of directories for the library,
11142which is actually a file named @file{lib@var{library}.a}.  The linker
11143then uses this file as if it had been specified precisely by name.
11144
11145The directories searched include several standard system directories
11146plus any that you specify with @option{-L}.
11147
11148Normally the files found this way are library files---archive files
11149whose members are object files.  The linker handles an archive file by
11150scanning through it for members which define symbols that have so far
11151been referenced but not defined.  But if the file that is found is an
11152ordinary object file, it is linked in the usual fashion.  The only
11153difference between using an @option{-l} option and specifying a file name
11154is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11155and searches several directories.
11156
11157@item -lobjc
11158@opindex lobjc
11159You need this special case of the @option{-l} option in order to
11160link an Objective-C or Objective-C++ program.
11161
11162@item -nostartfiles
11163@opindex nostartfiles
11164Do not use the standard system startup files when linking.
11165The standard system libraries are used normally, unless @option{-nostdlib}
11166or @option{-nodefaultlibs} is used.
11167
11168@item -nodefaultlibs
11169@opindex nodefaultlibs
11170Do not use the standard system libraries when linking.
11171Only the libraries you specify are passed to the linker, and options
11172specifying linkage of the system libraries, such as @option{-static-libgcc}
11173or @option{-shared-libgcc}, are ignored.  
11174The standard startup files are used normally, unless @option{-nostartfiles}
11175is used.  
11176
11177The compiler may generate calls to @code{memcmp},
11178@code{memset}, @code{memcpy} and @code{memmove}.
11179These entries are usually resolved by entries in
11180libc.  These entry points should be supplied through some other
11181mechanism when this option is specified.
11182
11183@item -nostdlib
11184@opindex nostdlib
11185Do not use the standard system startup files or libraries when linking.
11186No startup files and only the libraries you specify are passed to
11187the linker, and options specifying linkage of the system libraries, such as
11188@option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11189
11190The compiler may generate calls to @code{memcmp}, @code{memset},
11191@code{memcpy} and @code{memmove}.
11192These entries are usually resolved by entries in
11193libc.  These entry points should be supplied through some other
11194mechanism when this option is specified.
11195
11196@cindex @option{-lgcc}, use with @option{-nostdlib}
11197@cindex @option{-nostdlib} and unresolved references
11198@cindex unresolved references and @option{-nostdlib}
11199@cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11200@cindex @option{-nodefaultlibs} and unresolved references
11201@cindex unresolved references and @option{-nodefaultlibs}
11202One of the standard libraries bypassed by @option{-nostdlib} and
11203@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11204which GCC uses to overcome shortcomings of particular machines, or special
11205needs for some languages.
11206(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11207Collection (GCC) Internals},
11208for more discussion of @file{libgcc.a}.)
11209In most cases, you need @file{libgcc.a} even when you want to avoid
11210other standard libraries.  In other words, when you specify @option{-nostdlib}
11211or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11212This ensures that you have no unresolved references to internal GCC
11213library subroutines.
11214(An example of such an internal subroutine is @code{__main}, used to ensure C++
11215constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11216GNU Compiler Collection (GCC) Internals}.)
11217
11218@item -pie
11219@opindex pie
11220Produce a position independent executable on targets that support it.
11221For predictable results, you must also specify the same set of options
11222used for compilation (@option{-fpie}, @option{-fPIE},
11223or model suboptions) when you specify this linker option.
11224
11225@item -rdynamic
11226@opindex rdynamic
11227Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11228that support it. This instructs the linker to add all symbols, not
11229only used ones, to the dynamic symbol table. This option is needed
11230for some uses of @code{dlopen} or to allow obtaining backtraces
11231from within a program.
11232
11233@item -s
11234@opindex s
11235Remove all symbol table and relocation information from the executable.
11236
11237@item -static
11238@opindex static
11239On systems that support dynamic linking, this prevents linking with the shared
11240libraries.  On other systems, this option has no effect.
11241
11242@item -shared
11243@opindex shared
11244Produce a shared object which can then be linked with other objects to
11245form an executable.  Not all systems support this option.  For predictable
11246results, you must also specify the same set of options used for compilation
11247(@option{-fpic}, @option{-fPIC}, or model suboptions) when
11248you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11249needs to build supplementary stub code for constructors to work.  On
11250multi-libbed systems, @samp{gcc -shared} must select the correct support
11251libraries to link against.  Failing to supply the correct flags may lead
11252to subtle defects.  Supplying them in cases where they are not necessary
11253is innocuous.}
11254
11255@item -shared-libgcc
11256@itemx -static-libgcc
11257@opindex shared-libgcc
11258@opindex static-libgcc
11259On systems that provide @file{libgcc} as a shared library, these options
11260force the use of either the shared or static version, respectively.
11261If no shared version of @file{libgcc} was built when the compiler was
11262configured, these options have no effect.
11263
11264There are several situations in which an application should use the
11265shared @file{libgcc} instead of the static version.  The most common
11266of these is when the application wishes to throw and catch exceptions
11267across different shared libraries.  In that case, each of the libraries
11268as well as the application itself should use the shared @file{libgcc}.
11269
11270Therefore, the G++ and GCJ drivers automatically add
11271@option{-shared-libgcc} whenever you build a shared library or a main
11272executable, because C++ and Java programs typically use exceptions, so
11273this is the right thing to do.
11274
11275If, instead, you use the GCC driver to create shared libraries, you may
11276find that they are not always linked with the shared @file{libgcc}.
11277If GCC finds, at its configuration time, that you have a non-GNU linker
11278or a GNU linker that does not support option @option{--eh-frame-hdr},
11279it links the shared version of @file{libgcc} into shared libraries
11280by default.  Otherwise, it takes advantage of the linker and optimizes
11281away the linking with the shared version of @file{libgcc}, linking with
11282the static version of libgcc by default.  This allows exceptions to
11283propagate through such shared libraries, without incurring relocation
11284costs at library load time.
11285
11286However, if a library or main executable is supposed to throw or catch
11287exceptions, you must link it using the G++ or GCJ driver, as appropriate
11288for the languages used in the program, or using the option
11289@option{-shared-libgcc}, such that it is linked with the shared
11290@file{libgcc}.
11291
11292@item -static-libasan
11293@opindex static-libasan
11294When the @option{-fsanitize=address} option is used to link a program,
11295the GCC driver automatically links against @option{libasan}.  If
11296@file{libasan} is available as a shared library, and the @option{-static}
11297option is not used, then this links against the shared version of
11298@file{libasan}.  The @option{-static-libasan} option directs the GCC
11299driver to link @file{libasan} statically, without necessarily linking
11300other libraries statically.
11301
11302@item -static-libtsan
11303@opindex static-libtsan
11304When the @option{-fsanitize=thread} option is used to link a program,
11305the GCC driver automatically links against @option{libtsan}.  If
11306@file{libtsan} is available as a shared library, and the @option{-static}
11307option is not used, then this links against the shared version of
11308@file{libtsan}.  The @option{-static-libtsan} option directs the GCC
11309driver to link @file{libtsan} statically, without necessarily linking
11310other libraries statically.
11311
11312@item -static-liblsan
11313@opindex static-liblsan
11314When the @option{-fsanitize=leak} option is used to link a program,
11315the GCC driver automatically links against @option{liblsan}.  If
11316@file{liblsan} is available as a shared library, and the @option{-static}
11317option is not used, then this links against the shared version of
11318@file{liblsan}.  The @option{-static-liblsan} option directs the GCC
11319driver to link @file{liblsan} statically, without necessarily linking
11320other libraries statically.
11321
11322@item -static-libubsan
11323@opindex static-libubsan
11324When the @option{-fsanitize=undefined} option is used to link a program,
11325the GCC driver automatically links against @option{libubsan}.  If
11326@file{libubsan} is available as a shared library, and the @option{-static}
11327option is not used, then this links against the shared version of
11328@file{libubsan}.  The @option{-static-libubsan} option directs the GCC
11329driver to link @file{libubsan} statically, without necessarily linking
11330other libraries statically.
11331
11332@item -static-libmpx
11333@opindex static-libmpx
11334When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11335used to link a program, the GCC driver automatically links against
11336@file{libmpx}.  If @file{libmpx} is available as a shared library,
11337and the @option{-static} option is not used, then this links against
11338the shared version of @file{libmpx}.  The @option{-static-libmpx}
11339option directs the GCC driver to link @file{libmpx} statically,
11340without necessarily linking other libraries statically.
11341
11342@item -static-libmpxwrappers
11343@opindex static-libmpxwrappers
11344When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11345to link a program without also using @option{-fno-chkp-use-wrappers}, the
11346GCC driver automatically links against @file{libmpxwrappers}.  If
11347@file{libmpxwrappers} is available as a shared library, and the
11348@option{-static} option is not used, then this links against the shared
11349version of @file{libmpxwrappers}.  The @option{-static-libmpxwrappers}
11350option directs the GCC driver to link @file{libmpxwrappers} statically,
11351without necessarily linking other libraries statically.
11352
11353@item -static-libstdc++
11354@opindex static-libstdc++
11355When the @command{g++} program is used to link a C++ program, it
11356normally automatically links against @option{libstdc++}.  If
11357@file{libstdc++} is available as a shared library, and the
11358@option{-static} option is not used, then this links against the
11359shared version of @file{libstdc++}.  That is normally fine.  However, it
11360is sometimes useful to freeze the version of @file{libstdc++} used by
11361the program without going all the way to a fully static link.  The
11362@option{-static-libstdc++} option directs the @command{g++} driver to
11363link @file{libstdc++} statically, without necessarily linking other
11364libraries statically.
11365
11366@item -symbolic
11367@opindex symbolic
11368Bind references to global symbols when building a shared object.  Warn
11369about any unresolved references (unless overridden by the link editor
11370option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
11371this option.
11372
11373@item -T @var{script}
11374@opindex T
11375@cindex linker script
11376Use @var{script} as the linker script.  This option is supported by most
11377systems using the GNU linker.  On some targets, such as bare-board
11378targets without an operating system, the @option{-T} option may be required
11379when linking to avoid references to undefined symbols.
11380
11381@item -Xlinker @var{option}
11382@opindex Xlinker
11383Pass @var{option} as an option to the linker.  You can use this to
11384supply system-specific linker options that GCC does not recognize.
11385
11386If you want to pass an option that takes a separate argument, you must use
11387@option{-Xlinker} twice, once for the option and once for the argument.
11388For example, to pass @option{-assert definitions}, you must write
11389@option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
11390@option{-Xlinker "-assert definitions"}, because this passes the entire
11391string as a single argument, which is not what the linker expects.
11392
11393When using the GNU linker, it is usually more convenient to pass
11394arguments to linker options using the @option{@var{option}=@var{value}}
11395syntax than as separate arguments.  For example, you can specify
11396@option{-Xlinker -Map=output.map} rather than
11397@option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
11398this syntax for command-line options.
11399
11400@item -Wl,@var{option}
11401@opindex Wl
11402Pass @var{option} as an option to the linker.  If @var{option} contains
11403commas, it is split into multiple options at the commas.  You can use this
11404syntax to pass an argument to the option.
11405For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11406linker.  When using the GNU linker, you can also get the same effect with
11407@option{-Wl,-Map=output.map}.
11408
11409@item -u @var{symbol}
11410@opindex u
11411Pretend the symbol @var{symbol} is undefined, to force linking of
11412library modules to define it.  You can use @option{-u} multiple times with
11413different symbols to force loading of additional library modules.
11414
11415@item -z @var{keyword}
11416@opindex z
11417@option{-z} is passed directly on to the linker along with the keyword
11418@var{keyword}. See the section in the documentation of your linker for
11419permitted values and their meanings.
11420@end table
11421
11422@node Directory Options
11423@section Options for Directory Search
11424@cindex directory options
11425@cindex options, directory search
11426@cindex search path
11427
11428These options specify directories to search for header files, for
11429libraries and for parts of the compiler:
11430
11431@table @gcctabopt
11432@item -I@var{dir}
11433@opindex I
11434Add the directory @var{dir} to the head of the list of directories to be
11435searched for header files.  This can be used to override a system header
11436file, substituting your own version, since these directories are
11437searched before the system header file directories.  However, you should
11438not use this option to add directories that contain vendor-supplied
11439system header files (use @option{-isystem} for that).  If you use more than
11440one @option{-I} option, the directories are scanned in left-to-right
11441order; the standard system directories come after.
11442
11443If a standard system include directory, or a directory specified with
11444@option{-isystem}, is also specified with @option{-I}, the @option{-I}
11445option is ignored.  The directory is still searched but as a
11446system directory at its normal position in the system include chain.
11447This is to ensure that GCC's procedure to fix buggy system headers and
11448the ordering for the @code{include_next} directive are not inadvertently changed.
11449If you really need to change the search order for system directories,
11450use the @option{-nostdinc} and/or @option{-isystem} options.
11451
11452@item -iplugindir=@var{dir}
11453@opindex iplugindir=
11454Set the directory to search for plugins that are passed
11455by @option{-fplugin=@var{name}} instead of
11456@option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
11457to be used by the user, but only passed by the driver.
11458
11459@item -iquote@var{dir}
11460@opindex iquote
11461Add the directory @var{dir} to the head of the list of directories to
11462be searched for header files only for the case of @code{#include
11463"@var{file}"}; they are not searched for @code{#include <@var{file}>},
11464otherwise just like @option{-I}.
11465
11466@item -L@var{dir}
11467@opindex L
11468Add directory @var{dir} to the list of directories to be searched
11469for @option{-l}.
11470
11471@item -B@var{prefix}
11472@opindex B
11473This option specifies where to find the executables, libraries,
11474include files, and data files of the compiler itself.
11475
11476The compiler driver program runs one or more of the subprograms
11477@command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
11478@var{prefix} as a prefix for each program it tries to run, both with and
11479without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11480
11481For each subprogram to be run, the compiler driver first tries the
11482@option{-B} prefix, if any.  If that name is not found, or if @option{-B}
11483is not specified, the driver tries two standard prefixes, 
11484@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
11485those results in a file name that is found, the unmodified program
11486name is searched for using the directories specified in your
11487@env{PATH} environment variable.
11488
11489The compiler checks to see if the path provided by @option{-B}
11490refers to a directory, and if necessary it adds a directory
11491separator character at the end of the path.
11492
11493@option{-B} prefixes that effectively specify directory names also apply
11494to libraries in the linker, because the compiler translates these
11495options into @option{-L} options for the linker.  They also apply to
11496include files in the preprocessor, because the compiler translates these
11497options into @option{-isystem} options for the preprocessor.  In this case,
11498the compiler appends @samp{include} to the prefix.
11499
11500The runtime support file @file{libgcc.a} can also be searched for using
11501the @option{-B} prefix, if needed.  If it is not found there, the two
11502standard prefixes above are tried, and that is all.  The file is left
11503out of the link if it is not found by those means.
11504
11505Another way to specify a prefix much like the @option{-B} prefix is to use
11506the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
11507Variables}.
11508
11509As a special kludge, if the path provided by @option{-B} is
11510@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
115119, then it is replaced by @file{[dir/]include}.  This is to help
11512with boot-strapping the compiler.
11513
11514@item -specs=@var{file}
11515@opindex specs
11516Process @var{file} after the compiler reads in the standard @file{specs}
11517file, in order to override the defaults which the @command{gcc} driver
11518program uses when determining what switches to pass to @command{cc1},
11519@command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
11520@option{-specs=@var{file}} can be specified on the command line, and they
11521are processed in order, from left to right.
11522
11523@item --sysroot=@var{dir}
11524@opindex sysroot
11525Use @var{dir} as the logical root directory for headers and libraries.
11526For example, if the compiler normally searches for headers in
11527@file{/usr/include} and libraries in @file{/usr/lib}, it instead
11528searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11529
11530If you use both this option and the @option{-isysroot} option, then
11531the @option{--sysroot} option applies to libraries, but the
11532@option{-isysroot} option applies to header files.
11533
11534The GNU linker (beginning with version 2.16) has the necessary support
11535for this option.  If your linker does not support this option, the
11536header file aspect of @option{--sysroot} still works, but the
11537library aspect does not.
11538
11539@item --no-sysroot-suffix
11540@opindex no-sysroot-suffix
11541For some targets, a suffix is added to the root directory specified
11542with @option{--sysroot}, depending on the other options used, so that
11543headers may for example be found in
11544@file{@var{dir}/@var{suffix}/usr/include} instead of
11545@file{@var{dir}/usr/include}.  This option disables the addition of
11546such a suffix.
11547
11548@item -I-
11549@opindex I-
11550This option has been deprecated.  Please use @option{-iquote} instead for
11551@option{-I} directories before the @option{-I-} and remove the @option{-I-}
11552option.
11553Any directories you specify with @option{-I} options before the @option{-I-}
11554option are searched only for the case of @code{#include "@var{file}"};
11555they are not searched for @code{#include <@var{file}>}.
11556
11557If additional directories are specified with @option{-I} options after
11558the @option{-I-} option, these directories are searched for all @code{#include}
11559directives.  (Ordinarily @emph{all} @option{-I} directories are used
11560this way.)
11561
11562In addition, the @option{-I-} option inhibits the use of the current
11563directory (where the current input file came from) as the first search
11564directory for @code{#include "@var{file}"}.  There is no way to
11565override this effect of @option{-I-}.  With @option{-I.} you can specify
11566searching the directory that is current when the compiler is
11567invoked.  That is not exactly the same as what the preprocessor does
11568by default, but it is often satisfactory.
11569
11570@option{-I-} does not inhibit the use of the standard system directories
11571for header files.  Thus, @option{-I-} and @option{-nostdinc} are
11572independent.
11573@end table
11574
11575@c man end
11576
11577@node Spec Files
11578@section Specifying Subprocesses and the Switches to Pass to Them
11579@cindex Spec Files
11580
11581@command{gcc} is a driver program.  It performs its job by invoking a
11582sequence of other programs to do the work of compiling, assembling and
11583linking.  GCC interprets its command-line parameters and uses these to
11584deduce which programs it should invoke, and which command-line options
11585it ought to place on their command lines.  This behavior is controlled
11586by @dfn{spec strings}.  In most cases there is one spec string for each
11587program that GCC can invoke, but a few programs have multiple spec
11588strings to control their behavior.  The spec strings built into GCC can
11589be overridden by using the @option{-specs=} command-line switch to specify
11590a spec file.
11591
11592@dfn{Spec files} are plaintext files that are used to construct spec
11593strings.  They consist of a sequence of directives separated by blank
11594lines.  The type of directive is determined by the first non-whitespace
11595character on the line, which can be one of the following:
11596
11597@table @code
11598@item %@var{command}
11599Issues a @var{command} to the spec file processor.  The commands that can
11600appear here are:
11601
11602@table @code
11603@item %include <@var{file}>
11604@cindex @code{%include}
11605Search for @var{file} and insert its text at the current point in the
11606specs file.
11607
11608@item %include_noerr <@var{file}>
11609@cindex @code{%include_noerr}
11610Just like @samp{%include}, but do not generate an error message if the include
11611file cannot be found.
11612
11613@item %rename @var{old_name} @var{new_name}
11614@cindex @code{%rename}
11615Rename the spec string @var{old_name} to @var{new_name}.
11616
11617@end table
11618
11619@item *[@var{spec_name}]:
11620This tells the compiler to create, override or delete the named spec
11621string.  All lines after this directive up to the next directive or
11622blank line are considered to be the text for the spec string.  If this
11623results in an empty string then the spec is deleted.  (Or, if the
11624spec did not exist, then nothing happens.)  Otherwise, if the spec
11625does not currently exist a new spec is created.  If the spec does
11626exist then its contents are overridden by the text of this
11627directive, unless the first character of that text is the @samp{+}
11628character, in which case the text is appended to the spec.
11629
11630@item [@var{suffix}]:
11631Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
11632and up to the next directive or blank line are considered to make up the
11633spec string for the indicated suffix.  When the compiler encounters an
11634input file with the named suffix, it processes the spec string in
11635order to work out how to compile that file.  For example:
11636
11637@smallexample
11638.ZZ:
11639z-compile -input %i
11640@end smallexample
11641
11642This says that any input file whose name ends in @samp{.ZZ} should be
11643passed to the program @samp{z-compile}, which should be invoked with the
11644command-line switch @option{-input} and with the result of performing the
11645@samp{%i} substitution.  (See below.)
11646
11647As an alternative to providing a spec string, the text following a
11648suffix directive can be one of the following:
11649
11650@table @code
11651@item @@@var{language}
11652This says that the suffix is an alias for a known @var{language}.  This is
11653similar to using the @option{-x} command-line switch to GCC to specify a
11654language explicitly.  For example:
11655
11656@smallexample
11657.ZZ:
11658@@c++
11659@end smallexample
11660
11661Says that .ZZ files are, in fact, C++ source files.
11662
11663@item #@var{name}
11664This causes an error messages saying:
11665
11666@smallexample
11667@var{name} compiler not installed on this system.
11668@end smallexample
11669@end table
11670
11671GCC already has an extensive list of suffixes built into it.
11672This directive adds an entry to the end of the list of suffixes, but
11673since the list is searched from the end backwards, it is effectively
11674possible to override earlier entries using this technique.
11675
11676@end table
11677
11678GCC has the following spec strings built into it.  Spec files can
11679override these strings or create their own.  Note that individual
11680targets can also add their own spec strings to this list.
11681
11682@smallexample
11683asm          Options to pass to the assembler
11684asm_final    Options to pass to the assembler post-processor
11685cpp          Options to pass to the C preprocessor
11686cc1          Options to pass to the C compiler
11687cc1plus      Options to pass to the C++ compiler
11688endfile      Object files to include at the end of the link
11689link         Options to pass to the linker
11690lib          Libraries to include on the command line to the linker
11691libgcc       Decides which GCC support library to pass to the linker
11692linker       Sets the name of the linker
11693predefines   Defines to be passed to the C preprocessor
11694signed_char  Defines to pass to CPP to say whether @code{char} is signed
11695             by default
11696startfile    Object files to include at the start of the link
11697@end smallexample
11698
11699Here is a small example of a spec file:
11700
11701@smallexample
11702%rename lib                 old_lib
11703
11704*lib:
11705--start-group -lgcc -lc -leval1 --end-group %(old_lib)
11706@end smallexample
11707
11708This example renames the spec called @samp{lib} to @samp{old_lib} and
11709then overrides the previous definition of @samp{lib} with a new one.
11710The new definition adds in some extra command-line options before
11711including the text of the old definition.
11712
11713@dfn{Spec strings} are a list of command-line options to be passed to their
11714corresponding program.  In addition, the spec strings can contain
11715@samp{%}-prefixed sequences to substitute variable text or to
11716conditionally insert text into the command line.  Using these constructs
11717it is possible to generate quite complex command lines.
11718
11719Here is a table of all defined @samp{%}-sequences for spec
11720strings.  Note that spaces are not generated automatically around the
11721results of expanding these sequences.  Therefore you can concatenate them
11722together or combine them with constant text in a single argument.
11723
11724@table @code
11725@item %%
11726Substitute one @samp{%} into the program name or argument.
11727
11728@item %i
11729Substitute the name of the input file being processed.
11730
11731@item %b
11732Substitute the basename of the input file being processed.
11733This is the substring up to (and not including) the last period
11734and not including the directory.
11735
11736@item %B
11737This is the same as @samp{%b}, but include the file suffix (text after
11738the last period).
11739
11740@item %d
11741Marks the argument containing or following the @samp{%d} as a
11742temporary file name, so that that file is deleted if GCC exits
11743successfully.  Unlike @samp{%g}, this contributes no text to the
11744argument.
11745
11746@item %g@var{suffix}
11747Substitute a file name that has suffix @var{suffix} and is chosen
11748once per compilation, and mark the argument in the same way as
11749@samp{%d}.  To reduce exposure to denial-of-service attacks, the file
11750name is now chosen in a way that is hard to predict even when previously
11751chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11752might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
11753the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11754treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
11755was simply substituted with a file name chosen once per compilation,
11756without regard to any appended suffix (which was therefore treated
11757just like ordinary text), making such attacks more likely to succeed.
11758
11759@item %u@var{suffix}
11760Like @samp{%g}, but generates a new temporary file name
11761each time it appears instead of once per compilation.
11762
11763@item %U@var{suffix}
11764Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11765new one if there is no such last file name.  In the absence of any
11766@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11767the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11768involves the generation of two distinct file names, one
11769for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
11770simply substituted with a file name chosen for the previous @samp{%u},
11771without regard to any appended suffix.
11772
11773@item %j@var{suffix}
11774Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11775writable, and if @option{-save-temps} is not used; 
11776otherwise, substitute the name
11777of a temporary file, just like @samp{%u}.  This temporary file is not
11778meant for communication between processes, but rather as a junk
11779disposal mechanism.
11780
11781@item %|@var{suffix}
11782@itemx %m@var{suffix}
11783Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
11784@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11785all.  These are the two most common ways to instruct a program that it
11786should read from standard input or write to standard output.  If you
11787need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11788construct: see for example @file{f/lang-specs.h}.
11789
11790@item %.@var{SUFFIX}
11791Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11792when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
11793terminated by the next space or %.
11794
11795@item %w
11796Marks the argument containing or following the @samp{%w} as the
11797designated output file of this compilation.  This puts the argument
11798into the sequence of arguments that @samp{%o} substitutes.
11799
11800@item %o
11801Substitutes the names of all the output files, with spaces
11802automatically placed around them.  You should write spaces
11803around the @samp{%o} as well or the results are undefined.
11804@samp{%o} is for use in the specs for running the linker.
11805Input files whose names have no recognized suffix are not compiled
11806at all, but they are included among the output files, so they are
11807linked.
11808
11809@item %O
11810Substitutes the suffix for object files.  Note that this is
11811handled specially when it immediately follows @samp{%g, %u, or %U},
11812because of the need for those to form complete file names.  The
11813handling is such that @samp{%O} is treated exactly as if it had already
11814been substituted, except that @samp{%g, %u, and %U} do not currently
11815support additional @var{suffix} characters following @samp{%O} as they do
11816following, for example, @samp{.o}.
11817
11818@item %p
11819Substitutes the standard macro predefinitions for the
11820current target machine.  Use this when running @command{cpp}.
11821
11822@item %P
11823Like @samp{%p}, but puts @samp{__} before and after the name of each
11824predefined macro, except for macros that start with @samp{__} or with
11825@samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
11826C@.
11827
11828@item %I
11829Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11830@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11831@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11832and @option{-imultilib} as necessary.
11833
11834@item %s
11835Current argument is the name of a library or startup file of some sort.
11836Search for that file in a standard list of directories and substitute
11837the full name found.  The current working directory is included in the
11838list of directories scanned.
11839
11840@item %T
11841Current argument is the name of a linker script.  Search for that file
11842in the current list of directories to scan for libraries. If the file
11843is located insert a @option{--script} option into the command line
11844followed by the full path name found.  If the file is not found then
11845generate an error message.  Note: the current working directory is not
11846searched.
11847
11848@item %e@var{str}
11849Print @var{str} as an error message.  @var{str} is terminated by a newline.
11850Use this when inconsistent options are detected.
11851
11852@item %(@var{name})
11853Substitute the contents of spec string @var{name} at this point.
11854
11855@item %x@{@var{option}@}
11856Accumulate an option for @samp{%X}.
11857
11858@item %X
11859Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11860spec string.
11861
11862@item %Y
11863Output the accumulated assembler options specified by @option{-Wa}.
11864
11865@item %Z
11866Output the accumulated preprocessor options specified by @option{-Wp}.
11867
11868@item %a
11869Process the @code{asm} spec.  This is used to compute the
11870switches to be passed to the assembler.
11871
11872@item %A
11873Process the @code{asm_final} spec.  This is a spec string for
11874passing switches to an assembler post-processor, if such a program is
11875needed.
11876
11877@item %l
11878Process the @code{link} spec.  This is the spec for computing the
11879command line passed to the linker.  Typically it makes use of the
11880@samp{%L %G %S %D and %E} sequences.
11881
11882@item %D
11883Dump out a @option{-L} option for each directory that GCC believes might
11884contain startup files.  If the target supports multilibs then the
11885current multilib directory is prepended to each of these paths.
11886
11887@item %L
11888Process the @code{lib} spec.  This is a spec string for deciding which
11889libraries are included on the command line to the linker.
11890
11891@item %G
11892Process the @code{libgcc} spec.  This is a spec string for deciding
11893which GCC support library is included on the command line to the linker.
11894
11895@item %S
11896Process the @code{startfile} spec.  This is a spec for deciding which
11897object files are the first ones passed to the linker.  Typically
11898this might be a file named @file{crt0.o}.
11899
11900@item %E
11901Process the @code{endfile} spec.  This is a spec string that specifies
11902the last object files that are passed to the linker.
11903
11904@item %C
11905Process the @code{cpp} spec.  This is used to construct the arguments
11906to be passed to the C preprocessor.
11907
11908@item %1
11909Process the @code{cc1} spec.  This is used to construct the options to be
11910passed to the actual C compiler (@command{cc1}).
11911
11912@item %2
11913Process the @code{cc1plus} spec.  This is used to construct the options to be
11914passed to the actual C++ compiler (@command{cc1plus}).
11915
11916@item %*
11917Substitute the variable part of a matched option.  See below.
11918Note that each comma in the substituted string is replaced by
11919a single space.
11920
11921@item %<@code{S}
11922Remove all occurrences of @code{-S} from the command line.  Note---this
11923command is position dependent.  @samp{%} commands in the spec string
11924before this one see @code{-S}, @samp{%} commands in the spec string
11925after this one do not.
11926
11927@item %:@var{function}(@var{args})
11928Call the named function @var{function}, passing it @var{args}.
11929@var{args} is first processed as a nested spec string, then split
11930into an argument vector in the usual fashion.  The function returns
11931a string which is processed as if it had appeared literally as part
11932of the current spec.
11933
11934The following built-in spec functions are provided:
11935
11936@table @code
11937@item @code{getenv}
11938The @code{getenv} spec function takes two arguments: an environment
11939variable name and a string.  If the environment variable is not
11940defined, a fatal error is issued.  Otherwise, the return value is the
11941value of the environment variable concatenated with the string.  For
11942example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
11943
11944@smallexample
11945%:getenv(TOPDIR /include)
11946@end smallexample
11947
11948expands to @file{/path/to/top/include}.
11949
11950@item @code{if-exists}
11951The @code{if-exists} spec function takes one argument, an absolute
11952pathname to a file.  If the file exists, @code{if-exists} returns the
11953pathname.  Here is a small example of its usage:
11954
11955@smallexample
11956*startfile:
11957crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
11958@end smallexample
11959
11960@item @code{if-exists-else}
11961The @code{if-exists-else} spec function is similar to the @code{if-exists}
11962spec function, except that it takes two arguments.  The first argument is
11963an absolute pathname to a file.  If the file exists, @code{if-exists-else}
11964returns the pathname.  If it does not exist, it returns the second argument.
11965This way, @code{if-exists-else} can be used to select one file or another,
11966based on the existence of the first.  Here is a small example of its usage:
11967
11968@smallexample
11969*startfile:
11970crt0%O%s %:if-exists(crti%O%s) \
11971%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
11972@end smallexample
11973
11974@item @code{replace-outfile}
11975The @code{replace-outfile} spec function takes two arguments.  It looks for the
11976first argument in the outfiles array and replaces it with the second argument.  Here
11977is a small example of its usage:
11978
11979@smallexample
11980%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
11981@end smallexample
11982
11983@item @code{remove-outfile}
11984The @code{remove-outfile} spec function takes one argument.  It looks for the
11985first argument in the outfiles array and removes it.  Here is a small example
11986its usage:
11987
11988@smallexample
11989%:remove-outfile(-lm)
11990@end smallexample
11991
11992@item @code{pass-through-libs}
11993The @code{pass-through-libs} spec function takes any number of arguments.  It
11994finds any @option{-l} options and any non-options ending in @file{.a} (which it
11995assumes are the names of linker input library archive files) and returns a
11996result containing all the found arguments each prepended by
11997@option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
11998intended to be passed to the LTO linker plugin.
11999
12000@smallexample
12001%:pass-through-libs(%G %L %G)
12002@end smallexample
12003
12004@item @code{print-asm-header}
12005The @code{print-asm-header} function takes no arguments and simply
12006prints a banner like:
12007
12008@smallexample
12009Assembler options
12010=================
12011
12012Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12013@end smallexample
12014
12015It is used to separate compiler options from assembler options
12016in the @option{--target-help} output.
12017@end table
12018
12019@item %@{@code{S}@}
12020Substitutes the @code{-S} switch, if that switch is given to GCC@.
12021If that switch is not specified, this substitutes nothing.  Note that
12022the leading dash is omitted when specifying this option, and it is
12023automatically inserted if the substitution is performed.  Thus the spec
12024string @samp{%@{foo@}} matches the command-line option @option{-foo}
12025and outputs the command-line option @option{-foo}.
12026
12027@item %W@{@code{S}@}
12028Like %@{@code{S}@} but mark last argument supplied within as a file to be
12029deleted on failure.
12030
12031@item %@{@code{S}*@}
12032Substitutes all the switches specified to GCC whose names start
12033with @code{-S}, but which also take an argument.  This is used for
12034switches like @option{-o}, @option{-D}, @option{-I}, etc.
12035GCC considers @option{-o foo} as being
12036one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
12037text, including the space.  Thus two arguments are generated.
12038
12039@item %@{@code{S}*&@code{T}*@}
12040Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12041(the order of @code{S} and @code{T} in the spec is not significant).
12042There can be any number of ampersand-separated variables; for each the
12043wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
12044
12045@item %@{@code{S}:@code{X}@}
12046Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12047
12048@item %@{!@code{S}:@code{X}@}
12049Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12050
12051@item %@{@code{S}*:@code{X}@}
12052Substitutes @code{X} if one or more switches whose names start with
12053@code{-S} are specified to GCC@.  Normally @code{X} is substituted only
12054once, no matter how many such switches appeared.  However, if @code{%*}
12055appears somewhere in @code{X}, then @code{X} is substituted once
12056for each matching switch, with the @code{%*} replaced by the part of
12057that switch matching the @code{*}.
12058
12059If @code{%*} appears as the last part of a spec sequence then a space
12060is added after the end of the last substitution.  If there is more
12061text in the sequence, however, then a space is not generated.  This
12062allows the @code{%*} substitution to be used as part of a larger
12063string.  For example, a spec string like this:
12064
12065@smallexample
12066%@{mcu=*:--script=%*/memory.ld@}
12067@end smallexample
12068
12069@noindent
12070when matching an option like @option{-mcu=newchip} produces:
12071
12072@smallexample
12073--script=newchip/memory.ld
12074@end smallexample
12075
12076@item %@{.@code{S}:@code{X}@}
12077Substitutes @code{X}, if processing a file with suffix @code{S}.
12078
12079@item %@{!.@code{S}:@code{X}@}
12080Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12081
12082@item %@{,@code{S}:@code{X}@}
12083Substitutes @code{X}, if processing a file for language @code{S}.
12084
12085@item %@{!,@code{S}:@code{X}@}
12086Substitutes @code{X}, if not processing a file for language @code{S}.
12087
12088@item %@{@code{S}|@code{P}:@code{X}@}
12089Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12090GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12091@code{*} sequences as well, although they have a stronger binding than
12092the @samp{|}.  If @code{%*} appears in @code{X}, all of the
12093alternatives must be starred, and only the first matching alternative
12094is substituted.
12095
12096For example, a spec string like this:
12097
12098@smallexample
12099%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12100@end smallexample
12101
12102@noindent
12103outputs the following command-line options from the following input
12104command-line options:
12105
12106@smallexample
12107fred.c        -foo -baz
12108jim.d         -bar -boggle
12109-d fred.c     -foo -baz -boggle
12110-d jim.d      -bar -baz -boggle
12111@end smallexample
12112
12113@item %@{S:X; T:Y; :D@}
12114
12115If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12116given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
12117be as many clauses as you need.  This may be combined with @code{.},
12118@code{,}, @code{!}, @code{|}, and @code{*} as needed.
12119
12120
12121@end table
12122
12123The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12124construct may contain other nested @samp{%} constructs or spaces, or
12125even newlines.  They are processed as usual, as described above.
12126Trailing white space in @code{X} is ignored.  White space may also
12127appear anywhere on the left side of the colon in these constructs,
12128except between @code{.} or @code{*} and the corresponding word.
12129
12130The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12131handled specifically in these constructs.  If another value of
12132@option{-O} or the negated form of a @option{-f}, @option{-m}, or
12133@option{-W} switch is found later in the command line, the earlier
12134switch value is ignored, except with @{@code{S}*@} where @code{S} is
12135just one letter, which passes all matching options.
12136
12137The character @samp{|} at the beginning of the predicate text is used to
12138indicate that a command should be piped to the following command, but
12139only if @option{-pipe} is specified.
12140
12141It is built into GCC which switches take arguments and which do not.
12142(You might think it would be useful to generalize this to allow each
12143compiler's spec to say which switches take arguments.  But this cannot
12144be done in a consistent fashion.  GCC cannot even decide which input
12145files have been specified without knowing which switches take arguments,
12146and it must know which input files to compile in order to tell which
12147compilers to run).
12148
12149GCC also knows implicitly that arguments starting in @option{-l} are to be
12150treated as compiler output files, and passed to the linker in their
12151proper position among the other output files.
12152
12153@c man begin OPTIONS
12154
12155@node Target Options
12156@section Specifying Target Machine and Compiler Version
12157@cindex target options
12158@cindex cross compiling
12159@cindex specifying machine version
12160@cindex specifying compiler version and target machine
12161@cindex compiler version, specifying
12162@cindex target machine, specifying
12163
12164The usual way to run GCC is to run the executable called @command{gcc}, or
12165@command{@var{machine}-gcc} when cross-compiling, or
12166@command{@var{machine}-gcc-@var{version}} to run a version other than the
12167one that was installed last.
12168
12169@node Submodel Options
12170@section Hardware Models and Configurations
12171@cindex submodel options
12172@cindex specifying hardware config
12173@cindex hardware models and configurations, specifying
12174@cindex machine dependent options
12175
12176Each target machine types can have its own
12177special options, starting with @samp{-m}, to choose among various
12178hardware models or configurations---for example, 68010 vs 68020,
12179floating coprocessor or none.  A single installed version of the
12180compiler can compile for any model or configuration, according to the
12181options specified.
12182
12183Some configurations of the compiler also support additional special
12184options, usually for compatibility with other compilers on the same
12185platform.
12186
12187@c This list is ordered alphanumerically by subsection name.
12188@c It should be the same order and spelling as these options are listed
12189@c in Machine Dependent Options
12190
12191@menu
12192* AArch64 Options::
12193* Adapteva Epiphany Options::
12194* ARC Options::
12195* ARM Options::
12196* AVR Options::
12197* Blackfin Options::
12198* C6X Options::
12199* CRIS Options::
12200* CR16 Options::
12201* Darwin Options::
12202* DEC Alpha Options::
12203* FR30 Options::
12204* FRV Options::
12205* GNU/Linux Options::
12206* H8/300 Options::
12207* HPPA Options::
12208* IA-64 Options::
12209* LM32 Options::
12210* M32C Options::
12211* M32R/D Options::
12212* M680x0 Options::
12213* MCore Options::
12214* MeP Options::
12215* MicroBlaze Options::
12216* MIPS Options::
12217* MMIX Options::
12218* MN10300 Options::
12219* Moxie Options::
12220* MSP430 Options::
12221* NDS32 Options::
12222* Nios II Options::
12223* Nvidia PTX Options::
12224* PDP-11 Options::
12225* picoChip Options::
12226* PowerPC Options::
12227* RL78 Options::
12228* RS/6000 and PowerPC Options::
12229* RX Options::
12230* S/390 and zSeries Options::
12231* Score Options::
12232* SH Options::
12233* Solaris 2 Options::
12234* SPARC Options::
12235* SPU Options::
12236* System V Options::
12237* TILE-Gx Options::
12238* TILEPro Options::
12239* V850 Options::
12240* VAX Options::
12241* Visium Options::
12242* VMS Options::
12243* VxWorks Options::
12244* x86 Options::
12245* x86 Windows Options::
12246* Xstormy16 Options::
12247* Xtensa Options::
12248* zSeries Options::
12249@end menu
12250
12251@node AArch64 Options
12252@subsection AArch64 Options
12253@cindex AArch64 Options
12254
12255These options are defined for AArch64 implementations:
12256
12257@table @gcctabopt
12258
12259@item -mabi=@var{name}
12260@opindex mabi
12261Generate code for the specified data model.  Permissible values
12262are @samp{ilp32} for SysV-like data model where int, long int and pointer
12263are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12264but long int and pointer are 64-bit.
12265
12266The default depends on the specific target configuration.  Note that
12267the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12268entire program with the same ABI, and link with a compatible set of libraries.
12269
12270@item -mbig-endian
12271@opindex mbig-endian
12272Generate big-endian code.  This is the default when GCC is configured for an
12273@samp{aarch64_be-*-*} target.
12274
12275@item -mgeneral-regs-only
12276@opindex mgeneral-regs-only
12277Generate code which uses only the general registers.
12278
12279@item -mlittle-endian
12280@opindex mlittle-endian
12281Generate little-endian code.  This is the default when GCC is configured for an
12282@samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12283
12284@item -mcmodel=tiny
12285@opindex mcmodel=tiny
12286Generate code for the tiny code model.  The program and its statically defined
12287symbols must be within 1GB of each other.  Pointers are 64 bits.  Programs can
12288be statically or dynamically linked.  This model is not fully implemented and
12289mostly treated as @samp{small}.
12290
12291@item -mcmodel=small
12292@opindex mcmodel=small
12293Generate code for the small code model.  The program and its statically defined
12294symbols must be within 4GB of each other.  Pointers are 64 bits.  Programs can
12295be statically or dynamically linked.  This is the default code model.
12296
12297@item -mcmodel=large
12298@opindex mcmodel=large
12299Generate code for the large code model.  This makes no assumptions about
12300addresses and sizes of sections.  Pointers are 64 bits.  Programs can be
12301statically linked only.
12302
12303@item -mstrict-align
12304@opindex mstrict-align
12305Do not assume that unaligned memory references are handled by the system.
12306
12307@item -momit-leaf-frame-pointer
12308@itemx -mno-omit-leaf-frame-pointer
12309@opindex momit-leaf-frame-pointer
12310@opindex mno-omit-leaf-frame-pointer
12311Omit or keep the frame pointer in leaf functions.  The former behaviour is the
12312default.
12313
12314@item -mtls-dialect=desc
12315@opindex mtls-dialect=desc
12316Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12317of TLS variables.  This is the default.
12318
12319@item -mtls-dialect=traditional
12320@opindex mtls-dialect=traditional
12321Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12322of TLS variables.
12323
12324@item -mfix-cortex-a53-835769
12325@itemx -mno-fix-cortex-a53-835769
12326@opindex mfix-cortex-a53-835769
12327@opindex mno-fix-cortex-a53-835769
12328Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12329This involves inserting a NOP instruction between memory instructions and
1233064-bit integer multiply-accumulate instructions.
12331
12332@item -mfix-cortex-a53-843419
12333@itemx -mno-fix-cortex-a53-843419
12334@opindex mfix-cortex-a53-843419
12335@opindex mno-fix-cortex-a53-843419
12336Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12337This erratum workaround is made at link time and this will only pass the
12338corresponding flag to the linker.
12339
12340@item -march=@var{name}
12341@opindex march
12342Specify the name of the target architecture, optionally suffixed by one or
12343more feature modifiers.  This option has the form
12344@option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12345only permissible value for @var{arch} is @samp{armv8-a}.  The permissible
12346values for @var{feature} are documented in the sub-section below.
12347
12348Where conflicting feature modifiers are specified, the right-most feature is
12349used.
12350
12351GCC uses this name to determine what kind of instructions it can emit when
12352generating assembly code.
12353
12354Where @option{-march} is specified without either of @option{-mtune}
12355or @option{-mcpu} also being specified, the code is tuned to perform
12356well across a range of target processors implementing the target
12357architecture.
12358
12359@item -mtune=@var{name}
12360@opindex mtune
12361Specify the name of the target processor for which GCC should tune the
12362performance of the code.  Permissible values for this option are:
12363@samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12364@samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12365
12366Additionally, this option can specify that GCC should tune the performance
12367of the code for a big.LITTLE system.  Permissible values for this
12368option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12369
12370Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12371are specified, the code is tuned to perform well across a range
12372of target processors.
12373
12374This option cannot be suffixed by feature modifiers.
12375
12376@item -mcpu=@var{name}
12377@opindex mcpu
12378Specify the name of the target processor, optionally suffixed by one or more
12379feature modifiers.  This option has the form
12380@option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12381permissible values for @var{cpu} are the same as those available for
12382@option{-mtune}.
12383
12384The permissible values for @var{feature} are documented in the sub-section
12385below.
12386
12387Where conflicting feature modifiers are specified, the right-most feature is
12388used.
12389
12390GCC uses this name to determine what kind of instructions it can emit when
12391generating assembly code (as if by @option{-march}) and to determine
12392the target processor for which to tune for performance (as if
12393by @option{-mtune}).  Where this option is used in conjunction
12394with @option{-march} or @option{-mtune}, those options take precedence
12395over the appropriate part of this option.
12396@end table
12397
12398@subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12399@cindex @option{-march} feature modifiers
12400@cindex @option{-mcpu} feature modifiers
12401Feature modifiers used with @option{-march} and @option{-mcpu} can be one
12402the following:
12403
12404@table @samp
12405@item crc
12406Enable CRC extension.
12407@item crypto
12408Enable Crypto extension.  This implies Advanced SIMD is enabled.
12409@item fp
12410Enable floating-point instructions.
12411@item simd
12412Enable Advanced SIMD instructions.  This implies floating-point instructions
12413are enabled.  This is the default for all current possible values for options
12414@option{-march} and @option{-mcpu=}.
12415@end table
12416
12417@node Adapteva Epiphany Options
12418@subsection Adapteva Epiphany Options
12419
12420These @samp{-m} options are defined for Adapteva Epiphany:
12421
12422@table @gcctabopt
12423@item -mhalf-reg-file
12424@opindex mhalf-reg-file
12425Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12426That allows code to run on hardware variants that lack these registers.
12427
12428@item -mprefer-short-insn-regs
12429@opindex mprefer-short-insn-regs
12430Preferrentially allocate registers that allow short instruction generation.
12431This can result in increased instruction count, so this may either reduce or
12432increase overall code size.
12433
12434@item -mbranch-cost=@var{num}
12435@opindex mbranch-cost
12436Set the cost of branches to roughly @var{num} ``simple'' instructions.
12437This cost is only a heuristic and is not guaranteed to produce
12438consistent results across releases.
12439
12440@item -mcmove
12441@opindex mcmove
12442Enable the generation of conditional moves.
12443
12444@item -mnops=@var{num}
12445@opindex mnops
12446Emit @var{num} NOPs before every other generated instruction.
12447
12448@item -mno-soft-cmpsf
12449@opindex mno-soft-cmpsf
12450For single-precision floating-point comparisons, emit an @code{fsub} instruction
12451and test the flags.  This is faster than a software comparison, but can
12452get incorrect results in the presence of NaNs, or when two different small
12453numbers are compared such that their difference is calculated as zero.
12454The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12455software comparisons.
12456
12457@item -mstack-offset=@var{num}
12458@opindex mstack-offset
12459Set the offset between the top of the stack and the stack pointer.
12460E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12461can be used by leaf functions without stack allocation.
12462Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12463Note also that this option changes the ABI; compiling a program with a
12464different stack offset than the libraries have been compiled with
12465generally does not work.
12466This option can be useful if you want to evaluate if a different stack
12467offset would give you better code, but to actually use a different stack
12468offset to build working programs, it is recommended to configure the
12469toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12470
12471@item -mno-round-nearest
12472@opindex mno-round-nearest
12473Make the scheduler assume that the rounding mode has been set to
12474truncating.  The default is @option{-mround-nearest}.
12475
12476@item -mlong-calls
12477@opindex mlong-calls
12478If not otherwise specified by an attribute, assume all calls might be beyond
12479the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12480function address into a register before performing a (otherwise direct) call.
12481This is the default.
12482
12483@item -mshort-calls
12484@opindex short-calls
12485If not otherwise specified by an attribute, assume all direct calls are
12486in the range of the @code{b} / @code{bl} instructions, so use these instructions
12487for direct calls.  The default is @option{-mlong-calls}.
12488
12489@item -msmall16
12490@opindex msmall16
12491Assume addresses can be loaded as 16-bit unsigned values.  This does not
12492apply to function addresses for which @option{-mlong-calls} semantics
12493are in effect.
12494
12495@item -mfp-mode=@var{mode}
12496@opindex mfp-mode
12497Set the prevailing mode of the floating-point unit.
12498This determines the floating-point mode that is provided and expected
12499at function call and return time.  Making this mode match the mode you
12500predominantly need at function start can make your programs smaller and
12501faster by avoiding unnecessary mode switches.
12502
12503@var{mode} can be set to one the following values:
12504
12505@table @samp
12506@item caller
12507Any mode at function entry is valid, and retained or restored when
12508the function returns, and when it calls other functions.
12509This mode is useful for compiling libraries or other compilation units
12510you might want to incorporate into different programs with different
12511prevailing FPU modes, and the convenience of being able to use a single
12512object file outweighs the size and speed overhead for any extra
12513mode switching that might be needed, compared with what would be needed
12514with a more specific choice of prevailing FPU mode.
12515
12516@item truncate
12517This is the mode used for floating-point calculations with
12518truncating (i.e.@: round towards zero) rounding mode.  That includes
12519conversion from floating point to integer.
12520
12521@item round-nearest
12522This is the mode used for floating-point calculations with
12523round-to-nearest-or-even rounding mode.
12524
12525@item int
12526This is the mode used to perform integer calculations in the FPU, e.g.@:
12527integer multiply, or integer multiply-and-accumulate.
12528@end table
12529
12530The default is @option{-mfp-mode=caller}
12531
12532@item -mnosplit-lohi
12533@itemx -mno-postinc
12534@itemx -mno-postmodify
12535@opindex mnosplit-lohi
12536@opindex mno-postinc
12537@opindex mno-postmodify
12538Code generation tweaks that disable, respectively, splitting of 32-bit
12539loads, generation of post-increment addresses, and generation of
12540post-modify addresses.  The defaults are @option{msplit-lohi},
12541@option{-mpost-inc}, and @option{-mpost-modify}.
12542
12543@item -mnovect-double
12544@opindex mno-vect-double
12545Change the preferred SIMD mode to SImode.  The default is
12546@option{-mvect-double}, which uses DImode as preferred SIMD mode.
12547
12548@item -max-vect-align=@var{num}
12549@opindex max-vect-align
12550The maximum alignment for SIMD vector mode types.
12551@var{num} may be 4 or 8.  The default is 8.
12552Note that this is an ABI change, even though many library function
12553interfaces are unaffected if they don't use SIMD vector modes
12554in places that affect size and/or alignment of relevant types.
12555
12556@item -msplit-vecmove-early
12557@opindex msplit-vecmove-early
12558Split vector moves into single word moves before reload.  In theory this
12559can give better register allocation, but so far the reverse seems to be
12560generally the case.
12561
12562@item -m1reg-@var{reg}
12563@opindex m1reg-
12564Specify a register to hold the constant @minus{}1, which makes loading small negative
12565constants and certain bitmasks faster.
12566Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12567which specify use of that register as a fixed register,
12568and @samp{none}, which means that no register is used for this
12569purpose.  The default is @option{-m1reg-none}.
12570
12571@end table
12572
12573@node ARC Options
12574@subsection ARC Options
12575@cindex ARC options
12576
12577The following options control the architecture variant for which code
12578is being compiled:
12579
12580@c architecture variants
12581@table @gcctabopt
12582
12583@item -mbarrel-shifter
12584@opindex mbarrel-shifter
12585Generate instructions supported by barrel shifter.  This is the default
12586unless @option{-mcpu=ARC601} is in effect.
12587
12588@item -mcpu=@var{cpu}
12589@opindex mcpu
12590Set architecture type, register usage, and instruction scheduling
12591parameters for @var{cpu}.  There are also shortcut alias options
12592available for backward compatibility and convenience.  Supported
12593values for @var{cpu} are
12594
12595@table @samp
12596@opindex mA6
12597@opindex mARC600
12598@item ARC600
12599Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
12600
12601@item ARC601
12602@opindex mARC601
12603Compile for ARC601.  Alias: @option{-mARC601}.
12604
12605@item ARC700
12606@opindex mA7
12607@opindex mARC700
12608Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
12609This is the default when configured with @option{--with-cpu=arc700}@.
12610@end table
12611
12612@item -mdpfp
12613@opindex mdpfp
12614@itemx -mdpfp-compact
12615@opindex mdpfp-compact
12616FPX: Generate Double Precision FPX instructions, tuned for the compact
12617implementation.
12618
12619@item -mdpfp-fast
12620@opindex mdpfp-fast
12621FPX: Generate Double Precision FPX instructions, tuned for the fast
12622implementation.
12623
12624@item -mno-dpfp-lrsr
12625@opindex mno-dpfp-lrsr
12626Disable LR and SR instructions from using FPX extension aux registers.
12627
12628@item -mea
12629@opindex mea
12630Generate Extended arithmetic instructions.  Currently only
12631@code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12632supported.  This is always enabled for @option{-mcpu=ARC700}.
12633
12634@item -mno-mpy
12635@opindex mno-mpy
12636Do not generate mpy instructions for ARC700.
12637
12638@item -mmul32x16
12639@opindex mmul32x16
12640Generate 32x16 bit multiply and mac instructions.
12641
12642@item -mmul64
12643@opindex mmul64
12644Generate mul64 and mulu64 instructions.  Only valid for @option{-mcpu=ARC600}.
12645
12646@item -mnorm
12647@opindex mnorm
12648Generate norm instruction.  This is the default if @option{-mcpu=ARC700}
12649is in effect.
12650
12651@item -mspfp
12652@opindex mspfp
12653@itemx -mspfp-compact
12654@opindex mspfp-compact
12655FPX: Generate Single Precision FPX instructions, tuned for the compact
12656implementation.
12657
12658@item -mspfp-fast
12659@opindex mspfp-fast
12660FPX: Generate Single Precision FPX instructions, tuned for the fast
12661implementation.
12662
12663@item -msimd
12664@opindex msimd
12665Enable generation of ARC SIMD instructions via target-specific
12666builtins.  Only valid for @option{-mcpu=ARC700}.
12667
12668@item -msoft-float
12669@opindex msoft-float
12670This option ignored; it is provided for compatibility purposes only.
12671Software floating point code is emitted by default, and this default
12672can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12673@samp{mspfp-fast} for single precision, and @samp{mdpfp},
12674@samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12675
12676@item -mswap
12677@opindex mswap
12678Generate swap instructions.
12679
12680@end table
12681
12682The following options are passed through to the assembler, and also
12683define preprocessor macro symbols.
12684
12685@c Flags used by the assembler, but for which we define preprocessor
12686@c macro symbols as well.
12687@table @gcctabopt
12688@item -mdsp-packa
12689@opindex mdsp-packa
12690Passed down to the assembler to enable the DSP Pack A extensions.
12691Also sets the preprocessor symbol @code{__Xdsp_packa}.
12692
12693@item -mdvbf
12694@opindex mdvbf
12695Passed down to the assembler to enable the dual viterbi butterfly
12696extension.  Also sets the preprocessor symbol @code{__Xdvbf}.
12697
12698@c ARC700 4.10 extension instruction
12699@item -mlock
12700@opindex mlock
12701Passed down to the assembler to enable the Locked Load/Store
12702Conditional extension.  Also sets the preprocessor symbol
12703@code{__Xlock}.
12704
12705@item -mmac-d16
12706@opindex mmac-d16
12707Passed down to the assembler.  Also sets the preprocessor symbol
12708@code{__Xxmac_d16}.
12709
12710@item -mmac-24
12711@opindex mmac-24
12712Passed down to the assembler.  Also sets the preprocessor symbol
12713@code{__Xxmac_24}.
12714
12715@c ARC700 4.10 extension instruction
12716@item -mrtsc
12717@opindex mrtsc
12718Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12719extension instruction.  Also sets the preprocessor symbol
12720@code{__Xrtsc}.
12721
12722@c ARC700 4.10 extension instruction
12723@item -mswape
12724@opindex mswape
12725Passed down to the assembler to enable the swap byte ordering
12726extension instruction.  Also sets the preprocessor symbol
12727@code{__Xswape}.
12728
12729@item -mtelephony
12730@opindex mtelephony
12731Passed down to the assembler to enable dual and single operand
12732instructions for telephony.  Also sets the preprocessor symbol
12733@code{__Xtelephony}.
12734
12735@item -mxy
12736@opindex mxy
12737Passed down to the assembler to enable the XY Memory extension.  Also
12738sets the preprocessor symbol @code{__Xxy}.
12739
12740@end table
12741
12742The following options control how the assembly code is annotated:
12743
12744@c Assembly annotation options
12745@table @gcctabopt
12746@item -misize
12747@opindex misize
12748Annotate assembler instructions with estimated addresses.
12749
12750@item -mannotate-align
12751@opindex mannotate-align
12752Explain what alignment considerations lead to the decision to make an
12753instruction short or long.
