1// s390.cc -- s390 target support for gold.
2
3// Copyright (C) 2015-2017 Free Software Foundation, Inc.
4// Written by Marcin Ko��cielnicki <koriakin@0x04.net>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "s390.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "gc.h"
42#include "icf.h"
43
44namespace
45{
46
47using namespace gold;
48
49// A class to handle the .got.plt section.
50
51template<int size>
52class Output_data_got_plt_s390 : public Output_section_data_build
53{
54 public:
55  Output_data_got_plt_s390(Layout* layout)
56    : Output_section_data_build(size/8),
57      layout_(layout)
58  { }
59
60  Output_data_got_plt_s390(Layout* layout, off_t data_size)
61    : Output_section_data_build(data_size, size/8),
62      layout_(layout)
63  { }
64
65 protected:
66  // Write out the PLT data.
67  void
68  do_write(Output_file*);
69
70  // Write to a map file.
71  void
72  do_print_to_mapfile(Mapfile* mapfile) const
73  { mapfile->print_output_data(this, "** GOT PLT"); }
74
75 private:
76  // A pointer to the Layout class, so that we can find the .dynamic
77  // section when we write out the GOT PLT section.
78  Layout* layout_;
79};
80
81// A class to handle the PLT data.
82
83template<int size>
84class Output_data_plt_s390 : public Output_section_data
85{
86 public:
87  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true>
88    Reloc_section;
89
90  Output_data_plt_s390(Layout* layout,
91                         Output_data_got<size, true>* got,
92                         Output_data_got_plt_s390<size>* got_plt,
93                         Output_data_space* got_irelative)
94    : Output_section_data(4), layout_(layout),
95      irelative_rel_(NULL), got_(got), got_plt_(got_plt),
96      got_irelative_(got_irelative), count_(0),
97      irelative_count_(0), free_list_()
98  { this->init(layout); }
99
100  Output_data_plt_s390(Layout* layout,
101                         Output_data_got<size, true>* got,
102                         Output_data_got_plt_s390<size>* got_plt,
103                         Output_data_space* got_irelative,
104                         unsigned int plt_count)
105    : Output_section_data((plt_count + 1) * plt_entry_size,
106                          4, false),
107      layout_(layout), irelative_rel_(NULL), got_(got),
108      got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
109      irelative_count_(0), free_list_()
110  {
111    this->init(layout);
112
113    // Initialize the free list and reserve the first entry.
114    this->free_list_.init((plt_count + 1) * plt_entry_size, false);
115    this->free_list_.remove(0, plt_entry_size);
116  }
117
118  // Initialize the PLT section.
119  void
120  init(Layout* layout);
121
122  // Add an entry to the PLT.
123  void
124  add_entry(Symbol_table*, Layout*, Symbol* gsym);
125
126  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
127  unsigned int
128  add_local_ifunc_entry(Symbol_table*, Layout*,
129    Sized_relobj_file<size, true>*, unsigned int);
130
131  // Add the relocation for a PLT entry.
132  void
133  add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
134
135  // Return the .rela.plt section data.
136  Reloc_section*
137  rela_plt()
138  { return this->rel_; }
139
140  // Return where the IRELATIVE relocations should go in the PLT
141  // relocations.
142  Reloc_section*
143  rela_irelative(Symbol_table*, Layout*);
144
145  // Return whether we created a section for IRELATIVE relocations.
146  bool
147  has_irelative_section() const
148  { return this->irelative_rel_ != NULL; }
149
150  // Return the number of PLT entries.
151  unsigned int
152  entry_count() const
153  { return this->count_ + this->irelative_count_; }
154
155  // Return the offset of the first non-reserved PLT entry.
156  unsigned int
157  first_plt_entry_offset()
158  { return plt_entry_size; }
159
160  // Return the size of a PLT entry.
161  unsigned int
162  get_plt_entry_size() const
163  { return plt_entry_size; }
164
165  // Reserve a slot in the PLT for an existing symbol in an incremental update.
166  void
167  reserve_slot(unsigned int plt_index)
168  {
169    this->free_list_.remove((plt_index + 1) * plt_entry_size,
170                            (plt_index + 2) * plt_entry_size);
171  }
172
173  // Return the PLT address to use for a global symbol.
174  uint64_t
175  address_for_global(const Symbol*);
176
177  // Return the PLT address to use for a local symbol.
178  uint64_t
179  address_for_local(const Relobj*, unsigned int symndx);
180
181  // Add .eh_frame information for the PLT.
182  void
183  add_eh_frame(Layout* layout)
184  {
185	  (void)layout;
186    layout->add_eh_frame_for_plt(this,
187				 plt_eh_frame_cie,
188				 plt_eh_frame_cie_size,
189				 plt_eh_frame_fde,
190				 plt_eh_frame_fde_size);
191  }
192
193 protected:
194  // Fill in the first PLT entry.
195  void
196  fill_first_plt_entry(unsigned char* pov,
197		       typename elfcpp::Elf_types<size>::Elf_Addr got_address,
198		       typename elfcpp::Elf_types<size>::Elf_Addr plt_address);
199
200  // Fill in a normal PLT entry.  Returns the offset into the entry that
201  // should be the initial GOT slot value.
202  unsigned int
203  fill_plt_entry(unsigned char* pov,
204		 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
205		 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
206		 unsigned int got_offset,
207		 unsigned int plt_offset,
208		 unsigned int plt_rel_offset);
209
210  void
211  do_adjust_output_section(Output_section* os);
212
213  // Write to a map file.
214  void
215  do_print_to_mapfile(Mapfile* mapfile) const
216  { mapfile->print_output_data(this, _("** PLT")); }
217
218 private:
219  // Set the final size.
220  void
221  set_final_data_size();
222
223  // Write out the PLT data.
224  void
225  do_write(Output_file*);
226
227  // A pointer to the Layout class, so that we can find the .dynamic
228  // section when we write out the GOT PLT section.
229  Layout* layout_;
230  // The reloc section.
231  Reloc_section* rel_;
232  // The IRELATIVE relocs, if necessary.  These must follow the
233  // regular PLT relocations.
234  Reloc_section* irelative_rel_;
235  // The .got section.
236  Output_data_got<size, true>* got_;
237  // The .got.plt section.
238  Output_data_got_plt_s390<size>* got_plt_;
239  // The part of the .got.plt section used for IRELATIVE relocs.
240  Output_data_space* got_irelative_;
241  // The number of PLT entries.
242  unsigned int count_;
243  // Number of PLT entries with R_TILEGX_IRELATIVE relocs.  These
244  // follow the regular PLT entries.
245  unsigned int irelative_count_;
246  // List of available regions within the section, for incremental
247  // update links.
248  Free_list free_list_;
249
250  // The size of an entry in the PLT.
251  static const int plt_entry_size = 0x20;
252  // The first entry in the PLT.
253  static const unsigned char first_plt_entry_32_abs[plt_entry_size];
254  static const unsigned char first_plt_entry_32_pic[plt_entry_size];
255  static const unsigned char first_plt_entry_64[plt_entry_size];
256  // Other entries in the PLT for an executable.
257  static const unsigned char plt_entry_32_abs[plt_entry_size];
258  static const unsigned char plt_entry_32_pic12[plt_entry_size];
259  static const unsigned char plt_entry_32_pic16[plt_entry_size];
260  static const unsigned char plt_entry_32_pic[plt_entry_size];
261  static const unsigned char plt_entry_64[plt_entry_size];
262
263  // The .eh_frame unwind information for the PLT.
264  static const int plt_eh_frame_cie_size = 12;
265  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
266  static const int plt_eh_frame_fde_size = 12;
267  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
268};
269
270
271template<int size>
272class Target_s390 : public Sized_target<size, true>
273{
274 public:
275  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true> Reloc_section;
276
277  Target_s390()
278    : Sized_target<size, true>(&s390_info),
279      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
280      global_offset_table_(NULL), rela_dyn_(NULL),
281      rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY),
282      got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
283      layout_(NULL)
284  { }
285
286  // Scan the relocations to look for symbol adjustments.
287  void
288  gc_process_relocs(Symbol_table* symtab,
289		    Layout* layout,
290		    Sized_relobj_file<size, true>* object,
291		    unsigned int data_shndx,
292		    unsigned int sh_type,
293		    const unsigned char* prelocs,
294		    size_t reloc_count,
295		    Output_section* output_section,
296		    bool needs_special_offset_handling,
297		    size_t local_symbol_count,
298		    const unsigned char* plocal_symbols);
299
300  // Scan the relocations to look for symbol adjustments.
301  void
302  scan_relocs(Symbol_table* symtab,
303	      Layout* layout,
304	      Sized_relobj_file<size, true>* object,
305	      unsigned int data_shndx,
306	      unsigned int sh_type,
307	      const unsigned char* prelocs,
308	      size_t reloc_count,
309	      Output_section* output_section,
310	      bool needs_special_offset_handling,
311	      size_t local_symbol_count,
312	      const unsigned char* plocal_symbols);
313
314  // Finalize the sections.
315  void
316  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
317
318  // Return the value to use for a dynamic which requires special
319  // treatment.
320  uint64_t
321  do_dynsym_value(const Symbol*) const;
322
323  // Relocate a section.
324  void
325  relocate_section(const Relocate_info<size, true>*,
326		   unsigned int sh_type,
327		   const unsigned char* prelocs,
328		   size_t reloc_count,
329		   Output_section* output_section,
330		   bool needs_special_offset_handling,
331		   unsigned char* view,
332		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
333		   section_size_type view_size,
334		   const Reloc_symbol_changes*);
335
336  // Scan the relocs during a relocatable link.
337  void
338  scan_relocatable_relocs(Symbol_table* symtab,
339			  Layout* layout,
340			  Sized_relobj_file<size, true>* object,
341			  unsigned int data_shndx,
342			  unsigned int sh_type,
343			  const unsigned char* prelocs,
344			  size_t reloc_count,
345			  Output_section* output_section,
346			  bool needs_special_offset_handling,
347			  size_t local_symbol_count,
348			  const unsigned char* plocal_symbols,
349			  Relocatable_relocs*);
350
351  // Scan the relocs for --emit-relocs.
352  void
353  emit_relocs_scan(Symbol_table* symtab,
354		   Layout* layout,
355		   Sized_relobj_file<size, true>* object,
356		   unsigned int data_shndx,
357		   unsigned int sh_type,
358		   const unsigned char* prelocs,
359		   size_t reloc_count,
360		   Output_section* output_section,
361		   bool needs_special_offset_handling,
362		   size_t local_symbol_count,
363		   const unsigned char* plocal_syms,
364		   Relocatable_relocs* rr);
365
366  // Return a string used to fill a code section with nops.
367  std::string
368  do_code_fill(section_size_type length) const;
369
370  // Emit relocations for a section.
371  void
372  relocate_relocs(
373      const Relocate_info<size, true>*,
374      unsigned int sh_type,
375      const unsigned char* prelocs,
376      size_t reloc_count,
377      Output_section* output_section,
378      typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
379      unsigned char* view,
380      typename elfcpp::Elf_types<size>::Elf_Addr view_address,
381      section_size_type view_size,
382      unsigned char* reloc_view,
383      section_size_type reloc_view_size);
384
385  // Return whether SYM is defined by the ABI.
386  bool
387  do_is_defined_by_abi(const Symbol* sym) const
388  { return strcmp(sym->name(), "__tls_get_offset") == 0; }
389
390  // Return the PLT address to use for a global symbol.
391  uint64_t
392  do_plt_address_for_global(const Symbol* gsym) const
393  { return this->plt_section()->address_for_global(gsym); }
394
395  uint64_t
396  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
397  { return this->plt_section()->address_for_local(relobj, symndx); }
398
399  // Return the offset to use for the GOT_INDX'th got entry which is
400  // for a local tls symbol specified by OBJECT, SYMNDX.
401  int64_t
402  do_tls_offset_for_local(const Relobj* object,
403			  unsigned int symndx,
404			  unsigned int got_indx) const;
405
406  // Return the offset to use for the GOT_INDX'th got entry which is
407  // for global tls symbol GSYM.
408  int64_t
409  do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
410
411  // This function should be defined in targets that can use relocation
412  // types to determine (implemented in local_reloc_may_be_function_pointer
413  // and global_reloc_may_be_function_pointer)
414  // if a function's pointer is taken.  ICF uses this in safe mode to only
415  // fold those functions whose pointer is defintely not taken.
416  bool
417  do_can_check_for_function_pointers() const
418  { return true; }
419
420  // Return whether SYM is call to a non-split function.
421  bool
422  do_is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
423			  const unsigned char* view,
424			  section_size_type view_size) const;
425
426  // Adjust -fsplit-stack code which calls non-split-stack code.
427  void
428  do_calls_non_split(Relobj* object, unsigned int shndx,
429		     section_offset_type fnoffset, section_size_type fnsize,
430		     const unsigned char* prelocs, size_t reloc_count,
431		     unsigned char* view, section_size_type view_size,
432		     std::string* from, std::string* to) const;
433
434  // Return the size of the GOT section.
435  section_size_type
436  got_size() const
437  {
438    gold_assert(this->got_ != NULL);
439    return this->got_->data_size();
440  }
441
442  // Return the number of entries in the GOT.
443  unsigned int
444  got_entry_count() const
445  {
446    if (this->got_ == NULL)
447      return 0;
448    return this->got_size() / (size / 8);
449  }
450
451  // Return the number of entries in the PLT.
452  unsigned int
453  plt_entry_count() const;
454
455  // Return the offset of the first non-reserved PLT entry.
456  unsigned int
457  first_plt_entry_offset() const;
458
459  // Return the size of each PLT entry.
460  unsigned int
461  plt_entry_size() const;
462
463  // Create the GOT section for an incremental update.
464  Output_data_got_base*
465  init_got_plt_for_update(Symbol_table* symtab,
466			  Layout* layout,
467			  unsigned int got_count,
468			  unsigned int plt_count);
469
470  // Reserve a GOT entry for a local symbol, and regenerate any
471  // necessary dynamic relocations.
472  void
473  reserve_local_got_entry(unsigned int got_index,
474			  Sized_relobj<size, true>* obj,
475			  unsigned int r_sym,
476			  unsigned int got_type);
477
478  // Reserve a GOT entry for a global symbol, and regenerate any
479  // necessary dynamic relocations.
480  void
481  reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
482			   unsigned int got_type);
483
484  // Register an existing PLT entry for a global symbol.
485  void
486  register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
487			    Symbol* gsym);
488
489  // Force a COPY relocation for a given symbol.
490  void
491  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
492
493  // Apply an incremental relocation.
494  void
495  apply_relocation(const Relocate_info<size, true>* relinfo,
496		   typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
497		   unsigned int r_type,
498		   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
499		   const Symbol* gsym,
500		   unsigned char* view,
501		   typename elfcpp::Elf_types<size>::Elf_Addr address,
502		   section_size_type view_size);
503
504 private:
505
506  // The class which scans relocations.
507  class Scan
508  {
509  public:
510    Scan()
511      : issued_non_pic_error_(false)
512    { }
513
514    static inline int
515    get_reference_flags(unsigned int r_type);
516
517    inline void
518    local(Symbol_table* symtab, Layout* layout, Target_s390* target,
519	  Sized_relobj_file<size, true>* object,
520	  unsigned int data_shndx,
521	  Output_section* output_section,
522	  const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
523	  const elfcpp::Sym<size, true>& lsym,
524	  bool is_discarded);
525
526    inline void
527    global(Symbol_table* symtab, Layout* layout, Target_s390* target,
528	   Sized_relobj_file<size, true>* object,
529	   unsigned int data_shndx,
530	   Output_section* output_section,
531	   const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
532	   Symbol* gsym);
533
534    inline bool
535    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
536					Target_s390* target,
537					Sized_relobj_file<size, true>* object,
538					unsigned int data_shndx,
539					Output_section* output_section,
540					const elfcpp::Rela<size, true>& reloc,
541					unsigned int r_type,
542					const elfcpp::Sym<size, true>& lsym);
543
544    inline bool
545    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
546					 Target_s390* target,
547					 Sized_relobj_file<size, true>* object,
548					 unsigned int data_shndx,
549					 Output_section* output_section,
550					 const elfcpp::Rela<size, true>& reloc,
551					 unsigned int r_type,
552					 Symbol* gsym);
553
554  private:
555    static void
556    unsupported_reloc_local(Sized_relobj_file<size, true>*,
557			    unsigned int r_type);
558
559    static void
560    unsupported_reloc_global(Sized_relobj_file<size, true>*,
561			     unsigned int r_type, Symbol*);
562
563    void
564    check_non_pic(Relobj*, unsigned int r_type);
565
566    inline bool
567    possible_function_pointer_reloc(unsigned int r_type);
568
569    bool
570    reloc_needs_plt_for_ifunc(Sized_relobj_file<size, true>*,
571			      unsigned int r_type);
572
573    // Whether we have issued an error about a non-PIC compilation.
574    bool issued_non_pic_error_;
575  };
576
577  // The class which implements relocation.
578  class Relocate
579  {
580   public:
581    // Do a relocation.  Return false if the caller should not issue
582    // any warnings about this relocation.
583    inline bool
584    relocate(const Relocate_info<size, true>*, unsigned int,
585	     Target_s390*, Output_section*, size_t, const unsigned char*,
586	     const Sized_symbol<size>*, const Symbol_value<size>*,
587	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
588	     section_size_type);
589
590   private:
591    // Do a TLS relocation.
592    inline typename elfcpp::Elf_types<size>::Elf_Addr
593    relocate_tls(const Relocate_info<size, true>*, Target_s390*,
594		 size_t relnum, const elfcpp::Rela<size, true>&,
595		 unsigned int r_type, const Sized_symbol<size>*,
596		 const Symbol_value<size>*,
597		 unsigned char*, section_size_type);
598
599    // Do a TLS General-Dynamic to Initial-Exec transition.
600    inline void
601    tls_gd_to_ie(const Relocate_info<size, true>*, size_t relnum,
602		 const elfcpp::Rela<size, true>&,
603		 unsigned char* view,
604		 section_size_type view_size);
605
606    // Do a TLS General-Dynamic to Local-Exec transition.
607    inline void
608    tls_gd_to_le(const Relocate_info<size, true>*, size_t relnum,
609		 const elfcpp::Rela<size, true>&,
610		 unsigned char* view,
611		 section_size_type view_size);
612
613    // Do a TLS Local-Dynamic to Local-Exec transition.
614    inline void
615    tls_ld_to_le(const Relocate_info<size, true>*, size_t relnum,
616		 const elfcpp::Rela<size, true>&,
617		 unsigned char* view,
618		 section_size_type view_size);
619
620    // Do a TLS Initial-Exec to Local-Exec transition.
621    static inline void
622    tls_ie_to_le(const Relocate_info<size, true>*, size_t relnum,
623		 const elfcpp::Rela<size, true>&,
624		 unsigned char* view,
625		 section_size_type view_size);
626  };
627
628  // Adjust TLS relocation type based on the options and whether this
629  // is a local symbol.
630  static tls::Tls_optimization
631  optimize_tls_reloc(bool is_final, int r_type);
632
633  // Get the GOT section.
634  const Output_data_got<size, true>*
635  got_section() const
636  {
637    gold_assert(this->got_ != NULL);
638    return this->got_;
639  }
640
641  // Get the GOT section, creating it if necessary.
642  Output_data_got<size, true>*
643  got_section(Symbol_table*, Layout*);
644
645  typename elfcpp::Elf_types<size>::Elf_Addr
646  got_address() const
647  {
648    gold_assert(this->got_ != NULL);
649    return this->got_plt_->address();
650  }
651
652  typename elfcpp::Elf_types<size>::Elf_Addr
653  got_main_offset() const
654  {
655    gold_assert(this->got_ != NULL);
656    return this->got_->address() - this->got_address();
657  }
658
659  // Create the PLT section.
660  void
661  make_plt_section(Symbol_table* symtab, Layout* layout);
662
663  // Create a PLT entry for a global symbol.
664  void
665  make_plt_entry(Symbol_table*, Layout*, Symbol*);
666
667  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
668  void
669  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
670			     Sized_relobj_file<size, true>* relobj,
671			     unsigned int local_sym_index);
672
673  // Create a GOT entry for the TLS module index.
674  unsigned int
675  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
676		      Sized_relobj_file<size, true>* object);
677
678  // Get the PLT section.
679  Output_data_plt_s390<size>*
680  plt_section() const
681  {
682    gold_assert(this->plt_ != NULL);
683    return this->plt_;
684  }
685
686  // Get the dynamic reloc section, creating it if necessary.
