1// script.cc -- handle linker scripts for gold.
2
3// Copyright (C) 2006-2017 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstdio>
26#include <cstdlib>
27#include <cstring>
28#include <fnmatch.h>
29#include <string>
30#include <vector>
31#include "filenames.h"
32
33#include "elfcpp.h"
34#include "demangle.h"
35#include "dirsearch.h"
36#include "options.h"
37#include "fileread.h"
38#include "workqueue.h"
39#include "readsyms.h"
40#include "parameters.h"
41#include "layout.h"
42#include "symtab.h"
43#include "target-select.h"
44#include "script.h"
45#include "script-c.h"
46#include "incremental.h"
47
48namespace gold
49{
50
51// A token read from a script file.  We don't implement keywords here;
52// all keywords are simply represented as a string.
53
54class Token
55{
56 public:
57  // Token classification.
58  enum Classification
59  {
60    // Token is invalid.
61    TOKEN_INVALID,
62    // Token indicates end of input.
63    TOKEN_EOF,
64    // Token is a string of characters.
65    TOKEN_STRING,
66    // Token is a quoted string of characters.
67    TOKEN_QUOTED_STRING,
68    // Token is an operator.
69    TOKEN_OPERATOR,
70    // Token is a number (an integer).
71    TOKEN_INTEGER
72  };
73
74  // We need an empty constructor so that we can put this STL objects.
75  Token()
76    : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77      opcode_(0), lineno_(0), charpos_(0)
78  { }
79
80  // A general token with no value.
81  Token(Classification classification, int lineno, int charpos)
82    : classification_(classification), value_(NULL), value_length_(0),
83      opcode_(0), lineno_(lineno), charpos_(charpos)
84  {
85    gold_assert(classification == TOKEN_INVALID
86		|| classification == TOKEN_EOF);
87  }
88
89  // A general token with a value.
90  Token(Classification classification, const char* value, size_t length,
91	int lineno, int charpos)
92    : classification_(classification), value_(value), value_length_(length),
93      opcode_(0), lineno_(lineno), charpos_(charpos)
94  {
95    gold_assert(classification != TOKEN_INVALID
96		&& classification != TOKEN_EOF);
97  }
98
99  // A token representing an operator.
100  Token(int opcode, int lineno, int charpos)
101    : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102      opcode_(opcode), lineno_(lineno), charpos_(charpos)
103  { }
104
105  // Return whether the token is invalid.
106  bool
107  is_invalid() const
108  { return this->classification_ == TOKEN_INVALID; }
109
110  // Return whether this is an EOF token.
111  bool
112  is_eof() const
113  { return this->classification_ == TOKEN_EOF; }
114
115  // Return the token classification.
116  Classification
117  classification() const
118  { return this->classification_; }
119
120  // Return the line number at which the token starts.
121  int
122  lineno() const
123  { return this->lineno_; }
124
125  // Return the character position at this the token starts.
126  int
127  charpos() const
128  { return this->charpos_; }
129
130  // Get the value of a token.
131
132  const char*
133  string_value(size_t* length) const
134  {
135    gold_assert(this->classification_ == TOKEN_STRING
136		|| this->classification_ == TOKEN_QUOTED_STRING);
137    *length = this->value_length_;
138    return this->value_;
139  }
140
141  int
142  operator_value() const
143  {
144    gold_assert(this->classification_ == TOKEN_OPERATOR);
145    return this->opcode_;
146  }
147
148  uint64_t
149  integer_value() const;
150
151 private:
152  // The token classification.
153  Classification classification_;
154  // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155  // TOKEN_INTEGER.
156  const char* value_;
157  // The length of the token value.
158  size_t value_length_;
159  // The token value, for TOKEN_OPERATOR.
160  int opcode_;
161  // The line number where this token started (one based).
162  int lineno_;
163  // The character position within the line where this token started
164  // (one based).
165  int charpos_;
166};
167
168// Return the value of a TOKEN_INTEGER.
169
170uint64_t
171Token::integer_value() const
172{
173  gold_assert(this->classification_ == TOKEN_INTEGER);
174
175  size_t len = this->value_length_;
176
177  uint64_t multiplier = 1;
178  char last = this->value_[len - 1];
179  if (last == 'm' || last == 'M')
180    {
181      multiplier = 1024 * 1024;
182      --len;
183    }
184  else if (last == 'k' || last == 'K')
185    {
186      multiplier = 1024;
187      --len;
188    }
189
190  char *end;
191  uint64_t ret = strtoull(this->value_, &end, 0);
192  gold_assert(static_cast<size_t>(end - this->value_) == len);
193
194  return ret * multiplier;
195}
196
197// This class handles lexing a file into a sequence of tokens.
198
199class Lex
200{
201 public:
202  // We unfortunately have to support different lexing modes, because
203  // when reading different parts of a linker script we need to parse
204  // things differently.
205  enum Mode
206  {
207    // Reading an ordinary linker script.
208    LINKER_SCRIPT,
209    // Reading an expression in a linker script.
210    EXPRESSION,
211    // Reading a version script.
212    VERSION_SCRIPT,
213    // Reading a --dynamic-list file.
214    DYNAMIC_LIST
215  };
216
217  Lex(const char* input_string, size_t input_length, int parsing_token)
218    : input_string_(input_string), input_length_(input_length),
219      current_(input_string), mode_(LINKER_SCRIPT),
220      first_token_(parsing_token), token_(),
221      lineno_(1), linestart_(input_string)
222  { }
223
224  // Read a file into a string.
225  static void
226  read_file(Input_file*, std::string*);
227
228  // Return the next token.
229  const Token*
230  next_token();
231
232  // Return the current lexing mode.
233  Lex::Mode
234  mode() const
235  { return this->mode_; }
236
237  // Set the lexing mode.
238  void
239  set_mode(Mode mode)
240  { this->mode_ = mode; }
241
242 private:
243  Lex(const Lex&);
244  Lex& operator=(const Lex&);
245
246  // Make a general token with no value at the current location.
247  Token
248  make_token(Token::Classification c, const char* start) const
249  { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250
251  // Make a general token with a value at the current location.
252  Token
253  make_token(Token::Classification c, const char* v, size_t len,
254	     const char* start)
255    const
256  { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257
258  // Make an operator token at the current location.
259  Token
260  make_token(int opcode, const char* start) const
261  { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262
263  // Make an invalid token at the current location.
264  Token
265  make_invalid_token(const char* start)
266  { return this->make_token(Token::TOKEN_INVALID, start); }
267
268  // Make an EOF token at the current location.
269  Token
270  make_eof_token(const char* start)
271  { return this->make_token(Token::TOKEN_EOF, start); }
272
273  // Return whether C can be the first character in a name.  C2 is the
274  // next character, since we sometimes need that.
275  inline bool
276  can_start_name(char c, char c2);
277
278  // If C can appear in a name which has already started, return a
279  // pointer to a character later in the token or just past
280  // it. Otherwise, return NULL.
281  inline const char*
282  can_continue_name(const char* c);
283
284  // Return whether C, C2, C3 can start a hex number.
285  inline bool
286  can_start_hex(char c, char c2, char c3);
287
288  // If C can appear in a hex number which has already started, return
289  // a pointer to a character later in the token or just past
290  // it. Otherwise, return NULL.
291  inline const char*
292  can_continue_hex(const char* c);
293
294  // Return whether C can start a non-hex number.
295  static inline bool
296  can_start_number(char c);
297
298  // If C can appear in a decimal number which has already started,
299  // return a pointer to a character later in the token or just past
300  // it. Otherwise, return NULL.
301  inline const char*
302  can_continue_number(const char* c)
303  { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304
305  // If C1 C2 C3 form a valid three character operator, return the
306  // opcode.  Otherwise return 0.
307  static inline int
308  three_char_operator(char c1, char c2, char c3);
309
310  // If C1 C2 form a valid two character operator, return the opcode.
311  // Otherwise return 0.
312  static inline int
313  two_char_operator(char c1, char c2);
314
315  // If C1 is a valid one character operator, return the opcode.
316  // Otherwise return 0.
317  static inline int
318  one_char_operator(char c1);
319
320  // Read the next token.
321  Token
322  get_token(const char**);
323
324  // Skip a C style /* */ comment.  Return false if the comment did
325  // not end.
326  bool
327  skip_c_comment(const char**);
328
329  // Skip a line # comment.  Return false if there was no newline.
330  bool
331  skip_line_comment(const char**);
332
333  // Build a token CLASSIFICATION from all characters that match
334  // CAN_CONTINUE_FN.  The token starts at START.  Start matching from
335  // MATCH.  Set *PP to the character following the token.
336  inline Token
337  gather_token(Token::Classification,
338	       const char* (Lex::*can_continue_fn)(const char*),
339	       const char* start, const char* match, const char** pp);
340
341  // Build a token from a quoted string.
342  Token
343  gather_quoted_string(const char** pp);
344
345  // The string we are tokenizing.
346  const char* input_string_;
347  // The length of the string.
348  size_t input_length_;
349  // The current offset into the string.
350  const char* current_;
351  // The current lexing mode.
352  Mode mode_;
353  // The code to use for the first token.  This is set to 0 after it
354  // is used.
355  int first_token_;
356  // The current token.
357  Token token_;
358  // The current line number.
359  int lineno_;
360  // The start of the current line in the string.
361  const char* linestart_;
362};
363
364// Read the whole file into memory.  We don't expect linker scripts to
365// be large, so we just use a std::string as a buffer.  We ignore the
366// data we've already read, so that we read aligned buffers.
367
368void
369Lex::read_file(Input_file* input_file, std::string* contents)
370{
371  off_t filesize = input_file->file().filesize();
372  contents->clear();
373  contents->reserve(filesize);
374
375  off_t off = 0;
376  unsigned char buf[BUFSIZ];
377  while (off < filesize)
378    {
379      off_t get = BUFSIZ;
380      if (get > filesize - off)
381	get = filesize - off;
382      input_file->file().read(off, get, buf);
383      contents->append(reinterpret_cast<char*>(&buf[0]), get);
384      off += get;
385    }
386}
387
388// Return whether C can be the start of a name, if the next character
389// is C2.  A name can being with a letter, underscore, period, or
390// dollar sign.  Because a name can be a file name, we also permit
391// forward slash, backslash, and tilde.  Tilde is the tricky case
392// here; GNU ld also uses it as a bitwise not operator.  It is only
393// recognized as the operator if it is not immediately followed by
394// some character which can appear in a symbol.  That is, when we
395// don't know that we are looking at an expression, "~0" is a file
396// name, and "~ 0" is an expression using bitwise not.  We are
397// compatible.
398
399inline bool
400Lex::can_start_name(char c, char c2)
401{
402  switch (c)
403    {
404    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405    case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406    case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407    case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408    case 'Y': case 'Z':
409    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410    case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411    case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412    case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413    case 'y': case 'z':
414    case '_': case '.': case '$':
415      return true;
416
417    case '/': case '\\':
418      return this->mode_ == LINKER_SCRIPT;
419
420    case '~':
421      return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422
423    case '*': case '[':
424      return (this->mode_ == VERSION_SCRIPT
425              || this->mode_ == DYNAMIC_LIST
426	      || (this->mode_ == LINKER_SCRIPT
427		  && can_continue_name(&c2)));
428
429    default:
430      return false;
431    }
432}
433
434// Return whether C can continue a name which has already started.
435// Subsequent characters in a name are the same as the leading
436// characters, plus digits and "=+-:[],?*".  So in general the linker
437// script language requires spaces around operators, unless we know
438// that we are parsing an expression.
439
440inline const char*
441Lex::can_continue_name(const char* c)
442{
443  switch (*c)
444    {
445    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446    case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447    case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448    case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449    case 'Y': case 'Z':
450    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451    case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452    case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453    case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454    case 'y': case 'z':
455    case '_': case '.': case '$':
456    case '0': case '1': case '2': case '3': case '4':
457    case '5': case '6': case '7': case '8': case '9':
458      return c + 1;
459
460    // TODO(csilvers): why not allow ~ in names for version-scripts?
461    case '/': case '\\': case '~':
462    case '=': case '+':
463    case ',':
464      if (this->mode_ == LINKER_SCRIPT)
465        return c + 1;
466      return NULL;
467
468    case '[': case ']': case '*': case '?': case '-':
469      if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470          || this->mode_ == DYNAMIC_LIST)
471        return c + 1;
472      return NULL;
473
474    // TODO(csilvers): why allow this?  ^ is meaningless in version scripts.
475    case '^':
476      if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477        return c + 1;
478      return NULL;
479
480    case ':':
481      if (this->mode_ == LINKER_SCRIPT)
482        return c + 1;
483      else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484               && (c[1] == ':'))
485        {
486          // A name can have '::' in it, as that's a c++ namespace
487          // separator. But a single colon is not part of a name.
