1/* blast.c
2 * Copyright (C) 2003, 2012 Mark Adler
3 * For conditions of distribution and use, see copyright notice in blast.h
4 * version 1.2, 24 Oct 2012
5 *
6 * blast.c decompresses data compressed by the PKWare Compression Library.
7 * This function provides functionality similar to the explode() function of
8 * the PKWare library, hence the name "blast".
9 *
10 * This decompressor is based on the excellent format description provided by
11 * Ben Rudiak-Gould in comp.compression on August 13, 2001.  Interestingly, the
12 * example Ben provided in the post is incorrect.  The distance 110001 should
13 * instead be 111000.  When corrected, the example byte stream becomes:
14 *
15 *    00 04 82 24 25 8f 80 7f
16 *
17 * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
18 */
19
20/*
21 * Change history:
22 *
23 * 1.0  12 Feb 2003     - First version
24 * 1.1  16 Feb 2003     - Fixed distance check for > 4 GB uncompressed data
25 * 1.2  24 Oct 2012     - Add note about using binary mode in stdio
26 *                      - Fix comparisons of differently signed integers
27 */
28
29#include <setjmp.h>             /* for setjmp(), longjmp(), and jmp_buf */
30#include "blast.h"              /* prototype for blast() */
31
32#define local static            /* for local function definitions */
33#define MAXBITS 13              /* maximum code length */
34#define MAXWIN 4096             /* maximum window size */
35
36/* input and output state */
37struct state {
38    /* input state */
39    blast_in infun;             /* input function provided by user */
40    void *inhow;                /* opaque information passed to infun() */
41    unsigned char *in;          /* next input location */
42    unsigned left;              /* available input at in */
43    int bitbuf;                 /* bit buffer */
44    int bitcnt;                 /* number of bits in bit buffer */
45
46    /* input limit error return state for bits() and decode() */
47    jmp_buf env;
48
49    /* output state */
50    blast_out outfun;           /* output function provided by user */
51    void *outhow;               /* opaque information passed to outfun() */
52    unsigned next;              /* index of next write location in out[] */
53    int first;                  /* true to check distances (for first 4K) */
54    unsigned char out[MAXWIN];  /* output buffer and sliding window */
55};
56
57/*
58 * Return need bits from the input stream.  This always leaves less than
59 * eight bits in the buffer.  bits() works properly for need == 0.
60 *
61 * Format notes:
62 *
63 * - Bits are stored in bytes from the least significant bit to the most
64 *   significant bit.  Therefore bits are dropped from the bottom of the bit
65 *   buffer, using shift right, and new bytes are appended to the top of the
66 *   bit buffer, using shift left.
67 */
68local int bits(struct state *s, int need)
69{
70    int val;            /* bit accumulator */
71
72    /* load at least need bits into val */
73    val = s->bitbuf;
74    while (s->bitcnt < need) {
75        if (s->left == 0) {
76            s->left = s->infun(s->inhow, &(s->in));
77            if (s->left == 0) longjmp(s->env, 1);       /* out of input */
78        }
79        val |= (int)(*(s->in)++) << s->bitcnt;          /* load eight bits */
80        s->left--;
81        s->bitcnt += 8;
82    }
83
84    /* drop need bits and update buffer, always zero to seven bits left */
85    s->bitbuf = val >> need;
86    s->bitcnt -= need;
87
88    /* return need bits, zeroing the bits above that */
89    return val & ((1 << need) - 1);
90}
91
92/*
93 * Huffman code decoding tables.  count[1..MAXBITS] is the number of symbols of
94 * each length, which for a canonical code are stepped through in order.
95 * symbol[] are the symbol values in canonical order, where the number of
96 * entries is the sum of the counts in count[].  The decoding process can be
97 * seen in the function decode() below.
98 */
99struct huffman {
100    short *count;       /* number of symbols of each length */
101    short *symbol;      /* canonically ordered symbols */
102};
103
104/*
105 * Decode a code from the stream s using huffman table h.  Return the symbol or
106 * a negative value if there is an error.  If all of the lengths are zero, i.e.
107 * an empty code, or if the code is incomplete and an invalid code is received,
108 * then -9 is returned after reading MAXBITS bits.