687  Reloc_section*
688  rela_dyn_section(Layout*);
689
690  // Get the section to use for IRELATIVE relocations.
691  Reloc_section*
692  rela_irelative_section(Layout*);
693
694  // Add a potential copy relocation.
695  void
696  copy_reloc(Symbol_table* symtab, Layout* layout,
697	     Sized_relobj_file<size, true>* object,
698	     unsigned int shndx, Output_section* output_section,
699	     Symbol* sym, const elfcpp::Rela<size, true>& reloc)
700  {
701    unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
702    this->copy_relocs_.copy_reloc(symtab, layout,
703				  symtab->get_sized_symbol<size>(sym),
704				  object, shndx, output_section,
705				  r_type, reloc.get_r_offset(),
706				  reloc.get_r_addend(),
707				  this->rela_dyn_section(layout));
708  }
709
710  // A function for targets to call.  Return whether BYTES/LEN matches
711  // VIEW/VIEW_SIZE at OFFSET.  Like the one in Target, but takes
712  // an unsigned char * parameter.
713  bool
714  match_view_u(const unsigned char* view, section_size_type view_size,
715     section_offset_type offset, const unsigned char* bytes, size_t len) const
716    {
717      return this->match_view(view, view_size, offset,
718			      reinterpret_cast<const char*>(bytes), len);
719    }
720
721  // Information about this specific target which we pass to the
722  // general Target structure.
723  static Target::Target_info s390_info;
724
725  // The types of GOT entries needed for this platform.
726  // These values are exposed to the ABI in an incremental link.
727  // Do not renumber existing values without changing the version
728  // number of the .gnu_incremental_inputs section.
729  enum Got_type
730  {
731    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
732    GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
733    GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
734  };
735
736  // The GOT section.
737  Output_data_got<size, true>* got_;
738  // The PLT section.
739  Output_data_plt_s390<size>* plt_;
740  // The GOT PLT section.
741  Output_data_got_plt_s390<size>* got_plt_;
742  // The GOT section for IRELATIVE relocations.
743  Output_data_space* got_irelative_;
744  // The _GLOBAL_OFFSET_TABLE_ symbol.
745  Symbol* global_offset_table_;
746  // The dynamic reloc section.
747  Reloc_section* rela_dyn_;
748  // The section to use for IRELATIVE relocs.
749  Reloc_section* rela_irelative_;
750  // Relocs saved to avoid a COPY reloc.
751  Copy_relocs<elfcpp::SHT_RELA, size, true> copy_relocs_;
752  // Offset of the GOT entry for the TLS module index.
753  unsigned int got_mod_index_offset_;
754  // True if the _TLS_MODULE_BASE_ symbol has been defined.
755  bool tls_base_symbol_defined_;
756  // For use in do_tls_offset_for_*
757  Layout *layout_;
758
759  // Code sequences for -fsplit-stack matching.
760  static const unsigned char ss_code_bras_8[];
761  static const unsigned char ss_code_l_basr[];
762  static const unsigned char ss_code_a_basr[];
763  static const unsigned char ss_code_larl[];
764  static const unsigned char ss_code_brasl[];
765  static const unsigned char ss_code_jg[];
766  static const unsigned char ss_code_jgl[];
767
768  // Variable code sequence matchers for -fsplit-stack.
769  bool ss_match_st_r14(unsigned char* view,
770		       section_size_type view_size,
771		       section_offset_type *offset) const;
772  bool ss_match_l_r14(unsigned char* view,
773		      section_size_type view_size,
774		      section_offset_type *offset) const;
775  bool ss_match_mcount(unsigned char* view,
776		       section_size_type view_size,
777		       section_offset_type *offset) const;
778  bool ss_match_ear(unsigned char* view,
779		    section_size_type view_size,
780		    section_offset_type *offset) const;
781  bool ss_match_c(unsigned char* view,
782		  section_size_type view_size,
783		  section_offset_type *offset) const;
784  bool ss_match_l(unsigned char* view,
785		  section_size_type view_size,
786		  section_offset_type *offset,
787		  int *guard_reg) const;
788  bool ss_match_ahi(unsigned char* view,
789		    section_size_type view_size,
790		    section_offset_type *offset,
791		    int guard_reg,
792		    uint32_t *arg) const;
793  bool ss_match_alfi(unsigned char* view,
794		     section_size_type view_size,
795		     section_offset_type *offset,
796		     int guard_reg,
797		     uint32_t *arg) const;
798  bool ss_match_cr(unsigned char* view,
799		   section_size_type view_size,
800		   section_offset_type *offset,
801		   int guard_reg) const;
802};
803
804template<>
805Target::Target_info Target_s390<32>::s390_info =
806{
807  32,			// size
808  true,			// is_big_endian
809  elfcpp::EM_S390,	// machine_code
810  false,		// has_make_symbol
811  false,		// has_resolve
812  true,			// has_code_fill
813  true,			// is_default_stack_executable
814  true,			// can_icf_inline_merge_sections
815  '\0',			// wrap_char
816  "/lib/ld.so.1",	// dynamic_linker
817  0x00400000,		// default_text_segment_address
818  4 * 1024,		// abi_pagesize (overridable by -z max-page-size)
819  4 * 1024,		// common_pagesize (overridable by -z common-page-size)
820  false,                // isolate_execinstr
821  0,                    // rosegment_gap
822  elfcpp::SHN_UNDEF,	// small_common_shndx
823  elfcpp::SHN_UNDEF,	// large_common_shndx
824  0,			// small_common_section_flags
825  0,			// large_common_section_flags
826  NULL,			// attributes_section
827  NULL,			// attributes_vendor
828  "_start",		// entry_symbol_name
829  32,			// hash_entry_size
830};
831
832template<>
833Target::Target_info Target_s390<64>::s390_info =
834{
835  64,			// size
836  true,			// is_big_endian
837  elfcpp::EM_S390,	// machine_code
838  false,		// has_make_symbol
839  false,		// has_resolve
840  true,			// has_code_fill
841  true,			// is_default_stack_executable
842  true,			// can_icf_inline_merge_sections
843  '\0',			// wrap_char
844  "/lib/ld64.so.1",	// dynamic_linker
845  0x80000000ll,		// default_text_segment_address
846  4 * 1024,		// abi_pagesize (overridable by -z max-page-size)
847  4 * 1024,		// common_pagesize (overridable by -z common-page-size)
848  false,                // isolate_execinstr
849  0,                    // rosegment_gap
850  elfcpp::SHN_UNDEF,	// small_common_shndx
851  elfcpp::SHN_UNDEF,	// large_common_shndx
852  0,			// small_common_section_flags
853  0,			// large_common_section_flags
854  NULL,			// attributes_section
855  NULL,			// attributes_vendor
856  "_start",		// entry_symbol_name
857  64,			// hash_entry_size
858};
859
860template<int size>
861class S390_relocate_functions
862{
863public:
864  enum Overflow_check
865  {
866    CHECK_NONE,
867    CHECK_SIGNED,
868    CHECK_UNSIGNED,
869    CHECK_BITFIELD,
870    CHECK_LOW_INSN,
871    CHECK_HIGH_INSN
872  };
873
874  enum Status
875  {
876    STATUS_OK,
877    STATUS_OVERFLOW
878  };
879
880private:
881  typedef S390_relocate_functions<size> This;
882  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
883
884  template<int valsize>
885  static inline bool
886  has_overflow_signed(Address value)
887  {
888    // limit = 1 << (valsize - 1) without shift count exceeding size of type
889    Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
890    limit <<= ((valsize - 1) >> 1);
891    limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
892    return value + limit > (limit << 1) - 1;
893  }
894
895  template<int valsize>
896  static inline bool
897  has_overflow_unsigned(Address value)
898  {
899    Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
900    limit <<= ((valsize - 1) >> 1);
901    limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
902    return value > (limit << 1) - 1;
903  }
904
905  template<int fieldsize>
906  static inline void
907  rela(unsigned char* view, Address mask, Address value)
908  {
909    typedef typename elfcpp::Swap<fieldsize, true>::Valtype Valtype;
910    Valtype* wv = reinterpret_cast<Valtype*>(view);
911    Valtype val = elfcpp::Swap<fieldsize, true>::readval(view);
912    val &= ~mask;
913    value &= mask;
914    elfcpp::Swap<fieldsize, true>::writeval(wv, val | value);
915  }
916
917public:
918  // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12
919  static inline Status
920  rela12(unsigned char* view, Address value)
921  {
922    if (This::template has_overflow_unsigned<12>(value))
923      return STATUS_OVERFLOW;
924    This::template rela<16>(view, 0x0fff, value);
925    return STATUS_OK;
926  }
927
928  // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16
929  static inline Status
930  rela16(unsigned char* view, Address value)
931  {
932    if (This::template has_overflow_signed<16>(value))
933      return STATUS_OVERFLOW;
934    This::template rela<16>(view, 0xffff, value);
935    return STATUS_OK;
936  }
937
938  // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20
939  static inline Status
940  rela20(unsigned char* view, Address value)
941  {
942    if (This::template has_overflow_signed<20>(value))
943      return STATUS_OVERFLOW;
944    This::template rela<16>(view, 0x0fff, value);
945    This::template rela<16>(view + 2, 0xff00, value >> (12 - 8));
946    return STATUS_OK;
947  }
948
949  // R_390_PC12DBL, R_390_PLT12DBL
950  static inline Status
951  pcrela12dbl(unsigned char* view, Address value, Address address)
952  {
953    value -= address;
954    if ((value & 1) != 0)
955      return STATUS_OVERFLOW;
956    if (This::template has_overflow_signed<13>(value))
957      return STATUS_OVERFLOW;
958    value >>= 1;
959    This::template rela<16>(view, 0x0fff, value);
960    return STATUS_OK;
961  }
962
963  // R_390_PC16DBL, R_390_PLT16DBL
964  static inline Status
965  pcrela16dbl(unsigned char* view, Address value, Address address)
966  {
967    value -= address;
968    if ((value & 1) != 0)
969      return STATUS_OVERFLOW;
970    if (This::template has_overflow_signed<17>(value))
971      return STATUS_OVERFLOW;
972    value >>= 1;
973    This::template rela<16>(view, 0xffff, value);
974    return STATUS_OK;
975  }
976
977  // R_390_PC24DBL, R_390_PLT24DBL
978  static inline Status
979  pcrela24dbl(unsigned char* view, Address value, Address address)
980  {
981    value -= address;
982    if ((value & 1) != 0)
983      return STATUS_OVERFLOW;
984    if (This::template has_overflow_signed<25>(value))
985      return STATUS_OVERFLOW;
986    value >>= 1;
987    // Swap doesn't take 24-bit fields well...
988    This::template rela<8>(view, 0xff, value >> 16);
989    This::template rela<16>(view + 1, 0xffff, value);
990    return STATUS_OK;
991  }
992
993  // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT
994  static inline Status
995  pcrela32dbl(unsigned char* view, Address value, Address address)
996  {
997    Address reloc = value - address;
998    if ((reloc & 1) != 0)
999      {
1000	gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address);
1001	// Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960
1002	// return STATUS_OVERFLOW;
1003      }
1004    if (This::template has_overflow_signed<33>(reloc))
1005      return STATUS_OVERFLOW;
1006    reloc >>= 1;
1007    if (value < address && size == 32)
1008      reloc |= 0x80000000;
1009    This::template rela<32>(view, 0xffffffff, reloc);
1010    return STATUS_OK;
1011  }
1012
1013};
1014
1015// Initialize the PLT section.
1016
1017template<int size>
1018void
1019Output_data_plt_s390<size>::init(Layout* layout)
1020{
1021  this->rel_ = new Reloc_section(false);
1022  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1023				  elfcpp::SHF_ALLOC, this->rel_,
1024				  ORDER_DYNAMIC_PLT_RELOCS, false);
1025}
1026
1027template<int size>
1028void
1029Output_data_plt_s390<size>::do_adjust_output_section(Output_section* os)
1030{
1031  os->set_entsize(plt_entry_size);
1032}
1033
1034// Add an entry to the PLT.
1035
1036template<int size>
1037void
1038Output_data_plt_s390<size>::add_entry(Symbol_table* symtab, Layout* layout,
1039					Symbol* gsym)
1040{
1041  gold_assert(!gsym->has_plt_offset());
1042
1043  unsigned int plt_index;
1044  off_t plt_offset;
1045  section_offset_type got_offset;
1046
1047  unsigned int* pcount;
1048  unsigned int offset;
1049  unsigned int reserved;
1050  Output_section_data_build* got;
1051  if (gsym->type() == elfcpp::STT_GNU_IFUNC
1052      && gsym->can_use_relative_reloc(false))
1053    {
1054      pcount = &this->irelative_count_;
1055      offset = 0;
1056      reserved = 0;
1057      got = this->got_irelative_;
1058    }
1059  else
1060    {
1061      pcount = &this->count_;
1062      offset = 1;
1063      reserved = 3;
1064      got = this->got_plt_;
1065    }
1066
1067  if (!this->is_data_size_valid())
1068    {
1069      // Note that when setting the PLT offset for a non-IRELATIVE
1070      // entry we skip the initial reserved PLT entry.
1071      plt_index = *pcount + offset;
1072      plt_offset = plt_index * plt_entry_size;
1073
1074      ++*pcount;
1075
1076      got_offset = (plt_index - offset + reserved) * size / 8;
1077      gold_assert(got_offset == got->current_data_size());
1078
1079      // Every PLT entry needs a GOT entry which points back to the PLT
1080      // entry (this will be changed by the dynamic linker, normally
1081      // lazily when the function is called).
1082      got->set_current_data_size(got_offset + size / 8);
1083    }
1084  else
1085    {
1086      // FIXME: This is probably not correct for IRELATIVE relocs.
1087
1088      // For incremental updates, find an available slot.
1089      plt_offset = this->free_list_.allocate(plt_entry_size,
1090					     plt_entry_size, 0);
1091      if (plt_offset == -1)
1092	gold_fallback(_("out of patch space (PLT);"
1093			" relink with --incremental-full"));
1094
1095      // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1096      // can be calculated from the PLT index, adjusting for the three
1097      // reserved entries at the beginning of the GOT.
1098      plt_index = plt_offset / plt_entry_size - 1;
1099      got_offset = (plt_index - offset + reserved) * size / 8;
1100    }
1101
1102  gsym->set_plt_offset(plt_offset);
1103
1104  // Every PLT entry needs a reloc.
1105  this->add_relocation(symtab, layout, gsym, got_offset);
1106
1107  // Note that we don't need to save the symbol.  The contents of the
1108  // PLT are independent of which symbols are used.  The symbols only
1109  // appear in the relocations.
1110}
1111
1112// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1113// the PLT offset.
1114
1115template<int size>
1116unsigned int
1117Output_data_plt_s390<size>::add_local_ifunc_entry(
1118    Symbol_table* symtab,
1119    Layout* layout,
1120    Sized_relobj_file<size, true>* relobj,
1121    unsigned int local_sym_index)
1122{
1123  unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1124  ++this->irelative_count_;
1125
1126  section_offset_type got_offset = this->got_irelative_->current_data_size();
1127
1128  // Every PLT entry needs a GOT entry which points back to the PLT
1129  // entry.
1130  this->got_irelative_->set_current_data_size(got_offset + size / 8);
1131
1132  // Every PLT entry needs a reloc.
1133  Reloc_section* rela = this->rela_irelative(symtab, layout);
1134  rela->add_symbolless_local_addend(relobj, local_sym_index,
1135				    elfcpp::R_390_IRELATIVE,
1136				    this->got_irelative_, got_offset, 0);
1137
1138  return plt_offset;
1139}
1140
1141// Add the relocation for a PLT entry.
1142
1143template<int size>
1144void
1145Output_data_plt_s390<size>::add_relocation(Symbol_table* symtab,
1146					     Layout* layout,
1147					     Symbol* gsym,
1148					     unsigned int got_offset)
1149{
1150  if (gsym->type() == elfcpp::STT_GNU_IFUNC
1151      && gsym->can_use_relative_reloc(false))
1152    {
1153      Reloc_section* rela = this->rela_irelative(symtab, layout);
1154      rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE,
1155					 this->got_irelative_, got_offset, 0);
1156    }
1157  else
1158    {
1159      gsym->set_needs_dynsym_entry();
1160      this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_,
1161			     got_offset, 0);
1162    }
1163}
1164
1165// Return where the IRELATIVE relocations should go in the PLT.  These
1166// follow the JUMP_SLOT and the TLSDESC relocations.
1167
1168template<int size>
1169typename Output_data_plt_s390<size>::Reloc_section*
1170Output_data_plt_s390<size>::rela_irelative(Symbol_table* symtab,
1171					     Layout* layout)
1172{
1173  if (this->irelative_rel_ == NULL)
1174    {
1175      this->irelative_rel_ = new Reloc_section(false);
1176      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1177				      elfcpp::SHF_ALLOC, this->irelative_rel_,
1178				      ORDER_DYNAMIC_PLT_RELOCS, false);
1179      gold_assert(this->irelative_rel_->output_section()
1180		  == this->rel_->output_section());
1181
1182      if (parameters->doing_static_link())
1183	{
1184	  // A statically linked executable will only have a .rela.plt
1185	  // section to hold R_390_IRELATIVE relocs for
1186	  // STT_GNU_IFUNC symbols.  The library will use these
1187	  // symbols to locate the IRELATIVE relocs at program startup
1188	  // time.
1189	  symtab->define_in_output_data("__rela_iplt_start", NULL,
1190					Symbol_table::PREDEFINED,
1191					this->irelative_rel_, 0, 0,
1192					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1193					elfcpp::STV_HIDDEN, 0, false, true);
1194	  symtab->define_in_output_data("__rela_iplt_end", NULL,
1195					Symbol_table::PREDEFINED,
1196					this->irelative_rel_, 0, 0,
1197					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1198					elfcpp::STV_HIDDEN, 0, true, true);
1199	}
1200    }
1201  return this->irelative_rel_;
1202}
1203
1204// Return the PLT address to use for a global symbol.
1205
1206template<int size>
1207uint64_t
1208Output_data_plt_s390<size>::address_for_global(const Symbol* gsym)
1209{
1210  uint64_t offset = 0;
1211  if (gsym->type() == elfcpp::STT_GNU_IFUNC
1212      && gsym->can_use_relative_reloc(false))
1213    offset = (this->count_ + 1) * plt_entry_size;
1214  return this->address() + offset + gsym->plt_offset();
1215}
1216
1217// Return the PLT address to use for a local symbol.  These are always
1218// IRELATIVE relocs.
1219
1220template<int size>
1221uint64_t
1222Output_data_plt_s390<size>::address_for_local(const Relobj* object,
1223						unsigned int r_sym)
1224{
1225  return (this->address()
1226	  + (this->count_ + 1) * plt_entry_size
1227	  + object->local_plt_offset(r_sym));
1228}
1229
1230// Set the final size.
