1// target.h -- target support for gold   -*- C++ -*-
2
3// Copyright (C) 2006-2017 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// The abstract class Target is the interface for target specific
24// support.  It defines abstract methods which each target must
25// implement.  Typically there will be one target per processor, but
26// in some cases it may be necessary to have subclasses.
27
28// For speed and consistency we want to use inline functions to handle
29// relocation processing.  So besides implementations of the abstract
30// methods, each target is expected to define a template
31// specialization of the relocation functions.
32
33#ifndef GOLD_TARGET_H
34#define GOLD_TARGET_H
35
36#include "elfcpp.h"
37#include "options.h"
38#include "parameters.h"
39#include "stringpool.h"
40#include "debug.h"
41
42namespace gold
43{
44
45class Object;
46class Relobj;
47template<int size, bool big_endian>
48class Sized_relobj;
49template<int size, bool big_endian>
50class Sized_relobj_file;
51class Relocatable_relocs;
52template<int size, bool big_endian>
53struct Relocate_info;
54class Reloc_symbol_changes;
55class Symbol;
56template<int size>
57class Sized_symbol;
58class Symbol_table;
59class Output_data;
60class Output_data_got_base;
61class Output_section;
62class Input_objects;
63class Task;
64struct Symbol_location;
65class Versions;
66
67// The abstract class for target specific handling.
68
69class Target
70{
71 public:
72  virtual ~Target()
73  { }
74
75  // Return the bit size that this target implements.  This should
76  // return 32 or 64.
77  int
78  get_size() const
79  { return this->pti_->size; }
80
81  // Return whether this target is big-endian.
82  bool
83  is_big_endian() const
84  { return this->pti_->is_big_endian; }
85
86  // Machine code to store in e_machine field of ELF header.
87  elfcpp::EM
88  machine_code() const
89  { return this->pti_->machine_code; }
90
91  // Processor specific flags to store in e_flags field of ELF header.
92  elfcpp::Elf_Word
93  processor_specific_flags() const
94  { return this->processor_specific_flags_; }
95
96  // Whether processor specific flags are set at least once.
97  bool
98  are_processor_specific_flags_set() const
99  { return this->are_processor_specific_flags_set_; }
100
101  // Whether this target has a specific make_symbol function.
102  bool
103  has_make_symbol() const
104  { return this->pti_->has_make_symbol; }
105
106  // Whether this target has a specific resolve function.
107  bool
108  has_resolve() const
109  { return this->pti_->has_resolve; }
110
111  // Whether this target has a specific code fill function.
112  bool
113  has_code_fill() const
114  { return this->pti_->has_code_fill; }
115
116  // Return the default name of the dynamic linker.
117  const char*
118  dynamic_linker() const
119  { return this->pti_->dynamic_linker; }
120
121  // Return the default address to use for the text segment.
122  // If a -z max-page-size argument has set the ABI page size
123  // to a value larger than the default starting address,
124  // bump the starting address up to the page size, to avoid
125  // misaligning the text segment in the file.
126  uint64_t
127  default_text_segment_address() const
128  {
129    uint64_t addr = this->pti_->default_text_segment_address;
130    uint64_t pagesize = this->abi_pagesize();
131    if (addr < pagesize)
132      addr = pagesize;
133    return addr;
134  }
135
136  // Return the ABI specified page size.
137  uint64_t
138  abi_pagesize() const
139  {
140    if (parameters->options().max_page_size() > 0)
141      return parameters->options().max_page_size();
142    else
143      return this->pti_->abi_pagesize;
144  }
145
146  // Return the common page size used on actual systems.
147  uint64_t
148  common_pagesize() const
149  {
150    if (parameters->options().common_page_size() > 0)
151      return std::min(parameters->options().common_page_size(),
152		      this->abi_pagesize());
153    else
154      return std::min(this->pti_->common_pagesize,
155		      this->abi_pagesize());
156  }
157
158  // Return whether PF_X segments must contain nothing but the contents of
159  // SHF_EXECINSTR sections (no non-executable data, no headers).
160  bool
161  isolate_execinstr() const
162  { return this->pti_->isolate_execinstr; }
163
164  uint64_t
165  rosegment_gap() const
166  { return this->pti_->rosegment_gap; }
167
168  // If we see some object files with .note.GNU-stack sections, and
169  // some objects files without them, this returns whether we should
170  // consider the object files without them to imply that the stack
171  // should be executable.
172  bool
173  is_default_stack_executable() const
174  { return this->pti_->is_default_stack_executable; }
175
176  // Return a character which may appear as a prefix for a wrap
177  // symbol.  If this character appears, we strip it when checking for
178  // wrapping and add it back when forming the final symbol name.
179  // This should be '\0' if not special prefix is required, which is
180  // the normal case.
181  char
182  wrap_char() const
183  { return this->pti_->wrap_char; }
184
185  // Return the special section index which indicates a small common
186  // symbol.  This will return SHN_UNDEF if there are no small common
187  // symbols.