109 *
110 * Format notes:
111 *
112 * - The codes as stored in the compressed data are bit-reversed relative to
113 *   a simple integer ordering of codes of the same lengths.  Hence below the
114 *   bits are pulled from the compressed data one at a time and used to
115 *   build the code value reversed from what is in the stream in order to
116 *   permit simple integer comparisons for decoding.
117 *
118 * - The first code for the shortest length is all ones.  Subsequent codes of
119 *   the same length are simply integer decrements of the previous code.  When
120 *   moving up a length, a one bit is appended to the code.  For a complete
121 *   code, the last code of the longest length will be all zeros.  To support
122 *   this ordering, the bits pulled during decoding are inverted to apply the
123 *   more "natural" ordering starting with all zeros and incrementing.
124 */
125local int decode(struct state *s, struct huffman *h)
126{
127    int len;            /* current number of bits in code */
128    int code;           /* len bits being decoded */
129    int first;          /* first code of length len */
130    int count;          /* number of codes of length len */
131    int index;          /* index of first code of length len in symbol table */
132    int bitbuf;         /* bits from stream */
133    int left;           /* bits left in next or left to process */
134    short *next;        /* next number of codes */
135
136    bitbuf = s->bitbuf;
137    left = s->bitcnt;
138    code = first = index = 0;
139    len = 1;
140    next = h->count + 1;
141    while (1) {
142        while (left--) {
143            code |= (bitbuf & 1) ^ 1;   /* invert code */
144            bitbuf >>= 1;
145            count = *next++;
146            if (code < first + count) { /* if length len, return symbol */
147                s->bitbuf = bitbuf;
148                s->bitcnt = (s->bitcnt - len) & 7;
149                return h->symbol[index + (code - first)];
150            }
151            index += count;             /* else update for next length */
152            first += count;
153            first <<= 1;
154            code <<= 1;
155            len++;
156        }
157        left = (MAXBITS+1) - len;
158        if (left == 0) break;
159        if (s->left == 0) {
160            s->left = s->infun(s->inhow, &(s->in));
161            if (s->left == 0) longjmp(s->env, 1);       /* out of input */
162        }
163        bitbuf = *(s->in)++;
164        s->left--;
165        if (left > 8) left = 8;
166    }
167    return -9;                          /* ran out of codes */
168}
169
170/*
171 * Given a list of repeated code lengths rep[0..n-1], where each byte is a
172 * count (high four bits + 1) and a code length (low four bits), generate the
173 * list of code lengths.  This compaction reduces the size of the object code.
174 * Then given the list of code lengths length[0..n-1] representing a canonical
175 * Huffman code for n symbols, construct the tables required to decode those
176 * codes.  Those tables are the number of codes of each length, and the symbols
177 * sorted by length, retaining their original order within each length.  The
178 * return value is zero for a complete code set, negative for an over-
179 * subscribed code set, and positive for an incomplete code set.  The tables
180 * can be used if the return value is zero or positive, but they cannot be used
181 * if the return value is negative.  If the return value is zero, it is not
182 * possible for decode() using that table to return an error--any stream of
183 * enough bits will resolve to a symbol.  If the return value is positive, then
184 * it is possible for decode() using that table to return an error for received
185 * codes past the end of the incomplete lengths.