1231template<int size>
1232void
1233Output_data_plt_s390<size>::set_final_data_size()
1234{
1235  unsigned int count = this->count_ + this->irelative_count_;
1236  this->set_data_size((count + 1) * plt_entry_size);
1237}
1238
1239template<int size>
1240const unsigned char
1241Output_data_plt_s390<size>::first_plt_entry_32_abs[plt_entry_size] =
1242{
1243  0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1244  0x0d, 0x10, // basr %r1, %r0
1245  0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1)
1246  0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1)
1247  0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1)
1248  0x07, 0xf1, // br %r1
1249  0x00, 0x00, // padding
1250  0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill)
1251  0x00, 0x00, 0x00, 0x00, // padding
1252};
1253
1254template<int size>
1255const unsigned char
1256Output_data_plt_s390<size>::first_plt_entry_32_pic[plt_entry_size] =
1257{
1258  0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1259  0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12)
1260  0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15)
1261  0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12)
1262  0x07, 0xf1, // br %r1
1263  0x00, 0x00, // padding
1264  0x00, 0x00, 0x00, 0x00, // padding
1265  0x00, 0x00, 0x00, 0x00, // padding
1266  0x00, 0x00, 0x00, 0x00, // padding
1267};
1268
1269template<int size>
1270const unsigned char
1271Output_data_plt_s390<size>::first_plt_entry_64[plt_entry_size] =
1272{
1273  0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15)
1274  0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill)
1275  0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1)
1276  0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1)
1277  0x07, 0xf1, // br %r1
1278  0x07, 0x00, // nopr
1279  0x07, 0x00, // nopr
1280  0x07, 0x00, // nopr
1281};
1282
1283template<int size>
1284void
1285Output_data_plt_s390<size>::fill_first_plt_entry(
1286    unsigned char* pov,
1287    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1288    typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1289{
1290  if (size == 64)
1291    {
1292      memcpy(pov, first_plt_entry_64, plt_entry_size);
1293      S390_relocate_functions<size>::pcrela32dbl(pov + 8, got_address, (plt_address + 6));
1294    }
1295  else if (!parameters->options().output_is_position_independent())
1296    {
1297      memcpy(pov, first_plt_entry_32_abs, plt_entry_size);
1298      elfcpp::Swap<32, true>::writeval(pov + 24, got_address);
1299    }
1300  else
1301    {
1302      memcpy(pov, first_plt_entry_32_pic, plt_entry_size);
1303    }
1304}
1305
1306template<int size>
1307const unsigned char
1308Output_data_plt_s390<size>::plt_entry_32_abs[plt_entry_size] =
1309{
1310  // first part
1311  0x0d, 0x10, // basr %r1, %r0
1312  0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1313  0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1)
1314  0x07, 0xf1, // br %r1
1315  // second part
1316  0x0d, 0x10, // basr %r1, %r0
1317  0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1318  0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1319  0x00, 0x00, // padding
1320  0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill)
1321  0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1322};
1323
1324template<int size>
1325const unsigned char
1326Output_data_plt_s390<size>::plt_entry_32_pic12[plt_entry_size] =
1327{
1328  // first part
1329  0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill)
1330  0x07, 0xf1, // br %r1
1331  0x00, 0x00, // padding
1332  0x00, 0x00, 0x00, 0x00, // padding
1333  // second part
1334  0x0d, 0x10, // basr %r1, %r0
1335  0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1336  0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1337  0x00, 0x00, // padding
1338  0x00, 0x00, 0x00, 0x00, // padding
1339  0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1340};
1341
1342template<int size>
1343const unsigned char
1344Output_data_plt_s390<size>::plt_entry_32_pic16[plt_entry_size] =
1345{
1346  // first part
1347  0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill)
1348  0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1349  0x07, 0xf1, // br %r1
1350  0x00, 0x00, // padding
1351  // second part
1352  0x0d, 0x10, // basr %r1, %r0
1353  0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1354  0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1355  0x00, 0x00, // padding
1356  0x00, 0x00, 0x00, 0x00, // padding
1357  0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1358};
1359
1360template<int size>
1361const unsigned char
1362Output_data_plt_s390<size>::plt_entry_32_pic[plt_entry_size] =
1363{
1364  // first part
1365  0x0d, 0x10, // basr %r1, %r0
1366  0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1367  0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1368  0x07, 0xf1, // br %r1
1369  // second part
1370  0x0d, 0x10, // basr %r1, %r0
1371  0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1372  0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1373  0x00, 0x00, // padding
1374  0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill)
1375  0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1376};
1377
1378template<int size>
1379const unsigned char
1380Output_data_plt_s390<size>::plt_entry_64[plt_entry_size] =
1381{
1382  // first part
1383  0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill)
1384  0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1)
1385  0x07, 0xf1, // br %r1
1386  // second part
1387  0x0d, 0x10, // basr %r1, %r0
1388  0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1)
1389  0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill)
1390  0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1391};
1392
1393template<int size>
1394unsigned int
1395Output_data_plt_s390<size>::fill_plt_entry(
1396    unsigned char* pov,
1397    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1398    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1399    unsigned int got_offset,
1400    unsigned int plt_offset,
1401    unsigned int plt_rel_offset)
1402{
1403  if (size == 64)
1404  {
1405    memcpy(pov, plt_entry_64, plt_entry_size);
1406    S390_relocate_functions<size>::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset);
1407    S390_relocate_functions<size>::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22);
1408  }
1409  else
1410  {
1411    if (!parameters->options().output_is_position_independent())
1412      {
1413	memcpy(pov, plt_entry_32_abs, plt_entry_size);
1414	elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset);
1415      }
1416    else
1417      {
1418	if (got_offset < 0x1000)
1419	  {
1420	    memcpy(pov, plt_entry_32_pic12, plt_entry_size);
1421	    S390_relocate_functions<size>::rela12(pov + 2, got_offset);
1422	  }
1423	else if (got_offset < 0x8000)
1424	  {
1425	    memcpy(pov, plt_entry_32_pic16, plt_entry_size);
1426	    S390_relocate_functions<size>::rela16(pov + 2, got_offset);
1427	  }
1428	else
1429	  {
1430	    memcpy(pov, plt_entry_32_pic, plt_entry_size);
1431	    elfcpp::Swap<32, true>::writeval(pov + 24, got_offset);
1432	  }
1433      }
1434    typename elfcpp::Elf_types<size>::Elf_Addr target = plt_address;
1435    if (plt_offset >= 0x10000)
1436      {
1437	// Would overflow pcrela16dbl - aim at the farthest previous jump
1438	// we can reach.
1439	if (plt_offset > 0x10000)
1440	  {
1441	    // Use the full range of pcrel16dbl.
1442	    target = plt_address + plt_offset - 0x10000 + 18;
1443	  }
1444	else
1445	  {
1446	    // if plt_offset is exactly 0x10000, the above would aim at 18th byte
1447	    // of first_plt_entry, which doesn't have the jump back like the others.
1448	    // Aim at the next entry instead.
1449	    target = plt_address + plt_offset - 0xffe0 + 18;
1450	  }
1451      }
1452    S390_relocate_functions<size>::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18);
1453  }
1454  elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset);
1455  if (size == 64)
1456    return 14;
1457  else
1458    return 12;
1459}
1460
1461// The .eh_frame unwind information for the PLT.
1462
1463template<>
1464const unsigned char
1465Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1466{
1467  1,				// CIE version.
1468  'z',				// Augmentation: augmentation size included.
1469  'R',				// Augmentation: FDE encoding included.
1470  '\0',				// End of augmentation string.
1471  1,				// Code alignment factor.
1472  0x7c,				// Data alignment factor.
1473  14,				// Return address column.
1474  1,				// Augmentation size.
1475  (elfcpp::DW_EH_PE_pcrel	// FDE encoding.
1476   | elfcpp::DW_EH_PE_sdata4),
1477  elfcpp::DW_CFA_def_cfa, 15, 0x60,	// DW_CFA_def_cfa: r15 ofs 0x60.
1478};
1479
1480template<>
1481const unsigned char
1482Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1483{
1484  1,				// CIE version.
1485  'z',				// Augmentation: augmentation size included.
1486  'R',				// Augmentation: FDE encoding included.
1487  '\0',				// End of augmentation string.
1488  1,				// Code alignment factor.
1489  0x78,				// Data alignment factor.
1490  14,				// Return address column.
1491  1,				// Augmentation size.
1492  (elfcpp::DW_EH_PE_pcrel	// FDE encoding.
1493   | elfcpp::DW_EH_PE_sdata4),
1494  elfcpp::DW_CFA_def_cfa, 15, 0xa0,	// DW_CFA_def_cfa: r15 ofs 0xa0.
1495};
1496
1497template<int size>
1498const unsigned char
1499Output_data_plt_s390<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1500{
1501  0, 0, 0, 0,				// Replaced with offset to .plt.
1502  0, 0, 0, 0,				// Replaced with size of .plt.
1503  0,					// Augmentation size.
1504  elfcpp::DW_CFA_nop,
1505  elfcpp::DW_CFA_nop,
1506  elfcpp::DW_CFA_nop
1507};
1508
1509// Write out the PLT.  This uses the hand-coded instructions above,
1510// and adjusts them as needed.
1511
1512template<int size>
1513void
1514Output_data_plt_s390<size>::do_write(Output_file* of)
1515{
1516  const off_t offset = this->offset();
1517  const section_size_type oview_size =
1518    convert_to_section_size_type(this->data_size());
1519  unsigned char* const oview = of->get_output_view(offset, oview_size);
1520
1521  const off_t got_file_offset = this->got_plt_->offset();
1522  gold_assert(parameters->incremental_update()
1523	      || (got_file_offset + this->got_plt_->data_size()
1524		  == this->got_irelative_->offset()));
1525  const section_size_type got_size =
1526    convert_to_section_size_type(this->got_plt_->data_size()
1527				 + this->got_irelative_->data_size());
1528  unsigned char* const got_view = of->get_output_view(got_file_offset,
1529						      got_size);
1530
1531  unsigned char* pov = oview;
1532
1533  // The base address of the .plt section.
1534  typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1535  // The base address of the PLT portion of the .got section,
1536  // which is where the GOT pointer will point, and where the
1537  // three reserved GOT entries are located.
1538  typename elfcpp::Elf_types<size>::Elf_Addr got_address
1539    = this->got_plt_->address();
1540
1541  this->fill_first_plt_entry(pov, got_address, plt_address);
1542  pov += this->get_plt_entry_size();
1543
1544  unsigned char* got_pov = got_view;
1545
1546  const int rel_size = elfcpp::Elf_sizes<size>::rela_size;
1547
1548  unsigned int plt_offset = this->get_plt_entry_size();
1549  unsigned int plt_rel_offset = 0;
1550  unsigned int got_offset = 3 * size / 8;
1551  const unsigned int count = this->count_ + this->irelative_count_;
1552  // The first three entries in the GOT are reserved, and are written
1553  // by Output_data_got_plt_s390::do_write.
1554  got_pov += 3 * size / 8;
1555
1556  for (unsigned int plt_index = 0;
1557       plt_index < count;
1558       ++plt_index,
1559	 pov += plt_entry_size,
1560	 got_pov += size / 8,
1561	 plt_offset += plt_entry_size,
1562	 plt_rel_offset += rel_size,
1563	 got_offset += size / 8)
1564    {
1565      // Set and adjust the PLT entry itself.
1566      unsigned int lazy_offset = this->fill_plt_entry(pov,
1567						      got_address, plt_address,
1568						      got_offset, plt_offset,
1569						      plt_rel_offset);
1570
1571      // Set the entry in the GOT.
1572      elfcpp::Swap<size, true>::writeval(got_pov,
1573					plt_address + plt_offset + lazy_offset);
1574    }
1575
1576  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1577  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1578
1579  of->write_output_view(offset, oview_size, oview);
1580  of->write_output_view(got_file_offset, got_size, got_view);
1581}
1582
1583// Get the GOT section, creating it if necessary.
1584
1585template<int size>
1586Output_data_got<size, true>*
1587Target_s390<size>::got_section(Symbol_table* symtab, Layout* layout)
1588{
1589  if (this->got_ == NULL)
1590    {
1591      gold_assert(symtab != NULL && layout != NULL);
1592
1593      // When using -z now, we can treat .got as a relro section.
1594      // Without -z now, it is modified after program startup by lazy
1595      // PLT relocations.
1596      bool is_got_relro = parameters->options().now();
1597      Output_section_order got_order = (is_got_relro
1598					? ORDER_RELRO_LAST
1599					: ORDER_DATA);
1600
1601      // The old GNU linker creates a .got.plt section.  We just
1602      // create another set of data in the .got section.  Note that we
1603      // always create a PLT if we create a GOT, although the PLT
1604      // might be empty.
1605      this->got_plt_ = new Output_data_got_plt_s390<size>(layout);
1606      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1607				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1608				      this->got_plt_, got_order, is_got_relro);
1609
1610      // The first three entries are reserved.
1611      this->got_plt_->set_current_data_size(3 * size / 8);
1612
1613      // If there are any IRELATIVE relocations, they get GOT entries
1614      // in .got.plt after the jump slot entries.
1615      this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1616      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1617				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1618				      this->got_irelative_,
1619				      got_order, is_got_relro);
1620
1621      // Unlike some targets (.e.g x86), S/390 does not use separate .got and
1622      // .got.plt sections in output.  The output .got section contains both
1623      // PLT and non-PLT GOT entries.
1624      this->got_ = new Output_data_got<size, true>();
1625
1626      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1627				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1628				      this->got_, got_order, is_got_relro);
1629
1630      // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
1631      this->global_offset_table_ =
1632        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1633				      Symbol_table::PREDEFINED,
1634				      this->got_plt_,
1635				      0, 0, elfcpp::STT_OBJECT,
1636				      elfcpp::STB_LOCAL,
1637				      elfcpp::STV_HIDDEN, 0,
1638				      false, false);
1639
1640    }
1641  return this->got_;
1642}
1643
1644// Get the dynamic reloc section, creating it if necessary.
1645
1646template<int size>
1647typename Target_s390<size>::Reloc_section*
1648Target_s390<size>::rela_dyn_section(Layout* layout)
1649{
1650  if (this->rela_dyn_ == NULL)
1651    {
1652      gold_assert(layout != NULL);
1653      this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1654      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1655				      elfcpp::SHF_ALLOC, this->rela_dyn_,
1656				      ORDER_DYNAMIC_RELOCS, false);
1657    }
1658  return this->rela_dyn_;
1659}
1660
1661// Get the section to use for IRELATIVE relocs, creating it if
1662// necessary.  These go in .rela.dyn, but only after all other dynamic
1663// relocations.  They need to follow the other dynamic relocations so
1664// that they can refer to global variables initialized by those
1665// relocs.
1666
1667template<int size>
1668typename Target_s390<size>::Reloc_section*
1669Target_s390<size>::rela_irelative_section(Layout* layout)
1670{
1671  if (this->rela_irelative_ == NULL)
1672    {
1673      // Make sure we have already created the dynamic reloc section.
1674      this->rela_dyn_section(layout);
1675      this->rela_irelative_ = new Reloc_section(false);
1676      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1677				      elfcpp::SHF_ALLOC, this->rela_irelative_,
1678				      ORDER_DYNAMIC_RELOCS, false);
1679      gold_assert(this->rela_dyn_->output_section()
1680		  == this->rela_irelative_->output_section());
1681    }
1682  return this->rela_irelative_;
1683}
1684
1685// Write the first three reserved words of the .got.plt section.
1686// The remainder of the section is written while writing the PLT
1687// in Output_data_plt_s390::do_write.
1688
1689template<int size>
1690void
1691Output_data_got_plt_s390<size>::do_write(Output_file* of)
1692{
1693  // The first entry in the GOT is the address of the .dynamic section
1694  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1695  // We saved space for them when we created the section in
1696  // Target_x86_64::got_section.
1697  const off_t got_file_offset = this->offset();
1698  gold_assert(this->data_size() >= 3 * size / 8);
1699  unsigned char* const got_view =
1700      of->get_output_view(got_file_offset, 3 * size / 8);
1701  Output_section* dynamic = this->layout_->dynamic_section();
1702  uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1703  elfcpp::Swap<size, true>::writeval(got_view, dynamic_addr);
1704  memset(got_view + size / 8, 0, 2 * size / 8);
1705  of->write_output_view(got_file_offset, 3 * size / 8, got_view);
1706}
1707
1708// Create the PLT section.
1709
1710template<int size>
1711void
1712Target_s390<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1713{
1714  if (this->plt_ == NULL)
1715    {
1716      // Create the GOT sections first.
1717      this->got_section(symtab, layout);
1718
1719      // Ensure that .rela.dyn always appears before .rela.plt  This is
1720      // necessary due to how, on 32-bit S/390 and some other targets,
1721      // .rela.dyn needs to include .rela.plt in it's range.
1722      this->rela_dyn_section(layout);
1723
1724      this->plt_ = new Output_data_plt_s390<size>(layout,
1725		      this->got_, this->got_plt_, this->got_irelative_);
1726
1727      // Add unwind information if requested.
1728      if (parameters->options().ld_generated_unwind_info())
1729	this->plt_->add_eh_frame(layout);
1730
1731      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1732				      (elfcpp::SHF_ALLOC
1733				       | elfcpp::SHF_EXECINSTR),
1734				      this->plt_, ORDER_PLT, false);
1735
1736      // Make the sh_info field of .rela.plt point to .plt.
1737      Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1738      rela_plt_os->set_info_section(this->plt_->output_section());
1739    }
1740}
1741
1742// Create a PLT entry for a global symbol.
1743
1744template<int size>
1745void
1746Target_s390<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1747				    Symbol* gsym)
1748{
1749  if (gsym->has_plt_offset())
1750    return;
1751
1752  if (this->plt_ == NULL)
1753    this->make_plt_section(symtab, layout);
1754
1755  this->plt_->add_entry(symtab, layout, gsym);
1756}
1757
1758// Make a PLT entry for a local STT_GNU_IFUNC symbol.
1759
1760template<int size>
1761void
1762Target_s390<size>::make_local_ifunc_plt_entry(
1763    Symbol_table* symtab, Layout* layout,
1764    Sized_relobj_file<size, true>* relobj,
1765    unsigned int local_sym_index)
1766{
1767  if (relobj->local_has_plt_offset(local_sym_index))
1768    return;
1769  if (this->plt_ == NULL)
1770    this->make_plt_section(symtab, layout);
1771  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1772							      relobj,
1773							      local_sym_index);
1774  relobj->set_local_plt_offset(local_sym_index, plt_offset);
1775}
1776
1777// Return the number of entries in the PLT.
1778
1779template<int size>
1780unsigned int
1781Target_s390<size>::plt_entry_count() const
1782{
1783  if (this->plt_ == NULL)
1784    return 0;
1785  return this->plt_->entry_count();
1786}
1787
1788// Return the offset of the first non-reserved PLT entry.
1789
1790template<int size>
1791unsigned int
1792Target_s390<size>::first_plt_entry_offset() const
1793{
1794  return this->plt_->first_plt_entry_offset();
1795}
1796
1797// Return the size of each PLT entry.
1798
1799template<int size>
1800unsigned int
1801Target_s390<size>::plt_entry_size() const
1802{
1803  return this->plt_->get_plt_entry_size();
1804}
1805
1806// Create the GOT and PLT sections for an incremental update.
1807
1808template<int size>
1809Output_data_got_base*
1810Target_s390<size>::init_got_plt_for_update(Symbol_table* symtab,
1811				       Layout* layout,
1812				       unsigned int got_count,
1813				       unsigned int plt_count)
1814{
1815  gold_assert(this->got_ == NULL);
1816
1817  // Add the three reserved entries.
1818  this->got_plt_ = new Output_data_got_plt_s390<size>(layout, (plt_count + 3) * size / 8);
1819  layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1820				  (elfcpp::SHF_ALLOC
1821				   | elfcpp::SHF_WRITE),
1822				  this->got_plt_, ORDER_NON_RELRO_FIRST,
1823				  false);
1824
1825  // If there are any IRELATIVE relocations, they get GOT entries in
1826  // .got.plt after the jump slot entries.
1827  this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
1828  layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1829				  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1830				  this->got_irelative_,
1831				  ORDER_NON_RELRO_FIRST, false);
1832
1833  this->got_ = new Output_data_got<size, true>(got_count * size / 8);
1834  layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1835				  (elfcpp::SHF_ALLOC
1836				   | elfcpp::SHF_WRITE),
1837				  this->got_, ORDER_RELRO_LAST,
1838				  true);
1839
1840  // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1841  this->global_offset_table_ =
1842    symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1843				  Symbol_table::PREDEFINED,
1844				  this->got_plt_,
1845				  0, 0, elfcpp::STT_OBJECT,
1846				  elfcpp::STB_LOCAL,
1847				  elfcpp::STV_HIDDEN, 0,
1848				  false, false);
1849
1850  // Create the PLT section.
1851  this->plt_ = new Output_data_plt_s390<size>(layout,
1852		  this->got_, this->got_plt_, this->got_irelative_, plt_count);
1853
1854  // Add unwind information if requested.
1855  if (parameters->options().ld_generated_unwind_info())
1856    this->plt_->add_eh_frame(layout);
1857
1858  layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1859				  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1860				  this->plt_, ORDER_PLT, false);
1861
1862  // Make the sh_info field of .rela.plt point to .plt.
1863  Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1864  rela_plt_os->set_info_section(this->plt_->output_section());
1865
1866  // Create the rela_dyn section.
1867  this->rela_dyn_section(layout);
1868
1869  return this->got_;
1870}
1871
1872// Reserve a GOT entry for a local symbol, and regenerate any
1873// necessary dynamic relocations.
1874
1875template<int size>
1876void
1877Target_s390<size>::reserve_local_got_entry(
1878    unsigned int got_index,
1879    Sized_relobj<size, true>* obj,
1880    unsigned int r_sym,
1881    unsigned int got_type)
1882{
1883  unsigned int got_offset = got_index * size / 8;
1884  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1885
1886  this->got_->reserve_local(got_index, obj, r_sym, got_type);
1887  switch (got_type)
1888    {
1889    case GOT_TYPE_STANDARD:
1890      if (parameters->options().output_is_position_independent())
1891	rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE,
1892				     this->got_, got_offset, 0, false);
1893      break;
1894    case GOT_TYPE_TLS_OFFSET:
1895      rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF,
1896			  this->got_, got_offset, 0);
1897      break;
1898    case GOT_TYPE_TLS_PAIR:
1899      this->got_->reserve_slot(got_index + 1);
1900      rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD,
1901			  this->got_, got_offset, 0);
1902      break;
1903    default:
1904      gold_unreachable();
1905    }
1906}
1907
1908// Reserve a GOT entry for a global symbol, and regenerate any
1909// necessary dynamic relocations.