12754
12755@end table
12756
12757The following options are passed through to the linker:
12758
12759@c options passed through to the linker
12760@table @gcctabopt
12761@item -marclinux
12762@opindex marclinux
12763Passed through to the linker, to specify use of the @code{arclinux} emulation.
12764This option is enabled by default in tool chains built for
12765@w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12766when profiling is not requested.
12767
12768@item -marclinux_prof
12769@opindex marclinux_prof
12770Passed through to the linker, to specify use of the
12771@code{arclinux_prof} emulation.  This option is enabled by default in
12772tool chains built for @w{@code{arc-linux-uclibc}} and
12773@w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12774
12775@end table
12776
12777The following options control the semantics of generated code:
12778
12779@c semantically relevant code generation options
12780@table @gcctabopt
12781@item -mepilogue-cfi
12782@opindex mepilogue-cfi
12783Enable generation of call frame information for epilogues.
12784
12785@item -mno-epilogue-cfi
12786@opindex mno-epilogue-cfi
12787Disable generation of call frame information for epilogues.
12788
12789@item -mlong-calls
12790@opindex mlong-calls
12791Generate call insns as register indirect calls, thus providing access
12792to the full 32-bit address range.
12793
12794@item -mmedium-calls
12795@opindex mmedium-calls
12796Don't use less than 25 bit addressing range for calls, which is the
12797offset available for an unconditional branch-and-link
12798instruction.  Conditional execution of function calls is suppressed, to
12799allow use of the 25-bit range, rather than the 21-bit range with
12800conditional branch-and-link.  This is the default for tool chains built
12801for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12802
12803@item -mno-sdata
12804@opindex mno-sdata
12805Do not generate sdata references.  This is the default for tool chains
12806built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12807targets.
12808
12809@item -mucb-mcount
12810@opindex mucb-mcount
12811Instrument with mcount calls as used in UCB code.  I.e. do the
12812counting in the callee, not the caller.  By default ARC instrumentation
12813counts in the caller.
12814
12815@item -mvolatile-cache
12816@opindex mvolatile-cache
12817Use ordinarily cached memory accesses for volatile references.  This is the
12818default.
12819
12820@item -mno-volatile-cache
12821@opindex mno-volatile-cache
12822Enable cache bypass for volatile references.
12823
12824@end table
12825
12826The following options fine tune code generation:
12827@c code generation tuning options
12828@table @gcctabopt
12829@item -malign-call
12830@opindex malign-call
12831Do alignment optimizations for call instructions.
12832
12833@item -mauto-modify-reg
12834@opindex mauto-modify-reg
12835Enable the use of pre/post modify with register displacement.
12836
12837@item -mbbit-peephole
12838@opindex mbbit-peephole
12839Enable bbit peephole2.
12840
12841@item -mno-brcc
12842@opindex mno-brcc
12843This option disables a target-specific pass in @file{arc_reorg} to
12844generate @code{BRcc} instructions.  It has no effect on @code{BRcc}
12845generation driven by the combiner pass.
12846
12847@item -mcase-vector-pcrel
12848@opindex mcase-vector-pcrel
12849Use pc-relative switch case tables - this enables case table shortening.
12850This is the default for @option{-Os}.
12851
12852@item -mcompact-casesi
12853@opindex mcompact-casesi
12854Enable compact casesi pattern.
12855This is the default for @option{-Os}.
12856
12857@item -mno-cond-exec
12858@opindex mno-cond-exec
12859Disable ARCompact specific pass to generate conditional execution instructions.
12860Due to delay slot scheduling and interactions between operand numbers,
12861literal sizes, instruction lengths, and the support for conditional execution,
12862the target-independent pass to generate conditional execution is often lacking,
12863so the ARC port has kept a special pass around that tries to find more
12864conditional execution generating opportunities after register allocation,
12865branch shortening, and delay slot scheduling have been done.  This pass
12866generally, but not always, improves performance and code size, at the cost of
12867extra compilation time, which is why there is an option to switch it off.
12868If you have a problem with call instructions exceeding their allowable
12869offset range because they are conditionalized, you should consider using
12870@option{-mmedium-calls} instead.
12871
12872@item -mearly-cbranchsi
12873@opindex mearly-cbranchsi
12874Enable pre-reload use of the cbranchsi pattern.
12875
12876@item -mexpand-adddi
12877@opindex mexpand-adddi
12878Expand @code{adddi3} and @code{subdi3} at rtl generation time into
12879@code{add.f}, @code{adc} etc.
12880
12881@item -mindexed-loads
12882@opindex mindexed-loads
12883Enable the use of indexed loads.  This can be problematic because some
12884optimizers then assume that indexed stores exist, which is not
12885the case.
12886
12887@item -mlra
12888@opindex mlra
12889Enable Local Register Allocation.  This is still experimental for ARC,
12890so by default the compiler uses standard reload
12891(i.e. @option{-mno-lra}).
12892
12893@item -mlra-priority-none
12894@opindex mlra-priority-none
12895Don't indicate any priority for target registers.
12896
12897@item -mlra-priority-compact
12898@opindex mlra-priority-compact
12899Indicate target register priority for r0..r3 / r12..r15.
12900
12901@item -mlra-priority-noncompact
12902@opindex mlra-priority-noncompact
12903Reduce target regsiter priority for r0..r3 / r12..r15.
12904
12905@item -mno-millicode
12906@opindex mno-millicode
12907When optimizing for size (using @option{-Os}), prologues and epilogues
12908that have to save or restore a large number of registers are often
12909shortened by using call to a special function in libgcc; this is
12910referred to as a @emph{millicode} call.  As these calls can pose
12911performance issues, and/or cause linking issues when linking in a
12912nonstandard way, this option is provided to turn off millicode call
12913generation.
12914
12915@item -mmixed-code
12916@opindex mmixed-code
12917Tweak register allocation to help 16-bit instruction generation.
12918This generally has the effect of decreasing the average instruction size
12919while increasing the instruction count.
12920
12921@item -mq-class
12922@opindex mq-class
12923Enable 'q' instruction alternatives.
12924This is the default for @option{-Os}.
12925
12926@item -mRcq
12927@opindex mRcq
12928Enable Rcq constraint handling - most short code generation depends on this.
12929This is the default.
12930
12931@item -mRcw
12932@opindex mRcw
12933Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
12934This is the default.
12935
12936@item -msize-level=@var{level}
12937@opindex msize-level
12938Fine-tune size optimization with regards to instruction lengths and alignment.
12939The recognized values for @var{level} are:
12940@table @samp
12941@item 0
12942No size optimization.  This level is deprecated and treated like @samp{1}.
12943
12944@item 1
12945Short instructions are used opportunistically.
12946
12947@item 2
12948In addition, alignment of loops and of code after barriers are dropped.
12949
12950@item 3
12951In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
12952
12953@end table
12954
12955This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
12956the behavior when this is not set is equivalent to level @samp{1}.
12957
12958@item -mtune=@var{cpu}
12959@opindex mtune
12960Set instruction scheduling parameters for @var{cpu}, overriding any implied
12961by @option{-mcpu=}.
12962
12963Supported values for @var{cpu} are
12964
12965@table @samp
12966@item ARC600
12967Tune for ARC600 cpu.
12968
12969@item ARC601
12970Tune for ARC601 cpu.
12971
12972@item ARC700
12973Tune for ARC700 cpu with standard multiplier block.
12974
12975@item ARC700-xmac
12976Tune for ARC700 cpu with XMAC block.
12977
12978@item ARC725D
12979Tune for ARC725D cpu.
12980
12981@item ARC750D
12982Tune for ARC750D cpu.
12983
12984@end table
12985
12986@item -mmultcost=@var{num}
12987@opindex mmultcost
12988Cost to assume for a multiply instruction, with @samp{4} being equal to a
12989normal instruction.
12990
12991@item -munalign-prob-threshold=@var{probability}
12992@opindex munalign-prob-threshold
12993Set probability threshold for unaligning branches.
12994When tuning for @samp{ARC700} and optimizing for speed, branches without
12995filled delay slot are preferably emitted unaligned and long, unless
12996profiling indicates that the probability for the branch to be taken
12997is below @var{probability}.  @xref{Cross-profiling}.
12998The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
12999
13000@end table
13001
13002The following options are maintained for backward compatibility, but
13003are now deprecated and will be removed in a future release:
13004
13005@c Deprecated options
13006@table @gcctabopt
13007
13008@item -margonaut
13009@opindex margonaut
13010Obsolete FPX.
13011
13012@item -mbig-endian
13013@opindex mbig-endian
13014@itemx -EB
13015@opindex EB
13016Compile code for big endian targets.  Use of these options is now
13017deprecated.  Users wanting big-endian code, should use the
13018@w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13019building the tool chain, for which big-endian is the default.
13020
13021@item -mlittle-endian
13022@opindex mlittle-endian
13023@itemx -EL
13024@opindex EL
13025Compile code for little endian targets.  Use of these options is now
13026deprecated.  Users wanting little-endian code should use the
13027@w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13028building the tool chain, for which little-endian is the default.
13029
13030@item -mbarrel_shifter
13031@opindex mbarrel_shifter
13032Replaced by @option{-mbarrel-shifter}.
13033
13034@item -mdpfp_compact
13035@opindex mdpfp_compact
13036Replaced by @option{-mdpfp-compact}.
13037
13038@item -mdpfp_fast
13039@opindex mdpfp_fast
13040Replaced by @option{-mdpfp-fast}.
13041
13042@item -mdsp_packa
13043@opindex mdsp_packa
13044Replaced by @option{-mdsp-packa}.
13045
13046@item -mEA
13047@opindex mEA
13048Replaced by @option{-mea}.
13049
13050@item -mmac_24
13051@opindex mmac_24
13052Replaced by @option{-mmac-24}.
13053
13054@item -mmac_d16
13055@opindex mmac_d16
13056Replaced by @option{-mmac-d16}.
13057
13058@item -mspfp_compact
13059@opindex mspfp_compact
13060Replaced by @option{-mspfp-compact}.
13061
13062@item -mspfp_fast
13063@opindex mspfp_fast
13064Replaced by @option{-mspfp-fast}.
13065
13066@item -mtune=@var{cpu}
13067@opindex mtune
13068Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13069@samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13070@samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13071
13072@item -multcost=@var{num}
13073@opindex multcost
13074Replaced by @option{-mmultcost}.
13075
13076@end table
13077
13078@node ARM Options
13079@subsection ARM Options
13080@cindex ARM options
13081
13082These @samp{-m} options are defined for the ARM port:
13083
13084@table @gcctabopt
13085@item -mabi=@var{name}
13086@opindex mabi
13087Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
13088@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13089
13090@item -mapcs-frame
13091@opindex mapcs-frame
13092Generate a stack frame that is compliant with the ARM Procedure Call
13093Standard for all functions, even if this is not strictly necessary for
13094correct execution of the code.  Specifying @option{-fomit-frame-pointer}
13095with this option causes the stack frames not to be generated for
13096leaf functions.  The default is @option{-mno-apcs-frame}.
13097This option is deprecated.
13098
13099@item -mapcs
13100@opindex mapcs
13101This is a synonym for @option{-mapcs-frame} and is deprecated.
13102
13103@ignore
13104@c not currently implemented
13105@item -mapcs-stack-check
13106@opindex mapcs-stack-check
13107Generate code to check the amount of stack space available upon entry to
13108every function (that actually uses some stack space).  If there is
13109insufficient space available then either the function
13110@code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13111called, depending upon the amount of stack space required.  The runtime
13112system is required to provide these functions.  The default is
13113@option{-mno-apcs-stack-check}, since this produces smaller code.
13114
13115@c not currently implemented
13116@item -mapcs-float
13117@opindex mapcs-float
13118Pass floating-point arguments using the floating-point registers.  This is
13119one of the variants of the APCS@.  This option is recommended if the
13120target hardware has a floating-point unit or if a lot of floating-point
13121arithmetic is going to be performed by the code.  The default is
13122@option{-mno-apcs-float}, since the size of integer-only code is 
13123slightly increased if @option{-mapcs-float} is used.
13124
13125@c not currently implemented
13126@item -mapcs-reentrant
13127@opindex mapcs-reentrant
13128Generate reentrant, position-independent code.  The default is
13129@option{-mno-apcs-reentrant}.
13130@end ignore
13131
13132@item -mthumb-interwork
13133@opindex mthumb-interwork
13134Generate code that supports calling between the ARM and Thumb
13135instruction sets.  Without this option, on pre-v5 architectures, the
13136two instruction sets cannot be reliably used inside one program.  The
13137default is @option{-mno-thumb-interwork}, since slightly larger code
13138is generated when @option{-mthumb-interwork} is specified.  In AAPCS
13139configurations this option is meaningless.
13140
13141@item -mno-sched-prolog
13142@opindex mno-sched-prolog
13143Prevent the reordering of instructions in the function prologue, or the
13144merging of those instruction with the instructions in the function's
13145body.  This means that all functions start with a recognizable set
13146of instructions (or in fact one of a choice from a small set of
13147different function prologues), and this information can be used to
13148locate the start of functions inside an executable piece of code.  The
13149default is @option{-msched-prolog}.
13150
13151@item -mfloat-abi=@var{name}
13152@opindex mfloat-abi
13153Specifies which floating-point ABI to use.  Permissible values
13154are: @samp{soft}, @samp{softfp} and @samp{hard}.
13155
13156Specifying @samp{soft} causes GCC to generate output containing
13157library calls for floating-point operations.
13158@samp{softfp} allows the generation of code using hardware floating-point
13159instructions, but still uses the soft-float calling conventions.
13160@samp{hard} allows generation of floating-point instructions
13161and uses FPU-specific calling conventions.
13162
13163The default depends on the specific target configuration.  Note that
13164the hard-float and soft-float ABIs are not link-compatible; you must
13165compile your entire program with the same ABI, and link with a
13166compatible set of libraries.
13167
13168@item -mlittle-endian
13169@opindex mlittle-endian
13170Generate code for a processor running in little-endian mode.  This is
13171the default for all standard configurations.
13172
13173@item -mbig-endian
13174@opindex mbig-endian
13175Generate code for a processor running in big-endian mode; the default is
13176to compile code for a little-endian processor.
13177
13178@item -march=@var{name}
13179@opindex march
13180This specifies the name of the target ARM architecture.  GCC uses this
13181name to determine what kind of instructions it can emit when generating
13182assembly code.  This option can be used in conjunction with or instead
13183of the @option{-mcpu=} option.  Permissible names are: @samp{armv2},
13184@samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13185@samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13186@samp{armv6}, @samp{armv6j},
13187@samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
13188@samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13189@samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13190@samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13191
13192@option{-march=armv7ve} is the armv7-a architecture with virtualization
13193extensions.
13194
13195@option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13196architecture together with the optional CRC32 extensions.
13197
13198@option{-march=native} causes the compiler to auto-detect the architecture
13199of the build computer.  At present, this feature is only supported on
13200GNU/Linux, and not all architectures are recognized.  If the auto-detect
13201is unsuccessful the option has no effect.
13202
13203@item -mtune=@var{name}
13204@opindex mtune
13205This option specifies the name of the target ARM processor for
13206which GCC should tune the performance of the code.
13207For some ARM implementations better performance can be obtained by using
13208this option.
13209Permissible names are: @samp{arm2}, @samp{arm250},
13210@samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13211@samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13212@samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13213@samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13214@samp{arm720},
13215@samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13216@samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13217@samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13218@samp{strongarm1110},
13219@samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13220@samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13221@samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13222@samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13223@samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13224@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13225@samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13226@samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8}, @samp{cortex-a9},
13227@samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a53},
13228@samp{cortex-a57}, @samp{cortex-a72},
13229@samp{cortex-r4},
13230@samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13231@samp{cortex-m4},
13232@samp{cortex-m3},
13233@samp{cortex-m1},
13234@samp{cortex-m0},
13235@samp{cortex-m0plus},
13236@samp{cortex-m1.small-multiply},
13237@samp{cortex-m0.small-multiply},
13238@samp{cortex-m0plus.small-multiply},
13239@samp{exynos-m1},
13240@samp{marvell-pj4},
13241@samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13242@samp{fa526}, @samp{fa626},
13243@samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13244@samp{xgene1}.
13245
13246Additionally, this option can specify that GCC should tune the performance
13247of the code for a big.LITTLE system.  Permissible names are:
13248@samp{cortex-a15.cortex-a7}, @samp{cortex-a57.cortex-a53},
13249@samp{cortex-a72.cortex-a53}.
13250
13251@option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13252performance for a blend of processors within architecture @var{arch}.
13253The aim is to generate code that run well on the current most popular
13254processors, balancing between optimizations that benefit some CPUs in the
13255range, and avoiding performance pitfalls of other CPUs.  The effects of
13256this option may change in future GCC versions as CPU models come and go.
13257
13258@option{-mtune=native} causes the compiler to auto-detect the CPU
13259of the build computer.  At present, this feature is only supported on
13260GNU/Linux, and not all architectures are recognized.  If the auto-detect is
13261unsuccessful the option has no effect.
13262
13263@item -mcpu=@var{name}
13264@opindex mcpu
13265This specifies the name of the target ARM processor.  GCC uses this name
13266to derive the name of the target ARM architecture (as if specified
13267by @option{-march}) and the ARM processor type for which to tune for
13268performance (as if specified by @option{-mtune}).  Where this option
13269is used in conjunction with @option{-march} or @option{-mtune},
13270those options take precedence over the appropriate part of this option.
13271
13272Permissible names for this option are the same as those for
13273@option{-mtune}.
13274
13275@option{-mcpu=generic-@var{arch}} is also permissible, and is
13276equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13277See @option{-mtune} for more information.
13278
13279@option{-mcpu=native} causes the compiler to auto-detect the CPU
13280of the build computer.  At present, this feature is only supported on
13281GNU/Linux, and not all architectures are recognized.  If the auto-detect
13282is unsuccessful the option has no effect.
13283
13284@item -mfpu=@var{name}
13285@opindex mfpu
13286This specifies what floating-point hardware (or hardware emulation) is
13287available on the target.  Permissible names are: @samp{vfp}, @samp{vfpv3},
13288@samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13289@samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13290@samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13291@samp{fpv5-d16}, @samp{fpv5-sp-d16},
13292@samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13293
13294If @option{-msoft-float} is specified this specifies the format of
13295floating-point values.
13296
13297If the selected floating-point hardware includes the NEON extension
13298(e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13299operations are not generated by GCC's auto-vectorization pass unless
13300@option{-funsafe-math-optimizations} is also specified.  This is
13301because NEON hardware does not fully implement the IEEE 754 standard for
13302floating-point arithmetic (in particular denormal values are treated as
13303zero), so the use of NEON instructions may lead to a loss of precision.
13304
13305@item -mfp16-format=@var{name}
13306@opindex mfp16-format
13307Specify the format of the @code{__fp16} half-precision floating-point type.
13308Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13309the default is @samp{none}, in which case the @code{__fp16} type is not
13310defined.  @xref{Half-Precision}, for more information.
13311
13312@item -mstructure-size-boundary=@var{n}
13313@opindex mstructure-size-boundary
13314The sizes of all structures and unions are rounded up to a multiple
13315of the number of bits set by this option.  Permissible values are 8, 32
13316and 64.  The default value varies for different toolchains.  For the COFF
13317targeted toolchain the default value is 8.  A value of 64 is only allowed
13318if the underlying ABI supports it.
13319
13320Specifying a larger number can produce faster, more efficient code, but
13321can also increase the size of the program.  Different values are potentially
13322incompatible.  Code compiled with one value cannot necessarily expect to
13323work with code or libraries compiled with another value, if they exchange
13324information using structures or unions.
13325
13326@item -mabort-on-noreturn
13327@opindex mabort-on-noreturn
13328Generate a call to the function @code{abort} at the end of a
13329@code{noreturn} function.  It is executed if the function tries to
13330return.
13331
13332@item -mlong-calls
13333@itemx -mno-long-calls
13334@opindex mlong-calls
13335@opindex mno-long-calls
13336Tells the compiler to perform function calls by first loading the
13337address of the function into a register and then performing a subroutine
13338call on this register.  This switch is needed if the target function
13339lies outside of the 64-megabyte addressing range of the offset-based
13340version of subroutine call instruction.
13341
13342Even if this switch is enabled, not all function calls are turned
13343into long calls.  The heuristic is that static functions, functions
13344that have the @code{short_call} attribute, functions that are inside
13345the scope of a @code{#pragma no_long_calls} directive, and functions whose
13346definitions have already been compiled within the current compilation
13347unit are not turned into long calls.  The exceptions to this rule are
13348that weak function definitions, functions with the @code{long_call}
13349attribute or the @code{section} attribute, and functions that are within
13350the scope of a @code{#pragma long_calls} directive are always
13351turned into long calls.
13352
13353This feature is not enabled by default.  Specifying
13354@option{-mno-long-calls} restores the default behavior, as does
13355placing the function calls within the scope of a @code{#pragma
13356long_calls_off} directive.  Note these switches have no effect on how
13357the compiler generates code to handle function calls via function
13358pointers.
13359
13360@item -msingle-pic-base
13361@opindex msingle-pic-base
13362Treat the register used for PIC addressing as read-only, rather than
13363loading it in the prologue for each function.  The runtime system is
13364responsible for initializing this register with an appropriate value
13365before execution begins.
13366
13367@item -mpic-register=@var{reg}
13368@opindex mpic-register
13369Specify the register to be used for PIC addressing.
13370For standard PIC base case, the default is any suitable register
13371determined by compiler.  For single PIC base case, the default is
13372@samp{R9} if target is EABI based or stack-checking is enabled,
13373otherwise the default is @samp{R10}.
13374
13375@item -mpic-data-is-text-relative
13376@opindex mpic-data-is-text-relative
13377Assume that each data segments are relative to text segment at load time.
13378Therefore, it permits addressing data using PC-relative operations.
13379This option is on by default for targets other than VxWorks RTP.
13380
13381@item -mpoke-function-name
13382@opindex mpoke-function-name
13383Write the name of each function into the text section, directly
13384preceding the function prologue.  The generated code is similar to this:
13385
13386@smallexample
13387     t0
13388         .ascii "arm_poke_function_name", 0
13389         .align
13390     t1
13391         .word 0xff000000 + (t1 - t0)
13392     arm_poke_function_name
13393         mov     ip, sp
13394         stmfd   sp!, @{fp, ip, lr, pc@}
13395         sub     fp, ip, #4
13396@end smallexample
13397
13398When performing a stack backtrace, code can inspect the value of
13399@code{pc} stored at @code{fp + 0}.  If the trace function then looks at
13400location @code{pc - 12} and the top 8 bits are set, then we know that
13401there is a function name embedded immediately preceding this location
13402and has length @code{((pc[-3]) & 0xff000000)}.
13403
13404@item -mthumb
13405@itemx -marm
13406@opindex marm
13407@opindex mthumb
13408
13409Select between generating code that executes in ARM and Thumb
13410states.  The default for most configurations is to generate code
13411that executes in ARM state, but the default can be changed by
13412configuring GCC with the @option{--with-mode=}@var{state}
13413configure option.
13414
13415@item -mtpcs-frame
13416@opindex mtpcs-frame
13417Generate a stack frame that is compliant with the Thumb Procedure Call
13418Standard for all non-leaf functions.  (A leaf function is one that does
13419not call any other functions.)  The default is @option{-mno-tpcs-frame}.
13420
13421@item -mtpcs-leaf-frame
13422@opindex mtpcs-leaf-frame
13423Generate a stack frame that is compliant with the Thumb Procedure Call
13424Standard for all leaf functions.  (A leaf function is one that does
13425not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
13426
13427@item -mcallee-super-interworking
13428@opindex mcallee-super-interworking
13429Gives all externally visible functions in the file being compiled an ARM
13430instruction set header which switches to Thumb mode before executing the
13431rest of the function.  This allows these functions to be called from
13432non-interworking code.  This option is not valid in AAPCS configurations
13433because interworking is enabled by default.
13434
13435@item -mcaller-super-interworking
13436@opindex mcaller-super-interworking
13437Allows calls via function pointers (including virtual functions) to
13438execute correctly regardless of whether the target code has been
13439compiled for interworking or not.  There is a small overhead in the cost
13440of executing a function pointer if this option is enabled.  This option
13441is not valid in AAPCS configurations because interworking is enabled
13442by default.
13443
13444@item -mtp=@var{name}
13445@opindex mtp
13446Specify the access model for the thread local storage pointer.  The valid
13447models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13448@samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13449(supported in the arm6k architecture), and @samp{auto}, which uses the
13450best available method for the selected processor.  The default setting is
13451@samp{auto}.
13452
13453@item -mtls-dialect=@var{dialect}
13454@opindex mtls-dialect
13455Specify the dialect to use for accessing thread local storage.  Two
13456@var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
13457@samp{gnu} dialect selects the original GNU scheme for supporting
13458local and global dynamic TLS models.  The @samp{gnu2} dialect
13459selects the GNU descriptor scheme, which provides better performance
13460for shared libraries.  The GNU descriptor scheme is compatible with
13461the original scheme, but does require new assembler, linker and
13462library support.  Initial and local exec TLS models are unaffected by
13463this option and always use the original scheme.
13464
13465@item -mword-relocations
13466@opindex mword-relocations
13467Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13468This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13469loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13470is specified.
13471
13472@item -mfix-cortex-m3-ldrd
13473@opindex mfix-cortex-m3-ldrd
13474Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13475with overlapping destination and base registers are used.  This option avoids
13476generating these instructions.  This option is enabled by default when
13477@option{-mcpu=cortex-m3} is specified.
13478
13479@item -munaligned-access
13480@itemx -mno-unaligned-access
13481@opindex munaligned-access
13482@opindex mno-unaligned-access
13483Enables (or disables) reading and writing of 16- and 32- bit values
13484from addresses that are not 16- or 32- bit aligned.  By default
13485unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13486architectures, and enabled for all other architectures.  If unaligned
13487access is not enabled then words in packed data structures are
13488accessed a byte at a time.
13489
13490The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13491generated object file to either true or false, depending upon the
13492setting of this option.  If unaligned access is enabled then the
13493preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13494defined.
13495
13496@item -mneon-for-64bits
13497@opindex mneon-for-64bits
13498Enables using Neon to handle scalar 64-bits operations. This is
13499disabled by default since the cost of moving data from core registers
13500to Neon is high.
13501
13502@item -mslow-flash-data
13503@opindex mslow-flash-data
13504Assume loading data from flash is slower than fetching instruction.
13505Therefore literal load is minimized for better performance.
13506This option is only supported when compiling for ARMv7 M-profile and
13507off by default.
13508
13509@item -masm-syntax-unified
13510@opindex masm-syntax-unified
13511Assume inline assembler is using unified asm syntax.  The default is
13512currently off which implies divided syntax.  Currently this option is
13513available only for Thumb1 and has no effect on ARM state and Thumb2.
13514However, this may change in future releases of GCC.  Divided syntax
13515should be considered deprecated.
13516
13517@item -mrestrict-it
13518@opindex mrestrict-it
13519Restricts generation of IT blocks to conform to the rules of ARMv8.
13520IT blocks can only contain a single 16-bit instruction from a select
13521set of instructions. This option is on by default for ARMv8 Thumb mode.
13522
13523@item -mprint-tune-info
13524@opindex mprint-tune-info
13525Print CPU tuning information as comment in assembler file.  This is
13526an option used only for regression testing of the compiler and not
13527intended for ordinary use in compiling code.  This option is disabled
13528by default.
13529@end table
13530
13531@node AVR Options
13532@subsection AVR Options
13533@cindex AVR Options
13534
13535These options are defined for AVR implementations:
13536
13537@table @gcctabopt
13538@item -mmcu=@var{mcu}
13539@opindex mmcu
13540Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13541
13542The default for this option is@tie{}@samp{avr2}.
13543
13544GCC supports the following AVR devices and ISAs:
13545
13546@include avr-mmcu.texi
13547
13548@item -maccumulate-args
13549@opindex maccumulate-args
13550Accumulate outgoing function arguments and acquire/release the needed
13551stack space for outgoing function arguments once in function
13552prologue/epilogue.  Without this option, outgoing arguments are pushed
13553before calling a function and popped afterwards.
13554
13555Popping the arguments after the function call can be expensive on
13556AVR so that accumulating the stack space might lead to smaller
13557executables because arguments need not to be removed from the
13558stack after such a function call.
13559
13560This option can lead to reduced code size for functions that perform
13561several calls to functions that get their arguments on the stack like
13562calls to printf-like functions.
13563
13564@item -mbranch-cost=@var{cost}
13565@opindex mbranch-cost
13566Set the branch costs for conditional branch instructions to
13567@var{cost}.  Reasonable values for @var{cost} are small, non-negative
13568integers. The default branch cost is 0.
13569
13570@item -mcall-prologues
13571@opindex mcall-prologues
13572Functions prologues/epilogues are expanded as calls to appropriate
13573subroutines.  Code size is smaller.
13574
13575@item -mint8
13576@opindex mint8
13577Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
13578@code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13579and @code{long long} is 4 bytes.  Please note that this option does not
13580conform to the C standards, but it results in smaller code
13581size.
13582
13583@item -mn-flash=@var{num}
13584@opindex mn-flash
13585Assume that the flash memory has a size of 
13586@var{num} times 64@tie{}KiB.
13587
13588@item -mno-interrupts
13589@opindex mno-interrupts
13590Generated code is not compatible with hardware interrupts.
13591Code size is smaller.
13592
13593@item -mrelax
13594@opindex mrelax
13595Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13596@code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13597Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13598the assembler's command line and the @option{--relax} option to the
13599linker's command line.
13600
13601Jump relaxing is performed by the linker because jump offsets are not
13602known before code is located. Therefore, the assembler code generated by the
13603compiler is the same, but the instructions in the executable may
13604differ from instructions in the assembler code.
13605
13606Relaxing must be turned on if linker stubs are needed, see the
13607section on @code{EIND} and linker stubs below.
13608
13609@item -mrmw
13610@opindex mrmw
13611Assume that the device supports the Read-Modify-Write
13612instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13613
13614@item -msp8
13615@opindex msp8
13616Treat the stack pointer register as an 8-bit register,
13617i.e.@: assume the high byte of the stack pointer is zero.
13618In general, you don't need to set this option by hand.
13619
13620This option is used internally by the compiler to select and
13621build multilibs for architectures @code{avr2} and @code{avr25}.
13622These architectures mix devices with and without @code{SPH}.
13623For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13624the compiler driver adds or removes this option from the compiler
13625proper's command line, because the compiler then knows if the device
13626or architecture has an 8-bit stack pointer and thus no @code{SPH}
13627register or not.
13628
13629@item -mstrict-X
13630@opindex mstrict-X
13631Use address register @code{X} in a way proposed by the hardware.  This means
13632that @code{X} is only used in indirect, post-increment or
13633pre-decrement addressing.
13634
13635Without this option, the @code{X} register may be used in the same way
13636as @code{Y} or @code{Z} which then is emulated by additional
13637instructions.  
13638For example, loading a value with @code{X+const} addressing with a
13639small non-negative @code{const < 64} to a register @var{Rn} is
13640performed as
13641
13642@example
13643adiw r26, const   ; X += const
13644ld   @var{Rn}, X        ; @var{Rn} = *X
13645sbiw r26, const   ; X -= const
13646@end example
13647
13648@item -mtiny-stack
13649@opindex mtiny-stack
13650Only change the lower 8@tie{}bits of the stack pointer.
13651
13652@item -nodevicelib
13653@opindex nodevicelib
13654Don't link against AVR-LibC's device specific library @code{libdev.a}.
13655
13656@item -Waddr-space-convert
13657@opindex Waddr-space-convert
13658Warn about conversions between address spaces in the case where the
13659resulting address space is not contained in the incoming address space.
13660@end table
13661
13662@subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13663@cindex @code{EIND}
13664Pointers in the implementation are 16@tie{}bits wide.
13665The address of a function or label is represented as word address so
13666that indirect jumps and calls can target any code address in the
13667range of 64@tie{}Ki words.
13668
13669In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13670bytes of program memory space, there is a special function register called
13671@code{EIND} that serves as most significant part of the target address
13672when @code{EICALL} or @code{EIJMP} instructions are used.
13673
13674Indirect jumps and calls on these devices are handled as follows by
13675the compiler and are subject to some limitations:
13676
13677@itemize @bullet
13678
13679@item
13680The compiler never sets @code{EIND}.
13681
13682@item
13683The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13684instructions or might read @code{EIND} directly in order to emulate an
13685indirect call/jump by means of a @code{RET} instruction.
13686
13687@item
13688The compiler assumes that @code{EIND} never changes during the startup
13689code or during the application. In particular, @code{EIND} is not
13690saved/restored in function or interrupt service routine
13691prologue/epilogue.
13692
13693@item
13694For indirect calls to functions and computed goto, the linker
13695generates @emph{stubs}. Stubs are jump pads sometimes also called
13696@emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13697The stub contains a direct jump to the desired address.
13698
13699@item
13700Linker relaxation must be turned on so that the linker generates
13701the stubs correctly in all situations. See the compiler option
13702@option{-mrelax} and the linker option @option{--relax}.
13703There are corner cases where the linker is supposed to generate stubs
13704but aborts without relaxation and without a helpful error message.
13705
13706@item
13707The default linker script is arranged for code with @code{EIND = 0}.
13708If code is supposed to work for a setup with @code{EIND != 0}, a custom
13709linker script has to be used in order to place the sections whose
13710name start with @code{.trampolines} into the segment where @code{EIND}
13711points to.
13712
13713@item
13714The startup code from libgcc never sets @code{EIND}.
13715Notice that startup code is a blend of code from libgcc and AVR-LibC.
13716For the impact of AVR-LibC on @code{EIND}, see the
13717@w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13718
13719@item
13720It is legitimate for user-specific startup code to set up @code{EIND}
13721early, for example by means of initialization code located in
13722section @code{.init3}. Such code runs prior to general startup code
13723that initializes RAM and calls constructors, but after the bit
13724of startup code from AVR-LibC that sets @code{EIND} to the segment
13725where the vector table is located.
13726@example
13727#include <avr/io.h>
13728
13729static void
13730__attribute__((section(".init3"),naked,used,no_instrument_function))
13731init3_set_eind (void)
13732@{
13733  __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13734                  "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13735@}
13736@end example
13737
13738@noindent
13739The @code{__trampolines_start} symbol is defined in the linker script.
13740
13741@item
13742Stubs are generated automatically by the linker if
13743the following two conditions are met:
13744@itemize @minus
13745
13746@item The address of a label is taken by means of the @code{gs} modifier
13747(short for @emph{generate stubs}) like so:
13748@example
13749LDI r24, lo8(gs(@var{func}))
13750LDI r25, hi8(gs(@var{func}))
13751@end example
13752@item The final location of that label is in a code segment
13753@emph{outside} the segment where the stubs are located.
13754@end itemize
13755
13756@item
13757The compiler emits such @code{gs} modifiers for code labels in the
13758following situations:
13759@itemize @minus
13760@item Taking address of a function or code label.
13761@item Computed goto.
13762@item If prologue-save function is used, see @option{-mcall-prologues}
13763command-line option.
13764@item Switch/case dispatch tables. If you do not want such dispatch
13765tables you can specify the @option{-fno-jump-tables} command-line option.
13766@item C and C++ constructors/destructors called during startup/shutdown.
13767@item If the tools hit a @code{gs()} modifier explained above.
13768@end itemize
13769
13770@item
13771Jumping to non-symbolic addresses like so is @emph{not} supported:
13772
13773@example
13774int main (void)
13775@{
13776    /* Call function at word address 0x2 */
13777    return ((int(*)(void)) 0x2)();
13778@}
13779@end example
13780
13781Instead, a stub has to be set up, i.e.@: the function has to be called
13782through a symbol (@code{func_4} in the example):
13783
13784@example
13785int main (void)
13786@{
13787    extern int func_4 (void);
13788
13789    /* Call function at byte address 0x4 */
13790    return func_4();
13791@}
13792@end example
13793
13794and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13795Alternatively, @code{func_4} can be defined in the linker script.
13796@end itemize
13797
13798@subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13799@cindex @code{RAMPD}
13800@cindex @code{RAMPX}
13801@cindex @code{RAMPY}
13802@cindex @code{RAMPZ}
13803Some AVR devices support memories larger than the 64@tie{}KiB range
13804that can be accessed with 16-bit pointers.  To access memory locations
13805outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13806register is used as high part of the address:
13807The @code{X}, @code{Y}, @code{Z} address register is concatenated
13808with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13809register, respectively, to get a wide address. Similarly,
13810@code{RAMPD} is used together with direct addressing.
13811
13812@itemize
13813@item
13814The startup code initializes the @code{RAMP} special function
13815registers with zero.
13816
13817@item
13818If a @ref{AVR Named Address Spaces,named address space} other than
13819generic or @code{__flash} is used, then @code{RAMPZ} is set
13820as needed before the operation.
13821
13822@item
13823If the device supports RAM larger than 64@tie{}KiB and the compiler
13824needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13825is reset to zero after the operation.
13826
13827@item
13828If the device comes with a specific @code{RAMP} register, the ISR
13829prologue/epilogue saves/restores that SFR and initializes it with
13830zero in case the ISR code might (implicitly) use it.
13831
13832@item
13833RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13834If you use inline assembler to read from locations outside the
1383516-bit address range and change one of the @code{RAMP} registers,
13836you must reset it to zero after the access.
13837
13838@end itemize
13839
13840@subsubsection AVR Built-in Macros
13841
13842GCC defines several built-in macros so that the user code can test
13843for the presence or absence of features.  Almost any of the following
13844built-in macros are deduced from device capabilities and thus
13845triggered by the @option{-mmcu=} command-line option.
13846
13847For even more AVR-specific built-in macros see
13848@ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
13849
13850@table @code
13851
13852@item __AVR_ARCH__
13853Build-in macro that resolves to a decimal number that identifies the
13854architecture and depends on the @option{-mmcu=@var{mcu}} option.
13855Possible values are:
13856
13857@code{2}, @code{25}, @code{3}, @code{31}, @code{35},
13858@code{4}, @code{5}, @code{51}, @code{6}
13859
13860for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
13861@code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
13862
13863respectively and
13864
13865@code{100}, @code{102}, @code{104},
13866@code{105}, @code{106}, @code{107}
13867
13868for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
13869@code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
13870If @var{mcu} specifies a device, this built-in macro is set
13871accordingly. For example, with @option{-mmcu=atmega8} the macro is
13872defined to @code{4}.
13873
13874@item __AVR_@var{Device}__
13875Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
13876the device's name. For example, @option{-mmcu=atmega8} defines the
13877built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
13878@code{__AVR_ATtiny261A__}, etc.
13879
13880The built-in macros' names follow
13881the scheme @code{__AVR_@var{Device}__} where @var{Device} is
13882the device name as from the AVR user manual. The difference between
13883@var{Device} in the built-in macro and @var{device} in
13884@option{-mmcu=@var{device}} is that the latter is always lowercase.
13885
13886If @var{device} is not a device but only a core architecture like
13887@samp{avr51}, this macro is not defined.
13888
13889@item __AVR_DEVICE_NAME__
13890Setting @option{-mmcu=@var{device}} defines this built-in macro to
13891the device's name. For example, with @option{-mmcu=atmega8} the macro
13892is defined to @code{atmega8}.
13893
13894If @var{device} is not a device but only a core architecture like
13895@samp{avr51}, this macro is not defined.
13896
13897@item __AVR_XMEGA__
13898The device / architecture belongs to the XMEGA family of devices.
13899
13900@item __AVR_HAVE_ELPM__
13901The device has the the @code{ELPM} instruction.
13902
13903@item __AVR_HAVE_ELPMX__
13904The device has the @code{ELPM R@var{n},Z} and @code{ELPM
13905R@var{n},Z+} instructions.
13906
13907@item __AVR_HAVE_MOVW__
13908The device has the @code{MOVW} instruction to perform 16-bit
13909register-register moves.
13910
13911@item __AVR_HAVE_LPMX__
13912The device has the @code{LPM R@var{n},Z} and
13913@code{LPM R@var{n},Z+} instructions.
13914
13915@item __AVR_HAVE_MUL__
13916The device has a hardware multiplier. 
13917
13918@item __AVR_HAVE_JMP_CALL__
13919The device has the @code{JMP} and @code{CALL} instructions.
13920This is the case for devices with at least 16@tie{}KiB of program
13921memory.
13922
13923@item __AVR_HAVE_EIJMP_EICALL__
13924@itemx __AVR_3_BYTE_PC__
13925The device has the @code{EIJMP} and @code{EICALL} instructions.
13926This is the case for devices with more than 128@tie{}KiB of program memory.
13927This also means that the program counter
13928(PC) is 3@tie{}bytes wide.
13929
13930@item __AVR_2_BYTE_PC__
13931The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
13932with up to 128@tie{}KiB of program memory.
13933
13934@item __AVR_HAVE_8BIT_SP__
13935@itemx __AVR_HAVE_16BIT_SP__
13936The stack pointer (SP) register is treated as 8-bit respectively
1393716-bit register by the compiler.
13938The definition of these macros is affected by @option{-mtiny-stack}.
13939
13940@item __AVR_HAVE_SPH__
13941@itemx __AVR_SP8__
13942The device has the SPH (high part of stack pointer) special function
13943register or has an 8-bit stack pointer, respectively.
13944The definition of these macros is affected by @option{-mmcu=} and
13945in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
13946by @option{-msp8}.
13947
13948@item __AVR_HAVE_RAMPD__
13949@itemx __AVR_HAVE_RAMPX__
13950@itemx __AVR_HAVE_RAMPY__
13951@itemx __AVR_HAVE_RAMPZ__
13952The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
13953@code{RAMPZ} special function register, respectively.
13954
13955@item __NO_INTERRUPTS__
13956This macro reflects the @option{-mno-interrupts} command-line option.
13957
13958@item __AVR_ERRATA_SKIP__
13959@itemx __AVR_ERRATA_SKIP_JMP_CALL__
13960Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
13961instructions because of a hardware erratum.  Skip instructions are
13962@code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
13963The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
13964set.
13965
13966@item __AVR_ISA_RMW__
13967The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
13968
13969@item __AVR_SFR_OFFSET__=@var{offset}
13970Instructions that can address I/O special function registers directly
13971like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
13972address as if addressed by an instruction to access RAM like @code{LD}
13973or @code{STS}. This offset depends on the device architecture and has
13974to be subtracted from the RAM address in order to get the
13975respective I/O@tie{}address.
13976
13977@item __WITH_AVRLIBC__
13978The compiler is configured to be used together with AVR-Libc.
13979See the @option{--with-avrlibc} configure option.
13980
13981@end table
13982
13983@node Blackfin Options
13984@subsection Blackfin Options
13985@cindex Blackfin Options
13986
13987@table @gcctabopt
13988@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
13989@opindex mcpu=
13990Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
13991can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
13992@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
13993@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
13994@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
13995@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
13996@samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
13997@samp{bf561}, @samp{bf592}.
13998
13999The optional @var{sirevision} specifies the silicon revision of the target
14000Blackfin processor.  Any workarounds available for the targeted silicon revision
14001are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
14002If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14003are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
14004hexadecimal digits representing the major and minor numbers in the silicon
14005revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14006is not defined.  If @var{sirevision} is @samp{any}, the
14007@code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14008If this optional @var{sirevision} is not used, GCC assumes the latest known
14009silicon revision of the targeted Blackfin processor.
14010
14011GCC defines a preprocessor macro for the specified @var{cpu}.
14012For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14013provided by libgloss to be linked in if @option{-msim} is not given.
14014
14015Without this option, @samp{bf532} is used as the processor by default.
14016
14017Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
14018only the preprocessor macro is defined.
14019
14020@item -msim
14021@opindex msim
14022Specifies that the program will be run on the simulator.  This causes
14023the simulator BSP provided by libgloss to be linked in.  This option
14024has effect only for @samp{bfin-elf} toolchain.
14025Certain other options, such as @option{-mid-shared-library} and
14026@option{-mfdpic}, imply @option{-msim}.
14027
14028@item -momit-leaf-frame-pointer
14029@opindex momit-leaf-frame-pointer
14030Don't keep the frame pointer in a register for leaf functions.  This
14031avoids the instructions to save, set up and restore frame pointers and
14032makes an extra register available in leaf functions.  The option
14033@option{-fomit-frame-pointer} removes the frame pointer for all functions,
14034which might make debugging harder.
14035
14036@item -mspecld-anomaly
14037@opindex mspecld-anomaly
14038When enabled, the compiler ensures that the generated code does not
14039contain speculative loads after jump instructions. If this option is used,
14040@code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14041
14042@item -mno-specld-anomaly
14043@opindex mno-specld-anomaly
14044Don't generate extra code to prevent speculative loads from occurring.
14045
14046@item -mcsync-anomaly
14047@opindex mcsync-anomaly
14048When enabled, the compiler ensures that the generated code does not
14049contain CSYNC or SSYNC instructions too soon after conditional branches.
14050If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14051
14052@item -mno-csync-anomaly
14053@opindex mno-csync-anomaly
14054Don't generate extra code to prevent CSYNC or SSYNC instructions from
14055occurring too soon after a conditional branch.
14056
14057@item -mlow-64k
14058@opindex mlow-64k
14059When enabled, the compiler is free to take advantage of the knowledge that
14060the entire program fits into the low 64k of memory.
14061
14062@item -mno-low-64k
14063@opindex mno-low-64k
14064Assume that the program is arbitrarily large.  This is the default.
14065
14066@item -mstack-check-l1
14067@opindex mstack-check-l1
14068Do stack checking using information placed into L1 scratchpad memory by the
14069uClinux kernel.
14070
14071@item -mid-shared-library
14072@opindex mid-shared-library
14073Generate code that supports shared libraries via the library ID method.
14074This allows for execute in place and shared libraries in an environment
14075without virtual memory management.  This option implies @option{-fPIC}.
14076With a @samp{bfin-elf} target, this option implies @option{-msim}.
14077
14078@item -mno-id-shared-library
14079@opindex mno-id-shared-library
14080Generate code that doesn't assume ID-based shared libraries are being used.
14081This is the default.
14082
14083@item -mleaf-id-shared-library
14084@opindex mleaf-id-shared-library
14085Generate code that supports shared libraries via the library ID method,
14086but assumes that this library or executable won't link against any other
14087ID shared libraries.  That allows the compiler to use faster code for jumps
14088and calls.
14089
14090@item -mno-leaf-id-shared-library
14091@opindex mno-leaf-id-shared-library
14092Do not assume that the code being compiled won't link against any ID shared
14093libraries.  Slower code is generated for jump and call insns.
14094
14095@item -mshared-library-id=n
14096@opindex mshared-library-id
14097Specifies the identification number of the ID-based shared library being
14098compiled.  Specifying a value of 0 generates more compact code; specifying
14099other values forces the allocation of that number to the current
14100library but is no more space- or time-efficient than omitting this option.
14101
14102@item -msep-data
14103@opindex msep-data
14104Generate code that allows the data segment to be located in a different
14105area of memory from the text segment.  This allows for execute in place in
14106an environment without virtual memory management by eliminating relocations
14107against the text section.
14108
14109@item -mno-sep-data
14110@opindex mno-sep-data
14111Generate code that assumes that the data segment follows the text segment.
14112This is the default.
14113
14114@item -mlong-calls
14115@itemx -mno-long-calls
14116@opindex mlong-calls
14117@opindex mno-long-calls
14118Tells the compiler to perform function calls by first loading the
14119address of the function into a register and then performing a subroutine
14120call on this register.  This switch is needed if the target function
14121lies outside of the 24-bit addressing range of the offset-based
14122version of subroutine call instruction.
14123
14124This feature is not enabled by default.  Specifying
14125@option{-mno-long-calls} restores the default behavior.  Note these
14126switches have no effect on how the compiler generates code to handle
14127function calls via function pointers.
14128
14129@item -mfast-fp
14130@opindex mfast-fp
14131Link with the fast floating-point library. This library relaxes some of
14132the IEEE floating-point standard's rules for checking inputs against
14133Not-a-Number (NAN), in the interest of performance.
14134
14135@item -minline-plt
14136@opindex minline-plt
14137Enable inlining of PLT entries in function calls to functions that are
14138not known to bind locally.  It has no effect without @option{-mfdpic}.
14139
14140@item -mmulticore
14141@opindex mmulticore
14142Build a standalone application for multicore Blackfin processors. 
14143This option causes proper start files and link scripts supporting 
14144multicore to be used, and defines the macro @code{__BFIN_MULTICORE}. 
14145It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. 
14146
14147This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14148selects the one-application-per-core programming model.  Without
14149@option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14150programming model is used. In this model, the main function of Core B
14151should be named as @code{coreb_main}.
14152
14153If this option is not used, the single-core application programming
14154model is used.
14155
14156@item -mcorea
14157@opindex mcorea
14158Build a standalone application for Core A of BF561 when using
14159the one-application-per-core programming model. Proper start files
14160and link scripts are used to support Core A, and the macro
14161@code{__BFIN_COREA} is defined.
14162This option can only be used in conjunction with @option{-mmulticore}.
14163
14164@item -mcoreb
14165@opindex mcoreb
14166Build a standalone application for Core B of BF561 when using
14167the one-application-per-core programming model. Proper start files
14168and link scripts are used to support Core B, and the macro
14169@code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14170should be used instead of @code{main}. 
14171This option can only be used in conjunction with @option{-mmulticore}.
14172
14173@item -msdram
14174@opindex msdram
14175Build a standalone application for SDRAM. Proper start files and
14176link scripts are used to put the application into SDRAM, and the macro
14177@code{__BFIN_SDRAM} is defined.
14178The loader should initialize SDRAM before loading the application.
14179
14180@item -micplb
14181@opindex micplb
14182Assume that ICPLBs are enabled at run time.  This has an effect on certain
14183anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
14184are enabled; for standalone applications the default is off.
14185@end table
14186
14187@node C6X Options
14188@subsection C6X Options
14189@cindex C6X Options
14190
14191@table @gcctabopt
14192@item -march=@var{name}
14193@opindex march
14194This specifies the name of the target architecture.  GCC uses this
14195name to determine what kind of instructions it can emit when generating
14196assembly code.  Permissible names are: @samp{c62x},
14197@samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14198
14199@item -mbig-endian
14200@opindex mbig-endian
14201Generate code for a big-endian target.
14202
14203@item -mlittle-endian
14204@opindex mlittle-endian
14205Generate code for a little-endian target.  This is the default.
14206
14207@item -msim
14208@opindex msim
14209Choose startup files and linker script suitable for the simulator.
14210
14211@item -msdata=default
14212@opindex msdata=default
14213Put small global and static data in the @code{.neardata} section,
14214which is pointed to by register @code{B14}.  Put small uninitialized
14215global and static data in the @code{.bss} section, which is adjacent
14216to the @code{.neardata} section.  Put small read-only data into the
14217@code{.rodata} section.  The corresponding sections used for large
14218pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14219
14220@item -msdata=all
14221@opindex msdata=all
14222Put all data, not just small objects, into the sections reserved for
14223small data, and use addressing relative to the @code{B14} register to
14224access them.
14225
14226@item -msdata=none
14227@opindex msdata=none
14228Make no use of the sections reserved for small data, and use absolute
14229addresses to access all data.  Put all initialized global and static
14230data in the @code{.fardata} section, and all uninitialized data in the
14231@code{.far} section.  Put all constant data into the @code{.const}
14232section.
14233@end table
14234
14235@node CRIS Options
14236@subsection CRIS Options
14237@cindex CRIS Options
14238
14239These options are defined specifically for the CRIS ports.
14240
14241@table @gcctabopt
14242@item -march=@var{architecture-type}
14243@itemx -mcpu=@var{architecture-type}
14244@opindex march
14245@opindex mcpu
14246Generate code for the specified architecture.  The choices for
14247@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14248respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14249Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14250@samp{v10}.
14251
14252@item -mtune=@var{architecture-type}
14253@opindex mtune
14254Tune to @var{architecture-type} everything applicable about the generated
14255code, except for the ABI and the set of available instructions.  The
14256choices for @var{architecture-type} are the same as for
14257@option{-march=@var{architecture-type}}.
14258
14259@item -mmax-stack-frame=@var{n}
14260@opindex mmax-stack-frame
14261Warn when the stack frame of a function exceeds @var{n} bytes.
14262
14263@item -metrax4
14264@itemx -metrax100
14265@opindex metrax4
14266@opindex metrax100
14267The options @option{-metrax4} and @option{-metrax100} are synonyms for
14268@option{-march=v3} and @option{-march=v8} respectively.
14269
14270@item -mmul-bug-workaround
14271@itemx -mno-mul-bug-workaround
14272@opindex mmul-bug-workaround
14273@opindex mno-mul-bug-workaround
14274Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14275models where it applies.  This option is active by default.
14276
14277@item -mpdebug
14278@opindex mpdebug
14279Enable CRIS-specific verbose debug-related information in the assembly
14280code.  This option also has the effect of turning off the @samp{#NO_APP}
14281formatted-code indicator to the assembler at the beginning of the
14282assembly file.
14283
14284@item -mcc-init
14285@opindex mcc-init
14286Do not use condition-code results from previous instruction; always emit
14287compare and test instructions before use of condition codes.
14288
14289@item -mno-side-effects
14290@opindex mno-side-effects
14291Do not emit instructions with side effects in addressing modes other than
14292post-increment.
14293
14294@item -mstack-align
14295@itemx -mno-stack-align
14296@itemx -mdata-align
14297@itemx -mno-data-align
14298@itemx -mconst-align
14299@itemx -mno-const-align
14300@opindex mstack-align
14301@opindex mno-stack-align
14302@opindex mdata-align
14303@opindex mno-data-align
14304@opindex mconst-align
14305@opindex mno-const-align
14306These options (@samp{no-} options) arrange (eliminate arrangements) for the
14307stack frame, individual data and constants to be aligned for the maximum
14308single data access size for the chosen CPU model.  The default is to
14309arrange for 32-bit alignment.  ABI details such as structure layout are
14310not affected by these options.
14311
14312@item -m32-bit
14313@itemx -m16-bit
14314@itemx -m8-bit
14315@opindex m32-bit
14316@opindex m16-bit
14317@opindex m8-bit
14318Similar to the stack- data- and const-align options above, these options
14319arrange for stack frame, writable data and constants to all be 32-bit,
1432016-bit or 8-bit aligned.  The default is 32-bit alignment.
14321
14322@item -mno-prologue-epilogue
14323@itemx -mprologue-epilogue
14324@opindex mno-prologue-epilogue
14325@opindex mprologue-epilogue
14326With @option{-mno-prologue-epilogue}, the normal function prologue and
14327epilogue which set up the stack frame are omitted and no return
14328instructions or return sequences are generated in the code.  Use this
14329option only together with visual inspection of the compiled code: no
14330warnings or errors are generated when call-saved registers must be saved,
14331or storage for local variables needs to be allocated.
14332
14333@item -mno-gotplt
14334@itemx -mgotplt
14335@opindex mno-gotplt
14336@opindex mgotplt
14337With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14338instruction sequences that load addresses for functions from the PLT part
14339of the GOT rather than (traditional on other architectures) calls to the
14340PLT@.  The default is @option{-mgotplt}.
14341
14342@item -melf
14343@opindex melf
14344Legacy no-op option only recognized with the cris-axis-elf and
14345cris-axis-linux-gnu targets.
14346
14347@item -mlinux
14348@opindex mlinux
14349Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14350
14351@item -sim
14352@opindex sim
14353This option, recognized for the cris-axis-elf, arranges
14354to link with input-output functions from a simulator library.  Code,
14355initialized data and zero-initialized data are allocated consecutively.
14356
14357@item -sim2
14358@opindex sim2
14359Like @option{-sim}, but pass linker options to locate initialized data at
143600x40000000 and zero-initialized data at 0x80000000.
14361@end table
14362
14363@node CR16 Options
14364@subsection CR16 Options
14365@cindex CR16 Options
14366
14367These options are defined specifically for the CR16 ports.
14368
14369@table @gcctabopt
14370
14371@item -mmac
14372@opindex mmac
14373Enable the use of multiply-accumulate instructions. Disabled by default.
14374
14375@item -mcr16cplus
14376@itemx -mcr16c
14377@opindex mcr16cplus
14378@opindex mcr16c
14379Generate code for CR16C or CR16C+ architecture. CR16C+ architecture 
14380is default.
14381
14382@item -msim
14383@opindex msim
14384Links the library libsim.a which is in compatible with simulator. Applicable
14385to ELF compiler only.
14386
14387@item -mint32
14388@opindex mint32
14389Choose integer type as 32-bit wide.
14390
14391@item -mbit-ops
14392@opindex mbit-ops
14393Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14394
14395@item -mdata-model=@var{model}
14396@opindex mdata-model
14397Choose a data model. The choices for @var{model} are @samp{near},
14398@samp{far} or @samp{medium}. @samp{medium} is default.
14399However, @samp{far} is not valid with @option{-mcr16c}, as the
14400CR16C architecture does not support the far data model.
14401@end table
14402
14403@node Darwin Options
14404@subsection Darwin Options
14405@cindex Darwin options
14406
14407These options are defined for all architectures running the Darwin operating
14408system.