188  elfcpp::Elf_Half
189  small_common_shndx() const
190  { return this->pti_->small_common_shndx; }
191
192  // Return values to add to the section flags for the section holding
193  // small common symbols.
194  elfcpp::Elf_Xword
195  small_common_section_flags() const
196  {
197    gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
198    return this->pti_->small_common_section_flags;
199  }
200
201  // Return the special section index which indicates a large common
202  // symbol.  This will return SHN_UNDEF if there are no large common
203  // symbols.
204  elfcpp::Elf_Half
205  large_common_shndx() const
206  { return this->pti_->large_common_shndx; }
207
208  // Return values to add to the section flags for the section holding
209  // large common symbols.
210  elfcpp::Elf_Xword
211  large_common_section_flags() const
212  {
213    gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
214    return this->pti_->large_common_section_flags;
215  }
216
217  // This hook is called when an output section is created.
218  void
219  new_output_section(Output_section* os) const
220  { this->do_new_output_section(os); }
221
222  // This is called to tell the target to complete any sections it is
223  // handling.  After this all sections must have their final size.
224  void
225  finalize_sections(Layout* layout, const Input_objects* input_objects,
226		    Symbol_table* symtab)
227  { return this->do_finalize_sections(layout, input_objects, symtab); }
228
229  // Return the value to use for a global symbol which needs a special
230  // value in the dynamic symbol table.  This will only be called if
231  // the backend first calls symbol->set_needs_dynsym_value().
232  uint64_t
233  dynsym_value(const Symbol* sym) const
234  { return this->do_dynsym_value(sym); }
235
236  // Return a string to use to fill out a code section.  This is
237  // basically one or more NOPS which must fill out the specified
238  // length in bytes.
239  std::string
240  code_fill(section_size_type length) const
241  { return this->do_code_fill(length); }
242
243  // Return whether SYM is known to be defined by the ABI.  This is
244  // used to avoid inappropriate warnings about undefined symbols.
245  bool
246  is_defined_by_abi(const Symbol* sym) const
247  { return this->do_is_defined_by_abi(sym); }
248
249  // Adjust the output file header before it is written out.  VIEW
250  // points to the header in external form.  LEN is the length.
251  void
252  adjust_elf_header(unsigned char* view, int len)
253  { return this->do_adjust_elf_header(view, len); }
254
255  // Return address and size to plug into eh_frame FDEs associated with a PLT.
256  void
257  plt_fde_location(const Output_data* plt, unsigned char* oview,
258		   uint64_t* address, off_t* len) const
259  { return this->do_plt_fde_location(plt, oview, address, len); }
260
261  // Return whether NAME is a local label name.  This is used to implement the
262  // --discard-locals options.
263  bool
264  is_local_label_name(const char* name) const
265  { return this->do_is_local_label_name(name); }
266
267  // Get the symbol index to use for a target specific reloc.
268  unsigned int
269  reloc_symbol_index(void* arg, unsigned int type) const
270  { return this->do_reloc_symbol_index(arg, type); }
271
272  // Get the addend to use for a target specific reloc.
273  uint64_t
274  reloc_addend(void* arg, unsigned int type, uint64_t addend) const
275  { return this->do_reloc_addend(arg, type, addend); }
276
277  // Return the PLT address to use for a global symbol.
278  uint64_t
279  plt_address_for_global(const Symbol* sym) const
280  { return this->do_plt_address_for_global(sym); }
281
282  // Return the PLT address to use for a local symbol.
283  uint64_t
284  plt_address_for_local(const Relobj* object, unsigned int symndx) const
285  { return this->do_plt_address_for_local(object, symndx); }
286
287  // Return the offset to use for the GOT_INDX'th got entry which is
288  // for a local tls symbol specified by OBJECT, SYMNDX.
289  int64_t
290  tls_offset_for_local(const Relobj* object,
291		       unsigned int symndx,
292		       unsigned int got_indx) const
293  { return do_tls_offset_for_local(object, symndx, got_indx); }
294
295  // Return the offset to use for the GOT_INDX'th got entry which is
296  // for global tls symbol GSYM.
297  int64_t
298  tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const
299  { return do_tls_offset_for_global(gsym, got_indx); }
300
301  // For targets that use function descriptors, if LOC is the location
302  // of a function, modify it to point at the function entry location.
303  void
304  function_location(Symbol_location* loc) const
305  { return do_function_location(loc); }
306
307  // Return whether this target can use relocation types to determine
308  // if a function's address is taken.
309  bool
310  can_check_for_function_pointers() const
311  { return this->do_can_check_for_function_pointers(); }
312
313  // Return whether a relocation to a merged section can be processed
314  // to retrieve the contents.
315  bool
316  can_icf_inline_merge_sections () const
317  { return this->pti_->can_icf_inline_merge_sections; }
318
319  // Whether a section called SECTION_NAME may have function pointers to
320  // sections not eligible for safe ICF folding.