488          return c + 2;
489        }
490      return NULL;
491
492    default:
493      return NULL;
494    }
495}
496
497// For a number we accept 0x followed by hex digits, or any sequence
498// of digits.  The old linker accepts leading '$' for hex, and
499// trailing HXBOD.  Those are for MRI compatibility and we don't
500// accept them.
501
502// Return whether C1 C2 C3 can start a hex number.
503
504inline bool
505Lex::can_start_hex(char c1, char c2, char c3)
506{
507  if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508    return this->can_continue_hex(&c3);
509  return false;
510}
511
512// Return whether C can appear in a hex number.
513
514inline const char*
515Lex::can_continue_hex(const char* c)
516{
517  switch (*c)
518    {
519    case '0': case '1': case '2': case '3': case '4':
520    case '5': case '6': case '7': case '8': case '9':
521    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523      return c + 1;
524
525    default:
526      return NULL;
527    }
528}
529
530// Return whether C can start a non-hex number.
531
532inline bool
533Lex::can_start_number(char c)
534{
535  switch (c)
536    {
537    case '0': case '1': case '2': case '3': case '4':
538    case '5': case '6': case '7': case '8': case '9':
539      return true;
540
541    default:
542      return false;
543    }
544}
545
546// If C1 C2 C3 form a valid three character operator, return the
547// opcode (defined in the yyscript.h file generated from yyscript.y).
548// Otherwise return 0.
549
550inline int
551Lex::three_char_operator(char c1, char c2, char c3)
552{
553  switch (c1)
554    {
555    case '<':
556      if (c2 == '<' && c3 == '=')
557	return LSHIFTEQ;
558      break;
559    case '>':
560      if (c2 == '>' && c3 == '=')
561	return RSHIFTEQ;
562      break;
563    default:
564      break;
565    }
566  return 0;
567}
568
569// If C1 C2 form a valid two character operator, return the opcode
570// (defined in the yyscript.h file generated from yyscript.y).
571// Otherwise return 0.
572
573inline int
574Lex::two_char_operator(char c1, char c2)
575{
576  switch (c1)
577    {
578    case '=':
579      if (c2 == '=')
580	return EQ;
581      break;
582    case '!':
583      if (c2 == '=')
584	return NE;
585      break;
586    case '+':
587      if (c2 == '=')
588	return PLUSEQ;
589      break;
590    case '-':
591      if (c2 == '=')
592	return MINUSEQ;
593      break;
594    case '*':
595      if (c2 == '=')
596	return MULTEQ;
597      break;
598    case '/':
599      if (c2 == '=')
600	return DIVEQ;
601      break;
602    case '|':
603      if (c2 == '=')
604	return OREQ;
605      if (c2 == '|')
606	return OROR;
607      break;
608    case '&':
609      if (c2 == '=')
610	return ANDEQ;
611      if (c2 == '&')
612	return ANDAND;
613      break;
614    case '>':
615      if (c2 == '=')
616	return GE;
617      if (c2 == '>')
618	return RSHIFT;
619      break;
620    case '<':
621      if (c2 == '=')
622	return LE;
623      if (c2 == '<')
624	return LSHIFT;
625      break;
626    default:
627      break;
628    }
629  return 0;
630}
631
632// If C1 is a valid operator, return the opcode.  Otherwise return 0.
633
634inline int
635Lex::one_char_operator(char c1)
636{
637  switch (c1)
638    {
639    case '+':
640    case '-':
641    case '*':
642    case '/':
643    case '%':
644    case '!':
645    case '&':
646    case '|':
647    case '^':
648    case '~':
649    case '<':
650    case '>':
651    case '=':
652    case '?':
653    case ',':
654    case '(':
655    case ')':
656    case '{':
657    case '}':
658    case '[':
659    case ']':
660    case ':':
661    case ';':
662      return c1;
663    default:
664      return 0;
665    }
666}
667
668// Skip a C style comment.  *PP points to just after the "/*".  Return
669// false if the comment did not end.
670
671bool
672Lex::skip_c_comment(const char** pp)
673{
674  const char* p = *pp;
675  while (p[0] != '*' || p[1] != '/')
676    {
677      if (*p == '\0')
678	{
679	  *pp = p;
680	  return false;
681	}
682
683      if (*p == '\n')
684	{
685	  ++this->lineno_;
686	  this->linestart_ = p + 1;
687	}
688      ++p;
689    }
690
691  *pp = p + 2;
692  return true;
693}
694
695// Skip a line # comment.  Return false if there was no newline.
696
697bool
698Lex::skip_line_comment(const char** pp)
699{
700  const char* p = *pp;
701  size_t skip = strcspn(p, "\n");
702  if (p[skip] == '\0')
703    {
704      *pp = p + skip;
705      return false;
706    }
707
708  p += skip + 1;
709  ++this->lineno_;
710  this->linestart_ = p;
711  *pp = p;
712
713  return true;
714}
715
716// Build a token CLASSIFICATION from all characters that match
717// CAN_CONTINUE_FN.  Update *PP.
718
719inline Token
720Lex::gather_token(Token::Classification classification,
721		  const char* (Lex::*can_continue_fn)(const char*),
722		  const char* start,
723		  const char* match,
724		  const char** pp)
725{
726  const char* new_match = NULL;
727  while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728    match = new_match;
729
730  // A special case: integers may be followed by a single M or K,
731  // case-insensitive.
732  if (classification == Token::TOKEN_INTEGER
733      && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734    ++match;
735
736  *pp = match;
737  return this->make_token(classification, start, match - start, start);
738}
739
740// Build a token from a quoted string.
741
742Token
743Lex::gather_quoted_string(const char** pp)
744{
745  const char* start = *pp;
746  const char* p = start;
747  ++p;
748  size_t skip = strcspn(p, "\"\n");
749  if (p[skip] != '"')
750    return this->make_invalid_token(start);
751  *pp = p + skip + 1;
752  return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753}
754
755// Return the next token at *PP.  Update *PP.  General guideline: we
756// require linker scripts to be simple ASCII.  No unicode linker
757// scripts.  In particular we can assume that any '\0' is the end of
758// the input.
759
760Token
761Lex::get_token(const char** pp)
762{
763  const char* p = *pp;
764
765  while (true)
766    {
767      // Skip whitespace quickly.
768      while (*p == ' ' || *p == '\t' || *p == '\r')
769	++p;
770
771      if (*p == '\n')
772	{
773	  ++p;
774	  ++this->lineno_;
775	  this->linestart_ = p;
776	  continue;
777	}
778
779      char c0 = *p;
780
781      if (c0 == '\0')
782	{
783	  *pp = p;
784	  return this->make_eof_token(p);
785	}
786
787      char c1 = p[1];
788
789      // Skip C style comments.
790      if (c0 == '/' && c1 == '*')
791	{
792	  int lineno = this->lineno_;
793	  int charpos = p - this->linestart_ + 1;
794
795	  *pp = p + 2;
796	  if (!this->skip_c_comment(pp))
797	    return Token(Token::TOKEN_INVALID, lineno, charpos);
798	  p = *pp;
799
800	  continue;
801	}
802
803      // Skip line comments.
804      if (c0 == '#')
805	{
806	  *pp = p + 1;
807	  if (!this->skip_line_comment(pp))
808	    return this->make_eof_token(p);
809	  p = *pp;
810	  continue;
811	}
812
813      // Check for a name.
814      if (this->can_start_name(c0, c1))
815	return this->gather_token(Token::TOKEN_STRING,
816				  &Lex::can_continue_name,
817				  p, p + 1, pp);
818
819      // We accept any arbitrary name in double quotes, as long as it
820      // does not cross a line boundary.
821      if (*p == '"')
822	{
823	  *pp = p;
824	  return this->gather_quoted_string(pp);
825	}
826
827      // Be careful not to lookahead past the end of the buffer.
828      char c2 = (c1 == '\0' ? '\0' : p[2]);
829
830      // Check for a number.
831
832      if (this->can_start_hex(c0, c1, c2))
833	return this->gather_token(Token::TOKEN_INTEGER,
834				  &Lex::can_continue_hex,
835				  p, p + 3, pp);
836
837      if (Lex::can_start_number(c0))
838	return this->gather_token(Token::TOKEN_INTEGER,
839				  &Lex::can_continue_number,
840				  p, p + 1, pp);
841
842      // Check for operators.
843
844      int opcode = Lex::three_char_operator(c0, c1, c2);
845      if (opcode != 0)
846	{
847	  *pp = p + 3;
848	  return this->make_token(opcode, p);
849	}
850
851      opcode = Lex::two_char_operator(c0, c1);
852      if (opcode != 0)
853	{
854	  *pp = p + 2;
855	  return this->make_token(opcode, p);
856	}
857
858      opcode = Lex::one_char_operator(c0);
859      if (opcode != 0)
860	{
861	  *pp = p + 1;
862	  return this->make_token(opcode, p);
863	}
864
865      return this->make_token(Token::TOKEN_INVALID, p);
866    }
867}
868
869// Return the next token.
870
871const Token*
872Lex::next_token()
873{
874  // The first token is special.
875  if (this->first_token_ != 0)
876    {
877      this->token_ = Token(this->first_token_, 0, 0);
878      this->first_token_ = 0;
879      return &this->token_;
880    }
881
882  this->token_ = this->get_token(&this->current_);
883
884  // Don't let an early null byte fool us into thinking that we've
885  // reached the end of the file.
886  if (this->token_.is_eof()
887      && (static_cast<size_t>(this->current_ - this->input_string_)
888	  < this->input_length_))
889    this->token_ = this->make_invalid_token(this->current_);
890
891  return &this->token_;
892}
893
894// class Symbol_assignment.
895
896// Add the symbol to the symbol table.  This makes sure the symbol is
897// there and defined.  The actual value is stored later.  We can't
898// determine the actual value at this point, because we can't
899// necessarily evaluate the expression until all ordinary symbols have
900// been finalized.
901
902// The GNU linker lets symbol assignments in the linker script
903// silently override defined symbols in object files.  We are
904// compatible.  FIXME: Should we issue a warning?
905
906void
907Symbol_assignment::add_to_table(Symbol_table* symtab)
908{
909  elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
910  this->sym_ = symtab->define_as_constant(this->name_.c_str(),
911					  NULL, // version
912					  (this->is_defsym_
913					   ? Symbol_table::DEFSYM
914					   : Symbol_table::SCRIPT),
915					  0, // value
916					  0, // size
917					  elfcpp::STT_NOTYPE,
918					  elfcpp::STB_GLOBAL,
919					  vis,
920					  0, // nonvis
921					  this->provide_,
922                                          true); // force_override
923}
924
925// Finalize a symbol value.
926
927void
928Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
929{
930  this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
931}
932
933// Finalize a symbol value which can refer to the dot symbol.
934
935void
936Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
937				     const Layout* layout,
938				     uint64_t dot_value,
939				     Output_section* dot_section)
940{
941  this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
942}
943
944// Finalize a symbol value, internal version.
945
946void
947Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
948				      const Layout* layout,
949				      bool is_dot_available,
950				      uint64_t dot_value,
951				      Output_section* dot_section)
952{
953  // If we were only supposed to provide this symbol, the sym_ field
954  // will be NULL if the symbol was not referenced.
955  if (this->sym_ == NULL)
956    {
957      gold_assert(this->provide_);
958      return;
959    }
960
961  if (parameters->target().get_size() == 32)
962    {
963#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
964      this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
965			       dot_section);
966#else
967      gold_unreachable();
968#endif
969    }
970  else if (parameters->target().get_size() == 64)
971    {
972#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
973      this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
974			       dot_section);
975#else
976      gold_unreachable();
977#endif
978    }
979  else
980    gold_unreachable();
981}
982
983template<int size>
984void
985Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
986				  bool is_dot_available, uint64_t dot_value,
987				  Output_section* dot_section)
988{
989  Output_section* section;
990  elfcpp::STT type = elfcpp::STT_NOTYPE;
991  elfcpp::STV vis = elfcpp::STV_DEFAULT;
992  unsigned char nonvis = 0;
993  uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
994						  is_dot_available,
995						  dot_value, dot_section,
996						  &section, NULL, &type,
997						  &vis, &nonvis, false, NULL);
998  Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
999  ssym->set_value(final_val);
1000  ssym->set_type(type);
1001  ssym->set_visibility(vis);
1002  ssym->set_nonvis(nonvis);
1003  if (section != NULL)
1004    ssym->set_output_section(section);
1005}
1006
1007// Set the symbol value if the expression yields an absolute value or
1008// a value relative to DOT_SECTION.