14409
14410FSF GCC on Darwin does not create ``fat'' object files; it creates
14411an object file for the single architecture that GCC was built to
14412target.  Apple's GCC on Darwin does create ``fat'' files if multiple
14413@option{-arch} options are used; it does so by running the compiler or
14414linker multiple times and joining the results together with
14415@file{lipo}.
14416
14417The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14418@samp{i686}) is determined by the flags that specify the ISA
14419that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
14420@option{-force_cpusubtype_ALL} option can be used to override this.
14421
14422The Darwin tools vary in their behavior when presented with an ISA
14423mismatch.  The assembler, @file{as}, only permits instructions to
14424be used that are valid for the subtype of the file it is generating,
14425so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14426The linker for shared libraries, @file{/usr/bin/libtool}, fails
14427and prints an error if asked to create a shared library with a less
14428restrictive subtype than its input files (for instance, trying to put
14429a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
14430for executables, @command{ld}, quietly gives the executable the most
14431restrictive subtype of any of its input files.
14432
14433@table @gcctabopt
14434@item -F@var{dir}
14435@opindex F
14436Add the framework directory @var{dir} to the head of the list of
14437directories to be searched for header files.  These directories are
14438interleaved with those specified by @option{-I} options and are
14439scanned in a left-to-right order.
14440
14441A framework directory is a directory with frameworks in it.  A
14442framework is a directory with a @file{Headers} and/or
14443@file{PrivateHeaders} directory contained directly in it that ends
14444in @file{.framework}.  The name of a framework is the name of this
14445directory excluding the @file{.framework}.  Headers associated with
14446the framework are found in one of those two directories, with
14447@file{Headers} being searched first.  A subframework is a framework
14448directory that is in a framework's @file{Frameworks} directory.
14449Includes of subframework headers can only appear in a header of a
14450framework that contains the subframework, or in a sibling subframework
14451header.  Two subframeworks are siblings if they occur in the same
14452framework.  A subframework should not have the same name as a
14453framework; a warning is issued if this is violated.  Currently a
14454subframework cannot have subframeworks; in the future, the mechanism
14455may be extended to support this.  The standard frameworks can be found
14456in @file{/System/Library/Frameworks} and
14457@file{/Library/Frameworks}.  An example include looks like
14458@code{#include <Framework/header.h>}, where @file{Framework} denotes
14459the name of the framework and @file{header.h} is found in the
14460@file{PrivateHeaders} or @file{Headers} directory.
14461
14462@item -iframework@var{dir}
14463@opindex iframework
14464Like @option{-F} except the directory is a treated as a system
14465directory.  The main difference between this @option{-iframework} and
14466@option{-F} is that with @option{-iframework} the compiler does not
14467warn about constructs contained within header files found via
14468@var{dir}.  This option is valid only for the C family of languages.
14469
14470@item -gused
14471@opindex gused
14472Emit debugging information for symbols that are used.  For stabs
14473debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14474This is by default ON@.
14475
14476@item -gfull
14477@opindex gfull
14478Emit debugging information for all symbols and types.
14479
14480@item -mmacosx-version-min=@var{version}
14481The earliest version of MacOS X that this executable will run on
14482is @var{version}.  Typical values of @var{version} include @code{10.1},
14483@code{10.2}, and @code{10.3.9}.
14484
14485If the compiler was built to use the system's headers by default,
14486then the default for this option is the system version on which the
14487compiler is running, otherwise the default is to make choices that
14488are compatible with as many systems and code bases as possible.
14489
14490@item -mkernel
14491@opindex mkernel
14492Enable kernel development mode.  The @option{-mkernel} option sets
14493@option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14494@option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14495@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14496applicable.  This mode also sets @option{-mno-altivec},
14497@option{-msoft-float}, @option{-fno-builtin} and
14498@option{-mlong-branch} for PowerPC targets.
14499
14500@item -mone-byte-bool
14501@opindex mone-byte-bool
14502Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14503By default @code{sizeof(bool)} is @code{4} when compiling for
14504Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14505option has no effect on x86.
14506
14507@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14508to generate code that is not binary compatible with code generated
14509without that switch.  Using this switch may require recompiling all
14510other modules in a program, including system libraries.  Use this
14511switch to conform to a non-default data model.
14512
14513@item -mfix-and-continue
14514@itemx -ffix-and-continue
14515@itemx -findirect-data
14516@opindex mfix-and-continue
14517@opindex ffix-and-continue
14518@opindex findirect-data
14519Generate code suitable for fast turnaround development, such as to
14520allow GDB to dynamically load @file{.o} files into already-running
14521programs.  @option{-findirect-data} and @option{-ffix-and-continue}
14522are provided for backwards compatibility.
14523
14524@item -all_load
14525@opindex all_load
14526Loads all members of static archive libraries.
14527See man ld(1) for more information.
14528
14529@item -arch_errors_fatal
14530@opindex arch_errors_fatal
14531Cause the errors having to do with files that have the wrong architecture
14532to be fatal.
14533
14534@item -bind_at_load
14535@opindex bind_at_load
14536Causes the output file to be marked such that the dynamic linker will
14537bind all undefined references when the file is loaded or launched.
14538
14539@item -bundle
14540@opindex bundle
14541Produce a Mach-o bundle format file.
14542See man ld(1) for more information.
14543
14544@item -bundle_loader @var{executable}
14545@opindex bundle_loader
14546This option specifies the @var{executable} that will load the build
14547output file being linked.  See man ld(1) for more information.
14548
14549@item -dynamiclib
14550@opindex dynamiclib
14551When passed this option, GCC produces a dynamic library instead of
14552an executable when linking, using the Darwin @file{libtool} command.
14553
14554@item -force_cpusubtype_ALL
14555@opindex force_cpusubtype_ALL
14556This causes GCC's output file to have the @samp{ALL} subtype, instead of
14557one controlled by the @option{-mcpu} or @option{-march} option.
14558
14559@item -allowable_client  @var{client_name}
14560@itemx -client_name
14561@itemx -compatibility_version
14562@itemx -current_version
14563@itemx -dead_strip
14564@itemx -dependency-file
14565@itemx -dylib_file
14566@itemx -dylinker_install_name
14567@itemx -dynamic
14568@itemx -exported_symbols_list
14569@itemx -filelist
14570@need 800
14571@itemx -flat_namespace
14572@itemx -force_flat_namespace
14573@itemx -headerpad_max_install_names
14574@itemx -image_base
14575@itemx -init
14576@itemx -install_name
14577@itemx -keep_private_externs
14578@itemx -multi_module
14579@itemx -multiply_defined
14580@itemx -multiply_defined_unused
14581@need 800
14582@itemx -noall_load
14583@itemx -no_dead_strip_inits_and_terms
14584@itemx -nofixprebinding
14585@itemx -nomultidefs
14586@itemx -noprebind
14587@itemx -noseglinkedit
14588@itemx -pagezero_size
14589@itemx -prebind
14590@itemx -prebind_all_twolevel_modules
14591@itemx -private_bundle
14592@need 800
14593@itemx -read_only_relocs
14594@itemx -sectalign
14595@itemx -sectobjectsymbols
14596@itemx -whyload
14597@itemx -seg1addr
14598@itemx -sectcreate
14599@itemx -sectobjectsymbols
14600@itemx -sectorder
14601@itemx -segaddr
14602@itemx -segs_read_only_addr
14603@need 800
14604@itemx -segs_read_write_addr
14605@itemx -seg_addr_table
14606@itemx -seg_addr_table_filename
14607@itemx -seglinkedit
14608@itemx -segprot
14609@itemx -segs_read_only_addr
14610@itemx -segs_read_write_addr
14611@itemx -single_module
14612@itemx -static
14613@itemx -sub_library
14614@need 800
14615@itemx -sub_umbrella
14616@itemx -twolevel_namespace
14617@itemx -umbrella
14618@itemx -undefined
14619@itemx -unexported_symbols_list
14620@itemx -weak_reference_mismatches
14621@itemx -whatsloaded
14622@opindex allowable_client
14623@opindex client_name
14624@opindex compatibility_version
14625@opindex current_version
14626@opindex dead_strip
14627@opindex dependency-file
14628@opindex dylib_file
14629@opindex dylinker_install_name
14630@opindex dynamic
14631@opindex exported_symbols_list
14632@opindex filelist
14633@opindex flat_namespace
14634@opindex force_flat_namespace
14635@opindex headerpad_max_install_names
14636@opindex image_base
14637@opindex init
14638@opindex install_name
14639@opindex keep_private_externs
14640@opindex multi_module
14641@opindex multiply_defined
14642@opindex multiply_defined_unused
14643@opindex noall_load
14644@opindex no_dead_strip_inits_and_terms
14645@opindex nofixprebinding
14646@opindex nomultidefs
14647@opindex noprebind
14648@opindex noseglinkedit
14649@opindex pagezero_size
14650@opindex prebind
14651@opindex prebind_all_twolevel_modules
14652@opindex private_bundle
14653@opindex read_only_relocs
14654@opindex sectalign
14655@opindex sectobjectsymbols
14656@opindex whyload
14657@opindex seg1addr
14658@opindex sectcreate
14659@opindex sectobjectsymbols
14660@opindex sectorder
14661@opindex segaddr
14662@opindex segs_read_only_addr
14663@opindex segs_read_write_addr
14664@opindex seg_addr_table
14665@opindex seg_addr_table_filename
14666@opindex seglinkedit
14667@opindex segprot
14668@opindex segs_read_only_addr
14669@opindex segs_read_write_addr
14670@opindex single_module
14671@opindex static
14672@opindex sub_library
14673@opindex sub_umbrella
14674@opindex twolevel_namespace
14675@opindex umbrella
14676@opindex undefined
14677@opindex unexported_symbols_list
14678@opindex weak_reference_mismatches
14679@opindex whatsloaded
14680These options are passed to the Darwin linker.  The Darwin linker man page
14681describes them in detail.
14682@end table
14683
14684@node DEC Alpha Options
14685@subsection DEC Alpha Options
14686
14687These @samp{-m} options are defined for the DEC Alpha implementations:
14688
14689@table @gcctabopt
14690@item -mno-soft-float
14691@itemx -msoft-float
14692@opindex mno-soft-float
14693@opindex msoft-float
14694Use (do not use) the hardware floating-point instructions for
14695floating-point operations.  When @option{-msoft-float} is specified,
14696functions in @file{libgcc.a} are used to perform floating-point
14697operations.  Unless they are replaced by routines that emulate the
14698floating-point operations, or compiled in such a way as to call such
14699emulations routines, these routines issue floating-point
14700operations.   If you are compiling for an Alpha without floating-point
14701operations, you must ensure that the library is built so as not to call
14702them.
14703
14704Note that Alpha implementations without floating-point operations are
14705required to have floating-point registers.
14706
14707@item -mfp-reg
14708@itemx -mno-fp-regs
14709@opindex mfp-reg
14710@opindex mno-fp-regs
14711Generate code that uses (does not use) the floating-point register set.
14712@option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
14713register set is not used, floating-point operands are passed in integer
14714registers as if they were integers and floating-point results are passed
14715in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
14716so any function with a floating-point argument or return value called by code
14717compiled with @option{-mno-fp-regs} must also be compiled with that
14718option.
14719
14720A typical use of this option is building a kernel that does not use,
14721and hence need not save and restore, any floating-point registers.
14722
14723@item -mieee
14724@opindex mieee
14725The Alpha architecture implements floating-point hardware optimized for
14726maximum performance.  It is mostly compliant with the IEEE floating-point
14727standard.  However, for full compliance, software assistance is
14728required.  This option generates code fully IEEE-compliant code
14729@emph{except} that the @var{inexact-flag} is not maintained (see below).
14730If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14731defined during compilation.  The resulting code is less efficient but is
14732able to correctly support denormalized numbers and exceptional IEEE
14733values such as not-a-number and plus/minus infinity.  Other Alpha
14734compilers call this option @option{-ieee_with_no_inexact}.
14735
14736@item -mieee-with-inexact
14737@opindex mieee-with-inexact
14738This is like @option{-mieee} except the generated code also maintains
14739the IEEE @var{inexact-flag}.  Turning on this option causes the
14740generated code to implement fully-compliant IEEE math.  In addition to
14741@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14742macro.  On some Alpha implementations the resulting code may execute
14743significantly slower than the code generated by default.  Since there is
14744very little code that depends on the @var{inexact-flag}, you should
14745normally not specify this option.  Other Alpha compilers call this
14746option @option{-ieee_with_inexact}.
14747
14748@item -mfp-trap-mode=@var{trap-mode}
14749@opindex mfp-trap-mode
14750This option controls what floating-point related traps are enabled.
14751Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14752The trap mode can be set to one of four values:
14753
14754@table @samp
14755@item n
14756This is the default (normal) setting.  The only traps that are enabled
14757are the ones that cannot be disabled in software (e.g., division by zero
14758trap).
14759
14760@item u
14761In addition to the traps enabled by @samp{n}, underflow traps are enabled
14762as well.
14763
14764@item su
14765Like @samp{u}, but the instructions are marked to be safe for software
14766completion (see Alpha architecture manual for details).
14767
14768@item sui
14769Like @samp{su}, but inexact traps are enabled as well.
14770@end table
14771
14772@item -mfp-rounding-mode=@var{rounding-mode}
14773@opindex mfp-rounding-mode
14774Selects the IEEE rounding mode.  Other Alpha compilers call this option
14775@option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
14776of:
14777
14778@table @samp
14779@item n
14780Normal IEEE rounding mode.  Floating-point numbers are rounded towards
14781the nearest machine number or towards the even machine number in case
14782of a tie.
14783
14784@item m
14785Round towards minus infinity.
14786
14787@item c
14788Chopped rounding mode.  Floating-point numbers are rounded towards zero.
14789
14790@item d
14791Dynamic rounding mode.  A field in the floating-point control register
14792(@var{fpcr}, see Alpha architecture reference manual) controls the
14793rounding mode in effect.  The C library initializes this register for
14794rounding towards plus infinity.  Thus, unless your program modifies the
14795@var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14796@end table
14797
14798@item -mtrap-precision=@var{trap-precision}
14799@opindex mtrap-precision
14800In the Alpha architecture, floating-point traps are imprecise.  This
14801means without software assistance it is impossible to recover from a
14802floating trap and program execution normally needs to be terminated.
14803GCC can generate code that can assist operating system trap handlers
14804in determining the exact location that caused a floating-point trap.
14805Depending on the requirements of an application, different levels of
14806precisions can be selected:
14807
14808@table @samp
14809@item p
14810Program precision.  This option is the default and means a trap handler
14811can only identify which program caused a floating-point exception.
14812
14813@item f
14814Function precision.  The trap handler can determine the function that
14815caused a floating-point exception.
14816
14817@item i
14818Instruction precision.  The trap handler can determine the exact
14819instruction that caused a floating-point exception.
14820@end table
14821
14822Other Alpha compilers provide the equivalent options called
14823@option{-scope_safe} and @option{-resumption_safe}.
14824
14825@item -mieee-conformant
14826@opindex mieee-conformant
14827This option marks the generated code as IEEE conformant.  You must not
14828use this option unless you also specify @option{-mtrap-precision=i} and either
14829@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
14830is to emit the line @samp{.eflag 48} in the function prologue of the
14831generated assembly file.
14832
14833@item -mbuild-constants
14834@opindex mbuild-constants
14835Normally GCC examines a 32- or 64-bit integer constant to
14836see if it can construct it from smaller constants in two or three
14837instructions.  If it cannot, it outputs the constant as a literal and
14838generates code to load it from the data segment at run time.
14839
14840Use this option to require GCC to construct @emph{all} integer constants
14841using code, even if it takes more instructions (the maximum is six).
14842
14843You typically use this option to build a shared library dynamic
14844loader.  Itself a shared library, it must relocate itself in memory
14845before it can find the variables and constants in its own data segment.
14846
14847@item -mbwx
14848@itemx -mno-bwx
14849@itemx -mcix
14850@itemx -mno-cix
14851@itemx -mfix
14852@itemx -mno-fix
14853@itemx -mmax
14854@itemx -mno-max
14855@opindex mbwx
14856@opindex mno-bwx
14857@opindex mcix
14858@opindex mno-cix
14859@opindex mfix
14860@opindex mno-fix
14861@opindex mmax
14862@opindex mno-max
14863Indicate whether GCC should generate code to use the optional BWX,
14864CIX, FIX and MAX instruction sets.  The default is to use the instruction
14865sets supported by the CPU type specified via @option{-mcpu=} option or that
14866of the CPU on which GCC was built if none is specified.
14867
14868@item -mfloat-vax
14869@itemx -mfloat-ieee
14870@opindex mfloat-vax
14871@opindex mfloat-ieee
14872Generate code that uses (does not use) VAX F and G floating-point
14873arithmetic instead of IEEE single and double precision.
14874
14875@item -mexplicit-relocs
14876@itemx -mno-explicit-relocs
14877@opindex mexplicit-relocs
14878@opindex mno-explicit-relocs
14879Older Alpha assemblers provided no way to generate symbol relocations
14880except via assembler macros.  Use of these macros does not allow
14881optimal instruction scheduling.  GNU binutils as of version 2.12
14882supports a new syntax that allows the compiler to explicitly mark
14883which relocations should apply to which instructions.  This option
14884is mostly useful for debugging, as GCC detects the capabilities of
14885the assembler when it is built and sets the default accordingly.
14886
14887@item -msmall-data
14888@itemx -mlarge-data
14889@opindex msmall-data
14890@opindex mlarge-data
14891When @option{-mexplicit-relocs} is in effect, static data is
14892accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
14893is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
14894(the @code{.sdata} and @code{.sbss} sections) and are accessed via
1489516-bit relocations off of the @code{$gp} register.  This limits the
14896size of the small data area to 64KB, but allows the variables to be
14897directly accessed via a single instruction.
14898
14899The default is @option{-mlarge-data}.  With this option the data area
14900is limited to just below 2GB@.  Programs that require more than 2GB of
14901data must use @code{malloc} or @code{mmap} to allocate the data in the
14902heap instead of in the program's data segment.
14903
14904When generating code for shared libraries, @option{-fpic} implies
14905@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
14906
14907@item -msmall-text
14908@itemx -mlarge-text
14909@opindex msmall-text
14910@opindex mlarge-text
14911When @option{-msmall-text} is used, the compiler assumes that the
14912code of the entire program (or shared library) fits in 4MB, and is
14913thus reachable with a branch instruction.  When @option{-msmall-data}
14914is used, the compiler can assume that all local symbols share the
14915same @code{$gp} value, and thus reduce the number of instructions
14916required for a function call from 4 to 1.
14917
14918The default is @option{-mlarge-text}.
14919
14920@item -mcpu=@var{cpu_type}
14921@opindex mcpu
14922Set the instruction set and instruction scheduling parameters for
14923machine type @var{cpu_type}.  You can specify either the @samp{EV}
14924style name or the corresponding chip number.  GCC supports scheduling
14925parameters for the EV4, EV5 and EV6 family of processors and
14926chooses the default values for the instruction set from the processor
14927you specify.  If you do not specify a processor type, GCC defaults
14928to the processor on which the compiler was built.
14929
14930Supported values for @var{cpu_type} are
14931
14932@table @samp
14933@item ev4
14934@itemx ev45
14935@itemx 21064
14936Schedules as an EV4 and has no instruction set extensions.
14937
14938@item ev5
14939@itemx 21164
14940Schedules as an EV5 and has no instruction set extensions.
14941
14942@item ev56
14943@itemx 21164a
14944Schedules as an EV5 and supports the BWX extension.
14945
14946@item pca56
14947@itemx 21164pc
14948@itemx 21164PC
14949Schedules as an EV5 and supports the BWX and MAX extensions.
14950
14951@item ev6
14952@itemx 21264
14953Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
14954
14955@item ev67
14956@itemx 21264a
14957Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
14958@end table
14959
14960Native toolchains also support the value @samp{native},
14961which selects the best architecture option for the host processor.
14962@option{-mcpu=native} has no effect if GCC does not recognize
14963the processor.
14964
14965@item -mtune=@var{cpu_type}
14966@opindex mtune
14967Set only the instruction scheduling parameters for machine type
14968@var{cpu_type}.  The instruction set is not changed.
14969
14970Native toolchains also support the value @samp{native},
14971which selects the best architecture option for the host processor.
14972@option{-mtune=native} has no effect if GCC does not recognize
14973the processor.
14974
14975@item -mmemory-latency=@var{time}
14976@opindex mmemory-latency
14977Sets the latency the scheduler should assume for typical memory
14978references as seen by the application.  This number is highly
14979dependent on the memory access patterns used by the application
14980and the size of the external cache on the machine.
14981
14982Valid options for @var{time} are
14983
14984@table @samp
14985@item @var{number}
14986A decimal number representing clock cycles.
14987
14988@item L1
14989@itemx L2
14990@itemx L3
14991@itemx main
14992The compiler contains estimates of the number of clock cycles for
14993``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
14994(also called Dcache, Scache, and Bcache), as well as to main memory.
14995Note that L3 is only valid for EV5.
14996
14997@end table
14998@end table
14999
15000@node FR30 Options
15001@subsection FR30 Options
15002@cindex FR30 Options
15003
15004These options are defined specifically for the FR30 port.
15005
15006@table @gcctabopt
15007
15008@item -msmall-model
15009@opindex msmall-model
15010Use the small address space model.  This can produce smaller code, but
15011it does assume that all symbolic values and addresses fit into a
1501220-bit range.
15013
15014@item -mno-lsim
15015@opindex mno-lsim
15016Assume that runtime support has been provided and so there is no need
15017to include the simulator library (@file{libsim.a}) on the linker
15018command line.
15019
15020@end table
15021
15022@node FRV Options
15023@subsection FRV Options
15024@cindex FRV Options
15025
15026@table @gcctabopt
15027@item -mgpr-32
15028@opindex mgpr-32
15029
15030Only use the first 32 general-purpose registers.
15031
15032@item -mgpr-64
15033@opindex mgpr-64
15034
15035Use all 64 general-purpose registers.
15036
15037@item -mfpr-32
15038@opindex mfpr-32
15039
15040Use only the first 32 floating-point registers.
15041
15042@item -mfpr-64
15043@opindex mfpr-64
15044
15045Use all 64 floating-point registers.
15046
15047@item -mhard-float
15048@opindex mhard-float
15049
15050Use hardware instructions for floating-point operations.
15051
15052@item -msoft-float
15053@opindex msoft-float
15054
15055Use library routines for floating-point operations.
15056
15057@item -malloc-cc
15058@opindex malloc-cc
15059
15060Dynamically allocate condition code registers.
15061
15062@item -mfixed-cc
15063@opindex mfixed-cc
15064
15065Do not try to dynamically allocate condition code registers, only
15066use @code{icc0} and @code{fcc0}.
15067
15068@item -mdword
15069@opindex mdword
15070
15071Change ABI to use double word insns.
15072
15073@item -mno-dword
15074@opindex mno-dword
15075
15076Do not use double word instructions.
15077
15078@item -mdouble
15079@opindex mdouble
15080
15081Use floating-point double instructions.
15082
15083@item -mno-double
15084@opindex mno-double
15085
15086Do not use floating-point double instructions.
15087
15088@item -mmedia
15089@opindex mmedia
15090
15091Use media instructions.
15092
15093@item -mno-media
15094@opindex mno-media
15095
15096Do not use media instructions.
15097
15098@item -mmuladd
15099@opindex mmuladd
15100
15101Use multiply and add/subtract instructions.
15102
15103@item -mno-muladd
15104@opindex mno-muladd
15105
15106Do not use multiply and add/subtract instructions.
15107
15108@item -mfdpic
15109@opindex mfdpic
15110
15111Select the FDPIC ABI, which uses function descriptors to represent
15112pointers to functions.  Without any PIC/PIE-related options, it
15113implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
15114assumes GOT entries and small data are within a 12-bit range from the
15115GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15116are computed with 32 bits.
15117With a @samp{bfin-elf} target, this option implies @option{-msim}.
15118
15119@item -minline-plt
15120@opindex minline-plt
15121
15122Enable inlining of PLT entries in function calls to functions that are
15123not known to bind locally.  It has no effect without @option{-mfdpic}.
15124It's enabled by default if optimizing for speed and compiling for
15125shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15126optimization option such as @option{-O3} or above is present in the
15127command line.
15128
15129@item -mTLS
15130@opindex mTLS
15131
15132Assume a large TLS segment when generating thread-local code.
15133
15134@item -mtls
15135@opindex mtls
15136
15137Do not assume a large TLS segment when generating thread-local code.
15138
15139@item -mgprel-ro
15140@opindex mgprel-ro
15141
15142Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15143that is known to be in read-only sections.  It's enabled by default,
15144except for @option{-fpic} or @option{-fpie}: even though it may help
15145make the global offset table smaller, it trades 1 instruction for 4.
15146With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15147one of which may be shared by multiple symbols, and it avoids the need
15148for a GOT entry for the referenced symbol, so it's more likely to be a
15149win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
15150
15151@item -multilib-library-pic
15152@opindex multilib-library-pic
15153
15154Link with the (library, not FD) pic libraries.  It's implied by
15155@option{-mlibrary-pic}, as well as by @option{-fPIC} and
15156@option{-fpic} without @option{-mfdpic}.  You should never have to use
15157it explicitly.
15158
15159@item -mlinked-fp
15160@opindex mlinked-fp
15161
15162Follow the EABI requirement of always creating a frame pointer whenever
15163a stack frame is allocated.  This option is enabled by default and can
15164be disabled with @option{-mno-linked-fp}.
15165
15166@item -mlong-calls
15167@opindex mlong-calls
15168
15169Use indirect addressing to call functions outside the current
15170compilation unit.  This allows the functions to be placed anywhere
15171within the 32-bit address space.
15172
15173@item -malign-labels
15174@opindex malign-labels
15175
15176Try to align labels to an 8-byte boundary by inserting NOPs into the
15177previous packet.  This option only has an effect when VLIW packing
15178is enabled.  It doesn't create new packets; it merely adds NOPs to
15179existing ones.
15180
15181@item -mlibrary-pic
15182@opindex mlibrary-pic
15183
15184Generate position-independent EABI code.
15185
15186@item -macc-4
15187@opindex macc-4
15188
15189Use only the first four media accumulator registers.
15190
15191@item -macc-8
15192@opindex macc-8
15193
15194Use all eight media accumulator registers.
15195
15196@item -mpack
15197@opindex mpack
15198
15199Pack VLIW instructions.
15200
15201@item -mno-pack
15202@opindex mno-pack
15203
15204Do not pack VLIW instructions.
15205
15206@item -mno-eflags
15207@opindex mno-eflags
15208
15209Do not mark ABI switches in e_flags.
15210
15211@item -mcond-move
15212@opindex mcond-move
15213
15214Enable the use of conditional-move instructions (default).
15215
15216This switch is mainly for debugging the compiler and will likely be removed
15217in a future version.
15218
15219@item -mno-cond-move
15220@opindex mno-cond-move
15221
15222Disable the use of conditional-move instructions.
15223
15224This switch is mainly for debugging the compiler and will likely be removed
15225in a future version.
15226
15227@item -mscc
15228@opindex mscc
15229
15230Enable the use of conditional set instructions (default).
15231
15232This switch is mainly for debugging the compiler and will likely be removed
15233in a future version.
15234
15235@item -mno-scc
15236@opindex mno-scc
15237
15238Disable the use of conditional set instructions.
15239
15240This switch is mainly for debugging the compiler and will likely be removed
15241in a future version.
15242
15243@item -mcond-exec
15244@opindex mcond-exec
15245
15246Enable the use of conditional execution (default).
15247
15248This switch is mainly for debugging the compiler and will likely be removed
15249in a future version.
15250
15251@item -mno-cond-exec
15252@opindex mno-cond-exec
15253
15254Disable the use of conditional execution.
15255
15256This switch is mainly for debugging the compiler and will likely be removed
15257in a future version.
15258
15259@item -mvliw-branch
15260@opindex mvliw-branch
15261
15262Run a pass to pack branches into VLIW instructions (default).
15263
15264This switch is mainly for debugging the compiler and will likely be removed
15265in a future version.
15266
15267@item -mno-vliw-branch
15268@opindex mno-vliw-branch
15269
15270Do not run a pass to pack branches into VLIW instructions.
15271
15272This switch is mainly for debugging the compiler and will likely be removed
15273in a future version.
15274
15275@item -mmulti-cond-exec
15276@opindex mmulti-cond-exec
15277
15278Enable optimization of @code{&&} and @code{||} in conditional execution
15279(default).
15280
15281This switch is mainly for debugging the compiler and will likely be removed
15282in a future version.
15283
15284@item -mno-multi-cond-exec
15285@opindex mno-multi-cond-exec
15286
15287Disable optimization of @code{&&} and @code{||} in conditional execution.
15288
15289This switch is mainly for debugging the compiler and will likely be removed
15290in a future version.
15291
15292@item -mnested-cond-exec
15293@opindex mnested-cond-exec
15294
15295Enable nested conditional execution optimizations (default).
15296
15297This switch is mainly for debugging the compiler and will likely be removed
15298in a future version.
15299
15300@item -mno-nested-cond-exec
15301@opindex mno-nested-cond-exec
15302
15303Disable nested conditional execution optimizations.
15304
15305This switch is mainly for debugging the compiler and will likely be removed
15306in a future version.
15307
15308@item -moptimize-membar
15309@opindex moptimize-membar
15310
15311This switch removes redundant @code{membar} instructions from the
15312compiler-generated code.  It is enabled by default.
15313
15314@item -mno-optimize-membar
15315@opindex mno-optimize-membar
15316
15317This switch disables the automatic removal of redundant @code{membar}
15318instructions from the generated code.
15319
15320@item -mtomcat-stats
15321@opindex mtomcat-stats
15322
15323Cause gas to print out tomcat statistics.
15324
15325@item -mcpu=@var{cpu}
15326@opindex mcpu
15327
15328Select the processor type for which to generate code.  Possible values are
15329@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15330@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15331
15332@end table
15333
15334@node GNU/Linux Options
15335@subsection GNU/Linux Options
15336
15337These @samp{-m} options are defined for GNU/Linux targets:
15338
15339@table @gcctabopt
15340@item -mglibc
15341@opindex mglibc
15342Use the GNU C library.  This is the default except
15343on @samp{*-*-linux-*uclibc*} and @samp{*-*-linux-*android*} targets.
15344
15345@item -muclibc
15346@opindex muclibc
15347Use uClibc C library.  This is the default on
15348@samp{*-*-linux-*uclibc*} targets.
15349
15350@item -mbionic
15351@opindex mbionic
15352Use Bionic C library.  This is the default on
15353@samp{*-*-linux-*android*} targets.
15354
15355@item -mandroid
15356@opindex mandroid
15357Compile code compatible with Android platform.  This is the default on
15358@samp{*-*-linux-*android*} targets.
15359
15360When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15361@option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
15362this option makes the GCC driver pass Android-specific options to the linker.
15363Finally, this option causes the preprocessor macro @code{__ANDROID__}
15364to be defined.
15365
15366@item -tno-android-cc
15367@opindex tno-android-cc
15368Disable compilation effects of @option{-mandroid}, i.e., do not enable
15369@option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15370@option{-fno-rtti} by default.
15371
15372@item -tno-android-ld
15373@opindex tno-android-ld
15374Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15375linking options to the linker.
15376
15377@end table
15378
15379@node H8/300 Options
15380@subsection H8/300 Options
15381
15382These @samp{-m} options are defined for the H8/300 implementations:
15383
15384@table @gcctabopt
15385@item -mrelax
15386@opindex mrelax
15387Shorten some address references at link time, when possible; uses the
15388linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
15389ld, Using ld}, for a fuller description.
15390
15391@item -mh
15392@opindex mh
15393Generate code for the H8/300H@.
15394
15395@item -ms
15396@opindex ms
15397Generate code for the H8S@.
15398
15399@item -mn
15400@opindex mn
15401Generate code for the H8S and H8/300H in the normal mode.  This switch
15402must be used either with @option{-mh} or @option{-ms}.
15403
15404@item -ms2600
15405@opindex ms2600
15406Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
15407
15408@item -mexr
15409@opindex mexr
15410Extended registers are stored on stack before execution of function
15411with monitor attribute. Default option is @option{-mexr}.
15412This option is valid only for H8S targets.
15413
15414@item -mno-exr
15415@opindex mno-exr
15416Extended registers are not stored on stack before execution of function 
15417with monitor attribute. Default option is @option{-mno-exr}. 
15418This option is valid only for H8S targets.
15419
15420@item -mint32
15421@opindex mint32
15422Make @code{int} data 32 bits by default.
15423
15424@item -malign-300
15425@opindex malign-300
15426On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15427The default for the H8/300H and H8S is to align longs and floats on
154284-byte boundaries.
15429@option{-malign-300} causes them to be aligned on 2-byte boundaries.
15430This option has no effect on the H8/300.
15431@end table
15432
15433@node HPPA Options
15434@subsection HPPA Options
15435@cindex HPPA Options
15436
15437These @samp{-m} options are defined for the HPPA family of computers:
15438
15439@table @gcctabopt
15440@item -march=@var{architecture-type}
15441@opindex march
15442Generate code for the specified architecture.  The choices for
15443@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
154441.1, and @samp{2.0} for PA 2.0 processors.  Refer to
15445@file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15446architecture option for your machine.  Code compiled for lower numbered
15447architectures runs on higher numbered architectures, but not the
15448other way around.
15449
15450@item -mpa-risc-1-0
15451@itemx -mpa-risc-1-1
15452@itemx -mpa-risc-2-0
15453@opindex mpa-risc-1-0
15454@opindex mpa-risc-1-1
15455@opindex mpa-risc-2-0
15456Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15457
15458@item -mjump-in-delay
15459@opindex mjump-in-delay
15460This option is ignored and provided for compatibility purposes only.
15461
15462@item -mdisable-fpregs
15463@opindex mdisable-fpregs
15464Prevent floating-point registers from being used in any manner.  This is
15465necessary for compiling kernels that perform lazy context switching of
15466floating-point registers.  If you use this option and attempt to perform
15467floating-point operations, the compiler aborts.
15468
15469@item -mdisable-indexing
15470@opindex mdisable-indexing
15471Prevent the compiler from using indexing address modes.  This avoids some
15472rather obscure problems when compiling MIG generated code under MACH@.
15473
15474@item -mno-space-regs
15475@opindex mno-space-regs
15476Generate code that assumes the target has no space registers.  This allows
15477GCC to generate faster indirect calls and use unscaled index address modes.
15478
15479Such code is suitable for level 0 PA systems and kernels.
15480
15481@item -mfast-indirect-calls
15482@opindex mfast-indirect-calls
15483Generate code that assumes calls never cross space boundaries.  This
15484allows GCC to emit code that performs faster indirect calls.
15485
15486This option does not work in the presence of shared libraries or nested
15487functions.
15488
15489@item -mfixed-range=@var{register-range}
15490@opindex mfixed-range
15491Generate code treating the given register range as fixed registers.
15492A fixed register is one that the register allocator cannot use.  This is
15493useful when compiling kernel code.  A register range is specified as
15494two registers separated by a dash.  Multiple register ranges can be
15495specified separated by a comma.
15496
15497@item -mlong-load-store
15498@opindex mlong-load-store
15499Generate 3-instruction load and store sequences as sometimes required by
15500the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
15501the HP compilers.
15502
15503@item -mportable-runtime
15504@opindex mportable-runtime
15505Use the portable calling conventions proposed by HP for ELF systems.
15506
15507@item -mgas
15508@opindex mgas
15509Enable the use of assembler directives only GAS understands.
15510
15511@item -mschedule=@var{cpu-type}
15512@opindex mschedule
15513Schedule code according to the constraints for the machine type
15514@var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
15515@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
15516to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15517proper scheduling option for your machine.  The default scheduling is
15518@samp{8000}.
15519
15520@item -mlinker-opt
15521@opindex mlinker-opt
15522Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
15523debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
15524linkers in which they give bogus error messages when linking some programs.
15525
15526@item -msoft-float
15527@opindex msoft-float
15528Generate output containing library calls for floating point.
15529@strong{Warning:} the requisite libraries are not available for all HPPA
15530targets.  Normally the facilities of the machine's usual C compiler are
15531used, but this cannot be done directly in cross-compilation.  You must make
15532your own arrangements to provide suitable library functions for
15533cross-compilation.
15534
15535@option{-msoft-float} changes the calling convention in the output file;
15536therefore, it is only useful if you compile @emph{all} of a program with
15537this option.  In particular, you need to compile @file{libgcc.a}, the
15538library that comes with GCC, with @option{-msoft-float} in order for
15539this to work.
15540
15541@item -msio
15542@opindex msio
15543Generate the predefine, @code{_SIO}, for server IO@.  The default is
15544@option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
15545@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
15546options are available under HP-UX and HI-UX@.
15547
15548@item -mgnu-ld
15549@opindex mgnu-ld
15550Use options specific to GNU @command{ld}.
15551This passes @option{-shared} to @command{ld} when
15552building a shared library.  It is the default when GCC is configured,
15553explicitly or implicitly, with the GNU linker.  This option does not
15554affect which @command{ld} is called; it only changes what parameters
15555are passed to that @command{ld}.
15556The @command{ld} that is called is determined by the
15557@option{--with-ld} configure option, GCC's program search path, and
15558finally by the user's @env{PATH}.  The linker used by GCC can be printed
15559using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
15560on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15561
15562@item -mhp-ld
15563@opindex mhp-ld
15564Use options specific to HP @command{ld}.
15565This passes @option{-b} to @command{ld} when building
15566a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15567links.  It is the default when GCC is configured, explicitly or
15568implicitly, with the HP linker.  This option does not affect
15569which @command{ld} is called; it only changes what parameters are passed to that
15570@command{ld}.
15571The @command{ld} that is called is determined by the @option{--with-ld}
15572configure option, GCC's program search path, and finally by the user's
15573@env{PATH}.  The linker used by GCC can be printed using @samp{which
15574`gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
15575HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15576
15577@item -mlong-calls
15578@opindex mno-long-calls
15579Generate code that uses long call sequences.  This ensures that a call
15580is always able to reach linker generated stubs.  The default is to generate
15581long calls only when the distance from the call site to the beginning
15582of the function or translation unit, as the case may be, exceeds a
15583predefined limit set by the branch type being used.  The limits for
15584normal calls are 7,600,000 and 240,000 bytes, respectively for the
15585PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
15586240,000 bytes.
15587
15588Distances are measured from the beginning of functions when using the
15589@option{-ffunction-sections} option, or when using the @option{-mgas}
15590and @option{-mno-portable-runtime} options together under HP-UX with
15591the SOM linker.
15592
15593It is normally not desirable to use this option as it degrades
15594performance.  However, it may be useful in large applications,
15595particularly when partial linking is used to build the application.
15596
15597The types of long calls used depends on the capabilities of the
15598assembler and linker, and the type of code being generated.  The
15599impact on systems that support long absolute calls, and long pic
15600symbol-difference or pc-relative calls should be relatively small.
15601However, an indirect call is used on 32-bit ELF systems in pic code
15602and it is quite long.
15603
15604@item -munix=@var{unix-std}
15605@opindex march
15606Generate compiler predefines and select a startfile for the specified
15607UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
15608and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
15609is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
1561011.11 and later.  The default values are @samp{93} for HP-UX 10.00,
15611@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15612and later.
15613
15614@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15615@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15616and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15617@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15618@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15619@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15620
15621It is @emph{important} to note that this option changes the interfaces
15622for various library routines.  It also affects the operational behavior
15623of the C library.  Thus, @emph{extreme} care is needed in using this
15624option.
15625
15626Library code that is intended to operate with more than one UNIX
15627standard must test, set and restore the variable @code{__xpg4_extended_mask}
15628as appropriate.  Most GNU software doesn't provide this capability.
15629
15630@item -nolibdld
15631@opindex nolibdld
15632Suppress the generation of link options to search libdld.sl when the
15633@option{-static} option is specified on HP-UX 10 and later.
15634
15635@item -static
15636@opindex static
15637The HP-UX implementation of setlocale in libc has a dependency on
15638libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
15639when the @option{-static} option is specified, special link options
15640are needed to resolve this dependency.
15641
15642On HP-UX 10 and later, the GCC driver adds the necessary options to
15643link with libdld.sl when the @option{-static} option is specified.
15644This causes the resulting binary to be dynamic.  On the 64-bit port,
15645the linkers generate dynamic binaries by default in any case.  The
15646@option{-nolibdld} option can be used to prevent the GCC driver from
15647adding these link options.
15648
15649@item -threads
15650@opindex threads
15651Add support for multithreading with the @dfn{dce thread} library
15652under HP-UX@.  This option sets flags for both the preprocessor and
15653linker.
15654@end table
15655
15656@node IA-64 Options
15657@subsection IA-64 Options
15658@cindex IA-64 Options
15659
15660These are the @samp{-m} options defined for the Intel IA-64 architecture.
15661
15662@table @gcctabopt
15663@item -mbig-endian
15664@opindex mbig-endian
15665Generate code for a big-endian target.  This is the default for HP-UX@.
15666
15667@item -mlittle-endian
15668@opindex mlittle-endian
15669Generate code for a little-endian target.  This is the default for AIX5
15670and GNU/Linux.
15671
15672@item -mgnu-as
15673@itemx -mno-gnu-as
15674@opindex mgnu-as
15675@opindex mno-gnu-as
15676Generate (or don't) code for the GNU assembler.  This is the default.
15677@c Also, this is the default if the configure option @option{--with-gnu-as}
15678@c is used.
15679
15680@item -mgnu-ld
15681@itemx -mno-gnu-ld
15682@opindex mgnu-ld
15683@opindex mno-gnu-ld
15684Generate (or don't) code for the GNU linker.  This is the default.
15685@c Also, this is the default if the configure option @option{--with-gnu-ld}
15686@c is used.
15687
15688@item -mno-pic
15689@opindex mno-pic
15690Generate code that does not use a global pointer register.  The result
15691is not position independent code, and violates the IA-64 ABI@.
15692
15693@item -mvolatile-asm-stop
15694@itemx -mno-volatile-asm-stop
15695@opindex mvolatile-asm-stop
15696@opindex mno-volatile-asm-stop
15697Generate (or don't) a stop bit immediately before and after volatile asm
15698statements.
15699
15700@item -mregister-names
15701@itemx -mno-register-names
15702@opindex mregister-names
15703@opindex mno-register-names
15704Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15705the stacked registers.  This may make assembler output more readable.
15706
15707@item -mno-sdata
15708@itemx -msdata
15709@opindex mno-sdata
15710@opindex msdata
15711Disable (or enable) optimizations that use the small data section.  This may
15712be useful for working around optimizer bugs.
15713
15714@item -mconstant-gp
15715@opindex mconstant-gp
15716Generate code that uses a single constant global pointer value.  This is
15717useful when compiling kernel code.
15718
15719@item -mauto-pic
15720@opindex mauto-pic
15721Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
15722This is useful when compiling firmware code.
15723
15724@item -minline-float-divide-min-latency
15725@opindex minline-float-divide-min-latency
15726Generate code for inline divides of floating-point values
15727using the minimum latency algorithm.
15728
15729@item -minline-float-divide-max-throughput
15730@opindex minline-float-divide-max-throughput
15731Generate code for inline divides of floating-point values
15732using the maximum throughput algorithm.
15733
15734@item -mno-inline-float-divide
15735@opindex mno-inline-float-divide
15736Do not generate inline code for divides of floating-point values.
15737
15738@item -minline-int-divide-min-latency
15739@opindex minline-int-divide-min-latency
15740Generate code for inline divides of integer values
15741using the minimum latency algorithm.
15742
15743@item -minline-int-divide-max-throughput
15744@opindex minline-int-divide-max-throughput
15745Generate code for inline divides of integer values
15746using the maximum throughput algorithm.
15747
15748@item -mno-inline-int-divide
15749@opindex mno-inline-int-divide
15750Do not generate inline code for divides of integer values.
15751
15752@item -minline-sqrt-min-latency
15753@opindex minline-sqrt-min-latency
15754Generate code for inline square roots
15755using the minimum latency algorithm.
15756
15757@item -minline-sqrt-max-throughput
15758@opindex minline-sqrt-max-throughput
15759Generate code for inline square roots
15760using the maximum throughput algorithm.
15761
15762@item -mno-inline-sqrt
15763@opindex mno-inline-sqrt
15764Do not generate inline code for @code{sqrt}.
15765
15766@item -mfused-madd
15767@itemx -mno-fused-madd
15768@opindex mfused-madd
15769@opindex mno-fused-madd
15770Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15771instructions.  The default is to use these instructions.
15772
15773@item -mno-dwarf2-asm
15774@itemx -mdwarf2-asm
15775@opindex mno-dwarf2-asm
15776@opindex mdwarf2-asm
15777Don't (or do) generate assembler code for the DWARF 2 line number debugging
15778info.  This may be useful when not using the GNU assembler.
15779
15780@item -mearly-stop-bits
15781@itemx -mno-early-stop-bits
15782@opindex mearly-stop-bits
15783@opindex mno-early-stop-bits
15784Allow stop bits to be placed earlier than immediately preceding the
15785instruction that triggered the stop bit.  This can improve instruction
15786scheduling, but does not always do so.
15787
15788@item -mfixed-range=@var{register-range}
15789@opindex mfixed-range
15790Generate code treating the given register range as fixed registers.
15791A fixed register is one that the register allocator cannot use.  This is
15792useful when compiling kernel code.  A register range is specified as
15793two registers separated by a dash.  Multiple register ranges can be
15794specified separated by a comma.
15795
15796@item -mtls-size=@var{tls-size}
15797@opindex mtls-size
15798Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
1579964.
15800
15801@item -mtune=@var{cpu-type}
15802@opindex mtune
15803Tune the instruction scheduling for a particular CPU, Valid values are
15804@samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15805and @samp{mckinley}.
15806
15807@item -milp32
15808@itemx -mlp64
15809@opindex milp32
15810@opindex mlp64
15811Generate code for a 32-bit or 64-bit environment.
15812The 32-bit environment sets int, long and pointer to 32 bits.
15813The 64-bit environment sets int to 32 bits and long and pointer
15814to 64 bits.  These are HP-UX specific flags.
15815
15816@item -mno-sched-br-data-spec
15817@itemx -msched-br-data-spec
15818@opindex mno-sched-br-data-spec
15819@opindex msched-br-data-spec
15820(Dis/En)able data speculative scheduling before reload.
15821This results in generation of @code{ld.a} instructions and
15822the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15823The default is 'disable'.
15824
15825@item -msched-ar-data-spec
15826@itemx -mno-sched-ar-data-spec
15827@opindex msched-ar-data-spec
15828@opindex mno-sched-ar-data-spec
15829(En/Dis)able data speculative scheduling after reload.
15830This results in generation of @code{ld.a} instructions and
15831the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15832The default is 'enable'.
15833
15834@item -mno-sched-control-spec
15835@itemx -msched-control-spec
15836@opindex mno-sched-control-spec
15837@opindex msched-control-spec
15838(Dis/En)able control speculative scheduling.  This feature is
15839available only during region scheduling (i.e.@: before reload).
15840This results in generation of the @code{ld.s} instructions and
15841the corresponding check instructions @code{chk.s}.
15842The default is 'disable'.
15843
15844@item -msched-br-in-data-spec
15845@itemx -mno-sched-br-in-data-spec
15846@opindex msched-br-in-data-spec
15847@opindex mno-sched-br-in-data-spec
15848(En/Dis)able speculative scheduling of the instructions that
15849are dependent on the data speculative loads before reload.
15850This is effective only with @option{-msched-br-data-spec} enabled.
15851The default is 'enable'.
15852
15853@item -msched-ar-in-data-spec
15854@itemx -mno-sched-ar-in-data-spec
15855@opindex msched-ar-in-data-spec
15856@opindex mno-sched-ar-in-data-spec
15857(En/Dis)able speculative scheduling of the instructions that
15858are dependent on the data speculative loads after reload.
15859This is effective only with @option{-msched-ar-data-spec} enabled.
15860The default is 'enable'.
15861
15862@item -msched-in-control-spec
15863@itemx -mno-sched-in-control-spec
15864@opindex msched-in-control-spec
15865@opindex mno-sched-in-control-spec
15866(En/Dis)able speculative scheduling of the instructions that
15867are dependent on the control speculative loads.
15868This is effective only with @option{-msched-control-spec} enabled.
15869The default is 'enable'.
15870
15871@item -mno-sched-prefer-non-data-spec-insns
15872@itemx -msched-prefer-non-data-spec-insns
15873@opindex mno-sched-prefer-non-data-spec-insns
15874@opindex msched-prefer-non-data-spec-insns
15875If enabled, data-speculative instructions are chosen for schedule
15876only if there are no other choices at the moment.  This makes
15877the use of the data speculation much more conservative.
15878The default is 'disable'.
15879
15880@item -mno-sched-prefer-non-control-spec-insns
15881@itemx -msched-prefer-non-control-spec-insns
15882@opindex mno-sched-prefer-non-control-spec-insns
15883@opindex msched-prefer-non-control-spec-insns
15884If enabled, control-speculative instructions are chosen for schedule
15885only if there are no other choices at the moment.  This makes
15886the use of the control speculation much more conservative.
15887The default is 'disable'.
15888
15889@item -mno-sched-count-spec-in-critical-path
15890@itemx -msched-count-spec-in-critical-path
15891@opindex mno-sched-count-spec-in-critical-path
15892@opindex msched-count-spec-in-critical-path
15893If enabled, speculative dependencies are considered during
15894computation of the instructions priorities.  This makes the use of the
15895speculation a bit more conservative.
15896The default is 'disable'.
15897
15898@item -msched-spec-ldc
15899@opindex msched-spec-ldc
15900Use a simple data speculation check.  This option is on by default.
15901
15902@item -msched-control-spec-ldc
15903@opindex msched-spec-ldc
15904Use a simple check for control speculation.  This option is on by default.
15905
15906@item -msched-stop-bits-after-every-cycle
15907@opindex msched-stop-bits-after-every-cycle
15908Place a stop bit after every cycle when scheduling.  This option is on
15909by default.
15910
15911@item -msched-fp-mem-deps-zero-cost
15912@opindex msched-fp-mem-deps-zero-cost
15913Assume that floating-point stores and loads are not likely to cause a conflict
15914when placed into the same instruction group.  This option is disabled by
15915default.
15916
15917@item -msel-sched-dont-check-control-spec
15918@opindex msel-sched-dont-check-control-spec
15919Generate checks for control speculation in selective scheduling.
15920This flag is disabled by default.
15921
15922@item -msched-max-memory-insns=@var{max-insns}
15923@opindex msched-max-memory-insns
15924Limit on the number of memory insns per instruction group, giving lower
15925priority to subsequent memory insns attempting to schedule in the same
15926instruction group. Frequently useful to prevent cache bank conflicts.
15927The default value is 1.
15928
15929@item -msched-max-memory-insns-hard-limit
15930@opindex msched-max-memory-insns-hard-limit
15931Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
15932disallowing more than that number in an instruction group.
15933Otherwise, the limit is ``soft'', meaning that non-memory operations
15934are preferred when the limit is reached, but memory operations may still
15935be scheduled.
15936
15937@end table
15938
15939@node LM32 Options
15940@subsection LM32 Options
15941@cindex LM32 options
15942
15943These @option{-m} options are defined for the LatticeMico32 architecture:
15944
15945@table @gcctabopt
15946@item -mbarrel-shift-enabled
15947@opindex mbarrel-shift-enabled
15948Enable barrel-shift instructions.
15949
15950@item -mdivide-enabled
15951@opindex mdivide-enabled
15952Enable divide and modulus instructions.
15953
15954@item -mmultiply-enabled
15955@opindex multiply-enabled
15956Enable multiply instructions.
15957
15958@item -msign-extend-enabled
15959@opindex msign-extend-enabled
15960Enable sign extend instructions.
15961
15962@item -muser-enabled
15963@opindex muser-enabled
15964Enable user-defined instructions.
15965
15966@end table
15967
15968@node M32C Options
15969@subsection M32C Options
15970@cindex M32C options
15971
15972@table @gcctabopt
15973@item -mcpu=@var{name}
15974@opindex mcpu=
15975Select the CPU for which code is generated.  @var{name} may be one of
15976@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
15977/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
15978the M32C/80 series.
15979
15980@item -msim
15981@opindex msim
15982Specifies that the program will be run on the simulator.  This causes
15983an alternate runtime library to be linked in which supports, for
15984example, file I/O@.  You must not use this option when generating
15985programs that will run on real hardware; you must provide your own
15986runtime library for whatever I/O functions are needed.
15987
15988@item -memregs=@var{number}
15989@opindex memregs=
15990Specifies the number of memory-based pseudo-registers GCC uses
15991during code generation.  These pseudo-registers are used like real
15992registers, so there is a tradeoff between GCC's ability to fit the
15993code into available registers, and the performance penalty of using
15994memory instead of registers.  Note that all modules in a program must
15995be compiled with the same value for this option.  Because of that, you
15996must not use this option with GCC's default runtime libraries.
15997
15998@end table
15999
16000@node M32R/D Options
16001@subsection M32R/D Options
16002@cindex M32R/D options
16003
16004These @option{-m} options are defined for Renesas M32R/D architectures:
16005
16006@table @gcctabopt
16007@item -m32r2
16008@opindex m32r2
16009Generate code for the M32R/2@.
16010
16011@item -m32rx
16012@opindex m32rx
16013Generate code for the M32R/X@.
16014
16015@item -m32r
16016@opindex m32r
16017Generate code for the M32R@.  This is the default.
16018
16019@item -mmodel=small
16020@opindex mmodel=small
16021Assume all objects live in the lower 16MB of memory (so that their addresses
16022can be loaded with the @code{ld24} instruction), and assume all subroutines
16023are reachable with the @code{bl} instruction.
16024This is the default.
16025
16026The addressability of a particular object can be set with the
16027@code{model} attribute.
16028
16029@item -mmodel=medium
16030@opindex mmodel=medium
16031Assume objects may be anywhere in the 32-bit address space (the compiler
16032generates @code{seth/add3} instructions to load their addresses), and
16033assume all subroutines are reachable with the @code{bl} instruction.
16034
16035@item -mmodel=large
16036@opindex mmodel=large
16037Assume objects may be anywhere in the 32-bit address space (the compiler
16038generates @code{seth/add3} instructions to load their addresses), and
16039assume subroutines may not be reachable with the @code{bl} instruction
16040(the compiler generates the much slower @code{seth/add3/jl}
16041instruction sequence).
16042
16043@item -msdata=none
16044@opindex msdata=none
16045Disable use of the small data area.  Variables are put into
16046one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16047@code{section} attribute has been specified).
16048This is the default.
16049
16050The small data area consists of sections @code{.sdata} and @code{.sbss}.
16051Objects may be explicitly put in the small data area with the
16052@code{section} attribute using one of these sections.
16053
16054@item -msdata=sdata
16055@opindex msdata=sdata
16056Put small global and static data in the small data area, but do not
16057generate special code to reference them.
16058
16059@item -msdata=use
16060@opindex msdata=use
16061Put small global and static data in the small data area, and generate
16062special instructions to reference them.
16063
16064@item -G @var{num}
16065@opindex G
16066@cindex smaller data references
16067Put global and static objects less than or equal to @var{num} bytes
16068into the small data or BSS sections instead of the normal data or BSS
16069sections.  The default value of @var{num} is 8.
16070The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16071for this option to have any effect.
16072
16073All modules should be compiled with the same @option{-G @var{num}} value.
16074Compiling with different values of @var{num} may or may not work; if it
16075doesn't the linker gives an error message---incorrect code is not
16076generated.
16077
16078@item -mdebug
16079@opindex mdebug
16080Makes the M32R-specific code in the compiler display some statistics
16081that might help in debugging programs.
16082
16083@item -malign-loops
16084@opindex malign-loops
16085Align all loops to a 32-byte boundary.
16086
16087@item -mno-align-loops
16088@opindex mno-align-loops
16089Do not enforce a 32-byte alignment for loops.  This is the default.
16090
16091@item -missue-rate=@var{number}
16092@opindex missue-rate=@var{number}
16093Issue @var{number} instructions per cycle.  @var{number} can only be 1
16094or 2.
16095
16096@item -mbranch-cost=@var{number}
16097@opindex mbranch-cost=@var{number}
16098@var{number} can only be 1 or 2.  If it is 1 then branches are
16099preferred over conditional code, if it is 2, then the opposite applies.
16100
16101@item -mflush-trap=@var{number}
16102@opindex mflush-trap=@var{number}
16103Specifies the trap number to use to flush the cache.  The default is
1610412.  Valid numbers are between 0 and 15 inclusive.
16105
16106@item -mno-flush-trap
16107@opindex mno-flush-trap
16108Specifies that the cache cannot be flushed by using a trap.
16109
16110@item -mflush-func=@var{name}
16111@opindex mflush-func=@var{name}
16112Specifies the name of the operating system function to call to flush
16113the cache.  The default is @samp{_flush_cache}, but a function call
16114is only used if a trap is not available.
16115
16116@item -mno-flush-func
16117@opindex mno-flush-func
16118Indicates that there is no OS function for flushing the cache.
16119
16120@end table
16121
16122@node M680x0 Options
16123@subsection M680x0 Options
16124@cindex M680x0 options
16125
16126These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16127The default settings depend on which architecture was selected when
16128the compiler was configured; the defaults for the most common choices
16129are given below.