1910
1911template<int size>
1912void
1913Target_s390<size>::reserve_global_got_entry(unsigned int got_index,
1914					      Symbol* gsym,
1915					      unsigned int got_type)
1916{
1917  unsigned int got_offset = got_index * size / 8;
1918  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1919
1920  this->got_->reserve_global(got_index, gsym, got_type);
1921  switch (got_type)
1922    {
1923    case GOT_TYPE_STANDARD:
1924      if (!gsym->final_value_is_known())
1925	{
1926	  if (gsym->is_from_dynobj()
1927	      || gsym->is_undefined()
1928	      || gsym->is_preemptible()
1929	      || gsym->type() == elfcpp::STT_GNU_IFUNC)
1930	    rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT,
1931				 this->got_, got_offset, 0);
1932	  else
1933	    rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
1934					  this->got_, got_offset, 0, false);
1935	}
1936      break;
1937    case GOT_TYPE_TLS_OFFSET:
1938      rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF,
1939				    this->got_, got_offset, 0, false);
1940      break;
1941    case GOT_TYPE_TLS_PAIR:
1942      this->got_->reserve_slot(got_index + 1);
1943      rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD,
1944				    this->got_, got_offset, 0, false);
1945      rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF,
1946				    this->got_, got_offset + size / 8, 0, false);
1947      break;
1948    default:
1949      gold_unreachable();
1950    }
1951}
1952
1953// Register an existing PLT entry for a global symbol.
1954
1955template<int size>
1956void
1957Target_s390<size>::register_global_plt_entry(Symbol_table* symtab,
1958					       Layout* layout,
1959					       unsigned int plt_index,
1960					       Symbol* gsym)
1961{
1962  gold_assert(this->plt_ != NULL);
1963  gold_assert(!gsym->has_plt_offset());
1964
1965  this->plt_->reserve_slot(plt_index);
1966
1967  gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1968
1969  unsigned int got_offset = (plt_index + 3) * size / 8;
1970  this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1971}
1972
1973// Force a COPY relocation for a given symbol.
1974
1975template<int size>
1976void
1977Target_s390<size>::emit_copy_reloc(
1978    Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1979{
1980  this->copy_relocs_.emit_copy_reloc(symtab,
1981				     symtab->get_sized_symbol<size>(sym),
1982				     os,
1983				     offset,
1984				     this->rela_dyn_section(NULL));
1985}
1986
1987// Create a GOT entry for the TLS module index.
1988
1989template<int size>
1990unsigned int
1991Target_s390<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1992					 Sized_relobj_file<size, true>* object)
1993{
1994  if (this->got_mod_index_offset_ == -1U)
1995    {
1996      gold_assert(symtab != NULL && layout != NULL && object != NULL);
1997      Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1998      Output_data_got<size, true>* got = this->got_section(symtab, layout);
1999      unsigned int got_offset = got->add_constant(0);
2000      rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got,
2001			  got_offset, 0);
2002      got->add_constant(0);
2003      this->got_mod_index_offset_ = got_offset;
2004    }
2005  return this->got_mod_index_offset_;
2006}
2007
2008// Optimize the TLS relocation type based on what we know about the
2009// symbol.  IS_FINAL is true if the final address of this symbol is
2010// known at link time.
2011
2012template<int size>
2013tls::Tls_optimization
2014Target_s390<size>::optimize_tls_reloc(bool is_final, int r_type)
2015{
2016  // If we are generating a shared library, then we can't do anything
2017  // in the linker.
2018  if (parameters->options().shared())
2019    return tls::TLSOPT_NONE;
2020
2021  switch (r_type)
2022    {
2023    case elfcpp::R_390_TLS_GD32:
2024    case elfcpp::R_390_TLS_GD64:
2025    case elfcpp::R_390_TLS_GDCALL:
2026      // These are General-Dynamic which permits fully general TLS
2027      // access.  Since we know that we are generating an executable,
2028      // we can convert this to Initial-Exec.  If we also know that
2029      // this is a local symbol, we can further switch to Local-Exec.
2030      if (is_final)
2031	return tls::TLSOPT_TO_LE;
2032      return tls::TLSOPT_TO_IE;
2033
2034    case elfcpp::R_390_TLS_LDM32:
2035    case elfcpp::R_390_TLS_LDM64:
2036    case elfcpp::R_390_TLS_LDO32:
2037    case elfcpp::R_390_TLS_LDO64:
2038    case elfcpp::R_390_TLS_LDCALL:
2039      // This is Local-Dynamic, which refers to a local symbol in the
2040      // dynamic TLS block.  Since we know that we generating an
2041      // executable, we can switch to Local-Exec.
2042      return tls::TLSOPT_TO_LE;
2043
2044    case elfcpp::R_390_TLS_IE32:
2045    case elfcpp::R_390_TLS_IE64:
2046    case elfcpp::R_390_TLS_GOTIE32:
2047    case elfcpp::R_390_TLS_GOTIE64:
2048    case elfcpp::R_390_TLS_LOAD:
2049      // These are Initial-Exec relocs which get the thread offset
2050      // from the GOT.  If we know that we are linking against the
2051      // local symbol, we can switch to Local-Exec, which links the
2052      // thread offset into the instruction.
2053      if (is_final)
2054	return tls::TLSOPT_TO_LE;
2055      return tls::TLSOPT_NONE;
2056
2057    case elfcpp::R_390_TLS_GOTIE12:
2058    case elfcpp::R_390_TLS_IEENT:
2059    case elfcpp::R_390_TLS_GOTIE20:
2060      // These are Initial-Exec, but cannot be optimized.
2061      return tls::TLSOPT_NONE;
2062
2063    case elfcpp::R_390_TLS_LE32:
2064    case elfcpp::R_390_TLS_LE64:
2065      // When we already have Local-Exec, there is nothing further we
2066      // can do.
2067      return tls::TLSOPT_NONE;
2068
2069    default:
2070      gold_unreachable();
2071    }
2072}
2073
2074// Get the Reference_flags for a particular relocation.
2075
2076template<int size>
2077int
2078Target_s390<size>::Scan::get_reference_flags(unsigned int r_type)
2079{
2080  switch (r_type)
2081    {
2082    case elfcpp::R_390_NONE:
2083    case elfcpp::R_390_GNU_VTINHERIT:
2084    case elfcpp::R_390_GNU_VTENTRY:
2085    case elfcpp::R_390_GOTPC:
2086    case elfcpp::R_390_GOTPCDBL:
2087      // No symbol reference.
2088      return 0;
2089
2090    case elfcpp::R_390_64:
2091    case elfcpp::R_390_32:
2092    case elfcpp::R_390_20:
2093    case elfcpp::R_390_16:
2094    case elfcpp::R_390_12:
2095    case elfcpp::R_390_8:
2096      return Symbol::ABSOLUTE_REF;
2097
2098    case elfcpp::R_390_PC12DBL:
2099    case elfcpp::R_390_PC16:
2100    case elfcpp::R_390_PC16DBL:
2101    case elfcpp::R_390_PC24DBL:
2102    case elfcpp::R_390_PC32:
2103    case elfcpp::R_390_PC32DBL:
2104    case elfcpp::R_390_PC64:
2105    case elfcpp::R_390_GOTOFF16:
2106    case elfcpp::R_390_GOTOFF32:
2107    case elfcpp::R_390_GOTOFF64:
2108      return Symbol::RELATIVE_REF;
2109
2110    case elfcpp::R_390_PLT12DBL:
2111    case elfcpp::R_390_PLT16DBL:
2112    case elfcpp::R_390_PLT24DBL:
2113    case elfcpp::R_390_PLT32:
2114    case elfcpp::R_390_PLT32DBL:
2115    case elfcpp::R_390_PLT64:
2116    case elfcpp::R_390_PLTOFF16:
2117    case elfcpp::R_390_PLTOFF32:
2118    case elfcpp::R_390_PLTOFF64:
2119      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2120
2121    case elfcpp::R_390_GOT12:
2122    case elfcpp::R_390_GOT16:
2123    case elfcpp::R_390_GOT20:
2124    case elfcpp::R_390_GOT32:
2125    case elfcpp::R_390_GOT64:
2126    case elfcpp::R_390_GOTENT:
2127    case elfcpp::R_390_GOTPLT12:
2128    case elfcpp::R_390_GOTPLT16:
2129    case elfcpp::R_390_GOTPLT20:
2130    case elfcpp::R_390_GOTPLT32:
2131    case elfcpp::R_390_GOTPLT64:
2132    case elfcpp::R_390_GOTPLTENT:
2133      // Absolute in GOT.
2134      return Symbol::ABSOLUTE_REF;
2135
2136    case elfcpp::R_390_TLS_GD32:          // Global-dynamic
2137    case elfcpp::R_390_TLS_GD64:
2138    case elfcpp::R_390_TLS_GDCALL:
2139    case elfcpp::R_390_TLS_LDM32:         // Local-dynamic
2140    case elfcpp::R_390_TLS_LDM64:
2141    case elfcpp::R_390_TLS_LDO32:
2142    case elfcpp::R_390_TLS_LDO64:
2143    case elfcpp::R_390_TLS_LDCALL:
2144    case elfcpp::R_390_TLS_IE32:          // Initial-exec
2145    case elfcpp::R_390_TLS_IE64:
2146    case elfcpp::R_390_TLS_IEENT:
2147    case elfcpp::R_390_TLS_GOTIE12:
2148    case elfcpp::R_390_TLS_GOTIE20:
2149    case elfcpp::R_390_TLS_GOTIE32:
2150    case elfcpp::R_390_TLS_GOTIE64:
2151    case elfcpp::R_390_TLS_LOAD:
2152    case elfcpp::R_390_TLS_LE32:          // Local-exec
2153    case elfcpp::R_390_TLS_LE64:
2154      return Symbol::TLS_REF;
2155
2156    case elfcpp::R_390_COPY:
2157    case elfcpp::R_390_GLOB_DAT:
2158    case elfcpp::R_390_JMP_SLOT:
2159    case elfcpp::R_390_RELATIVE:
2160    case elfcpp::R_390_IRELATIVE:
2161    case elfcpp::R_390_TLS_TPOFF:
2162    case elfcpp::R_390_TLS_DTPOFF:
2163    case elfcpp::R_390_TLS_DTPMOD:
2164    default:
2165      // Not expected.  We will give an error later.
2166      return 0;
2167    }
2168}
2169
2170// Report an unsupported relocation against a local symbol.
2171
2172template<int size>
2173void
2174Target_s390<size>::Scan::unsupported_reloc_local(
2175     Sized_relobj_file<size, true>* object,
2176     unsigned int r_type)
2177{
2178  gold_error(_("%s: unsupported reloc %u against local symbol"),
2179	     object->name().c_str(), r_type);
2180}
2181
2182// We are about to emit a dynamic relocation of type R_TYPE.  If the
2183// dynamic linker does not support it, issue an error.
2184
2185template<int size>
2186void
2187Target_s390<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
2188{
2189  gold_assert(r_type != elfcpp::R_390_NONE);
2190
2191  if (size == 64)
2192    {
2193      switch (r_type)
2194	{
2195	  // These are the relocation types supported by glibc for s390 64-bit.
2196	case elfcpp::R_390_RELATIVE:
2197	case elfcpp::R_390_IRELATIVE:
2198	case elfcpp::R_390_COPY:
2199	case elfcpp::R_390_GLOB_DAT:
2200	case elfcpp::R_390_JMP_SLOT:
2201	case elfcpp::R_390_TLS_DTPMOD:
2202	case elfcpp::R_390_TLS_DTPOFF:
2203	case elfcpp::R_390_TLS_TPOFF:
2204	case elfcpp::R_390_8:
2205	case elfcpp::R_390_16:
2206	case elfcpp::R_390_32:
2207	case elfcpp::R_390_64:
2208	case elfcpp::R_390_PC16:
2209	case elfcpp::R_390_PC16DBL:
2210	case elfcpp::R_390_PC32:
2211	case elfcpp::R_390_PC32DBL:
2212	case elfcpp::R_390_PC64:
2213	  return;
2214
2215	default:
2216	  break;
2217	}
2218    }
2219  else
2220    {
2221      switch (r_type)
2222	{
2223	  // These are the relocation types supported by glibc for s390 32-bit.
2224	case elfcpp::R_390_RELATIVE:
2225	case elfcpp::R_390_IRELATIVE:
2226	case elfcpp::R_390_COPY:
2227	case elfcpp::R_390_GLOB_DAT:
2228	case elfcpp::R_390_JMP_SLOT:
2229	case elfcpp::R_390_TLS_DTPMOD:
2230	case elfcpp::R_390_TLS_DTPOFF:
2231	case elfcpp::R_390_TLS_TPOFF:
2232	case elfcpp::R_390_8:
2233	case elfcpp::R_390_16:
2234	case elfcpp::R_390_32:
2235	case elfcpp::R_390_PC16:
2236	case elfcpp::R_390_PC16DBL:
2237	case elfcpp::R_390_PC32:
2238	case elfcpp::R_390_PC32DBL:
2239	  return;
2240
2241	default:
2242	  break;
2243	}
2244    }
2245
2246  // This prevents us from issuing more than one error per reloc
2247  // section.  But we can still wind up issuing more than one
2248  // error per object file.
2249  if (this->issued_non_pic_error_)
2250    return;
2251  gold_assert(parameters->options().output_is_position_independent());
2252  object->error(_("requires unsupported dynamic reloc; "
2253		  "recompile with -fPIC"));
2254  this->issued_non_pic_error_ = true;
2255  return;
2256}
2257
2258// Return whether we need to make a PLT entry for a relocation of the
2259// given type against a STT_GNU_IFUNC symbol.
2260
2261template<int size>
2262bool
2263Target_s390<size>::Scan::reloc_needs_plt_for_ifunc(
2264     Sized_relobj_file<size, true>* object,
2265     unsigned int r_type)
2266{
2267  int flags = Scan::get_reference_flags(r_type);
2268  if (flags & Symbol::TLS_REF)
2269    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2270	       object->name().c_str(), r_type);
2271  return flags != 0;
2272}
2273
2274// Scan a relocation for a local symbol.
2275
2276template<int size>
2277inline void
2278Target_s390<size>::Scan::local(Symbol_table* symtab,
2279				 Layout* layout,
2280				 Target_s390<size>* target,
2281				 Sized_relobj_file<size, true>* object,
2282				 unsigned int data_shndx,
2283				 Output_section* output_section,
2284				 const elfcpp::Rela<size, true>& reloc,
2285				 unsigned int r_type,
2286				 const elfcpp::Sym<size, true>& lsym,
2287				 bool is_discarded)
2288{
2289  if (is_discarded)
2290    return;
2291
2292  // A local STT_GNU_IFUNC symbol may require a PLT entry.
2293  bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2294
2295  if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2296    {
2297      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2298      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2299    }
2300
2301  switch (r_type)
2302    {
2303    case elfcpp::R_390_NONE:
2304    case elfcpp::R_390_GNU_VTINHERIT:
2305    case elfcpp::R_390_GNU_VTENTRY:
2306      break;
2307
2308    case elfcpp::R_390_64:
2309      // If building a shared library (or a position-independent
2310      // executable), we need to create a dynamic relocation for this
2311      // location.  The relocation applied at link time will apply the
2312      // link-time value, so we flag the location with an
2313      // R_390_RELATIVE relocation so the dynamic loader can
2314      // relocate it easily.
2315      if (parameters->options().output_is_position_independent() && size == 64)
2316	{
2317	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2318	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2319	  rela_dyn->add_local_relative(object, r_sym,
2320				       elfcpp::R_390_RELATIVE,
2321				       output_section, data_shndx,
2322				       reloc.get_r_offset(),
2323				       reloc.get_r_addend(), is_ifunc);
2324	}
2325      break;
2326
2327    case elfcpp::R_390_32:
2328    case elfcpp::R_390_20:
2329    case elfcpp::R_390_16:
2330    case elfcpp::R_390_12:
2331    case elfcpp::R_390_8:
2332      if (parameters->options().output_is_position_independent())
2333	{
2334	  if (size == 32 && r_type == elfcpp::R_390_32)
2335	    {
2336	      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2337	      Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2338	      rela_dyn->add_local_relative(object, r_sym,
2339					   elfcpp::R_390_RELATIVE,
2340					   output_section, data_shndx,
2341					   reloc.get_r_offset(),
2342					   reloc.get_r_addend(), is_ifunc);
2343	      break;
2344	    }
2345
2346	  check_non_pic(object, r_type);
2347
2348	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2349	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2350	  if (lsym.get_st_type() != elfcpp::STT_SECTION)
2351	    rela_dyn->add_local(object, r_sym, r_type, output_section,
2352				data_shndx, reloc.get_r_offset(),
2353				reloc.get_r_addend());
2354	  else
2355	    {
2356	      gold_assert(lsym.get_st_value() == 0);
2357	      unsigned int shndx = lsym.get_st_shndx();
2358	      bool is_ordinary;
2359	      shndx = object->adjust_sym_shndx(r_sym, shndx,
2360					       &is_ordinary);
2361	      if (!is_ordinary)
2362		object->error(_("section symbol %u has bad shndx %u"),
2363			      r_sym, shndx);
2364	      else
2365		rela_dyn->add_local_section(object, shndx,
2366					    r_type, output_section,
2367					    data_shndx, reloc.get_r_offset(),
2368					    reloc.get_r_addend());
2369	    }
2370	}
2371      break;
2372
2373    case elfcpp::R_390_PC12DBL:
2374    case elfcpp::R_390_PC16:
2375    case elfcpp::R_390_PC16DBL:
2376    case elfcpp::R_390_PC24DBL:
2377    case elfcpp::R_390_PC32:
2378    case elfcpp::R_390_PC32DBL:
2379    case elfcpp::R_390_PC64:
2380      break;
2381
2382    case elfcpp::R_390_PLT12DBL:
2383    case elfcpp::R_390_PLT16DBL:
2384    case elfcpp::R_390_PLT24DBL:
2385    case elfcpp::R_390_PLT32:
2386    case elfcpp::R_390_PLT32DBL:
2387    case elfcpp::R_390_PLT64:
2388      // Since we know this is a local symbol, we can handle this as a
2389      // PC32 reloc.
2390      break;
2391
2392    case elfcpp::R_390_GOTPC:
2393    case elfcpp::R_390_GOTPCDBL:
2394    case elfcpp::R_390_GOTOFF16:
2395    case elfcpp::R_390_GOTOFF32:
2396    case elfcpp::R_390_GOTOFF64:
2397    case elfcpp::R_390_PLTOFF16:
2398    case elfcpp::R_390_PLTOFF32:
2399    case elfcpp::R_390_PLTOFF64:
2400      // We need a GOT section.
2401      target->got_section(symtab, layout);
2402      // For PLTOFF*, we'd normally want a PLT section, but since we
2403      // know this is a local symbol, no PLT is needed.
2404      break;
2405
2406    case elfcpp::R_390_GOT12:
2407    case elfcpp::R_390_GOT16:
2408    case elfcpp::R_390_GOT20:
2409    case elfcpp::R_390_GOT32:
2410    case elfcpp::R_390_GOT64:
2411    case elfcpp::R_390_GOTENT:
2412    case elfcpp::R_390_GOTPLT12:
2413    case elfcpp::R_390_GOTPLT16:
2414    case elfcpp::R_390_GOTPLT20:
2415    case elfcpp::R_390_GOTPLT32:
2416    case elfcpp::R_390_GOTPLT64:
2417    case elfcpp::R_390_GOTPLTENT:
2418      {
2419	// The symbol requires a GOT section.
2420	Output_data_got<size, true>* got = target->got_section(symtab, layout);
2421
2422	// The symbol requires a GOT entry.
2423	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2424
2425	// For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2426	// lets function pointers compare correctly with shared
2427	// libraries.  Otherwise we would need an IRELATIVE reloc.
2428	bool is_new;
2429	if (is_ifunc)
2430	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2431	else
2432	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2433	if (is_new)
2434	  {
2435	    // If we are generating a shared object, we need to add a
2436	    // dynamic relocation for this symbol's GOT entry.