1009
1010void
1011Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
1012				   bool is_dot_available, uint64_t dot_value,
1013				   Output_section* dot_section)
1014{
1015  if (this->sym_ == NULL)
1016    return;
1017
1018  Output_section* val_section;
1019  bool is_valid;
1020  uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1021					    is_dot_available, dot_value,
1022					    dot_section, &val_section, NULL,
1023					    NULL, NULL, NULL, false, &is_valid);
1024  if (!is_valid || (val_section != NULL && val_section != dot_section))
1025    return;
1026
1027  if (parameters->target().get_size() == 32)
1028    {
1029#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1030      Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1031      ssym->set_value(val);
1032#else
1033      gold_unreachable();
1034#endif
1035    }
1036  else if (parameters->target().get_size() == 64)
1037    {
1038#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1039      Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1040      ssym->set_value(val);
1041#else
1042      gold_unreachable();
1043#endif
1044    }
1045  else
1046    gold_unreachable();
1047  if (val_section != NULL)
1048    this->sym_->set_output_section(val_section);
1049}
1050
1051// Print for debugging.
1052
1053void
1054Symbol_assignment::print(FILE* f) const
1055{
1056  if (this->provide_ && this->hidden_)
1057    fprintf(f, "PROVIDE_HIDDEN(");
1058  else if (this->provide_)
1059    fprintf(f, "PROVIDE(");
1060  else if (this->hidden_)
1061    gold_unreachable();
1062
1063  fprintf(f, "%s = ", this->name_.c_str());
1064  this->val_->print(f);
1065
1066  if (this->provide_ || this->hidden_)
1067    fprintf(f, ")");
1068
1069  fprintf(f, "\n");
1070}
1071
1072// Class Script_assertion.
1073
1074// Check the assertion.
1075
1076void
1077Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1078{
1079  if (!this->check_->eval(symtab, layout, true))
1080    gold_error("%s", this->message_.c_str());
1081}
1082
1083// Print for debugging.
1084
1085void
1086Script_assertion::print(FILE* f) const
1087{
1088  fprintf(f, "ASSERT(");
1089  this->check_->print(f);
1090  fprintf(f, ", \"%s\")\n", this->message_.c_str());
1091}
1092
1093// Class Script_options.
1094
1095Script_options::Script_options()
1096  : entry_(), symbol_assignments_(), symbol_definitions_(),
1097    symbol_references_(), version_script_info_(), script_sections_()
1098{
1099}
1100
1101// Returns true if NAME is on the list of symbol assignments waiting
1102// to be processed.
1103
1104bool
1105Script_options::is_pending_assignment(const char* name)
1106{
1107  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1108       p != this->symbol_assignments_.end();
1109       ++p)
1110    if ((*p)->name() == name)
1111      return true;
1112  return false;
1113}
1114
1115// Add a symbol to be defined.
1116
1117void
1118Script_options::add_symbol_assignment(const char* name, size_t length,
1119				      bool is_defsym, Expression* value,
1120				      bool provide, bool hidden)
1121{
1122  if (length != 1 || name[0] != '.')
1123    {
1124      if (this->script_sections_.in_sections_clause())
1125	{
1126	  gold_assert(!is_defsym);
1127	  this->script_sections_.add_symbol_assignment(name, length, value,
1128						       provide, hidden);
1129	}
1130      else
1131	{
1132	  Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1133						       value, provide, hidden);
1134	  this->symbol_assignments_.push_back(p);
1135	}
1136
1137      if (!provide)
1138	{
1139	  std::string n(name, length);
1140	  this->symbol_definitions_.insert(n);
1141	  this->symbol_references_.erase(n);
1142	}
1143    }
1144  else
1145    {
1146      if (provide || hidden)
1147	gold_error(_("invalid use of PROVIDE for dot symbol"));
1148
1149      // The GNU linker permits assignments to dot outside of SECTIONS
1150      // clauses and treats them as occurring inside, so we don't
1151      // check in_sections_clause here.
1152      this->script_sections_.add_dot_assignment(value);
1153    }
1154}
1155
1156// Add a reference to a symbol.
1157
1158void
1159Script_options::add_symbol_reference(const char* name, size_t length)
1160{
1161  if (length != 1 || name[0] != '.')
1162    {
1163      std::string n(name, length);
1164      if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1165	this->symbol_references_.insert(n);
1166    }
1167}
1168
1169// Add an assertion.
1170
1171void
1172Script_options::add_assertion(Expression* check, const char* message,
1173			      size_t messagelen)
1174{
1175  if (this->script_sections_.in_sections_clause())
1176    this->script_sections_.add_assertion(check, message, messagelen);
1177  else
1178    {
1179      Script_assertion* p = new Script_assertion(check, message, messagelen);
1180      this->assertions_.push_back(p);
1181    }
1182}
1183
1184// Create sections required by any linker scripts.
1185
1186void
1187Script_options::create_script_sections(Layout* layout)
1188{
1189  if (this->saw_sections_clause())
1190    this->script_sections_.create_sections(layout);
1191}
1192
1193// Add any symbols we are defining to the symbol table.
1194
1195void
1196Script_options::add_symbols_to_table(Symbol_table* symtab)
1197{
1198  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1199       p != this->symbol_assignments_.end();
1200       ++p)
1201    (*p)->add_to_table(symtab);
1202  this->script_sections_.add_symbols_to_table(symtab);
1203}
1204
1205// Finalize symbol values.  Also check assertions.
1206
1207void
1208Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1209{
1210  // We finalize the symbols defined in SECTIONS first, because they
1211  // are the ones which may have changed.  This way if symbol outside
1212  // SECTIONS are defined in terms of symbols inside SECTIONS, they
1213  // will get the right value.
1214  this->script_sections_.finalize_symbols(symtab, layout);
1215
1216  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1217       p != this->symbol_assignments_.end();
1218       ++p)
1219    (*p)->finalize(symtab, layout);
1220
1221  for (Assertions::iterator p = this->assertions_.begin();
1222       p != this->assertions_.end();
1223       ++p)
1224    (*p)->check(symtab, layout);
1225}
1226
1227// Set section addresses.  We set all the symbols which have absolute
1228// values.  Then we let the SECTIONS clause do its thing.  This
1229// returns the segment which holds the file header and segment
1230// headers, if any.
1231
1232Output_segment*
1233Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1234{
1235  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1236       p != this->symbol_assignments_.end();
1237       ++p)
1238    (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1239
1240  return this->script_sections_.set_section_addresses(symtab, layout);
1241}
1242
1243// This class holds data passed through the parser to the lexer and to
1244// the parser support functions.  This avoids global variables.  We
1245// can't use global variables because we need not be called by a
1246// singleton thread.
1247
1248class Parser_closure
1249{
1250 public:
1251  Parser_closure(const char* filename,
1252		 const Position_dependent_options& posdep_options,
1253		 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1254                 Command_line* command_line,
1255		 Script_options* script_options,
1256		 Lex* lex,
1257		 bool skip_on_incompatible_target,
1258		 Script_info* script_info)
1259    : filename_(filename), posdep_options_(posdep_options),
1260      parsing_defsym_(parsing_defsym), in_group_(in_group),
1261      is_in_sysroot_(is_in_sysroot),
1262      skip_on_incompatible_target_(skip_on_incompatible_target),
1263      found_incompatible_target_(false),
1264      command_line_(command_line), script_options_(script_options),
1265      version_script_info_(script_options->version_script_info()),
1266      lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1267      script_info_(script_info)
1268  {
1269    // We start out processing C symbols in the default lex mode.
1270    this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1271    this->lex_mode_stack_.push_back(lex->mode());
1272  }
1273
1274  // Return the file name.
1275  const char*
1276  filename() const
1277  { return this->filename_; }
1278
1279  // Return the position dependent options.  The caller may modify
1280  // this.
1281  Position_dependent_options&
1282  position_dependent_options()
1283  { return this->posdep_options_; }
1284
1285  // Whether we are parsing a --defsym.
1286  bool
1287  parsing_defsym() const
1288  { return this->parsing_defsym_; }
1289
1290  // Return whether this script is being run in a group.
1291  bool
1292  in_group() const
1293  { return this->in_group_; }
1294
1295  // Return whether this script was found using a directory in the
1296  // sysroot.
1297  bool
1298  is_in_sysroot() const
1299  { return this->is_in_sysroot_; }
1300
1301  // Whether to skip to the next file with the same name if we find an
1302  // incompatible target in an OUTPUT_FORMAT statement.
1303  bool
1304  skip_on_incompatible_target() const
1305  { return this->skip_on_incompatible_target_; }
1306
1307  // Stop skipping to the next file on an incompatible target.  This
1308  // is called when we make some unrevocable change to the data
1309  // structures.
1310  void
1311  clear_skip_on_incompatible_target()
1312  { this->skip_on_incompatible_target_ = false; }
1313
1314  // Whether we found an incompatible target in an OUTPUT_FORMAT
1315  // statement.
1316  bool
1317  found_incompatible_target() const
1318  { return this->found_incompatible_target_; }
1319
1320  // Note that we found an incompatible target.
1321  void
1322  set_found_incompatible_target()
1323  { this->found_incompatible_target_ = true; }
1324
1325  // Returns the Command_line structure passed in at constructor time.
1326  // This value may be NULL.  The caller may modify this, which modifies
1327  // the passed-in Command_line object (not a copy).
1328  Command_line*
1329  command_line()
1330  { return this->command_line_; }
1331
1332  // Return the options which may be set by a script.
1333  Script_options*
1334  script_options()
1335  { return this->script_options_; }
1336
1337  // Return the object in which version script information should be stored.
1338  Version_script_info*
1339  version_script()
1340  { return this->version_script_info_; }
1341
1342  // Return the next token, and advance.
1343  const Token*
1344  next_token()
1345  {
1346    const Token* token = this->lex_->next_token();
1347    this->lineno_ = token->lineno();
1348    this->charpos_ = token->charpos();
1349    return token;
1350  }
1351
1352  // Set a new lexer mode, pushing the current one.
1353  void
1354  push_lex_mode(Lex::Mode mode)
1355  {
1356    this->lex_mode_stack_.push_back(this->lex_->mode());
1357    this->lex_->set_mode(mode);
1358  }
1359
1360  // Pop the lexer mode.
1361  void
1362  pop_lex_mode()
1363  {
1364    gold_assert(!this->lex_mode_stack_.empty());
1365    this->lex_->set_mode(this->lex_mode_stack_.back());
1366    this->lex_mode_stack_.pop_back();
1367  }
1368
1369  // Return the current lexer mode.
1370  Lex::Mode
1371  lex_mode() const
1372  { return this->lex_mode_stack_.back(); }
1373
1374  // Return the line number of the last token.
1375  int
1376  lineno() const
1377  { return this->lineno_; }
1378
1379  // Return the character position in the line of the last token.
1380  int
1381  charpos() const
1382  { return this->charpos_; }
1383
1384  // Return the list of input files, creating it if necessary.  This
1385  // is a space leak--we never free the INPUTS_ pointer.
1386  Input_arguments*
1387  inputs()
1388  {
1389    if (this->inputs_ == NULL)
1390      this->inputs_ = new Input_arguments();
1391    return this->inputs_;
1392  }
1393
1394  // Return whether we saw any input files.
1395  bool
1396  saw_inputs() const
1397  { return this->inputs_ != NULL && !this->inputs_->empty(); }
1398
1399  // Return the current language being processed in a version script
1400  // (eg, "C++").  The empty string represents unmangled C names.
1401  Version_script_info::Language
1402  get_current_language() const
1403  { return this->language_stack_.back(); }
1404
1405  // Push a language onto the stack when entering an extern block.
1406  void
1407  push_language(Version_script_info::Language lang)
1408  { this->language_stack_.push_back(lang); }
1409
1410  // Pop a language off of the stack when exiting an extern block.
1411  void
1412  pop_language()
1413  {
1414    gold_assert(!this->language_stack_.empty());
1415    this->language_stack_.pop_back();
1416  }
1417
1418  // Return a pointer to the incremental info.
1419  Script_info*
1420  script_info()
1421  { return this->script_info_; }
1422
1423 private:
1424  // The name of the file we are reading.
1425  const char* filename_;
1426  // The position dependent options.
1427  Position_dependent_options posdep_options_;
1428  // True if we are parsing a --defsym.
1429  bool parsing_defsym_;
1430  // Whether we are currently in a --start-group/--end-group.
1431  bool in_group_;
1432  // Whether the script was found in a sysrooted directory.
1433  bool is_in_sysroot_;
1434  // If this is true, then if we find an OUTPUT_FORMAT with an
1435  // incompatible target, then we tell the parser to abort so that we
1436  // can search for the next file with the same name.
1437  bool skip_on_incompatible_target_;
1438  // True if we found an OUTPUT_FORMAT with an incompatible target.