16130
16131@table @gcctabopt
16132@item -march=@var{arch}
16133@opindex march
16134Generate code for a specific M680x0 or ColdFire instruction set
16135architecture.  Permissible values of @var{arch} for M680x0
16136architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16137@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
16138architectures are selected according to Freescale's ISA classification
16139and the permissible values are: @samp{isaa}, @samp{isaaplus},
16140@samp{isab} and @samp{isac}.
16141
16142GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16143code for a ColdFire target.  The @var{arch} in this macro is one of the
16144@option{-march} arguments given above.
16145
16146When used together, @option{-march} and @option{-mtune} select code
16147that runs on a family of similar processors but that is optimized
16148for a particular microarchitecture.
16149
16150@item -mcpu=@var{cpu}
16151@opindex mcpu
16152Generate code for a specific M680x0 or ColdFire processor.
16153The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16154@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16155and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
16156below, which also classifies the CPUs into families:
16157
16158@multitable @columnfractions 0.20 0.80
16159@item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16160@item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16161@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16162@item @samp{5206e} @tab @samp{5206e}
16163@item @samp{5208} @tab @samp{5207} @samp{5208}
16164@item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16165@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16166@item @samp{5216} @tab @samp{5214} @samp{5216}
16167@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16168@item @samp{5225} @tab @samp{5224} @samp{5225}
16169@item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16170@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16171@item @samp{5249} @tab @samp{5249}
16172@item @samp{5250} @tab @samp{5250}
16173@item @samp{5271} @tab @samp{5270} @samp{5271}
16174@item @samp{5272} @tab @samp{5272}
16175@item @samp{5275} @tab @samp{5274} @samp{5275}
16176@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16177@item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16178@item @samp{5307} @tab @samp{5307}
16179@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16180@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16181@item @samp{5407} @tab @samp{5407}
16182@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16183@end multitable
16184
16185@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16186@var{arch} is compatible with @var{cpu}.  Other combinations of
16187@option{-mcpu} and @option{-march} are rejected.
16188
16189GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16190@var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
16191where the value of @var{family} is given by the table above.
16192
16193@item -mtune=@var{tune}
16194@opindex mtune
16195Tune the code for a particular microarchitecture within the
16196constraints set by @option{-march} and @option{-mcpu}.
16197The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16198@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16199and @samp{cpu32}.  The ColdFire microarchitectures
16200are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16201
16202You can also use @option{-mtune=68020-40} for code that needs
16203to run relatively well on 68020, 68030 and 68040 targets.
16204@option{-mtune=68020-60} is similar but includes 68060 targets
16205as well.  These two options select the same tuning decisions as
16206@option{-m68020-40} and @option{-m68020-60} respectively.
16207
16208GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16209when tuning for 680x0 architecture @var{arch}.  It also defines
16210@code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16211option is used.  If GCC is tuning for a range of architectures,
16212as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16213it defines the macros for every architecture in the range.
16214
16215GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16216ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16217of the arguments given above.
16218
16219@item -m68000
16220@itemx -mc68000
16221@opindex m68000
16222@opindex mc68000
16223Generate output for a 68000.  This is the default
16224when the compiler is configured for 68000-based systems.
16225It is equivalent to @option{-march=68000}.
16226
16227Use this option for microcontrollers with a 68000 or EC000 core,
16228including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16229
16230@item -m68010
16231@opindex m68010
16232Generate output for a 68010.  This is the default
16233when the compiler is configured for 68010-based systems.
16234It is equivalent to @option{-march=68010}.
16235
16236@item -m68020
16237@itemx -mc68020
16238@opindex m68020
16239@opindex mc68020
16240Generate output for a 68020.  This is the default
16241when the compiler is configured for 68020-based systems.
16242It is equivalent to @option{-march=68020}.
16243
16244@item -m68030
16245@opindex m68030
16246Generate output for a 68030.  This is the default when the compiler is
16247configured for 68030-based systems.  It is equivalent to
16248@option{-march=68030}.
16249
16250@item -m68040
16251@opindex m68040
16252Generate output for a 68040.  This is the default when the compiler is
16253configured for 68040-based systems.  It is equivalent to
16254@option{-march=68040}.
16255
16256This option inhibits the use of 68881/68882 instructions that have to be
16257emulated by software on the 68040.  Use this option if your 68040 does not
16258have code to emulate those instructions.
16259
16260@item -m68060
16261@opindex m68060
16262Generate output for a 68060.  This is the default when the compiler is
16263configured for 68060-based systems.  It is equivalent to
16264@option{-march=68060}.
16265
16266This option inhibits the use of 68020 and 68881/68882 instructions that
16267have to be emulated by software on the 68060.  Use this option if your 68060
16268does not have code to emulate those instructions.
16269
16270@item -mcpu32
16271@opindex mcpu32
16272Generate output for a CPU32.  This is the default
16273when the compiler is configured for CPU32-based systems.
16274It is equivalent to @option{-march=cpu32}.
16275
16276Use this option for microcontrollers with a
16277CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
1627868336, 68340, 68341, 68349 and 68360.
16279
16280@item -m5200
16281@opindex m5200
16282Generate output for a 520X ColdFire CPU@.  This is the default
16283when the compiler is configured for 520X-based systems.
16284It is equivalent to @option{-mcpu=5206}, and is now deprecated
16285in favor of that option.
16286
16287Use this option for microcontroller with a 5200 core, including
16288the MCF5202, MCF5203, MCF5204 and MCF5206.
16289
16290@item -m5206e
16291@opindex m5206e
16292Generate output for a 5206e ColdFire CPU@.  The option is now
16293deprecated in favor of the equivalent @option{-mcpu=5206e}.
16294
16295@item -m528x
16296@opindex m528x
16297Generate output for a member of the ColdFire 528X family.
16298The option is now deprecated in favor of the equivalent
16299@option{-mcpu=528x}.
16300
16301@item -m5307
16302@opindex m5307
16303Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
16304in favor of the equivalent @option{-mcpu=5307}.
16305
16306@item -m5407
16307@opindex m5407
16308Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
16309in favor of the equivalent @option{-mcpu=5407}.
16310
16311@item -mcfv4e
16312@opindex mcfv4e
16313Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16314This includes use of hardware floating-point instructions.
16315The option is equivalent to @option{-mcpu=547x}, and is now
16316deprecated in favor of that option.
16317
16318@item -m68020-40
16319@opindex m68020-40
16320Generate output for a 68040, without using any of the new instructions.
16321This results in code that can run relatively efficiently on either a
1632268020/68881 or a 68030 or a 68040.  The generated code does use the
1632368881 instructions that are emulated on the 68040.
16324
16325The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16326
16327@item -m68020-60
16328@opindex m68020-60
16329Generate output for a 68060, without using any of the new instructions.
16330This results in code that can run relatively efficiently on either a
1633168020/68881 or a 68030 or a 68040.  The generated code does use the
1633268881 instructions that are emulated on the 68060.
16333
16334The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16335
16336@item -mhard-float
16337@itemx -m68881
16338@opindex mhard-float
16339@opindex m68881
16340Generate floating-point instructions.  This is the default for 68020
16341and above, and for ColdFire devices that have an FPU@.  It defines the
16342macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16343on ColdFire targets.
16344
16345@item -msoft-float
16346@opindex msoft-float
16347Do not generate floating-point instructions; use library calls instead.
16348This is the default for 68000, 68010, and 68832 targets.  It is also
16349the default for ColdFire devices that have no FPU.
16350
16351@item -mdiv
16352@itemx -mno-div
16353@opindex mdiv
16354@opindex mno-div
16355Generate (do not generate) ColdFire hardware divide and remainder
16356instructions.  If @option{-march} is used without @option{-mcpu},
16357the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16358architectures.  Otherwise, the default is taken from the target CPU
16359(either the default CPU, or the one specified by @option{-mcpu}).  For
16360example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16361@option{-mcpu=5206e}.
16362
16363GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16364
16365@item -mshort
16366@opindex mshort
16367Consider type @code{int} to be 16 bits wide, like @code{short int}.
16368Additionally, parameters passed on the stack are also aligned to a
1636916-bit boundary even on targets whose API mandates promotion to 32-bit.
16370
16371@item -mno-short
16372@opindex mno-short
16373Do not consider type @code{int} to be 16 bits wide.  This is the default.
16374
16375@item -mnobitfield
16376@itemx -mno-bitfield
16377@opindex mnobitfield
16378@opindex mno-bitfield
16379Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
16380and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16381
16382@item -mbitfield
16383@opindex mbitfield
16384Do use the bit-field instructions.  The @option{-m68020} option implies
16385@option{-mbitfield}.  This is the default if you use a configuration
16386designed for a 68020.
16387
16388@item -mrtd
16389@opindex mrtd
16390Use a different function-calling convention, in which functions
16391that take a fixed number of arguments return with the @code{rtd}
16392instruction, which pops their arguments while returning.  This
16393saves one instruction in the caller since there is no need to pop
16394the arguments there.
16395
16396This calling convention is incompatible with the one normally
16397used on Unix, so you cannot use it if you need to call libraries
16398compiled with the Unix compiler.
16399
16400Also, you must provide function prototypes for all functions that
16401take variable numbers of arguments (including @code{printf});
16402otherwise incorrect code is generated for calls to those
16403functions.
16404
16405In addition, seriously incorrect code results if you call a
16406function with too many arguments.  (Normally, extra arguments are
16407harmlessly ignored.)
16408
16409The @code{rtd} instruction is supported by the 68010, 68020, 68030,
1641068040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16411
16412@item -mno-rtd
16413@opindex mno-rtd
16414Do not use the calling conventions selected by @option{-mrtd}.
16415This is the default.
16416
16417@item -malign-int
16418@itemx -mno-align-int
16419@opindex malign-int
16420@opindex mno-align-int
16421Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16422@code{float}, @code{double}, and @code{long double} variables on a 32-bit
16423boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16424Aligning variables on 32-bit boundaries produces code that runs somewhat
16425faster on processors with 32-bit busses at the expense of more memory.
16426
16427@strong{Warning:} if you use the @option{-malign-int} switch, GCC
16428aligns structures containing the above types differently than
16429most published application binary interface specifications for the m68k.
16430
16431@item -mpcrel
16432@opindex mpcrel
16433Use the pc-relative addressing mode of the 68000 directly, instead of
16434using a global offset table.  At present, this option implies @option{-fpic},
16435allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
16436not presently supported with @option{-mpcrel}, though this could be supported for
1643768020 and higher processors.
16438
16439@item -mno-strict-align
16440@itemx -mstrict-align
16441@opindex mno-strict-align
16442@opindex mstrict-align
16443Do not (do) assume that unaligned memory references are handled by
16444the system.
16445
16446@item -msep-data
16447Generate code that allows the data segment to be located in a different
16448area of memory from the text segment.  This allows for execute-in-place in
16449an environment without virtual memory management.  This option implies
16450@option{-fPIC}.
16451
16452@item -mno-sep-data
16453Generate code that assumes that the data segment follows the text segment.
16454This is the default.
16455
16456@item -mid-shared-library
16457Generate code that supports shared libraries via the library ID method.
16458This allows for execute-in-place and shared libraries in an environment
16459without virtual memory management.  This option implies @option{-fPIC}.
16460
16461@item -mno-id-shared-library
16462Generate code that doesn't assume ID-based shared libraries are being used.
16463This is the default.
16464
16465@item -mshared-library-id=n
16466Specifies the identification number of the ID-based shared library being
16467compiled.  Specifying a value of 0 generates more compact code; specifying
16468other values forces the allocation of that number to the current
16469library, but is no more space- or time-efficient than omitting this option.
16470
16471@item -mxgot
16472@itemx -mno-xgot
16473@opindex mxgot
16474@opindex mno-xgot
16475When generating position-independent code for ColdFire, generate code
16476that works if the GOT has more than 8192 entries.  This code is
16477larger and slower than code generated without this option.  On M680x0
16478processors, this option is not needed; @option{-fPIC} suffices.
16479
16480GCC normally uses a single instruction to load values from the GOT@.
16481While this is relatively efficient, it only works if the GOT
16482is smaller than about 64k.  Anything larger causes the linker
16483to report an error such as:
16484
16485@cindex relocation truncated to fit (ColdFire)
16486@smallexample
16487relocation truncated to fit: R_68K_GOT16O foobar
16488@end smallexample
16489
16490If this happens, you should recompile your code with @option{-mxgot}.
16491It should then work with very large GOTs.  However, code generated with
16492@option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16493the value of a global symbol.
16494
16495Note that some linkers, including newer versions of the GNU linker,
16496can create multiple GOTs and sort GOT entries.  If you have such a linker,
16497you should only need to use @option{-mxgot} when compiling a single
16498object file that accesses more than 8192 GOT entries.  Very few do.
16499
16500These options have no effect unless GCC is generating
16501position-independent code.
16502
16503@end table
16504
16505@node MCore Options
16506@subsection MCore Options
16507@cindex MCore options
16508
16509These are the @samp{-m} options defined for the Motorola M*Core
16510processors.
16511
16512@table @gcctabopt
16513
16514@item -mhardlit
16515@itemx -mno-hardlit
16516@opindex mhardlit
16517@opindex mno-hardlit
16518Inline constants into the code stream if it can be done in two
16519instructions or less.
16520
16521@item -mdiv
16522@itemx -mno-div
16523@opindex mdiv
16524@opindex mno-div
16525Use the divide instruction.  (Enabled by default).
16526
16527@item -mrelax-immediate
16528@itemx -mno-relax-immediate
16529@opindex mrelax-immediate
16530@opindex mno-relax-immediate
16531Allow arbitrary-sized immediates in bit operations.
16532
16533@item -mwide-bitfields
16534@itemx -mno-wide-bitfields
16535@opindex mwide-bitfields
16536@opindex mno-wide-bitfields
16537Always treat bit-fields as @code{int}-sized.
16538
16539@item -m4byte-functions
16540@itemx -mno-4byte-functions
16541@opindex m4byte-functions
16542@opindex mno-4byte-functions
16543Force all functions to be aligned to a 4-byte boundary.
16544
16545@item -mcallgraph-data
16546@itemx -mno-callgraph-data
16547@opindex mcallgraph-data
16548@opindex mno-callgraph-data
16549Emit callgraph information.
16550
16551@item -mslow-bytes
16552@itemx -mno-slow-bytes
16553@opindex mslow-bytes
16554@opindex mno-slow-bytes
16555Prefer word access when reading byte quantities.
16556
16557@item -mlittle-endian
16558@itemx -mbig-endian
16559@opindex mlittle-endian
16560@opindex mbig-endian
16561Generate code for a little-endian target.
16562
16563@item -m210
16564@itemx -m340
16565@opindex m210
16566@opindex m340
16567Generate code for the 210 processor.
16568
16569@item -mno-lsim
16570@opindex mno-lsim
16571Assume that runtime support has been provided and so omit the
16572simulator library (@file{libsim.a)} from the linker command line.
16573
16574@item -mstack-increment=@var{size}
16575@opindex mstack-increment
16576Set the maximum amount for a single stack increment operation.  Large
16577values can increase the speed of programs that contain functions
16578that need a large amount of stack space, but they can also trigger a
16579segmentation fault if the stack is extended too much.  The default
16580value is 0x1000.
16581
16582@end table
16583
16584@node MeP Options
16585@subsection MeP Options
16586@cindex MeP options
16587
16588@table @gcctabopt
16589
16590@item -mabsdiff
16591@opindex mabsdiff
16592Enables the @code{abs} instruction, which is the absolute difference
16593between two registers.
16594
16595@item -mall-opts
16596@opindex mall-opts
16597Enables all the optional instructions---average, multiply, divide, bit
16598operations, leading zero, absolute difference, min/max, clip, and
16599saturation.
16600
16601
16602@item -maverage
16603@opindex maverage
16604Enables the @code{ave} instruction, which computes the average of two
16605registers.
16606
16607@item -mbased=@var{n}
16608@opindex mbased=
16609Variables of size @var{n} bytes or smaller are placed in the
16610@code{.based} section by default.  Based variables use the @code{$tp}
16611register as a base register, and there is a 128-byte limit to the
16612@code{.based} section.
16613
16614@item -mbitops
16615@opindex mbitops
16616Enables the bit operation instructions---bit test (@code{btstm}), set
16617(@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16618test-and-set (@code{tas}).
16619
16620@item -mc=@var{name}
16621@opindex mc=
16622Selects which section constant data is placed in.  @var{name} may
16623be @samp{tiny}, @samp{near}, or @samp{far}.
16624
16625@item -mclip
16626@opindex mclip
16627Enables the @code{clip} instruction.  Note that @option{-mclip} is not
16628useful unless you also provide @option{-mminmax}.
16629
16630@item -mconfig=@var{name}
16631@opindex mconfig=
16632Selects one of the built-in core configurations.  Each MeP chip has
16633one or more modules in it; each module has a core CPU and a variety of
16634coprocessors, optional instructions, and peripherals.  The
16635@code{MeP-Integrator} tool, not part of GCC, provides these
16636configurations through this option; using this option is the same as
16637using all the corresponding command-line options.  The default
16638configuration is @samp{default}.
16639
16640@item -mcop
16641@opindex mcop
16642Enables the coprocessor instructions.  By default, this is a 32-bit
16643coprocessor.  Note that the coprocessor is normally enabled via the
16644@option{-mconfig=} option.
16645
16646@item -mcop32
16647@opindex mcop32
16648Enables the 32-bit coprocessor's instructions.
16649
16650@item -mcop64
16651@opindex mcop64
16652Enables the 64-bit coprocessor's instructions.
16653
16654@item -mivc2
16655@opindex mivc2
16656Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
16657
16658@item -mdc
16659@opindex mdc
16660Causes constant variables to be placed in the @code{.near} section.
16661
16662@item -mdiv
16663@opindex mdiv
16664Enables the @code{div} and @code{divu} instructions.
16665
16666@item -meb
16667@opindex meb
16668Generate big-endian code.
16669
16670@item -mel
16671@opindex mel
16672Generate little-endian code.
16673
16674@item -mio-volatile
16675@opindex mio-volatile
16676Tells the compiler that any variable marked with the @code{io}
16677attribute is to be considered volatile.
16678
16679@item -ml
16680@opindex ml
16681Causes variables to be assigned to the @code{.far} section by default.
16682
16683@item -mleadz
16684@opindex mleadz
16685Enables the @code{leadz} (leading zero) instruction.
16686
16687@item -mm
16688@opindex mm
16689Causes variables to be assigned to the @code{.near} section by default.
16690
16691@item -mminmax
16692@opindex mminmax
16693Enables the @code{min} and @code{max} instructions.
16694
16695@item -mmult
16696@opindex mmult
16697Enables the multiplication and multiply-accumulate instructions.
16698
16699@item -mno-opts
16700@opindex mno-opts
16701Disables all the optional instructions enabled by @option{-mall-opts}.
16702
16703@item -mrepeat
16704@opindex mrepeat
16705Enables the @code{repeat} and @code{erepeat} instructions, used for
16706low-overhead looping.
16707
16708@item -ms
16709@opindex ms
16710Causes all variables to default to the @code{.tiny} section.  Note
16711that there is a 65536-byte limit to this section.  Accesses to these
16712variables use the @code{%gp} base register.
16713
16714@item -msatur
16715@opindex msatur
16716Enables the saturation instructions.  Note that the compiler does not
16717currently generate these itself, but this option is included for
16718compatibility with other tools, like @code{as}.
16719
16720@item -msdram
16721@opindex msdram
16722Link the SDRAM-based runtime instead of the default ROM-based runtime.
16723
16724@item -msim
16725@opindex msim
16726Link the simulator run-time libraries.
16727
16728@item -msimnovec
16729@opindex msimnovec
16730Link the simulator runtime libraries, excluding built-in support
16731for reset and exception vectors and tables.
16732
16733@item -mtf
16734@opindex mtf
16735Causes all functions to default to the @code{.far} section.  Without
16736this option, functions default to the @code{.near} section.
16737
16738@item -mtiny=@var{n}
16739@opindex mtiny=
16740Variables that are @var{n} bytes or smaller are allocated to the
16741@code{.tiny} section.  These variables use the @code{$gp} base
16742register.  The default for this option is 4, but note that there's a
1674365536-byte limit to the @code{.tiny} section.
16744
16745@end table
16746
16747@node MicroBlaze Options
16748@subsection MicroBlaze Options
16749@cindex MicroBlaze Options
16750
16751@table @gcctabopt
16752
16753@item -msoft-float
16754@opindex msoft-float
16755Use software emulation for floating point (default).
16756
16757@item -mhard-float
16758@opindex mhard-float
16759Use hardware floating-point instructions.
16760
16761@item -mmemcpy
16762@opindex mmemcpy
16763Do not optimize block moves, use @code{memcpy}.
16764
16765@item -mno-clearbss
16766@opindex mno-clearbss
16767This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
16768
16769@item -mcpu=@var{cpu-type}
16770@opindex mcpu=
16771Use features of, and schedule code for, the given CPU.
16772Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16773where @var{X} is a major version, @var{YY} is the minor version, and
16774@var{Z} is compatibility code.  Example values are @samp{v3.00.a},
16775@samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16776
16777@item -mxl-soft-mul
16778@opindex mxl-soft-mul
16779Use software multiply emulation (default).
16780
16781@item -mxl-soft-div
16782@opindex mxl-soft-div
16783Use software emulation for divides (default).
16784
16785@item -mxl-barrel-shift
16786@opindex mxl-barrel-shift
16787Use the hardware barrel shifter.
16788
16789@item -mxl-pattern-compare
16790@opindex mxl-pattern-compare
16791Use pattern compare instructions.
16792
16793@item -msmall-divides
16794@opindex msmall-divides
16795Use table lookup optimization for small signed integer divisions.
16796
16797@item -mxl-stack-check
16798@opindex mxl-stack-check
16799This option is deprecated.  Use @option{-fstack-check} instead.
16800
16801@item -mxl-gp-opt
16802@opindex mxl-gp-opt
16803Use GP-relative @code{.sdata}/@code{.sbss} sections.
16804
16805@item -mxl-multiply-high
16806@opindex mxl-multiply-high
16807Use multiply high instructions for high part of 32x32 multiply.
16808
16809@item -mxl-float-convert
16810@opindex mxl-float-convert
16811Use hardware floating-point conversion instructions.
16812
16813@item -mxl-float-sqrt
16814@opindex mxl-float-sqrt
16815Use hardware floating-point square root instruction.
16816
16817@item -mbig-endian
16818@opindex mbig-endian
16819Generate code for a big-endian target.
16820
16821@item -mlittle-endian
16822@opindex mlittle-endian
16823Generate code for a little-endian target.
16824
16825@item -mxl-reorder
16826@opindex mxl-reorder
16827Use reorder instructions (swap and byte reversed load/store).
16828
16829@item -mxl-mode-@var{app-model}
16830Select application model @var{app-model}.  Valid models are
16831@table @samp
16832@item executable
16833normal executable (default), uses startup code @file{crt0.o}.
16834
16835@item xmdstub
16836for use with Xilinx Microprocessor Debugger (XMD) based
16837software intrusive debug agent called xmdstub. This uses startup file
16838@file{crt1.o} and sets the start address of the program to 0x800.
16839
16840@item bootstrap
16841for applications that are loaded using a bootloader.
16842This model uses startup file @file{crt2.o} which does not contain a processor
16843reset vector handler. This is suitable for transferring control on a
16844processor reset to the bootloader rather than the application.
16845
16846@item novectors
16847for applications that do not require any of the
16848MicroBlaze vectors. This option may be useful for applications running
16849within a monitoring application. This model uses @file{crt3.o} as a startup file.
16850@end table
16851
16852Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
16853@option{-mxl-mode-@var{app-model}}.
16854
16855@end table
16856
16857@node MIPS Options
16858@subsection MIPS Options
16859@cindex MIPS options
16860
16861@table @gcctabopt
16862
16863@item -EB
16864@opindex EB
16865Generate big-endian code.
16866
16867@item -EL
16868@opindex EL
16869Generate little-endian code.  This is the default for @samp{mips*el-*-*}
16870configurations.
16871
16872@item -march=@var{arch}
16873@opindex march
16874Generate code that runs on @var{arch}, which can be the name of a
16875generic MIPS ISA, or the name of a particular processor.
16876The ISA names are:
16877@samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
16878@samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
16879@samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
16880@samp{mips64r5} and @samp{mips64r6}.
16881The processor names are:
16882@samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
16883@samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
16884@samp{5kc}, @samp{5kf},
16885@samp{20kc},
16886@samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
16887@samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
16888@samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
16889@samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
16890@samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
16891@samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
16892@samp{m4k},
16893@samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
16894@samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
16895@samp{orion},
16896@samp{p5600},
16897@samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
16898@samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
16899@samp{rm7000}, @samp{rm9000},
16900@samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
16901@samp{sb1},
16902@samp{sr71000},
16903@samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
16904@samp{vr5000}, @samp{vr5400}, @samp{vr5500},
16905@samp{xlr} and @samp{xlp}.
16906The special value @samp{from-abi} selects the
16907most compatible architecture for the selected ABI (that is,
16908@samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
16909
16910The native Linux/GNU toolchain also supports the value @samp{native},
16911which selects the best architecture option for the host processor.
16912@option{-march=native} has no effect if GCC does not recognize
16913the processor.
16914
16915In processor names, a final @samp{000} can be abbreviated as @samp{k}
16916(for example, @option{-march=r2k}).  Prefixes are optional, and
16917@samp{vr} may be written @samp{r}.
16918
16919Names of the form @samp{@var{n}f2_1} refer to processors with
16920FPUs clocked at half the rate of the core, names of the form
16921@samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
16922rate as the core, and names of the form @samp{@var{n}f3_2} refer to
16923processors with FPUs clocked a ratio of 3:2 with respect to the core.
16924For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
16925for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
16926accepted as synonyms for @samp{@var{n}f1_1}.
16927
16928GCC defines two macros based on the value of this option.  The first
16929is @code{_MIPS_ARCH}, which gives the name of target architecture, as
16930a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
16931where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
16932For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
16933to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
16934
16935Note that the @code{_MIPS_ARCH} macro uses the processor names given
16936above.  In other words, it has the full prefix and does not
16937abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
16938the macro names the resolved architecture (either @code{"mips1"} or
16939@code{"mips3"}).  It names the default architecture when no
16940@option{-march} option is given.
16941
16942@item -mtune=@var{arch}
16943@opindex mtune
16944Optimize for @var{arch}.  Among other things, this option controls
16945the way instructions are scheduled, and the perceived cost of arithmetic
16946operations.  The list of @var{arch} values is the same as for
16947@option{-march}.
16948
16949When this option is not used, GCC optimizes for the processor
16950specified by @option{-march}.  By using @option{-march} and
16951@option{-mtune} together, it is possible to generate code that
16952runs on a family of processors, but optimize the code for one
16953particular member of that family.
16954
16955@option{-mtune} defines the macros @code{_MIPS_TUNE} and
16956@code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
16957@option{-march} ones described above.
16958
16959@item -mips1
16960@opindex mips1
16961Equivalent to @option{-march=mips1}.
16962
16963@item -mips2
16964@opindex mips2
16965Equivalent to @option{-march=mips2}.
16966
16967@item -mips3
16968@opindex mips3
16969Equivalent to @option{-march=mips3}.
16970
16971@item -mips4
16972@opindex mips4
16973Equivalent to @option{-march=mips4}.
16974
16975@item -mips32
16976@opindex mips32
16977Equivalent to @option{-march=mips32}.
16978
16979@item -mips32r3
16980@opindex mips32r3
16981Equivalent to @option{-march=mips32r3}.
16982
16983@item -mips32r5
16984@opindex mips32r5
16985Equivalent to @option{-march=mips32r5}.
16986
16987@item -mips32r6
16988@opindex mips32r6
16989Equivalent to @option{-march=mips32r6}.
16990
16991@item -mips64
16992@opindex mips64
16993Equivalent to @option{-march=mips64}.
16994
16995@item -mips64r2
16996@opindex mips64r2
16997Equivalent to @option{-march=mips64r2}.
16998
16999@item -mips64r3
17000@opindex mips64r3
17001Equivalent to @option{-march=mips64r3}.
17002
17003@item -mips64r5
17004@opindex mips64r5
17005Equivalent to @option{-march=mips64r5}.
17006
17007@item -mips64r6
17008@opindex mips64r6
17009Equivalent to @option{-march=mips64r6}.
17010
17011@item -mips16
17012@itemx -mno-mips16
17013@opindex mips16
17014@opindex mno-mips16
17015Generate (do not generate) MIPS16 code.  If GCC is targeting a
17016MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17017
17018MIPS16 code generation can also be controlled on a per-function basis
17019by means of @code{mips16} and @code{nomips16} attributes.
17020@xref{Function Attributes}, for more information.
17021
17022@item -mflip-mips16
17023@opindex mflip-mips16
17024Generate MIPS16 code on alternating functions.  This option is provided
17025for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17026not intended for ordinary use in compiling user code.
17027
17028@item -minterlink-compressed
17029@item -mno-interlink-compressed
17030@opindex minterlink-compressed
17031@opindex mno-interlink-compressed
17032Require (do not require) that code using the standard (uncompressed) MIPS ISA
17033be link-compatible with MIPS16 and microMIPS code, and vice versa.
17034
17035For example, code using the standard ISA encoding cannot jump directly
17036to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17037@option{-minterlink-compressed} therefore disables direct jumps unless GCC
17038knows that the target of the jump is not compressed.
17039
17040@item -minterlink-mips16
17041@itemx -mno-interlink-mips16
17042@opindex minterlink-mips16
17043@opindex mno-interlink-mips16
17044Aliases of @option{-minterlink-compressed} and
17045@option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
17046and are retained for backwards compatibility.
17047
17048@item -mabi=32
17049@itemx -mabi=o64
17050@itemx -mabi=n32
17051@itemx -mabi=64
17052@itemx -mabi=eabi
17053@opindex mabi=32
17054@opindex mabi=o64
17055@opindex mabi=n32
17056@opindex mabi=64
17057@opindex mabi=eabi
17058Generate code for the given ABI@.
17059
17060Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
17061generates 64-bit code when you select a 64-bit architecture, but you
17062can use @option{-mgp32} to get 32-bit code instead.
17063
17064For information about the O64 ABI, see
17065@uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17066
17067GCC supports a variant of the o32 ABI in which floating-point registers
17068are 64 rather than 32 bits wide.  You can select this combination with
17069@option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
17070and @code{mfhc1} instructions and is therefore only supported for
17071MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17072
17073The register assignments for arguments and return values remain the
17074same, but each scalar value is passed in a single 64-bit register
17075rather than a pair of 32-bit registers.  For example, scalar
17076floating-point values are returned in @samp{$f0} only, not a
17077@samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
17078remains the same in that the even-numbered double-precision registers
17079are saved.
17080
17081Two additional variants of the o32 ABI are supported to enable
17082a transition from 32-bit to 64-bit registers.  These are FPXX
17083(@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17084The FPXX extension mandates that all code must execute correctly
17085when run using 32-bit or 64-bit registers.  The code can be interlinked
17086with either FP32 or FP64, but not both.
17087The FP64A extension is similar to the FP64 extension but forbids the
17088use of odd-numbered single-precision registers.  This can be used
17089in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17090processors and allows both FP32 and FP64A code to interlink and
17091run in the same process without changing FPU modes.
17092
17093@item -mabicalls
17094@itemx -mno-abicalls
17095@opindex mabicalls
17096@opindex mno-abicalls
17097Generate (do not generate) code that is suitable for SVR4-style
17098dynamic objects.  @option{-mabicalls} is the default for SVR4-based
17099systems.
17100
17101@item -mshared
17102@itemx -mno-shared
17103Generate (do not generate) code that is fully position-independent,
17104and that can therefore be linked into shared libraries.  This option
17105only affects @option{-mabicalls}.
17106
17107All @option{-mabicalls} code has traditionally been position-independent,
17108regardless of options like @option{-fPIC} and @option{-fpic}.  However,
17109as an extension, the GNU toolchain allows executables to use absolute
17110accesses for locally-binding symbols.  It can also use shorter GP
17111initialization sequences and generate direct calls to locally-defined
17112functions.  This mode is selected by @option{-mno-shared}.
17113
17114@option{-mno-shared} depends on binutils 2.16 or higher and generates
17115objects that can only be linked by the GNU linker.  However, the option
17116does not affect the ABI of the final executable; it only affects the ABI
17117of relocatable objects.  Using @option{-mno-shared} generally makes
17118executables both smaller and quicker.
17119
17120@option{-mshared} is the default.
17121
17122@item -mplt
17123@itemx -mno-plt
17124@opindex mplt
17125@opindex mno-plt
17126Assume (do not assume) that the static and dynamic linkers
17127support PLTs and copy relocations.  This option only affects
17128@option{-mno-shared -mabicalls}.  For the n64 ABI, this option
17129has no effect without @option{-msym32}.
17130
17131You can make @option{-mplt} the default by configuring
17132GCC with @option{--with-mips-plt}.  The default is
17133@option{-mno-plt} otherwise.
17134
17135@item -mxgot
17136@itemx -mno-xgot
17137@opindex mxgot
17138@opindex mno-xgot
17139Lift (do not lift) the usual restrictions on the size of the global
17140offset table.
17141
17142GCC normally uses a single instruction to load values from the GOT@.
17143While this is relatively efficient, it only works if the GOT
17144is smaller than about 64k.  Anything larger causes the linker
17145to report an error such as:
17146
17147@cindex relocation truncated to fit (MIPS)
17148@smallexample
17149relocation truncated to fit: R_MIPS_GOT16 foobar
17150@end smallexample
17151
17152If this happens, you should recompile your code with @option{-mxgot}.
17153This works with very large GOTs, although the code is also
17154less efficient, since it takes three instructions to fetch the
17155value of a global symbol.
17156
17157Note that some linkers can create multiple GOTs.  If you have such a
17158linker, you should only need to use @option{-mxgot} when a single object
17159file accesses more than 64k's worth of GOT entries.  Very few do.
17160
17161These options have no effect unless GCC is generating position
17162independent code.
17163
17164@item -mgp32
17165@opindex mgp32
17166Assume that general-purpose registers are 32 bits wide.
17167
17168@item -mgp64
17169@opindex mgp64
17170Assume that general-purpose registers are 64 bits wide.
17171
17172@item -mfp32
17173@opindex mfp32
17174Assume that floating-point registers are 32 bits wide.
17175
17176@item -mfp64
17177@opindex mfp64
17178Assume that floating-point registers are 64 bits wide.
17179
17180@item -mfpxx
17181@opindex mfpxx
17182Do not assume the width of floating-point registers.
17183
17184@item -mhard-float
17185@opindex mhard-float
17186Use floating-point coprocessor instructions.
17187
17188@item -msoft-float
17189@opindex msoft-float
17190Do not use floating-point coprocessor instructions.  Implement
17191floating-point calculations using library calls instead.
17192
17193@item -mno-float
17194@opindex mno-float
17195Equivalent to @option{-msoft-float}, but additionally asserts that the
17196program being compiled does not perform any floating-point operations.
17197This option is presently supported only by some bare-metal MIPS
17198configurations, where it may select a special set of libraries
17199that lack all floating-point support (including, for example, the
17200floating-point @code{printf} formats).  
17201If code compiled with @option{-mno-float} accidentally contains
17202floating-point operations, it is likely to suffer a link-time
17203or run-time failure.
17204
17205@item -msingle-float
17206@opindex msingle-float
17207Assume that the floating-point coprocessor only supports single-precision
17208operations.
17209
17210@item -mdouble-float
17211@opindex mdouble-float
17212Assume that the floating-point coprocessor supports double-precision
17213operations.  This is the default.
17214
17215@item -modd-spreg
17216@itemx -mno-odd-spreg
17217@opindex modd-spreg
17218@opindex mno-odd-spreg
17219Enable the use of odd-numbered single-precision floating-point registers
17220for the o32 ABI.  This is the default for processors that are known to
17221support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17222is set by default.
17223
17224@item -mabs=2008
17225@itemx -mabs=legacy
17226@opindex mabs=2008
17227@opindex mabs=legacy
17228These options control the treatment of the special not-a-number (NaN)
17229IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17230@code{neg.@i{fmt}} machine instructions.
17231
17232By default or when @option{-mabs=legacy} is used the legacy
17233treatment is selected.  In this case these instructions are considered
17234arithmetic and avoided where correct operation is required and the
17235input operand might be a NaN.  A longer sequence of instructions that
17236manipulate the sign bit of floating-point datum manually is used
17237instead unless the @option{-ffinite-math-only} option has also been
17238specified.
17239
17240The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
17241this case these instructions are considered non-arithmetic and therefore
17242operating correctly in all cases, including in particular where the
17243input operand is a NaN.  These instructions are therefore always used
17244for the respective operations.
17245
17246@item -mnan=2008
17247@itemx -mnan=legacy
17248@opindex mnan=2008
17249@opindex mnan=legacy
17250These options control the encoding of the special not-a-number (NaN)
17251IEEE 754 floating-point data.
17252
17253The @option{-mnan=legacy} option selects the legacy encoding.  In this
17254case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17255significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17256by the first bit of their trailing significand field being 1.
17257
17258The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
17259this case qNaNs are denoted by the first bit of their trailing
17260significand field being 1, whereas sNaNs are denoted by the first bit of
17261their trailing significand field being 0.
17262
17263The default is @option{-mnan=legacy} unless GCC has been configured with
17264@option{--with-nan=2008}.
17265
17266@item -mllsc
17267@itemx -mno-llsc
17268@opindex mllsc
17269@opindex mno-llsc
17270Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17271implement atomic memory built-in functions.  When neither option is
17272specified, GCC uses the instructions if the target architecture
17273supports them.
17274
17275@option{-mllsc} is useful if the runtime environment can emulate the
17276instructions and @option{-mno-llsc} can be useful when compiling for
17277nonstandard ISAs.  You can make either option the default by
17278configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17279respectively.  @option{--with-llsc} is the default for some
17280configurations; see the installation documentation for details.
17281
17282@item -mdsp
17283@itemx -mno-dsp
17284@opindex mdsp
17285@opindex mno-dsp
17286Use (do not use) revision 1 of the MIPS DSP ASE@.
17287@xref{MIPS DSP Built-in Functions}.  This option defines the
17288preprocessor macro @code{__mips_dsp}.  It also defines
17289@code{__mips_dsp_rev} to 1.
17290
17291@item -mdspr2
17292@itemx -mno-dspr2
17293@opindex mdspr2
17294@opindex mno-dspr2
17295Use (do not use) revision 2 of the MIPS DSP ASE@.
17296@xref{MIPS DSP Built-in Functions}.  This option defines the
17297preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17298It also defines @code{__mips_dsp_rev} to 2.
17299
17300@item -msmartmips
17301@itemx -mno-smartmips
17302@opindex msmartmips
17303@opindex mno-smartmips
17304Use (do not use) the MIPS SmartMIPS ASE.
17305
17306@item -mpaired-single
17307@itemx -mno-paired-single
17308@opindex mpaired-single
17309@opindex mno-paired-single
17310Use (do not use) paired-single floating-point instructions.
17311@xref{MIPS Paired-Single Support}.  This option requires
17312hardware floating-point support to be enabled.
17313
17314@item -mdmx
17315@itemx -mno-mdmx
17316@opindex mdmx
17317@opindex mno-mdmx
17318Use (do not use) MIPS Digital Media Extension instructions.
17319This option can only be used when generating 64-bit code and requires
17320hardware floating-point support to be enabled.
17321
17322@item -mips3d
17323@itemx -mno-mips3d
17324@opindex mips3d
17325@opindex mno-mips3d
17326Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
17327The option @option{-mips3d} implies @option{-mpaired-single}.
17328
17329@item -mmicromips
17330@itemx -mno-micromips
17331@opindex mmicromips
17332@opindex mno-mmicromips
17333Generate (do not generate) microMIPS code.
17334
17335MicroMIPS code generation can also be controlled on a per-function basis
17336by means of @code{micromips} and @code{nomicromips} attributes.
17337@xref{Function Attributes}, for more information.
17338
17339@item -mmt
17340@itemx -mno-mt
17341@opindex mmt
17342@opindex mno-mt
17343Use (do not use) MT Multithreading instructions.
17344
17345@item -mmcu
17346@itemx -mno-mcu
17347@opindex mmcu
17348@opindex mno-mcu
17349Use (do not use) the MIPS MCU ASE instructions.
17350
17351@item -meva
17352@itemx -mno-eva
17353@opindex meva
17354@opindex mno-eva
17355Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17356
17357@item -mvirt
17358@itemx -mno-virt
17359@opindex mvirt
17360@opindex mno-virt
17361Use (do not use) the MIPS Virtualization Application Specific instructions.
17362
17363@item -mxpa
17364@itemx -mno-xpa
17365@opindex mxpa
17366@opindex mno-xpa
17367Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17368
17369@item -mlong64
17370@opindex mlong64
17371Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
17372an explanation of the default and the way that the pointer size is
17373determined.
17374
17375@item -mlong32
17376@opindex mlong32
17377Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17378
17379The default size of @code{int}s, @code{long}s and pointers depends on
17380the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
17381uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
1738232-bit @code{long}s.  Pointers are the same size as @code{long}s,
17383or the same size as integer registers, whichever is smaller.
17384
17385@item -msym32
17386@itemx -mno-sym32
17387@opindex msym32
17388@opindex mno-sym32
17389Assume (do not assume) that all symbols have 32-bit values, regardless
17390of the selected ABI@.  This option is useful in combination with
17391@option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17392to generate shorter and faster references to symbolic addresses.
17393
17394@item -G @var{num}
17395@opindex G
17396Put definitions of externally-visible data in a small data section
17397if that data is no bigger than @var{num} bytes.  GCC can then generate
17398more efficient accesses to the data; see @option{-mgpopt} for details.
17399
17400The default @option{-G} option depends on the configuration.
17401
17402@item -mlocal-sdata
17403@itemx -mno-local-sdata
17404@opindex mlocal-sdata
17405@opindex mno-local-sdata
17406Extend (do not extend) the @option{-G} behavior to local data too,
17407such as to static variables in C@.  @option{-mlocal-sdata} is the
17408default for all configurations.
17409
17410If the linker complains that an application is using too much small data,
17411you might want to try rebuilding the less performance-critical parts with
17412@option{-mno-local-sdata}.  You might also want to build large
17413libraries with @option{-mno-local-sdata}, so that the libraries leave
17414more room for the main program.
17415
17416@item -mextern-sdata
17417@itemx -mno-extern-sdata
17418@opindex mextern-sdata
17419@opindex mno-extern-sdata
17420Assume (do not assume) that externally-defined data is in
17421a small data section if the size of that data is within the @option{-G} limit.
17422@option{-mextern-sdata} is the default for all configurations.
17423
17424If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17425@var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17426that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17427is placed in a small data section.  If @var{Var} is defined by another
17428module, you must either compile that module with a high-enough
17429@option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17430definition.  If @var{Var} is common, you must link the application
17431with a high-enough @option{-G} setting.
17432
17433The easiest way of satisfying these restrictions is to compile
17434and link every module with the same @option{-G} option.  However,
17435you may wish to build a library that supports several different
17436small data limits.  You can do this by compiling the library with
17437the highest supported @option{-G} setting and additionally using
17438@option{-mno-extern-sdata} to stop the library from making assumptions
17439about externally-defined data.
17440
17441@item -mgpopt
17442@itemx -mno-gpopt
17443@opindex mgpopt
17444@opindex mno-gpopt
17445Use (do not use) GP-relative accesses for symbols that are known to be
17446in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17447@option{-mextern-sdata}.  @option{-mgpopt} is the default for all
17448configurations.
17449
17450@option{-mno-gpopt} is useful for cases where the @code{$gp} register
17451might not hold the value of @code{_gp}.  For example, if the code is
17452part of a library that might be used in a boot monitor, programs that
17453call boot monitor routines pass an unknown value in @code{$gp}.
17454(In such situations, the boot monitor itself is usually compiled
17455with @option{-G0}.)
17456
17457@option{-mno-gpopt} implies @option{-mno-local-sdata} and
17458@option{-mno-extern-sdata}.
17459
17460@item -membedded-data
17461@itemx -mno-embedded-data
17462@opindex membedded-data
17463@opindex mno-embedded-data
17464Allocate variables to the read-only data section first if possible, then
17465next in the small data section if possible, otherwise in data.  This gives
17466slightly slower code than the default, but reduces the amount of RAM required
17467when executing, and thus may be preferred for some embedded systems.
17468
17469@item -muninit-const-in-rodata
17470@itemx -mno-uninit-const-in-rodata
17471@opindex muninit-const-in-rodata
17472@opindex mno-uninit-const-in-rodata
17473Put uninitialized @code{const} variables in the read-only data section.
17474This option is only meaningful in conjunction with @option{-membedded-data}.
17475
17476@item -mcode-readable=@var{setting}
17477@opindex mcode-readable
17478Specify whether GCC may generate code that reads from executable sections.
17479There are three possible settings:
17480
17481@table @gcctabopt
17482@item -mcode-readable=yes
17483Instructions may freely access executable sections.  This is the
17484default setting.
17485
17486@item -mcode-readable=pcrel
17487MIPS16 PC-relative load instructions can access executable sections,
17488but other instructions must not do so.  This option is useful on 4KSc
17489and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17490It is also useful on processors that can be configured to have a dual
17491instruction/data SRAM interface and that, like the M4K, automatically
17492redirect PC-relative loads to the instruction RAM.
17493
17494@item -mcode-readable=no
17495Instructions must not access executable sections.  This option can be
17496useful on targets that are configured to have a dual instruction/data
17497SRAM interface but that (unlike the M4K) do not automatically redirect
17498PC-relative loads to the instruction RAM.
17499@end table
17500
17501@item -msplit-addresses
17502@itemx -mno-split-addresses
17503@opindex msplit-addresses
17504@opindex mno-split-addresses
17505Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17506relocation operators.  This option has been superseded by
17507@option{-mexplicit-relocs} but is retained for backwards compatibility.
17508
17509@item -mexplicit-relocs
17510@itemx -mno-explicit-relocs
17511@opindex mexplicit-relocs
17512@opindex mno-explicit-relocs
17513Use (do not use) assembler relocation operators when dealing with symbolic
17514addresses.  The alternative, selected by @option{-mno-explicit-relocs},
17515is to use assembler macros instead.
17516
17517@option{-mexplicit-relocs} is the default if GCC was configured
17518to use an assembler that supports relocation operators.
17519
17520@item -mcheck-zero-division
17521@itemx -mno-check-zero-division
17522@opindex mcheck-zero-division
17523@opindex mno-check-zero-division
17524Trap (do not trap) on integer division by zero.
17525
17526The default is @option{-mcheck-zero-division}.
17527
17528@item -mdivide-traps
17529@itemx -mdivide-breaks
17530@opindex mdivide-traps
17531@opindex mdivide-breaks
17532MIPS systems check for division by zero by generating either a
17533conditional trap or a break instruction.  Using traps results in
17534smaller code, but is only supported on MIPS II and later.  Also, some
17535versions of the Linux kernel have a bug that prevents trap from
17536generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
17537allow conditional traps on architectures that support them and
17538@option{-mdivide-breaks} to force the use of breaks.
17539
17540The default is usually @option{-mdivide-traps}, but this can be
17541overridden at configure time using @option{--with-divide=breaks}.
17542Divide-by-zero checks can be completely disabled using
17543@option{-mno-check-zero-division}.
17544
17545@item -mmemcpy
17546@itemx -mno-memcpy
17547@opindex mmemcpy
17548@opindex mno-memcpy
17549Force (do not force) the use of @code{memcpy} for non-trivial block
17550moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
17551most constant-sized copies.
17552
17553@item -mlong-calls
17554@itemx -mno-long-calls
17555@opindex mlong-calls
17556@opindex mno-long-calls
17557Disable (do not disable) use of the @code{jal} instruction.  Calling
17558functions using @code{jal} is more efficient but requires the caller
17559and callee to be in the same 256 megabyte segment.
17560
17561This option has no effect on abicalls code.  The default is
17562@option{-mno-long-calls}.
17563
17564@item -mmad
17565@itemx -mno-mad
17566@opindex mmad
17567@opindex mno-mad
17568Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17569instructions, as provided by the R4650 ISA@.
17570
17571@item -mimadd
17572@itemx -mno-imadd
17573@opindex mimadd
17574@opindex mno-imadd
17575Enable (disable) use of the @code{madd} and @code{msub} integer
17576instructions.  The default is @option{-mimadd} on architectures
17577that support @code{madd} and @code{msub} except for the 74k 
17578architecture where it was found to generate slower code.
17579
17580@item -mfused-madd
17581@itemx -mno-fused-madd
17582@opindex mfused-madd
17583@opindex mno-fused-madd
17584Enable (disable) use of the floating-point multiply-accumulate
17585instructions, when they are available.  The default is
17586@option{-mfused-madd}.
17587
17588On the R8000 CPU when multiply-accumulate instructions are used,
17589the intermediate product is calculated to infinite precision
17590and is not subject to the FCSR Flush to Zero bit.  This may be
17591undesirable in some circumstances.  On other processors the result
17592is numerically identical to the equivalent computation using
17593separate multiply, add, subtract and negate instructions.
17594
17595@item -nocpp
17596@opindex nocpp
17597Tell the MIPS assembler to not run its preprocessor over user
17598assembler files (with a @samp{.s} suffix) when assembling them.
17599
17600@item -mfix-24k
17601@item -mno-fix-24k
17602@opindex mfix-24k
17603@opindex mno-fix-24k
17604Work around the 24K E48 (lost data on stores during refill) errata.
17605The workarounds are implemented by the assembler rather than by GCC@.
17606
17607@item -mfix-r4000
17608@itemx -mno-fix-r4000
17609@opindex mfix-r4000
17610@opindex mno-fix-r4000
17611Work around certain R4000 CPU errata:
17612@itemize @minus
17613@item
17614A double-word or a variable shift may give an incorrect result if executed
17615immediately after starting an integer division.
17616@item
17617A double-word or a variable shift may give an incorrect result if executed
17618while an integer multiplication is in progress.
17619@item
17620An integer division may give an incorrect result if started in a delay slot
17621of a taken branch or a jump.
17622@end itemize
17623
17624@item -mfix-r4400
17625@itemx -mno-fix-r4400
17626@opindex mfix-r4400
17627@opindex mno-fix-r4400
17628Work around certain R4400 CPU errata:
17629@itemize @minus
17630@item
17631A double-word or a variable shift may give an incorrect result if executed
17632immediately after starting an integer division.
17633@end itemize
17634
17635@item -mfix-r10000
17636@itemx -mno-fix-r10000
17637@opindex mfix-r10000
17638@opindex mno-fix-r10000
17639Work around certain R10000 errata:
17640@itemize @minus
17641@item
17642@code{ll}/@code{sc} sequences may not behave atomically on revisions
17643prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
17644@end itemize
17645
17646This option can only be used if the target architecture supports
17647branch-likely instructions.  @option{-mfix-r10000} is the default when
17648@option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17649otherwise.
17650
17651@item -mfix-rm7000
17652@itemx -mno-fix-rm7000
17653@opindex mfix-rm7000
17654Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
17655workarounds are implemented by the assembler rather than by GCC@.
17656
17657@item -mfix-vr4120
17658@itemx -mno-fix-vr4120
17659@opindex mfix-vr4120
17660Work around certain VR4120 errata:
17661@itemize @minus
17662@item
17663@code{dmultu} does not always produce the correct result.
17664@item
17665@code{div} and @code{ddiv} do not always produce the correct result if one
17666of the operands is negative.
17667@end itemize
17668The workarounds for the division errata rely on special functions in
17669@file{libgcc.a}.  At present, these functions are only provided by
17670the @code{mips64vr*-elf} configurations.
17671
17672Other VR4120 errata require a NOP to be inserted between certain pairs of
17673instructions.  These errata are handled by the assembler, not by GCC itself.
17674
17675@item -mfix-vr4130
17676@opindex mfix-vr4130
17677Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
17678workarounds are implemented by the assembler rather than by GCC,
17679although GCC avoids using @code{mflo} and @code{mfhi} if the
17680VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17681instructions are available instead.
17682
17683@item -mfix-sb1
17684@itemx -mno-fix-sb1
17685@opindex mfix-sb1
17686Work around certain SB-1 CPU core errata.
17687(This flag currently works around the SB-1 revision 2
17688``F1'' and ``F2'' floating-point errata.)
17689
17690@item -mr10k-cache-barrier=@var{setting}
17691@opindex mr10k-cache-barrier
17692Specify whether GCC should insert cache barriers to avoid the
17693side-effects of speculation on R10K processors.
17694
17695In common with many processors, the R10K tries to predict the outcome
17696of a conditional branch and speculatively executes instructions from
17697the ``taken'' branch.  It later aborts these instructions if the
17698predicted outcome is wrong.  However, on the R10K, even aborted
17699instructions can have side effects.
17700
17701This problem only affects kernel stores and, depending on the system,
17702kernel loads.  As an example, a speculatively-executed store may load
17703the target memory into cache and mark the cache line as dirty, even if
17704the store itself is later aborted.  If a DMA operation writes to the
17705same area of memory before the ``dirty'' line is flushed, the cached
17706data overwrites the DMA-ed data.  See the R10K processor manual
17707for a full description, including other potential problems.
17708
17709One workaround is to insert cache barrier instructions before every memory
17710access that might be speculatively executed and that might have side
17711effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
17712controls GCC's implementation of this workaround.  It assumes that
17713aborted accesses to any byte in the following regions does not have
17714side effects:
17715
17716@enumerate
17717@item
17718the memory occupied by the current function's stack frame;
17719
17720@item
17721the memory occupied by an incoming stack argument;
17722
17723@item
17724the memory occupied by an object with a link-time-constant address.
17725@end enumerate
17726
17727It is the kernel's responsibility to ensure that speculative
17728accesses to these regions are indeed safe.
17729
17730If the input program contains a function declaration such as:
17731
17732@smallexample
17733void foo (void);
17734@end smallexample
17735
17736then the implementation of @code{foo} must allow @code{j foo} and
17737@code{jal foo} to be executed speculatively.  GCC honors this
17738restriction for functions it compiles itself.  It expects non-GCC
17739functions (such as hand-written assembly code) to do the same.
17740
17741The option has three forms:
17742
17743@table @gcctabopt
17744@item -mr10k-cache-barrier=load-store
17745Insert a cache barrier before a load or store that might be
17746speculatively executed and that might have side effects even
17747if aborted.
17748
17749@item -mr10k-cache-barrier=store
17750Insert a cache barrier before a store that might be speculatively
17751executed and that might have side effects even if aborted.
17752
17753@item -mr10k-cache-barrier=none
17754Disable the insertion of cache barriers.  This is the default setting.
17755@end table
17756
17757@item -mflush-func=@var{func}
17758@itemx -mno-flush-func
17759@opindex mflush-func
17760Specifies the function to call to flush the I and D caches, or to not
17761call any such function.  If called, the function must take the same
17762arguments as the common @code{_flush_func}, that is, the address of the
17763memory range for which the cache is being flushed, the size of the
17764memory range, and the number 3 (to flush both caches).  The default
17765depends on the target GCC was configured for, but commonly is either
17766@code{_flush_func} or @code{__cpu_flush}.
17767
17768@item mbranch-cost=@var{num}
17769@opindex mbranch-cost
17770Set the cost of branches to roughly @var{num} ``simple'' instructions.
17771This cost is only a heuristic and is not guaranteed to produce
17772consistent results across releases.  A zero cost redundantly selects
17773the default, which is based on the @option{-mtune} setting.
17774
17775@item -mbranch-likely
17776@itemx -mno-branch-likely
17777@opindex mbranch-likely
17778@opindex mno-branch-likely
17779Enable or disable use of Branch Likely instructions, regardless of the
17780default for the selected architecture.  By default, Branch Likely
17781instructions may be generated if they are supported by the selected
17782architecture.  An exception is for the MIPS32 and MIPS64 architectures
17783and processors that implement those architectures; for those, Branch
17784Likely instructions are not be generated by default because the MIPS32
17785and MIPS64 architectures specifically deprecate their use.
17786
17787@item -mfp-exceptions
17788@itemx -mno-fp-exceptions
17789@opindex mfp-exceptions
17790Specifies whether FP exceptions are enabled.  This affects how
17791FP instructions are scheduled for some processors.
17792The default is that FP exceptions are
17793enabled.
17794
17795For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
1779664-bit code, then we can use both FP pipes.  Otherwise, we can only use one
17797FP pipe.
17798
17799@item -mvr4130-align
17800@itemx -mno-vr4130-align
17801@opindex mvr4130-align
17802The VR4130 pipeline is two-way superscalar, but can only issue two
17803instructions together if the first one is 8-byte aligned.  When this
17804option is enabled, GCC aligns pairs of instructions that it
17805thinks should execute in parallel.
17806
17807This option only has an effect when optimizing for the VR4130.
17808It normally makes code faster, but at the expense of making it bigger.
17809It is enabled by default at optimization level @option{-O3}.
17810
17811@item -msynci
17812@itemx -mno-synci
17813@opindex msynci
17814Enable (disable) generation of @code{synci} instructions on
17815architectures that support it.  The @code{synci} instructions (if
17816enabled) are generated when @code{__builtin___clear_cache} is
17817compiled.