2437	    if (parameters->options().output_is_position_independent())
2438	      {
2439		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2440		unsigned int got_offset =
2441		  object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2442		rela_dyn->add_local_relative(object, r_sym,
2443					     elfcpp::R_390_RELATIVE,
2444					     got, got_offset, 0, is_ifunc);
2445	      }
2446	  }
2447	// For GOTPLT*, we'd normally want a PLT section, but since
2448	// we know this is a local symbol, no PLT is needed.
2449      }
2450      break;
2451
2452    case elfcpp::R_390_COPY:
2453    case elfcpp::R_390_GLOB_DAT:
2454    case elfcpp::R_390_JMP_SLOT:
2455    case elfcpp::R_390_RELATIVE:
2456    case elfcpp::R_390_IRELATIVE:
2457      // These are outstanding tls relocs, which are unexpected when linking
2458    case elfcpp::R_390_TLS_TPOFF:
2459    case elfcpp::R_390_TLS_DTPOFF:
2460    case elfcpp::R_390_TLS_DTPMOD:
2461      gold_error(_("%s: unexpected reloc %u in object file"),
2462		 object->name().c_str(), r_type);
2463      break;
2464
2465      // These are initial tls relocs, which are expected when linking
2466    case elfcpp::R_390_TLS_GD32:          // Global-dynamic
2467    case elfcpp::R_390_TLS_GD64:
2468    case elfcpp::R_390_TLS_GDCALL:
2469    case elfcpp::R_390_TLS_LDM32:         // Local-dynamic
2470    case elfcpp::R_390_TLS_LDM64:
2471    case elfcpp::R_390_TLS_LDO32:
2472    case elfcpp::R_390_TLS_LDO64:
2473    case elfcpp::R_390_TLS_LDCALL:
2474    case elfcpp::R_390_TLS_IE32:          // Initial-exec
2475    case elfcpp::R_390_TLS_IE64:
2476    case elfcpp::R_390_TLS_IEENT:
2477    case elfcpp::R_390_TLS_GOTIE12:
2478    case elfcpp::R_390_TLS_GOTIE20:
2479    case elfcpp::R_390_TLS_GOTIE32:
2480    case elfcpp::R_390_TLS_GOTIE64:
2481    case elfcpp::R_390_TLS_LOAD:
2482    case elfcpp::R_390_TLS_LE32:          // Local-exec
2483    case elfcpp::R_390_TLS_LE64:
2484      {
2485	bool output_is_shared = parameters->options().shared();
2486	const tls::Tls_optimization optimized_type
2487	    = Target_s390<size>::optimize_tls_reloc(!output_is_shared,
2488						      r_type);
2489	switch (r_type)
2490	  {
2491	  case elfcpp::R_390_TLS_GD32:       // General-dynamic
2492	  case elfcpp::R_390_TLS_GD64:
2493	  case elfcpp::R_390_TLS_GDCALL:
2494	    if (optimized_type == tls::TLSOPT_NONE)
2495	      {
2496		// Create a pair of GOT entries for the module index and
2497		// dtv-relative offset.
2498		Output_data_got<size, true>* got
2499		    = target->got_section(symtab, layout);
2500		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2501		unsigned int shndx = lsym.get_st_shndx();
2502		bool is_ordinary;
2503		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2504		if (!is_ordinary)
2505		  object->error(_("local symbol %u has bad shndx %u"),
2506			      r_sym, shndx);
2507		else
2508		  got->add_local_pair_with_rel(object, r_sym,
2509					       shndx,
2510					       GOT_TYPE_TLS_PAIR,
2511					       target->rela_dyn_section(layout),
2512					       elfcpp::R_390_TLS_DTPMOD);
2513	      }
2514	    else if (optimized_type != tls::TLSOPT_TO_LE)
2515	      unsupported_reloc_local(object, r_type);
2516	    break;
2517
2518	  case elfcpp::R_390_TLS_LDM32:       // Local-dynamic
2519	  case elfcpp::R_390_TLS_LDM64:
2520	  case elfcpp::R_390_TLS_LDCALL:
2521	    if (optimized_type == tls::TLSOPT_NONE)
2522	      {
2523		// Create a GOT entry for the module index.
2524		target->got_mod_index_entry(symtab, layout, object);
2525	      }
2526	    else if (optimized_type != tls::TLSOPT_TO_LE)
2527	      unsupported_reloc_local(object, r_type);
2528	    break;
2529
2530	  case elfcpp::R_390_TLS_LDO32:
2531	  case elfcpp::R_390_TLS_LDO64:
2532	    break;
2533
2534	  case elfcpp::R_390_TLS_IE32:    // Initial-exec
2535	  case elfcpp::R_390_TLS_IE64:
2536	    // These two involve an absolute address
2537	    if (parameters->options().shared()
2538		&& optimized_type == tls::TLSOPT_NONE)
2539	      {
2540		if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2541		    (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2542		  {
2543		    // We need to create a dynamic relocation.
2544		    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2545		    unsigned int r_sym =
2546			elfcpp::elf_r_sym<size>(reloc.get_r_info());
2547		    rela_dyn->add_local_relative(object, r_sym,
2548						elfcpp::R_390_RELATIVE,
2549						output_section, data_shndx,
2550						reloc.get_r_offset(),
2551						reloc.get_r_addend(), false);
2552		  }
2553		else
2554		  {
2555		    unsupported_reloc_local(object, r_type);
2556		  }
2557	      }
2558	    // Fall through.
2559	  case elfcpp::R_390_TLS_IEENT:
2560	  case elfcpp::R_390_TLS_GOTIE12:
2561	  case elfcpp::R_390_TLS_GOTIE20:
2562	  case elfcpp::R_390_TLS_GOTIE32:
2563	  case elfcpp::R_390_TLS_GOTIE64:
2564	  case elfcpp::R_390_TLS_LOAD:
2565	    layout->set_has_static_tls();
2566	    if (optimized_type == tls::TLSOPT_NONE)
2567	      {
2568		if (!output_is_shared)
2569		  {
2570		    // We're making an executable, and the symbol is local, but
2571		    // we cannot optimize to LE.  Make a const GOT entry instead.
2572		    Output_data_got<size, true>* got
2573			= target->got_section(symtab, layout);
2574		    unsigned int r_sym
2575			= elfcpp::elf_r_sym<size>(reloc.get_r_info());
2576		    got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET);
2577		  }
2578		else
2579		{
2580		  // Create a GOT entry for the tp-relative offset.
2581		  Output_data_got<size, true>* got
2582		      = target->got_section(symtab, layout);
2583		  unsigned int r_sym
2584		      = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2585		  got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2586					  target->rela_dyn_section(layout),
2587					  elfcpp::R_390_TLS_TPOFF);
2588		}
2589	      }
2590	    else if (optimized_type != tls::TLSOPT_TO_LE)
2591	      unsupported_reloc_local(object, r_type);
2592	    break;
2593
2594	  case elfcpp::R_390_TLS_LE32:     // Local-exec
2595	  case elfcpp::R_390_TLS_LE64:
2596	    layout->set_has_static_tls();
2597	    if (output_is_shared)
2598	    {
2599	      // We need to create a dynamic relocation.
2600	      if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2601	          (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2602		{
2603		  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2604		  unsigned int r_sym
2605		      = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2606		  gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2607		  rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF,
2608				      output_section, data_shndx,
2609				      reloc.get_r_offset(),
2610				      reloc.get_r_addend());
2611		}
2612	      else
2613		{
2614		  unsupported_reloc_local(object, r_type);
2615		}
2616	    }
2617	    break;
2618
2619	  default:
2620	    gold_unreachable();
2621	  }
2622      }
2623      break;
2624
2625    default:
2626      gold_error(_("%s: unsupported reloc %u against local symbol"),
2627		 object->name().c_str(), r_type);
2628      break;
2629    }
2630}
2631
2632// Scan a relocation for a global symbol.
2633
2634template<int size>
2635inline void
2636Target_s390<size>::Scan::global(Symbol_table* symtab,
2637			    Layout* layout,
2638			    Target_s390<size>* target,
2639			    Sized_relobj_file<size, true>* object,
2640			    unsigned int data_shndx,
2641			    Output_section* output_section,
2642			    const elfcpp::Rela<size, true>& reloc,
2643			    unsigned int r_type,
2644			    Symbol* gsym)
2645{
2646  // A STT_GNU_IFUNC symbol may require a PLT entry.
2647  if (gsym->type() == elfcpp::STT_GNU_IFUNC
2648      && this->reloc_needs_plt_for_ifunc(object, r_type))
2649    target->make_plt_entry(symtab, layout, gsym);
2650
2651  switch (r_type)
2652    {
2653    case elfcpp::R_390_NONE:
2654    case elfcpp::R_390_GNU_VTINHERIT:
2655    case elfcpp::R_390_GNU_VTENTRY:
2656      break;
2657
2658    case elfcpp::R_390_64:
2659    case elfcpp::R_390_32:
2660    case elfcpp::R_390_20:
2661    case elfcpp::R_390_16:
2662    case elfcpp::R_390_12:
2663    case elfcpp::R_390_8:
2664      {
2665	// Make a PLT entry if necessary.
2666	if (gsym->needs_plt_entry())
2667	  {
2668	    target->make_plt_entry(symtab, layout, gsym);
2669	    // Since this is not a PC-relative relocation, we may be
2670	    // taking the address of a function. In that case we need to
2671	    // set the entry in the dynamic symbol table to the address of
2672	    // the PLT entry.
2673	    if (gsym->is_from_dynobj() && !parameters->options().shared())
2674	      gsym->set_needs_dynsym_value();
2675	  }
2676	// Make a dynamic relocation if necessary.
2677	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2678	  {
2679	    if (!parameters->options().output_is_position_independent()
2680		&& gsym->may_need_copy_reloc())
2681	      {
2682		target->copy_reloc(symtab, layout, object,
2683				   data_shndx, output_section, gsym, reloc);
2684	      }
2685	    else if (((size == 64 && r_type == elfcpp::R_390_64)
2686		      || (size == 32 && r_type == elfcpp::R_390_32))
2687		     && gsym->type() == elfcpp::STT_GNU_IFUNC
2688		     && gsym->can_use_relative_reloc(false)
2689		     && !gsym->is_from_dynobj()
2690		     && !gsym->is_undefined()
2691		     && !gsym->is_preemptible())
2692	      {
2693		// Use an IRELATIVE reloc for a locally defined
2694		// STT_GNU_IFUNC symbol.  This makes a function
2695		// address in a PIE executable match the address in a
2696		// shared library that it links against.
2697		Reloc_section* rela_dyn =
2698		  target->rela_irelative_section(layout);
2699		unsigned int r_type = elfcpp::R_390_IRELATIVE;
2700		rela_dyn->add_symbolless_global_addend(gsym, r_type,
2701						       output_section, object,
2702						       data_shndx,
2703						       reloc.get_r_offset(),
2704						       reloc.get_r_addend());
2705	      }
2706	    else if (((size == 64 && r_type == elfcpp::R_390_64)
2707		      || (size == 32 && r_type == elfcpp::R_390_32))
2708		     && gsym->can_use_relative_reloc(false))
2709	      {
2710		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2711		rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2712					      output_section, object,
2713					      data_shndx,
2714					      reloc.get_r_offset(),
2715					      reloc.get_r_addend(), false);
2716	      }
2717	    else
2718	      {
2719		check_non_pic(object, r_type);
2720		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2721		rela_dyn->add_global(gsym, r_type, output_section, object,
2722				     data_shndx, reloc.get_r_offset(),
2723				     reloc.get_r_addend());
2724	      }
2725	  }
2726      }
2727      break;
2728
2729    case elfcpp::R_390_PC12DBL:
2730    case elfcpp::R_390_PC16:
2731    case elfcpp::R_390_PC16DBL:
2732    case elfcpp::R_390_PC24DBL:
2733    case elfcpp::R_390_PC32:
2734    case elfcpp::R_390_PC32DBL:
2735    case elfcpp::R_390_PC64:
2736      {
2737	// Make a PLT entry if necessary.
2738	if (gsym->needs_plt_entry())
2739	  {
2740	    target->make_plt_entry(symtab, layout, gsym);
2741	    // larl is often used to take address of a function.  Aim the
2742	    // symbol at the PLT entry.
2743	    if (gsym->is_from_dynobj() && !parameters->options().shared())
2744	      gsym->set_needs_dynsym_value();
2745	  }
2746	// Make a dynamic relocation if necessary.
2747	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2748	  {
2749	    if (parameters->options().output_is_executable()
2750		&& gsym->may_need_copy_reloc())
2751	      {
2752		target->copy_reloc(symtab, layout, object,
2753				   data_shndx, output_section, gsym, reloc);
2754	      }
2755	    else
2756	      {
2757		check_non_pic(object, r_type);
2758		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2759		rela_dyn->add_global(gsym, r_type, output_section, object,
2760				     data_shndx, reloc.get_r_offset(),
2761				     reloc.get_r_addend());
2762	      }
2763	  }
2764      }
2765      break;
2766
2767    case elfcpp::R_390_PLT12DBL:
2768    case elfcpp::R_390_PLT16DBL:
2769    case elfcpp::R_390_PLT24DBL:
2770    case elfcpp::R_390_PLT32:
2771    case elfcpp::R_390_PLT32DBL:
2772    case elfcpp::R_390_PLT64:
2773      // If the symbol is fully resolved, this is just a PC32 reloc.
2774      // Otherwise we need a PLT entry.
2775      if (gsym->final_value_is_known())
2776	break;
2777      // If building a shared library, we can also skip the PLT entry
2778      // if the symbol is defined in the output file and is protected
2779      // or hidden.
2780      if (gsym->is_defined()
2781	  && !gsym->is_from_dynobj()
2782	  && !gsym->is_preemptible())
2783	break;
2784      target->make_plt_entry(symtab, layout, gsym);
2785      break;
2786
2787    case elfcpp::R_390_GOTPC:
2788    case elfcpp::R_390_GOTPCDBL:
2789    case elfcpp::R_390_GOTOFF16:
2790    case elfcpp::R_390_GOTOFF32:
2791    case elfcpp::R_390_GOTOFF64:
2792    case elfcpp::R_390_PLTOFF16:
2793    case elfcpp::R_390_PLTOFF32:
2794    case elfcpp::R_390_PLTOFF64:
2795      // We need a GOT section.
2796      target->got_section(symtab, layout);
2797      // For PLTOFF*, we also need a PLT entry (but only if the
2798      // symbol is not fully resolved).
2799      if ((r_type == elfcpp::R_390_PLTOFF16
2800           || r_type == elfcpp::R_390_PLTOFF32
2801	   || r_type == elfcpp::R_390_PLTOFF64)
2802	  && !gsym->final_value_is_known())
2803	target->make_plt_entry(symtab, layout, gsym);
2804      break;
2805
2806    case elfcpp::R_390_GOT12:
2807    case elfcpp::R_390_GOT16:
2808    case elfcpp::R_390_GOT20:
2809    case elfcpp::R_390_GOT32:
2810    case elfcpp::R_390_GOT64:
2811    case elfcpp::R_390_GOTENT:
2812    case elfcpp::R_390_GOTPLT12:
2813    case elfcpp::R_390_GOTPLT16:
2814    case elfcpp::R_390_GOTPLT20:
2815    case elfcpp::R_390_GOTPLT32:
2816    case elfcpp::R_390_GOTPLT64:
2817    case elfcpp::R_390_GOTPLTENT:
2818      {
2819	// The symbol requires a GOT entry.
2820	Output_data_got<size, true>* got = target->got_section(symtab, layout);
2821
2822	if (gsym->final_value_is_known())
2823	  {
2824	    // For a STT_GNU_IFUNC symbol we want the PLT address.
2825	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2826	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2827	    else
2828	      got->add_global(gsym, GOT_TYPE_STANDARD);
2829	  }
2830	else
2831	  {
2832	    // If this symbol is not fully resolved, we need to add a
2833	    // dynamic relocation for it.
2834	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2835
2836	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
2837	    //
2838	    // 1) The symbol may be defined in some other module.
2839	    //
2840	    // 2) We are building a shared library and this is a
2841	    // protected symbol; using GLOB_DAT means that the dynamic
2842	    // linker can use the address of the PLT in the main
2843	    // executable when appropriate so that function address
2844	    // comparisons work.
2845	    //
2846	    // 3) This is a STT_GNU_IFUNC symbol in position dependent
2847	    // code, again so that function address comparisons work.
2848	    if (gsym->is_from_dynobj()
2849		|| gsym->is_undefined()
2850		|| gsym->is_preemptible()
2851		|| (gsym->visibility() == elfcpp::STV_PROTECTED
2852		    && parameters->options().shared())
2853		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
2854		    && parameters->options().output_is_position_independent()))
2855	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2856				       elfcpp::R_390_GLOB_DAT);
2857	    else
2858	      {
2859		// For a STT_GNU_IFUNC symbol we want to write the PLT
2860		// offset into the GOT, so that function pointer
2861		// comparisons work correctly.
2862		bool is_new;
2863		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2864		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2865		else
2866		  {
2867		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2868		    // Tell the dynamic linker to use the PLT address
2869		    // when resolving relocations.
2870		    if (gsym->is_from_dynobj()
2871			&& !parameters->options().shared())
2872		      gsym->set_needs_dynsym_value();
2873		  }
2874		if (is_new)
2875		  {
2876		    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2877		    rela_dyn->add_global_relative(gsym,
2878						  elfcpp::R_390_RELATIVE,
2879						  got, got_off, 0, false);
2880		  }
2881	      }
2882	  }
2883      }
2884      break;
2885
2886    case elfcpp::R_390_COPY:
2887    case elfcpp::R_390_GLOB_DAT:
2888    case elfcpp::R_390_JMP_SLOT:
2889    case elfcpp::R_390_RELATIVE:
2890    case elfcpp::R_390_IRELATIVE:
2891      // These are outstanding tls relocs, which are unexpected when linking
2892    case elfcpp::R_390_TLS_TPOFF:
2893    case elfcpp::R_390_TLS_DTPOFF:
2894    case elfcpp::R_390_TLS_DTPMOD:
2895      gold_error(_("%s: unexpected reloc %u in object file"),
2896		 object->name().c_str(), r_type);
2897      break;
2898
2899      // These are initial tls relocs, which are expected for global()
2900    case elfcpp::R_390_TLS_GD32:          // Global-dynamic
2901    case elfcpp::R_390_TLS_GD64:
2902    case elfcpp::R_390_TLS_GDCALL:
2903    case elfcpp::R_390_TLS_LDM32:         // Local-dynamic
2904    case elfcpp::R_390_TLS_LDM64:
2905    case elfcpp::R_390_TLS_LDO32:
2906    case elfcpp::R_390_TLS_LDO64:
2907    case elfcpp::R_390_TLS_LDCALL:
2908    case elfcpp::R_390_TLS_IE32:          // Initial-exec
2909    case elfcpp::R_390_TLS_IE64:
2910    case elfcpp::R_390_TLS_IEENT:
2911    case elfcpp::R_390_TLS_GOTIE12:
2912    case elfcpp::R_390_TLS_GOTIE20:
2913    case elfcpp::R_390_TLS_GOTIE32:
2914    case elfcpp::R_390_TLS_GOTIE64:
2915    case elfcpp::R_390_TLS_LOAD:
2916    case elfcpp::R_390_TLS_LE32:          // Local-exec
2917    case elfcpp::R_390_TLS_LE64:
2918      {
2919	// For the optimizable Initial-Exec model, we can treat undef symbols
2920	// as final when building an executable.
2921	const bool is_final = (gsym->final_value_is_known() ||
2922			       ((r_type == elfcpp::R_390_TLS_IE32 ||
2923			         r_type == elfcpp::R_390_TLS_IE64 ||
2924			         r_type == elfcpp::R_390_TLS_GOTIE32 ||
2925			         r_type == elfcpp::R_390_TLS_GOTIE64) &&
2926			        gsym->is_undefined() &&
2927				parameters->options().output_is_executable()));
2928	const tls::Tls_optimization optimized_type
2929	    = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
2930	switch (r_type)
2931	  {
2932	  case elfcpp::R_390_TLS_GD32:       // General-dynamic
2933	  case elfcpp::R_390_TLS_GD64:
2934	  case elfcpp::R_390_TLS_GDCALL:
2935	    if (optimized_type == tls::TLSOPT_NONE)
2936	      {
2937		// Create a pair of GOT entries for the module index and
2938		// dtv-relative offset.