321  virtual bool
322  section_may_have_icf_unsafe_pointers(const char* section_name) const
323  { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
324
325  // Return the base to use for the PC value in an FDE when it is
326  // encoded using DW_EH_PE_datarel.  This does not appear to be
327  // documented anywhere, but it is target specific.  Any use of
328  // DW_EH_PE_datarel in gcc requires defining a special macro
329  // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
330  uint64_t
331  ehframe_datarel_base() const
332  { return this->do_ehframe_datarel_base(); }
333
334  // Return true if a reference to SYM from a reloc at *PRELOC
335  // means that the current function may call an object compiled
336  // without -fsplit-stack.  SYM is known to be defined in an object
337  // compiled without -fsplit-stack.
338  bool
339  is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
340		       const unsigned char* view,
341		       section_size_type view_size) const
342  { return this->do_is_call_to_non_split(sym, preloc, view, view_size); }
343
344  // A function starts at OFFSET in section SHNDX in OBJECT.  That
345  // function was compiled with -fsplit-stack, but it refers to a
346  // function which was compiled without -fsplit-stack.  VIEW is a
347  // modifiable view of the section; VIEW_SIZE is the size of the
348  // view.  The target has to adjust the function so that it allocates
349  // enough stack.
350  void
351  calls_non_split(Relobj* object, unsigned int shndx,
352		  section_offset_type fnoffset, section_size_type fnsize,
353		  const unsigned char* prelocs, size_t reloc_count,
354		  unsigned char* view, section_size_type view_size,
355		  std::string* from, std::string* to) const
356  {
357    this->do_calls_non_split(object, shndx, fnoffset, fnsize,
358			     prelocs, reloc_count, view, view_size,
359			     from, to);
360  }
361
362  // Make an ELF object.
363  template<int size, bool big_endian>
364  Object*
365  make_elf_object(const std::string& name, Input_file* input_file,
366		  off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
367  { return this->do_make_elf_object(name, input_file, offset, ehdr); }
368
369  // Make an output section.
370  Output_section*
371  make_output_section(const char* name, elfcpp::Elf_Word type,
372		      elfcpp::Elf_Xword flags)
373  { return this->do_make_output_section(name, type, flags); }
374
375  // Return true if target wants to perform relaxation.
376  bool
377  may_relax() const
378  {
379    // Run the dummy relaxation pass twice if relaxation debugging is enabled.
380    if (is_debugging_enabled(DEBUG_RELAXATION))
381      return true;
382
383     return this->do_may_relax();
384  }
385
386  // Perform a relaxation pass.  Return true if layout may be changed.
387  bool
388  relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
389	Layout* layout, const Task* task)
390  {
391    // Run the dummy relaxation pass twice if relaxation debugging is enabled.
392    if (is_debugging_enabled(DEBUG_RELAXATION))
393      return pass < 2;
394
395    return this->do_relax(pass, input_objects, symtab, layout, task);
396  }
397
398  // Return the target-specific name of attributes section.  This is
399  // NULL if a target does not use attributes section or if it uses
400  // the default section name ".gnu.attributes".
401  const char*
402  attributes_section() const
403  { return this->pti_->attributes_section; }
404
405  // Return the vendor name of vendor attributes.
406  const char*
407  attributes_vendor() const
408  { return this->pti_->attributes_vendor; }
409
410  // Whether a section called NAME is an attribute section.
411  bool
412  is_attributes_section(const char* name) const
413  {
414    return ((this->pti_->attributes_section != NULL
415	     && strcmp(name, this->pti_->attributes_section) == 0)
416	    || strcmp(name, ".gnu.attributes") == 0);
417  }
418
419  // Return a bit mask of argument types for attribute with TAG.
420  int
421  attribute_arg_type(int tag) const
422  { return this->do_attribute_arg_type(tag); }
423
424  // Return the attribute tag of the position NUM in the list of fixed
425  // attributes.  Normally there is no reordering and
426  // attributes_order(NUM) == NUM.
427  int
428  attributes_order(int num) const
429  { return this->do_attributes_order(num); }
430
431  // When a target is selected as the default target, we call this method,
432  // which may be used for expensive, target-specific initialization.
433  void
434  select_as_default_target()
435  { this->do_select_as_default_target(); }
436
437  // Return the value to store in the EI_OSABI field in the ELF
438  // header.
439  elfcpp::ELFOSABI
440  osabi() const
441  { return this->osabi_; }
442
443  // Set the value to store in the EI_OSABI field in the ELF header.
444  void
445  set_osabi(elfcpp::ELFOSABI osabi)
446  { this->osabi_ = osabi; }
447
448  // Define target-specific standard symbols.
449  void
450  define_standard_symbols(Symbol_table* symtab, Layout* layout)
451  { this->do_define_standard_symbols(symtab, layout); }
452
453  // Return the output section name to use given an input section
454  // name, or NULL if no target specific name mapping is required.
455  // Set *PLEN to the length of the name if returning non-NULL.
456  const char*
457  output_section_name(const Relobj* relobj,
458		      const char* name,
459		      size_t* plen) const
460  { return this->do_output_section_name(relobj, name, plen); }
461
462  // Add any special sections for this symbol to the gc work list.
463  void
464  gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const
465  { this->do_gc_mark_symbol(symtab, sym); }
466
467  // Return the name of the entry point symbol.