186 */
187local int construct(struct huffman *h, const unsigned char *rep, int n)
188{
189    int symbol;         /* current symbol when stepping through length[] */
190    int len;            /* current length when stepping through h->count[] */
191    int left;           /* number of possible codes left of current length */
192    short offs[MAXBITS+1];      /* offsets in symbol table for each length */
193    short length[256];  /* code lengths */
194
195    /* convert compact repeat counts into symbol bit length list */
196    symbol = 0;
197    do {
198        len = *rep++;
199        left = (len >> 4) + 1;
200        len &= 15;
201        do {
202            length[symbol++] = len;
203        } while (--left);
204    } while (--n);
205    n = symbol;
206
207    /* count number of codes of each length */
208    for (len = 0; len <= MAXBITS; len++)
209        h->count[len] = 0;
210    for (symbol = 0; symbol < n; symbol++)
211        (h->count[length[symbol]])++;   /* assumes lengths are within bounds */
212    if (h->count[0] == n)               /* no codes! */
213        return 0;                       /* complete, but decode() will fail */
214
215    /* check for an over-subscribed or incomplete set of lengths */
216    left = 1;                           /* one possible code of zero length */
217    for (len = 1; len <= MAXBITS; len++) {
218        left <<= 1;                     /* one more bit, double codes left */
219        left -= h->count[len];          /* deduct count from possible codes */
220        if (left < 0) return left;      /* over-subscribed--return negative */
221    }                                   /* left > 0 means incomplete */
222
223    /* generate offsets into symbol table for each length for sorting */
224    offs[1] = 0;
225    for (len = 1; len < MAXBITS; len++)
226        offs[len + 1] = offs[len] + h->count[len];
227
228    /*
229     * put symbols in table sorted by length, by symbol order within each
230     * length
231     */
232    for (symbol = 0; symbol < n; symbol++)
233        if (length[symbol] != 0)
234            h->symbol[offs[length[symbol]]++] = symbol;
235
236    /* return zero for complete set, positive for incomplete set */
237    return left;
238}
239
240/*
241 * Decode PKWare Compression Library stream.
242 *
243 * Format notes:
244 *
245 * - First byte is 0 if literals are uncoded or 1 if they are coded.  Second
246 *   byte is 4, 5, or 6 for the number of extra bits in the distance code.
247 *   This is the base-2 logarithm of the dictionary size minus six.
248 *
249 * - Compressed data is a combination of literals and length/distance pairs
250 *   terminated by an end code.  Literals are either Huffman coded or
251 *   uncoded bytes.  A length/distance pair is a coded length followed by a
252 *   coded distance to represent a string that occurs earlier in the
253 *   uncompressed data that occurs again at the current location.
254 *
255 * - A bit preceding a literal or length/distance pair indicates which comes
256 *   next, 0 for literals, 1 for length/distance.
257 *
258 * - If literals are uncoded, then the next eight bits are the literal, in the
259 *   normal bit order in th stream, i.e. no bit-reversal is needed. Similarly,
260 *   no bit reversal is needed for either the length extra bits or the distance
261 *   extra bits.
262 *
263 * - Literal bytes are simply written to the output.  A length/distance pair is
264 *   an instruction to copy previously uncompressed bytes to the output.  The
265 *   copy is from distance bytes back in the output stream, copying for length
266 *   bytes.
267 *
268 * - Distances pointing before the beginning of the output data are not
269 *   permitted.
270 *
271 * - Overlapped copies, where the length is greater than the distance, are
272 *   allowed and common.  For example, a distance of one and a length of 518
273 *   simply copies the last byte 518 times.  A distance of four and a length of
274 *   twelve copies the last four bytes three times.  A simple forward copy
275 *   ignoring whether the length is greater than the distance or not implements
276 *   this correctly.