1439  bool found_incompatible_target_;
1440  // May be NULL if the user chooses not to pass one in.
1441  Command_line* command_line_;
1442  // Options which may be set from any linker script.
1443  Script_options* script_options_;
1444  // Information parsed from a version script.
1445  Version_script_info* version_script_info_;
1446  // The lexer.
1447  Lex* lex_;
1448  // The line number of the last token returned by next_token.
1449  int lineno_;
1450  // The column number of the last token returned by next_token.
1451  int charpos_;
1452  // A stack of lexer modes.
1453  std::vector<Lex::Mode> lex_mode_stack_;
1454  // A stack of which extern/language block we're inside. Can be C++,
1455  // java, or empty for C.
1456  std::vector<Version_script_info::Language> language_stack_;
1457  // New input files found to add to the link.
1458  Input_arguments* inputs_;
1459  // Pointer to incremental linking info.
1460  Script_info* script_info_;
1461};
1462
1463// FILE was found as an argument on the command line.  Try to read it
1464// as a script.  Return true if the file was handled.
1465
1466bool
1467read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1468		  Dirsearch* dirsearch, int dirindex,
1469		  Input_objects* input_objects, Mapfile* mapfile,
1470		  Input_group* input_group,
1471		  const Input_argument* input_argument,
1472		  Input_file* input_file, Task_token* next_blocker,
1473		  bool* used_next_blocker)
1474{
1475  *used_next_blocker = false;
1476
1477  std::string input_string;
1478  Lex::read_file(input_file, &input_string);
1479
1480  Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1481
1482  Script_info* script_info = NULL;
1483  if (layout->incremental_inputs() != NULL)
1484    {
1485      const std::string& filename = input_file->filename();
1486      Timespec mtime = input_file->file().get_mtime();
1487      unsigned int arg_serial = input_argument->file().arg_serial();
1488      script_info = new Script_info(filename);
1489      layout->incremental_inputs()->report_script(script_info, arg_serial,
1490						  mtime);
1491    }
1492
1493  Parser_closure closure(input_file->filename().c_str(),
1494			 input_argument->file().options(),
1495			 false,
1496			 input_group != NULL,
1497			 input_file->is_in_sysroot(),
1498                         NULL,
1499			 layout->script_options(),
1500			 &lex,
1501			 input_file->will_search_for(),
1502			 script_info);
1503
1504  bool old_saw_sections_clause =
1505    layout->script_options()->saw_sections_clause();
1506
1507  if (yyparse(&closure) != 0)
1508    {
1509      if (closure.found_incompatible_target())
1510	{
1511	  Read_symbols::incompatible_warning(input_argument, input_file);
1512	  Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1513				dirsearch, dirindex, mapfile, input_argument,
1514				input_group, next_blocker);
1515	  return true;
1516	}
1517      return false;
1518    }
1519
1520  if (!old_saw_sections_clause
1521      && layout->script_options()->saw_sections_clause()
1522      && layout->have_added_input_section())
1523    gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1524	       input_file->filename().c_str());
1525
1526  if (!closure.saw_inputs())
1527    return true;
1528
1529  Task_token* this_blocker = NULL;
1530  for (Input_arguments::const_iterator p = closure.inputs()->begin();
1531       p != closure.inputs()->end();
1532       ++p)
1533    {
1534      Task_token* nb;
1535      if (p + 1 == closure.inputs()->end())
1536	nb = next_blocker;
1537      else
1538	{
1539	  nb = new Task_token(true);
1540	  nb->add_blocker();
1541	}
1542      workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1543					     layout, dirsearch, 0, mapfile, &*p,
1544					     input_group, NULL, this_blocker, nb));
1545      this_blocker = nb;
1546    }
1547
1548  *used_next_blocker = true;
1549
1550  return true;
1551}
1552
1553// Helper function for read_version_script(), read_commandline_script() and
1554// script_include_directive().  Processes the given file in the mode indicated
1555// by first_token and lex_mode.
1556
1557static bool
1558read_script_file(const char* filename, Command_line* cmdline,
1559                 Script_options* script_options,
1560                 int first_token, Lex::Mode lex_mode)
1561{
1562  Dirsearch dirsearch;
1563  std::string name = filename;
1564
1565  // If filename is a relative filename, search for it manually using "." +
1566  // cmdline->options()->library_path() -- not dirsearch.
1567  if (!IS_ABSOLUTE_PATH(filename))
1568    {
1569      const General_options::Dir_list& search_path =
1570          cmdline->options().library_path();
1571      name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1572    }
1573
1574  // The file locking code wants to record a Task, but we haven't
1575  // started the workqueue yet.  This is only for debugging purposes,
1576  // so we invent a fake value.
1577  const Task* task = reinterpret_cast<const Task*>(-1);
1578
1579  // We don't want this file to be opened in binary mode.
1580  Position_dependent_options posdep = cmdline->position_dependent_options();
1581  if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1582    posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1583  Input_file_argument input_argument(name.c_str(),
1584				     Input_file_argument::INPUT_FILE_TYPE_FILE,
1585				     "", false, posdep);
1586  Input_file input_file(&input_argument);
1587  int dummy = 0;
1588  if (!input_file.open(dirsearch, task, &dummy))
1589    return false;
1590
1591  std::string input_string;
1592  Lex::read_file(&input_file, &input_string);
1593
1594  Lex lex(input_string.c_str(), input_string.length(), first_token);
1595  lex.set_mode(lex_mode);
1596
1597  Parser_closure closure(filename,
1598			 cmdline->position_dependent_options(),
1599			 first_token == Lex::DYNAMIC_LIST,
1600			 false,
1601			 input_file.is_in_sysroot(),
1602                         cmdline,
1603			 script_options,
1604			 &lex,
1605			 false,
1606			 NULL);
1607  if (yyparse(&closure) != 0)
1608    {
1609      input_file.file().unlock(task);
1610      return false;
1611    }
1612
1613  input_file.file().unlock(task);
1614
1615  gold_assert(!closure.saw_inputs());
1616
1617  return true;
1618}
1619
1620// FILENAME was found as an argument to --script (-T).
1621// Read it as a script, and execute its contents immediately.
1622
1623bool
1624read_commandline_script(const char* filename, Command_line* cmdline)
1625{
1626  return read_script_file(filename, cmdline, &cmdline->script_options(),
1627                          PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1628}
1629
1630// FILENAME was found as an argument to --version-script.  Read it as
1631// a version script, and store its contents in
1632// cmdline->script_options()->version_script_info().
1633
1634bool
1635read_version_script(const char* filename, Command_line* cmdline)
1636{
1637  return read_script_file(filename, cmdline, &cmdline->script_options(),
1638                          PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1639}
1640
1641// FILENAME was found as an argument to --dynamic-list.  Read it as a
1642// list of symbols, and store its contents in DYNAMIC_LIST.
1643
1644bool
1645read_dynamic_list(const char* filename, Command_line* cmdline,
1646                  Script_options* dynamic_list)
1647{
1648  return read_script_file(filename, cmdline, dynamic_list,
1649                          PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1650}
1651
1652// Implement the --defsym option on the command line.  Return true if
1653// all is well.
1654
1655bool
1656Script_options::define_symbol(const char* definition)
1657{
1658  Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1659  lex.set_mode(Lex::EXPRESSION);
1660
1661  // Dummy value.
1662  Position_dependent_options posdep_options;
1663
1664  Parser_closure closure("command line", posdep_options, true,
1665			 false, false, NULL, this, &lex, false, NULL);
1666
1667  if (yyparse(&closure) != 0)
1668    return false;
1669
1670  gold_assert(!closure.saw_inputs());
1671
1672  return true;
1673}
1674
1675// Print the script to F for debugging.
1676
1677void
1678Script_options::print(FILE* f) const
1679{
1680  fprintf(f, "%s: Dumping linker script\n", program_name);
1681
1682  if (!this->entry_.empty())
1683    fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1684
1685  for (Symbol_assignments::const_iterator p =
1686	 this->symbol_assignments_.begin();
1687       p != this->symbol_assignments_.end();
1688       ++p)
1689    (*p)->print(f);
1690
1691  for (Assertions::const_iterator p = this->assertions_.begin();
1692       p != this->assertions_.end();
1693       ++p)
1694    (*p)->print(f);
1695
1696  this->script_sections_.print(f);
1697
1698  this->version_script_info_.print(f);
1699}
1700
1701// Manage mapping from keywords to the codes expected by the bison
1702// parser.  We construct one global object for each lex mode with
1703// keywords.
1704
1705class Keyword_to_parsecode
1706{
1707 public:
1708  // The structure which maps keywords to parsecodes.
1709  struct Keyword_parsecode
1710  {
1711    // Keyword.
1712    const char* keyword;
1713    // Corresponding parsecode.
1714    int parsecode;
1715  };
1716
1717  Keyword_to_parsecode(const Keyword_parsecode* keywords,
1718                       int keyword_count)
1719      : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1720  { }
1721
1722  // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1723  // keyword.
1724  int
1725  keyword_to_parsecode(const char* keyword, size_t len) const;
1726
1727 private:
1728  const Keyword_parsecode* keyword_parsecodes_;
1729  const int keyword_count_;
1730};
1731
1732// Mapping from keyword string to keyword parsecode.  This array must
1733// be kept in sorted order.  Parsecodes are looked up using bsearch.
1734// This array must correspond to the list of parsecodes in yyscript.y.
1735
1736static const Keyword_to_parsecode::Keyword_parsecode
1737script_keyword_parsecodes[] =
1738{
1739  { "ABSOLUTE", ABSOLUTE },
1740  { "ADDR", ADDR },
1741  { "ALIGN", ALIGN_K },
1742  { "ALIGNOF", ALIGNOF },
1743  { "ASSERT", ASSERT_K },
1744  { "AS_NEEDED", AS_NEEDED },
1745  { "AT", AT },
1746  { "BIND", BIND },
1747  { "BLOCK", BLOCK },
1748  { "BYTE", BYTE },
1749  { "CONSTANT", CONSTANT },
1750  { "CONSTRUCTORS", CONSTRUCTORS },
1751  { "COPY", COPY },
1752  { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1753  { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1754  { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1755  { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1756  { "DEFINED", DEFINED },
1757  { "DSECT", DSECT },
1758  { "ENTRY", ENTRY },
1759  { "EXCLUDE_FILE", EXCLUDE_FILE },
1760  { "EXTERN", EXTERN },
1761  { "FILL", FILL },
1762  { "FLOAT", FLOAT },
1763  { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1764  { "GROUP", GROUP },
1765  { "HIDDEN", HIDDEN },
1766  { "HLL", HLL },
1767  { "INCLUDE", INCLUDE },
1768  { "INFO", INFO },
1769  { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1770  { "INPUT", INPUT },
1771  { "KEEP", KEEP },
1772  { "LENGTH", LENGTH },
1773  { "LOADADDR", LOADADDR },
1774  { "LONG", LONG },
1775  { "MAP", MAP },
1776  { "MAX", MAX_K },
1777  { "MEMORY", MEMORY },
1778  { "MIN", MIN_K },
1779  { "NEXT", NEXT },
1780  { "NOCROSSREFS", NOCROSSREFS },
1781  { "NOFLOAT", NOFLOAT },
1782  { "NOLOAD", NOLOAD },
1783  { "ONLY_IF_RO", ONLY_IF_RO },
1784  { "ONLY_IF_RW", ONLY_IF_RW },
1785  { "OPTION", OPTION },
1786  { "ORIGIN", ORIGIN },
1787  { "OUTPUT", OUTPUT },
1788  { "OUTPUT_ARCH", OUTPUT_ARCH },
1789  { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1790  { "OVERLAY", OVERLAY },
1791  { "PHDRS", PHDRS },
1792  { "PROVIDE", PROVIDE },
1793  { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1794  { "QUAD", QUAD },
1795  { "SEARCH_DIR", SEARCH_DIR },
1796  { "SECTIONS", SECTIONS },
1797  { "SEGMENT_START", SEGMENT_START },
1798  { "SHORT", SHORT },
1799  { "SIZEOF", SIZEOF },
1800  { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1801  { "SORT", SORT_BY_NAME },
1802  { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1803  { "SORT_BY_INIT_PRIORITY", SORT_BY_INIT_PRIORITY },
1804  { "SORT_BY_NAME", SORT_BY_NAME },
1805  { "SPECIAL", SPECIAL },
1806  { "SQUAD", SQUAD },
1807  { "STARTUP", STARTUP },
1808  { "SUBALIGN", SUBALIGN },
1809  { "SYSLIB", SYSLIB },
1810  { "TARGET", TARGET_K },
1811  { "TRUNCATE", TRUNCATE },
1812  { "VERSION", VERSIONK },
1813  { "global", GLOBAL },
1814  { "l", LENGTH },
1815  { "len", LENGTH },
1816  { "local", LOCAL },
1817  { "o", ORIGIN },
1818  { "org", ORIGIN },
1819  { "sizeof_headers", SIZEOF_HEADERS },
1820};
1821
1822static const Keyword_to_parsecode
1823script_keywords(&script_keyword_parsecodes[0],
1824                (sizeof(script_keyword_parsecodes)
1825                 / sizeof(script_keyword_parsecodes[0])));
1826
1827static const Keyword_to_parsecode::Keyword_parsecode
1828version_script_keyword_parsecodes[] =
1829{
1830  { "extern", EXTERN },
1831  { "global", GLOBAL },
1832  { "local", LOCAL },
1833};
1834
1835static const Keyword_to_parsecode
1836version_script_keywords(&version_script_keyword_parsecodes[0],
1837                        (sizeof(version_script_keyword_parsecodes)
1838                         / sizeof(version_script_keyword_parsecodes[0])));
1839
1840static const Keyword_to_parsecode::Keyword_parsecode
1841dynamic_list_keyword_parsecodes[] =
1842{
1843  { "extern", EXTERN },
1844};
1845
1846static const Keyword_to_parsecode
1847dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1848                      (sizeof(dynamic_list_keyword_parsecodes)
1849                       / sizeof(dynamic_list_keyword_parsecodes[0])));
1850
1851
1852
1853// Comparison function passed to bsearch.