468  const char*
469  entry_symbol_name() const
470  { return this->pti_->entry_symbol_name; }
471
472  // Return the size in bits of SHT_HASH entry.
473  int
474  hash_entry_size() const
475  { return this->pti_->hash_entry_size; }
476
477  // Whether the target has a custom set_dynsym_indexes method.
478  bool
479  has_custom_set_dynsym_indexes() const
480  { return this->do_has_custom_set_dynsym_indexes(); }
481
482  // Custom set_dynsym_indexes method for a target.
483  unsigned int
484  set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
485                     std::vector<Symbol*>* syms, Stringpool* dynpool,
486                     Versions* versions, Symbol_table* symtab) const
487  {
488    return this->do_set_dynsym_indexes(dyn_symbols, index, syms, dynpool,
489                                       versions, symtab);
490  }
491
492  // Get the custom dynamic tag value.
493  unsigned int
494  dynamic_tag_custom_value(elfcpp::DT tag) const
495  { return this->do_dynamic_tag_custom_value(tag); }
496
497  // Adjust the value written to the dynamic symbol table.
498  void
499  adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
500  { this->do_adjust_dyn_symbol(sym, view); }
501
502  // Return whether to include the section in the link.
503  bool
504  should_include_section(elfcpp::Elf_Word sh_type) const
505  { return this->do_should_include_section(sh_type); }
506
507 protected:
508  // This struct holds the constant information for a child class.  We
509  // use a struct to avoid the overhead of virtual function calls for
510  // simple information.
511  struct Target_info
512  {
513    // Address size (32 or 64).
514    int size;
515    // Whether the target is big endian.
516    bool is_big_endian;
517    // The code to store in the e_machine field of the ELF header.
518    elfcpp::EM machine_code;
519    // Whether this target has a specific make_symbol function.
520    bool has_make_symbol;
521    // Whether this target has a specific resolve function.
522    bool has_resolve;
523    // Whether this target has a specific code fill function.
524    bool has_code_fill;
525    // Whether an object file with no .note.GNU-stack sections implies
526    // that the stack should be executable.
527    bool is_default_stack_executable;
528    // Whether a relocation to a merged section can be processed to
529    // retrieve the contents.
530    bool can_icf_inline_merge_sections;
531    // Prefix character to strip when checking for wrapping.
532    char wrap_char;
533    // The default dynamic linker name.
534    const char* dynamic_linker;
535    // The default text segment address.
536    uint64_t default_text_segment_address;
537    // The ABI specified page size.
538    uint64_t abi_pagesize;
539    // The common page size used by actual implementations.
540    uint64_t common_pagesize;
541    // Whether PF_X segments must contain nothing but the contents of
542    // SHF_EXECINSTR sections (no non-executable data, no headers).
543    bool isolate_execinstr;
544    // If nonzero, distance from the text segment to the read-only segment.
545    uint64_t rosegment_gap;
546    // The special section index for small common symbols; SHN_UNDEF
547    // if none.
548    elfcpp::Elf_Half small_common_shndx;
549    // The special section index for large common symbols; SHN_UNDEF
550    // if none.
551    elfcpp::Elf_Half large_common_shndx;
552    // Section flags for small common section.
553    elfcpp::Elf_Xword small_common_section_flags;
554    // Section flags for large common section.
555    elfcpp::Elf_Xword large_common_section_flags;
556    // Name of attributes section if it is not ".gnu.attributes".
557    const char* attributes_section;
558    // Vendor name of vendor attributes.
559    const char* attributes_vendor;
560    // Name of the main entry point to the program.
561    const char* entry_symbol_name;
562    // Size (in bits) of SHT_HASH entry. Always equal to 32, except for
563    // 64-bit S/390.
564    const int hash_entry_size;
565  };
566
567  Target(const Target_info* pti)
568    : pti_(pti), processor_specific_flags_(0),
569      are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
570  { }
571
572  // Virtual function which may be implemented by the child class.
573  virtual void
574  do_new_output_section(Output_section*) const
575  { }
576
577  // Virtual function which may be implemented by the child class.
578  virtual void
579  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
580  { }
581
582  // Virtual function which may be implemented by the child class.
583  virtual uint64_t
584  do_dynsym_value(const Symbol*) const
585  { gold_unreachable(); }
586
587  // Virtual function which must be implemented by the child class if
588  // needed.
589  virtual std::string
590  do_code_fill(section_size_type) const
591  { gold_unreachable(); }
592
593  // Virtual function which may be implemented by the child class.
594  virtual bool
595  do_is_defined_by_abi(const Symbol*) const
596  { return false; }
597
598  // Adjust the output file header before it is written out.  VIEW
599  // points to the header in external form.  LEN is the length, and
600  // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
601  // By default, we set the EI_OSABI field if requested (in
602  // Sized_target).
603  virtual void
604  do_adjust_elf_header(unsigned char*, int) = 0;
605
606  // Return address and size to plug into eh_frame FDEs associated with a PLT.