277 */
278local int decomp(struct state *s)
279{
280    int lit;            /* true if literals are coded */
281    int dict;           /* log2(dictionary size) - 6 */
282    int symbol;         /* decoded symbol, extra bits for distance */
283    int len;            /* length for copy */
284    unsigned dist;      /* distance for copy */
285    int copy;           /* copy counter */
286    unsigned char *from, *to;   /* copy pointers */
287    static int virgin = 1;                              /* build tables once */
288    static short litcnt[MAXBITS+1], litsym[256];        /* litcode memory */
289    static short lencnt[MAXBITS+1], lensym[16];         /* lencode memory */
290    static short distcnt[MAXBITS+1], distsym[64];       /* distcode memory */
291    static struct huffman litcode = {litcnt, litsym};   /* length code */
292    static struct huffman lencode = {lencnt, lensym};   /* length code */
293    static struct huffman distcode = {distcnt, distsym};/* distance code */
294        /* bit lengths of literal codes */
295    static const unsigned char litlen[] = {
296        11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
297        9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
298        7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
299        8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
300        44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
301        44, 173};
302        /* bit lengths of length codes 0..15 */
303    static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
304        /* bit lengths of distance codes 0..63 */
305    static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
306    static const short base[16] = {     /* base for length codes */
307        3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
308    static const char extra[16] = {     /* extra bits for length codes */
309        0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
310
311    /* set up decoding tables (once--might not be thread-safe) */
312    if (virgin) {
313        construct(&litcode, litlen, sizeof(litlen));
314        construct(&lencode, lenlen, sizeof(lenlen));
315        construct(&distcode, distlen, sizeof(distlen));
316        virgin = 0;
317    }
318
319    /* read header */
320    lit = bits(s, 8);
321    if (lit > 1) return -1;
322    dict = bits(s, 8);
323    if (dict < 4 || dict > 6) return -2;
324
325    /* decode literals and length/distance pairs */
326    do {
327        if (bits(s, 1)) {
328            /* get length */
329            symbol = decode(s, &lencode);
330            len = base[symbol] + bits(s, extra[symbol]);
331            if (len == 519) break;              /* end code */
332
333            /* get distance */
334            symbol = len == 2 ? 2 : dict;
335            dist = decode(s, &distcode) << symbol;
336            dist += bits(s, symbol);
337            dist++;
338            if (s->first && dist > s->next)
339                return -3;              /* distance too far back */
340
341            /* copy length bytes from distance bytes back */
342            do {
343                to = s->out + s->next;
344                from = to - dist;
345                copy = MAXWIN;
346                if (s->next < dist) {
347                    from += copy;
348                    copy = dist;
349                }
350                copy -= s->next;
351                if (copy > len) copy = len;
352                len -= copy;
353                s->next += copy;
354                do {
355                    *to++ = *from++;
356                } while (--copy);
357                if (s->next == MAXWIN) {
358                    if (s->outfun(s->outhow, s->out, s->next)) return 1;
359                    s->next = 0;
360                    s->first = 0;
361                }
362            } while (len != 0);
363        }
364        else {
365            /* get literal and write it */
366            symbol = lit ? decode(s, &litcode) : bits(s, 8);
367            s->out[s->next++] = symbol;
368            if (s->next == MAXWIN) {
369                if (s->outfun(s->outhow, s->out, s->next)) return 1;
370                s->next = 0;
371                s->first = 0;
372            }
373        }
374    } while (1);
375    return 0;
376}
377
378/* See comments in blast.h */
379int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow)
380{
381    struct state s;             /* input/output state */
382    int err;                    /* return value */
383
384    /* initialize input state */
385    s.infun = infun;
386    s.inhow = inhow;
387    s.left = 0;
388    s.bitbuf = 0;
389    s.bitcnt = 0;
390
391    /* initialize output state */
392    s.outfun = outfun;
393    s.outhow = outhow;
394    s.next = 0;
395    s.first = 1;
396
397    /* return if bits() or decode() tries to read past available input */
398    if (setjmp(s.env) != 0)             /* if came back here via longjmp(), */
399        err = 2;                        /*  then skip decomp(), return error */
400    else
401        err = decomp(&s);               /* decompress */
402
403    /* write any leftover output and update the error code if needed */
404    if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
405        err = 1;
406    return err;
407}
408
409#ifdef TEST
410/* Example of how to use blast() */
411#include <stdio.h>
412#include <stdlib.h>
413
414#define CHUNK 16384
415
416local unsigned inf(void *how, unsigned char **buf)
417{
418    static unsigned char hold[CHUNK];
419
420    *buf = hold;
421    return fread(hold, 1, CHUNK, (FILE *)how);
422}
423
424local int outf(void *how, unsigned char *buf, unsigned len)
425{
426    return fwrite(buf, 1, len, (FILE *)how) != len;
427}
428
429/* Decompress a PKWare Compression Library stream from stdin to stdout */
430int main(void)
431{
432    int ret, n;
433
434    /* decompress to stdout */
435    ret = blast(inf, stdin, outf, stdout);
436    if (ret != 0) fprintf(stderr, "blast error: %d\n", ret);
437
438    /* see if there are any leftover bytes */
439    n = 0;
440    while (getchar() != EOF) n++;
441    if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n);
442
443    /* return blast() error code */
444    return ret;
445}
446#endif
447