17818
17819This option defaults to @option{-mno-synci}, but the default can be
17820overridden by configuring GCC with @option{--with-synci}.
17821
17822When compiling code for single processor systems, it is generally safe
17823to use @code{synci}.  However, on many multi-core (SMP) systems, it
17824does not invalidate the instruction caches on all cores and may lead
17825to undefined behavior.
17826
17827@item -mrelax-pic-calls
17828@itemx -mno-relax-pic-calls
17829@opindex mrelax-pic-calls
17830Try to turn PIC calls that are normally dispatched via register
17831@code{$25} into direct calls.  This is only possible if the linker can
17832resolve the destination at link-time and if the destination is within
17833range for a direct call.
17834
17835@option{-mrelax-pic-calls} is the default if GCC was configured to use
17836an assembler and a linker that support the @code{.reloc} assembly
17837directive and @option{-mexplicit-relocs} is in effect.  With
17838@option{-mno-explicit-relocs}, this optimization can be performed by the
17839assembler and the linker alone without help from the compiler.
17840
17841@item -mmcount-ra-address
17842@itemx -mno-mcount-ra-address
17843@opindex mmcount-ra-address
17844@opindex mno-mcount-ra-address
17845Emit (do not emit) code that allows @code{_mcount} to modify the
17846calling function's return address.  When enabled, this option extends
17847the usual @code{_mcount} interface with a new @var{ra-address}
17848parameter, which has type @code{intptr_t *} and is passed in register
17849@code{$12}.  @code{_mcount} can then modify the return address by
17850doing both of the following:
17851@itemize
17852@item
17853Returning the new address in register @code{$31}.
17854@item
17855Storing the new address in @code{*@var{ra-address}},
17856if @var{ra-address} is nonnull.
17857@end itemize
17858
17859The default is @option{-mno-mcount-ra-address}.
17860
17861@end table
17862
17863@node MMIX Options
17864@subsection MMIX Options
17865@cindex MMIX Options
17866
17867These options are defined for the MMIX:
17868
17869@table @gcctabopt
17870@item -mlibfuncs
17871@itemx -mno-libfuncs
17872@opindex mlibfuncs
17873@opindex mno-libfuncs
17874Specify that intrinsic library functions are being compiled, passing all
17875values in registers, no matter the size.
17876
17877@item -mepsilon
17878@itemx -mno-epsilon
17879@opindex mepsilon
17880@opindex mno-epsilon
17881Generate floating-point comparison instructions that compare with respect
17882to the @code{rE} epsilon register.
17883
17884@item -mabi=mmixware
17885@itemx -mabi=gnu
17886@opindex mabi=mmixware
17887@opindex mabi=gnu
17888Generate code that passes function parameters and return values that (in
17889the called function) are seen as registers @code{$0} and up, as opposed to
17890the GNU ABI which uses global registers @code{$231} and up.
17891
17892@item -mzero-extend
17893@itemx -mno-zero-extend
17894@opindex mzero-extend
17895@opindex mno-zero-extend
17896When reading data from memory in sizes shorter than 64 bits, use (do not
17897use) zero-extending load instructions by default, rather than
17898sign-extending ones.
17899
17900@item -mknuthdiv
17901@itemx -mno-knuthdiv
17902@opindex mknuthdiv
17903@opindex mno-knuthdiv
17904Make the result of a division yielding a remainder have the same sign as
17905the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
17906remainder follows the sign of the dividend.  Both methods are
17907arithmetically valid, the latter being almost exclusively used.
17908
17909@item -mtoplevel-symbols
17910@itemx -mno-toplevel-symbols
17911@opindex mtoplevel-symbols
17912@opindex mno-toplevel-symbols
17913Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
17914code can be used with the @code{PREFIX} assembly directive.
17915
17916@item -melf
17917@opindex melf
17918Generate an executable in the ELF format, rather than the default
17919@samp{mmo} format used by the @command{mmix} simulator.
17920
17921@item -mbranch-predict
17922@itemx -mno-branch-predict
17923@opindex mbranch-predict
17924@opindex mno-branch-predict
17925Use (do not use) the probable-branch instructions, when static branch
17926prediction indicates a probable branch.
17927
17928@item -mbase-addresses
17929@itemx -mno-base-addresses
17930@opindex mbase-addresses
17931@opindex mno-base-addresses
17932Generate (do not generate) code that uses @emph{base addresses}.  Using a
17933base address automatically generates a request (handled by the assembler
17934and the linker) for a constant to be set up in a global register.  The
17935register is used for one or more base address requests within the range 0
17936to 255 from the value held in the register.  The generally leads to short
17937and fast code, but the number of different data items that can be
17938addressed is limited.  This means that a program that uses lots of static
17939data may require @option{-mno-base-addresses}.
17940
17941@item -msingle-exit
17942@itemx -mno-single-exit
17943@opindex msingle-exit
17944@opindex mno-single-exit
17945Force (do not force) generated code to have a single exit point in each
17946function.
17947@end table
17948
17949@node MN10300 Options
17950@subsection MN10300 Options
17951@cindex MN10300 options
17952
17953These @option{-m} options are defined for Matsushita MN10300 architectures:
17954
17955@table @gcctabopt
17956@item -mmult-bug
17957@opindex mmult-bug
17958Generate code to avoid bugs in the multiply instructions for the MN10300
17959processors.  This is the default.
17960
17961@item -mno-mult-bug
17962@opindex mno-mult-bug
17963Do not generate code to avoid bugs in the multiply instructions for the
17964MN10300 processors.
17965
17966@item -mam33
17967@opindex mam33
17968Generate code using features specific to the AM33 processor.
17969
17970@item -mno-am33
17971@opindex mno-am33
17972Do not generate code using features specific to the AM33 processor.  This
17973is the default.
17974
17975@item -mam33-2
17976@opindex mam33-2
17977Generate code using features specific to the AM33/2.0 processor.
17978
17979@item -mam34
17980@opindex mam34
17981Generate code using features specific to the AM34 processor.
17982
17983@item -mtune=@var{cpu-type}
17984@opindex mtune
17985Use the timing characteristics of the indicated CPU type when
17986scheduling instructions.  This does not change the targeted processor
17987type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
17988@samp{am33-2} or @samp{am34}.
17989
17990@item -mreturn-pointer-on-d0
17991@opindex mreturn-pointer-on-d0
17992When generating a function that returns a pointer, return the pointer
17993in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
17994only in @code{a0}, and attempts to call such functions without a prototype
17995result in errors.  Note that this option is on by default; use
17996@option{-mno-return-pointer-on-d0} to disable it.
17997
17998@item -mno-crt0
17999@opindex mno-crt0
18000Do not link in the C run-time initialization object file.
18001
18002@item -mrelax
18003@opindex mrelax
18004Indicate to the linker that it should perform a relaxation optimization pass
18005to shorten branches, calls and absolute memory addresses.  This option only
18006has an effect when used on the command line for the final link step.
18007
18008This option makes symbolic debugging impossible.
18009
18010@item -mliw
18011@opindex mliw
18012Allow the compiler to generate @emph{Long Instruction Word}
18013instructions if the target is the @samp{AM33} or later.  This is the
18014default.  This option defines the preprocessor macro @code{__LIW__}.
18015
18016@item -mnoliw
18017@opindex mnoliw
18018Do not allow the compiler to generate @emph{Long Instruction Word}
18019instructions.  This option defines the preprocessor macro
18020@code{__NO_LIW__}.
18021
18022@item -msetlb
18023@opindex msetlb
18024Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18025instructions if the target is the @samp{AM33} or later.  This is the
18026default.  This option defines the preprocessor macro @code{__SETLB__}.
18027
18028@item -mnosetlb
18029@opindex mnosetlb
18030Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18031instructions.  This option defines the preprocessor macro
18032@code{__NO_SETLB__}.
18033
18034@end table
18035
18036@node Moxie Options
18037@subsection Moxie Options
18038@cindex Moxie Options
18039
18040@table @gcctabopt
18041
18042@item -meb
18043@opindex meb
18044Generate big-endian code.  This is the default for @samp{moxie-*-*}
18045configurations.
18046
18047@item -mel
18048@opindex mel
18049Generate little-endian code.
18050
18051@item -mmul.x
18052@opindex mmul.x
18053Generate mul.x and umul.x instructions.  This is the default for
18054@samp{moxiebox-*-*} configurations.
18055
18056@item -mno-crt0
18057@opindex mno-crt0
18058Do not link in the C run-time initialization object file.
18059
18060@end table
18061
18062@node MSP430 Options
18063@subsection MSP430 Options
18064@cindex MSP430 Options
18065
18066These options are defined for the MSP430:
18067
18068@table @gcctabopt
18069
18070@item -masm-hex
18071@opindex masm-hex
18072Force assembly output to always use hex constants.  Normally such
18073constants are signed decimals, but this option is available for
18074testsuite and/or aesthetic purposes.
18075
18076@item -mmcu=
18077@opindex mmcu=
18078Select the MCU to target.  This is used to create a C preprocessor
18079symbol based upon the MCU name, converted to upper case and pre- and
18080post-fixed with @samp{__}.  This in turn is used by the
18081@file{msp430.h} header file to select an MCU-specific supplementary
18082header file.
18083
18084The option also sets the ISA to use.  If the MCU name is one that is
18085known to only support the 430 ISA then that is selected, otherwise the
18086430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
18087used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
18088name selects the 430X ISA.
18089
18090In addition an MCU-specific linker script is added to the linker
18091command line.  The script's name is the name of the MCU with
18092@file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18093command line defines the C preprocessor symbol @code{__XXX__} and
18094cause the linker to search for a script called @file{xxx.ld}.
18095
18096This option is also passed on to the assembler.
18097
18098@item -mcpu=
18099@opindex mcpu=
18100Specifies the ISA to use.  Accepted values are @samp{msp430},
18101@samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
18102@option{-mmcu=} option should be used to select the ISA.
18103
18104@item -msim
18105@opindex msim
18106Link to the simulator runtime libraries and linker script.  Overrides
18107any scripts that would be selected by the @option{-mmcu=} option.
18108
18109@item -mlarge
18110@opindex mlarge
18111Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18112
18113@item -msmall
18114@opindex msmall
18115Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18116
18117@item -mrelax
18118@opindex mrelax
18119This option is passed to the assembler and linker, and allows the
18120linker to perform certain optimizations that cannot be done until
18121the final link.
18122
18123@item mhwmult=
18124@opindex mhwmult=
18125Describes the type of hardware multiply supported by the target.
18126Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18127for the original 16-bit-only multiply supported by early MCUs.
18128@samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18129@samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18130A value of @samp{auto} can also be given.  This tells GCC to deduce
18131the hardware multiply support based upon the MCU name provided by the
18132@option{-mmcu} option.  If no @option{-mmcu} option is specified then
18133@samp{32bit} hardware multiply support is assumed.  @samp{auto} is the
18134default setting.
18135
18136Hardware multiplies are normally performed by calling a library
18137routine.  This saves space in the generated code.  When compiling at
18138@option{-O3} or higher however the hardware multiplier is invoked
18139inline.  This makes for bigger, but faster code.
18140
18141The hardware multiply routines disable interrupts whilst running and
18142restore the previous interrupt state when they finish.  This makes
18143them safe to use inside interrupt handlers as well as in normal code.
18144
18145@item -minrt
18146@opindex minrt
18147Enable the use of a minimum runtime environment - no static
18148initializers or constructors.  This is intended for memory-constrained
18149devices.  The compiler includes special symbols in some objects
18150that tell the linker and runtime which code fragments are required.
18151
18152@end table
18153
18154@node NDS32 Options
18155@subsection NDS32 Options
18156@cindex NDS32 Options
18157
18158These options are defined for NDS32 implementations:
18159
18160@table @gcctabopt
18161
18162@item -mbig-endian
18163@opindex mbig-endian
18164Generate code in big-endian mode.
18165
18166@item -mlittle-endian
18167@opindex mlittle-endian
18168Generate code in little-endian mode.
18169
18170@item -mreduced-regs
18171@opindex mreduced-regs
18172Use reduced-set registers for register allocation.
18173
18174@item -mfull-regs
18175@opindex mfull-regs
18176Use full-set registers for register allocation.
18177
18178@item -mcmov
18179@opindex mcmov
18180Generate conditional move instructions.
18181
18182@item -mno-cmov
18183@opindex mno-cmov
18184Do not generate conditional move instructions.
18185
18186@item -mperf-ext
18187@opindex mperf-ext
18188Generate performance extension instructions.
18189
18190@item -mno-perf-ext
18191@opindex mno-perf-ext
18192Do not generate performance extension instructions.
18193
18194@item -mv3push
18195@opindex mv3push
18196Generate v3 push25/pop25 instructions.
18197
18198@item -mno-v3push
18199@opindex mno-v3push
18200Do not generate v3 push25/pop25 instructions.
18201
18202@item -m16-bit
18203@opindex m16-bit
18204Generate 16-bit instructions.
18205
18206@item -mno-16-bit
18207@opindex mno-16-bit
18208Do not generate 16-bit instructions.
18209
18210@item -misr-vector-size=@var{num}
18211@opindex misr-vector-size
18212Specify the size of each interrupt vector, which must be 4 or 16.
18213
18214@item -mcache-block-size=@var{num}
18215@opindex mcache-block-size
18216Specify the size of each cache block,
18217which must be a power of 2 between 4 and 512.
18218
18219@item -march=@var{arch}
18220@opindex march
18221Specify the name of the target architecture.
18222
18223@item -mcmodel=@var{code-model}
18224@opindex mcmodel
18225Set the code model to one of
18226@table @asis
18227@item @samp{small}
18228All the data and read-only data segments must be within 512KB addressing space.
18229The text segment must be within 16MB addressing space.
18230@item @samp{medium}
18231The data segment must be within 512KB while the read-only data segment can be
18232within 4GB addressing space.  The text segment should be still within 16MB
18233addressing space.
18234@item @samp{large}
18235All the text and data segments can be within 4GB addressing space.
18236@end table
18237
18238@item -mctor-dtor
18239@opindex mctor-dtor
18240Enable constructor/destructor feature.
18241
18242@item -mrelax
18243@opindex mrelax
18244Guide linker to relax instructions.
18245
18246@end table
18247
18248@node Nios II Options
18249@subsection Nios II Options
18250@cindex Nios II options
18251@cindex Altera Nios II options
18252
18253These are the options defined for the Altera Nios II processor.
18254
18255@table @gcctabopt
18256
18257@item -G @var{num}
18258@opindex G
18259@cindex smaller data references
18260Put global and static objects less than or equal to @var{num} bytes
18261into the small data or BSS sections instead of the normal data or BSS
18262sections.  The default value of @var{num} is 8.
18263
18264@item -mgpopt=@var{option}
18265@item -mgpopt
18266@itemx -mno-gpopt
18267@opindex mgpopt
18268@opindex mno-gpopt
18269Generate (do not generate) GP-relative accesses.  The following 
18270@var{option} names are recognized:
18271
18272@table @samp
18273
18274@item none
18275Do not generate GP-relative accesses.
18276
18277@item local
18278Generate GP-relative accesses for small data objects that are not 
18279external or weak.  Also use GP-relative addressing for objects that
18280have been explicitly placed in a small data section via a @code{section}
18281attribute.
18282
18283@item global
18284As for @samp{local}, but also generate GP-relative accesses for
18285small data objects that are external or weak.  If you use this option,
18286you must ensure that all parts of your program (including libraries) are
18287compiled with the same @option{-G} setting.
18288
18289@item data
18290Generate GP-relative accesses for all data objects in the program.  If you
18291use this option, the entire data and BSS segments
18292of your program must fit in 64K of memory and you must use an appropriate
18293linker script to allocate them within the addressible range of the
18294global pointer.
18295
18296@item all
18297Generate GP-relative addresses for function pointers as well as data
18298pointers.  If you use this option, the entire text, data, and BSS segments
18299of your program must fit in 64K of memory and you must use an appropriate
18300linker script to allocate them within the addressible range of the
18301global pointer.
18302
18303@end table
18304
18305@option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18306@option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18307
18308The default is @option{-mgpopt} except when @option{-fpic} or
18309@option{-fPIC} is specified to generate position-independent code.
18310Note that the Nios II ABI does not permit GP-relative accesses from
18311shared libraries.
18312
18313You may need to specify @option{-mno-gpopt} explicitly when building
18314programs that include large amounts of small data, including large
18315GOT data sections.  In this case, the 16-bit offset for GP-relative
18316addressing may not be large enough to allow access to the entire 
18317small data section.
18318
18319@item -mel
18320@itemx -meb
18321@opindex mel
18322@opindex meb
18323Generate little-endian (default) or big-endian (experimental) code,
18324respectively.
18325
18326@item -mbypass-cache
18327@itemx -mno-bypass-cache
18328@opindex mno-bypass-cache
18329@opindex mbypass-cache
18330Force all load and store instructions to always bypass cache by 
18331using I/O variants of the instructions. The default is not to
18332bypass the cache.
18333
18334@item -mno-cache-volatile 
18335@itemx -mcache-volatile       
18336@opindex mcache-volatile 
18337@opindex mno-cache-volatile
18338Volatile memory access bypass the cache using the I/O variants of 
18339the load and store instructions. The default is not to bypass the cache.
18340
18341@item -mno-fast-sw-div
18342@itemx -mfast-sw-div
18343@opindex mno-fast-sw-div
18344@opindex mfast-sw-div
18345Do not use table-based fast divide for small numbers. The default 
18346is to use the fast divide at @option{-O3} and above.
18347
18348@item -mno-hw-mul
18349@itemx -mhw-mul
18350@itemx -mno-hw-mulx
18351@itemx -mhw-mulx
18352@itemx -mno-hw-div
18353@itemx -mhw-div
18354@opindex mno-hw-mul
18355@opindex mhw-mul
18356@opindex mno-hw-mulx
18357@opindex mhw-mulx
18358@opindex mno-hw-div
18359@opindex mhw-div
18360Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of 
18361instructions by the compiler. The default is to emit @code{mul}
18362and not emit @code{div} and @code{mulx}.
18363
18364@item -mcustom-@var{insn}=@var{N}
18365@itemx -mno-custom-@var{insn}
18366@opindex mcustom-@var{insn}
18367@opindex mno-custom-@var{insn}
18368Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18369custom instruction with encoding @var{N} when generating code that uses 
18370@var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
18371instruction 253 for single-precision floating-point add operations instead
18372of the default behavior of using a library call.
18373
18374The following values of @var{insn} are supported.  Except as otherwise
18375noted, floating-point operations are expected to be implemented with
18376normal IEEE 754 semantics and correspond directly to the C operators or the
18377equivalent GCC built-in functions (@pxref{Other Builtins}).
18378
18379Single-precision floating point:
18380@table @asis
18381
18382@item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18383Binary arithmetic operations.
18384
18385@item @samp{fnegs}
18386Unary negation.
18387
18388@item @samp{fabss}
18389Unary absolute value.
18390
18391@item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18392Comparison operations.
18393
18394@item @samp{fmins}, @samp{fmaxs}
18395Floating-point minimum and maximum.  These instructions are only
18396generated if @option{-ffinite-math-only} is specified.
18397
18398@item @samp{fsqrts}
18399Unary square root operation.
18400
18401@item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18402Floating-point trigonometric and exponential functions.  These instructions
18403are only generated if @option{-funsafe-math-optimizations} is also specified.
18404
18405@end table
18406
18407Double-precision floating point:
18408@table @asis
18409
18410@item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18411Binary arithmetic operations.
18412
18413@item @samp{fnegd}
18414Unary negation.
18415
18416@item @samp{fabsd}
18417Unary absolute value.
18418
18419@item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18420Comparison operations.
18421
18422@item @samp{fmind}, @samp{fmaxd}
18423Double-precision minimum and maximum.  These instructions are only
18424generated if @option{-ffinite-math-only} is specified.
18425
18426@item @samp{fsqrtd}
18427Unary square root operation.
18428
18429@item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18430Double-precision trigonometric and exponential functions.  These instructions
18431are only generated if @option{-funsafe-math-optimizations} is also specified.
18432
18433@end table
18434
18435Conversions:
18436@table @asis
18437@item @samp{fextsd}
18438Conversion from single precision to double precision.
18439
18440@item @samp{ftruncds}
18441Conversion from double precision to single precision.
18442
18443@item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18444Conversion from floating point to signed or unsigned integer types, with
18445truncation towards zero.
18446
18447@item @samp{round}
18448Conversion from single-precision floating point to signed integer,
18449rounding to the nearest integer and ties away from zero.
18450This corresponds to the @code{__builtin_lroundf} function when
18451@option{-fno-math-errno} is used.
18452
18453@item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18454Conversion from signed or unsigned integer types to floating-point types.
18455
18456@end table
18457
18458In addition, all of the following transfer instructions for internal
18459registers X and Y must be provided to use any of the double-precision
18460floating-point instructions.  Custom instructions taking two
18461double-precision source operands expect the first operand in the
1846264-bit register X.  The other operand (or only operand of a unary
18463operation) is given to the custom arithmetic instruction with the
18464least significant half in source register @var{src1} and the most
18465significant half in @var{src2}.  A custom instruction that returns a
18466double-precision result returns the most significant 32 bits in the
18467destination register and the other half in 32-bit register Y.  
18468GCC automatically generates the necessary code sequences to write
18469register X and/or read register Y when double-precision floating-point
18470instructions are used.
18471
18472@table @asis
18473
18474@item @samp{fwrx}
18475Write @var{src1} into the least significant half of X and @var{src2} into
18476the most significant half of X.
18477
18478@item @samp{fwry}
18479Write @var{src1} into Y.
18480
18481@item @samp{frdxhi}, @samp{frdxlo}
18482Read the most or least (respectively) significant half of X and store it in
18483@var{dest}.
18484
18485@item @samp{frdy}
18486Read the value of Y and store it into @var{dest}.
18487@end table
18488
18489Note that you can gain more local control over generation of Nios II custom
18490instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18491and @code{target("no-custom-@var{insn}")} function attributes
18492(@pxref{Function Attributes})
18493or pragmas (@pxref{Function Specific Option Pragmas}).
18494
18495@item -mcustom-fpu-cfg=@var{name}
18496@opindex mcustom-fpu-cfg
18497
18498This option enables a predefined, named set of custom instruction encodings
18499(see @option{-mcustom-@var{insn}} above).  
18500Currently, the following sets are defined:
18501
18502@option{-mcustom-fpu-cfg=60-1} is equivalent to:
18503@gccoptlist{-mcustom-fmuls=252 @gol
18504-mcustom-fadds=253 @gol
18505-mcustom-fsubs=254 @gol
18506-fsingle-precision-constant}
18507
18508@option{-mcustom-fpu-cfg=60-2} is equivalent to:
18509@gccoptlist{-mcustom-fmuls=252 @gol
18510-mcustom-fadds=253 @gol
18511-mcustom-fsubs=254 @gol
18512-mcustom-fdivs=255 @gol
18513-fsingle-precision-constant}
18514
18515@option{-mcustom-fpu-cfg=72-3} is equivalent to:
18516@gccoptlist{-mcustom-floatus=243 @gol
18517-mcustom-fixsi=244 @gol
18518-mcustom-floatis=245 @gol
18519-mcustom-fcmpgts=246 @gol
18520-mcustom-fcmples=249 @gol
18521-mcustom-fcmpeqs=250 @gol
18522-mcustom-fcmpnes=251 @gol
18523-mcustom-fmuls=252 @gol
18524-mcustom-fadds=253 @gol
18525-mcustom-fsubs=254 @gol
18526-mcustom-fdivs=255 @gol
18527-fsingle-precision-constant}
18528
18529Custom instruction assignments given by individual
18530@option{-mcustom-@var{insn}=} options override those given by
18531@option{-mcustom-fpu-cfg=}, regardless of the
18532order of the options on the command line.
18533
18534Note that you can gain more local control over selection of a FPU
18535configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18536function attribute (@pxref{Function Attributes})
18537or pragma (@pxref{Function Specific Option Pragmas}).
18538
18539@end table
18540
18541These additional @samp{-m} options are available for the Altera Nios II
18542ELF (bare-metal) target:
18543
18544@table @gcctabopt
18545
18546@item -mhal
18547@opindex mhal
18548Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
18549startup and termination code, and is typically used in conjunction with
18550@option{-msys-crt0=} to specify the location of the alternate startup code
18551provided by the HAL BSP.
18552
18553@item -msmallc
18554@opindex msmallc
18555Link with a limited version of the C library, @option{-lsmallc}, rather than
18556Newlib.
18557
18558@item -msys-crt0=@var{startfile}
18559@opindex msys-crt0
18560@var{startfile} is the file name of the startfile (crt0) to use 
18561when linking.  This option is only useful in conjunction with @option{-mhal}.
18562
18563@item -msys-lib=@var{systemlib}
18564@opindex msys-lib
18565@var{systemlib} is the library name of the library that provides
18566low-level system calls required by the C library,
18567e.g. @code{read} and @code{write}.
18568This option is typically used to link with a library provided by a HAL BSP.
18569
18570@end table
18571
18572@node Nvidia PTX Options
18573@subsection Nvidia PTX Options
18574@cindex Nvidia PTX options
18575@cindex nvptx options
18576
18577These options are defined for Nvidia PTX:
18578
18579@table @gcctabopt
18580
18581@item -m32
18582@itemx -m64
18583@opindex m32
18584@opindex m64
18585Generate code for 32-bit or 64-bit ABI.
18586
18587@item -mmainkernel
18588@opindex mmainkernel
18589Link in code for a __main kernel.  This is for stand-alone instead of
18590offloading execution.
18591
18592@end table
18593
18594@node PDP-11 Options
18595@subsection PDP-11 Options
18596@cindex PDP-11 Options
18597
18598These options are defined for the PDP-11:
18599
18600@table @gcctabopt
18601@item -mfpu
18602@opindex mfpu
18603Use hardware FPP floating point.  This is the default.  (FIS floating
18604point on the PDP-11/40 is not supported.)
18605
18606@item -msoft-float
18607@opindex msoft-float
18608Do not use hardware floating point.
18609
18610@item -mac0
18611@opindex mac0
18612Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18613
18614@item -mno-ac0
18615@opindex mno-ac0
18616Return floating-point results in memory.  This is the default.
18617
18618@item -m40
18619@opindex m40
18620Generate code for a PDP-11/40.
18621
18622@item -m45
18623@opindex m45
18624Generate code for a PDP-11/45.  This is the default.
18625
18626@item -m10
18627@opindex m10
18628Generate code for a PDP-11/10.
18629
18630@item -mbcopy-builtin
18631@opindex mbcopy-builtin
18632Use inline @code{movmemhi} patterns for copying memory.  This is the
18633default.
18634
18635@item -mbcopy
18636@opindex mbcopy
18637Do not use inline @code{movmemhi} patterns for copying memory.
18638
18639@item -mint16
18640@itemx -mno-int32
18641@opindex mint16
18642@opindex mno-int32
18643Use 16-bit @code{int}.  This is the default.
18644
18645@item -mint32
18646@itemx -mno-int16
18647@opindex mint32
18648@opindex mno-int16
18649Use 32-bit @code{int}.
18650
18651@item -mfloat64
18652@itemx -mno-float32
18653@opindex mfloat64
18654@opindex mno-float32
18655Use 64-bit @code{float}.  This is the default.
18656
18657@item -mfloat32
18658@itemx -mno-float64
18659@opindex mfloat32
18660@opindex mno-float64
18661Use 32-bit @code{float}.
18662
18663@item -mabshi
18664@opindex mabshi
18665Use @code{abshi2} pattern.  This is the default.
18666
18667@item -mno-abshi
18668@opindex mno-abshi
18669Do not use @code{abshi2} pattern.
18670
18671@item -mbranch-expensive
18672@opindex mbranch-expensive
18673Pretend that branches are expensive.  This is for experimenting with
18674code generation only.
18675
18676@item -mbranch-cheap
18677@opindex mbranch-cheap
18678Do not pretend that branches are expensive.  This is the default.
18679
18680@item -munix-asm
18681@opindex munix-asm
18682Use Unix assembler syntax.  This is the default when configured for
18683@samp{pdp11-*-bsd}.
18684
18685@item -mdec-asm
18686@opindex mdec-asm
18687Use DEC assembler syntax.  This is the default when configured for any
18688PDP-11 target other than @samp{pdp11-*-bsd}.
18689@end table
18690
18691@node picoChip Options
18692@subsection picoChip Options
18693@cindex picoChip options
18694
18695These @samp{-m} options are defined for picoChip implementations:
18696
18697@table @gcctabopt
18698
18699@item -mae=@var{ae_type}
18700@opindex mcpu
18701Set the instruction set, register set, and instruction scheduling
18702parameters for array element type @var{ae_type}.  Supported values
18703for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18704
18705@option{-mae=ANY} selects a completely generic AE type.  Code
18706generated with this option runs on any of the other AE types.  The
18707code is not as efficient as it would be if compiled for a specific
18708AE type, and some types of operation (e.g., multiplication) do not
18709work properly on all types of AE.
18710
18711@option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
18712for compiled code, and is the default.
18713
18714@option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
18715option may suffer from poor performance of byte (char) manipulation,
18716since the DSP AE does not provide hardware support for byte load/stores.
18717
18718@item -msymbol-as-address
18719Enable the compiler to directly use a symbol name as an address in a
18720load/store instruction, without first loading it into a
18721register.  Typically, the use of this option generates larger
18722programs, which run faster than when the option isn't used.  However, the
18723results vary from program to program, so it is left as a user option,
18724rather than being permanently enabled.
18725
18726@item -mno-inefficient-warnings
18727Disables warnings about the generation of inefficient code.  These
18728warnings can be generated, for example, when compiling code that
18729performs byte-level memory operations on the MAC AE type.  The MAC AE has
18730no hardware support for byte-level memory operations, so all byte
18731load/stores must be synthesized from word load/store operations.  This is
18732inefficient and a warning is generated to indicate
18733that you should rewrite the code to avoid byte operations, or to target
18734an AE type that has the necessary hardware support.  This option disables
18735these warnings.
18736
18737@end table
18738
18739@node PowerPC Options
18740@subsection PowerPC Options
18741@cindex PowerPC options
18742
18743These are listed under @xref{RS/6000 and PowerPC Options}.
18744
18745@node RL78 Options
18746@subsection RL78 Options
18747@cindex RL78 Options
18748
18749@table @gcctabopt
18750
18751@item -msim
18752@opindex msim
18753Links in additional target libraries to support operation within a
18754simulator.
18755
18756@item -mmul=none
18757@itemx -mmul=g13
18758@itemx -mmul=rl78
18759@opindex mmul
18760Specifies the type of hardware multiplication support to be used.  The
18761default is @samp{none}, which uses software multiplication functions.
18762The @samp{g13} option is for the hardware multiply/divide peripheral
18763only on the RL78/G13 targets.  The @samp{rl78} option is for the
18764standard hardware multiplication defined in the RL78 software manual.
18765
18766@item -m64bit-doubles
18767@itemx -m32bit-doubles
18768@opindex m64bit-doubles
18769@opindex m32bit-doubles
18770Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
18771or 32 bits (@option{-m32bit-doubles}) in size.  The default is
18772@option{-m32bit-doubles}.
18773
18774@end table
18775
18776@node RS/6000 and PowerPC Options
18777@subsection IBM RS/6000 and PowerPC Options
18778@cindex RS/6000 and PowerPC Options
18779@cindex IBM RS/6000 and PowerPC Options
18780
18781These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
18782@table @gcctabopt
18783@item -mpowerpc-gpopt
18784@itemx -mno-powerpc-gpopt
18785@itemx -mpowerpc-gfxopt
18786@itemx -mno-powerpc-gfxopt
18787@need 800
18788@itemx -mpowerpc64
18789@itemx -mno-powerpc64
18790@itemx -mmfcrf
18791@itemx -mno-mfcrf
18792@itemx -mpopcntb
18793@itemx -mno-popcntb
18794@itemx -mpopcntd
18795@itemx -mno-popcntd
18796@itemx -mfprnd
18797@itemx -mno-fprnd
18798@need 800
18799@itemx -mcmpb
18800@itemx -mno-cmpb
18801@itemx -mmfpgpr
18802@itemx -mno-mfpgpr
18803@itemx -mhard-dfp
18804@itemx -mno-hard-dfp
18805@opindex mpowerpc-gpopt
18806@opindex mno-powerpc-gpopt
18807@opindex mpowerpc-gfxopt
18808@opindex mno-powerpc-gfxopt
18809@opindex mpowerpc64
18810@opindex mno-powerpc64
18811@opindex mmfcrf
18812@opindex mno-mfcrf
18813@opindex mpopcntb
18814@opindex mno-popcntb
18815@opindex mpopcntd
18816@opindex mno-popcntd
18817@opindex mfprnd
18818@opindex mno-fprnd
18819@opindex mcmpb
18820@opindex mno-cmpb
18821@opindex mmfpgpr
18822@opindex mno-mfpgpr
18823@opindex mhard-dfp
18824@opindex mno-hard-dfp
18825You use these options to specify which instructions are available on the
18826processor you are using.  The default value of these options is
18827determined when configuring GCC@.  Specifying the
18828@option{-mcpu=@var{cpu_type}} overrides the specification of these
18829options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
18830rather than the options listed above.
18831
18832Specifying @option{-mpowerpc-gpopt} allows
18833GCC to use the optional PowerPC architecture instructions in the
18834General Purpose group, including floating-point square root.  Specifying
18835@option{-mpowerpc-gfxopt} allows GCC to
18836use the optional PowerPC architecture instructions in the Graphics
18837group, including floating-point select.
18838
18839The @option{-mmfcrf} option allows GCC to generate the move from
18840condition register field instruction implemented on the POWER4
18841processor and other processors that support the PowerPC V2.01
18842architecture.
18843The @option{-mpopcntb} option allows GCC to generate the popcount and
18844double-precision FP reciprocal estimate instruction implemented on the
18845POWER5 processor and other processors that support the PowerPC V2.02
18846architecture.
18847The @option{-mpopcntd} option allows GCC to generate the popcount
18848instruction implemented on the POWER7 processor and other processors
18849that support the PowerPC V2.06 architecture.
18850The @option{-mfprnd} option allows GCC to generate the FP round to
18851integer instructions implemented on the POWER5+ processor and other
18852processors that support the PowerPC V2.03 architecture.
18853The @option{-mcmpb} option allows GCC to generate the compare bytes
18854instruction implemented on the POWER6 processor and other processors
18855that support the PowerPC V2.05 architecture.
18856The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
18857general-purpose register instructions implemented on the POWER6X
18858processor and other processors that support the extended PowerPC V2.05
18859architecture.
18860The @option{-mhard-dfp} option allows GCC to generate the decimal
18861floating-point instructions implemented on some POWER processors.
18862
18863The @option{-mpowerpc64} option allows GCC to generate the additional
1886464-bit instructions that are found in the full PowerPC64 architecture
18865and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
18866@option{-mno-powerpc64}.
18867
18868@item -mcpu=@var{cpu_type}
18869@opindex mcpu
18870Set architecture type, register usage, and
18871instruction scheduling parameters for machine type @var{cpu_type}.
18872Supported values for @var{cpu_type} are @samp{401}, @samp{403},
18873@samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
18874@samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
18875@samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
18876@samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
18877@samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
18878@samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
18879@samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
18880@samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
18881@samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
18882@samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
18883
18884@option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
18885@option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
18886endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
18887architecture machine types, with an appropriate, generic processor
18888model assumed for scheduling purposes.
18889
18890The other options specify a specific processor.  Code generated under
18891those options runs best on that processor, and may not run at all on
18892others.
18893
18894The @option{-mcpu} options automatically enable or disable the
18895following options:
18896
18897@gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
18898-mpopcntb -mpopcntd  -mpowerpc64 @gol
18899-mpowerpc-gpopt  -mpowerpc-gfxopt  -msingle-float -mdouble-float @gol
18900-msimple-fpu -mstring  -mmulhw  -mdlmzb  -mmfpgpr -mvsx @gol
18901-mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
18902-mquad-memory -mquad-memory-atomic}
18903
18904The particular options set for any particular CPU varies between
18905compiler versions, depending on what setting seems to produce optimal
18906code for that CPU; it doesn't necessarily reflect the actual hardware's
18907capabilities.  If you wish to set an individual option to a particular
18908value, you may specify it after the @option{-mcpu} option, like
18909@option{-mcpu=970 -mno-altivec}.
18910
18911On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
18912not enabled or disabled by the @option{-mcpu} option at present because
18913AIX does not have full support for these options.  You may still
18914enable or disable them individually if you're sure it'll work in your
18915environment.
18916
18917@item -mtune=@var{cpu_type}
18918@opindex mtune
18919Set the instruction scheduling parameters for machine type
18920@var{cpu_type}, but do not set the architecture type or register usage,
18921as @option{-mcpu=@var{cpu_type}} does.  The same
18922values for @var{cpu_type} are used for @option{-mtune} as for
18923@option{-mcpu}.  If both are specified, the code generated uses the
18924architecture and registers set by @option{-mcpu}, but the
18925scheduling parameters set by @option{-mtune}.
18926
18927@item -mcmodel=small
18928@opindex mcmodel=small
18929Generate PowerPC64 code for the small model: The TOC is limited to
1893064k.
18931
18932@item -mcmodel=medium
18933@opindex mcmodel=medium
18934Generate PowerPC64 code for the medium model: The TOC and other static
18935data may be up to a total of 4G in size.
18936
18937@item -mcmodel=large
18938@opindex mcmodel=large
18939Generate PowerPC64 code for the large model: The TOC may be up to 4G
18940in size.  Other data and code is only limited by the 64-bit address
18941space.
18942
18943@item -maltivec
18944@itemx -mno-altivec
18945@opindex maltivec
18946@opindex mno-altivec
18947Generate code that uses (does not use) AltiVec instructions, and also
18948enable the use of built-in functions that allow more direct access to
18949the AltiVec instruction set.  You may also need to set
18950@option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
18951enhancements.
18952
18953When @option{-maltivec} is used, rather than @option{-maltivec=le} or
18954@option{-maltivec=be}, the element order for Altivec intrinsics such
18955as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert} 
18956match array element order corresponding to the endianness of the
18957target.  That is, element zero identifies the leftmost element in a
18958vector register when targeting a big-endian platform, and identifies
18959the rightmost element in a vector register when targeting a
18960little-endian platform.
18961
18962@item -maltivec=be
18963@opindex maltivec=be
18964Generate Altivec instructions using big-endian element order,
18965regardless of whether the target is big- or little-endian.  This is
18966the default when targeting a big-endian platform.
18967
18968The element order is used to interpret element numbers in Altivec
18969intrinsics such as @code{vec_splat}, @code{vec_extract}, and
18970@code{vec_insert}.  By default, these match array element order
18971corresponding to the endianness for the target.
18972
18973@item -maltivec=le
18974@opindex maltivec=le
18975Generate Altivec instructions using little-endian element order,
18976regardless of whether the target is big- or little-endian.  This is
18977the default when targeting a little-endian platform.  This option is
18978currently ignored when targeting a big-endian platform.
18979
18980The element order is used to interpret element numbers in Altivec
18981intrinsics such as @code{vec_splat}, @code{vec_extract}, and
18982@code{vec_insert}.  By default, these match array element order
18983corresponding to the endianness for the target.
18984
18985@item -mvrsave
18986@itemx -mno-vrsave
18987@opindex mvrsave
18988@opindex mno-vrsave
18989Generate VRSAVE instructions when generating AltiVec code.
18990
18991@item -mgen-cell-microcode
18992@opindex mgen-cell-microcode
18993Generate Cell microcode instructions.
18994
18995@item -mwarn-cell-microcode
18996@opindex mwarn-cell-microcode
18997Warn when a Cell microcode instruction is emitted.  An example
18998of a Cell microcode instruction is a variable shift.
18999
19000@item -msecure-plt
19001@opindex msecure-plt
19002Generate code that allows @command{ld} and @command{ld.so}
19003to build executables and shared
19004libraries with non-executable @code{.plt} and @code{.got} sections.
19005This is a PowerPC
1900632-bit SYSV ABI option.
19007
19008@item -mbss-plt
19009@opindex mbss-plt
19010Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19011fills in, and
19012requires @code{.plt} and @code{.got}
19013sections that are both writable and executable.
19014This is a PowerPC 32-bit SYSV ABI option.
19015
19016@item -misel
19017@itemx -mno-isel
19018@opindex misel
19019@opindex mno-isel
19020This switch enables or disables the generation of ISEL instructions.
19021
19022@item -misel=@var{yes/no}
19023This switch has been deprecated.  Use @option{-misel} and
19024@option{-mno-isel} instead.
19025
19026@item -mspe
19027@itemx -mno-spe
19028@opindex mspe
19029@opindex mno-spe
19030This switch enables or disables the generation of SPE simd
19031instructions.
19032
19033@item -mpaired
19034@itemx -mno-paired
19035@opindex mpaired
19036@opindex mno-paired
19037This switch enables or disables the generation of PAIRED simd
19038instructions.
19039
19040@item -mspe=@var{yes/no}
19041This option has been deprecated.  Use @option{-mspe} and
19042@option{-mno-spe} instead.
19043
19044@item -mvsx
19045@itemx -mno-vsx
19046@opindex mvsx
19047@opindex mno-vsx
19048Generate code that uses (does not use) vector/scalar (VSX)
19049instructions, and also enable the use of built-in functions that allow
19050more direct access to the VSX instruction set.
19051
19052@item -mcrypto
19053@itemx -mno-crypto
19054@opindex mcrypto
19055@opindex mno-crypto
19056Enable the use (disable) of the built-in functions that allow direct
19057access to the cryptographic instructions that were added in version
190582.07 of the PowerPC ISA.
19059
19060@item -mdirect-move
19061@itemx -mno-direct-move
19062@opindex mdirect-move
19063@opindex mno-direct-move
19064Generate code that uses (does not use) the instructions to move data
19065between the general purpose registers and the vector/scalar (VSX)
19066registers that were added in version 2.07 of the PowerPC ISA.
19067
19068@item -mpower8-fusion
19069@itemx -mno-power8-fusion
19070@opindex mpower8-fusion
19071@opindex mno-power8-fusion
19072Generate code that keeps (does not keeps) some integer operations
19073adjacent so that the instructions can be fused together on power8 and
19074later processors.
19075
19076@item -mpower8-vector
19077@itemx -mno-power8-vector
19078@opindex mpower8-vector
19079@opindex mno-power8-vector
19080Generate code that uses (does not use) the vector and scalar
19081instructions that were added in version 2.07 of the PowerPC ISA.  Also
19082enable the use of built-in functions that allow more direct access to
19083the vector instructions.
19084
19085@item -mquad-memory
19086@itemx -mno-quad-memory
19087@opindex mquad-memory
19088@opindex mno-quad-memory
19089Generate code that uses (does not use) the non-atomic quad word memory
19090instructions.  The @option{-mquad-memory} option requires use of
1909164-bit mode.
19092
19093@item -mquad-memory-atomic
19094@itemx -mno-quad-memory-atomic
19095@opindex mquad-memory-atomic
19096@opindex mno-quad-memory-atomic
19097Generate code that uses (does not use) the atomic quad word memory
19098instructions.  The @option{-mquad-memory-atomic} option requires use of
1909964-bit mode.
19100
19101@item -mupper-regs-df
19102@itemx -mno-upper-regs-df
19103@opindex mupper-regs-df
19104@opindex mno-upper-regs-df
19105Generate code that uses (does not use) the scalar double precision
19106instructions that target all 64 registers in the vector/scalar
19107floating point register set that were added in version 2.06 of the
19108PowerPC ISA.  @option{-mupper-regs-df} is turned on by default if you
19109use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19110@option{-mvsx} options.
19111
19112@item -mupper-regs-sf
19113@itemx -mno-upper-regs-sf
19114@opindex mupper-regs-sf
19115@opindex mno-upper-regs-sf
19116Generate code that uses (does not use) the scalar single precision
19117instructions that target all 64 registers in the vector/scalar
19118floating point register set that were added in version 2.07 of the
19119PowerPC ISA.  @option{-mupper-regs-sf} is turned on by default if you
19120use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19121options.
19122
19123@item -mupper-regs
19124@itemx -mno-upper-regs
19125@opindex mupper-regs
19126@opindex mno-upper-regs
19127Generate code that uses (does not use) the scalar
19128instructions that target all 64 registers in the vector/scalar
19129floating point register set, depending on the model of the machine.
19130
19131If the @option{-mno-upper-regs} option is used, it turns off both
19132@option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19133
19134@item -mfloat-gprs=@var{yes/single/double/no}
19135@itemx -mfloat-gprs
19136@opindex mfloat-gprs
19137This switch enables or disables the generation of floating-point
19138operations on the general-purpose registers for architectures that
19139support it.
19140
19141The argument @samp{yes} or @samp{single} enables the use of
19142single-precision floating-point operations.
19143
19144The argument @samp{double} enables the use of single and
19145double-precision floating-point operations.
19146
19147The argument @samp{no} disables floating-point operations on the
19148general-purpose registers.
19149
19150This option is currently only available on the MPC854x.
19151
19152@item -m32
19153@itemx -m64
19154@opindex m32
19155@opindex m64
19156Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19157targets (including GNU/Linux).  The 32-bit environment sets int, long
19158and pointer to 32 bits and generates code that runs on any PowerPC
19159variant.  The 64-bit environment sets int to 32 bits and long and
19160pointer to 64 bits, and generates code for PowerPC64, as for
19161@option{-mpowerpc64}.
19162
19163@item -mfull-toc
19164@itemx -mno-fp-in-toc
19165@itemx -mno-sum-in-toc
19166@itemx -mminimal-toc
19167@opindex mfull-toc
19168@opindex mno-fp-in-toc
19169@opindex mno-sum-in-toc
19170@opindex mminimal-toc
19171Modify generation of the TOC (Table Of Contents), which is created for
19172every executable file.  The @option{-mfull-toc} option is selected by
19173default.  In that case, GCC allocates at least one TOC entry for
19174each unique non-automatic variable reference in your program.  GCC
19175also places floating-point constants in the TOC@.  However, only
1917616,384 entries are available in the TOC@.
19177
19178If you receive a linker error message that saying you have overflowed
19179the available TOC space, you can reduce the amount of TOC space used
19180with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19181@option{-mno-fp-in-toc} prevents GCC from putting floating-point
19182constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19183generate code to calculate the sum of an address and a constant at
19184run time instead of putting that sum into the TOC@.  You may specify one
19185or both of these options.  Each causes GCC to produce very slightly
19186slower and larger code at the expense of conserving TOC space.
19187
19188If you still run out of space in the TOC even when you specify both of
19189these options, specify @option{-mminimal-toc} instead.  This option causes
19190GCC to make only one TOC entry for every file.  When you specify this
19191option, GCC produces code that is slower and larger but which
19192uses extremely little TOC space.  You may wish to use this option
19193only on files that contain less frequently-executed code.
19194
19195@item -maix64
19196@itemx -maix32
19197@opindex maix64
19198@opindex maix32
19199Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19200@code{long} type, and the infrastructure needed to support them.
19201Specifying @option{-maix64} implies @option{-mpowerpc64},
19202while @option{-maix32} disables the 64-bit ABI and
19203implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
19204
19205@item -mxl-compat
19206@itemx -mno-xl-compat
19207@opindex mxl-compat
19208@opindex mno-xl-compat
19209Produce code that conforms more closely to IBM XL compiler semantics
19210when using AIX-compatible ABI@.  Pass floating-point arguments to
19211prototyped functions beyond the register save area (RSA) on the stack
19212in addition to argument FPRs.  Do not assume that most significant
19213double in 128-bit long double value is properly rounded when comparing
19214values and converting to double.  Use XL symbol names for long double
19215support routines.
19216
19217The AIX calling convention was extended but not initially documented to
19218handle an obscure K&R C case of calling a function that takes the
19219address of its arguments with fewer arguments than declared.  IBM XL
19220compilers access floating-point arguments that do not fit in the
19221RSA from the stack when a subroutine is compiled without
19222optimization.  Because always storing floating-point arguments on the
19223stack is inefficient and rarely needed, this option is not enabled by
19224default and only is necessary when calling subroutines compiled by IBM
19225XL compilers without optimization.
19226
19227@item -mpe
19228@opindex mpe
19229Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
19230application written to use message passing with special startup code to
19231enable the application to run.  The system must have PE installed in the
19232standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19233must be overridden with the @option{-specs=} option to specify the
19234appropriate directory location.  The Parallel Environment does not
19235support threads, so the @option{-mpe} option and the @option{-pthread}
19236option are incompatible.
19237
19238@item -malign-natural
19239@itemx -malign-power
19240@opindex malign-natural
19241@opindex malign-power
19242On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19243@option{-malign-natural} overrides the ABI-defined alignment of larger
19244types, such as floating-point doubles, on their natural size-based boundary.
19245The option @option{-malign-power} instructs GCC to follow the ABI-specified
19246alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
19247
19248On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19249is not supported.
19250
19251@item -msoft-float
19252@itemx -mhard-float
19253@opindex msoft-float
19254@opindex mhard-float
19255Generate code that does not use (uses) the floating-point register set.
19256Software floating-point emulation is provided if you use the
19257@option{-msoft-float} option, and pass the option to GCC when linking.
19258
19259@item -msingle-float
19260@itemx -mdouble-float
19261@opindex msingle-float
19262@opindex mdouble-float
19263Generate code for single- or double-precision floating-point operations.
19264@option{-mdouble-float} implies @option{-msingle-float}.
19265
19266@item -msimple-fpu
19267@opindex msimple-fpu
19268Do not generate @code{sqrt} and @code{div} instructions for hardware
19269floating-point unit.
19270
19271@item -mfpu=@var{name}
19272@opindex mfpu
19273Specify type of floating-point unit.  Valid values for @var{name} are
19274@samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19275@samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19276@samp{sp_full} (equivalent to @option{-msingle-float}),
19277and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19278
19279@item -mxilinx-fpu
19280@opindex mxilinx-fpu
19281Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19282
19283@item -mmultiple
19284@itemx -mno-multiple
19285@opindex mmultiple
19286@opindex mno-multiple
19287Generate code that uses (does not use) the load multiple word
19288instructions and the store multiple word instructions.  These
19289instructions are generated by default on POWER systems, and not
19290generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
19291PowerPC systems, since those instructions do not work when the
19292processor is in little-endian mode.  The exceptions are PPC740 and
19293PPC750 which permit these instructions in little-endian mode.
19294
19295@item -mstring
19296@itemx -mno-string
19297@opindex mstring
19298@opindex mno-string
19299Generate code that uses (does not use) the load string instructions
19300and the store string word instructions to save multiple registers and
19301do small block moves.  These instructions are generated by default on
19302POWER systems, and not generated on PowerPC systems.  Do not use
19303@option{-mstring} on little-endian PowerPC systems, since those
19304instructions do not work when the processor is in little-endian mode.
19305The exceptions are PPC740 and PPC750 which permit these instructions
19306in little-endian mode.
19307
19308@item -mupdate
19309@itemx -mno-update
19310@opindex mupdate
19311@opindex mno-update
19312Generate code that uses (does not use) the load or store instructions
19313that update the base register to the address of the calculated memory
19314location.  These instructions are generated by default.  If you use
19315@option{-mno-update}, there is a small window between the time that the
19316stack pointer is updated and the address of the previous frame is
19317stored, which means code that walks the stack frame across interrupts or
19318signals may get corrupted data.
19319
19320@item -mavoid-indexed-addresses
19321@itemx -mno-avoid-indexed-addresses
19322@opindex mavoid-indexed-addresses
19323@opindex mno-avoid-indexed-addresses
19324Generate code that tries to avoid (not avoid) the use of indexed load
19325or store instructions. These instructions can incur a performance
19326penalty on Power6 processors in certain situations, such as when
19327stepping through large arrays that cross a 16M boundary.  This option
19328is enabled by default when targeting Power6 and disabled otherwise.
19329
19330@item -mfused-madd
19331@itemx -mno-fused-madd
19332@opindex mfused-madd
19333@opindex mno-fused-madd
19334Generate code that uses (does not use) the floating-point multiply and
19335accumulate instructions.  These instructions are generated by default
19336if hardware floating point is used.  The machine-dependent
19337@option{-mfused-madd} option is now mapped to the machine-independent
19338@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19339mapped to @option{-ffp-contract=off}.
19340
19341@item -mmulhw
19342@itemx -mno-mulhw
19343@opindex mmulhw
19344@opindex mno-mulhw
19345Generate code that uses (does not use) the half-word multiply and
19346multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19347These instructions are generated by default when targeting those
19348processors.
19349
19350@item -mdlmzb
19351@itemx -mno-dlmzb
19352@opindex mdlmzb
19353@opindex mno-dlmzb
19354Generate code that uses (does not use) the string-search @samp{dlmzb}
19355instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
19356generated by default when targeting those processors.
19357
19358@item -mno-bit-align
19359@itemx -mbit-align
19360@opindex mno-bit-align
19361@opindex mbit-align
19362On System V.4 and embedded PowerPC systems do not (do) force structures
19363and unions that contain bit-fields to be aligned to the base type of the
19364bit-field.
19365
19366For example, by default a structure containing nothing but 8
19367@code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19368boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
19369the structure is aligned to a 1-byte boundary and is 1 byte in
19370size.
19371
19372@item -mno-strict-align
19373@itemx -mstrict-align
19374@opindex mno-strict-align
19375@opindex mstrict-align
19376On System V.4 and embedded PowerPC systems do not (do) assume that
19377unaligned memory references are handled by the system.
19378
19379@item -mrelocatable
19380@itemx -mno-relocatable
19381@opindex mrelocatable
19382@opindex mno-relocatable
19383Generate code that allows (does not allow) a static executable to be
19384relocated to a different address at run time.  A simple embedded
19385PowerPC system loader should relocate the entire contents of
19386@code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19387a table of 32-bit addresses generated by this option.  For this to
19388work, all objects linked together must be compiled with
19389@option{-mrelocatable} or @option{-mrelocatable-lib}.
19390@option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19391
19392@item -mrelocatable-lib
19393@itemx -mno-relocatable-lib
19394@opindex mrelocatable-lib
19395@opindex mno-relocatable-lib
19396Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19397@code{.fixup} section to allow static executables to be relocated at
19398run time, but @option{-mrelocatable-lib} does not use the smaller stack
19399alignment of @option{-mrelocatable}.  Objects compiled with
19400@option{-mrelocatable-lib} may be linked with objects compiled with
19401any combination of the @option{-mrelocatable} options.
19402
19403@item -mno-toc
19404@itemx -mtoc
19405@opindex mno-toc
19406@opindex mtoc
19407On System V.4 and embedded PowerPC systems do not (do) assume that
19408register 2 contains a pointer to a global area pointing to the addresses
19409used in the program.
19410
19411@item -mlittle
19412@itemx -mlittle-endian
19413@opindex mlittle
19414@opindex mlittle-endian
19415On System V.4 and embedded PowerPC systems compile code for the
19416processor in little-endian mode.  The @option{-mlittle-endian} option is
19417the same as @option{-mlittle}.
19418
19419@item -mbig
19420@itemx -mbig-endian
19421@opindex mbig
19422@opindex mbig-endian
19423On System V.4 and embedded PowerPC systems compile code for the
19424processor in big-endian mode.  The @option{-mbig-endian} option is
19425the same as @option{-mbig}.
19426
19427@item -mdynamic-no-pic
19428@opindex mdynamic-no-pic
19429On Darwin and Mac OS X systems, compile code so that it is not
19430relocatable, but that its external references are relocatable.  The
19431resulting code is suitable for applications, but not shared
19432libraries.
19433
19434@item -msingle-pic-base
19435@opindex msingle-pic-base
19436Treat the register used for PIC addressing as read-only, rather than
19437loading it in the prologue for each function.  The runtime system is
19438responsible for initializing this register with an appropriate value
19439before execution begins.
19440
19441@item -mprioritize-restricted-insns=@var{priority}
19442@opindex mprioritize-restricted-insns
19443This option controls the priority that is assigned to
19444dispatch-slot restricted instructions during the second scheduling
19445pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
19446or @samp{2} to assign no, highest, or second-highest (respectively) 
19447priority to dispatch-slot restricted
19448instructions.
19449
19450@item -msched-costly-dep=@var{dependence_type}
19451@opindex msched-costly-dep
19452This option controls which dependences are considered costly
19453by the target during instruction scheduling.  The argument
19454@var{dependence_type} takes one of the following values:
19455
19456@table @asis
19457@item @samp{no}
19458No dependence is costly.
19459
19460@item @samp{all}
19461All dependences are costly.
19462
19463@item @samp{true_store_to_load}
19464A true dependence from store to load is costly.
19465
19466@item @samp{store_to_load}
19467Any dependence from store to load is costly.
19468
19469@item @var{number}
19470Any dependence for which the latency is greater than or equal to 
19471@var{number} is costly.
19472@end table
19473
19474@item -minsert-sched-nops=@var{scheme}
19475@opindex minsert-sched-nops
19476This option controls which NOP insertion scheme is used during
19477the second scheduling pass.  The argument @var{scheme} takes one of the
19478following values:
19479
19480@table @asis
19481@item @samp{no}
19482Don't insert NOPs.