607  virtual void
608  do_plt_fde_location(const Output_data* plt, unsigned char* oview,
609		      uint64_t* address, off_t* len) const;
610
611  // Virtual function which may be overridden by the child class.
612  virtual bool
613  do_is_local_label_name(const char*) const;
614
615  // Virtual function that must be overridden by a target which uses
616  // target specific relocations.
617  virtual unsigned int
618  do_reloc_symbol_index(void*, unsigned int) const
619  { gold_unreachable(); }
620
621  // Virtual function that must be overridden by a target which uses
622  // target specific relocations.
623  virtual uint64_t
624  do_reloc_addend(void*, unsigned int, uint64_t) const
625  { gold_unreachable(); }
626
627  // Virtual functions that must be overridden by a target that uses
628  // STT_GNU_IFUNC symbols.
629  virtual uint64_t
630  do_plt_address_for_global(const Symbol*) const
631  { gold_unreachable(); }
632
633  virtual uint64_t
634  do_plt_address_for_local(const Relobj*, unsigned int) const
635  { gold_unreachable(); }
636
637  virtual int64_t
638  do_tls_offset_for_local(const Relobj*, unsigned int, unsigned int) const
639  { gold_unreachable(); }
640
641  virtual int64_t
642  do_tls_offset_for_global(Symbol*, unsigned int) const
643  { gold_unreachable(); }
644
645  virtual void
646  do_function_location(Symbol_location*) const = 0;
647
648  // Virtual function which may be overriden by the child class.
649  virtual bool
650  do_can_check_for_function_pointers() const
651  { return false; }
652
653  // Virtual function which may be overridden by the child class.  We
654  // recognize some default sections for which we don't care whether
655  // they have function pointers.
656  virtual bool
657  do_section_may_have_icf_unsafe_pointers(const char* section_name) const
658  {
659    // We recognize sections for normal vtables, construction vtables and
660    // EH frames.
661    return (!is_prefix_of(".rodata._ZTV", section_name)
662	    && !is_prefix_of(".data.rel.ro._ZTV", section_name)
663	    && !is_prefix_of(".rodata._ZTC", section_name)
664	    && !is_prefix_of(".data.rel.ro._ZTC", section_name)
665	    && !is_prefix_of(".eh_frame", section_name));
666  }
667
668  virtual uint64_t
669  do_ehframe_datarel_base() const
670  { gold_unreachable(); }
671
672  // Virtual function which may be overridden by the child class.  The
673  // default implementation is that any function not defined by the
674  // ABI is a call to a non-split function.
675  virtual bool
676  do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
677			  const unsigned char*, section_size_type) const;
678
679  // Virtual function which may be overridden by the child class.
680  virtual void
681  do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
682		     section_size_type, const unsigned char*, size_t,
683		     unsigned char*, section_size_type,
684		     std::string*, std::string*) const;
685
686  // make_elf_object hooks.  There are four versions of these for
687  // different address sizes and endianness.
688
689  // Set processor specific flags.
690  void
691  set_processor_specific_flags(elfcpp::Elf_Word flags)
692  {
693    this->processor_specific_flags_ = flags;
694    this->are_processor_specific_flags_set_ = true;
695  }
696
697#ifdef HAVE_TARGET_32_LITTLE
698  // Virtual functions which may be overridden by the child class.
699  virtual Object*
700  do_make_elf_object(const std::string&, Input_file*, off_t,
701		     const elfcpp::Ehdr<32, false>&);
702#endif
703
704#ifdef HAVE_TARGET_32_BIG
705  // Virtual functions which may be overridden by the child class.
706  virtual Object*
707  do_make_elf_object(const std::string&, Input_file*, off_t,
708		     const elfcpp::Ehdr<32, true>&);
709#endif
710
711#ifdef HAVE_TARGET_64_LITTLE
712  // Virtual functions which may be overridden by the child class.
713  virtual Object*
714  do_make_elf_object(const std::string&, Input_file*, off_t,
715		     const elfcpp::Ehdr<64, false>& ehdr);
716#endif
717
718#ifdef HAVE_TARGET_64_BIG
719  // Virtual functions which may be overridden by the child class.
720  virtual Object*
721  do_make_elf_object(const std::string& name, Input_file* input_file,
722		     off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
723#endif
724
725  // Virtual functions which may be overridden by the child class.
726  virtual Output_section*
727  do_make_output_section(const char* name, elfcpp::Elf_Word type,
728			 elfcpp::Elf_Xword flags);
729
730  // Virtual function which may be overridden by the child class.
731  virtual bool
732  do_may_relax() const
733  { return parameters->options().relax(); }
734
735  // Virtual function which may be overridden by the child class.
736  virtual bool
737  do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
738  { return false; }
739
740  // A function for targets to call.  Return whether BYTES/LEN matches
741  // VIEW/VIEW_SIZE at OFFSET.
742  bool
743  match_view(const unsigned char* view, section_size_type view_size,
744	     section_offset_type offset, const char* bytes, size_t len) const;
745
746  // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
747  // for LEN bytes.