1854
1855extern "C"
1856{
1857
1858struct Ktt_key
1859{
1860  const char* str;
1861  size_t len;
1862};
1863
1864static int
1865ktt_compare(const void* keyv, const void* kttv)
1866{
1867  const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1868  const Keyword_to_parsecode::Keyword_parsecode* ktt =
1869    static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1870  int i = strncmp(key->str, ktt->keyword, key->len);
1871  if (i != 0)
1872    return i;
1873  if (ktt->keyword[key->len] != '\0')
1874    return -1;
1875  return 0;
1876}
1877
1878} // End extern "C".
1879
1880int
1881Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1882                                           size_t len) const
1883{
1884  Ktt_key key;
1885  key.str = keyword;
1886  key.len = len;
1887  void* kttv = bsearch(&key,
1888                       this->keyword_parsecodes_,
1889                       this->keyword_count_,
1890                       sizeof(this->keyword_parsecodes_[0]),
1891                       ktt_compare);
1892  if (kttv == NULL)
1893    return 0;
1894  Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1895  return ktt->parsecode;
1896}
1897
1898// The following structs are used within the VersionInfo class as well
1899// as in the bison helper functions.  They store the information
1900// parsed from the version script.
1901
1902// A single version expression.
1903// For example, pattern="std::map*" and language="C++".
1904struct Version_expression
1905{
1906  Version_expression(const std::string& a_pattern,
1907		     Version_script_info::Language a_language,
1908                     bool a_exact_match)
1909    : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1910      was_matched_by_symbol(false)
1911  { }
1912
1913  std::string pattern;
1914  Version_script_info::Language language;
1915  // If false, we use glob() to match pattern.  If true, we use strcmp().
1916  bool exact_match;
1917  // True if --no-undefined-version is in effect and we found this
1918  // version in get_symbol_version.  We use mutable because this
1919  // struct is generally not modifiable after it has been created.
1920  mutable bool was_matched_by_symbol;
1921};
1922
1923// A list of expressions.
1924struct Version_expression_list
1925{
1926  std::vector<struct Version_expression> expressions;
1927};
1928
1929// A list of which versions upon which another version depends.
1930// Strings should be from the Stringpool.
1931struct Version_dependency_list
1932{
1933  std::vector<std::string> dependencies;
1934};
1935
1936// The total definition of a version.  It includes the tag for the
1937// version, its global and local expressions, and any dependencies.
1938struct Version_tree
1939{
1940  Version_tree()
1941      : tag(), global(NULL), local(NULL), dependencies(NULL)
1942  { }
1943
1944  std::string tag;
1945  const struct Version_expression_list* global;
1946  const struct Version_expression_list* local;
1947  const struct Version_dependency_list* dependencies;
1948};
1949
1950// Helper class that calls cplus_demangle when needed and takes care of freeing
1951// the result.
1952
1953class Lazy_demangler
1954{
1955 public:
1956  Lazy_demangler(const char* symbol, int options)
1957    : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1958  { }
1959
1960  ~Lazy_demangler()
1961  { free(this->demangled_); }
1962
1963  // Return the demangled name. The actual demangling happens on the first call,
1964  // and the result is later cached.
1965  inline char*
1966  get();
1967
1968 private:
1969  // The symbol to demangle.
1970  const char* symbol_;
1971  // Option flags to pass to cplus_demagle.
1972  const int options_;
1973  // The cached demangled value, or NULL if demangling didn't happen yet or
1974  // failed.
1975  char* demangled_;
1976  // Whether we already called cplus_demangle
1977  bool did_demangle_;
1978};
1979
1980// Return the demangled name. The actual demangling happens on the first call,
1981// and the result is later cached. Returns NULL if the symbol cannot be
1982// demangled.
1983
1984inline char*
1985Lazy_demangler::get()
1986{
1987  if (!this->did_demangle_)
1988    {
1989      this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1990      this->did_demangle_ = true;
1991    }
1992  return this->demangled_;
1993}
1994
1995// Class Version_script_info.
1996
1997Version_script_info::Version_script_info()
1998  : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1999    default_version_(NULL), default_is_global_(false), is_finalized_(false)
2000{
2001  for (int i = 0; i < LANGUAGE_COUNT; ++i)
2002    this->exact_[i] = NULL;
2003}
2004
2005Version_script_info::~Version_script_info()
2006{
2007}
2008
2009// Forget all the known version script information.
2010
2011void
2012Version_script_info::clear()
2013{
2014  for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
2015    delete this->dependency_lists_[k];
2016  this->dependency_lists_.clear();
2017  for (size_t k = 0; k < this->version_trees_.size(); ++k)
2018    delete this->version_trees_[k];
2019  this->version_trees_.clear();
2020  for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2021    delete this->expression_lists_[k];
2022  this->expression_lists_.clear();
2023}
2024
2025// Finalize the version script information.
2026
2027void
2028Version_script_info::finalize()
2029{
2030  if (!this->is_finalized_)
2031    {
2032      this->build_lookup_tables();
2033      this->is_finalized_ = true;
2034    }
2035}
2036
2037// Return all the versions.
2038
2039std::vector<std::string>
2040Version_script_info::get_versions() const
2041{
2042  std::vector<std::string> ret;
2043  for (size_t j = 0; j < this->version_trees_.size(); ++j)
2044    if (!this->version_trees_[j]->tag.empty())
2045      ret.push_back(this->version_trees_[j]->tag);
2046  return ret;
2047}
2048
2049// Return the dependencies of VERSION.
2050
2051std::vector<std::string>
2052Version_script_info::get_dependencies(const char* version) const
2053{
2054  std::vector<std::string> ret;
2055  for (size_t j = 0; j < this->version_trees_.size(); ++j)
2056    if (this->version_trees_[j]->tag == version)
2057      {
2058        const struct Version_dependency_list* deps =
2059          this->version_trees_[j]->dependencies;
2060        if (deps != NULL)
2061          for (size_t k = 0; k < deps->dependencies.size(); ++k)
2062            ret.push_back(deps->dependencies[k]);
2063        return ret;
2064      }
2065  return ret;
2066}
2067
2068// A version script essentially maps a symbol name to a version tag
2069// and an indication of whether symbol is global or local within that
2070// version tag.  Each symbol maps to at most one version tag.
2071// Unfortunately, in practice, version scripts are ambiguous, and list
2072// symbols multiple times.  Thus, we have to document the matching
2073// process.
2074
2075// This is a description of what the GNU linker does as of 2010-01-11.
2076// It walks through the version tags in the order in which they appear
2077// in the version script.  For each tag, it first walks through the
2078// global patterns for that tag, then the local patterns.  When
2079// looking at a single pattern, it first applies any language specific
2080// demangling as specified for the pattern, and then matches the
2081// resulting symbol name to the pattern.  If it finds an exact match
2082// for a literal pattern (a pattern enclosed in quotes or with no
2083// wildcard characters), then that is the match that it uses.  If
2084// finds a match with a wildcard pattern, then it saves it and
2085// continues searching.  Wildcard patterns that are exactly "*" are
2086// saved separately.
2087
2088// If no exact match with a literal pattern is ever found, then if a
2089// wildcard match with a global pattern was found it is used,
2090// otherwise if a wildcard match with a local pattern was found it is
2091// used.
2092
2093// This is the result:
2094//   * If there is an exact match, then we use the first tag in the
2095//     version script where it matches.
2096//     + If the exact match in that tag is global, it is used.
2097//     + Otherwise the exact match in that tag is local, and is used.
2098//   * Otherwise, if there is any match with a global wildcard pattern:
2099//     + If there is any match with a wildcard pattern which is not
2100//       "*", then we use the tag in which the *last* such pattern
2101//       appears.
2102//     + Otherwise, we matched "*".  If there is no match with a local
2103//       wildcard pattern which is not "*", then we use the *last*
2104//       match with a global "*".  Otherwise, continue.
2105//   * Otherwise, if there is any match with a local wildcard pattern:
2106//     + If there is any match with a wildcard pattern which is not
2107//       "*", then we use the tag in which the *last* such pattern
2108//       appears.
2109//     + Otherwise, we matched "*", and we use the tag in which the
2110//       *last* such match occurred.
2111
2112// There is an additional wrinkle.  When the GNU linker finds a symbol
2113// with a version defined in an object file due to a .symver
2114// directive, it looks up that symbol name in that version tag.  If it
2115// finds it, it matches the symbol name against the patterns for that
2116// version.  If there is no match with a global pattern, but there is
2117// a match with a local pattern, then the GNU linker marks the symbol
2118// as local.
2119
2120// We want gold to be generally compatible, but we also want gold to
2121// be fast.  These are the rules that gold implements:
2122//   * If there is an exact match for the mangled name, we use it.
2123//     + If there is more than one exact match, we give a warning, and
2124//       we use the first tag in the script which matches.
2125//     + If a symbol has an exact match as both global and local for
2126//       the same version tag, we give an error.
2127//   * Otherwise, we look for an extern C++ or an extern Java exact
2128//     match.  If we find an exact match, we use it.
2129//     + If there is more than one exact match, we give a warning, and
2130//       we use the first tag in the script which matches.
2131//     + If a symbol has an exact match as both global and local for
2132//       the same version tag, we give an error.
2133//   * Otherwise, we look through the wildcard patterns, ignoring "*"
2134//     patterns.  We look through the version tags in reverse order.
2135//     For each version tag, we look through the global patterns and
2136//     then the local patterns.  We use the first match we find (i.e.,
2137//     the last matching version tag in the file).
2138//   * Otherwise, we use the "*" pattern if there is one.  We give an
2139//     error if there are multiple "*" patterns.
2140
2141// At least for now, gold does not look up the version tag for a
2142// symbol version found in an object file to see if it should be
2143// forced local.  There are other ways to force a symbol to be local,
2144// and I don't understand why this one is useful.
2145
2146// Build a set of fast lookup tables for a version script.
2147
2148void
2149Version_script_info::build_lookup_tables()
2150{
2151  size_t size = this->version_trees_.size();
2152  for (size_t j = 0; j < size; ++j)
2153    {
2154      const Version_tree* v = this->version_trees_[j];
2155      this->build_expression_list_lookup(v->local, v, false);
2156      this->build_expression_list_lookup(v->global, v, true);
2157    }
2158}
2159
2160// If a pattern has backlashes but no unquoted wildcard characters,
2161// then we apply backslash unquoting and look for an exact match.
2162// Otherwise we treat it as a wildcard pattern.  This function returns
2163// true for a wildcard pattern.  Otherwise, it does backslash
2164// unquoting on *PATTERN and returns false.  If this returns true,
2165// *PATTERN may have been partially unquoted.
2166
2167bool
2168Version_script_info::unquote(std::string* pattern) const
2169{
2170  bool saw_backslash = false;
2171  size_t len = pattern->length();
2172  size_t j = 0;
2173  for (size_t i = 0; i < len; ++i)
2174    {
2175      if (saw_backslash)
2176	saw_backslash = false;
2177      else
2178	{
2179	  switch ((*pattern)[i])
2180	    {
2181	    case '?': case '[': case '*':
2182	      return true;
2183	    case '\\':
2184	      saw_backslash = true;
2185	      continue;
2186	    default:
2187	      break;
2188	    }
2189	}
2190
2191      if (i != j)
2192	(*pattern)[j] = (*pattern)[i];
2193      ++j;
2194    }
2195  return false;
2196}
2197
2198// Add an exact match for MATCH to *PE.  The result of the match is
2199// V/IS_GLOBAL.