19483
19484@item @samp{pad}
19485Pad with NOPs any dispatch group that has vacant issue slots,
19486according to the scheduler's grouping.
19487
19488@item @samp{regroup_exact}
19489Insert NOPs to force costly dependent insns into
19490separate groups.  Insert exactly as many NOPs as needed to force an insn
19491to a new group, according to the estimated processor grouping.
19492
19493@item @var{number}
19494Insert NOPs to force costly dependent insns into
19495separate groups.  Insert @var{number} NOPs to force an insn to a new group.
19496@end table
19497
19498@item -mcall-sysv
19499@opindex mcall-sysv
19500On System V.4 and embedded PowerPC systems compile code using calling
19501conventions that adhere to the March 1995 draft of the System V
19502Application Binary Interface, PowerPC processor supplement.  This is the
19503default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19504
19505@item -mcall-sysv-eabi
19506@itemx -mcall-eabi
19507@opindex mcall-sysv-eabi
19508@opindex mcall-eabi
19509Specify both @option{-mcall-sysv} and @option{-meabi} options.
19510
19511@item -mcall-sysv-noeabi
19512@opindex mcall-sysv-noeabi
19513Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19514
19515@item -mcall-aixdesc
19516@opindex m
19517On System V.4 and embedded PowerPC systems compile code for the AIX
19518operating system.
19519
19520@item -mcall-linux
19521@opindex mcall-linux
19522On System V.4 and embedded PowerPC systems compile code for the
19523Linux-based GNU system.
19524
19525@item -mcall-freebsd
19526@opindex mcall-freebsd
19527On System V.4 and embedded PowerPC systems compile code for the
19528FreeBSD operating system.
19529
19530@item -mcall-netbsd
19531@opindex mcall-netbsd
19532On System V.4 and embedded PowerPC systems compile code for the
19533NetBSD operating system.
19534
19535@item -mcall-openbsd
19536@opindex mcall-netbsd
19537On System V.4 and embedded PowerPC systems compile code for the
19538OpenBSD operating system.
19539
19540@item -maix-struct-return
19541@opindex maix-struct-return
19542Return all structures in memory (as specified by the AIX ABI)@.
19543
19544@item -msvr4-struct-return
19545@opindex msvr4-struct-return
19546Return structures smaller than 8 bytes in registers (as specified by the
19547SVR4 ABI)@.
19548
19549@item -mabi=@var{abi-type}
19550@opindex mabi
19551Extend the current ABI with a particular extension, or remove such extension.
19552Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19553@samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19554@samp{elfv1}, @samp{elfv2}@.
19555
19556@item -mabi=spe
19557@opindex mabi=spe
19558Extend the current ABI with SPE ABI extensions.  This does not change
19559the default ABI, instead it adds the SPE ABI extensions to the current
19560ABI@.
19561
19562@item -mabi=no-spe
19563@opindex mabi=no-spe
19564Disable Book-E SPE ABI extensions for the current ABI@.
19565
19566@item -mabi=ibmlongdouble
19567@opindex mabi=ibmlongdouble
19568Change the current ABI to use IBM extended-precision long double.
19569This is a PowerPC 32-bit SYSV ABI option.
19570
19571@item -mabi=ieeelongdouble
19572@opindex mabi=ieeelongdouble
19573Change the current ABI to use IEEE extended-precision long double.
19574This is a PowerPC 32-bit Linux ABI option.
19575
19576@item -mabi=elfv1
19577@opindex mabi=elfv1
19578Change the current ABI to use the ELFv1 ABI.
19579This is the default ABI for big-endian PowerPC 64-bit Linux.
19580Overriding the default ABI requires special system support and is
19581likely to fail in spectacular ways.
19582
19583@item -mabi=elfv2
19584@opindex mabi=elfv2
19585Change the current ABI to use the ELFv2 ABI.
19586This is the default ABI for little-endian PowerPC 64-bit Linux.
19587Overriding the default ABI requires special system support and is
19588likely to fail in spectacular ways.
19589
19590@item -mprototype
19591@itemx -mno-prototype
19592@opindex mprototype
19593@opindex mno-prototype
19594On System V.4 and embedded PowerPC systems assume that all calls to
19595variable argument functions are properly prototyped.  Otherwise, the
19596compiler must insert an instruction before every non-prototyped call to
19597set or clear bit 6 of the condition code register (@code{CR}) to
19598indicate whether floating-point values are passed in the floating-point
19599registers in case the function takes variable arguments.  With
19600@option{-mprototype}, only calls to prototyped variable argument functions
19601set or clear the bit.
19602
19603@item -msim
19604@opindex msim
19605On embedded PowerPC systems, assume that the startup module is called
19606@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19607@file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
19608configurations.
19609
19610@item -mmvme
19611@opindex mmvme
19612On embedded PowerPC systems, assume that the startup module is called
19613@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19614@file{libc.a}.
19615
19616@item -mads
19617@opindex mads
19618On embedded PowerPC systems, assume that the startup module is called
19619@file{crt0.o} and the standard C libraries are @file{libads.a} and
19620@file{libc.a}.
19621
19622@item -myellowknife
19623@opindex myellowknife
19624On embedded PowerPC systems, assume that the startup module is called
19625@file{crt0.o} and the standard C libraries are @file{libyk.a} and
19626@file{libc.a}.
19627
19628@item -mvxworks
19629@opindex mvxworks
19630On System V.4 and embedded PowerPC systems, specify that you are
19631compiling for a VxWorks system.
19632
19633@item -memb
19634@opindex memb
19635On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19636header to indicate that @samp{eabi} extended relocations are used.
19637
19638@item -meabi
19639@itemx -mno-eabi
19640@opindex meabi
19641@opindex mno-eabi
19642On System V.4 and embedded PowerPC systems do (do not) adhere to the
19643Embedded Applications Binary Interface (EABI), which is a set of
19644modifications to the System V.4 specifications.  Selecting @option{-meabi}
19645means that the stack is aligned to an 8-byte boundary, a function
19646@code{__eabi} is called from @code{main} to set up the EABI
19647environment, and the @option{-msdata} option can use both @code{r2} and
19648@code{r13} to point to two separate small data areas.  Selecting
19649@option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19650no EABI initialization function is called from @code{main}, and the
19651@option{-msdata} option only uses @code{r13} to point to a single
19652small data area.  The @option{-meabi} option is on by default if you
19653configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19654
19655@item -msdata=eabi
19656@opindex msdata=eabi
19657On System V.4 and embedded PowerPC systems, put small initialized
19658@code{const} global and static data in the @code{.sdata2} section, which
19659is pointed to by register @code{r2}.  Put small initialized
19660non-@code{const} global and static data in the @code{.sdata} section,
19661which is pointed to by register @code{r13}.  Put small uninitialized
19662global and static data in the @code{.sbss} section, which is adjacent to
19663the @code{.sdata} section.  The @option{-msdata=eabi} option is
19664incompatible with the @option{-mrelocatable} option.  The
19665@option{-msdata=eabi} option also sets the @option{-memb} option.
19666
19667@item -msdata=sysv
19668@opindex msdata=sysv
19669On System V.4 and embedded PowerPC systems, put small global and static
19670data in the @code{.sdata} section, which is pointed to by register
19671@code{r13}.  Put small uninitialized global and static data in the
19672@code{.sbss} section, which is adjacent to the @code{.sdata} section.
19673The @option{-msdata=sysv} option is incompatible with the
19674@option{-mrelocatable} option.
19675
19676@item -msdata=default
19677@itemx -msdata
19678@opindex msdata=default
19679@opindex msdata
19680On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19681compile code the same as @option{-msdata=eabi}, otherwise compile code the
19682same as @option{-msdata=sysv}.
19683
19684@item -msdata=data
19685@opindex msdata=data
19686On System V.4 and embedded PowerPC systems, put small global
19687data in the @code{.sdata} section.  Put small uninitialized global
19688data in the @code{.sbss} section.  Do not use register @code{r13}
19689to address small data however.  This is the default behavior unless
19690other @option{-msdata} options are used.
19691
19692@item -msdata=none
19693@itemx -mno-sdata
19694@opindex msdata=none
19695@opindex mno-sdata
19696On embedded PowerPC systems, put all initialized global and static data
19697in the @code{.data} section, and all uninitialized data in the
19698@code{.bss} section.
19699
19700@item -mblock-move-inline-limit=@var{num}
19701@opindex mblock-move-inline-limit
19702Inline all block moves (such as calls to @code{memcpy} or structure
19703copies) less than or equal to @var{num} bytes.  The minimum value for
19704@var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
19705targets.  The default value is target-specific.
19706
19707@item -G @var{num}
19708@opindex G
19709@cindex smaller data references (PowerPC)
19710@cindex .sdata/.sdata2 references (PowerPC)
19711On embedded PowerPC systems, put global and static items less than or
19712equal to @var{num} bytes into the small data or BSS sections instead of
19713the normal data or BSS section.  By default, @var{num} is 8.  The
19714@option{-G @var{num}} switch is also passed to the linker.
19715All modules should be compiled with the same @option{-G @var{num}} value.
19716
19717@item -mregnames
19718@itemx -mno-regnames
19719@opindex mregnames
19720@opindex mno-regnames
19721On System V.4 and embedded PowerPC systems do (do not) emit register
19722names in the assembly language output using symbolic forms.
19723
19724@item -mlongcall
19725@itemx -mno-longcall
19726@opindex mlongcall
19727@opindex mno-longcall
19728By default assume that all calls are far away so that a longer and more
19729expensive calling sequence is required.  This is required for calls
19730farther than 32 megabytes (33,554,432 bytes) from the current location.
19731A short call is generated if the compiler knows
19732the call cannot be that far away.  This setting can be overridden by
19733the @code{shortcall} function attribute, or by @code{#pragma
19734longcall(0)}.
19735
19736Some linkers are capable of detecting out-of-range calls and generating
19737glue code on the fly.  On these systems, long calls are unnecessary and
19738generate slower code.  As of this writing, the AIX linker can do this,
19739as can the GNU linker for PowerPC/64.  It is planned to add this feature
19740to the GNU linker for 32-bit PowerPC systems as well.
19741
19742On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
19743callee, L42}, plus a @dfn{branch island} (glue code).  The two target
19744addresses represent the callee and the branch island.  The
19745Darwin/PPC linker prefers the first address and generates a @code{bl
19746callee} if the PPC @code{bl} instruction reaches the callee directly;
19747otherwise, the linker generates @code{bl L42} to call the branch
19748island.  The branch island is appended to the body of the
19749calling function; it computes the full 32-bit address of the callee
19750and jumps to it.
19751
19752On Mach-O (Darwin) systems, this option directs the compiler emit to
19753the glue for every direct call, and the Darwin linker decides whether
19754to use or discard it.
19755
19756In the future, GCC may ignore all longcall specifications
19757when the linker is known to generate glue.
19758
19759@item -mtls-markers
19760@itemx -mno-tls-markers
19761@opindex mtls-markers
19762@opindex mno-tls-markers
19763Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
19764specifying the function argument.  The relocation allows the linker to
19765reliably associate function call with argument setup instructions for
19766TLS optimization, which in turn allows GCC to better schedule the
19767sequence.
19768
19769@item -pthread
19770@opindex pthread
19771Adds support for multithreading with the @dfn{pthreads} library.
19772This option sets flags for both the preprocessor and linker.
19773
19774@item -mrecip
19775@itemx -mno-recip
19776@opindex mrecip
19777This option enables use of the reciprocal estimate and
19778reciprocal square root estimate instructions with additional
19779Newton-Raphson steps to increase precision instead of doing a divide or
19780square root and divide for floating-point arguments.  You should use
19781the @option{-ffast-math} option when using @option{-mrecip} (or at
19782least @option{-funsafe-math-optimizations},
19783@option{-finite-math-only}, @option{-freciprocal-math} and
19784@option{-fno-trapping-math}).  Note that while the throughput of the
19785sequence is generally higher than the throughput of the non-reciprocal
19786instruction, the precision of the sequence can be decreased by up to 2
19787ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
19788roots.
19789
19790@item -mrecip=@var{opt}
19791@opindex mrecip=opt
19792This option controls which reciprocal estimate instructions
19793may be used.  @var{opt} is a comma-separated list of options, which may
19794be preceded by a @code{!} to invert the option:
19795
19796@table @samp
19797
19798@item all
19799Enable all estimate instructions.
19800
19801@item default 
19802Enable the default instructions, equivalent to @option{-mrecip}.
19803
19804@item none 
19805Disable all estimate instructions, equivalent to @option{-mno-recip}.
19806
19807@item div 
19808Enable the reciprocal approximation instructions for both 
19809single and double precision.
19810
19811@item divf 
19812Enable the single-precision reciprocal approximation instructions.
19813
19814@item divd 
19815Enable the double-precision reciprocal approximation instructions.
19816
19817@item rsqrt 
19818Enable the reciprocal square root approximation instructions for both
19819single and double precision.
19820
19821@item rsqrtf 
19822Enable the single-precision reciprocal square root approximation instructions.
19823
19824@item rsqrtd 
19825Enable the double-precision reciprocal square root approximation instructions.
19826
19827@end table
19828
19829So, for example, @option{-mrecip=all,!rsqrtd} enables
19830all of the reciprocal estimate instructions, except for the
19831@code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
19832which handle the double-precision reciprocal square root calculations.
19833
19834@item -mrecip-precision
19835@itemx -mno-recip-precision
19836@opindex mrecip-precision
19837Assume (do not assume) that the reciprocal estimate instructions
19838provide higher-precision estimates than is mandated by the PowerPC
19839ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
19840@option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
19841The double-precision square root estimate instructions are not generated by
19842default on low-precision machines, since they do not provide an
19843estimate that converges after three steps.
19844
19845@item -mveclibabi=@var{type}
19846@opindex mveclibabi
19847Specifies the ABI type to use for vectorizing intrinsics using an
19848external library.  The only type supported at present is @samp{mass},
19849which specifies to use IBM's Mathematical Acceleration Subsystem
19850(MASS) libraries for vectorizing intrinsics using external libraries.
19851GCC currently emits calls to @code{acosd2}, @code{acosf4},
19852@code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
19853@code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
19854@code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
19855@code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
19856@code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
19857@code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
19858@code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
19859@code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
19860@code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
19861@code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
19862@code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
19863@code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
19864@code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
19865for power7.  Both @option{-ftree-vectorize} and
19866@option{-funsafe-math-optimizations} must also be enabled.  The MASS
19867libraries must be specified at link time.
19868
19869@item -mfriz
19870@itemx -mno-friz
19871@opindex mfriz
19872Generate (do not generate) the @code{friz} instruction when the
19873@option{-funsafe-math-optimizations} option is used to optimize
19874rounding of floating-point values to 64-bit integer and back to floating
19875point.  The @code{friz} instruction does not return the same value if
19876the floating-point number is too large to fit in an integer.
19877
19878@item -mpointers-to-nested-functions
19879@itemx -mno-pointers-to-nested-functions
19880@opindex mpointers-to-nested-functions
19881Generate (do not generate) code to load up the static chain register
19882(@code{r11}) when calling through a pointer on AIX and 64-bit Linux
19883systems where a function pointer points to a 3-word descriptor giving
19884the function address, TOC value to be loaded in register @code{r2}, and
19885static chain value to be loaded in register @code{r11}.  The
19886@option{-mpointers-to-nested-functions} is on by default.  You cannot
19887call through pointers to nested functions or pointers
19888to functions compiled in other languages that use the static chain if
19889you use @option{-mno-pointers-to-nested-functions}.
19890
19891@item -msave-toc-indirect
19892@itemx -mno-save-toc-indirect
19893@opindex msave-toc-indirect
19894Generate (do not generate) code to save the TOC value in the reserved
19895stack location in the function prologue if the function calls through
19896a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
19897saved in the prologue, it is saved just before the call through the
19898pointer.  The @option{-mno-save-toc-indirect} option is the default.
19899
19900@item -mcompat-align-parm
19901@itemx -mno-compat-align-parm
19902@opindex mcompat-align-parm
19903Generate (do not generate) code to pass structure parameters with a
19904maximum alignment of 64 bits, for compatibility with older versions
19905of GCC.
19906
19907Older versions of GCC (prior to 4.9.0) incorrectly did not align a
19908structure parameter on a 128-bit boundary when that structure contained
19909a member requiring 128-bit alignment.  This is corrected in more
19910recent versions of GCC.  This option may be used to generate code
19911that is compatible with functions compiled with older versions of
19912GCC.
19913
19914The @option{-mno-compat-align-parm} option is the default.
19915@end table
19916
19917@node RX Options
19918@subsection RX Options
19919@cindex RX Options
19920
19921These command-line options are defined for RX targets:
19922
19923@table @gcctabopt
19924@item -m64bit-doubles
19925@itemx -m32bit-doubles
19926@opindex m64bit-doubles
19927@opindex m32bit-doubles
19928Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19929or 32 bits (@option{-m32bit-doubles}) in size.  The default is
19930@option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
19931works on 32-bit values, which is why the default is
19932@option{-m32bit-doubles}.
19933
19934@item -fpu
19935@itemx -nofpu
19936@opindex fpu
19937@opindex nofpu
19938Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
19939floating-point hardware.  The default is enabled for the RX600
19940series and disabled for the RX200 series.
19941
19942Floating-point instructions are only generated for 32-bit floating-point 
19943values, however, so the FPU hardware is not used for doubles if the
19944@option{-m64bit-doubles} option is used.
19945
19946@emph{Note} If the @option{-fpu} option is enabled then
19947@option{-funsafe-math-optimizations} is also enabled automatically.
19948This is because the RX FPU instructions are themselves unsafe.
19949
19950@item -mcpu=@var{name}
19951@opindex mcpu
19952Selects the type of RX CPU to be targeted.  Currently three types are
19953supported, the generic @samp{RX600} and @samp{RX200} series hardware and
19954the specific @samp{RX610} CPU.  The default is @samp{RX600}.
19955
19956The only difference between @samp{RX600} and @samp{RX610} is that the
19957@samp{RX610} does not support the @code{MVTIPL} instruction.
19958
19959The @samp{RX200} series does not have a hardware floating-point unit
19960and so @option{-nofpu} is enabled by default when this type is
19961selected.
19962
19963@item -mbig-endian-data
19964@itemx -mlittle-endian-data
19965@opindex mbig-endian-data
19966@opindex mlittle-endian-data
19967Store data (but not code) in the big-endian format.  The default is
19968@option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
19969format.
19970
19971@item -msmall-data-limit=@var{N}
19972@opindex msmall-data-limit
19973Specifies the maximum size in bytes of global and static variables
19974which can be placed into the small data area.  Using the small data
19975area can lead to smaller and faster code, but the size of area is
19976limited and it is up to the programmer to ensure that the area does
19977not overflow.  Also when the small data area is used one of the RX's
19978registers (usually @code{r13}) is reserved for use pointing to this
19979area, so it is no longer available for use by the compiler.  This
19980could result in slower and/or larger code if variables are pushed onto
19981the stack instead of being held in this register.
19982
19983Note, common variables (variables that have not been initialized) and
19984constants are not placed into the small data area as they are assigned
19985to other sections in the output executable.
19986
19987The default value is zero, which disables this feature.  Note, this
19988feature is not enabled by default with higher optimization levels
19989(@option{-O2} etc) because of the potentially detrimental effects of
19990reserving a register.  It is up to the programmer to experiment and
19991discover whether this feature is of benefit to their program.  See the
19992description of the @option{-mpid} option for a description of how the
19993actual register to hold the small data area pointer is chosen.
19994
19995@item -msim
19996@itemx -mno-sim
19997@opindex msim
19998@opindex mno-sim
19999Use the simulator runtime.  The default is to use the libgloss
20000board-specific runtime.
20001
20002@item -mas100-syntax
20003@itemx -mno-as100-syntax
20004@opindex mas100-syntax
20005@opindex mno-as100-syntax
20006When generating assembler output use a syntax that is compatible with
20007Renesas's AS100 assembler.  This syntax can also be handled by the GAS
20008assembler, but it has some restrictions so it is not generated by default.
20009
20010@item -mmax-constant-size=@var{N}
20011@opindex mmax-constant-size
20012Specifies the maximum size, in bytes, of a constant that can be used as
20013an operand in a RX instruction.  Although the RX instruction set does
20014allow constants of up to 4 bytes in length to be used in instructions,
20015a longer value equates to a longer instruction.  Thus in some
20016circumstances it can be beneficial to restrict the size of constants
20017that are used in instructions.  Constants that are too big are instead
20018placed into a constant pool and referenced via register indirection.
20019
20020The value @var{N} can be between 0 and 4.  A value of 0 (the default)
20021or 4 means that constants of any size are allowed.
20022
20023@item -mrelax
20024@opindex mrelax
20025Enable linker relaxation.  Linker relaxation is a process whereby the
20026linker attempts to reduce the size of a program by finding shorter
20027versions of various instructions.  Disabled by default.
20028
20029@item -mint-register=@var{N}
20030@opindex mint-register
20031Specify the number of registers to reserve for fast interrupt handler
20032functions.  The value @var{N} can be between 0 and 4.  A value of 1
20033means that register @code{r13} is reserved for the exclusive use
20034of fast interrupt handlers.  A value of 2 reserves @code{r13} and
20035@code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
20036@code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20037A value of 0, the default, does not reserve any registers.
20038
20039@item -msave-acc-in-interrupts
20040@opindex msave-acc-in-interrupts
20041Specifies that interrupt handler functions should preserve the
20042accumulator register.  This is only necessary if normal code might use
20043the accumulator register, for example because it performs 64-bit
20044multiplications.  The default is to ignore the accumulator as this
20045makes the interrupt handlers faster.
20046
20047@item -mpid
20048@itemx -mno-pid
20049@opindex mpid
20050@opindex mno-pid
20051Enables the generation of position independent data.  When enabled any
20052access to constant data is done via an offset from a base address
20053held in a register.  This allows the location of constant data to be
20054determined at run time without requiring the executable to be
20055relocated, which is a benefit to embedded applications with tight
20056memory constraints.  Data that can be modified is not affected by this
20057option.
20058
20059Note, using this feature reserves a register, usually @code{r13}, for
20060the constant data base address.  This can result in slower and/or
20061larger code, especially in complicated functions.
20062
20063The actual register chosen to hold the constant data base address
20064depends upon whether the @option{-msmall-data-limit} and/or the
20065@option{-mint-register} command-line options are enabled.  Starting
20066with register @code{r13} and proceeding downwards, registers are
20067allocated first to satisfy the requirements of @option{-mint-register},
20068then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
20069is possible for the small data area register to be @code{r8} if both
20070@option{-mint-register=4} and @option{-mpid} are specified on the
20071command line.
20072
20073By default this feature is not enabled.  The default can be restored
20074via the @option{-mno-pid} command-line option.
20075
20076@item -mno-warn-multiple-fast-interrupts
20077@itemx -mwarn-multiple-fast-interrupts
20078@opindex mno-warn-multiple-fast-interrupts
20079@opindex mwarn-multiple-fast-interrupts
20080Prevents GCC from issuing a warning message if it finds more than one
20081fast interrupt handler when it is compiling a file.  The default is to
20082issue a warning for each extra fast interrupt handler found, as the RX
20083only supports one such interrupt.
20084
20085@end table
20086
20087@emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20088has special significance to the RX port when used with the
20089@code{interrupt} function attribute.  This attribute indicates a
20090function intended to process fast interrupts.  GCC ensures
20091that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20092and/or @code{r13} and only provided that the normal use of the
20093corresponding registers have been restricted via the
20094@option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20095options.
20096
20097@node S/390 and zSeries Options
20098@subsection S/390 and zSeries Options
20099@cindex S/390 and zSeries Options
20100
20101These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20102
20103@table @gcctabopt
20104@item -mhard-float
20105@itemx -msoft-float
20106@opindex mhard-float
20107@opindex msoft-float
20108Use (do not use) the hardware floating-point instructions and registers
20109for floating-point operations.  When @option{-msoft-float} is specified,
20110functions in @file{libgcc.a} are used to perform floating-point
20111operations.  When @option{-mhard-float} is specified, the compiler
20112generates IEEE floating-point instructions.  This is the default.
20113
20114@item -mhard-dfp
20115@itemx -mno-hard-dfp
20116@opindex mhard-dfp
20117@opindex mno-hard-dfp
20118Use (do not use) the hardware decimal-floating-point instructions for
20119decimal-floating-point operations.  When @option{-mno-hard-dfp} is
20120specified, functions in @file{libgcc.a} are used to perform
20121decimal-floating-point operations.  When @option{-mhard-dfp} is
20122specified, the compiler generates decimal-floating-point hardware
20123instructions.  This is the default for @option{-march=z9-ec} or higher.
20124
20125@item -mlong-double-64
20126@itemx -mlong-double-128
20127@opindex mlong-double-64
20128@opindex mlong-double-128
20129These switches control the size of @code{long double} type. A size
20130of 64 bits makes the @code{long double} type equivalent to the @code{double}
20131type. This is the default.
20132
20133@item -mbackchain
20134@itemx -mno-backchain
20135@opindex mbackchain
20136@opindex mno-backchain
20137Store (do not store) the address of the caller's frame as backchain pointer
20138into the callee's stack frame.
20139A backchain may be needed to allow debugging using tools that do not understand
20140DWARF 2 call frame information.
20141When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20142at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20143the backchain is placed into the topmost word of the 96/160 byte register
20144save area.
20145
20146In general, code compiled with @option{-mbackchain} is call-compatible with
20147code compiled with @option{-mmo-backchain}; however, use of the backchain
20148for debugging purposes usually requires that the whole binary is built with
20149@option{-mbackchain}.  Note that the combination of @option{-mbackchain},
20150@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
20151to build a linux kernel use @option{-msoft-float}.
20152
20153The default is to not maintain the backchain.
20154
20155@item -mpacked-stack
20156@itemx -mno-packed-stack
20157@opindex mpacked-stack
20158@opindex mno-packed-stack
20159Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
20160specified, the compiler uses the all fields of the 96/160 byte register save
20161area only for their default purpose; unused fields still take up stack space.
20162When @option{-mpacked-stack} is specified, register save slots are densely
20163packed at the top of the register save area; unused space is reused for other
20164purposes, allowing for more efficient use of the available stack space.
20165However, when @option{-mbackchain} is also in effect, the topmost word of
20166the save area is always used to store the backchain, and the return address
20167register is always saved two words below the backchain.
20168
20169As long as the stack frame backchain is not used, code generated with
20170@option{-mpacked-stack} is call-compatible with code generated with
20171@option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
20172S/390 or zSeries generated code that uses the stack frame backchain at run
20173time, not just for debugging purposes.  Such code is not call-compatible
20174with code compiled with @option{-mpacked-stack}.  Also, note that the
20175combination of @option{-mbackchain},
20176@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
20177to build a linux kernel use @option{-msoft-float}.
20178
20179The default is to not use the packed stack layout.
20180
20181@item -msmall-exec
20182@itemx -mno-small-exec
20183@opindex msmall-exec
20184@opindex mno-small-exec
20185Generate (or do not generate) code using the @code{bras} instruction
20186to do subroutine calls.
20187This only works reliably if the total executable size does not
20188exceed 64k.  The default is to use the @code{basr} instruction instead,
20189which does not have this limitation.
20190
20191@item -m64
20192@itemx -m31
20193@opindex m64
20194@opindex m31
20195When @option{-m31} is specified, generate code compliant to the
20196GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
20197code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
20198particular to generate 64-bit instructions.  For the @samp{s390}
20199targets, the default is @option{-m31}, while the @samp{s390x}
20200targets default to @option{-m64}.
20201
20202@item -mzarch
20203@itemx -mesa
20204@opindex mzarch
20205@opindex mesa
20206When @option{-mzarch} is specified, generate code using the
20207instructions available on z/Architecture.
20208When @option{-mesa} is specified, generate code using the
20209instructions available on ESA/390.  Note that @option{-mesa} is
20210not possible with @option{-m64}.
20211When generating code compliant to the GNU/Linux for S/390 ABI,
20212the default is @option{-mesa}.  When generating code compliant
20213to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20214
20215@item -mmvcle
20216@itemx -mno-mvcle
20217@opindex mmvcle
20218@opindex mno-mvcle
20219Generate (or do not generate) code using the @code{mvcle} instruction
20220to perform block moves.  When @option{-mno-mvcle} is specified,
20221use a @code{mvc} loop instead.  This is the default unless optimizing for
20222size.
20223
20224@item -mdebug
20225@itemx -mno-debug
20226@opindex mdebug
20227@opindex mno-debug
20228Print (or do not print) additional debug information when compiling.
20229The default is to not print debug information.
20230
20231@item -march=@var{cpu-type}
20232@opindex march
20233Generate code that runs on @var{cpu-type}, which is the name of a system
20234representing a certain processor type.  Possible values for
20235@var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20236@samp{z9-109}, @samp{z9-ec}, @samp{z10},  @samp{z196}, @samp{zEC12},
20237and @samp{z13}.
20238When generating code using the instructions available on z/Architecture,
20239the default is @option{-march=z900}.  Otherwise, the default is
20240@option{-march=g5}.
20241
20242@item -mtune=@var{cpu-type}
20243@opindex mtune
20244Tune to @var{cpu-type} everything applicable about the generated code,
20245except for the ABI and the set of available instructions.
20246The list of @var{cpu-type} values is the same as for @option{-march}.
20247The default is the value used for @option{-march}.
20248
20249@item -mtpf-trace
20250@itemx -mno-tpf-trace
20251@opindex mtpf-trace
20252@opindex mno-tpf-trace
20253Generate code that adds (does not add) in TPF OS specific branches to trace
20254routines in the operating system.  This option is off by default, even
20255when compiling for the TPF OS@.
20256
20257@item -mfused-madd
20258@itemx -mno-fused-madd
20259@opindex mfused-madd
20260@opindex mno-fused-madd
20261Generate code that uses (does not use) the floating-point multiply and
20262accumulate instructions.  These instructions are generated by default if
20263hardware floating point is used.
20264
20265@item -mwarn-framesize=@var{framesize}
20266@opindex mwarn-framesize
20267Emit a warning if the current function exceeds the given frame size.  Because
20268this is a compile-time check it doesn't need to be a real problem when the program
20269runs.  It is intended to identify functions that most probably cause
20270a stack overflow.  It is useful to be used in an environment with limited stack
20271size e.g.@: the linux kernel.
20272
20273@item -mwarn-dynamicstack
20274@opindex mwarn-dynamicstack
20275Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20276arrays.  This is generally a bad idea with a limited stack size.
20277
20278@item -mstack-guard=@var{stack-guard}
20279@itemx -mstack-size=@var{stack-size}
20280@opindex mstack-guard
20281@opindex mstack-size
20282If these options are provided the S/390 back end emits additional instructions in
20283the function prologue that trigger a trap if the stack size is @var{stack-guard}
20284bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20285If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20286the frame size of the compiled function is chosen.
20287These options are intended to be used to help debugging stack overflow problems.
20288The additionally emitted code causes only little overhead and hence can also be
20289used in production-like systems without greater performance degradation.  The given
20290values have to be exact powers of 2 and @var{stack-size} has to be greater than
20291@var{stack-guard} without exceeding 64k.
20292In order to be efficient the extra code makes the assumption that the stack starts
20293at an address aligned to the value given by @var{stack-size}.
20294The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20295
20296@item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20297@opindex mhotpatch
20298If the hotpatch option is enabled, a ``hot-patching'' function
20299prologue is generated for all functions in the compilation unit.
20300The funtion label is prepended with the given number of two-byte
20301NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
20302the label, 2 * @var{post-halfwords} bytes are appended, using the
20303largest NOP like instructions the architecture allows (maximum
203041000000).
20305
20306If both arguments are zero, hotpatching is disabled.
20307
20308This option can be overridden for individual functions with the
20309@code{hotpatch} attribute.
20310@end table
20311
20312@node Score Options
20313@subsection Score Options
20314@cindex Score Options
20315
20316These options are defined for Score implementations:
20317
20318@table @gcctabopt
20319@item -meb
20320@opindex meb
20321Compile code for big-endian mode.  This is the default.
20322
20323@item -mel
20324@opindex mel
20325Compile code for little-endian mode.
20326
20327@item -mnhwloop
20328@opindex mnhwloop
20329Disable generation of @code{bcnz} instructions.
20330
20331@item -muls
20332@opindex muls
20333Enable generation of unaligned load and store instructions.
20334
20335@item -mmac
20336@opindex mmac
20337Enable the use of multiply-accumulate instructions. Disabled by default.
20338
20339@item -mscore5
20340@opindex mscore5
20341Specify the SCORE5 as the target architecture.
20342
20343@item -mscore5u
20344@opindex mscore5u
20345Specify the SCORE5U of the target architecture.
20346
20347@item -mscore7
20348@opindex mscore7
20349Specify the SCORE7 as the target architecture. This is the default.
20350
20351@item -mscore7d
20352@opindex mscore7d
20353Specify the SCORE7D as the target architecture.
20354@end table
20355
20356@node SH Options
20357@subsection SH Options
20358
20359These @samp{-m} options are defined for the SH implementations:
20360
20361@table @gcctabopt
20362@item -m1
20363@opindex m1
20364Generate code for the SH1.
20365
20366@item -m2
20367@opindex m2
20368Generate code for the SH2.
20369
20370@item -m2e
20371Generate code for the SH2e.
20372
20373@item -m2a-nofpu
20374@opindex m2a-nofpu
20375Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20376that the floating-point unit is not used.
20377
20378@item -m2a-single-only
20379@opindex m2a-single-only
20380Generate code for the SH2a-FPU, in such a way that no double-precision
20381floating-point operations are used.
20382
20383@item -m2a-single
20384@opindex m2a-single
20385Generate code for the SH2a-FPU assuming the floating-point unit is in
20386single-precision mode by default.
20387
20388@item -m2a
20389@opindex m2a
20390Generate code for the SH2a-FPU assuming the floating-point unit is in
20391double-precision mode by default.
20392
20393@item -m3
20394@opindex m3
20395Generate code for the SH3.
20396
20397@item -m3e
20398@opindex m3e
20399Generate code for the SH3e.
20400
20401@item -m4-nofpu
20402@opindex m4-nofpu
20403Generate code for the SH4 without a floating-point unit.
20404
20405@item -m4-single-only
20406@opindex m4-single-only
20407Generate code for the SH4 with a floating-point unit that only
20408supports single-precision arithmetic.
20409
20410@item -m4-single
20411@opindex m4-single
20412Generate code for the SH4 assuming the floating-point unit is in
20413single-precision mode by default.
20414
20415@item -m4
20416@opindex m4
20417Generate code for the SH4.
20418
20419@item -m4-100
20420@opindex m4-100
20421Generate code for SH4-100.
20422
20423@item -m4-100-nofpu
20424@opindex m4-100-nofpu
20425Generate code for SH4-100 in such a way that the
20426floating-point unit is not used.
20427
20428@item -m4-100-single
20429@opindex m4-100-single
20430Generate code for SH4-100 assuming the floating-point unit is in
20431single-precision mode by default.
20432
20433@item -m4-100-single-only
20434@opindex m4-100-single-only
20435Generate code for SH4-100 in such a way that no double-precision
20436floating-point operations are used.
20437
20438@item -m4-200
20439@opindex m4-200
20440Generate code for SH4-200.
20441
20442@item -m4-200-nofpu
20443@opindex m4-200-nofpu
20444Generate code for SH4-200 without in such a way that the
20445floating-point unit is not used.
20446
20447@item -m4-200-single
20448@opindex m4-200-single
20449Generate code for SH4-200 assuming the floating-point unit is in
20450single-precision mode by default.
20451
20452@item -m4-200-single-only
20453@opindex m4-200-single-only
20454Generate code for SH4-200 in such a way that no double-precision
20455floating-point operations are used.
20456
20457@item -m4-300
20458@opindex m4-300
20459Generate code for SH4-300.
20460
20461@item -m4-300-nofpu
20462@opindex m4-300-nofpu
20463Generate code for SH4-300 without in such a way that the
20464floating-point unit is not used.
20465
20466@item -m4-300-single
20467@opindex m4-300-single
20468Generate code for SH4-300 in such a way that no double-precision
20469floating-point operations are used.
20470
20471@item -m4-300-single-only
20472@opindex m4-300-single-only
20473Generate code for SH4-300 in such a way that no double-precision
20474floating-point operations are used.
20475
20476@item -m4-340
20477@opindex m4-340
20478Generate code for SH4-340 (no MMU, no FPU).
20479
20480@item -m4-500
20481@opindex m4-500
20482Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
20483assembler.
20484
20485@item -m4a-nofpu
20486@opindex m4a-nofpu
20487Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20488floating-point unit is not used.
20489
20490@item -m4a-single-only
20491@opindex m4a-single-only
20492Generate code for the SH4a, in such a way that no double-precision
20493floating-point operations are used.
20494
20495@item -m4a-single
20496@opindex m4a-single
20497Generate code for the SH4a assuming the floating-point unit is in
20498single-precision mode by default.
20499
20500@item -m4a
20501@opindex m4a
20502Generate code for the SH4a.
20503
20504@item -m4al
20505@opindex m4al
20506Same as @option{-m4a-nofpu}, except that it implicitly passes
20507@option{-dsp} to the assembler.  GCC doesn't generate any DSP
20508instructions at the moment.
20509
20510@item -m5-32media
20511@opindex m5-32media
20512Generate 32-bit code for SHmedia.
20513
20514@item -m5-32media-nofpu
20515@opindex m5-32media-nofpu
20516Generate 32-bit code for SHmedia in such a way that the
20517floating-point unit is not used.
20518
20519@item -m5-64media
20520@opindex m5-64media
20521Generate 64-bit code for SHmedia.
20522
20523@item -m5-64media-nofpu
20524@opindex m5-64media-nofpu
20525Generate 64-bit code for SHmedia in such a way that the
20526floating-point unit is not used.
20527
20528@item -m5-compact
20529@opindex m5-compact
20530Generate code for SHcompact.
20531
20532@item -m5-compact-nofpu
20533@opindex m5-compact-nofpu
20534Generate code for SHcompact in such a way that the
20535floating-point unit is not used.
20536
20537@item -mb
20538@opindex mb
20539Compile code for the processor in big-endian mode.
20540
20541@item -ml
20542@opindex ml
20543Compile code for the processor in little-endian mode.
20544
20545@item -mdalign
20546@opindex mdalign
20547Align doubles at 64-bit boundaries.  Note that this changes the calling
20548conventions, and thus some functions from the standard C library do
20549not work unless you recompile it first with @option{-mdalign}.
20550
20551@item -mrelax
20552@opindex mrelax
20553Shorten some address references at link time, when possible; uses the
20554linker option @option{-relax}.
20555
20556@item -mbigtable
20557@opindex mbigtable
20558Use 32-bit offsets in @code{switch} tables.  The default is to use
2055916-bit offsets.
20560
20561@item -mbitops
20562@opindex mbitops
20563Enable the use of bit manipulation instructions on SH2A.
20564
20565@item -mfmovd
20566@opindex mfmovd
20567Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
20568alignment constraints.
20569
20570@item -mrenesas
20571@opindex mrenesas
20572Comply with the calling conventions defined by Renesas.
20573
20574@item -mno-renesas
20575@opindex mno-renesas
20576Comply with the calling conventions defined for GCC before the Renesas
20577conventions were available.  This option is the default for all
20578targets of the SH toolchain.
20579
20580@item -mnomacsave
20581@opindex mnomacsave
20582Mark the @code{MAC} register as call-clobbered, even if
20583@option{-mrenesas} is given.
20584
20585@item -mieee
20586@itemx -mno-ieee
20587@opindex mieee
20588@opindex mno-ieee
20589Control the IEEE compliance of floating-point comparisons, which affects the
20590handling of cases where the result of a comparison is unordered.  By default
20591@option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
20592enabled @option{-mno-ieee} is implicitly set, which results in faster
20593floating-point greater-equal and less-equal comparisons.  The implcit settings
20594can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20595
20596@item -minline-ic_invalidate
20597@opindex minline-ic_invalidate
20598Inline code to invalidate instruction cache entries after setting up
20599nested function trampolines.
20600This option has no effect if @option{-musermode} is in effect and the selected
20601code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20602instruction.
20603If the selected code generation option does not allow the use of the @code{icbi}
20604instruction, and @option{-musermode} is not in effect, the inlined code
20605manipulates the instruction cache address array directly with an associative
20606write.  This not only requires privileged mode at run time, but it also
20607fails if the cache line had been mapped via the TLB and has become unmapped.
20608
20609@item -misize
20610@opindex misize
20611Dump instruction size and location in the assembly code.
20612
20613@item -mpadstruct
20614@opindex mpadstruct
20615This option is deprecated.  It pads structures to multiple of 4 bytes,
20616which is incompatible with the SH ABI@.
20617
20618@item -matomic-model=@var{model}
20619@opindex matomic-model=@var{model}
20620Sets the model of atomic operations and additional parameters as a comma
20621separated list.  For details on the atomic built-in functions see
20622@ref{__atomic Builtins}.  The following models and parameters are supported:
20623
20624@table @samp
20625
20626@item none
20627Disable compiler generated atomic sequences and emit library calls for atomic
20628operations.  This is the default if the target is not @code{sh*-*-linux*}.
20629
20630@item soft-gusa
20631Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20632built-in functions.  The generated atomic sequences require additional support
20633from the interrupt/exception handling code of the system and are only suitable
20634for SH3* and SH4* single-core systems.  This option is enabled by default when
20635the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
20636this option also partially utilizes the hardware atomic instructions
20637@code{movli.l} and @code{movco.l} to create more efficient code, unless
20638@samp{strict} is specified.  
20639
20640@item soft-tcb
20641Generate software atomic sequences that use a variable in the thread control
20642block.  This is a variation of the gUSA sequences which can also be used on
20643SH1* and SH2* targets.  The generated atomic sequences require additional
20644support from the interrupt/exception handling code of the system and are only
20645suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
20646parameter has to be specified as well.
20647
20648@item soft-imask
20649Generate software atomic sequences that temporarily disable interrupts by
20650setting @code{SR.IMASK = 1111}.  This model works only when the program runs
20651in privileged mode and is only suitable for single-core systems.  Additional
20652support from the interrupt/exception handling code of the system is not
20653required.  This model is enabled by default when the target is
20654@code{sh*-*-linux*} and SH1* or SH2*.
20655
20656@item hard-llcs
20657Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20658instructions only.  This is only available on SH4A and is suitable for
20659multi-core systems.  Since the hardware instructions support only 32 bit atomic
20660variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
20661Code compiled with this option is also compatible with other software
20662atomic model interrupt/exception handling systems if executed on an SH4A
20663system.  Additional support from the interrupt/exception handling code of the
20664system is not required for this model.
20665
20666@item gbr-offset=
20667This parameter specifies the offset in bytes of the variable in the thread
20668control block structure that should be used by the generated atomic sequences
20669when the @samp{soft-tcb} model has been selected.  For other models this
20670parameter is ignored.  The specified value must be an integer multiple of four
20671and in the range 0-1020.
20672
20673@item strict
20674This parameter prevents mixed usage of multiple atomic models, even if they
20675are compatible, and makes the compiler generate atomic sequences of the
20676specified model only.
20677
20678@end table
20679
20680@item -mtas
20681@opindex mtas
20682Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
20683Notice that depending on the particular hardware and software configuration
20684this can degrade overall performance due to the operand cache line flushes
20685that are implied by the @code{tas.b} instruction.  On multi-core SH4A
20686processors the @code{tas.b} instruction must be used with caution since it
20687can result in data corruption for certain cache configurations.
20688
20689@item -mprefergot
20690@opindex mprefergot
20691When generating position-independent code, emit function calls using
20692the Global Offset Table instead of the Procedure Linkage Table.
20693
20694@item -musermode
20695@itemx -mno-usermode
20696@opindex musermode
20697@opindex mno-usermode
20698Don't allow (allow) the compiler generating privileged mode code.  Specifying
20699@option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
20700inlined code would not work in user mode.  @option{-musermode} is the default
20701when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
20702@option{-musermode} has no effect, since there is no user mode.
20703
20704@item -multcost=@var{number}
20705@opindex multcost=@var{number}
20706Set the cost to assume for a multiply insn.
20707
20708@item -mdiv=@var{strategy}
20709@opindex mdiv=@var{strategy}
20710Set the division strategy to be used for integer division operations.
20711For SHmedia @var{strategy} can be one of: 
20712
20713@table @samp
20714
20715@item fp 
20716Performs the operation in floating point.  This has a very high latency,
20717but needs only a few instructions, so it might be a good choice if
20718your code has enough easily-exploitable ILP to allow the compiler to
20719schedule the floating-point instructions together with other instructions.
20720Division by zero causes a floating-point exception.
20721
20722@item inv
20723Uses integer operations to calculate the inverse of the divisor,
20724and then multiplies the dividend with the inverse.  This strategy allows
20725CSE and hoisting of the inverse calculation.  Division by zero calculates
20726an unspecified result, but does not trap.
20727
20728@item inv:minlat
20729A variant of @samp{inv} where, if no CSE or hoisting opportunities
20730have been found, or if the entire operation has been hoisted to the same
20731place, the last stages of the inverse calculation are intertwined with the
20732final multiply to reduce the overall latency, at the expense of using a few
20733more instructions, and thus offering fewer scheduling opportunities with
20734other code.
20735
20736@item call
20737Calls a library function that usually implements the @samp{inv:minlat}
20738strategy.
20739This gives high code density for @code{m5-*media-nofpu} compilations.
20740
20741@item call2
20742Uses a different entry point of the same library function, where it
20743assumes that a pointer to a lookup table has already been set up, which
20744exposes the pointer load to CSE and code hoisting optimizations.
20745
20746@item inv:call
20747@itemx inv:call2
20748@itemx inv:fp
20749Use the @samp{inv} algorithm for initial
20750code generation, but if the code stays unoptimized, revert to the @samp{call},
20751@samp{call2}, or @samp{fp} strategies, respectively.  Note that the
20752potentially-trapping side effect of division by zero is carried by a
20753separate instruction, so it is possible that all the integer instructions
20754are hoisted out, but the marker for the side effect stays where it is.
20755A recombination to floating-point operations or a call is not possible
20756in that case.
20757
20758@item inv20u
20759@itemx inv20l
20760Variants of the @samp{inv:minlat} strategy.  In the case
20761that the inverse calculation is not separated from the multiply, they speed
20762up division where the dividend fits into 20 bits (plus sign where applicable)
20763by inserting a test to skip a number of operations in this case; this test
20764slows down the case of larger dividends.  @samp{inv20u} assumes the case of a such
20765a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
20766
20767@end table
20768
20769For targets other than SHmedia @var{strategy} can be one of:
20770
20771@table @samp
20772
20773@item call-div1
20774Calls a library function that uses the single-step division instruction
20775@code{div1} to perform the operation.  Division by zero calculates an
20776unspecified result and does not trap.  This is the default except for SH4,
20777SH2A and SHcompact.
20778
20779@item call-fp
20780Calls a library function that performs the operation in double precision
20781floating point.  Division by zero causes a floating-point exception.  This is
20782the default for SHcompact with FPU.  Specifying this for targets that do not
20783have a double precision FPU defaults to @code{call-div1}.
20784
20785@item call-table
20786Calls a library function that uses a lookup table for small divisors and
20787the @code{div1} instruction with case distinction for larger divisors.  Division
20788by zero calculates an unspecified result and does not trap.  This is the default
20789for SH4.  Specifying this for targets that do not have dynamic shift
20790instructions defaults to @code{call-div1}.
20791
20792@end table
20793
20794When a division strategy has not been specified the default strategy is
20795selected based on the current target.  For SH2A the default strategy is to
20796use the @code{divs} and @code{divu} instructions instead of library function
20797calls.
20798
20799@item -maccumulate-outgoing-args
20800@opindex maccumulate-outgoing-args
20801Reserve space once for outgoing arguments in the function prologue rather
20802than around each call.  Generally beneficial for performance and size.  Also
20803needed for unwinding to avoid changing the stack frame around conditional code.
20804
20805@item -mdivsi3_libfunc=@var{name}
20806@opindex mdivsi3_libfunc=@var{name}
20807Set the name of the library function used for 32-bit signed division to
20808@var{name}.
20809This only affects the name used in the @samp{call} and @samp{inv:call}
20810division strategies, and the compiler still expects the same
20811sets of input/output/clobbered registers as if this option were not present.
20812
20813@item -mfixed-range=@var{register-range}
20814@opindex mfixed-range
20815Generate code treating the given register range as fixed registers.
20816A fixed register is one that the register allocator can not use.  This is
20817useful when compiling kernel code.  A register range is specified as
20818two registers separated by a dash.  Multiple register ranges can be
20819specified separated by a comma.
20820
20821@item -mindexed-addressing
20822@opindex mindexed-addressing
20823Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
20824This is only safe if the hardware and/or OS implement 32-bit wrap-around
20825semantics for the indexed addressing mode.  The architecture allows the
20826implementation of processors with 64-bit MMU, which the OS could use to
20827get 32-bit addressing, but since no current hardware implementation supports
20828this or any other way to make the indexed addressing mode safe to use in
20829the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
20830
20831@item -mgettrcost=@var{number}
20832@opindex mgettrcost=@var{number}
20833Set the cost assumed for the @code{gettr} instruction to @var{number}.
20834The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
20835
20836@item -mpt-fixed
20837@opindex mpt-fixed
20838Assume @code{pt*} instructions won't trap.  This generally generates
20839better-scheduled code, but is unsafe on current hardware.
20840The current architecture
20841definition says that @code{ptabs} and @code{ptrel} trap when the target 
20842anded with 3 is 3.
20843This has the unintentional effect of making it unsafe to schedule these
20844instructions before a branch, or hoist them out of a loop.  For example,
20845@code{__do_global_ctors}, a part of @file{libgcc}
20846that runs constructors at program
20847startup, calls functions in a list which is delimited by @minus{}1.  With the
20848@option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
20849That means that all the constructors run a bit more quickly, but when
20850the loop comes to the end of the list, the program crashes because @code{ptabs}
20851loads @minus{}1 into a target register.  
20852
20853Since this option is unsafe for any
20854hardware implementing the current architecture specification, the default
20855is @option{-mno-pt-fixed}.  Unless specified explicitly with 
20856@option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
20857this deters register allocation from using target registers for storing
20858ordinary integers.
20859
20860@item -minvalid-symbols
20861@opindex minvalid-symbols
20862Assume symbols might be invalid.  Ordinary function symbols generated by
20863the compiler are always valid to load with
20864@code{movi}/@code{shori}/@code{ptabs} or
20865@code{movi}/@code{shori}/@code{ptrel},
20866but with assembler and/or linker tricks it is possible
20867to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
20868This option is only meaningful when @option{-mno-pt-fixed} is in effect.
20869It prevents cross-basic-block CSE, hoisting and most scheduling
20870of symbol loads.  The default is @option{-mno-invalid-symbols}.
20871
20872@item -mbranch-cost=@var{num}
20873@opindex mbranch-cost=@var{num}
20874Assume @var{num} to be the cost for a branch instruction.  Higher numbers
20875make the compiler try to generate more branch-free code if possible.  
20876If not specified the value is selected depending on the processor type that
20877is being compiled for.
20878
20879@item -mzdcbranch
20880@itemx -mno-zdcbranch
20881@opindex mzdcbranch
20882@opindex mno-zdcbranch
20883Assume (do not assume) that zero displacement conditional branch instructions
20884@code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
20885compiler prefers zero displacement branch code sequences.  This is
20886enabled by default when generating code for SH4 and SH4A.  It can be explicitly
20887disabled by specifying @option{-mno-zdcbranch}.
20888
20889@item -mcbranch-force-delay-slot
20890@opindex mcbranch-force-delay-slot
20891Force the usage of delay slots for conditional branches, which stuffs the delay
20892slot with a @code{nop} if a suitable instruction can't be found.  By default
20893this option is disabled.  It can be enabled to work around hardware bugs as
20894found in the original SH7055.
20895
20896@item -mfused-madd
20897@itemx -mno-fused-madd
20898@opindex mfused-madd
20899@opindex mno-fused-madd
20900Generate code that uses (does not use) the floating-point multiply and
20901accumulate instructions.  These instructions are generated by default
20902if hardware floating point is used.  The machine-dependent
20903@option{-mfused-madd} option is now mapped to the machine-independent
20904@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
20905mapped to @option{-ffp-contract=off}.
20906
20907@item -mfsca
20908@itemx -mno-fsca
20909@opindex mfsca
20910@opindex mno-fsca
20911Allow or disallow the compiler to emit the @code{fsca} instruction for sine
20912and cosine approximations.  The option @option{-mfsca} must be used in
20913combination with @option{-funsafe-math-optimizations}.  It is enabled by default
20914when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
20915approximations even if @option{-funsafe-math-optimizations} is in effect.
20916
20917@item -mfsrra
20918@itemx -mno-fsrra
20919@opindex mfsrra
20920@opindex mno-fsrra
20921Allow or disallow the compiler to emit the @code{fsrra} instruction for
20922reciprocal square root approximations.  The option @option{-mfsrra} must be used
20923in combination with @option{-funsafe-math-optimizations} and
20924@option{-ffinite-math-only}.  It is enabled by default when generating code for
20925SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
20926even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
20927in effect.
20928
20929@item -mpretend-cmove
20930@opindex mpretend-cmove
20931Prefer zero-displacement conditional branches for conditional move instruction
20932patterns.  This can result in faster code on the SH4 processor.
20933
20934@end table
20935
20936@node Solaris 2 Options
20937@subsection Solaris 2 Options
20938@cindex Solaris 2 options
20939
20940These @samp{-m} options are supported on Solaris 2:
20941
20942@table @gcctabopt
20943@item -mclear-hwcap
20944@opindex mclear-hwcap
20945@option{-mclear-hwcap} tells the compiler to remove the hardware
20946capabilities generated by the Solaris assembler.  This is only necessary
20947when object files use ISA extensions not supported by the current
20948machine, but check at runtime whether or not to use them.
20949
20950@item -mimpure-text
20951@opindex mimpure-text
20952@option{-mimpure-text}, used in addition to @option{-shared}, tells
20953the compiler to not pass @option{-z text} to the linker when linking a
20954shared object.  Using this option, you can link position-dependent
20955code into a shared object.
20956
20957@option{-mimpure-text} suppresses the ``relocations remain against
20958allocatable but non-writable sections'' linker error message.
20959However, the necessary relocations trigger copy-on-write, and the
20960shared object is not actually shared across processes.  Instead of
20961using @option{-mimpure-text}, you should compile all source code with
20962@option{-fpic} or @option{-fPIC}.
20963
20964@end table
20965
20966These switches are supported in addition to the above on Solaris 2:
20967
20968@table @gcctabopt
20969@item -pthreads
20970@opindex pthreads
20971Add support for multithreading using the POSIX threads library.  This
20972option sets flags for both the preprocessor and linker.  This option does
20973not affect the thread safety of object code produced  by the compiler or
20974that of libraries supplied with it.
20975
20976@item -pthread
20977@opindex pthread
20978This is a synonym for @option{-pthreads}.
20979@end table
20980
20981@node SPARC Options
20982@subsection SPARC Options
20983@cindex SPARC options
20984
20985These @samp{-m} options are supported on the SPARC:
20986
20987@table @gcctabopt
20988@item -mno-app-regs
20989@itemx -mapp-regs
20990@opindex mno-app-regs
20991@opindex mapp-regs
20992Specify @option{-mapp-regs} to generate output using the global registers
209932 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
20994global register 1, each global register 2 through 4 is then treated as an
20995allocable register that is clobbered by function calls.  This is the default.
20996
20997To be fully SVR4 ABI-compliant at the cost of some performance loss,
20998specify @option{-mno-app-regs}.  You should compile libraries and system
20999software with this option.
21000
21001@item -mflat
21002@itemx -mno-flat
21003@opindex mflat
21004@opindex mno-flat
21005With @option{-mflat}, the compiler does not generate save/restore instructions
21006and uses a ``flat'' or single register window model.  This model is compatible
21007with the regular register window model.  The local registers and the input
21008registers (0--5) are still treated as ``call-saved'' registers and are
21009saved on the stack as needed.
21010
21011With @option{-mno-flat} (the default), the compiler generates save/restore
21012instructions (except for leaf functions).  This is the normal operating mode.
21013
21014@item -mfpu
21015@itemx -mhard-float
21016@opindex mfpu
21017@opindex mhard-float
21018Generate output containing floating-point instructions.  This is the
21019default.
21020
21021@item -mno-fpu
21022@itemx -msoft-float
21023@opindex mno-fpu
21024@opindex msoft-float
21025Generate output containing library calls for floating point.
21026@strong{Warning:} the requisite libraries are not available for all SPARC
21027targets.  Normally the facilities of the machine's usual C compiler are
21028used, but this cannot be done directly in cross-compilation.  You must make
21029your own arrangements to provide suitable library functions for
21030cross-compilation.  The embedded targets @samp{sparc-*-aout} and
21031@samp{sparclite-*-*} do provide software floating-point support.
21032
21033@option{-msoft-float} changes the calling convention in the output file;
21034therefore, it is only useful if you compile @emph{all} of a program with
21035this option.  In particular, you need to compile @file{libgcc.a}, the
21036library that comes with GCC, with @option{-msoft-float} in order for
21037this to work.