748  void
749  set_view_to_nop(unsigned char* view, section_size_type view_size,
750		  section_offset_type offset, size_t len) const;
751
752  // This must be overridden by the child class if it has target-specific
753  // attributes subsection in the attribute section.
754  virtual int
755  do_attribute_arg_type(int) const
756  { gold_unreachable(); }
757
758  // This may be overridden by the child class.
759  virtual int
760  do_attributes_order(int num) const
761  { return num; }
762
763  // This may be overridden by the child class.
764  virtual void
765  do_select_as_default_target()
766  { }
767
768  // This may be overridden by the child class.
769  virtual void
770  do_define_standard_symbols(Symbol_table*, Layout*)
771  { }
772
773  // This may be overridden by the child class.
774  virtual const char*
775  do_output_section_name(const Relobj*, const char*, size_t*) const
776  { return NULL; }
777
778  // This may be overridden by the child class.
779  virtual void
780  do_gc_mark_symbol(Symbol_table*, Symbol*) const
781  { }
782
783  // This may be overridden by the child class.
784  virtual bool
785  do_has_custom_set_dynsym_indexes() const
786  { return false; }
787
788  // This may be overridden by the child class.
789  virtual unsigned int
790  do_set_dynsym_indexes(std::vector<Symbol*>*, unsigned int,
791                        std::vector<Symbol*>*, Stringpool*, Versions*,
792                        Symbol_table*) const
793  { gold_unreachable(); }
794
795  // This may be overridden by the child class.
796  virtual unsigned int
797  do_dynamic_tag_custom_value(elfcpp::DT) const
798  { gold_unreachable(); }
799
800  // This may be overridden by the child class.
801  virtual void
802  do_adjust_dyn_symbol(const Symbol*, unsigned char*) const
803  { }
804
805  // This may be overridden by the child class.
806  virtual bool
807  do_should_include_section(elfcpp::Elf_Word) const
808  { return true; }
809
810 private:
811  // The implementations of the four do_make_elf_object virtual functions are
812  // almost identical except for their sizes and endianness.  We use a template.
813  // for their implementations.
814  template<int size, bool big_endian>
815  inline Object*
816  do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
817				    const elfcpp::Ehdr<size, big_endian>&);
818
819  Target(const Target&);
820  Target& operator=(const Target&);
821
822  // The target information.
823  const Target_info* pti_;
824  // Processor-specific flags.
825  elfcpp::Elf_Word processor_specific_flags_;
826  // Whether the processor-specific flags are set at least once.
827  bool are_processor_specific_flags_set_;
828  // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
829  // the ELF header.  This is handled at this level because it is
830  // OS-specific rather than processor-specific.
831  elfcpp::ELFOSABI osabi_;
832};
833
834// The abstract class for a specific size and endianness of target.
835// Each actual target implementation class should derive from an
836// instantiation of Sized_target.
837
838template<int size, bool big_endian>
839class Sized_target : public Target
840{
841 public:
842  // Make a new symbol table entry for the target.  This should be
843  // overridden by a target which needs additional information in the
844  // symbol table.  This will only be called if has_make_symbol()
845  // returns true.
846  virtual Sized_symbol<size>*
847  make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
848  { gold_unreachable(); }
849
850  // Resolve a symbol for the target.  This should be overridden by a
851  // target which needs to take special action.  TO is the
852  // pre-existing symbol.  SYM is the new symbol, seen in OBJECT.
853  // VERSION is the version of SYM.  This will only be called if
854  // has_resolve() returns true.
855  virtual void
856  resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
857	  const char*)
858  { gold_unreachable(); }
859
860  // Process the relocs for a section, and record information of the
861  // mapping from source to destination sections. This mapping is later
862  // used to determine unreferenced garbage sections. This procedure is
863  // only called during garbage collection.
864  virtual void
865  gc_process_relocs(Symbol_table* symtab,
866		    Layout* layout,
867		    Sized_relobj_file<size, big_endian>* object,
868		    unsigned int data_shndx,
869		    unsigned int sh_type,
870		    const unsigned char* prelocs,
871		    size_t reloc_count,
872		    Output_section* output_section,
873		    bool needs_special_offset_handling,
874		    size_t local_symbol_count,
875		    const unsigned char* plocal_symbols) = 0;
876
877  // Scan the relocs for a section, and record any information
878  // required for the symbol.  SYMTAB is the symbol table.  OBJECT is
879  // the object in which the section appears.  DATA_SHNDX is the
880  // section index that these relocs apply to.  SH_TYPE is the type of
881  // the relocation section, SHT_REL or SHT_RELA.  PRELOCS points to
882  // the relocation data.  RELOC_COUNT is the number of relocs.
883  // LOCAL_SYMBOL_COUNT is the number of local symbols.
884  // OUTPUT_SECTION is the output section.
885  // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
886  // sections are not mapped as usual.  PLOCAL_SYMBOLS points to the
887  // local symbol data from OBJECT.  GLOBAL_SYMBOLS is the array of
888  // pointers to the global symbol table from OBJECT.