2200
2201void
2202Version_script_info::add_exact_match(const std::string& match,
2203				     const Version_tree* v, bool is_global,
2204				     const Version_expression* ve,
2205				     Exact* pe)
2206{
2207  std::pair<Exact::iterator, bool> ins =
2208    pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2209  if (ins.second)
2210    {
2211      // This is the first time we have seen this match.
2212      return;
2213    }
2214
2215  Version_tree_match& vtm(ins.first->second);
2216  if (vtm.real->tag != v->tag)
2217    {
2218      // This is an ambiguous match.  We still return the
2219      // first version that we found in the script, but we
2220      // record the new version to issue a warning if we
2221      // wind up looking up this symbol.
2222      if (vtm.ambiguous == NULL)
2223	vtm.ambiguous = v;
2224    }
2225  else if (is_global != vtm.is_global)
2226    {
2227      // We have a match for both the global and local entries for a
2228      // version tag.  That's got to be wrong.
2229      gold_error(_("'%s' appears as both a global and a local symbol "
2230		   "for version '%s' in script"),
2231		 match.c_str(), v->tag.c_str());
2232    }
2233}
2234
2235// Build fast lookup information for EXPLIST and store it in LOOKUP.
2236// All matches go to V, and IS_GLOBAL is true if they are global
2237// matches.
2238
2239void
2240Version_script_info::build_expression_list_lookup(
2241    const Version_expression_list* explist,
2242    const Version_tree* v,
2243    bool is_global)
2244{
2245  if (explist == NULL)
2246    return;
2247  size_t size = explist->expressions.size();
2248  for (size_t i = 0; i < size; ++i)
2249    {
2250      const Version_expression& exp(explist->expressions[i]);
2251
2252      if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2253	{
2254	  if (this->default_version_ != NULL
2255	      && this->default_version_->tag != v->tag)
2256	    gold_warning(_("wildcard match appears in both version '%s' "
2257			   "and '%s' in script"),
2258			 this->default_version_->tag.c_str(), v->tag.c_str());
2259	  else if (this->default_version_ != NULL
2260		   && this->default_is_global_ != is_global)
2261	    gold_error(_("wildcard match appears as both global and local "
2262			 "in version '%s' in script"),
2263		       v->tag.c_str());
2264	  this->default_version_ = v;
2265	  this->default_is_global_ = is_global;
2266	  continue;
2267	}
2268
2269      std::string pattern = exp.pattern;
2270      if (!exp.exact_match)
2271	{
2272	  if (this->unquote(&pattern))
2273	    {
2274	      this->globs_.push_back(Glob(&exp, v, is_global));
2275	      continue;
2276	    }
2277	}
2278
2279      if (this->exact_[exp.language] == NULL)
2280	this->exact_[exp.language] = new Exact();
2281      this->add_exact_match(pattern, v, is_global, &exp,
2282			    this->exact_[exp.language]);
2283    }
2284}
2285
2286// Return the name to match given a name, a language code, and two
2287// lazy demanglers.
2288
2289const char*
2290Version_script_info::get_name_to_match(const char* name,
2291				       int language,
2292				       Lazy_demangler* cpp_demangler,
2293				       Lazy_demangler* java_demangler) const
2294{
2295  switch (language)
2296    {
2297    case LANGUAGE_C:
2298      return name;
2299    case LANGUAGE_CXX:
2300      return cpp_demangler->get();
2301    case LANGUAGE_JAVA:
2302      return java_demangler->get();
2303    default:
2304      gold_unreachable();
2305    }
2306}
2307
2308// Look up SYMBOL_NAME in the list of versions.  Return true if the
2309// symbol is found, false if not.  If the symbol is found, then if
2310// PVERSION is not NULL, set *PVERSION to the version tag, and if
2311// P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2312// symbol is global or not.
2313
2314bool
2315Version_script_info::get_symbol_version(const char* symbol_name,
2316					std::string* pversion,
2317					bool* p_is_global) const
2318{
2319  Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2320  Lazy_demangler java_demangled_name(symbol_name,
2321				     DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2322
2323  gold_assert(this->is_finalized_);
2324  for (int i = 0; i < LANGUAGE_COUNT; ++i)
2325    {
2326      Exact* exact = this->exact_[i];
2327      if (exact == NULL)
2328	continue;
2329
2330      const char* name_to_match = this->get_name_to_match(symbol_name, i,
2331							  &cpp_demangled_name,
2332							  &java_demangled_name);
2333      if (name_to_match == NULL)
2334	{
2335	  // If the name can not be demangled, the GNU linker goes
2336	  // ahead and tries to match it anyhow.  That does not
2337	  // make sense to me and I have not implemented it.
2338	  continue;
2339	}
2340
2341      Exact::const_iterator pe = exact->find(name_to_match);
2342      if (pe != exact->end())
2343	{
2344	  const Version_tree_match& vtm(pe->second);
2345	  if (vtm.ambiguous != NULL)
2346	    gold_warning(_("using '%s' as version for '%s' which is also "
2347			   "named in version '%s' in script"),
2348			 vtm.real->tag.c_str(), name_to_match,
2349			 vtm.ambiguous->tag.c_str());
2350
2351	  if (pversion != NULL)
2352	    *pversion = vtm.real->tag;
2353	  if (p_is_global != NULL)
2354	    *p_is_global = vtm.is_global;
2355
2356	  // If we are using --no-undefined-version, and this is a
2357	  // global symbol, we have to record that we have found this
2358	  // symbol, so that we don't warn about it.  We have to do
2359	  // this now, because otherwise we have no way to get from a
2360	  // non-C language back to the demangled name that we
2361	  // matched.
2362	  if (p_is_global != NULL && vtm.is_global)
2363	    vtm.expression->was_matched_by_symbol = true;
2364
2365	  return true;
2366	}
2367    }
2368
2369  // Look through the glob patterns in reverse order.
2370
2371  for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2372       p != this->globs_.rend();
2373       ++p)
2374    {
2375      int language = p->expression->language;
2376      const char* name_to_match = this->get_name_to_match(symbol_name,
2377							  language,
2378							  &cpp_demangled_name,
2379							  &java_demangled_name);
2380      if (name_to_match == NULL)
2381	continue;
2382
2383      if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2384		  FNM_NOESCAPE) == 0)
2385	{
2386	  if (pversion != NULL)
2387	    *pversion = p->version->tag;
2388	  if (p_is_global != NULL)
2389	    *p_is_global = p->is_global;
2390	  return true;
2391	}
2392    }
2393
2394  // Finally, there may be a wildcard.
2395  if (this->default_version_ != NULL)
2396    {
2397      if (pversion != NULL)
2398	*pversion = this->default_version_->tag;
2399      if (p_is_global != NULL)
2400	*p_is_global = this->default_is_global_;
2401      return true;
2402    }
2403
2404  return false;
2405}
2406
2407// Give an error if any exact symbol names (not wildcards) appear in a
2408// version script, but there is no such symbol.
2409
2410void
2411Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2412{
2413  for (size_t i = 0; i < this->version_trees_.size(); ++i)
2414    {
2415      const Version_tree* vt = this->version_trees_[i];
2416      if (vt->global == NULL)
2417	continue;
2418      for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2419	{
2420	  const Version_expression& expression(vt->global->expressions[j]);
2421
2422	  // Ignore cases where we used the version because we saw a
2423	  // symbol that we looked up.  Note that
2424	  // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2425	  // not a definition.  That's OK as in that case we most
2426	  // likely gave an undefined symbol error anyhow.
2427	  if (expression.was_matched_by_symbol)
2428	    continue;
2429
2430	  // Just ignore names which are in languages other than C.
2431	  // We have no way to look them up in the symbol table.
2432	  if (expression.language != LANGUAGE_C)
2433	    continue;
2434
2435	  // Remove backslash quoting, and ignore wildcard patterns.
2436	  std::string pattern = expression.pattern;
2437	  if (!expression.exact_match)
2438	    {
2439	      if (this->unquote(&pattern))
2440		continue;
2441	    }
2442
2443	  if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2444	    gold_error(_("version script assignment of %s to symbol %s "
2445			 "failed: symbol not defined"),
2446		       vt->tag.c_str(), pattern.c_str());
2447	}
2448    }
2449}
2450
2451struct Version_dependency_list*
2452Version_script_info::allocate_dependency_list()
2453{
2454  dependency_lists_.push_back(new Version_dependency_list);
2455  return dependency_lists_.back();
2456}
2457
2458struct Version_expression_list*
2459Version_script_info::allocate_expression_list()
2460{
2461  expression_lists_.push_back(new Version_expression_list);
2462  return expression_lists_.back();
2463}
2464
2465struct Version_tree*
2466Version_script_info::allocate_version_tree()
2467{
2468  version_trees_.push_back(new Version_tree);
2469  return version_trees_.back();
2470}
2471
2472// Print for debugging.
2473
2474void
2475Version_script_info::print(FILE* f) const
2476{
2477  if (this->empty())
2478    return;
2479
2480  fprintf(f, "VERSION {");
2481
2482  for (size_t i = 0; i < this->version_trees_.size(); ++i)
2483    {
2484      const Version_tree* vt = this->version_trees_[i];
2485
2486      if (vt->tag.empty())
2487	fprintf(f, "  {\n");
2488      else
2489	fprintf(f, "  %s {\n", vt->tag.c_str());
2490
2491      if (vt->global != NULL)
2492	{
2493	  fprintf(f, "    global :\n");
2494	  this->print_expression_list(f, vt->global);
2495	}
2496
2497      if (vt->local != NULL)
2498	{
2499	  fprintf(f, "    local :\n");
2500	  this->print_expression_list(f, vt->local);
2501	}
2502
2503      fprintf(f, "  }");
2504      if (vt->dependencies != NULL)
2505	{
2506	  const Version_dependency_list* deps = vt->dependencies;
2507	  for (size_t j = 0; j < deps->dependencies.size(); ++j)
2508	    {
2509	      if (j < deps->dependencies.size() - 1)
2510		fprintf(f, "\n");
2511	      fprintf(f, "    %s", deps->dependencies[j].c_str());
2512	    }
2513	}
2514      fprintf(f, ";\n");
2515    }
2516
2517  fprintf(f, "}\n");
2518}
2519
2520void
2521Version_script_info::print_expression_list(
2522    FILE* f,
2523    const Version_expression_list* vel) const
2524{
2525  Version_script_info::Language current_language = LANGUAGE_C;
2526  for (size_t i = 0; i < vel->expressions.size(); ++i)
2527    {
2528      const Version_expression& ve(vel->expressions[i]);
2529
2530      if (ve.language != current_language)
2531	{
2532	  if (current_language != LANGUAGE_C)
2533	    fprintf(f, "      }\n");
2534	  switch (ve.language)
2535	    {
2536	    case LANGUAGE_C:
2537	      break;
2538	    case LANGUAGE_CXX:
2539	      fprintf(f, "      extern \"C++\" {\n");
2540	      break;
2541	    case LANGUAGE_JAVA:
2542	      fprintf(f, "      extern \"Java\" {\n");
2543	      break;
2544	    default:
2545	      gold_unreachable();
2546	    }
2547	  current_language = ve.language;
2548	}
2549
2550      fprintf(f, "      ");
2551      if (current_language != LANGUAGE_C)
2552	fprintf(f, "  ");
2553
2554      if (ve.exact_match)
2555	fprintf(f, "\"");
2556      fprintf(f, "%s", ve.pattern.c_str());
2557      if (ve.exact_match)
2558	fprintf(f, "\"");
2559
2560      fprintf(f, "\n");
2561    }
2562
2563  if (current_language != LANGUAGE_C)
2564    fprintf(f, "      }\n");
2565}
2566
2567} // End namespace gold.
2568
2569// The remaining functions are extern "C", so it's clearer to not put
2570// them in namespace gold.
2571
2572using namespace gold;
2573
2574// This function is called by the bison parser to return the next
2575// token.
2576
2577extern "C" int
2578yylex(YYSTYPE* lvalp, void* closurev)
2579{
2580  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2581  const Token* token = closure->next_token();
2582  switch (token->classification())
2583    {
2584    default:
2585      gold_unreachable();
2586
2587    case Token::TOKEN_INVALID:
2588      yyerror(closurev, "invalid character");
2589      return 0;
2590
2591    case Token::TOKEN_EOF:
2592      return 0;
2593
2594    case Token::TOKEN_STRING:
2595      {
2596	// This is either a keyword or a STRING.