2939		Output_data_got<size, true>* got
2940		    = target->got_section(symtab, layout);
2941		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2942					      target->rela_dyn_section(layout),
2943					      elfcpp::R_390_TLS_DTPMOD,
2944					      elfcpp::R_390_TLS_DTPOFF);
2945	      }
2946	    else if (optimized_type == tls::TLSOPT_TO_IE)
2947	      {
2948		// Create a GOT entry for the tp-relative offset.
2949		Output_data_got<size, true>* got
2950		    = target->got_section(symtab, layout);
2951		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2952					 target->rela_dyn_section(layout),
2953					 elfcpp::R_390_TLS_TPOFF);
2954	      }
2955	    else if (optimized_type != tls::TLSOPT_TO_LE)
2956	      unsupported_reloc_global(object, r_type, gsym);
2957	    break;
2958
2959	  case elfcpp::R_390_TLS_LDM32:       // Local-dynamic
2960	  case elfcpp::R_390_TLS_LDM64:
2961	  case elfcpp::R_390_TLS_LDCALL:
2962	    if (optimized_type == tls::TLSOPT_NONE)
2963	      {
2964		// Create a GOT entry for the module index.
2965		target->got_mod_index_entry(symtab, layout, object);
2966	      }
2967	    else if (optimized_type != tls::TLSOPT_TO_LE)
2968	      unsupported_reloc_global(object, r_type, gsym);
2969	    break;
2970
2971	  case elfcpp::R_390_TLS_LDO32:
2972	  case elfcpp::R_390_TLS_LDO64:
2973	    break;
2974
2975	  case elfcpp::R_390_TLS_IE32:    // Initial-exec
2976	  case elfcpp::R_390_TLS_IE64:
2977	    // These two involve an absolute address
2978	    if (parameters->options().shared())
2979	      {
2980		if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2981		    (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2982		  {
2983		    // We need to create a dynamic relocation.
2984		    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2985		    rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2986						  output_section, object,
2987						  data_shndx,
2988						  reloc.get_r_offset(),
2989						  reloc.get_r_addend(), false);
2990		  }
2991		else
2992		  {
2993		    unsupported_reloc_global(object, r_type, gsym);
2994		  }
2995	      }
2996	    // Fall through.
2997	  case elfcpp::R_390_TLS_IEENT:
2998	  case elfcpp::R_390_TLS_GOTIE12:
2999	  case elfcpp::R_390_TLS_GOTIE20:
3000	  case elfcpp::R_390_TLS_GOTIE32:
3001	  case elfcpp::R_390_TLS_GOTIE64:
3002	  case elfcpp::R_390_TLS_LOAD:
3003	    layout->set_has_static_tls();
3004	    if (optimized_type == tls::TLSOPT_NONE)
3005	      {
3006		if (is_final && !parameters->options().shared())
3007		  {
3008		    // We're making an executable, and the symbol is local, but
3009		    // we cannot optimize to LE.  Make a const GOT entry instead.
3010		    Output_data_got<size, true>* got
3011			= target->got_section(symtab, layout);
3012		    got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET);
3013		  }
3014		else
3015		  {
3016		    // Create a GOT entry for the tp-relative offset.
3017		    Output_data_got<size, true>* got
3018			= target->got_section(symtab, layout);
3019		    got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3020					     target->rela_dyn_section(layout),
3021					     elfcpp::R_390_TLS_TPOFF);
3022		  }
3023	      }
3024	    else if (optimized_type != tls::TLSOPT_TO_LE)
3025	      unsupported_reloc_global(object, r_type, gsym);
3026	    break;
3027
3028	  case elfcpp::R_390_TLS_LE32:     // Local-exec
3029	  case elfcpp::R_390_TLS_LE64:
3030	    layout->set_has_static_tls();
3031	    if (parameters->options().shared())
3032	      {
3033		// We need to create a dynamic relocation.
3034		if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
3035		    (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
3036		  {
3037		    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3038		    rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF,
3039					 output_section, object,
3040					 data_shndx, reloc.get_r_offset(),
3041					 reloc.get_r_addend());
3042		  }
3043		else
3044		  {
3045		    unsupported_reloc_global(object, r_type, gsym);
3046		  }
3047	      }
3048	    break;
3049
3050	  default:
3051	    gold_unreachable();
3052	  }
3053      }
3054      break;
3055
3056    default:
3057      gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3058		 object->name().c_str(), r_type,
3059		 gsym->demangled_name().c_str());
3060      break;
3061    }
3062}
3063
3064
3065// Report an unsupported relocation against a global symbol.
3066
3067template<int size>
3068void
3069Target_s390<size>::Scan::unsupported_reloc_global(
3070    Sized_relobj_file<size, true>* object,
3071    unsigned int r_type,
3072    Symbol* gsym)
3073{
3074  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3075	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
3076}
3077
3078// Returns true if this relocation type could be that of a function pointer.
3079template<int size>
3080inline bool
3081Target_s390<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3082{
3083  switch (r_type)
3084    {
3085    case elfcpp::R_390_32:
3086    case elfcpp::R_390_64:
3087    case elfcpp::R_390_PC32DBL: // could be used by larl insn
3088    case elfcpp::R_390_GOT12:
3089    case elfcpp::R_390_GOT16:
3090    case elfcpp::R_390_GOT20:
3091    case elfcpp::R_390_GOT32:
3092    case elfcpp::R_390_GOT64:
3093    case elfcpp::R_390_GOTENT:
3094    case elfcpp::R_390_GOTOFF16:
3095    case elfcpp::R_390_GOTOFF32:
3096    case elfcpp::R_390_GOTOFF64:
3097      return true;
3098    }
3099  return false;
3100}
3101
3102// For safe ICF, scan a relocation for a local symbol to check if it
3103// corresponds to a function pointer being taken.  In that case mark
3104// the function whose pointer was taken as not foldable.
3105
3106template<int size>
3107inline bool
3108Target_s390<size>::Scan::local_reloc_may_be_function_pointer(
3109  Symbol_table* ,
3110  Layout* ,
3111  Target_s390<size>* ,
3112  Sized_relobj_file<size, true>* ,
3113  unsigned int ,
3114  Output_section* ,
3115  const elfcpp::Rela<size, true>& ,
3116  unsigned int r_type,
3117  const elfcpp::Sym<size, true>&)
3118{
3119  // When building a shared library, do not fold any local symbols.
3120  return (parameters->options().shared()
3121	  || possible_function_pointer_reloc(r_type));
3122}
3123
3124// For safe ICF, scan a relocation for a global symbol to check if it
3125// corresponds to a function pointer being taken.  In that case mark
3126// the function whose pointer was taken as not foldable.
3127
3128template<int size>
3129inline bool
3130Target_s390<size>::Scan::global_reloc_may_be_function_pointer(
3131  Symbol_table*,
3132  Layout* ,
3133  Target_s390<size>* ,
3134  Sized_relobj_file<size, true>* ,
3135  unsigned int ,
3136  Output_section* ,
3137  const elfcpp::Rela<size, true>& ,
3138  unsigned int r_type,
3139  Symbol* gsym)
3140{
3141  // When building a shared library, do not fold symbols whose visibility
3142  // is hidden, internal or protected.
3143  return ((parameters->options().shared()
3144	   && (gsym->visibility() == elfcpp::STV_INTERNAL
3145	       || gsym->visibility() == elfcpp::STV_PROTECTED
3146	       || gsym->visibility() == elfcpp::STV_HIDDEN))
3147	  || possible_function_pointer_reloc(r_type));
3148}
3149
3150template<int size>
3151void
3152Target_s390<size>::gc_process_relocs(Symbol_table* symtab,
3153				       Layout* layout,
3154				       Sized_relobj_file<size, true>* object,
3155				       unsigned int data_shndx,
3156				       unsigned int sh_type,
3157				       const unsigned char* prelocs,
3158				       size_t reloc_count,
3159				       Output_section* output_section,
3160				       bool needs_special_offset_handling,
3161				       size_t local_symbol_count,
3162				       const unsigned char* plocal_symbols)
3163{
3164  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3165      Classify_reloc;
3166
3167  if (sh_type == elfcpp::SHT_REL)
3168    return;
3169
3170  gold::gc_process_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
3171    symtab,
3172    layout,
3173    this,
3174    object,
3175    data_shndx,
3176    prelocs,
3177    reloc_count,
3178    output_section,
3179    needs_special_offset_handling,
3180    local_symbol_count,
3181    plocal_symbols);
3182}
3183
3184// Perform a relocation.
3185
3186template<int size>
3187inline bool
3188Target_s390<size>::Relocate::relocate(
3189    const Relocate_info<size, true>* relinfo,
3190    unsigned int,
3191    Target_s390<size>* target,
3192    Output_section*,
3193    size_t relnum,
3194    const unsigned char* preloc,
3195    const Sized_symbol<size>* gsym,
3196    const Symbol_value<size>* psymval,
3197    unsigned char* view,
3198    typename elfcpp::Elf_types<size>::Elf_Addr address,
3199    section_size_type view_size)
3200{
3201  if (view == NULL)
3202    return true;
3203
3204  const elfcpp::Rela<size, true> rela(preloc);
3205  unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
3206  const Sized_relobj_file<size, true>* object = relinfo->object;
3207
3208  // Pick the value to use for symbols defined in the PLT.
3209  Symbol_value<size> symval;
3210  if (gsym != NULL
3211      && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3212    {
3213      symval.set_output_value(target->plt_address_for_global(gsym));
3214      psymval = &symval;
3215    }
3216  else if (gsym == NULL && psymval->is_ifunc_symbol())
3217    {
3218      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3219      if (object->local_has_plt_offset(r_sym))
3220	{
3221	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
3222	  psymval = &symval;
3223	}
3224    }
3225
3226  const elfcpp::Elf_Xword addend = rela.get_r_addend();
3227
3228  typename elfcpp::Elf_types<size>::Elf_Addr value = 0;
3229
3230  switch (r_type)
3231    {
3232    case elfcpp::R_390_PLT64:
3233    case elfcpp::R_390_PLT32:
3234    case elfcpp::R_390_PLT32DBL:
3235    case elfcpp::R_390_PLT24DBL:
3236    case elfcpp::R_390_PLT16DBL:
3237    case elfcpp::R_390_PLT12DBL:
3238      gold_assert(gsym == NULL
3239		  || gsym->has_plt_offset()
3240		  || gsym->final_value_is_known()
3241		  || (gsym->is_defined()
3242		      && !gsym->is_from_dynobj()
3243		      && !gsym->is_preemptible()));
3244      // Fall through.
3245    case elfcpp::R_390_8:
3246    case elfcpp::R_390_12:
3247    case elfcpp::R_390_16:
3248    case elfcpp::R_390_20:
3249    case elfcpp::R_390_32:
3250    case elfcpp::R_390_64:
3251    case elfcpp::R_390_PC16:
3252    case elfcpp::R_390_PC32:
3253    case elfcpp::R_390_PC64:
3254    case elfcpp::R_390_PC32DBL:
3255    case elfcpp::R_390_PC24DBL:
3256    case elfcpp::R_390_PC16DBL:
3257    case elfcpp::R_390_PC12DBL:
3258      value = psymval->value(object, addend);
3259      break;
3260
3261    case elfcpp::R_390_GOTPC:
3262    case elfcpp::R_390_GOTPCDBL:
3263      gold_assert(gsym != NULL);
3264      value = target->got_address() + addend;
3265      break;
3266
3267    case elfcpp::R_390_PLTOFF64:
3268    case elfcpp::R_390_PLTOFF32:
3269    case elfcpp::R_390_PLTOFF16:
3270      gold_assert(gsym == NULL
3271		  || gsym->has_plt_offset()
3272		  || gsym->final_value_is_known());
3273      // Fall through.
3274    case elfcpp::R_390_GOTOFF64:
3275    case elfcpp::R_390_GOTOFF32:
3276    case elfcpp::R_390_GOTOFF16:
3277      value = (psymval->value(object, addend)
3278	       - target->got_address());
3279      break;
3280
3281    case elfcpp::R_390_GOT12:
3282    case elfcpp::R_390_GOT16:
3283    case elfcpp::R_390_GOT20:
3284    case elfcpp::R_390_GOT32:
3285    case elfcpp::R_390_GOT64:
3286    case elfcpp::R_390_GOTENT:
3287    case elfcpp::R_390_GOTPLT12:
3288    case elfcpp::R_390_GOTPLT16:
3289    case elfcpp::R_390_GOTPLT20:
3290    case elfcpp::R_390_GOTPLT32:
3291    case elfcpp::R_390_GOTPLT64:
3292    case elfcpp::R_390_GOTPLTENT:
3293      {
3294        unsigned int got_offset = 0;
3295        if (gsym != NULL)
3296	  {
3297	    gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3298	    got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
3299	  }
3300        else
3301	  {
3302	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3303	    gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3304	    got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3305	  }
3306        value = got_offset + target->got_main_offset() + addend;
3307      }
3308      break;
3309
3310      // These are initial tls relocs, which are expected when linking
3311    case elfcpp::R_390_TLS_LOAD:
3312    case elfcpp::R_390_TLS_GDCALL:          // Global-dynamic
3313    case elfcpp::R_390_TLS_GD32:
3314    case elfcpp::R_390_TLS_GD64:
3315    case elfcpp::R_390_TLS_LDCALL:          // Local-dynamic
3316    case elfcpp::R_390_TLS_LDM32:
3317    case elfcpp::R_390_TLS_LDM64:
3318    case elfcpp::R_390_TLS_LDO32:
3319    case elfcpp::R_390_TLS_LDO64:
3320    case elfcpp::R_390_TLS_GOTIE12:         // Initial-exec
3321    case elfcpp::R_390_TLS_GOTIE20:
3322    case elfcpp::R_390_TLS_GOTIE32:
3323    case elfcpp::R_390_TLS_GOTIE64:
3324    case elfcpp::R_390_TLS_IE32:
3325    case elfcpp::R_390_TLS_IE64:
3326    case elfcpp::R_390_TLS_IEENT:
3327    case elfcpp::R_390_TLS_LE32:            // Local-exec
3328    case elfcpp::R_390_TLS_LE64:
3329      value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3330			 view, view_size);
3331      break;
3332
3333    default:
3334      break;
3335    }
3336
3337  typename S390_relocate_functions<size>::Status status
3338      = S390_relocate_functions<size>::STATUS_OK;
3339
3340  switch (r_type)
3341    {
3342    case elfcpp::R_390_NONE:
3343    case elfcpp::R_390_GNU_VTINHERIT:
3344    case elfcpp::R_390_GNU_VTENTRY:
3345    case elfcpp::R_390_TLS_GDCALL:
3346    case elfcpp::R_390_TLS_LDCALL:
3347    case elfcpp::R_390_TLS_LOAD:
3348      break;
3349
3350    case elfcpp::R_390_64:
3351    case elfcpp::R_390_GOT64:
3352    case elfcpp::R_390_GOTPLT64:
3353    case elfcpp::R_390_PLTOFF64:
3354    case elfcpp::R_390_GOTOFF64:
3355    case elfcpp::R_390_TLS_GD64:
3356    case elfcpp::R_390_TLS_LDM64:
3357    case elfcpp::R_390_TLS_LDO64:
3358    case elfcpp::R_390_TLS_GOTIE64:
3359    case elfcpp::R_390_TLS_IE64:
3360    case elfcpp::R_390_TLS_LE64:
3361      Relocate_functions<size, true>::rela64(view, value, 0);
3362      break;
3363
3364    case elfcpp::R_390_32:
3365    case elfcpp::R_390_GOT32:
3366    case elfcpp::R_390_GOTPLT32:
3367    case elfcpp::R_390_PLTOFF32:
3368    case elfcpp::R_390_GOTOFF32:
3369    case elfcpp::R_390_TLS_GD32:
3370    case elfcpp::R_390_TLS_LDM32:
3371    case elfcpp::R_390_TLS_LDO32:
3372    case elfcpp::R_390_TLS_GOTIE32:
3373    case elfcpp::R_390_TLS_IE32:
3374    case elfcpp::R_390_TLS_LE32:
3375      Relocate_functions<size, true>::rela32(view, value, 0);
3376      break;
3377
3378    case elfcpp::R_390_20:
3379    case elfcpp::R_390_GOT20:
3380    case elfcpp::R_390_GOTPLT20:
3381    case elfcpp::R_390_TLS_GOTIE20:
3382      status = S390_relocate_functions<size>::rela20(view, value);
3383      break;
3384
3385    case elfcpp::R_390_16:
3386    case elfcpp::R_390_GOT16:
3387    case elfcpp::R_390_GOTPLT16:
3388    case elfcpp::R_390_PLTOFF16:
3389    case elfcpp::R_390_GOTOFF16:
3390      status = S390_relocate_functions<size>::rela16(view, value);
3391      break;
3392
3393    case elfcpp::R_390_12:
3394    case elfcpp::R_390_GOT12:
3395    case elfcpp::R_390_GOTPLT12:
3396    case elfcpp::R_390_TLS_GOTIE12:
3397      status = S390_relocate_functions<size>::rela12(view, value);
3398      break;
3399
3400    case elfcpp::R_390_8:
3401      Relocate_functions<size, true>::rela8(view, value, 0);
3402      break;
3403
3404    case elfcpp::R_390_PC16:
3405      Relocate_functions<size, true>::pcrela16(view, value, 0,
3406					       address);
3407      break;
3408
3409    case elfcpp::R_390_PLT64:
3410    case elfcpp::R_390_PC64:
3411      Relocate_functions<size, true>::pcrela64(view, value, 0, address);
3412      break;
3413
3414    case elfcpp::R_390_PLT32:
3415    case elfcpp::R_390_PC32:
3416    case elfcpp::R_390_GOTPC:
3417      Relocate_functions<size, true>::pcrela32(view, value, 0, address);
3418      break;
3419
3420    case elfcpp::R_390_PLT32DBL:
3421    case elfcpp::R_390_PC32DBL:
3422    case elfcpp::R_390_GOTPCDBL:
3423      status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3424      break;
3425
3426    case elfcpp::R_390_PLT24DBL:
3427    case elfcpp::R_390_PC24DBL:
3428      status = S390_relocate_functions<size>::pcrela24dbl(view, value, address);
3429      break;
3430
3431    case elfcpp::R_390_PLT16DBL:
3432    case elfcpp::R_390_PC16DBL:
3433      status = S390_relocate_functions<size>::pcrela16dbl(view, value, address);
3434      break;
3435
3436    case elfcpp::R_390_PLT12DBL:
3437    case elfcpp::R_390_PC12DBL:
3438      status = S390_relocate_functions<size>::pcrela12dbl(view, value, address);
3439      break;
3440
3441    case elfcpp::R_390_GOTENT:
3442    case elfcpp::R_390_GOTPLTENT:
3443    case elfcpp::R_390_TLS_IEENT:
3444      value += target->got_address();
3445      status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3446      break;
3447
3448    case elfcpp::R_390_COPY:
3449    case elfcpp::R_390_GLOB_DAT:
3450    case elfcpp::R_390_JMP_SLOT:
3451    case elfcpp::R_390_RELATIVE:
3452    case elfcpp::R_390_IRELATIVE:
3453      // These are outstanding tls relocs, which are unexpected when linking
3454    case elfcpp::R_390_TLS_TPOFF:
3455    case elfcpp::R_390_TLS_DTPMOD:
3456    case elfcpp::R_390_TLS_DTPOFF:
3457      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3458			     _("unexpected reloc %u in object file"),
3459			     r_type);
3460      break;
3461
3462    default:
3463      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3464			     _("unsupported reloc %u"),
3465			     r_type);
3466      break;
3467    }
3468
3469  if (status != S390_relocate_functions<size>::STATUS_OK)
3470    {
3471      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3472			     _("relocation overflow"));
3473    }
3474
3475  return true;
3476}
3477
3478// Perform a TLS relocation.