889  virtual void
890  scan_relocs(Symbol_table* symtab,
891	      Layout* layout,
892	      Sized_relobj_file<size, big_endian>* object,
893	      unsigned int data_shndx,
894	      unsigned int sh_type,
895	      const unsigned char* prelocs,
896	      size_t reloc_count,
897	      Output_section* output_section,
898	      bool needs_special_offset_handling,
899	      size_t local_symbol_count,
900	      const unsigned char* plocal_symbols) = 0;
901
902  // Relocate section data.  SH_TYPE is the type of the relocation
903  // section, SHT_REL or SHT_RELA.  PRELOCS points to the relocation
904  // information.  RELOC_COUNT is the number of relocs.
905  // OUTPUT_SECTION is the output section.
906  // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
907  // to correspond to the output section.  VIEW is a view into the
908  // output file holding the section contents, VIEW_ADDRESS is the
909  // virtual address of the view, and VIEW_SIZE is the size of the
910  // view.  If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
911  // parameters refer to the complete output section data, not just
912  // the input section data.
913  virtual void
914  relocate_section(const Relocate_info<size, big_endian>*,
915		   unsigned int sh_type,
916		   const unsigned char* prelocs,
917		   size_t reloc_count,
918		   Output_section* output_section,
919		   bool needs_special_offset_handling,
920		   unsigned char* view,
921		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
922		   section_size_type view_size,
923		   const Reloc_symbol_changes*) = 0;
924
925  // Scan the relocs during a relocatable link.  The parameters are
926  // like scan_relocs, with an additional Relocatable_relocs
927  // parameter, used to record the disposition of the relocs.
928  virtual void
929  scan_relocatable_relocs(Symbol_table* symtab,
930			  Layout* layout,
931			  Sized_relobj_file<size, big_endian>* object,
932			  unsigned int data_shndx,
933			  unsigned int sh_type,
934			  const unsigned char* prelocs,
935			  size_t reloc_count,
936			  Output_section* output_section,
937			  bool needs_special_offset_handling,
938			  size_t local_symbol_count,
939			  const unsigned char* plocal_symbols,
940			  Relocatable_relocs*) = 0;
941
942  // Scan the relocs for --emit-relocs.  The parameters are
943  // like scan_relocatable_relocs.
944  virtual void
945  emit_relocs_scan(Symbol_table* symtab,
946		   Layout* layout,
947		   Sized_relobj_file<size, big_endian>* object,
948		   unsigned int data_shndx,
949		   unsigned int sh_type,
950		   const unsigned char* prelocs,
951		   size_t reloc_count,
952		   Output_section* output_section,
953		   bool needs_special_offset_handling,
954		   size_t local_symbol_count,
955		   const unsigned char* plocal_syms,
956		   Relocatable_relocs* rr) = 0;
957
958  // Emit relocations for a section during a relocatable link, and for
959  // --emit-relocs.  The parameters are like relocate_section, with
960  // additional parameters for the view of the output reloc section.
961  virtual void
962  relocate_relocs(const Relocate_info<size, big_endian>*,
963		  unsigned int sh_type,
964		  const unsigned char* prelocs,
965		  size_t reloc_count,
966		  Output_section* output_section,
967		  typename elfcpp::Elf_types<size>::Elf_Off
968                    offset_in_output_section,
969		  unsigned char* view,
970		  typename elfcpp::Elf_types<size>::Elf_Addr view_address,
971		  section_size_type view_size,
972		  unsigned char* reloc_view,
973		  section_size_type reloc_view_size) = 0;
974
975  // Perform target-specific processing in a relocatable link.  This is
976  // only used if we use the relocation strategy RELOC_SPECIAL.
977  // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
978  // section type. PRELOC_IN points to the original relocation.  RELNUM is
979  // the index number of the relocation in the relocation section.
980  // OUTPUT_SECTION is the output section to which the relocation is applied.
981  // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
982  // within the output section.  VIEW points to the output view of the
983  // output section.  VIEW_ADDRESS is output address of the view.  VIEW_SIZE
984  // is the size of the output view and PRELOC_OUT points to the new
985  // relocation in the output object.
986  //
987  // A target only needs to override this if the generic code in
988  // target-reloc.h cannot handle some relocation types.
989
990  virtual void
991  relocate_special_relocatable(const Relocate_info<size, big_endian>*
992				/*relinfo */,
993			       unsigned int /* sh_type */,
994			       const unsigned char* /* preloc_in */,
995			       size_t /* relnum */,
996			       Output_section* /* output_section */,
997			       typename elfcpp::Elf_types<size>::Elf_Off
998                                 /* offset_in_output_section */,
999			       unsigned char* /* view */,
1000			       typename elfcpp::Elf_types<size>::Elf_Addr
1001				 /* view_address */,
1002			       section_size_type /* view_size */,
1003			       unsigned char* /* preloc_out*/)
1004  { gold_unreachable(); }
1005
1006  // Return the number of entries in the GOT.  This is only used for
1007  // laying out the incremental link info sections.  A target needs
1008  // to implement this to support incremental linking.