2597	size_t len;
2598	const char* str = token->string_value(&len);
2599	int parsecode = 0;
2600        switch (closure->lex_mode())
2601          {
2602          case Lex::LINKER_SCRIPT:
2603            parsecode = script_keywords.keyword_to_parsecode(str, len);
2604            break;
2605          case Lex::VERSION_SCRIPT:
2606            parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2607            break;
2608          case Lex::DYNAMIC_LIST:
2609            parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2610            break;
2611          default:
2612            break;
2613          }
2614	if (parsecode != 0)
2615	  return parsecode;
2616	lvalp->string.value = str;
2617	lvalp->string.length = len;
2618	return STRING;
2619      }
2620
2621    case Token::TOKEN_QUOTED_STRING:
2622      lvalp->string.value = token->string_value(&lvalp->string.length);
2623      return QUOTED_STRING;
2624
2625    case Token::TOKEN_OPERATOR:
2626      return token->operator_value();
2627
2628    case Token::TOKEN_INTEGER:
2629      lvalp->integer = token->integer_value();
2630      return INTEGER;
2631    }
2632}
2633
2634// This function is called by the bison parser to report an error.
2635
2636extern "C" void
2637yyerror(void* closurev, const char* message)
2638{
2639  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2640  gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2641	     closure->charpos(), message);
2642}
2643
2644// Called by the bison parser to add an external symbol to the link.
2645
2646extern "C" void
2647script_add_extern(void* closurev, const char* name, size_t length)
2648{
2649  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2650  closure->script_options()->add_symbol_reference(name, length);
2651}
2652
2653// Called by the bison parser to add a file to the link.
2654
2655extern "C" void
2656script_add_file(void* closurev, const char* name, size_t length)
2657{
2658  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2659
2660  // If this is an absolute path, and we found the script in the
2661  // sysroot, then we want to prepend the sysroot to the file name.
2662  // For example, this is how we handle a cross link to the x86_64
2663  // libc.so, which refers to /lib/libc.so.6.
2664  std::string name_string(name, length);
2665  const char* extra_search_path = ".";
2666  std::string script_directory;
2667  if (IS_ABSOLUTE_PATH(name_string.c_str()))
2668    {
2669      if (closure->is_in_sysroot())
2670	{
2671	  const std::string& sysroot(parameters->options().sysroot());
2672	  gold_assert(!sysroot.empty());
2673	  name_string = sysroot + name_string;
2674	}
2675    }
2676  else
2677    {
2678      // In addition to checking the normal library search path, we
2679      // also want to check in the script-directory.
2680      const char* slash = strrchr(closure->filename(), '/');
2681      if (slash != NULL)
2682	{
2683	  script_directory.assign(closure->filename(),
2684				  slash - closure->filename() + 1);
2685	  extra_search_path = script_directory.c_str();
2686	}
2687    }
2688
2689  Input_file_argument file(name_string.c_str(),
2690			   Input_file_argument::INPUT_FILE_TYPE_FILE,
2691			   extra_search_path, false,
2692			   closure->position_dependent_options());
2693  Input_argument& arg = closure->inputs()->add_file(file);
2694  arg.set_script_info(closure->script_info());
2695}
2696
2697// Called by the bison parser to add a library to the link.
2698
2699extern "C" void
2700script_add_library(void* closurev, const char* name, size_t length)
2701{
2702  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2703  std::string name_string(name, length);
2704
2705  if (name_string[0] != 'l')
2706    gold_error(_("library name must be prefixed with -l"));
2707
2708  Input_file_argument file(name_string.c_str() + 1,
2709			   Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2710			   "", false,
2711			   closure->position_dependent_options());
2712  Input_argument& arg = closure->inputs()->add_file(file);
2713  arg.set_script_info(closure->script_info());
2714}
2715
2716// Called by the bison parser to start a group.  If we are already in
2717// a group, that means that this script was invoked within a
2718// --start-group --end-group sequence on the command line, or that
2719// this script was found in a GROUP of another script.  In that case,
2720// we simply continue the existing group, rather than starting a new
2721// one.  It is possible to construct a case in which this will do
2722// something other than what would happen if we did a recursive group,
2723// but it's hard to imagine why the different behaviour would be
2724// useful for a real program.  Avoiding recursive groups is simpler
2725// and more efficient.
2726
2727extern "C" void
2728script_start_group(void* closurev)
2729{
2730  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2731  if (!closure->in_group())
2732    closure->inputs()->start_group();
2733}
2734
2735// Called by the bison parser at the end of a group.
2736
2737extern "C" void
2738script_end_group(void* closurev)
2739{
2740  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2741  if (!closure->in_group())
2742    closure->inputs()->end_group();
2743}
2744
2745// Called by the bison parser to start an AS_NEEDED list.
2746
2747extern "C" void
2748script_start_as_needed(void* closurev)
2749{
2750  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2751  closure->position_dependent_options().set_as_needed(true);
2752}
2753
2754// Called by the bison parser at the end of an AS_NEEDED list.
2755
2756extern "C" void
2757script_end_as_needed(void* closurev)
2758{
2759  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2760  closure->position_dependent_options().set_as_needed(false);
2761}
2762
2763// Called by the bison parser to set the entry symbol.
2764
2765extern "C" void
2766script_set_entry(void* closurev, const char* entry, size_t length)
2767{
2768  // We'll parse this exactly the same as --entry=ENTRY on the commandline
2769  // TODO(csilvers): FIXME -- call set_entry directly.
2770  std::string arg("--entry=");
2771  arg.append(entry, length);
2772  script_parse_option(closurev, arg.c_str(), arg.size());
2773}
2774
2775// Called by the bison parser to set whether to define common symbols.
2776
2777extern "C" void
2778script_set_common_allocation(void* closurev, int set)
2779{
2780  const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2781  script_parse_option(closurev, arg, strlen(arg));
2782}
2783
2784// Called by the bison parser to refer to a symbol.
2785
2786extern "C" Expression*
2787script_symbol(void* closurev, const char* name, size_t length)
2788{
2789  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2790  if (length != 1 || name[0] != '.')
2791    closure->script_options()->add_symbol_reference(name, length);
2792  return script_exp_string(name, length);
2793}
2794
2795// Called by the bison parser to define a symbol.
2796
2797extern "C" void
2798script_set_symbol(void* closurev, const char* name, size_t length,
2799		  Expression* value, int providei, int hiddeni)
2800{
2801  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2802  const bool provide = providei != 0;
2803  const bool hidden = hiddeni != 0;
2804  closure->script_options()->add_symbol_assignment(name, length,
2805						   closure->parsing_defsym(),
2806						   value, provide, hidden);
2807  closure->clear_skip_on_incompatible_target();
2808}
2809
2810// Called by the bison parser to add an assertion.
2811
2812extern "C" void
2813script_add_assertion(void* closurev, Expression* check, const char* message,
2814		     size_t messagelen)
2815{
2816  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2817  closure->script_options()->add_assertion(check, message, messagelen);
2818  closure->clear_skip_on_incompatible_target();
2819}
2820
2821// Called by the bison parser to parse an OPTION.
2822
2823extern "C" void
2824script_parse_option(void* closurev, const char* option, size_t length)
2825{
2826  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2827  // We treat the option as a single command-line option, even if
2828  // it has internal whitespace.
2829  if (closure->command_line() == NULL)
2830    {
2831      // There are some options that we could handle here--e.g.,
2832      // -lLIBRARY.  Should we bother?
2833      gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2834		     " for scripts specified via -T/--script"),
2835		   closure->filename(), closure->lineno(), closure->charpos());
2836    }
2837  else
2838    {
2839      bool past_a_double_dash_option = false;
2840      const char* mutable_option = strndup(option, length);
2841      gold_assert(mutable_option != NULL);
2842      closure->command_line()->process_one_option(1, &mutable_option, 0,
2843                                                  &past_a_double_dash_option);
2844      // The General_options class will quite possibly store a pointer
2845      // into mutable_option, so we can't free it.  In cases the class
2846      // does not store such a pointer, this is a memory leak.  Alas. :(
2847    }
2848  closure->clear_skip_on_incompatible_target();
2849}
2850
2851// Called by the bison parser to handle OUTPUT_FORMAT.  OUTPUT_FORMAT
2852// takes either one or three arguments.  In the three argument case,
2853// the format depends on the endianness option, which we don't
2854// currently support (FIXME).  If we see an OUTPUT_FORMAT for the
2855// wrong format, then we want to search for a new file.  Returning 0
2856// here will cause the parser to immediately abort.
2857
2858extern "C" int
2859script_check_output_format(void* closurev,
2860			   const char* default_name, size_t default_length,
2861			   const char*, size_t, const char*, size_t)
2862{
2863  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2864  std::string name(default_name, default_length);
2865  Target* target = select_target_by_bfd_name(name.c_str());
2866  if (target == NULL || !parameters->is_compatible_target(target))
2867    {
2868      if (closure->skip_on_incompatible_target())
2869	{
2870	  closure->set_found_incompatible_target();
2871	  return 0;
2872	}
2873      // FIXME: Should we warn about the unknown target?
2874    }
2875  return 1;
2876}
2877
2878// Called by the bison parser to handle TARGET.
2879
2880extern "C" void
2881script_set_target(void* closurev, const char* target, size_t len)
2882{
2883  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2884  std::string s(target, len);
2885  General_options::Object_format format_enum;
2886  format_enum = General_options::string_to_object_format(s.c_str());
2887  closure->position_dependent_options().set_format_enum(format_enum);
2888}
2889
2890// Called by the bison parser to handle SEARCH_DIR.  This is handled
2891// exactly like a -L option.
2892
2893extern "C" void
2894script_add_search_dir(void* closurev, const char* option, size_t length)
2895{
2896  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2897  if (closure->command_line() == NULL)
2898    gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2899		   " for scripts specified via -T/--script"),
2900		 closure->filename(), closure->lineno(), closure->charpos());
2901  else if (!closure->command_line()->options().nostdlib())
2902    {
2903      std::string s = "-L" + std::string(option, length);
2904      script_parse_option(closurev, s.c_str(), s.size());
2905    }
2906}
2907
2908/* Called by the bison parser to push the lexer into expression
2909   mode.  */
2910
2911extern "C" void
2912script_push_lex_into_expression_mode(void* closurev)
2913{
2914  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2915  closure->push_lex_mode(Lex::EXPRESSION);
2916}
2917
2918/* Called by the bison parser to push the lexer into version
2919   mode.  */
2920
2921extern "C" void
2922script_push_lex_into_version_mode(void* closurev)
2923{
2924  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2925  if (closure->version_script()->is_finalized())
2926    gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2927	       closure->filename(), closure->lineno(), closure->charpos());
2928  closure->push_lex_mode(Lex::VERSION_SCRIPT);
2929}
2930
2931/* Called by the bison parser to pop the lexer mode.  */
2932
2933extern "C" void
2934script_pop_lex_mode(void* closurev)
2935{
2936  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2937  closure->pop_lex_mode();
2938}
2939
2940// Register an entire version node. For example:
2941//
2942// GLIBC_2.1 {
2943//   global: foo;
2944// } GLIBC_2.0;
2945//
2946// - tag is "GLIBC_2.1"
2947// - tree contains the information "global: foo"
2948// - deps contains "GLIBC_2.0"
2949
2950extern "C" void
2951script_register_vers_node(void*,
2952			  const char* tag,
2953			  int taglen,
2954			  struct Version_tree* tree,
2955			  struct Version_dependency_list* deps)
2956{
2957  gold_assert(tree != NULL);
2958  tree->dependencies = deps;
2959  if (tag != NULL)
2960    tree->tag = std::string(tag, taglen);
2961}
2962
2963// Add a dependencies to the list of existing dependencies, if any,
2964// and return the expanded list.
2965
2966extern "C" struct Version_dependency_list*
2967script_add_vers_depend(void* closurev,
2968		       struct Version_dependency_list* all_deps,
2969		       const char* depend_to_add, int deplen)
2970{
2971  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2972  if (all_deps == NULL)
2973    all_deps = closure->version_script()->allocate_dependency_list();
2974  all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2975  return all_deps;
2976}
2977
2978// Add a pattern expression to an existing list of expressions, if any.
2979
2980extern "C" struct Version_expression_list*
2981script_new_vers_pattern(void* closurev,
2982			struct Version_expression_list* expressions,
2983			const char* pattern, int patlen, int exact_match)
2984{
2985  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2986  if (expressions == NULL)
2987    expressions = closure->version_script()->allocate_expression_list();
2988  expressions->expressions.push_back(
2989      Version_expression(std::string(pattern, patlen),
2990                         closure->get_current_language(),
2991                         static_cast<bool>(exact_match)));
2992  return expressions;
2993}
2994
2995// Attaches b to the end of a, and clears b.  So a = a + b and b = {}.