21038
21039@item -mhard-quad-float
21040@opindex mhard-quad-float
21041Generate output containing quad-word (long double) floating-point
21042instructions.
21043
21044@item -msoft-quad-float
21045@opindex msoft-quad-float
21046Generate output containing library calls for quad-word (long double)
21047floating-point instructions.  The functions called are those specified
21048in the SPARC ABI@.  This is the default.
21049
21050As of this writing, there are no SPARC implementations that have hardware
21051support for the quad-word floating-point instructions.  They all invoke
21052a trap handler for one of these instructions, and then the trap handler
21053emulates the effect of the instruction.  Because of the trap handler overhead,
21054this is much slower than calling the ABI library routines.  Thus the
21055@option{-msoft-quad-float} option is the default.
21056
21057@item -mno-unaligned-doubles
21058@itemx -munaligned-doubles
21059@opindex mno-unaligned-doubles
21060@opindex munaligned-doubles
21061Assume that doubles have 8-byte alignment.  This is the default.
21062
21063With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21064alignment only if they are contained in another type, or if they have an
21065absolute address.  Otherwise, it assumes they have 4-byte alignment.
21066Specifying this option avoids some rare compatibility problems with code
21067generated by other compilers.  It is not the default because it results
21068in a performance loss, especially for floating-point code.
21069
21070@item -muser-mode
21071@itemx -mno-user-mode
21072@opindex muser-mode
21073@opindex mno-user-mode
21074Do not generate code that can only run in supervisor mode.  This is relevant
21075only for the @code{casa} instruction emitted for the LEON3 processor.  This
21076is the default.
21077
21078@item -mno-faster-structs
21079@itemx -mfaster-structs
21080@opindex mno-faster-structs
21081@opindex mfaster-structs
21082With @option{-mfaster-structs}, the compiler assumes that structures
21083should have 8-byte alignment.  This enables the use of pairs of
21084@code{ldd} and @code{std} instructions for copies in structure
21085assignment, in place of twice as many @code{ld} and @code{st} pairs.
21086However, the use of this changed alignment directly violates the SPARC
21087ABI@.  Thus, it's intended only for use on targets where the developer
21088acknowledges that their resulting code is not directly in line with
21089the rules of the ABI@.
21090
21091@item -mcpu=@var{cpu_type}
21092@opindex mcpu
21093Set the instruction set, register set, and instruction scheduling parameters
21094for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
21095@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21096@samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21097@samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21098@samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21099@samp{niagara3} and @samp{niagara4}.
21100
21101Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21102which selects the best architecture option for the host processor.
21103@option{-mcpu=native} has no effect if GCC does not recognize
21104the processor.
21105
21106Default instruction scheduling parameters are used for values that select
21107an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
21108@samp{sparclite}, @samp{sparclet}, @samp{v9}.
21109
21110Here is a list of each supported architecture and their supported
21111implementations.
21112
21113@table @asis
21114@item v7
21115cypress, leon3v7
21116
21117@item v8
21118supersparc, hypersparc, leon, leon3
21119
21120@item sparclite
21121f930, f934, sparclite86x
21122
21123@item sparclet
21124tsc701
21125
21126@item v9
21127ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21128@end table
21129
21130By default (unless configured otherwise), GCC generates code for the V7
21131variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
21132additionally optimizes it for the Cypress CY7C602 chip, as used in the
21133SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
21134SPARCStation 1, 2, IPX etc.
21135
21136With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21137architecture.  The only difference from V7 code is that the compiler emits
21138the integer multiply and integer divide instructions which exist in SPARC-V8
21139but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
21140optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
211412000 series.
21142
21143With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21144the SPARC architecture.  This adds the integer multiply, integer divide step
21145and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21146With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21147Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
21148@option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21149MB86934 chip, which is the more recent SPARClite with FPU@.
21150
21151With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21152the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
21153integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21154but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
21155optimizes it for the TEMIC SPARClet chip.
21156
21157With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21158architecture.  This adds 64-bit integer and floating-point move instructions,
211593 additional floating-point condition code registers and conditional move
21160instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
21161optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
21162@option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21163Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
21164@option{-mcpu=niagara}, the compiler additionally optimizes it for
21165Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
21166additionally optimizes it for Sun UltraSPARC T2 chips. With
21167@option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21168UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
21169additionally optimizes it for Sun UltraSPARC T4 chips.
21170
21171@item -mtune=@var{cpu_type}
21172@opindex mtune
21173Set the instruction scheduling parameters for machine type
21174@var{cpu_type}, but do not set the instruction set or register set that the
21175option @option{-mcpu=@var{cpu_type}} does.
21176
21177The same values for @option{-mcpu=@var{cpu_type}} can be used for
21178@option{-mtune=@var{cpu_type}}, but the only useful values are those
21179that select a particular CPU implementation.  Those are @samp{cypress},
21180@samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21181@samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21182@samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21183@samp{niagara3} and @samp{niagara4}.  With native Solaris and GNU/Linux
21184toolchains, @samp{native} can also be used.
21185
21186@item -mv8plus
21187@itemx -mno-v8plus
21188@opindex mv8plus
21189@opindex mno-v8plus
21190With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
21191difference from the V8 ABI is that the global and out registers are
21192considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
21193mode for all SPARC-V9 processors.
21194
21195@item -mvis
21196@itemx -mno-vis
21197@opindex mvis
21198@opindex mno-vis
21199With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21200Visual Instruction Set extensions.  The default is @option{-mno-vis}.
21201
21202@item -mvis2
21203@itemx -mno-vis2
21204@opindex mvis2
21205@opindex mno-vis2
21206With @option{-mvis2}, GCC generates code that takes advantage of
21207version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
21208default is @option{-mvis2} when targeting a cpu that supports such
21209instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
21210also sets @option{-mvis}.
21211
21212@item -mvis3
21213@itemx -mno-vis3
21214@opindex mvis3
21215@opindex mno-vis3
21216With @option{-mvis3}, GCC generates code that takes advantage of
21217version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
21218default is @option{-mvis3} when targeting a cpu that supports such
21219instructions, such as niagara-3 and later.  Setting @option{-mvis3}
21220also sets @option{-mvis2} and @option{-mvis}.
21221
21222@item -mcbcond
21223@itemx -mno-cbcond
21224@opindex mcbcond
21225@opindex mno-cbcond
21226With @option{-mcbcond}, GCC generates code that takes advantage of
21227compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21228The default is @option{-mcbcond} when targeting a cpu that supports such
21229instructions, such as niagara-4 and later.
21230
21231@item -mpopc
21232@itemx -mno-popc
21233@opindex mpopc
21234@opindex mno-popc
21235With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21236population count instruction.  The default is @option{-mpopc}
21237when targeting a cpu that supports such instructions, such as Niagara-2 and
21238later.
21239
21240@item -mfmaf
21241@itemx -mno-fmaf
21242@opindex mfmaf
21243@opindex mno-fmaf
21244With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21245Fused Multiply-Add Floating-point extensions.  The default is @option{-mfmaf}
21246when targeting a cpu that supports such instructions, such as Niagara-3 and
21247later.
21248
21249@item -mfix-at697f
21250@opindex mfix-at697f
21251Enable the documented workaround for the single erratum of the Atmel AT697F
21252processor (which corresponds to erratum #13 of the AT697E processor).
21253
21254@item -mfix-ut699
21255@opindex mfix-ut699
21256Enable the documented workarounds for the floating-point errata and the data
21257cache nullify errata of the UT699 processor.
21258@end table
21259
21260These @samp{-m} options are supported in addition to the above
21261on SPARC-V9 processors in 64-bit environments:
21262
21263@table @gcctabopt
21264@item -m32
21265@itemx -m64
21266@opindex m32
21267@opindex m64
21268Generate code for a 32-bit or 64-bit environment.
21269The 32-bit environment sets int, long and pointer to 32 bits.
21270The 64-bit environment sets int to 32 bits and long and pointer
21271to 64 bits.
21272
21273@item -mcmodel=@var{which}
21274@opindex mcmodel
21275Set the code model to one of
21276
21277@table @samp
21278@item medlow
21279The Medium/Low code model: 64-bit addresses, programs
21280must be linked in the low 32 bits of memory.  Programs can be statically
21281or dynamically linked.
21282
21283@item medmid
21284The Medium/Middle code model: 64-bit addresses, programs
21285must be linked in the low 44 bits of memory, the text and data segments must
21286be less than 2GB in size and the data segment must be located within 2GB of
21287the text segment.
21288
21289@item medany
21290The Medium/Anywhere code model: 64-bit addresses, programs
21291may be linked anywhere in memory, the text and data segments must be less
21292than 2GB in size and the data segment must be located within 2GB of the
21293text segment.
21294
21295@item embmedany
21296The Medium/Anywhere code model for embedded systems:
2129764-bit addresses, the text and data segments must be less than 2GB in
21298size, both starting anywhere in memory (determined at link time).  The
21299global register %g4 points to the base of the data segment.  Programs
21300are statically linked and PIC is not supported.
21301@end table
21302
21303@item -mmemory-model=@var{mem-model}
21304@opindex mmemory-model
21305Set the memory model in force on the processor to one of
21306
21307@table @samp
21308@item default
21309The default memory model for the processor and operating system.
21310
21311@item rmo
21312Relaxed Memory Order
21313
21314@item pso
21315Partial Store Order
21316
21317@item tso
21318Total Store Order
21319
21320@item sc
21321Sequential Consistency
21322@end table
21323
21324These memory models are formally defined in Appendix D of the Sparc V9
21325architecture manual, as set in the processor's @code{PSTATE.MM} field.
21326
21327@item -mstack-bias
21328@itemx -mno-stack-bias
21329@opindex mstack-bias
21330@opindex mno-stack-bias
21331With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21332frame pointer if present, are offset by @minus{}2047 which must be added back
21333when making stack frame references.  This is the default in 64-bit mode.
21334Otherwise, assume no such offset is present.
21335@end table
21336
21337@node SPU Options
21338@subsection SPU Options
21339@cindex SPU options
21340
21341These @samp{-m} options are supported on the SPU:
21342
21343@table @gcctabopt
21344@item -mwarn-reloc
21345@itemx -merror-reloc
21346@opindex mwarn-reloc
21347@opindex merror-reloc
21348
21349The loader for SPU does not handle dynamic relocations.  By default, GCC
21350gives an error when it generates code that requires a dynamic
21351relocation.  @option{-mno-error-reloc} disables the error,
21352@option{-mwarn-reloc} generates a warning instead.
21353
21354@item -msafe-dma
21355@itemx -munsafe-dma
21356@opindex msafe-dma
21357@opindex munsafe-dma
21358
21359Instructions that initiate or test completion of DMA must not be
21360reordered with respect to loads and stores of the memory that is being
21361accessed.
21362With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21363memory accesses, but that can lead to inefficient code in places where the
21364memory is known to not change.  Rather than mark the memory as volatile,
21365you can use @option{-msafe-dma} to tell the compiler to treat
21366the DMA instructions as potentially affecting all memory.  
21367
21368@item -mbranch-hints
21369@opindex mbranch-hints
21370
21371By default, GCC generates a branch hint instruction to avoid
21372pipeline stalls for always-taken or probably-taken branches.  A hint
21373is not generated closer than 8 instructions away from its branch.
21374There is little reason to disable them, except for debugging purposes,
21375or to make an object a little bit smaller.
21376
21377@item -msmall-mem
21378@itemx -mlarge-mem
21379@opindex msmall-mem
21380@opindex mlarge-mem
21381
21382By default, GCC generates code assuming that addresses are never larger
21383than 18 bits.  With @option{-mlarge-mem} code is generated that assumes
21384a full 32-bit address.
21385
21386@item -mstdmain
21387@opindex mstdmain
21388
21389By default, GCC links against startup code that assumes the SPU-style
21390main function interface (which has an unconventional parameter list).
21391With @option{-mstdmain}, GCC links your program against startup
21392code that assumes a C99-style interface to @code{main}, including a
21393local copy of @code{argv} strings.
21394
21395@item -mfixed-range=@var{register-range}
21396@opindex mfixed-range
21397Generate code treating the given register range as fixed registers.
21398A fixed register is one that the register allocator cannot use.  This is
21399useful when compiling kernel code.  A register range is specified as
21400two registers separated by a dash.  Multiple register ranges can be
21401specified separated by a comma.
21402
21403@item -mea32
21404@itemx -mea64
21405@opindex mea32
21406@opindex mea64
21407Compile code assuming that pointers to the PPU address space accessed
21408via the @code{__ea} named address space qualifier are either 32 or 64
21409bits wide.  The default is 32 bits.  As this is an ABI-changing option,
21410all object code in an executable must be compiled with the same setting.
21411
21412@item -maddress-space-conversion
21413@itemx -mno-address-space-conversion
21414@opindex maddress-space-conversion
21415@opindex mno-address-space-conversion
21416Allow/disallow treating the @code{__ea} address space as superset
21417of the generic address space.  This enables explicit type casts
21418between @code{__ea} and generic pointer as well as implicit
21419conversions of generic pointers to @code{__ea} pointers.  The
21420default is to allow address space pointer conversions.
21421
21422@item -mcache-size=@var{cache-size}
21423@opindex mcache-size
21424This option controls the version of libgcc that the compiler links to an
21425executable and selects a software-managed cache for accessing variables
21426in the @code{__ea} address space with a particular cache size.  Possible
21427options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21428and @samp{128}.  The default cache size is 64KB.
21429
21430@item -matomic-updates
21431@itemx -mno-atomic-updates
21432@opindex matomic-updates
21433@opindex mno-atomic-updates
21434This option controls the version of libgcc that the compiler links to an
21435executable and selects whether atomic updates to the software-managed
21436cache of PPU-side variables are used.  If you use atomic updates, changes
21437to a PPU variable from SPU code using the @code{__ea} named address space
21438qualifier do not interfere with changes to other PPU variables residing
21439in the same cache line from PPU code.  If you do not use atomic updates,
21440such interference may occur; however, writing back cache lines is
21441more efficient.  The default behavior is to use atomic updates.
21442
21443@item -mdual-nops
21444@itemx -mdual-nops=@var{n}
21445@opindex mdual-nops
21446By default, GCC inserts nops to increase dual issue when it expects
21447it to increase performance.  @var{n} can be a value from 0 to 10.  A
21448smaller @var{n} inserts fewer nops.  10 is the default, 0 is the
21449same as @option{-mno-dual-nops}.  Disabled with @option{-Os}.
21450
21451@item -mhint-max-nops=@var{n}
21452@opindex mhint-max-nops
21453Maximum number of nops to insert for a branch hint.  A branch hint must
21454be at least 8 instructions away from the branch it is affecting.  GCC
21455inserts up to @var{n} nops to enforce this, otherwise it does not
21456generate the branch hint.
21457
21458@item -mhint-max-distance=@var{n}
21459@opindex mhint-max-distance
21460The encoding of the branch hint instruction limits the hint to be within
21461256 instructions of the branch it is affecting.  By default, GCC makes
21462sure it is within 125.
21463
21464@item -msafe-hints
21465@opindex msafe-hints
21466Work around a hardware bug that causes the SPU to stall indefinitely.
21467By default, GCC inserts the @code{hbrp} instruction to make sure
21468this stall won't happen.
21469
21470@end table
21471
21472@node System V Options
21473@subsection Options for System V
21474
21475These additional options are available on System V Release 4 for
21476compatibility with other compilers on those systems:
21477
21478@table @gcctabopt
21479@item -G
21480@opindex G
21481Create a shared object.
21482It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21483
21484@item -Qy
21485@opindex Qy
21486Identify the versions of each tool used by the compiler, in a
21487@code{.ident} assembler directive in the output.
21488
21489@item -Qn
21490@opindex Qn
21491Refrain from adding @code{.ident} directives to the output file (this is
21492the default).
21493
21494@item -YP,@var{dirs}
21495@opindex YP
21496Search the directories @var{dirs}, and no others, for libraries
21497specified with @option{-l}.
21498
21499@item -Ym,@var{dir}
21500@opindex Ym
21501Look in the directory @var{dir} to find the M4 preprocessor.
21502The assembler uses this option.
21503@c This is supposed to go with a -Yd for predefined M4 macro files, but
21504@c the generic assembler that comes with Solaris takes just -Ym.
21505@end table
21506
21507@node TILE-Gx Options
21508@subsection TILE-Gx Options
21509@cindex TILE-Gx options
21510
21511These @samp{-m} options are supported on the TILE-Gx:
21512
21513@table @gcctabopt
21514@item -mcmodel=small
21515@opindex mcmodel=small
21516Generate code for the small model.  The distance for direct calls is
21517limited to 500M in either direction.  PC-relative addresses are 32
21518bits.  Absolute addresses support the full address range.
21519
21520@item -mcmodel=large
21521@opindex mcmodel=large
21522Generate code for the large model.  There is no limitation on call
21523distance, pc-relative addresses, or absolute addresses.
21524
21525@item -mcpu=@var{name}
21526@opindex mcpu
21527Selects the type of CPU to be targeted.  Currently the only supported
21528type is @samp{tilegx}.
21529
21530@item -m32
21531@itemx -m64
21532@opindex m32
21533@opindex m64
21534Generate code for a 32-bit or 64-bit environment.  The 32-bit
21535environment sets int, long, and pointer to 32 bits.  The 64-bit
21536environment sets int to 32 bits and long and pointer to 64 bits.
21537
21538@item -mbig-endian
21539@itemx -mlittle-endian
21540@opindex mbig-endian
21541@opindex mlittle-endian
21542Generate code in big/little endian mode, respectively.
21543@end table
21544
21545@node TILEPro Options
21546@subsection TILEPro Options
21547@cindex TILEPro options
21548
21549These @samp{-m} options are supported on the TILEPro:
21550
21551@table @gcctabopt
21552@item -mcpu=@var{name}
21553@opindex mcpu
21554Selects the type of CPU to be targeted.  Currently the only supported
21555type is @samp{tilepro}.
21556
21557@item -m32
21558@opindex m32
21559Generate code for a 32-bit environment, which sets int, long, and
21560pointer to 32 bits.  This is the only supported behavior so the flag
21561is essentially ignored.
21562@end table
21563
21564@node V850 Options
21565@subsection V850 Options
21566@cindex V850 Options
21567
21568These @samp{-m} options are defined for V850 implementations:
21569
21570@table @gcctabopt
21571@item -mlong-calls
21572@itemx -mno-long-calls
21573@opindex mlong-calls
21574@opindex mno-long-calls
21575Treat all calls as being far away (near).  If calls are assumed to be
21576far away, the compiler always loads the function's address into a
21577register, and calls indirect through the pointer.
21578
21579@item -mno-ep
21580@itemx -mep
21581@opindex mno-ep
21582@opindex mep
21583Do not optimize (do optimize) basic blocks that use the same index
21584pointer 4 or more times to copy pointer into the @code{ep} register, and
21585use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
21586option is on by default if you optimize.
21587
21588@item -mno-prolog-function
21589@itemx -mprolog-function
21590@opindex mno-prolog-function
21591@opindex mprolog-function
21592Do not use (do use) external functions to save and restore registers
21593at the prologue and epilogue of a function.  The external functions
21594are slower, but use less code space if more than one function saves
21595the same number of registers.  The @option{-mprolog-function} option
21596is on by default if you optimize.
21597
21598@item -mspace
21599@opindex mspace
21600Try to make the code as small as possible.  At present, this just turns
21601on the @option{-mep} and @option{-mprolog-function} options.
21602
21603@item -mtda=@var{n}
21604@opindex mtda
21605Put static or global variables whose size is @var{n} bytes or less into
21606the tiny data area that register @code{ep} points to.  The tiny data
21607area can hold up to 256 bytes in total (128 bytes for byte references).
21608
21609@item -msda=@var{n}
21610@opindex msda
21611Put static or global variables whose size is @var{n} bytes or less into
21612the small data area that register @code{gp} points to.  The small data
21613area can hold up to 64 kilobytes.
21614
21615@item -mzda=@var{n}
21616@opindex mzda
21617Put static or global variables whose size is @var{n} bytes or less into
21618the first 32 kilobytes of memory.
21619
21620@item -mv850
21621@opindex mv850
21622Specify that the target processor is the V850.
21623
21624@item -mv850e3v5
21625@opindex mv850e3v5
21626Specify that the target processor is the V850E3V5.  The preprocessor
21627constant @code{__v850e3v5__} is defined if this option is used.
21628
21629@item -mv850e2v4
21630@opindex mv850e2v4
21631Specify that the target processor is the V850E3V5.  This is an alias for
21632the @option{-mv850e3v5} option.
21633
21634@item -mv850e2v3
21635@opindex mv850e2v3
21636Specify that the target processor is the V850E2V3.  The preprocessor
21637constant @code{__v850e2v3__} is defined if this option is used.
21638
21639@item -mv850e2
21640@opindex mv850e2
21641Specify that the target processor is the V850E2.  The preprocessor
21642constant @code{__v850e2__} is defined if this option is used.
21643
21644@item -mv850e1
21645@opindex mv850e1
21646Specify that the target processor is the V850E1.  The preprocessor
21647constants @code{__v850e1__} and @code{__v850e__} are defined if
21648this option is used.
21649
21650@item -mv850es
21651@opindex mv850es
21652Specify that the target processor is the V850ES.  This is an alias for
21653the @option{-mv850e1} option.
21654
21655@item -mv850e
21656@opindex mv850e
21657Specify that the target processor is the V850E@.  The preprocessor
21658constant @code{__v850e__} is defined if this option is used.
21659
21660If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21661nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21662are defined then a default target processor is chosen and the
21663relevant @samp{__v850*__} preprocessor constant is defined.
21664
21665The preprocessor constants @code{__v850} and @code{__v851__} are always
21666defined, regardless of which processor variant is the target.
21667
21668@item -mdisable-callt
21669@itemx -mno-disable-callt
21670@opindex mdisable-callt
21671@opindex mno-disable-callt
21672This option suppresses generation of the @code{CALLT} instruction for the
21673v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21674architecture.
21675
21676This option is enabled by default when the RH850 ABI is
21677in use (see @option{-mrh850-abi}), and disabled by default when the
21678GCC ABI is in use.  If @code{CALLT} instructions are being generated
21679then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21680
21681@item -mrelax
21682@itemx -mno-relax
21683@opindex mrelax
21684@opindex mno-relax
21685Pass on (or do not pass on) the @option{-mrelax} command-line option
21686to the assembler.
21687
21688@item -mlong-jumps
21689@itemx -mno-long-jumps
21690@opindex mlong-jumps
21691@opindex mno-long-jumps
21692Disable (or re-enable) the generation of PC-relative jump instructions.
21693
21694@item -msoft-float
21695@itemx -mhard-float
21696@opindex msoft-float
21697@opindex mhard-float
21698Disable (or re-enable) the generation of hardware floating point
21699instructions.  This option is only significant when the target
21700architecture is @samp{V850E2V3} or higher.  If hardware floating point
21701instructions are being generated then the C preprocessor symbol
21702@code{__FPU_OK__} is defined, otherwise the symbol
21703@code{__NO_FPU__} is defined.
21704
21705@item -mloop
21706@opindex mloop
21707Enables the use of the e3v5 LOOP instruction.  The use of this
21708instruction is not enabled by default when the e3v5 architecture is
21709selected because its use is still experimental.
21710
21711@item -mrh850-abi
21712@itemx -mghs
21713@opindex mrh850-abi
21714@opindex mghs
21715Enables support for the RH850 version of the V850 ABI.  This is the
21716default.  With this version of the ABI the following rules apply:
21717
21718@itemize
21719@item
21720Integer sized structures and unions are returned via a memory pointer
21721rather than a register.
21722
21723@item
21724Large structures and unions (more than 8 bytes in size) are passed by
21725value.
21726
21727@item
21728Functions are aligned to 16-bit boundaries.
21729
21730@item
21731The @option{-m8byte-align} command-line option is supported.
21732
21733@item
21734The @option{-mdisable-callt} command-line option is enabled by
21735default.  The @option{-mno-disable-callt} command-line option is not
21736supported.
21737@end itemize
21738
21739When this version of the ABI is enabled the C preprocessor symbol
21740@code{__V850_RH850_ABI__} is defined.
21741
21742@item -mgcc-abi
21743@opindex mgcc-abi
21744Enables support for the old GCC version of the V850 ABI.  With this
21745version of the ABI the following rules apply:
21746
21747@itemize
21748@item
21749Integer sized structures and unions are returned in register @code{r10}.
21750
21751@item
21752Large structures and unions (more than 8 bytes in size) are passed by
21753reference.
21754
21755@item
21756Functions are aligned to 32-bit boundaries, unless optimizing for
21757size.
21758
21759@item
21760The @option{-m8byte-align} command-line option is not supported.
21761
21762@item
21763The @option{-mdisable-callt} command-line option is supported but not
21764enabled by default.
21765@end itemize
21766
21767When this version of the ABI is enabled the C preprocessor symbol
21768@code{__V850_GCC_ABI__} is defined.
21769
21770@item -m8byte-align
21771@itemx -mno-8byte-align
21772@opindex m8byte-align
21773@opindex mno-8byte-align
21774Enables support for @code{double} and @code{long long} types to be
21775aligned on 8-byte boundaries.  The default is to restrict the
21776alignment of all objects to at most 4-bytes.  When
21777@option{-m8byte-align} is in effect the C preprocessor symbol
21778@code{__V850_8BYTE_ALIGN__} is defined.
21779
21780@item -mbig-switch
21781@opindex mbig-switch
21782Generate code suitable for big switch tables.  Use this option only if
21783the assembler/linker complain about out of range branches within a switch
21784table.
21785
21786@item -mapp-regs
21787@opindex mapp-regs
21788This option causes r2 and r5 to be used in the code generated by
21789the compiler.  This setting is the default.
21790
21791@item -mno-app-regs
21792@opindex mno-app-regs
21793This option causes r2 and r5 to be treated as fixed registers.
21794
21795@end table
21796
21797@node VAX Options
21798@subsection VAX Options
21799@cindex VAX options
21800
21801These @samp{-m} options are defined for the VAX:
21802
21803@table @gcctabopt
21804@item -munix
21805@opindex munix
21806Do not output certain jump instructions (@code{aobleq} and so on)
21807that the Unix assembler for the VAX cannot handle across long
21808ranges.
21809
21810@item -mgnu
21811@opindex mgnu
21812Do output those jump instructions, on the assumption that the
21813GNU assembler is being used.
21814
21815@item -mg
21816@opindex mg
21817Output code for G-format floating-point numbers instead of D-format.
21818@end table
21819
21820@node Visium Options
21821@subsection Visium Options
21822@cindex Visium options
21823
21824@table @gcctabopt
21825
21826@item -mdebug
21827@opindex mdebug
21828A program which performs file I/O and is destined to run on an MCM target
21829should be linked with this option.  It causes the libraries libc.a and
21830libdebug.a to be linked.  The program should be run on the target under
21831the control of the GDB remote debugging stub.
21832
21833@item -msim
21834@opindex msim
21835A program which performs file I/O and is destined to run on the simulator
21836should be linked with option.  This causes libraries libc.a and libsim.a to
21837be linked.
21838
21839@item -mfpu
21840@itemx -mhard-float
21841@opindex mfpu
21842@opindex mhard-float
21843Generate code containing floating-point instructions.  This is the
21844default.
21845
21846@item -mno-fpu
21847@itemx -msoft-float
21848@opindex mno-fpu
21849@opindex msoft-float
21850Generate code containing library calls for floating-point.
21851
21852@option{-msoft-float} changes the calling convention in the output file;
21853therefore, it is only useful if you compile @emph{all} of a program with
21854this option.  In particular, you need to compile @file{libgcc.a}, the
21855library that comes with GCC, with @option{-msoft-float} in order for
21856this to work.
21857
21858@item -mcpu=@var{cpu_type}
21859@opindex mcpu
21860Set the instruction set, register set, and instruction scheduling parameters
21861for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
21862@samp{mcm}, @samp{gr5} and @samp{gr6}.
21863
21864@samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
21865
21866By default (unless configured otherwise), GCC generates code for the GR5
21867variant of the Visium architecture.  
21868
21869With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
21870architecture.  The only difference from GR5 code is that the compiler will
21871generate block move instructions.
21872
21873@item -mtune=@var{cpu_type}
21874@opindex mtune
21875Set the instruction scheduling parameters for machine type @var{cpu_type},
21876but do not set the instruction set or register set that the option
21877@option{-mcpu=@var{cpu_type}} would.
21878
21879@item -msv-mode
21880@opindex msv-mode
21881Generate code for the supervisor mode, where there are no restrictions on
21882the access to general registers.  This is the default.
21883
21884@item -muser-mode
21885@opindex muser-mode
21886Generate code for the user mode, where the access to some general registers
21887is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
21888mode; on the GR6, only registers r29 to r31 are affected.
21889@end table
21890
21891@node VMS Options
21892@subsection VMS Options
21893
21894These @samp{-m} options are defined for the VMS implementations:
21895
21896@table @gcctabopt
21897@item -mvms-return-codes
21898@opindex mvms-return-codes
21899Return VMS condition codes from @code{main}. The default is to return POSIX-style
21900condition (e.g.@ error) codes.
21901
21902@item -mdebug-main=@var{prefix}
21903@opindex mdebug-main=@var{prefix}
21904Flag the first routine whose name starts with @var{prefix} as the main
21905routine for the debugger.
21906
21907@item -mmalloc64
21908@opindex mmalloc64
21909Default to 64-bit memory allocation routines.
21910
21911@item -mpointer-size=@var{size}
21912@opindex mpointer-size=@var{size}
21913Set the default size of pointers. Possible options for @var{size} are
21914@samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
21915for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
21916The later option disables @code{pragma pointer_size}.
21917@end table
21918
21919@node VxWorks Options
21920@subsection VxWorks Options
21921@cindex VxWorks Options
21922
21923The options in this section are defined for all VxWorks targets.
21924Options specific to the target hardware are listed with the other
21925options for that target.
21926
21927@table @gcctabopt
21928@item -mrtp
21929@opindex mrtp
21930GCC can generate code for both VxWorks kernels and real time processes
21931(RTPs).  This option switches from the former to the latter.  It also
21932defines the preprocessor macro @code{__RTP__}.
21933
21934@item -non-static
21935@opindex non-static
21936Link an RTP executable against shared libraries rather than static
21937libraries.  The options @option{-static} and @option{-shared} can
21938also be used for RTPs (@pxref{Link Options}); @option{-static}
21939is the default.
21940
21941@item -Bstatic
21942@itemx -Bdynamic
21943@opindex Bstatic
21944@opindex Bdynamic
21945These options are passed down to the linker.  They are defined for
21946compatibility with Diab.
21947
21948@item -Xbind-lazy
21949@opindex Xbind-lazy
21950Enable lazy binding of function calls.  This option is equivalent to
21951@option{-Wl,-z,now} and is defined for compatibility with Diab.
21952
21953@item -Xbind-now
21954@opindex Xbind-now
21955Disable lazy binding of function calls.  This option is the default and
21956is defined for compatibility with Diab.
21957@end table
21958
21959@node x86 Options
21960@subsection x86 Options
21961@cindex x86 Options
21962
21963These @samp{-m} options are defined for the x86 family of computers.
21964
21965@table @gcctabopt
21966
21967@item -march=@var{cpu-type}
21968@opindex march
21969Generate instructions for the machine type @var{cpu-type}.  In contrast to
21970@option{-mtune=@var{cpu-type}}, which merely tunes the generated code 
21971for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
21972to generate code that may not run at all on processors other than the one
21973indicated.  Specifying @option{-march=@var{cpu-type}} implies 
21974@option{-mtune=@var{cpu-type}}.
21975
21976The choices for @var{cpu-type} are:
21977
21978@table @samp
21979@item native
21980This selects the CPU to generate code for at compilation time by determining
21981the processor type of the compiling machine.  Using @option{-march=native}
21982enables all instruction subsets supported by the local machine (hence
21983the result might not run on different machines).  Using @option{-mtune=native}
21984produces code optimized for the local machine under the constraints
21985of the selected instruction set.  
21986
21987@item i386
21988Original Intel i386 CPU@.
21989
21990@item i486
21991Intel i486 CPU@.  (No scheduling is implemented for this chip.)
21992
21993@item i586
21994@itemx pentium
21995Intel Pentium CPU with no MMX support.
21996
21997@item pentium-mmx
21998Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
21999
22000@item pentiumpro
22001Intel Pentium Pro CPU@.
22002
22003@item i686
22004When used with @option{-march}, the Pentium Pro
22005instruction set is used, so the code runs on all i686 family chips.
22006When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22007
22008@item pentium2
22009Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22010support.
22011
22012@item pentium3
22013@itemx pentium3m
22014Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22015set support.
22016
22017@item pentium-m
22018Intel Pentium M; low-power version of Intel Pentium III CPU
22019with MMX, SSE and SSE2 instruction set support.  Used by Centrino notebooks.
22020
22021@item pentium4
22022@itemx pentium4m
22023Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22024
22025@item prescott
22026Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22027set support.
22028
22029@item nocona
22030Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22031SSE2 and SSE3 instruction set support.
22032
22033@item core2
22034Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22035instruction set support.
22036
22037@item nehalem
22038Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22039SSE4.1, SSE4.2 and POPCNT instruction set support.
22040
22041@item westmere
22042Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22043SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22044
22045@item sandybridge
22046Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22047SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22048
22049@item ivybridge
22050Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22051SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22052instruction set support.
22053
22054@item haswell
22055Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22056SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22057BMI, BMI2 and F16C instruction set support.
22058
22059@item broadwell
22060Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22061SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22062BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22063
22064@item bonnell
22065Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22066instruction set support.
22067
22068@item silvermont
22069Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22070SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22071
22072@item knl
22073Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22074SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22075BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22076AVX512CD instruction set support.
22077
22078@item k6
22079AMD K6 CPU with MMX instruction set support.
22080
22081@item k6-2
22082@itemx k6-3
22083Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22084
22085@item athlon
22086@itemx athlon-tbird
22087AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22088support.
22089
22090@item athlon-4
22091@itemx athlon-xp
22092@itemx athlon-mp
22093Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22094instruction set support.
22095
22096@item k8
22097@itemx opteron
22098@itemx athlon64
22099@itemx athlon-fx
22100Processors based on the AMD K8 core with x86-64 instruction set support,
22101including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22102(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22103instruction set extensions.)
22104
22105@item k8-sse3
22106@itemx opteron-sse3
22107@itemx athlon64-sse3
22108Improved versions of AMD K8 cores with SSE3 instruction set support.
22109
22110@item amdfam10
22111@itemx barcelona
22112CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
22113supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22114instruction set extensions.)
22115
22116@item bdver1
22117CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
22118supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22119SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22120@item bdver2
22121AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22122supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22123SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set 
22124extensions.)
22125@item bdver3
22126AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22127supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, 
22128PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 
2212964-bit instruction set extensions.
22130@item bdver4
22131AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22132supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, 
22133AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, 
22134SSE4.2, ABM and 64-bit instruction set extensions.
22135
22136@item btver1
22137CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
22138supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22139instruction set extensions.)
22140
22141@item btver2
22142CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22143includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22144SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22145
22146@item winchip-c6
22147IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22148set support.
22149
22150@item winchip2
22151IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22152instruction set support.
22153
22154@item c3
22155VIA C3 CPU with MMX and 3DNow!@: instruction set support.  (No scheduling is
22156implemented for this chip.)
22157
22158@item c3-2
22159VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22160(No scheduling is
22161implemented for this chip.)
22162
22163@item geode
22164AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22165@end table
22166
22167@item -mtune=@var{cpu-type}
22168@opindex mtune
22169Tune to @var{cpu-type} everything applicable about the generated code, except
22170for the ABI and the set of available instructions.  
22171While picking a specific @var{cpu-type} schedules things appropriately
22172for that particular chip, the compiler does not generate any code that
22173cannot run on the default machine type unless you use a
22174@option{-march=@var{cpu-type}} option.
22175For example, if GCC is configured for i686-pc-linux-gnu
22176then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22177but still runs on i686 machines.
22178
22179The choices for @var{cpu-type} are the same as for @option{-march}.
22180In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22181
22182@table @samp
22183@item generic
22184Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22185If you know the CPU on which your code will run, then you should use
22186the corresponding @option{-mtune} or @option{-march} option instead of
22187@option{-mtune=generic}.  But, if you do not know exactly what CPU users
22188of your application will have, then you should use this option.
22189
22190As new processors are deployed in the marketplace, the behavior of this
22191option will change.  Therefore, if you upgrade to a newer version of
22192GCC, code generation controlled by this option will change to reflect
22193the processors
22194that are most common at the time that version of GCC is released.
22195
22196There is no @option{-march=generic} option because @option{-march}
22197indicates the instruction set the compiler can use, and there is no
22198generic instruction set applicable to all processors.  In contrast,
22199@option{-mtune} indicates the processor (or, in this case, collection of
22200processors) for which the code is optimized.
22201
22202@item intel
22203Produce code optimized for the most current Intel processors, which are
22204Haswell and Silvermont for this version of GCC.  If you know the CPU
22205on which your code will run, then you should use the corresponding
22206@option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22207But, if you want your application performs better on both Haswell and
22208Silvermont, then you should use this option.
22209
22210As new Intel processors are deployed in the marketplace, the behavior of
22211this option will change.  Therefore, if you upgrade to a newer version of
22212GCC, code generation controlled by this option will change to reflect
22213the most current Intel processors at the time that version of GCC is
22214released.
22215
22216There is no @option{-march=intel} option because @option{-march} indicates
22217the instruction set the compiler can use, and there is no common
22218instruction set applicable to all processors.  In contrast,
22219@option{-mtune} indicates the processor (or, in this case, collection of
22220processors) for which the code is optimized.
22221@end table
22222
22223@item -mcpu=@var{cpu-type}
22224@opindex mcpu
22225A deprecated synonym for @option{-mtune}.
22226
22227@item -mfpmath=@var{unit}
22228@opindex mfpmath
22229Generate floating-point arithmetic for selected unit @var{unit}.  The choices
22230for @var{unit} are:
22231
22232@table @samp
22233@item 387
22234Use the standard 387 floating-point coprocessor present on the majority of chips and
22235emulated otherwise.  Code compiled with this option runs almost everywhere.
22236The temporary results are computed in 80-bit precision instead of the precision
22237specified by the type, resulting in slightly different results compared to most
22238of other chips.  See @option{-ffloat-store} for more detailed description.
22239
22240This is the default choice for x86-32 targets.
22241
22242@item sse
22243Use scalar floating-point instructions present in the SSE instruction set.
22244This instruction set is supported by Pentium III and newer chips,
22245and in the AMD line
22246by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
22247instruction set supports only single-precision arithmetic, thus the double and
22248extended-precision arithmetic are still done using 387.  A later version, present
22249only in Pentium 4 and AMD x86-64 chips, supports double-precision
22250arithmetic too.
22251
22252For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22253or @option{-msse2} switches to enable SSE extensions and make this option
22254effective.  For the x86-64 compiler, these extensions are enabled by default.
22255
22256The resulting code should be considerably faster in the majority of cases and avoid
22257the numerical instability problems of 387 code, but may break some existing
22258code that expects temporaries to be 80 bits.
22259
22260This is the default choice for the x86-64 compiler.
22261
22262@item sse,387
22263@itemx sse+387
22264@itemx both
22265Attempt to utilize both instruction sets at once.  This effectively doubles the
22266amount of available registers, and on chips with separate execution units for
22267387 and SSE the execution resources too.  Use this option with care, as it is
22268still experimental, because the GCC register allocator does not model separate
22269functional units well, resulting in unstable performance.
22270@end table
22271
22272@item -masm=@var{dialect}
22273@opindex masm=@var{dialect}
22274Output assembly instructions using selected @var{dialect}.  Also affects
22275which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22276extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22277order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22278not support @samp{intel}.
22279
22280@item -mieee-fp
22281@itemx -mno-ieee-fp
22282@opindex mieee-fp
22283@opindex mno-ieee-fp
22284Control whether or not the compiler uses IEEE floating-point
22285comparisons.  These correctly handle the case where the result of a
22286comparison is unordered.
22287
22288@item -msoft-float
22289@opindex msoft-float
22290Generate output containing library calls for floating point.
22291
22292@strong{Warning:} the requisite libraries are not part of GCC@.
22293Normally the facilities of the machine's usual C compiler are used, but
22294this can't be done directly in cross-compilation.  You must make your
22295own arrangements to provide suitable library functions for
22296cross-compilation.
22297
22298On machines where a function returns floating-point results in the 80387
22299register stack, some floating-point opcodes may be emitted even if
22300@option{-msoft-float} is used.
22301
22302@item -mno-fp-ret-in-387
22303@opindex mno-fp-ret-in-387
22304Do not use the FPU registers for return values of functions.
22305
22306The usual calling convention has functions return values of types
22307@code{float} and @code{double} in an FPU register, even if there
22308is no FPU@.  The idea is that the operating system should emulate
22309an FPU@.
22310
22311The option @option{-mno-fp-ret-in-387} causes such values to be returned
22312in ordinary CPU registers instead.
22313
22314@item -mno-fancy-math-387
22315@opindex mno-fancy-math-387
22316Some 387 emulators do not support the @code{sin}, @code{cos} and
22317@code{sqrt} instructions for the 387.  Specify this option to avoid
22318generating those instructions.  This option is the default on
22319OpenBSD and NetBSD@.  This option is overridden when @option{-march}
22320indicates that the target CPU always has an FPU and so the
22321instruction does not need emulation.  These
22322instructions are not generated unless you also use the
22323@option{-funsafe-math-optimizations} switch.
22324
22325@item -malign-double
22326@itemx -mno-align-double
22327@opindex malign-double
22328@opindex mno-align-double
22329Control whether GCC aligns @code{double}, @code{long double}, and
22330@code{long long} variables on a two-word boundary or a one-word
22331boundary.  Aligning @code{double} variables on a two-word boundary
22332produces code that runs somewhat faster on a Pentium at the
22333expense of more memory.
22334
22335On x86-64, @option{-malign-double} is enabled by default.
22336
22337@strong{Warning:} if you use the @option{-malign-double} switch,
22338structures containing the above types are aligned differently than
22339the published application binary interface specifications for the x86-32
22340and are not binary compatible with structures in code compiled
22341without that switch.
22342
22343@item -m96bit-long-double
22344@itemx -m128bit-long-double
22345@opindex m96bit-long-double
22346@opindex m128bit-long-double
22347These switches control the size of @code{long double} type.  The x86-32
22348application binary interface specifies the size to be 96 bits,
22349so @option{-m96bit-long-double} is the default in 32-bit mode.
22350
22351Modern architectures (Pentium and newer) prefer @code{long double}
22352to be aligned to an 8- or 16-byte boundary.  In arrays or structures
22353conforming to the ABI, this is not possible.  So specifying
22354@option{-m128bit-long-double} aligns @code{long double}
22355to a 16-byte boundary by padding the @code{long double} with an additional
2235632-bit zero.
22357
22358In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22359its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22360
22361Notice that neither of these options enable any extra precision over the x87
22362standard of 80 bits for a @code{long double}.
22363
22364@strong{Warning:} if you override the default value for your target ABI, this
22365changes the size of 
22366structures and arrays containing @code{long double} variables,
22367as well as modifying the function calling convention for functions taking
22368@code{long double}.  Hence they are not binary-compatible
22369with code compiled without that switch.
22370
22371@item -mlong-double-64
22372@itemx -mlong-double-80
22373@itemx -mlong-double-128
22374@opindex mlong-double-64
22375@opindex mlong-double-80
22376@opindex mlong-double-128
22377These switches control the size of @code{long double} type. A size
22378of 64 bits makes the @code{long double} type equivalent to the @code{double}
22379type. This is the default for 32-bit Bionic C library.  A size
22380of 128 bits makes the @code{long double} type equivalent to the
22381@code{__float128} type. This is the default for 64-bit Bionic C library.
22382
22383@strong{Warning:} if you override the default value for your target ABI, this
22384changes the size of
22385structures and arrays containing @code{long double} variables,
22386as well as modifying the function calling convention for functions taking
22387@code{long double}.  Hence they are not binary-compatible
22388with code compiled without that switch.
22389
22390@item -malign-data=@var{type}
22391@opindex malign-data
22392Control how GCC aligns variables.  Supported values for @var{type} are
22393@samp{compat} uses increased alignment value compatible uses GCC 4.8
22394and earlier, @samp{abi} uses alignment value as specified by the
22395psABI, and @samp{cacheline} uses increased alignment value to match
22396the cache line size.  @samp{compat} is the default.
22397
22398@item -mlarge-data-threshold=@var{threshold}
22399@opindex mlarge-data-threshold
22400When @option{-mcmodel=medium} is specified, data objects larger than
22401@var{threshold} are placed in the large data section.  This value must be the
22402same across all objects linked into the binary, and defaults to 65535.
22403
22404@item -mrtd
22405@opindex mrtd
22406Use a different function-calling convention, in which functions that
22407take a fixed number of arguments return with the @code{ret @var{num}}
22408instruction, which pops their arguments while returning.  This saves one
22409instruction in the caller since there is no need to pop the arguments
22410there.
22411
22412You can specify that an individual function is called with this calling
22413sequence with the function attribute @code{stdcall}.  You can also
22414override the @option{-mrtd} option by using the function attribute
22415@code{cdecl}.  @xref{Function Attributes}.
22416
22417@strong{Warning:} this calling convention is incompatible with the one
22418normally used on Unix, so you cannot use it if you need to call
22419libraries compiled with the Unix compiler.
22420
22421Also, you must provide function prototypes for all functions that
22422take variable numbers of arguments (including @code{printf});
22423otherwise incorrect code is generated for calls to those
22424functions.
22425
22426In addition, seriously incorrect code results if you call a
22427function with too many arguments.  (Normally, extra arguments are
22428harmlessly ignored.)
22429
22430@item -mregparm=@var{num}
22431@opindex mregparm
22432Control how many registers are used to pass integer arguments.  By
22433default, no registers are used to pass arguments, and at most 3
22434registers can be used.  You can control this behavior for a specific
22435function by using the function attribute @code{regparm}.
22436@xref{Function Attributes}.
22437
22438@strong{Warning:} if you use this switch, and
22439@var{num} is nonzero, then you must build all modules with the same
22440value, including any libraries.  This includes the system libraries and
22441startup modules.
22442
22443@item -msseregparm
22444@opindex msseregparm
22445Use SSE register passing conventions for float and double arguments
22446and return values.  You can control this behavior for a specific
22447function by using the function attribute @code{sseregparm}.
22448@xref{Function Attributes}.
22449
22450@strong{Warning:} if you use this switch then you must build all
22451modules with the same value, including any libraries.  This includes
22452the system libraries and startup modules.
22453
22454@item -mvect8-ret-in-mem
22455@opindex mvect8-ret-in-mem
22456Return 8-byte vectors in memory instead of MMX registers.  This is the
22457default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22458Studio compilers until version 12.  Later compiler versions (starting
22459with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22460is the default on Solaris@tie{}10 and later.  @emph{Only} use this option if
22461you need to remain compatible with existing code produced by those
22462previous compiler versions or older versions of GCC@.
22463
22464@item -mpc32
22465@itemx -mpc64
22466@itemx -mpc80
22467@opindex mpc32
22468@opindex mpc64
22469@opindex mpc80
22470
22471Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
22472is specified, the significands of results of floating-point operations are
22473rounded to 24 bits (single precision); @option{-mpc64} rounds the
22474significands of results of floating-point operations to 53 bits (double
22475precision) and @option{-mpc80} rounds the significands of results of
22476floating-point operations to 64 bits (extended double precision), which is
22477the default.  When this option is used, floating-point operations in higher
22478precisions are not available to the programmer without setting the FPU
22479control word explicitly.
22480
22481Setting the rounding of floating-point operations to less than the default
2248280 bits can speed some programs by 2% or more.  Note that some mathematical
22483libraries assume that extended-precision (80-bit) floating-point operations
22484are enabled by default; routines in such libraries could suffer significant
22485loss of accuracy, typically through so-called ``catastrophic cancellation'',
22486when this option is used to set the precision to less than extended precision.
22487
22488@item -mstackrealign
22489@opindex mstackrealign
22490Realign the stack at entry.  On the x86, the @option{-mstackrealign}
22491option generates an alternate prologue and epilogue that realigns the
22492run-time stack if necessary.  This supports mixing legacy codes that keep
224934-byte stack alignment with modern codes that keep 16-byte stack alignment for
22494SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
22495applicable to individual functions.
22496
22497@item -mpreferred-stack-boundary=@var{num}
22498@opindex mpreferred-stack-boundary
22499Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22500byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
22501the default is 4 (16 bytes or 128 bits).
22502
22503@strong{Warning:} When generating code for the x86-64 architecture with
22504SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22505used to keep the stack boundary aligned to 8 byte boundary.  Since
22506x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22507intended to be used in controlled environment where stack space is
22508important limitation.  This option leads to wrong code when functions
22509compiled with 16 byte stack alignment (such as functions from a standard
22510library) are called with misaligned stack.  In this case, SSE
22511instructions may lead to misaligned memory access traps.  In addition,
22512variable arguments are handled incorrectly for 16 byte aligned
22513objects (including x87 long double and __int128), leading to wrong
22514results.  You must build all modules with
22515@option{-mpreferred-stack-boundary=3}, including any libraries.  This
22516includes the system libraries and startup modules.
22517
22518@item -mincoming-stack-boundary=@var{num}
22519@opindex mincoming-stack-boundary
22520Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22521boundary.  If @option{-mincoming-stack-boundary} is not specified,
22522the one specified by @option{-mpreferred-stack-boundary} is used.
22523
22524On Pentium and Pentium Pro, @code{double} and @code{long double} values
22525should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22526suffer significant run time performance penalties.  On Pentium III, the
22527Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22528properly if it is not 16-byte aligned.
22529
22530To ensure proper alignment of this values on the stack, the stack boundary
22531must be as aligned as that required by any value stored on the stack.
22532Further, every function must be generated such that it keeps the stack
22533aligned.  Thus calling a function compiled with a higher preferred
22534stack boundary from a function compiled with a lower preferred stack
22535boundary most likely misaligns the stack.  It is recommended that
22536libraries that use callbacks always use the default setting.
22537
22538This extra alignment does consume extra stack space, and generally
22539increases code size.  Code that is sensitive to stack space usage, such
22540as embedded systems and operating system kernels, may want to reduce the
22541preferred alignment to @option{-mpreferred-stack-boundary=2}.
22542
22543@need 200
22544@item -mmmx
22545@opindex mmmx
22546@need 200
22547@itemx -msse
22548@opindex msse
22549@need 200
22550@itemx -msse2
22551@need 200
22552@itemx -msse3
22553@need 200
22554@itemx -mssse3
22555@need 200
22556@itemx -msse4
22557@need 200
22558@itemx -msse4a
22559@need 200
22560@itemx -msse4.1
22561@need 200
22562@itemx -msse4.2
22563@need 200
22564@itemx -mavx
22565@opindex mavx
22566@need 200
22567@itemx -mavx2
22568@need 200
22569@itemx -mavx512f
22570@need 200
22571@itemx -mavx512pf
22572@need 200
22573@itemx -mavx512er
22574@need 200
22575@itemx -mavx512cd
22576@need 200
22577@itemx -msha
22578@opindex msha
22579@need 200
22580@itemx -maes
22581@opindex maes
22582@need 200
22583@itemx -mpclmul
22584@opindex mpclmul
22585@need 200
22586@itemx -mclfushopt
22587@opindex mclfushopt
22588@need 200
22589@itemx -mfsgsbase
22590@opindex mfsgsbase
22591@need 200
22592@itemx -mrdrnd
22593@opindex mrdrnd
22594@need 200
22595@itemx -mf16c
22596@opindex mf16c
22597@need 200
22598@itemx -mfma
22599@opindex mfma
22600@need 200
22601@itemx -mfma4
22602@need 200
22603@itemx -mno-fma4
22604@need 200
22605@itemx -mprefetchwt1
22606@opindex mprefetchwt1
22607@need 200
22608@itemx -mxop
22609@opindex mxop
22610@need 200
22611@itemx -mlwp
22612@opindex mlwp
22613@need 200
22614@itemx -m3dnow
22615@opindex m3dnow
22616@need 200
22617@itemx -mpopcnt
22618@opindex mpopcnt
22619@need 200
22620@itemx -mabm
22621@opindex mabm
22622@need 200
22623@itemx -mbmi
22624@opindex mbmi
22625@need 200
22626@itemx -mbmi2
22627@need 200
22628@itemx -mlzcnt
22629@opindex mlzcnt
22630@need 200
22631@itemx -mfxsr
22632@opindex mfxsr
22633@need 200
22634@itemx -mxsave
22635@opindex mxsave
22636@need 200
22637@itemx -mxsaveopt
22638@opindex mxsaveopt
22639@need 200
22640@itemx -mxsavec
22641@opindex mxsavec
22642@need 200
22643@itemx -mxsaves
22644@opindex mxsaves
22645@need 200
22646@itemx -mrtm
22647@opindex mrtm
22648@need 200
22649@itemx -mtbm
22650@opindex mtbm
22651@need 200
22652@itemx -mmpx
22653@opindex mmpx
22654@need 200
22655@itemx -mmwaitx
22656@opindex mmwaitx
22657These switches enable the use of instructions in the MMX, SSE,
22658SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22659SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22660BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX or 3DNow!@:
22661extended instruction sets.  Each has a corresponding @option{-mno-} option
22662to disable use of these instructions.
22663
22664These extensions are also available as built-in functions: see
22665@ref{x86 Built-in Functions}, for details of the functions enabled and
22666disabled by these switches.
22667
22668To generate SSE/SSE2 instructions automatically from floating-point
22669code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22670
22671GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
22672generates new AVX instructions or AVX equivalence for all SSEx instructions
22673when needed.
22674
22675These options enable GCC to use these extended instructions in
22676generated code, even without @option{-mfpmath=sse}.  Applications that
22677perform run-time CPU detection must compile separate files for each
22678supported architecture, using the appropriate flags.  In particular,
22679the file containing the CPU detection code should be compiled without
22680these options.
22681
22682@item -mdump-tune-features
22683@opindex mdump-tune-features
22684This option instructs GCC to dump the names of the x86 performance 
22685tuning features and default settings. The names can be used in 
22686@option{-mtune-ctrl=@var{feature-list}}.
22687
22688@item -mtune-ctrl=@var{feature-list}
22689@opindex mtune-ctrl=@var{feature-list}
22690This option is used to do fine grain control of x86 code generation features.
22691@var{feature-list} is a comma separated list of @var{feature} names. See also
22692@option{-mdump-tune-features}. When specified, the @var{feature} is turned
22693on if it is not preceded with @samp{^}, otherwise, it is turned off. 
22694@option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
22695developers. Using it may lead to code paths not covered by testing and can
22696potentially result in compiler ICEs or runtime errors.
22697
22698@item -mno-default
22699@opindex mno-default
22700This option instructs GCC to turn off all tunable features. See also 
22701@option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
22702
22703@item -mcld
22704@opindex mcld
22705This option instructs GCC to emit a @code{cld} instruction in the prologue
22706of functions that use string instructions.  String instructions depend on
22707the DF flag to select between autoincrement or autodecrement mode.  While the
22708ABI specifies the DF flag to be cleared on function entry, some operating
22709systems violate this specification by not clearing the DF flag in their
22710exception dispatchers.  The exception handler can be invoked with the DF flag
22711set, which leads to wrong direction mode when string instructions are used.
22712This option can be enabled by default on 32-bit x86 targets by configuring
22713GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
22714instructions can be suppressed with the @option{-mno-cld} compiler option
22715in this case.
22716
22717@item -mvzeroupper
22718@opindex mvzeroupper
22719This option instructs GCC to emit a @code{vzeroupper} instruction
22720before a transfer of control flow out of the function to minimize
22721the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
22722intrinsics.
22723
22724@item -mprefer-avx128
22725@opindex mprefer-avx128
22726This option instructs GCC to use 128-bit AVX instructions instead of
22727256-bit AVX instructions in the auto-vectorizer.
22728
22729@item -mcx16
22730@opindex mcx16
22731This option enables GCC to generate @code{CMPXCHG16B} instructions.
22732@code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
22733(or oword) data types.  
22734This is useful for high-resolution counters that can be updated
22735by multiple processors (or cores).  This instruction is generated as part of
22736atomic built-in functions: see @ref{__sync Builtins} or
22737@ref{__atomic Builtins} for details.
22738
22739@item -msahf
22740@opindex msahf
22741This option enables generation of @code{SAHF} instructions in 64-bit code.
22742Early Intel Pentium 4 CPUs with Intel 64 support,
22743prior to the introduction of Pentium 4 G1 step in December 2005,
22744lacked the @code{LAHF} and @code{SAHF} instructions
22745which are supported by AMD64.
22746These are load and store instructions, respectively, for certain status flags.
22747In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
22748@code{drem}, and @code{remainder} built-in functions;
22749see @ref{Other Builtins} for details.
22750
22751@item -mmovbe
22752@opindex mmovbe
22753This option enables use of the @code{movbe} instruction to implement
22754@code{__builtin_bswap32} and @code{__builtin_bswap64}.