1009
1010  virtual unsigned int
1011  got_entry_count() const
1012  { gold_unreachable(); }
1013
1014  // Return the number of entries in the PLT.  This is only used for
1015  // laying out the incremental link info sections.  A target needs
1016  // to implement this to support incremental linking.
1017
1018  virtual unsigned int
1019  plt_entry_count() const
1020  { gold_unreachable(); }
1021
1022  // Return the offset of the first non-reserved PLT entry.  This is
1023  // only used for laying out the incremental link info sections.
1024  // A target needs to implement this to support incremental linking.
1025
1026  virtual unsigned int
1027  first_plt_entry_offset() const
1028  { gold_unreachable(); }
1029
1030  // Return the size of each PLT entry.  This is only used for
1031  // laying out the incremental link info sections.  A target needs
1032  // to implement this to support incremental linking.
1033
1034  virtual unsigned int
1035  plt_entry_size() const
1036  { gold_unreachable(); }
1037
1038  // Return the size of each GOT entry.  This is only used for
1039  // laying out the incremental link info sections.  A target needs
1040  // to implement this if its GOT size is different.
1041
1042  virtual unsigned int
1043  got_entry_size() const
1044  { return size / 8; }
1045
1046  // Create the GOT and PLT sections for an incremental update.
1047  // A target needs to implement this to support incremental linking.
1048
1049  virtual Output_data_got_base*
1050  init_got_plt_for_update(Symbol_table*,
1051			  Layout*,
1052			  unsigned int /* got_count */,
1053			  unsigned int /* plt_count */)
1054  { gold_unreachable(); }
1055
1056  // Reserve a GOT entry for a local symbol, and regenerate any
1057  // necessary dynamic relocations.
1058  virtual void
1059  reserve_local_got_entry(unsigned int /* got_index */,
1060			  Sized_relobj<size, big_endian>* /* obj */,
1061			  unsigned int /* r_sym */,
1062			  unsigned int /* got_type */)
1063  { gold_unreachable(); }
1064
1065  // Reserve a GOT entry for a global symbol, and regenerate any
1066  // necessary dynamic relocations.
1067  virtual void
1068  reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
1069			   unsigned int /* got_type */)
1070  { gold_unreachable(); }
1071
1072  // Register an existing PLT entry for a global symbol.
1073  // A target needs to implement this to support incremental linking.
1074
1075  virtual void
1076  register_global_plt_entry(Symbol_table*, Layout*,
1077			    unsigned int /* plt_index */,
1078			    Symbol*)
1079  { gold_unreachable(); }
1080
1081  // Force a COPY relocation for a given symbol.
1082  // A target needs to implement this to support incremental linking.
1083
1084  virtual void
1085  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
1086  { gold_unreachable(); }
1087
1088  // Apply an incremental relocation.
1089
1090  virtual void
1091  apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
1092		   typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
1093		   unsigned int /* r_type */,
1094		   typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
1095		   const Symbol* /* gsym */,
1096		   unsigned char* /* view */,
1097		   typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
1098		   section_size_type /* view_size */)
1099  { gold_unreachable(); }
1100
1101  // Handle target specific gc actions when adding a gc reference from
1102  // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1103  // and DST_OFF.
1104  void
1105  gc_add_reference(Symbol_table* symtab,
1106		   Relobj* src_obj,
1107		   unsigned int src_shndx,
1108		   Relobj* dst_obj,
1109		   unsigned int dst_shndx,
1110		   typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const
1111  {
1112    this->do_gc_add_reference(symtab, src_obj, src_shndx,
1113			      dst_obj, dst_shndx, dst_off);
1114  }
1115
1116  // Return the r_sym field from a relocation.
1117  // Most targets can use the default version of this routine,
1118  // but some targets have a non-standard r_info field, and will
1119  // need to provide a target-specific version.
1120  virtual unsigned int
1121  get_r_sym(const unsigned char* preloc) const
1122  {
1123    // Since REL and RELA relocs share the same structure through
1124    // the r_info field, we can just use REL here.
1125    elfcpp::Rel<size, big_endian> rel(preloc);
1126    return elfcpp::elf_r_sym<size>(rel.get_r_info());
1127  }
1128
1129 protected:
1130  Sized_target(const Target::Target_info* pti)
1131    : Target(pti)
1132  {
1133    gold_assert(pti->size == size);
1134    gold_assert(pti->is_big_endian ? big_endian : !big_endian);
1135  }
1136
1137  // Set the EI_OSABI field if requested.
1138  virtual void
1139  do_adjust_elf_header(unsigned char*, int);
1140
1141  // Handle target specific gc actions when adding a gc reference.
1142  virtual void
1143  do_gc_add_reference(Symbol_table*, Relobj*, unsigned int,
1144		      Relobj*, unsigned int,
1145		      typename elfcpp::Elf_types<size>::Elf_Addr) const
1146  { }
1147
1148  virtual void
1149  do_function_location(Symbol_location*) const
1150  { }
1151};
1152
1153} // End namespace gold.
1154
1155#endif // !defined(GOLD_TARGET_H)
1156