2996
2997extern "C" struct Version_expression_list*
2998script_merge_expressions(struct Version_expression_list* a,
2999                         struct Version_expression_list* b)
3000{
3001  a->expressions.insert(a->expressions.end(),
3002                        b->expressions.begin(), b->expressions.end());
3003  // We could delete b and remove it from expressions_lists_, but
3004  // that's a lot of work.  This works just as well.
3005  b->expressions.clear();
3006  return a;
3007}
3008
3009// Combine the global and local expressions into a a Version_tree.
3010
3011extern "C" struct Version_tree*
3012script_new_vers_node(void* closurev,
3013		     struct Version_expression_list* global,
3014		     struct Version_expression_list* local)
3015{
3016  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3017  Version_tree* tree = closure->version_script()->allocate_version_tree();
3018  tree->global = global;
3019  tree->local = local;
3020  return tree;
3021}
3022
3023// Handle a transition in language, such as at the
3024// start or end of 'extern "C++"'
3025
3026extern "C" void
3027version_script_push_lang(void* closurev, const char* lang, int langlen)
3028{
3029  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3030  std::string language(lang, langlen);
3031  Version_script_info::Language code;
3032  if (language.empty() || language == "C")
3033    code = Version_script_info::LANGUAGE_C;
3034  else if (language == "C++")
3035    code = Version_script_info::LANGUAGE_CXX;
3036  else if (language == "Java")
3037    code = Version_script_info::LANGUAGE_JAVA;
3038  else
3039    {
3040      char* buf = new char[langlen + 100];
3041      snprintf(buf, langlen + 100,
3042	       _("unrecognized version script language '%s'"),
3043	       language.c_str());
3044      yyerror(closurev, buf);
3045      delete[] buf;
3046      code = Version_script_info::LANGUAGE_C;
3047    }
3048  closure->push_language(code);
3049}
3050
3051extern "C" void
3052version_script_pop_lang(void* closurev)
3053{
3054  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3055  closure->pop_language();
3056}
3057
3058// Called by the bison parser to start a SECTIONS clause.
3059
3060extern "C" void
3061script_start_sections(void* closurev)
3062{
3063  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3064  closure->script_options()->script_sections()->start_sections();
3065  closure->clear_skip_on_incompatible_target();
3066}
3067
3068// Called by the bison parser to finish a SECTIONS clause.
3069
3070extern "C" void
3071script_finish_sections(void* closurev)
3072{
3073  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3074  closure->script_options()->script_sections()->finish_sections();
3075}
3076
3077// Start processing entries for an output section.
3078
3079extern "C" void
3080script_start_output_section(void* closurev, const char* name, size_t namelen,
3081			    const struct Parser_output_section_header* header)
3082{
3083  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3084  closure->script_options()->script_sections()->start_output_section(name,
3085								     namelen,
3086								     header);
3087}
3088
3089// Finish processing entries for an output section.
3090
3091extern "C" void
3092script_finish_output_section(void* closurev,
3093			     const struct Parser_output_section_trailer* trail)
3094{
3095  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3096  closure->script_options()->script_sections()->finish_output_section(trail);
3097}
3098
3099// Add a data item (e.g., "WORD (0)") to the current output section.
3100
3101extern "C" void
3102script_add_data(void* closurev, int data_token, Expression* val)
3103{
3104  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3105  int size;
3106  bool is_signed = true;
3107  switch (data_token)
3108    {
3109    case QUAD:
3110      size = 8;
3111      is_signed = false;
3112      break;
3113    case SQUAD:
3114      size = 8;
3115      break;
3116    case LONG:
3117      size = 4;
3118      break;
3119    case SHORT:
3120      size = 2;
3121      break;
3122    case BYTE:
3123      size = 1;
3124      break;
3125    default:
3126      gold_unreachable();
3127    }
3128  closure->script_options()->script_sections()->add_data(size, is_signed, val);
3129}
3130
3131// Add a clause setting the fill value to the current output section.
3132
3133extern "C" void
3134script_add_fill(void* closurev, Expression* val)
3135{
3136  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3137  closure->script_options()->script_sections()->add_fill(val);
3138}
3139
3140// Add a new input section specification to the current output
3141// section.
3142
3143extern "C" void
3144script_add_input_section(void* closurev,
3145			 const struct Input_section_spec* spec,
3146			 int keepi)
3147{
3148  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3149  bool keep = keepi != 0;
3150  closure->script_options()->script_sections()->add_input_section(spec, keep);
3151}
3152
3153// When we see DATA_SEGMENT_ALIGN we record that following output
3154// sections may be relro.
3155
3156extern "C" void
3157script_data_segment_align(void* closurev)
3158{
3159  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3160  if (!closure->script_options()->saw_sections_clause())
3161    gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3162	       closure->filename(), closure->lineno(), closure->charpos());
3163  else
3164    closure->script_options()->script_sections()->data_segment_align();
3165}
3166
3167// When we see DATA_SEGMENT_RELRO_END we know that all output sections
3168// since DATA_SEGMENT_ALIGN should be relro.
3169
3170extern "C" void
3171script_data_segment_relro_end(void* closurev)
3172{
3173  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3174  if (!closure->script_options()->saw_sections_clause())
3175    gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3176	       closure->filename(), closure->lineno(), closure->charpos());
3177  else
3178    closure->script_options()->script_sections()->data_segment_relro_end();
3179}
3180
3181// Create a new list of string/sort pairs.
3182
3183extern "C" String_sort_list_ptr
3184script_new_string_sort_list(const struct Wildcard_section* string_sort)
3185{
3186  return new String_sort_list(1, *string_sort);
3187}
3188
3189// Add an entry to a list of string/sort pairs.  The way the parser
3190// works permits us to simply modify the first parameter, rather than
3191// copy the vector.
3192
3193extern "C" String_sort_list_ptr
3194script_string_sort_list_add(String_sort_list_ptr pv,
3195			    const struct Wildcard_section* string_sort)
3196{
3197  if (pv == NULL)
3198    return script_new_string_sort_list(string_sort);
3199  else
3200    {
3201      pv->push_back(*string_sort);
3202      return pv;
3203    }
3204}
3205
3206// Create a new list of strings.
3207
3208extern "C" String_list_ptr
3209script_new_string_list(const char* str, size_t len)
3210{
3211  return new String_list(1, std::string(str, len));
3212}
3213
3214// Add an element to a list of strings.  The way the parser works
3215// permits us to simply modify the first parameter, rather than copy
3216// the vector.
3217
3218extern "C" String_list_ptr
3219script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3220{
3221  if (pv == NULL)
3222    return script_new_string_list(str, len);
3223  else
3224    {
3225      pv->push_back(std::string(str, len));
3226      return pv;
3227    }
3228}
3229
3230// Concatenate two string lists.  Either or both may be NULL.  The way
3231// the parser works permits us to modify the parameters, rather than
3232// copy the vector.
3233
3234extern "C" String_list_ptr
3235script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3236{
3237  if (pv1 == NULL)
3238    return pv2;
3239  if (pv2 == NULL)
3240    return pv1;
3241  pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3242  return pv1;
3243}
3244
3245// Add a new program header.
3246
3247extern "C" void
3248script_add_phdr(void* closurev, const char* name, size_t namelen,
3249		unsigned int type, const Phdr_info* info)
3250{
3251  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3252  bool includes_filehdr = info->includes_filehdr != 0;
3253  bool includes_phdrs = info->includes_phdrs != 0;
3254  bool is_flags_valid = info->is_flags_valid != 0;
3255  Script_sections* ss = closure->script_options()->script_sections();
3256  ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3257	       is_flags_valid, info->flags, info->load_address);
3258  closure->clear_skip_on_incompatible_target();
3259}
3260
3261// Convert a program header string to a type.
3262
3263#define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3264
3265static struct
3266{
3267  const char* name;
3268  size_t namelen;
3269  unsigned int val;
3270} phdr_type_names[] =
3271{
3272  PHDR_TYPE(PT_NULL),
3273  PHDR_TYPE(PT_LOAD),
3274  PHDR_TYPE(PT_DYNAMIC),
3275  PHDR_TYPE(PT_INTERP),
3276  PHDR_TYPE(PT_NOTE),
3277  PHDR_TYPE(PT_SHLIB),
3278  PHDR_TYPE(PT_PHDR),
3279  PHDR_TYPE(PT_TLS),
3280  PHDR_TYPE(PT_GNU_EH_FRAME),
3281  PHDR_TYPE(PT_GNU_STACK),
3282  PHDR_TYPE(PT_GNU_RELRO)
3283};
3284
3285extern "C" unsigned int
3286script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3287{
3288  for (unsigned int i = 0;
3289       i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3290       ++i)
3291    if (namelen == phdr_type_names[i].namelen
3292	&& strncmp(name, phdr_type_names[i].name, namelen) == 0)
3293      return phdr_type_names[i].val;
3294  yyerror(closurev, _("unknown PHDR type (try integer)"));
3295  return elfcpp::PT_NULL;
3296}
3297
3298extern "C" void
3299script_saw_segment_start_expression(void* closurev)
3300{
3301  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3302  Script_sections* ss = closure->script_options()->script_sections();
3303  ss->set_saw_segment_start_expression(true);
3304}
3305
3306extern "C" void
3307script_set_section_region(void* closurev, const char* name, size_t namelen,
3308			  int set_vma)
3309{
3310  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3311  if (!closure->script_options()->saw_sections_clause())
3312    {
3313      gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3314		   "SECTIONS clause"),
3315		 closure->filename(), closure->lineno(), closure->charpos(),
3316		 static_cast<int>(namelen), name);
3317      return;
3318    }
3319
3320  Script_sections* ss = closure->script_options()->script_sections();
3321  Memory_region* mr = ss->find_memory_region(name, namelen);
3322  if (mr == NULL)
3323    {
3324      gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3325		 closure->filename(), closure->lineno(), closure->charpos(),
3326		 static_cast<int>(namelen), name);
3327      return;
3328    }
3329
3330  ss->set_memory_region(mr, set_vma);
3331}
3332
3333extern "C" void
3334script_add_memory(void* closurev, const char* name, size_t namelen,
3335		  unsigned int attrs, Expression* origin, Expression* length)
3336{
3337  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3338  Script_sections* ss = closure->script_options()->script_sections();
3339  ss->add_memory_region(name, namelen, attrs, origin, length);
3340}
3341
3342extern "C" unsigned int
3343script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3344			 int invert)
3345{
3346  int attributes = 0;
3347
3348  while (attrlen--)
3349    switch (*attrs++)
3350      {
3351      case 'R':
3352      case 'r':
3353	attributes |= MEM_READABLE; break;
3354      case 'W':
3355      case 'w':
3356	attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3357      case 'X':
3358      case 'x':
3359	attributes |= MEM_EXECUTABLE; break;
3360      case 'A':
3361      case 'a':
3362	attributes |= MEM_ALLOCATABLE; break;
3363      case 'I':
3364      case 'i':
3365      case 'L':
3366      case 'l':
3367	attributes |= MEM_INITIALIZED; break;
3368      default:
3369	yyerror(closurev, _("unknown MEMORY attribute"));
3370      }
3371
3372  if (invert)
3373    attributes = (~ attributes) & MEM_ATTR_MASK;
3374
3375  return attributes;
3376}
3377
3378extern "C" void
3379script_include_directive(int first_token, void* closurev,
3380			 const char* filename, size_t length)
3381{
3382  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3383  std::string name(filename, length);
3384  Command_line* cmdline = closure->command_line();
3385  read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3386                   first_token, Lex::LINKER_SCRIPT);
3387}
3388
3389// Functions for memory regions.
3390
3391extern "C" Expression*
3392script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3393{
3394  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3395  Script_sections* ss = closure->script_options()->script_sections();
3396  Expression* origin = ss->find_memory_region_origin(name, namelen);
3397
3398  if (origin == NULL)
3399    {
3400      gold_error(_("undefined memory region '%s' referenced "
3401		   "in ORIGIN expression"),
3402		 name);
3403      // Create a dummy expression to prevent crashes later on.
3404      origin = script_exp_integer(0);
3405    }
3406
3407  return origin;
3408}
3409
3410extern "C" Expression*
3411script_exp_function_length(void* closurev, const char* name, size_t namelen)
3412{
3413  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3414  Script_sections* ss = closure->script_options()->script_sections();
3415  Expression* length = ss->find_memory_region_length(name, namelen);
3416
3417  if (length == NULL)
3418    {
3419      gold_error(_("undefined memory region '%s' referenced "
3420		   "in LENGTH expression"),
3421		 name);
3422      // Create a dummy expression to prevent crashes later on.
3423      length = script_exp_integer(0);
3424    }
3425
3426  return length;
3427}
3428