3479
3480template<int size>
3481inline typename elfcpp::Elf_types<size>::Elf_Addr
3482Target_s390<size>::Relocate::relocate_tls(
3483    const Relocate_info<size, true>* relinfo,
3484    Target_s390<size>* target,
3485    size_t relnum,
3486    const elfcpp::Rela<size, true>& rela,
3487    unsigned int r_type,
3488    const Sized_symbol<size>* gsym,
3489    const Symbol_value<size>* psymval,
3490    unsigned char* view,
3491    section_size_type view_size)
3492{
3493  Output_segment* tls_segment = relinfo->layout->tls_segment();
3494
3495  const Sized_relobj_file<size, true>* object = relinfo->object;
3496  const elfcpp::Elf_Xword addend = rela.get_r_addend();
3497  elfcpp::Shdr<size, true> data_shdr(relinfo->data_shdr);
3498  bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0;
3499
3500  typename elfcpp::Elf_types<size>::Elf_Addr value
3501      = psymval->value(relinfo->object, addend);
3502
3503  const bool is_final = (gsym == NULL
3504			 ? !parameters->options().shared()
3505			 : gsym->final_value_is_known());
3506  tls::Tls_optimization optimized_type
3507      = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
3508  switch (r_type)
3509    {
3510    case elfcpp::R_390_TLS_GDCALL:            // Global-dynamic marker
3511      if (optimized_type == tls::TLSOPT_TO_LE)
3512	{
3513	  if (tls_segment == NULL)
3514	    {
3515	      gold_assert(parameters->errors()->error_count() > 0
3516			  || issue_undefined_symbol_error(gsym));
3517	      return 0;
3518	    }
3519	  this->tls_gd_to_le(relinfo, relnum, rela, view, view_size);
3520	  break;
3521	}
3522      else
3523	{
3524	  if (optimized_type == tls::TLSOPT_TO_IE)
3525	    {
3526	      this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size);
3527	      break;
3528	    }
3529	  else if (optimized_type == tls::TLSOPT_NONE)
3530	    {
3531	      break;
3532	    }
3533	}
3534      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3535			     _("unsupported reloc %u"), r_type);
3536      break;
3537
3538    case elfcpp::R_390_TLS_GD32:            // Global-dynamic
3539    case elfcpp::R_390_TLS_GD64:
3540      if (optimized_type == tls::TLSOPT_TO_LE)
3541	{
3542	  if (tls_segment == NULL)
3543	    {
3544	      gold_assert(parameters->errors()->error_count() > 0
3545			  || issue_undefined_symbol_error(gsym));
3546	      return 0;
3547	    }
3548	  return value - tls_segment->memsz();
3549	}
3550      else
3551	{
3552	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3553				   ? GOT_TYPE_TLS_OFFSET
3554				   : GOT_TYPE_TLS_PAIR);
3555	  if (gsym != NULL)
3556	    {
3557	      gold_assert(gsym->has_got_offset(got_type));
3558	      return (gsym->got_offset(got_type)
3559		      + target->got_main_offset()
3560		      + addend);
3561	    }
3562	  else
3563	    {
3564	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3565	      gold_assert(object->local_has_got_offset(r_sym, got_type));
3566	      return (object->local_got_offset(r_sym, got_type)
3567		      + target->got_main_offset()
3568		      + addend);
3569	    }
3570	}
3571      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3572			     _("unsupported reloc %u"), r_type);
3573      break;
3574
3575    case elfcpp::R_390_TLS_LDCALL:            // Local-dynamic marker
3576      // This is a marker relocation. If the sequence is being turned to LE,
3577      // we modify the instruction, otherwise the instruction is untouched.
3578      if (optimized_type == tls::TLSOPT_TO_LE)
3579	{
3580	  if (tls_segment == NULL)
3581	    {
3582	      gold_assert(parameters->errors()->error_count() > 0
3583			  || issue_undefined_symbol_error(gsym));
3584	      return 0;
3585	    }
3586	  this->tls_ld_to_le(relinfo, relnum, rela, view, view_size);
3587	  break;
3588	}
3589      else if (optimized_type == tls::TLSOPT_NONE)
3590	{
3591	  break;
3592	}
3593      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3594			     _("unsupported reloc %u"), r_type);
3595      break;
3596
3597    case elfcpp::R_390_TLS_LDM32:            // Local-dynamic module
3598    case elfcpp::R_390_TLS_LDM64:
3599      if (optimized_type == tls::TLSOPT_TO_LE)
3600	{
3601	  if (tls_segment == NULL)
3602	    {
3603	      gold_assert(parameters->errors()->error_count() > 0
3604			  || issue_undefined_symbol_error(gsym));
3605	      return 0;
3606	    }
3607	  // Doesn't matter what we fill it with - it's going to be unused.
3608	  return 0;
3609	}
3610      else if (optimized_type == tls::TLSOPT_NONE)
3611	{
3612	  // Relocate the field with the offset of the GOT entry for
3613	  // the module index.
3614	  return (target->got_mod_index_entry(NULL, NULL, NULL)
3615		  + addend
3616		  + target->got_main_offset());
3617	}
3618      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3619			     _("unsupported reloc %u"), r_type);
3620      break;
3621
3622    case elfcpp::R_390_TLS_LDO32:         // Local-dynamic offset
3623    case elfcpp::R_390_TLS_LDO64:
3624      // This relocation type is used in debugging information.
3625      // In that case we need to not optimize the value.  If the
3626      // section is not allocatable, then we assume we should not
3627      // optimize this reloc.
3628      if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable)
3629	{
3630	  if (tls_segment == NULL)
3631	    {
3632	      gold_assert(parameters->errors()->error_count() > 0
3633			  || issue_undefined_symbol_error(gsym));
3634	      return 0;
3635	    }
3636	  value -= tls_segment->memsz();
3637	}
3638      return value;
3639
3640    case elfcpp::R_390_TLS_LOAD:         // Initial-exec marker
3641      // This is a marker relocation. If the sequence is being turned to LE,
3642      // we modify the instruction, otherwise the instruction is untouched.
3643      if (gsym != NULL
3644	  && gsym->is_undefined()
3645	  && parameters->options().output_is_executable())
3646	{
3647	  Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3648						      rela, view,
3649						      view_size);
3650	  break;
3651	}
3652      else if (optimized_type == tls::TLSOPT_TO_LE)
3653	{
3654	  if (tls_segment == NULL)
3655	    {
3656	      gold_assert(parameters->errors()->error_count() > 0
3657			  || issue_undefined_symbol_error(gsym));
3658	      return 0;
3659	    }
3660	  Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3661						      rela, view,
3662						      view_size);
3663	  break;
3664	}
3665      else if (optimized_type == tls::TLSOPT_NONE)
3666	{
3667	  break;
3668	}
3669      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3670			     _("unsupported reloc type %u"),
3671			     r_type);
3672      break;
3673
3674    case elfcpp::R_390_TLS_GOTIE12:       // Initial-exec, not optimizable
3675    case elfcpp::R_390_TLS_GOTIE20:
3676    case elfcpp::R_390_TLS_IEENT:
3677    case elfcpp::R_390_TLS_GOTIE32:       // Initial-exec, optimizable
3678    case elfcpp::R_390_TLS_GOTIE64:
3679    case elfcpp::R_390_TLS_IE32:
3680    case elfcpp::R_390_TLS_IE64:
3681      if (gsym != NULL
3682	  && gsym->is_undefined()
3683	  && parameters->options().output_is_executable()
3684	  // These three cannot be optimized to LE, no matter what
3685	  && r_type != elfcpp::R_390_TLS_GOTIE12
3686	  && r_type != elfcpp::R_390_TLS_GOTIE20
3687	  && r_type != elfcpp::R_390_TLS_IEENT)
3688	{
3689          return value;
3690	}
3691      else if (optimized_type == tls::TLSOPT_TO_LE)
3692	{
3693	  if (tls_segment == NULL)
3694	    {
3695	      gold_assert(parameters->errors()->error_count() > 0
3696			  || issue_undefined_symbol_error(gsym));
3697	      return 0;
3698	    }
3699          return value - tls_segment->memsz();
3700	}
3701      else if (optimized_type == tls::TLSOPT_NONE)
3702	{
3703	  // Relocate the field with the offset of the GOT entry for
3704	  // the tp-relative offset of the symbol.
3705	  unsigned int got_offset;
3706	  if (gsym != NULL)
3707	    {
3708	      gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3709	      got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
3710	    }
3711	  else
3712	    {
3713	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3714	      gold_assert(object->local_has_got_offset(r_sym,
3715						       GOT_TYPE_TLS_OFFSET));
3716	      got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
3717	    }
3718	  got_offset += target->got_main_offset();
3719	  if (r_type == elfcpp::R_390_TLS_IE32
3720	      || r_type == elfcpp::R_390_TLS_IE64)
3721	    return target->got_address() + got_offset + addend;
3722	  else
3723	    return got_offset + addend;
3724	}
3725      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3726			     _("unsupported reloc type %u"),
3727			     r_type);
3728      break;
3729
3730    case elfcpp::R_390_TLS_LE32:          // Local-exec
3731    case elfcpp::R_390_TLS_LE64:
3732      if (tls_segment == NULL)
3733	{
3734	  gold_assert(parameters->errors()->error_count() > 0
3735		      || issue_undefined_symbol_error(gsym));
3736	  return 0;
3737	}
3738      return value - tls_segment->memsz();
3739    }
3740  return 0;
3741}
3742
3743// Do a relocation in which we convert a TLS General-Dynamic to an
3744// Initial-Exec.
3745
3746template<int size>
3747inline void
3748Target_s390<size>::Relocate::tls_gd_to_ie(
3749    const Relocate_info<size, true>* relinfo,
3750    size_t relnum,
3751    const elfcpp::Rela<size, true>& rela,
3752    unsigned char* view,
3753    section_size_type view_size)
3754{
3755  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3756  if (view[0] == 0x4d)
3757    {
3758      // bas, don't care about details
3759      // Change to l %r2, 0(%r2, %r12)
3760      view[0] = 0x58;
3761      view[1] = 0x22;
3762      view[2] = 0xc0;
3763      view[3] = 0x00;
3764      return;
3765    }
3766  else if (view[0] == 0xc0)
3767    {
3768      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3769      // brasl %r14, __tls_get_offset@plt
3770      if (view[1] == 0xe5)
3771	{
3772	  // Change to l/lg %r2, 0(%r2, %r12)
3773	  // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result.
3774	  if (size == 32)
3775	    {
3776	      // l
3777	      view[0] = 0x58;
3778	      view[1] = 0x22;
3779	      view[2] = 0xc0;
3780	      view[3] = 0x00;
3781	      // nop
3782	      view[4] = 0x07;
3783	      view[5] = 0x07;
3784	    }
3785	  else
3786	    {
3787	      // lg
3788	      view[0] = 0xe3;
3789	      view[1] = 0x22;
3790	      view[2] = 0xc0;
3791	      view[3] = 0;
3792	      view[4] = 0;
3793	      view[5] = 0x04;
3794	    }
3795	  return;
3796	}
3797    }
3798  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3799			 _("unsupported op for GD to IE"));
3800}
3801
3802// Do a relocation in which we convert a TLS General-Dynamic to a
3803// Local-Exec.
3804
3805template<int size>
3806inline void
3807Target_s390<size>::Relocate::tls_gd_to_le(
3808    const Relocate_info<size, true>* relinfo,
3809    size_t relnum,
3810    const elfcpp::Rela<size, true>& rela,
3811    unsigned char* view,
3812    section_size_type view_size)
3813{
3814  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3815  if (view[0] == 0x0d)
3816    {
3817      // basr, change to nop
3818      view[0] = 0x07;
3819      view[1] = 0x07;
3820    }
3821  else if (view[0] == 0x4d)
3822    {
3823      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3824      // bas, don't care about details, change to nop
3825      view[0] = 0x47;
3826      view[1] = 0;
3827      view[2] = 0;
3828      view[3] = 0;
3829      return;
3830    }
3831  else if (view[0] == 0xc0)
3832    {
3833      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3834      // brasl %r14, __tls_get_offset@plt
3835      if (view[1] == 0xe5)
3836	{
3837	  // Change to nop jump. There was a PLT32DBL reloc at the last
3838	  // 4 bytes, overwrite its result.
3839	  view[1] = 0x04;
3840	  view[2] = 0;
3841	  view[3] = 0;
3842	  view[4] = 0;
3843	  view[5] = 0;
3844	  return;
3845	}
3846    }
3847  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3848			 _("unsupported op for GD to LE"));
3849}
3850
3851template<int size>
3852inline void
3853Target_s390<size>::Relocate::tls_ld_to_le(
3854    const Relocate_info<size, true>* relinfo,
3855    size_t relnum,
3856    const elfcpp::Rela<size, true>& rela,
3857    unsigned char* view,
3858    section_size_type view_size)
3859{
3860  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3861
3862  if (view[0] == 0x0d)
3863    {
3864      // basr, change to nop
3865      view[0] = 0x07;
3866      view[1] = 0x07;
3867    }
3868  else if (view[0] == 0x4d)
3869    {
3870      // bas, don't care about details, change to nop
3871      view[0] = 0x47;
3872      view[1] = 0;
3873      view[2] = 0;
3874      view[3] = 0;
3875      return;
3876    }
3877  else if (view[0] == 0xc0)
3878    {
3879      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3880      // brasl %r14, __tls_get_offset@plt
3881      if (view[1] == 0xe5)
3882	{
3883	  // Change to nop jump. There was a PLT32DBL reloc at the last
3884	  // 4 bytes, overwrite its result.
3885	  view[1] = 0x04;
3886	  view[2] = 0;
3887	  view[3] = 0;
3888	  view[4] = 0;
3889	  view[5] = 0;
3890	  return;
3891	}
3892    }
3893  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3894			 _("unsupported op for LD to LE"));
3895}
3896
3897// Do a relocation in which we convert a TLS Initial-Exec to a
3898// Local-Exec.
3899
3900template<int size>
3901inline void
3902Target_s390<size>::Relocate::tls_ie_to_le(
3903    const Relocate_info<size, true>* relinfo,
3904    size_t relnum,
3905    const elfcpp::Rela<size, true>& rela,
3906    unsigned char* view,
3907    section_size_type view_size)
3908{
3909  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3910
3911  if (view[0] == 0x58)
3912    {
3913      // l %rX, 0(%rY) or l %rX, 0(%rY, %r12)
3914      if ((view[2] & 0x0f) != 0 || view[3] != 0)
3915	goto err;
3916      int rx = view[1] >> 4 & 0xf;
3917      int ry = view[1] & 0xf;
3918      int rz = view[2] >> 4 & 0xf;
3919      if (rz == 0)
3920	{
3921	}
3922      else if (ry == 0)
3923	{
3924	  ry = rz;
3925	}
3926      else if (rz == 12)
3927	{
3928	}
3929      else if (ry == 12)
3930	{
3931	  ry = rz;
3932	}
3933      else
3934	goto err;
3935      // to lr %rX, $rY
3936      view[0] = 0x18;
3937      view[1] = rx << 4 | ry;
3938      // and insert a nop
3939      view[2] = 0x07;
3940      view[3] = 0x00;
3941    }
3942  else if (view[0] == 0xe3)
3943    {
3944      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3945      // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12)
3946      if ((view[2] & 0x0f) != 0 ||
3947	  view[3] != 0 ||
3948	  view[4] != 0 ||
3949	  view[5] != 0x04)
3950	goto err;
3951      int rx = view[1] >> 4 & 0xf;
3952      int ry = view[1] & 0xf;
3953      int rz = view[2] >> 4 & 0xf;
3954      if (rz == 0)
3955	{
3956	}
3957      else if (ry == 0)
3958	{
3959	  ry = rz;
3960	}
3961      else if (rz == 12)
3962	{
3963	}
3964      else if (ry == 12)
3965	{
3966	  ry = rz;
3967	}
3968      else
3969	goto err;
3970      // to sllg %rX, $rY, 0
3971      view[0] = 0xeb;
3972      view[1] = rx << 4 | ry;
3973      view[2] = 0x00;
3974      view[3] = 0x00;
3975      view[4] = 0x00;
3976      view[5] = 0x0d;
3977    }
3978  else
3979    {
3980err:
3981      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3982			     _("unsupported op for IE to LE"));
3983    }
3984}
3985
3986// Scan relocations for a section.
3987
3988template<int size>
3989void
3990Target_s390<size>::scan_relocs(Symbol_table* symtab,
3991				 Layout* layout,
3992				 Sized_relobj_file<size, true>* object,
3993				 unsigned int data_shndx,
3994				 unsigned int sh_type,
3995				 const unsigned char* prelocs,
3996				 size_t reloc_count,
3997				 Output_section* output_section,
3998				 bool needs_special_offset_handling,
3999				 size_t local_symbol_count,
4000				 const unsigned char* plocal_symbols)
4001{
4002  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4003      Classify_reloc;
4004
4005  if (sh_type == elfcpp::SHT_REL)
4006    {
4007      gold_error(_("%s: unsupported REL reloc section"),
4008		 object->name().c_str());
4009      return;
4010    }
4011
4012  gold::scan_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
4013    symtab,
4014    layout,
4015    this,
4016    object,
4017    data_shndx,
4018    prelocs,
4019    reloc_count,
4020    output_section,
4021    needs_special_offset_handling,
4022    local_symbol_count,
4023    plocal_symbols);
4024}
4025
4026// Finalize the sections.
4027
4028template<int size>
4029void
4030Target_s390<size>::do_finalize_sections(
4031    Layout* layout,
4032    const Input_objects*,
4033    Symbol_table* symtab)
4034{
4035  const Reloc_section* rel_plt = (this->plt_ == NULL
4036				  ? NULL
4037				  : this->plt_->rela_plt());
4038  layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4039				  this->rela_dyn_, true, size == 32);
4040
4041  this->layout_ = layout;
4042
4043  // Emit any relocs we saved in an attempt to avoid generating COPY
4044  // relocs.
4045  if (this->copy_relocs_.any_saved_relocs())
4046    this->copy_relocs_.emit(this->rela_dyn_section(layout));
4047
4048  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4049  // the .got section.
4050  Symbol* sym = this->global_offset_table_;
4051  if (sym != NULL)
4052    {
4053      uint64_t data_size = this->got_->current_data_size();
4054      symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4055    }
4056
4057  if (parameters->doing_static_link()
4058      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4059    {
4060      // If linking statically, make sure that the __rela_iplt symbols
4061      // were defined if necessary, even if we didn't create a PLT.
4062      static const Define_symbol_in_segment syms[] =
4063	{
4064	  {
4065	    "__rela_iplt_start",	// name
4066	    elfcpp::PT_LOAD,		// segment_type
4067	    elfcpp::PF_W,		// segment_flags_set
4068	    elfcpp::PF(0),		// segment_flags_clear
4069	    0,				// value
4070	    0,				// size
4071	    elfcpp::STT_NOTYPE,		// type
4072	    elfcpp::STB_GLOBAL,		// binding
4073	    elfcpp::STV_HIDDEN,		// visibility
4074	    0,				// nonvis
4075	    Symbol::SEGMENT_START,	// offset_from_base
4076	    true			// only_if_ref
4077	  },
4078	  {
4079	    "__rela_iplt_end",		// name
4080	    elfcpp::PT_LOAD,		// segment_type
4081	    elfcpp::PF_W,		// segment_flags_set
4082	    elfcpp::PF(0),		// segment_flags_clear
4083	    0,				// value
4084	    0,				// size
4085	    elfcpp::STT_NOTYPE,		// type
4086	    elfcpp::STB_GLOBAL,		// binding
4087	    elfcpp::STV_HIDDEN,		// visibility
4088	    0,				// nonvis
4089	    Symbol::SEGMENT_START,	// offset_from_base
4090	    true			// only_if_ref
4091	  }
4092	};
4093
4094      symtab->define_symbols(layout, 2, syms,
4095			     layout->script_options()->saw_sections_clause());
4096    }
4097}
4098
4099// Scan the relocs during a relocatable link.
4100
4101template<int size>
4102void
4103Target_s390<size>::scan_relocatable_relocs(
4104    Symbol_table* symtab,
4105    Layout* layout,
4106    Sized_relobj_file<size, true>* object,
4107    unsigned int data_shndx,
4108    unsigned int sh_type,
4109    const unsigned char* prelocs,
4110    size_t reloc_count,
4111    Output_section* output_section,
4112    bool needs_special_offset_handling,
4113    size_t local_symbol_count,
4114    const unsigned char* plocal_symbols,
4115    Relocatable_relocs* rr)
4116{
4117  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4118      Classify_reloc;
4119  typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4120      Scan_relocatable_relocs;
4121
4122  gold_assert(sh_type == elfcpp::SHT_RELA);
4123
4124  gold::scan_relocatable_relocs<size, true, Scan_relocatable_relocs>(
4125    symtab,
4126    layout,
4127    object,
4128    data_shndx,
4129    prelocs,
4130    reloc_count,
4131    output_section,
4132    needs_special_offset_handling,
4133    local_symbol_count,
4134    plocal_symbols,
4135    rr);
4136}
4137
4138// Scan the relocs for --emit-relocs.