22755
22756@item -mcrc32
22757@opindex mcrc32
22758This option enables built-in functions @code{__builtin_ia32_crc32qi},
22759@code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
22760@code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
22761
22762@item -mrecip
22763@opindex mrecip
22764This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
22765(and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
22766with an additional Newton-Raphson step
22767to increase precision instead of @code{DIVSS} and @code{SQRTSS}
22768(and their vectorized
22769variants) for single-precision floating-point arguments.  These instructions
22770are generated only when @option{-funsafe-math-optimizations} is enabled
22771together with @option{-finite-math-only} and @option{-fno-trapping-math}.
22772Note that while the throughput of the sequence is higher than the throughput
22773of the non-reciprocal instruction, the precision of the sequence can be
22774decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
22775
22776Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
22777(or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
22778combination), and doesn't need @option{-mrecip}.
22779
22780Also note that GCC emits the above sequence with additional Newton-Raphson step
22781for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
22782already with @option{-ffast-math} (or the above option combination), and
22783doesn't need @option{-mrecip}.
22784
22785@item -mrecip=@var{opt}
22786@opindex mrecip=opt
22787This option controls which reciprocal estimate instructions
22788may be used.  @var{opt} is a comma-separated list of options, which may
22789be preceded by a @samp{!} to invert the option:
22790
22791@table @samp
22792@item all
22793Enable all estimate instructions.
22794
22795@item default
22796Enable the default instructions, equivalent to @option{-mrecip}.
22797
22798@item none
22799Disable all estimate instructions, equivalent to @option{-mno-recip}.
22800
22801@item div
22802Enable the approximation for scalar division.
22803
22804@item vec-div
22805Enable the approximation for vectorized division.
22806
22807@item sqrt
22808Enable the approximation for scalar square root.
22809
22810@item vec-sqrt
22811Enable the approximation for vectorized square root.
22812@end table
22813
22814So, for example, @option{-mrecip=all,!sqrt} enables
22815all of the reciprocal approximations, except for square root.
22816
22817@item -mveclibabi=@var{type}
22818@opindex mveclibabi
22819Specifies the ABI type to use for vectorizing intrinsics using an
22820external library.  Supported values for @var{type} are @samp{svml} 
22821for the Intel short
22822vector math library and @samp{acml} for the AMD math core library.
22823To use this option, both @option{-ftree-vectorize} and
22824@option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML 
22825ABI-compatible library must be specified at link time.
22826
22827GCC currently emits calls to @code{vmldExp2},
22828@code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
22829@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
22830@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
22831@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
22832@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
22833@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
22834@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
22835@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
22836@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
22837function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
22838@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
22839@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
22840@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
22841@code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
22842when @option{-mveclibabi=acml} is used.  
22843
22844@item -mabi=@var{name}
22845@opindex mabi
22846Generate code for the specified calling convention.  Permissible values
22847are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
22848@samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
22849ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
22850You can control this behavior for specific functions by
22851using the function attributes @code{ms_abi} and @code{sysv_abi}.
22852@xref{Function Attributes}.
22853
22854@item -mtls-dialect=@var{type}
22855@opindex mtls-dialect
22856Generate code to access thread-local storage using the @samp{gnu} or
22857@samp{gnu2} conventions.  @samp{gnu} is the conservative default;
22858@samp{gnu2} is more efficient, but it may add compile- and run-time
22859requirements that cannot be satisfied on all systems.
22860
22861@item -mpush-args
22862@itemx -mno-push-args
22863@opindex mpush-args
22864@opindex mno-push-args
22865Use PUSH operations to store outgoing parameters.  This method is shorter
22866and usually equally fast as method using SUB/MOV operations and is enabled
22867by default.  In some cases disabling it may improve performance because of
22868improved scheduling and reduced dependencies.
22869
22870@item -maccumulate-outgoing-args
22871@opindex maccumulate-outgoing-args
22872If enabled, the maximum amount of space required for outgoing arguments is
22873computed in the function prologue.  This is faster on most modern CPUs
22874because of reduced dependencies, improved scheduling and reduced stack usage
22875when the preferred stack boundary is not equal to 2.  The drawback is a notable
22876increase in code size.  This switch implies @option{-mno-push-args}.
22877
22878@item -mthreads
22879@opindex mthreads
22880Support thread-safe exception handling on MinGW.  Programs that rely
22881on thread-safe exception handling must compile and link all code with the
22882@option{-mthreads} option.  When compiling, @option{-mthreads} defines
22883@option{-D_MT}; when linking, it links in a special thread helper library
22884@option{-lmingwthrd} which cleans up per-thread exception-handling data.
22885
22886@item -mno-align-stringops
22887@opindex mno-align-stringops
22888Do not align the destination of inlined string operations.  This switch reduces
22889code size and improves performance in case the destination is already aligned,
22890but GCC doesn't know about it.
22891
22892@item -minline-all-stringops
22893@opindex minline-all-stringops
22894By default GCC inlines string operations only when the destination is 
22895known to be aligned to least a 4-byte boundary.  
22896This enables more inlining and increases code
22897size, but may improve performance of code that depends on fast
22898@code{memcpy}, @code{strlen},
22899and @code{memset} for short lengths.
22900
22901@item -minline-stringops-dynamically
22902@opindex minline-stringops-dynamically
22903For string operations of unknown size, use run-time checks with
22904inline code for small blocks and a library call for large blocks.
22905
22906@item -mstringop-strategy=@var{alg}
22907@opindex mstringop-strategy=@var{alg}
22908Override the internal decision heuristic for the particular algorithm to use
22909for inlining string operations.  The allowed values for @var{alg} are:
22910
22911@table @samp
22912@item rep_byte
22913@itemx rep_4byte
22914@itemx rep_8byte
22915Expand using i386 @code{rep} prefix of the specified size.
22916
22917@item byte_loop
22918@itemx loop
22919@itemx unrolled_loop
22920Expand into an inline loop.
22921
22922@item libcall
22923Always use a library call.
22924@end table
22925
22926@item -mmemcpy-strategy=@var{strategy}
22927@opindex mmemcpy-strategy=@var{strategy}
22928Override the internal decision heuristic to decide if @code{__builtin_memcpy}
22929should be inlined and what inline algorithm to use when the expected size
22930of the copy operation is known. @var{strategy} 
22931is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets. 
22932@var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
22933the max byte size with which inline algorithm @var{alg} is allowed.  For the last
22934triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
22935in the list must be specified in increasing order.  The minimal byte size for 
22936@var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the 
22937preceding range.
22938
22939@item -mmemset-strategy=@var{strategy}
22940@opindex mmemset-strategy=@var{strategy}
22941The option is similar to @option{-mmemcpy-strategy=} except that it is to control
22942@code{__builtin_memset} expansion.
22943
22944@item -momit-leaf-frame-pointer
22945@opindex momit-leaf-frame-pointer
22946Don't keep the frame pointer in a register for leaf functions.  This
22947avoids the instructions to save, set up, and restore frame pointers and
22948makes an extra register available in leaf functions.  The option
22949@option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
22950which might make debugging harder.
22951
22952@item -mtls-direct-seg-refs
22953@itemx -mno-tls-direct-seg-refs
22954@opindex mtls-direct-seg-refs
22955Controls whether TLS variables may be accessed with offsets from the
22956TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
22957or whether the thread base pointer must be added.  Whether or not this
22958is valid depends on the operating system, and whether it maps the
22959segment to cover the entire TLS area.
22960
22961For systems that use the GNU C Library, the default is on.
22962
22963@item -msse2avx
22964@itemx -mno-sse2avx
22965@opindex msse2avx
22966Specify that the assembler should encode SSE instructions with VEX
22967prefix.  The option @option{-mavx} turns this on by default.
22968
22969@item -mfentry
22970@itemx -mno-fentry
22971@opindex mfentry
22972If profiling is active (@option{-pg}), put the profiling
22973counter call before the prologue.
22974Note: On x86 architectures the attribute @code{ms_hook_prologue}
22975isn't possible at the moment for @option{-mfentry} and @option{-pg}.
22976
22977@item -mrecord-mcount
22978@itemx -mno-record-mcount
22979@opindex mrecord-mcount
22980If profiling is active (@option{-pg}), generate a __mcount_loc section
22981that contains pointers to each profiling call. This is useful for
22982automatically patching and out calls.
22983
22984@item -mnop-mcount
22985@itemx -mno-nop-mcount
22986@opindex mnop-mcount
22987If profiling is active (@option{-pg}), generate the calls to
22988the profiling functions as nops. This is useful when they
22989should be patched in later dynamically. This is likely only
22990useful together with @option{-mrecord-mcount}.
22991
22992@item -mskip-rax-setup
22993@itemx -mno-skip-rax-setup
22994@opindex mskip-rax-setup
22995When generating code for the x86-64 architecture with SSE extensions
22996disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
22997register when there are no variable arguments passed in vector registers.
22998
22999@strong{Warning:} Since RAX register is used to avoid unnecessarily
23000saving vector registers on stack when passing variable arguments, the
23001impacts of this option are callees may waste some stack space,
23002misbehave or jump to a random location.  GCC 4.4 or newer don't have
23003those issues, regardless the RAX register value.
23004
23005@item -m8bit-idiv
23006@itemx -mno-8bit-idiv
23007@opindex m8bit-idiv
23008On some processors, like Intel Atom, 8-bit unsigned integer divide is
23009much faster than 32-bit/64-bit integer divide.  This option generates a
23010run-time check.  If both dividend and divisor are within range of 0
23011to 255, 8-bit unsigned integer divide is used instead of
2301232-bit/64-bit integer divide.
23013
23014@item -mavx256-split-unaligned-load
23015@itemx -mavx256-split-unaligned-store
23016@opindex mavx256-split-unaligned-load
23017@opindex mavx256-split-unaligned-store
23018Split 32-byte AVX unaligned load and store.
23019
23020@item -mstack-protector-guard=@var{guard}
23021@opindex mstack-protector-guard=@var{guard}
23022Generate stack protection code using canary at @var{guard}.  Supported
23023locations are @samp{global} for global canary or @samp{tls} for per-thread
23024canary in the TLS block (the default).  This option has effect only when
23025@option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23026
23027@end table
23028
23029These @samp{-m} switches are supported in addition to the above
23030on x86-64 processors in 64-bit environments.
23031
23032@table @gcctabopt
23033@item -m32
23034@itemx -m64
23035@itemx -mx32
23036@itemx -m16
23037@opindex m32
23038@opindex m64
23039@opindex mx32
23040@opindex m16
23041Generate code for a 16-bit, 32-bit or 64-bit environment.
23042The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23043to 32 bits, and
23044generates code that runs on any i386 system.
23045
23046The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23047types to 64 bits, and generates code for the x86-64 architecture.
23048For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23049and @option{-mdynamic-no-pic} options.
23050
23051The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23052to 32 bits, and
23053generates code for the x86-64 architecture.
23054
23055The @option{-m16} option is the same as @option{-m32}, except for that
23056it outputs the @code{.code16gcc} assembly directive at the beginning of
23057the assembly output so that the binary can run in 16-bit mode.
23058
23059@item -mno-red-zone
23060@opindex mno-red-zone
23061Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
23062by the x86-64 ABI; it is a 128-byte area beyond the location of the
23063stack pointer that is not modified by signal or interrupt handlers
23064and therefore can be used for temporary data without adjusting the stack
23065pointer.  The flag @option{-mno-red-zone} disables this red zone.
23066
23067@item -mcmodel=small
23068@opindex mcmodel=small
23069Generate code for the small code model: the program and its symbols must
23070be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
23071Programs can be statically or dynamically linked.  This is the default
23072code model.
23073
23074@item -mcmodel=kernel
23075@opindex mcmodel=kernel
23076Generate code for the kernel code model.  The kernel runs in the
23077negative 2 GB of the address space.
23078This model has to be used for Linux kernel code.
23079
23080@item -mcmodel=medium
23081@opindex mcmodel=medium
23082Generate code for the medium model: the program is linked in the lower 2
23083GB of the address space.  Small symbols are also placed there.  Symbols
23084with sizes larger than @option{-mlarge-data-threshold} are put into
23085large data or BSS sections and can be located above 2GB.  Programs can
23086be statically or dynamically linked.
23087
23088@item -mcmodel=large
23089@opindex mcmodel=large
23090Generate code for the large model.  This model makes no assumptions
23091about addresses and sizes of sections.
23092
23093@item -maddress-mode=long
23094@opindex maddress-mode=long
23095Generate code for long address mode.  This is only supported for 64-bit
23096and x32 environments.  It is the default address mode for 64-bit
23097environments.
23098
23099@item -maddress-mode=short
23100@opindex maddress-mode=short
23101Generate code for short address mode.  This is only supported for 32-bit
23102and x32 environments.  It is the default address mode for 32-bit and
23103x32 environments.
23104@end table
23105
23106@node x86 Windows Options
23107@subsection x86 Windows Options
23108@cindex x86 Windows Options
23109@cindex Windows Options for x86
23110
23111These additional options are available for Microsoft Windows targets:
23112
23113@table @gcctabopt
23114@item -mconsole
23115@opindex mconsole
23116This option
23117specifies that a console application is to be generated, by
23118instructing the linker to set the PE header subsystem type
23119required for console applications.
23120This option is available for Cygwin and MinGW targets and is
23121enabled by default on those targets.
23122
23123@item -mdll
23124@opindex mdll
23125This option is available for Cygwin and MinGW targets.  It
23126specifies that a DLL---a dynamic link library---is to be
23127generated, enabling the selection of the required runtime
23128startup object and entry point.
23129
23130@item -mnop-fun-dllimport
23131@opindex mnop-fun-dllimport
23132This option is available for Cygwin and MinGW targets.  It
23133specifies that the @code{dllimport} attribute should be ignored.
23134
23135@item -mthread
23136@opindex mthread
23137This option is available for MinGW targets. It specifies
23138that MinGW-specific thread support is to be used.
23139
23140@item -municode
23141@opindex municode
23142This option is available for MinGW-w64 targets.  It causes
23143the @code{UNICODE} preprocessor macro to be predefined, and
23144chooses Unicode-capable runtime startup code.
23145
23146@item -mwin32
23147@opindex mwin32
23148This option is available for Cygwin and MinGW targets.  It
23149specifies that the typical Microsoft Windows predefined macros are to
23150be set in the pre-processor, but does not influence the choice
23151of runtime library/startup code.
23152
23153@item -mwindows
23154@opindex mwindows
23155This option is available for Cygwin and MinGW targets.  It
23156specifies that a GUI application is to be generated by
23157instructing the linker to set the PE header subsystem type
23158appropriately.
23159
23160@item -fno-set-stack-executable
23161@opindex fno-set-stack-executable
23162This option is available for MinGW targets. It specifies that
23163the executable flag for the stack used by nested functions isn't
23164set. This is necessary for binaries running in kernel mode of
23165Microsoft Windows, as there the User32 API, which is used to set executable
23166privileges, isn't available.
23167
23168@item -fwritable-relocated-rdata
23169@opindex fno-writable-relocated-rdata
23170This option is available for MinGW and Cygwin targets.  It specifies
23171that relocated-data in read-only section is put into .data
23172section.  This is a necessary for older runtimes not supporting
23173modification of .rdata sections for pseudo-relocation.
23174
23175@item -mpe-aligned-commons
23176@opindex mpe-aligned-commons
23177This option is available for Cygwin and MinGW targets.  It
23178specifies that the GNU extension to the PE file format that
23179permits the correct alignment of COMMON variables should be
23180used when generating code.  It is enabled by default if
23181GCC detects that the target assembler found during configuration
23182supports the feature.
23183@end table
23184
23185See also under @ref{x86 Options} for standard options.
23186
23187@node Xstormy16 Options
23188@subsection Xstormy16 Options
23189@cindex Xstormy16 Options
23190
23191These options are defined for Xstormy16:
23192
23193@table @gcctabopt
23194@item -msim
23195@opindex msim
23196Choose startup files and linker script suitable for the simulator.
23197@end table
23198
23199@node Xtensa Options
23200@subsection Xtensa Options
23201@cindex Xtensa Options
23202
23203These options are supported for Xtensa targets:
23204
23205@table @gcctabopt
23206@item -mconst16
23207@itemx -mno-const16
23208@opindex mconst16
23209@opindex mno-const16
23210Enable or disable use of @code{CONST16} instructions for loading
23211constant values.  The @code{CONST16} instruction is currently not a
23212standard option from Tensilica.  When enabled, @code{CONST16}
23213instructions are always used in place of the standard @code{L32R}
23214instructions.  The use of @code{CONST16} is enabled by default only if
23215the @code{L32R} instruction is not available.
23216
23217@item -mfused-madd
23218@itemx -mno-fused-madd
23219@opindex mfused-madd
23220@opindex mno-fused-madd
23221Enable or disable use of fused multiply/add and multiply/subtract
23222instructions in the floating-point option.  This has no effect if the
23223floating-point option is not also enabled.  Disabling fused multiply/add
23224and multiply/subtract instructions forces the compiler to use separate
23225instructions for the multiply and add/subtract operations.  This may be
23226desirable in some cases where strict IEEE 754-compliant results are
23227required: the fused multiply add/subtract instructions do not round the
23228intermediate result, thereby producing results with @emph{more} bits of
23229precision than specified by the IEEE standard.  Disabling fused multiply
23230add/subtract instructions also ensures that the program output is not
23231sensitive to the compiler's ability to combine multiply and add/subtract
23232operations.
23233
23234@item -mserialize-volatile
23235@itemx -mno-serialize-volatile
23236@opindex mserialize-volatile
23237@opindex mno-serialize-volatile
23238When this option is enabled, GCC inserts @code{MEMW} instructions before
23239@code{volatile} memory references to guarantee sequential consistency.
23240The default is @option{-mserialize-volatile}.  Use
23241@option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23242
23243@item -mforce-no-pic
23244@opindex mforce-no-pic
23245For targets, like GNU/Linux, where all user-mode Xtensa code must be
23246position-independent code (PIC), this option disables PIC for compiling
23247kernel code.
23248
23249@item -mtext-section-literals
23250@itemx -mno-text-section-literals
23251@opindex mtext-section-literals
23252@opindex mno-text-section-literals
23253These options control the treatment of literal pools.  The default is
23254@option{-mno-text-section-literals}, which places literals in a separate
23255section in the output file.  This allows the literal pool to be placed
23256in a data RAM/ROM, and it also allows the linker to combine literal
23257pools from separate object files to remove redundant literals and
23258improve code size.  With @option{-mtext-section-literals}, the literals
23259are interspersed in the text section in order to keep them as close as
23260possible to their references.  This may be necessary for large assembly
23261files.
23262
23263@item -mtarget-align
23264@itemx -mno-target-align
23265@opindex mtarget-align
23266@opindex mno-target-align
23267When this option is enabled, GCC instructs the assembler to
23268automatically align instructions to reduce branch penalties at the
23269expense of some code density.  The assembler attempts to widen density
23270instructions to align branch targets and the instructions following call
23271instructions.  If there are not enough preceding safe density
23272instructions to align a target, no widening is performed.  The
23273default is @option{-mtarget-align}.  These options do not affect the
23274treatment of auto-aligned instructions like @code{LOOP}, which the
23275assembler always aligns, either by widening density instructions or
23276by inserting NOP instructions.
23277
23278@item -mlongcalls
23279@itemx -mno-longcalls
23280@opindex mlongcalls
23281@opindex mno-longcalls
23282When this option is enabled, GCC instructs the assembler to translate
23283direct calls to indirect calls unless it can determine that the target
23284of a direct call is in the range allowed by the call instruction.  This
23285translation typically occurs for calls to functions in other source
23286files.  Specifically, the assembler translates a direct @code{CALL}
23287instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23288The default is @option{-mno-longcalls}.  This option should be used in
23289programs where the call target can potentially be out of range.  This
23290option is implemented in the assembler, not the compiler, so the
23291assembly code generated by GCC still shows direct call
23292instructions---look at the disassembled object code to see the actual
23293instructions.  Note that the assembler uses an indirect call for
23294every cross-file call, not just those that really are out of range.
23295@end table
23296
23297@node zSeries Options
23298@subsection zSeries Options
23299@cindex zSeries options
23300
23301These are listed under @xref{S/390 and zSeries Options}.
23302
23303@node Code Gen Options
23304@section Options for Code Generation Conventions
23305@cindex code generation conventions
23306@cindex options, code generation
23307@cindex run-time options
23308
23309These machine-independent options control the interface conventions
23310used in code generation.
23311
23312Most of them have both positive and negative forms; the negative form
23313of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
23314one of the forms is listed---the one that is not the default.  You
23315can figure out the other form by either removing @samp{no-} or adding
23316it.
23317
23318@table @gcctabopt
23319@item -fbounds-check
23320@opindex fbounds-check
23321For front ends that support it, generate additional code to check that
23322indices used to access arrays are within the declared range.  This is
23323currently only supported by the Java and Fortran front ends, where
23324this option defaults to true and false respectively.
23325
23326@item -fstack-reuse=@var{reuse-level}
23327@opindex fstack_reuse
23328This option controls stack space reuse for user declared local/auto variables
23329and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
23330@samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23331local variables and temporaries, @samp{named_vars} enables the reuse only for
23332user defined local variables with names, and @samp{none} disables stack reuse
23333completely. The default value is @samp{all}. The option is needed when the
23334program extends the lifetime of a scoped local variable or a compiler generated
23335temporary beyond the end point defined by the language.  When a lifetime of
23336a variable ends, and if the variable lives in memory, the optimizing compiler
23337has the freedom to reuse its stack space with other temporaries or scoped
23338local variables whose live range does not overlap with it. Legacy code extending
23339local lifetime is likely to break with the stack reuse optimization.
23340
23341For example,
23342
23343@smallexample
23344   int *p;
23345   @{
23346     int local1;
23347
23348     p = &local1;
23349     local1 = 10;
23350     ....
23351   @}
23352   @{
23353      int local2;
23354      local2 = 20;
23355      ...
23356   @}
23357
23358   if (*p == 10)  // out of scope use of local1
23359     @{
23360
23361     @}
23362@end smallexample
23363
23364Another example:
23365@smallexample
23366
23367   struct A
23368   @{
23369       A(int k) : i(k), j(k) @{ @}
23370       int i;
23371       int j;
23372   @};
23373
23374   A *ap;
23375
23376   void foo(const A& ar)
23377   @{
23378      ap = &ar;
23379   @}
23380
23381   void bar()
23382   @{
23383      foo(A(10)); // temp object's lifetime ends when foo returns
23384
23385      @{
23386        A a(20);
23387        ....
23388      @}
23389      ap->i+= 10;  // ap references out of scope temp whose space
23390                   // is reused with a. What is the value of ap->i?
23391   @}
23392
23393@end smallexample
23394
23395The lifetime of a compiler generated temporary is well defined by the C++
23396standard. When a lifetime of a temporary ends, and if the temporary lives
23397in memory, the optimizing compiler has the freedom to reuse its stack
23398space with other temporaries or scoped local variables whose live range
23399does not overlap with it. However some of the legacy code relies on
23400the behavior of older compilers in which temporaries' stack space is
23401not reused, the aggressive stack reuse can lead to runtime errors. This
23402option is used to control the temporary stack reuse optimization.
23403
23404@item -ftrapv
23405@opindex ftrapv
23406This option generates traps for signed overflow on addition, subtraction,
23407multiplication operations.
23408
23409@item -fwrapv
23410@opindex fwrapv
23411This option instructs the compiler to assume that signed arithmetic
23412overflow of addition, subtraction and multiplication wraps around
23413using twos-complement representation.  This flag enables some optimizations
23414and disables others.  This option is enabled by default for the Java
23415front end, as required by the Java language specification.
23416
23417@item -fexceptions
23418@opindex fexceptions
23419Enable exception handling.  Generates extra code needed to propagate
23420exceptions.  For some targets, this implies GCC generates frame
23421unwind information for all functions, which can produce significant data
23422size overhead, although it does not affect execution.  If you do not
23423specify this option, GCC enables it by default for languages like
23424C++ that normally require exception handling, and disables it for
23425languages like C that do not normally require it.  However, you may need
23426to enable this option when compiling C code that needs to interoperate
23427properly with exception handlers written in C++.  You may also wish to
23428disable this option if you are compiling older C++ programs that don't
23429use exception handling.
23430
23431@item -fnon-call-exceptions
23432@opindex fnon-call-exceptions
23433Generate code that allows trapping instructions to throw exceptions.
23434Note that this requires platform-specific runtime support that does
23435not exist everywhere.  Moreover, it only allows @emph{trapping}
23436instructions to throw exceptions, i.e.@: memory references or floating-point
23437instructions.  It does not allow exceptions to be thrown from
23438arbitrary signal handlers such as @code{SIGALRM}.
23439
23440@item -fdelete-dead-exceptions
23441@opindex fdelete-dead-exceptions
23442Consider that instructions that may throw exceptions but don't otherwise
23443contribute to the execution of the program can be optimized away.
23444This option is enabled by default for the Ada front end, as permitted by
23445the Ada language specification.
23446Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23447
23448@item -funwind-tables
23449@opindex funwind-tables
23450Similar to @option{-fexceptions}, except that it just generates any needed
23451static data, but does not affect the generated code in any other way.
23452You normally do not need to enable this option; instead, a language processor
23453that needs this handling enables it on your behalf.
23454
23455@item -fasynchronous-unwind-tables
23456@opindex fasynchronous-unwind-tables
23457Generate unwind table in DWARF 2 format, if supported by target machine.  The
23458table is exact at each instruction boundary, so it can be used for stack
23459unwinding from asynchronous events (such as debugger or garbage collector).
23460
23461@item -fno-gnu-unique
23462@opindex fno-gnu-unique
23463On systems with recent GNU assembler and C library, the C++ compiler
23464uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23465of template static data members and static local variables in inline
23466functions are unique even in the presence of @code{RTLD_LOCAL}; this
23467is necessary to avoid problems with a library used by two different
23468@code{RTLD_LOCAL} plugins depending on a definition in one of them and
23469therefore disagreeing with the other one about the binding of the
23470symbol.  But this causes @code{dlclose} to be ignored for affected
23471DSOs; if your program relies on reinitialization of a DSO via
23472@code{dlclose} and @code{dlopen}, you can use
23473@option{-fno-gnu-unique}.
23474
23475@item -fpcc-struct-return
23476@opindex fpcc-struct-return
23477Return ``short'' @code{struct} and @code{union} values in memory like
23478longer ones, rather than in registers.  This convention is less
23479efficient, but it has the advantage of allowing intercallability between
23480GCC-compiled files and files compiled with other compilers, particularly
23481the Portable C Compiler (pcc).
23482
23483The precise convention for returning structures in memory depends
23484on the target configuration macros.
23485
23486Short structures and unions are those whose size and alignment match
23487that of some integer type.
23488
23489@strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23490switch is not binary compatible with code compiled with the
23491@option{-freg-struct-return} switch.
23492Use it to conform to a non-default application binary interface.
23493
23494@item -freg-struct-return
23495@opindex freg-struct-return
23496Return @code{struct} and @code{union} values in registers when possible.
23497This is more efficient for small structures than
23498@option{-fpcc-struct-return}.
23499
23500If you specify neither @option{-fpcc-struct-return} nor
23501@option{-freg-struct-return}, GCC defaults to whichever convention is
23502standard for the target.  If there is no standard convention, GCC
23503defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23504the principal compiler.  In those cases, we can choose the standard, and
23505we chose the more efficient register return alternative.
23506
23507@strong{Warning:} code compiled with the @option{-freg-struct-return}
23508switch is not binary compatible with code compiled with the
23509@option{-fpcc-struct-return} switch.
23510Use it to conform to a non-default application binary interface.
23511
23512@item -fshort-enums
23513@opindex fshort-enums
23514Allocate to an @code{enum} type only as many bytes as it needs for the
23515declared range of possible values.  Specifically, the @code{enum} type
23516is equivalent to the smallest integer type that has enough room.
23517
23518@strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23519code that is not binary compatible with code generated without that switch.
23520Use it to conform to a non-default application binary interface.
23521
23522@item -fshort-double
23523@opindex fshort-double
23524Use the same size for @code{double} as for @code{float}.
23525
23526@strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23527code that is not binary compatible with code generated without that switch.
23528Use it to conform to a non-default application binary interface.
23529
23530@item -fshort-wchar
23531@opindex fshort-wchar
23532Override the underlying type for @code{wchar_t} to be @code{short
23533unsigned int} instead of the default for the target.  This option is
23534useful for building programs to run under WINE@.
23535
23536@strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23537code that is not binary compatible with code generated without that switch.
23538Use it to conform to a non-default application binary interface.
23539
23540@item -fno-common
23541@opindex fno-common
23542In C code, controls the placement of uninitialized global variables.
23543Unix C compilers have traditionally permitted multiple definitions of
23544such variables in different compilation units by placing the variables
23545in a common block.
23546This is the behavior specified by @option{-fcommon}, and is the default
23547for GCC on most targets.
23548On the other hand, this behavior is not required by ISO C, and on some
23549targets may carry a speed or code size penalty on variable references.
23550The @option{-fno-common} option specifies that the compiler should place
23551uninitialized global variables in the data section of the object file,
23552rather than generating them as common blocks.
23553This has the effect that if the same variable is declared
23554(without @code{extern}) in two different compilations,
23555you get a multiple-definition error when you link them.
23556In this case, you must compile with @option{-fcommon} instead.
23557Compiling with @option{-fno-common} is useful on targets for which
23558it provides better performance, or if you wish to verify that the
23559program will work on other systems that always treat uninitialized
23560variable declarations this way.
23561
23562@item -fno-ident
23563@opindex fno-ident
23564Ignore the @code{#ident} directive.
23565
23566@item -finhibit-size-directive
23567@opindex finhibit-size-directive
23568Don't output a @code{.size} assembler directive, or anything else that
23569would cause trouble if the function is split in the middle, and the
23570two halves are placed at locations far apart in memory.  This option is
23571used when compiling @file{crtstuff.c}; you should not need to use it
23572for anything else.
23573
23574@item -fverbose-asm
23575@opindex fverbose-asm
23576Put extra commentary information in the generated assembly code to
23577make it more readable.  This option is generally only of use to those
23578who actually need to read the generated assembly code (perhaps while
23579debugging the compiler itself).
23580
23581@option{-fno-verbose-asm}, the default, causes the
23582extra information to be omitted and is useful when comparing two assembler
23583files.
23584
23585@item -frecord-gcc-switches
23586@opindex frecord-gcc-switches
23587This switch causes the command line used to invoke the
23588compiler to be recorded into the object file that is being created.
23589This switch is only implemented on some targets and the exact format
23590of the recording is target and binary file format dependent, but it
23591usually takes the form of a section containing ASCII text.  This
23592switch is related to the @option{-fverbose-asm} switch, but that
23593switch only records information in the assembler output file as
23594comments, so it never reaches the object file.
23595See also @option{-grecord-gcc-switches} for another
23596way of storing compiler options into the object file.
23597
23598@item -fpic
23599@opindex fpic
23600@cindex global offset table
23601@cindex PIC
23602Generate position-independent code (PIC) suitable for use in a shared
23603library, if supported for the target machine.  Such code accesses all
23604constant addresses through a global offset table (GOT)@.  The dynamic
23605loader resolves the GOT entries when the program starts (the dynamic
23606loader is not part of GCC; it is part of the operating system).  If
23607the GOT size for the linked executable exceeds a machine-specific
23608maximum size, you get an error message from the linker indicating that
23609@option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23610instead.  (These maximums are 8k on the SPARC and 32k
23611on the m68k and RS/6000.  The x86 has no such limit.)
23612
23613Position-independent code requires special support, and therefore works
23614only on certain machines.  For the x86, GCC supports PIC for System V
23615but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
23616position-independent.
23617
23618When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23619are defined to 1.
23620
23621@item -fPIC
23622@opindex fPIC
23623If supported for the target machine, emit position-independent code,
23624suitable for dynamic linking and avoiding any limit on the size of the
23625global offset table.  This option makes a difference on the m68k,
23626PowerPC and SPARC@.
23627
23628Position-independent code requires special support, and therefore works
23629only on certain machines.
23630
23631When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23632are defined to 2.
23633
23634@item -fpie
23635@itemx -fPIE
23636@opindex fpie
23637@opindex fPIE
23638These options are similar to @option{-fpic} and @option{-fPIC}, but
23639generated position independent code can be only linked into executables.
23640Usually these options are used when @option{-pie} GCC option is
23641used during linking.
23642
23643@option{-fpie} and @option{-fPIE} both define the macros
23644@code{__pie__} and @code{__PIE__}.  The macros have the value 1
23645for @option{-fpie} and 2 for @option{-fPIE}.
23646
23647@item -fno-jump-tables
23648@opindex fno-jump-tables
23649Do not use jump tables for switch statements even where it would be
23650more efficient than other code generation strategies.  This option is
23651of use in conjunction with @option{-fpic} or @option{-fPIC} for
23652building code that forms part of a dynamic linker and cannot
23653reference the address of a jump table.  On some targets, jump tables
23654do not require a GOT and this option is not needed.
23655
23656@item -ffixed-@var{reg}
23657@opindex ffixed
23658Treat the register named @var{reg} as a fixed register; generated code
23659should never refer to it (except perhaps as a stack pointer, frame
23660pointer or in some other fixed role).
23661
23662@var{reg} must be the name of a register.  The register names accepted
23663are machine-specific and are defined in the @code{REGISTER_NAMES}
23664macro in the machine description macro file.
23665
23666This flag does not have a negative form, because it specifies a
23667three-way choice.
23668
23669@item -fcall-used-@var{reg}
23670@opindex fcall-used
23671Treat the register named @var{reg} as an allocable register that is
23672clobbered by function calls.  It may be allocated for temporaries or
23673variables that do not live across a call.  Functions compiled this way
23674do not save and restore the register @var{reg}.
23675
23676It is an error to use this flag with the frame pointer or stack pointer.
23677Use of this flag for other registers that have fixed pervasive roles in
23678the machine's execution model produces disastrous results.
23679
23680This flag does not have a negative form, because it specifies a
23681three-way choice.
23682
23683@item -fcall-saved-@var{reg}
23684@opindex fcall-saved
23685Treat the register named @var{reg} as an allocable register saved by
23686functions.  It may be allocated even for temporaries or variables that
23687live across a call.  Functions compiled this way save and restore
23688the register @var{reg} if they use it.
23689
23690It is an error to use this flag with the frame pointer or stack pointer.
23691Use of this flag for other registers that have fixed pervasive roles in
23692the machine's execution model produces disastrous results.
23693
23694A different sort of disaster results from the use of this flag for
23695a register in which function values may be returned.
23696
23697This flag does not have a negative form, because it specifies a
23698three-way choice.
23699
23700@item -fpack-struct[=@var{n}]
23701@opindex fpack-struct
23702Without a value specified, pack all structure members together without
23703holes.  When a value is specified (which must be a small power of two), pack
23704structure members according to this value, representing the maximum
23705alignment (that is, objects with default alignment requirements larger than
23706this are output potentially unaligned at the next fitting location.
23707
23708@strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
23709code that is not binary compatible with code generated without that switch.
23710Additionally, it makes the code suboptimal.
23711Use it to conform to a non-default application binary interface.
23712
23713@item -finstrument-functions
23714@opindex finstrument-functions
23715Generate instrumentation calls for entry and exit to functions.  Just
23716after function entry and just before function exit, the following
23717profiling functions are called with the address of the current
23718function and its call site.  (On some platforms,
23719@code{__builtin_return_address} does not work beyond the current
23720function, so the call site information may not be available to the
23721profiling functions otherwise.)
23722
23723@smallexample
23724void __cyg_profile_func_enter (void *this_fn,
23725                               void *call_site);
23726void __cyg_profile_func_exit  (void *this_fn,
23727                               void *call_site);
23728@end smallexample
23729
23730The first argument is the address of the start of the current function,
23731which may be looked up exactly in the symbol table.
23732
23733This instrumentation is also done for functions expanded inline in other
23734functions.  The profiling calls indicate where, conceptually, the
23735inline function is entered and exited.  This means that addressable
23736versions of such functions must be available.  If all your uses of a
23737function are expanded inline, this may mean an additional expansion of
23738code size.  If you use @code{extern inline} in your C code, an
23739addressable version of such functions must be provided.  (This is
23740normally the case anyway, but if you get lucky and the optimizer always
23741expands the functions inline, you might have gotten away without
23742providing static copies.)
23743
23744A function may be given the attribute @code{no_instrument_function}, in
23745which case this instrumentation is not done.  This can be used, for
23746example, for the profiling functions listed above, high-priority
23747interrupt routines, and any functions from which the profiling functions
23748cannot safely be called (perhaps signal handlers, if the profiling
23749routines generate output or allocate memory).
23750
23751@item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
23752@opindex finstrument-functions-exclude-file-list
23753
23754Set the list of functions that are excluded from instrumentation (see
23755the description of @option{-finstrument-functions}).  If the file that
23756contains a function definition matches with one of @var{file}, then
23757that function is not instrumented.  The match is done on substrings:
23758if the @var{file} parameter is a substring of the file name, it is
23759considered to be a match.
23760
23761For example:
23762
23763@smallexample
23764-finstrument-functions-exclude-file-list=/bits/stl,include/sys
23765@end smallexample
23766
23767@noindent
23768excludes any inline function defined in files whose pathnames
23769contain @file{/bits/stl} or @file{include/sys}.
23770
23771If, for some reason, you want to include letter @samp{,} in one of
23772@var{sym}, write @samp{\,}. For example,
23773@option{-finstrument-functions-exclude-file-list='\,\,tmp'}
23774(note the single quote surrounding the option).
23775
23776@item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
23777@opindex finstrument-functions-exclude-function-list
23778
23779This is similar to @option{-finstrument-functions-exclude-file-list},
23780but this option sets the list of function names to be excluded from
23781instrumentation.  The function name to be matched is its user-visible
23782name, such as @code{vector<int> blah(const vector<int> &)}, not the
23783internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
23784match is done on substrings: if the @var{sym} parameter is a substring
23785of the function name, it is considered to be a match.  For C99 and C++
23786extended identifiers, the function name must be given in UTF-8, not
23787using universal character names.
23788
23789@item -fstack-check
23790@opindex fstack-check
23791Generate code to verify that you do not go beyond the boundary of the
23792stack.  You should specify this flag if you are running in an
23793environment with multiple threads, but you only rarely need to specify it in
23794a single-threaded environment since stack overflow is automatically
23795detected on nearly all systems if there is only one stack.
23796
23797Note that this switch does not actually cause checking to be done; the
23798operating system or the language runtime must do that.  The switch causes
23799generation of code to ensure that they see the stack being extended.
23800
23801You can additionally specify a string parameter: @samp{no} means no
23802checking, @samp{generic} means force the use of old-style checking,
23803@samp{specific} means use the best checking method and is equivalent
23804to bare @option{-fstack-check}.
23805
23806Old-style checking is a generic mechanism that requires no specific
23807target support in the compiler but comes with the following drawbacks:
23808
23809@enumerate
23810@item
23811Modified allocation strategy for large objects: they are always
23812allocated dynamically if their size exceeds a fixed threshold.
23813
23814@item
23815Fixed limit on the size of the static frame of functions: when it is
23816topped by a particular function, stack checking is not reliable and
23817a warning is issued by the compiler.
23818
23819@item
23820Inefficiency: because of both the modified allocation strategy and the
23821generic implementation, code performance is hampered.
23822@end enumerate
23823
23824Note that old-style stack checking is also the fallback method for
23825@samp{specific} if no target support has been added in the compiler.
23826
23827@item -fstack-limit-register=@var{reg}
23828@itemx -fstack-limit-symbol=@var{sym}
23829@itemx -fno-stack-limit
23830@opindex fstack-limit-register
23831@opindex fstack-limit-symbol
23832@opindex fno-stack-limit
23833Generate code to ensure that the stack does not grow beyond a certain value,
23834either the value of a register or the address of a symbol.  If a larger
23835stack is required, a signal is raised at run time.  For most targets,
23836the signal is raised before the stack overruns the boundary, so
23837it is possible to catch the signal without taking special precautions.
23838
23839For instance, if the stack starts at absolute address @samp{0x80000000}
23840and grows downwards, you can use the flags
23841@option{-fstack-limit-symbol=__stack_limit} and
23842@option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
23843of 128KB@.  Note that this may only work with the GNU linker.
23844
23845@item -fsplit-stack
23846@opindex fsplit-stack
23847Generate code to automatically split the stack before it overflows.
23848The resulting program has a discontiguous stack which can only
23849overflow if the program is unable to allocate any more memory.  This
23850is most useful when running threaded programs, as it is no longer
23851necessary to calculate a good stack size to use for each thread.  This
23852is currently only implemented for the x86 targets running
23853GNU/Linux.
23854
23855When code compiled with @option{-fsplit-stack} calls code compiled
23856without @option{-fsplit-stack}, there may not be much stack space
23857available for the latter code to run.  If compiling all code,
23858including library code, with @option{-fsplit-stack} is not an option,
23859then the linker can fix up these calls so that the code compiled
23860without @option{-fsplit-stack} always has a large stack.  Support for
23861this is implemented in the gold linker in GNU binutils release 2.21
23862and later.
23863
23864@item -fleading-underscore
23865@opindex fleading-underscore
23866This option and its counterpart, @option{-fno-leading-underscore}, forcibly
23867change the way C symbols are represented in the object file.  One use
23868is to help link with legacy assembly code.
23869
23870@strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
23871generate code that is not binary compatible with code generated without that
23872switch.  Use it to conform to a non-default application binary interface.
23873Not all targets provide complete support for this switch.
23874
23875@item -ftls-model=@var{model}
23876@opindex ftls-model
23877Alter the thread-local storage model to be used (@pxref{Thread-Local}).
23878The @var{model} argument should be one of @samp{global-dynamic},
23879@samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
23880Note that the choice is subject to optimization: the compiler may use
23881a more efficient model for symbols not visible outside of the translation
23882unit, or if @option{-fpic} is not given on the command line.
23883
23884The default without @option{-fpic} is @samp{initial-exec}; with
23885@option{-fpic} the default is @samp{global-dynamic}.
23886
23887@item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
23888@opindex fvisibility
23889Set the default ELF image symbol visibility to the specified option---all
23890symbols are marked with this unless overridden within the code.
23891Using this feature can very substantially improve linking and
23892load times of shared object libraries, produce more optimized
23893code, provide near-perfect API export and prevent symbol clashes.
23894It is @strong{strongly} recommended that you use this in any shared objects
23895you distribute.
23896
23897Despite the nomenclature, @samp{default} always means public; i.e.,
23898available to be linked against from outside the shared object.
23899@samp{protected} and @samp{internal} are pretty useless in real-world
23900usage so the only other commonly used option is @samp{hidden}.
23901The default if @option{-fvisibility} isn't specified is
23902@samp{default}, i.e., make every symbol public.
23903
23904A good explanation of the benefits offered by ensuring ELF
23905symbols have the correct visibility is given by ``How To Write
23906Shared Libraries'' by Ulrich Drepper (which can be found at
23907@w{@uref{http://www.akkadia.org/drepper/}})---however a superior
23908solution made possible by this option to marking things hidden when
23909the default is public is to make the default hidden and mark things
23910public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
23911and @code{__attribute__ ((visibility("default")))} instead of
23912@code{__declspec(dllexport)} you get almost identical semantics with
23913identical syntax.  This is a great boon to those working with
23914cross-platform projects.
23915
23916For those adding visibility support to existing code, you may find
23917@code{#pragma GCC visibility} of use.  This works by you enclosing
23918the declarations you wish to set visibility for with (for example)
23919@code{#pragma GCC visibility push(hidden)} and
23920@code{#pragma GCC visibility pop}.
23921Bear in mind that symbol visibility should be viewed @strong{as
23922part of the API interface contract} and thus all new code should
23923always specify visibility when it is not the default; i.e., declarations
23924only for use within the local DSO should @strong{always} be marked explicitly
23925as hidden as so to avoid PLT indirection overheads---making this
23926abundantly clear also aids readability and self-documentation of the code.
23927Note that due to ISO C++ specification requirements, @code{operator new} and
23928@code{operator delete} must always be of default visibility.
23929
23930Be aware that headers from outside your project, in particular system
23931headers and headers from any other library you use, may not be
23932expecting to be compiled with visibility other than the default.  You
23933may need to explicitly say @code{#pragma GCC visibility push(default)}
23934before including any such headers.
23935
23936@code{extern} declarations are not affected by @option{-fvisibility}, so
23937a lot of code can be recompiled with @option{-fvisibility=hidden} with
23938no modifications.  However, this means that calls to @code{extern}
23939functions with no explicit visibility use the PLT, so it is more
23940effective to use @code{__attribute ((visibility))} and/or
23941@code{#pragma GCC visibility} to tell the compiler which @code{extern}
23942declarations should be treated as hidden.
23943
23944Note that @option{-fvisibility} does affect C++ vague linkage
23945entities. This means that, for instance, an exception class that is
23946be thrown between DSOs must be explicitly marked with default
23947visibility so that the @samp{type_info} nodes are unified between
23948the DSOs.
23949
23950An overview of these techniques, their benefits and how to use them
23951is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
23952
23953@item -fstrict-volatile-bitfields
23954@opindex fstrict-volatile-bitfields
23955This option should be used if accesses to volatile bit-fields (or other
23956structure fields, although the compiler usually honors those types
23957anyway) should use a single access of the width of the
23958field's type, aligned to a natural alignment if possible.  For
23959example, targets with memory-mapped peripheral registers might require
23960all such accesses to be 16 bits wide; with this flag you can
23961declare all peripheral bit-fields as @code{unsigned short} (assuming short
23962is 16 bits on these targets) to force GCC to use 16-bit accesses
23963instead of, perhaps, a more efficient 32-bit access.
23964
23965If this option is disabled, the compiler uses the most efficient
23966instruction.  In the previous example, that might be a 32-bit load
23967instruction, even though that accesses bytes that do not contain
23968any portion of the bit-field, or memory-mapped registers unrelated to
23969the one being updated.
23970
23971In some cases, such as when the @code{packed} attribute is applied to a 
23972structure field, it may not be possible to access the field with a single
23973read or write that is correctly aligned for the target machine.  In this
23974case GCC falls back to generating multiple accesses rather than code that 
23975will fault or truncate the result at run time.
23976
23977Note:  Due to restrictions of the C/C++11 memory model, write accesses are
23978not allowed to touch non bit-field members.  It is therefore recommended
23979to define all bits of the field's type as bit-field members.
23980
23981The default value of this option is determined by the application binary
23982interface for the target processor.
23983
23984@item -fsync-libcalls
23985@opindex fsync-libcalls
23986This option controls whether any out-of-line instance of the @code{__sync}
23987family of functions may be used to implement the C++11 @code{__atomic}
23988family of functions.
23989
23990The default value of this option is enabled, thus the only useful form
23991of the option is @option{-fno-sync-libcalls}.  This option is used in
23992the implementation of the @file{libatomic} runtime library.
23993
23994@end table
23995
23996@c man end
23997
23998@node Environment Variables
23999@section Environment Variables Affecting GCC
24000@cindex environment variables
24001
24002@c man begin ENVIRONMENT
24003This section describes several environment variables that affect how GCC
24004operates.  Some of them work by specifying directories or prefixes to use
24005when searching for various kinds of files.  Some are used to specify other
24006aspects of the compilation environment.
24007
24008Note that you can also specify places to search using options such as
24009@option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
24010take precedence over places specified using environment variables, which
24011in turn take precedence over those specified by the configuration of GCC@.
24012@xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24013GNU Compiler Collection (GCC) Internals}.
24014
24015@table @env
24016@item LANG
24017@itemx LC_CTYPE
24018@c @itemx LC_COLLATE
24019@itemx LC_MESSAGES
24020@c @itemx LC_MONETARY
24021@c @itemx LC_NUMERIC
24022@c @itemx LC_TIME
24023@itemx LC_ALL
24024@findex LANG
24025@findex LC_CTYPE
24026@c @findex LC_COLLATE
24027@findex LC_MESSAGES
24028@c @findex LC_MONETARY
24029@c @findex LC_NUMERIC
24030@c @findex LC_TIME
24031@findex LC_ALL
24032@cindex locale
24033These environment variables control the way that GCC uses
24034localization information which allows GCC to work with different
24035national conventions.  GCC inspects the locale categories
24036@env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24037so.  These locale categories can be set to any value supported by your
24038installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
24039Kingdom encoded in UTF-8.
24040
24041The @env{LC_CTYPE} environment variable specifies character
24042classification.  GCC uses it to determine the character boundaries in
24043a string; this is needed for some multibyte encodings that contain quote
24044and escape characters that are otherwise interpreted as a string
24045end or escape.
24046
24047The @env{LC_MESSAGES} environment variable specifies the language to
24048use in diagnostic messages.
24049
24050If the @env{LC_ALL} environment variable is set, it overrides the value
24051of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24052and @env{LC_MESSAGES} default to the value of the @env{LANG}
24053environment variable.  If none of these variables are set, GCC
24054defaults to traditional C English behavior.
24055
24056@item TMPDIR
24057@findex TMPDIR
24058If @env{TMPDIR} is set, it specifies the directory to use for temporary
24059files.  GCC uses temporary files to hold the output of one stage of
24060compilation which is to be used as input to the next stage: for example,
24061the output of the preprocessor, which is the input to the compiler
24062proper.
24063
24064@item GCC_COMPARE_DEBUG
24065@findex GCC_COMPARE_DEBUG
24066Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24067@option{-fcompare-debug} to the compiler driver.  See the documentation
24068of this option for more details.
24069
24070@item GCC_EXEC_PREFIX
24071@findex GCC_EXEC_PREFIX
24072If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24073names of the subprograms executed by the compiler.  No slash is added
24074when this prefix is combined with the name of a subprogram, but you can
24075specify a prefix that ends with a slash if you wish.
24076
24077If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24078an appropriate prefix to use based on the pathname it is invoked with.
24079
24080If GCC cannot find the subprogram using the specified prefix, it
24081tries looking in the usual places for the subprogram.
24082
24083The default value of @env{GCC_EXEC_PREFIX} is
24084@file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24085the installed compiler. In many cases @var{prefix} is the value
24086of @code{prefix} when you ran the @file{configure} script.
24087
24088Other prefixes specified with @option{-B} take precedence over this prefix.
24089
24090This prefix is also used for finding files such as @file{crt0.o} that are
24091used for linking.
24092
24093In addition, the prefix is used in an unusual way in finding the
24094directories to search for header files.  For each of the standard
24095directories whose name normally begins with @samp{/usr/local/lib/gcc}
24096(more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24097replacing that beginning with the specified prefix to produce an
24098alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
24099@file{foo/bar} just before it searches the standard directory 
24100@file{/usr/local/lib/bar}.
24101If a standard directory begins with the configured
24102@var{prefix} then the value of @var{prefix} is replaced by
24103@env{GCC_EXEC_PREFIX} when looking for header files.
24104
24105@item COMPILER_PATH
24106@findex COMPILER_PATH
24107The value of @env{COMPILER_PATH} is a colon-separated list of
24108directories, much like @env{PATH}.  GCC tries the directories thus
24109specified when searching for subprograms, if it can't find the
24110subprograms using @env{GCC_EXEC_PREFIX}.
24111
24112@item LIBRARY_PATH
24113@findex LIBRARY_PATH
24114The value of @env{LIBRARY_PATH} is a colon-separated list of
24115directories, much like @env{PATH}.  When configured as a native compiler,
24116GCC tries the directories thus specified when searching for special
24117linker files, if it can't find them using @env{GCC_EXEC_PREFIX}.  Linking
24118using GCC also uses these directories when searching for ordinary
24119libraries for the @option{-l} option (but directories specified with
24120@option{-L} come first).
24121
24122@item LANG
24123@findex LANG
24124@cindex locale definition
24125This variable is used to pass locale information to the compiler.  One way in
24126which this information is used is to determine the character set to be used
24127when character literals, string literals and comments are parsed in C and C++.
24128When the compiler is configured to allow multibyte characters,
24129the following values for @env{LANG} are recognized:
24130
24131@table @samp
24132@item C-JIS
24133Recognize JIS characters.
24134@item C-SJIS
24135Recognize SJIS characters.
24136@item C-EUCJP
24137Recognize EUCJP characters.
24138@end table
24139
24140If @env{LANG} is not defined, or if it has some other value, then the
24141compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24142recognize and translate multibyte characters.
24143@end table
24144
24145@noindent
24146Some additional environment variables affect the behavior of the
24147preprocessor.
24148
24149@include cppenv.texi
24150
24151@c man end
24152
24153@node Precompiled Headers
24154@section Using Precompiled Headers
24155@cindex precompiled headers
24156@cindex speed of compilation
24157
24158Often large projects have many header files that are included in every
24159source file.  The time the compiler takes to process these header files
24160over and over again can account for nearly all of the time required to
24161build the project.  To make builds faster, GCC allows you to
24162@dfn{precompile} a header file.
24163
24164To create a precompiled header file, simply compile it as you would any
24165other file, if necessary using the @option{-x} option to make the driver
24166treat it as a C or C++ header file.  You may want to use a
24167tool like @command{make} to keep the precompiled header up-to-date when
24168the headers it contains change.
24169
24170A precompiled header file is searched for when @code{#include} is
24171seen in the compilation.  As it searches for the included file
24172(@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24173compiler looks for a precompiled header in each directory just before it
24174looks for the include file in that directory.  The name searched for is
24175the name specified in the @code{#include} with @samp{.gch} appended.  If
24176the precompiled header file can't be used, it is ignored.
24177
24178For instance, if you have @code{#include "all.h"}, and you have
24179@file{all.h.gch} in the same directory as @file{all.h}, then the
24180precompiled header file is used if possible, and the original
24181header is used otherwise.
24182
24183Alternatively, you might decide to put the precompiled header file in a
24184directory and use @option{-I} to ensure that directory is searched
24185before (or instead of) the directory containing the original header.
24186Then, if you want to check that the precompiled header file is always
24187used, you can put a file of the same name as the original header in this
24188directory containing an @code{#error} command.
24189
24190This also works with @option{-include}.  So yet another way to use
24191precompiled headers, good for projects not designed with precompiled
24192header files in mind, is to simply take most of the header files used by
24193a project, include them from another header file, precompile that header
24194file, and @option{-include} the precompiled header.  If the header files
24195have guards against multiple inclusion, they are skipped because
24196they've already been included (in the precompiled header).
24197
24198If you need to precompile the same header file for different
24199languages, targets, or compiler options, you can instead make a
24200@emph{directory} named like @file{all.h.gch}, and put each precompiled
24201header in the directory, perhaps using @option{-o}.  It doesn't matter
24202what you call the files in the directory; every precompiled header in
24203the directory is considered.  The first precompiled header
24204encountered in the directory that is valid for this compilation is
24205used; they're searched in no particular order.
24206
24207There are many other possibilities, limited only by your imagination,
24208good sense, and the constraints of your build system.
24209
24210A precompiled header file can be used only when these conditions apply:
24211
24212@itemize
24213@item
24214Only one precompiled header can be used in a particular compilation.
24215
24216@item
24217A precompiled header can't be used once the first C token is seen.  You
24218can have preprocessor directives before a precompiled header; you cannot
24219include a precompiled header from inside another header.
24220
24221@item
24222The precompiled header file must be produced for the same language as
24223the current compilation.  You can't use a C precompiled header for a C++
24224compilation.
24225
24226@item
24227The precompiled header file must have been produced by the same compiler
24228binary as the current compilation is using.
24229
24230@item
24231Any macros defined before the precompiled header is included must
24232either be defined in the same way as when the precompiled header was
24233generated, or must not affect the precompiled header, which usually
24234means that they don't appear in the precompiled header at all.
24235
24236The @option{-D} option is one way to define a macro before a
24237precompiled header is included; using a @code{#define} can also do it.
24238There are also some options that define macros implicitly, like
24239@option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24240defined this way.
24241
24242@item If debugging information is output when using the precompiled
24243header, using @option{-g} or similar, the same kind of debugging information
24244must have been output when building the precompiled header.  However,
24245a precompiled header built using @option{-g} can be used in a compilation
24246when no debugging information is being output.
24247
24248@item The same @option{-m} options must generally be used when building
24249and using the precompiled header.  @xref{Submodel Options},
24250for any cases where this rule is relaxed.
24251
24252@item Each of the following options must be the same when building and using
24253the precompiled header:
24254
24255@gccoptlist{-fexceptions}
24256
24257@item
24258Some other command-line options starting with @option{-f},
24259@option{-p}, or @option{-O} must be defined in the same way as when
24260the precompiled header was generated.  At present, it's not clear
24261which options are safe to change and which are not; the safest choice
24262is to use exactly the same options when generating and using the
24263precompiled header.  The following are known to be safe:
24264
24265@gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
24266-fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
24267-fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
24268-pedantic-errors}
24269
24270@end itemize
24271
24272For all of these except the last, the compiler automatically
24273ignores the precompiled header if the conditions aren't met.  If you
24274find an option combination that doesn't work and doesn't cause the
24275precompiled header to be ignored, please consider filing a bug report,
24276see @ref{Bugs}.
24277
24278If you do use differing options when generating and using the
24279precompiled header, the actual behavior is a mixture of the
24280behavior for the options.  For instance, if you use @option{-g} to
24281generate the precompiled header but not when using it, you may or may
24282not get debugging information for routines in the precompiled header.
24283