4139
4140template<int size>
4141void
4142Target_s390<size>::emit_relocs_scan(
4143    Symbol_table* symtab,
4144    Layout* layout,
4145    Sized_relobj_file<size, true>* object,
4146    unsigned int data_shndx,
4147    unsigned int sh_type,
4148    const unsigned char* prelocs,
4149    size_t reloc_count,
4150    Output_section* output_section,
4151    bool needs_special_offset_handling,
4152    size_t local_symbol_count,
4153    const unsigned char* plocal_syms,
4154    Relocatable_relocs* rr)
4155{
4156  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4157      Classify_reloc;
4158  typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4159      Emit_relocs_strategy;
4160
4161  gold_assert(sh_type == elfcpp::SHT_RELA);
4162
4163  gold::scan_relocatable_relocs<size, true, Emit_relocs_strategy>(
4164    symtab,
4165    layout,
4166    object,
4167    data_shndx,
4168    prelocs,
4169    reloc_count,
4170    output_section,
4171    needs_special_offset_handling,
4172    local_symbol_count,
4173    plocal_syms,
4174    rr);
4175}
4176
4177// Relocate a section during a relocatable link.
4178
4179template<int size>
4180void
4181Target_s390<size>::relocate_relocs(
4182    const Relocate_info<size, true>* relinfo,
4183    unsigned int sh_type,
4184    const unsigned char* prelocs,
4185    size_t reloc_count,
4186    Output_section* output_section,
4187    typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4188    unsigned char* view,
4189    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4190    section_size_type view_size,
4191    unsigned char* reloc_view,
4192    section_size_type reloc_view_size)
4193{
4194  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4195      Classify_reloc;
4196
4197  gold_assert(sh_type == elfcpp::SHT_RELA);
4198
4199  gold::relocate_relocs<size, true, Classify_reloc>(
4200    relinfo,
4201    prelocs,
4202    reloc_count,
4203    output_section,
4204    offset_in_output_section,
4205    view,
4206    view_address,
4207    view_size,
4208    reloc_view,
4209    reloc_view_size);
4210}
4211
4212// Return the offset to use for the GOT_INDX'th got entry which is
4213// for a local tls symbol specified by OBJECT, SYMNDX.
4214template<int size>
4215int64_t
4216Target_s390<size>::do_tls_offset_for_local(
4217    const Relobj*,
4218    unsigned int,
4219    unsigned int) const
4220{
4221  // The only way we can get called is when IEENT/GOTIE12/GOTIE20
4222  // couldn't be optimised to LE.
4223  Output_segment* tls_segment = layout_->tls_segment();
4224  return -tls_segment->memsz();
4225}
4226
4227// Return the offset to use for the GOT_INDX'th got entry which is
4228// for global tls symbol GSYM.
4229template<int size>
4230int64_t
4231Target_s390<size>::do_tls_offset_for_global(
4232    Symbol*,
4233    unsigned int) const
4234{
4235  Output_segment* tls_segment = layout_->tls_segment();
4236  return -tls_segment->memsz();
4237}
4238
4239// Return the value to use for a dynamic which requires special
4240// treatment.  This is how we support equality comparisons of function
4241// pointers across shared library boundaries, as described in the
4242// processor specific ABI supplement.
4243
4244template<int size>
4245uint64_t
4246Target_s390<size>::do_dynsym_value(const Symbol* gsym) const
4247{
4248  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4249  return this->plt_address_for_global(gsym);
4250}
4251
4252// Return a string used to fill a code section with nops to take up
4253// the specified length.
4254
4255template<int size>
4256std::string
4257Target_s390<size>::do_code_fill(section_size_type length) const
4258{
4259  if (length & 1)
4260    gold_warning(_("S/390 code fill of odd length requested"));
4261  return std::string(length, static_cast<char>(0x07));
4262}
4263
4264// Return whether SYM should be treated as a call to a non-split
4265// function.  We don't want that to be true of a larl instruction
4266// that merely loads its address.
4267
4268template<int size>
4269bool
4270Target_s390<size>::do_is_call_to_non_split(const Symbol* sym,
4271					   const unsigned char* preloc,
4272					   const unsigned char* view,
4273					   section_size_type view_size) const
4274{
4275  if (sym->type() != elfcpp::STT_FUNC)
4276    return false;
4277  typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc reloc(preloc);
4278  typename elfcpp::Elf_types<size>::Elf_WXword r_info
4279    = reloc.get_r_info();
4280  unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4281  section_offset_type offset = reloc.get_r_offset();
4282  switch (r_type)
4283    {
4284    // PLT refs always involve calling the function.
4285    case elfcpp::R_390_PLT12DBL:
4286    case elfcpp::R_390_PLT16DBL:
4287    case elfcpp::R_390_PLT24DBL:
4288    case elfcpp::R_390_PLT32:
4289    case elfcpp::R_390_PLT32DBL:
4290    case elfcpp::R_390_PLT64:
4291    case elfcpp::R_390_PLTOFF16:
4292    case elfcpp::R_390_PLTOFF32:
4293    case elfcpp::R_390_PLTOFF64:
4294    // Could be used for calls for -msmall-exec.
4295    case elfcpp::R_390_PC16DBL:
4296      return true;
4297
4298    // Tricky case.  When used in a brasl, jg, and other branch instructions,
4299    // it's a call or a sibcall.  However, when used in larl, it only loads
4300    // the function's address - not a call.
4301    case elfcpp::R_390_PC32DBL:
4302      {
4303	if (offset < 2
4304	    || offset + 4 > static_cast<section_offset_type>(view_size))
4305	  {
4306	    // Should not happen.
4307	    gold_error(_("instruction with PC32DBL not wholly within section"));
4308	    return false;
4309	  }
4310
4311	uint8_t op0 = view[offset-2];
4312	uint8_t op1 = view[offset-1] & 0xf;
4313
4314	// LARL
4315	if (op0 == 0xc0 && op1 == 0)
4316	  return false;
4317
4318	// Otherwise, it's either a call instruction, a branch instruction
4319	// (used as a sibcall), or a data manipulation instruction (which
4320	// has no business being used on a function, and can be ignored).
4321        return true;
4322      }
4323
4324    // Otherwise, it's probably not a call.
4325    default:
4326      return false;
4327    }
4328}
4329
4330// Code sequences to match below.
4331
4332template<int size>
4333const unsigned char
4334Target_s390<size>::ss_code_bras_8[] = {
4335  0xa7, 0x15, 0x00, 0x06,		// bras %r1, .+0xc
4336};
4337
4338template<int size>
4339const unsigned char
4340Target_s390<size>::ss_code_l_basr[] = {
4341  0x58, 0xe0, 0x10, 0x00,		// l %r14, 0(%r1)
4342  0x58, 0x10, 0x10, 0x04,		// l %r1, 4(%r1)
4343  0x0d, 0xee,				// basr %r14, %r14
4344};
4345
4346template<int size>
4347const unsigned char
4348Target_s390<size>::ss_code_a_basr[] = {
4349  0x18, 0xe1,				// lr %r14, %r1
4350  0x5a, 0xe0, 0x10, 0x00,		// a %r14, 0(%r1)
4351  0x5a, 0x10, 0x10, 0x04,		// a %r1, 4(%r1)
4352  0x0d, 0xee,				// basr %r14, %r14
4353};
4354
4355template<int size>
4356const unsigned char
4357Target_s390<size>::ss_code_larl[] = {
4358  0xc0, 0x10,				// larl %r1, ...
4359};
4360
4361template<int size>
4362const unsigned char
4363Target_s390<size>::ss_code_brasl[] = {
4364  0xc0, 0xe5,				// brasl %r14, ...
4365};
4366
4367template<int size>
4368const unsigned char
4369Target_s390<size>::ss_code_jg[] = {
4370  0xc0, 0xf4,				// jg ...
4371};
4372
4373template<int size>
4374const unsigned char
4375Target_s390<size>::ss_code_jgl[] = {
4376  0xc0, 0x44,				// jgl ...
4377};
4378
4379template<>
4380bool
4381Target_s390<32>::ss_match_st_r14(unsigned char* view,
4382				 section_size_type view_size,
4383				 section_offset_type *offset) const
4384{
4385  static const unsigned char ss_code_st_r14[] = {
4386    0x50, 0xe0, 0xf0, 0x04,		// st %r14, 4(%r15)
4387  };
4388  if (!this->match_view_u(view, view_size, *offset, ss_code_st_r14,
4389			  sizeof ss_code_st_r14))
4390    return false;
4391  *offset += sizeof ss_code_st_r14;
4392  return true;
4393}
4394
4395template<>
4396bool
4397Target_s390<64>::ss_match_st_r14(unsigned char* view,
4398				 section_size_type view_size,
4399				 section_offset_type *offset) const
4400{
4401  static const unsigned char ss_code_st_r14[] = {
4402    0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x24	// stg %r14, 8(%r15)
4403  };
4404  if (!this->match_view_u(view, view_size, *offset, ss_code_st_r14,
4405			  sizeof ss_code_st_r14))
4406    return false;
4407  *offset += sizeof ss_code_st_r14;
4408  return true;
4409}
4410
4411template<>
4412bool
4413Target_s390<32>::ss_match_l_r14(unsigned char* view,
4414				section_size_type view_size,
4415				section_offset_type *offset) const
4416{
4417  static const unsigned char ss_code_l_r14[] = {
4418    0x58, 0xe0, 0xf0, 0x04,		// l %r14, 4(%r15)
4419  };
4420  if (!this->match_view_u(view, view_size, *offset, ss_code_l_r14,
4421			  sizeof ss_code_l_r14))
4422    return false;
4423  *offset += sizeof ss_code_l_r14;
4424  return true;
4425}
4426
4427template<>
4428bool
4429Target_s390<64>::ss_match_l_r14(unsigned char* view,
4430				section_size_type view_size,
4431				section_offset_type *offset) const
4432{
4433  static const unsigned char ss_code_l_r14[] = {
4434    0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x04	// lg %r14, 8(%r15)
4435  };
4436  if (!this->match_view_u(view, view_size, *offset, ss_code_l_r14,
4437			  sizeof ss_code_l_r14))
4438    return false;
4439  *offset += sizeof ss_code_l_r14;
4440  return true;
4441}
4442
4443template<int size>
4444bool
4445Target_s390<size>::ss_match_mcount(unsigned char* view,
4446				   section_size_type view_size,
4447				   section_offset_type *offset) const
4448{
4449  // Match the mcount call sequence.
4450  section_offset_type myoff = *offset;
4451
4452  // First, look for the store instruction saving %r14.
4453  if (!this->ss_match_st_r14(view, view_size, &myoff))
4454    return false;
4455
4456  // Now, param load and the actual call.
4457  if (this->match_view_u(view, view_size, myoff, ss_code_larl,
4458			 sizeof ss_code_larl))
4459    {
4460      myoff += sizeof ss_code_larl + 4;
4461
4462      // After larl, expect a brasl.
4463      if (!this->match_view_u(view, view_size, myoff, ss_code_brasl,
4464			      sizeof ss_code_brasl))
4465	return false;
4466      myoff += sizeof ss_code_brasl + 4;
4467    }
4468  else if (size == 32 &&
4469	   this->match_view_u(view, view_size, myoff, ss_code_bras_8,
4470			      sizeof ss_code_bras_8))
4471    {
4472      // The bras skips over a block of 8 bytes, loading its address
4473      // to %r1.
4474      myoff += sizeof ss_code_bras_8 + 8;
4475
4476      // Now, there are two sequences used for actual load and call,
4477      // absolute and PIC.
4478      if (this->match_view_u(view, view_size, myoff, ss_code_l_basr,
4479			     sizeof ss_code_l_basr))
4480        myoff += sizeof ss_code_l_basr;
4481      else if (this->match_view_u(view, view_size, myoff, ss_code_a_basr,
4482				  sizeof ss_code_a_basr))
4483        myoff += sizeof ss_code_a_basr;
4484      else
4485	return false;
4486    }
4487  else
4488    return false;
4489
4490  // Finally, a load bringing %r14 back.
4491  if (!this->ss_match_l_r14(view, view_size, &myoff))
4492    return false;
4493
4494  // Found it.
4495  *offset = myoff;
4496  return true;
4497}
4498
4499template<>
4500bool
4501Target_s390<32>::ss_match_ear(unsigned char* view,
4502				section_size_type view_size,
4503				section_offset_type *offset) const
4504{
4505  static const unsigned char ss_code_ear[] = {
4506    0xb2, 0x4f, 0x00, 0x10,		// ear %r1, %a0
4507  };
4508  if (!this->match_view_u(view, view_size, *offset, ss_code_ear,
4509			  sizeof ss_code_ear))
4510    return false;
4511  *offset += sizeof ss_code_ear;
4512  return true;
4513}
4514
4515template<>
4516bool
4517Target_s390<64>::ss_match_ear(unsigned char* view,
4518				section_size_type view_size,
4519				section_offset_type *offset) const
4520{
4521  static const unsigned char ss_code_ear[] = {
4522    0xb2, 0x4f, 0x00, 0x10,		// ear %r1, %a0
4523    0xeb, 0x11, 0x00, 0x20, 0x00, 0x0d,	// sllg %r1,%r1,32
4524    0xb2, 0x4f, 0x00, 0x11,		// ear %r1, %a1
4525  };
4526  if (!this->match_view_u(view, view_size, *offset, ss_code_ear,
4527			  sizeof ss_code_ear))
4528    return false;
4529  *offset += sizeof ss_code_ear;
4530  return true;
4531}
4532
4533template<>
4534bool
4535Target_s390<32>::ss_match_c(unsigned char* view,
4536				section_size_type view_size,
4537				section_offset_type *offset) const
4538{
4539  static const unsigned char ss_code_c[] = {
4540    0x59, 0xf0, 0x10, 0x20,		// c %r15, 0x20(%r1)
4541  };
4542  if (!this->match_view_u(view, view_size, *offset, ss_code_c,
4543			  sizeof ss_code_c))
4544    return false;
4545  *offset += sizeof ss_code_c;
4546  return true;
4547}
4548
4549template<>
4550bool
4551Target_s390<64>::ss_match_c(unsigned char* view,
4552				section_size_type view_size,
4553				section_offset_type *offset) const
4554{
4555  static const unsigned char ss_code_c[] = {
4556    0xe3, 0xf0, 0x10, 0x38, 0x00, 0x20,	// cg %r15, 0x38(%r1)
4557  };
4558  if (!this->match_view_u(view, view_size, *offset, ss_code_c,
4559			  sizeof ss_code_c))
4560    return false;
4561  *offset += sizeof ss_code_c;
4562  return true;
4563}
4564
4565template<>
4566bool
4567Target_s390<32>::ss_match_l(unsigned char* view,
4568			    section_size_type view_size,
4569			    section_offset_type *offset,
4570			    int *guard_reg) const
4571{
4572  // l %guard_reg, 0x20(%r1)
4573  if (convert_to_section_size_type(*offset + 4) > view_size
4574      || view[*offset] != 0x58
4575      || (view[*offset + 1] & 0xf) != 0x0
4576      || view[*offset + 2] != 0x10
4577      || view[*offset + 3] != 0x20)
4578    return false;
4579  *offset += 4;
4580  *guard_reg = view[*offset + 1] >> 4 & 0xf;
4581  return true;
4582}
4583
4584template<>
4585bool
4586Target_s390<64>::ss_match_l(unsigned char* view,
4587			    section_size_type view_size,
4588			    section_offset_type *offset,
4589			    int *guard_reg) const
4590{
4591  // lg %guard_reg, 0x38(%r1)
4592  if (convert_to_section_size_type(*offset + 6) > view_size
4593      || view[*offset] != 0xe3
4594      || (view[*offset + 1] & 0xf) != 0x0
4595      || view[*offset + 2] != 0x10
4596      || view[*offset + 3] != 0x38
4597      || view[*offset + 4] != 0x00
4598      || view[*offset + 5] != 0x04)
4599    return false;
4600  *offset += 6;
4601  *guard_reg = view[*offset + 1] >> 4 & 0xf;
4602  return true;
4603}
4604
4605template<int size>
4606bool
4607Target_s390<size>::ss_match_ahi(unsigned char* view,
4608				section_size_type view_size,
4609				section_offset_type *offset,
4610				int guard_reg,
4611				uint32_t *arg) const
4612{
4613  int op = size == 32 ? 0xa : 0xb;
4614  // a[g]hi %guard_reg, <arg>
4615  if (convert_to_section_size_type(*offset + 4) > view_size
4616      || view[*offset] != 0xa7
4617      || view[*offset + 1] != (guard_reg << 4 | op)
4618      // Disallow negative size.
4619      || view[*offset + 2] & 0x80)
4620    return false;
4621  *arg = elfcpp::Swap<16, true>::readval(view + *offset + 2);
4622  *offset += 4;
4623  return true;
4624}
4625
4626template<int size>
4627bool
4628Target_s390<size>::ss_match_alfi(unsigned char* view,
4629				 section_size_type view_size,
4630				 section_offset_type *offset,
4631				 int guard_reg,
4632				 uint32_t *arg) const
4633{
4634  int op = size == 32 ? 0xb : 0xa;
4635  // al[g]fi %guard_reg, <arg>
4636  if (convert_to_section_size_type(*offset + 6) > view_size
4637      || view[*offset] != 0xc2
4638      || view[*offset + 1] != (guard_reg << 4 | op))
4639    return false;
4640  *arg = elfcpp::Swap<32, true>::readval(view + *offset + 2);
4641  *offset += 6;
4642  return true;
4643}
4644
4645template<>
4646bool
4647Target_s390<32>::ss_match_cr(unsigned char* view,
4648			     section_size_type view_size,
4649			     section_offset_type *offset,
4650			     int guard_reg) const
4651{
4652  // cr %r15, %guard_reg
4653  if (convert_to_section_size_type(*offset + 2) > view_size
4654      || view[*offset] != 0x19
4655      || view[*offset + 1] != (0xf0 | guard_reg))
4656    return false;
4657  *offset += 2;
4658  return true;
4659}
4660
4661template<>
4662bool
4663Target_s390<64>::ss_match_cr(unsigned char* view,
4664			     section_size_type view_size,
4665			     section_offset_type *offset,
4666			     int guard_reg) const
4667{
4668  // cgr %r15, %guard_reg
4669  if (convert_to_section_size_type(*offset + 4) > view_size
4670      || view[*offset] != 0xb9
4671      || view[*offset + 1] != 0x20
4672      || view[*offset + 2] != 0x00
4673      || view[*offset + 3] != (0xf0 | guard_reg))
4674    return false;
4675  *offset += 4;
4676  return true;
4677}
4678
4679
4680// FNOFFSET in section SHNDX in OBJECT is the start of a function
4681// compiled with -fsplit-stack.  The function calls non-split-stack
4682// code.  We have to change the function so that it always ensures
4683// that it has enough stack space to run some random function.
4684
4685template<int size>
4686void
4687Target_s390<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4688				      section_offset_type fnoffset,
4689				      section_size_type,
4690				      const unsigned char *prelocs,
4691				      size_t reloc_count,
4692				      unsigned char* view,
4693				      section_size_type view_size,
4694				      std::string*,
4695				      std::string*) const
4696{
4697  // true if there's a conditional call to __morestack in the function,
4698  // false if there's an unconditional one.
4699  bool conditional = false;
4700  // Offset of the byte after the compare insn, if conditional.
4701  section_offset_type cmpend = 0;
4702  // Type and immediate offset of the add instruction that adds frame size
4703  // to guard.
4704  enum {
4705    SS_ADD_NONE,
4706    SS_ADD_AHI,
4707    SS_ADD_ALFI,
4708  } fsadd_type = SS_ADD_NONE;
4709  section_offset_type fsadd_offset = 0;
4710  uint32_t fsadd_frame_size = 0;
4711  // Register used for loading guard.  Usually r1, but can also be r0 or r2-r5.
4712  int guard_reg;
4713  // Offset of the conditional jump.
4714  section_offset_type jump_offset = 0;
4715  // Section view and offset of param block.
4716  section_offset_type param_offset = 0;
4717  unsigned char *param_view = 0;
4718  section_size_type param_view_size = 0;
4719  // Current position in function.
4720  section_offset_type curoffset = fnoffset;
4721  // And the position of split-stack prologue.
4722  section_offset_type ssoffset;
4723  // Frame size.
4724  typename elfcpp::Elf_types<size>::Elf_Addr frame_size;
4725  // Relocation parsing.
4726  typedef typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc Reltype;
4727  const int reloc_size = Reloc_types<elfcpp::SHT_RELA, size, true>::reloc_size;
4728  const unsigned char *pr = prelocs;
4729
4730  // If the function was compiled with -pg, the profiling code may come before
4731  // the split-stack prologue.  Skip it.
4732
4733  this->ss_match_mcount(view, view_size, &curoffset);
4734  ssoffset = curoffset;
4735
4736  // First, figure out if there's a conditional call by looking for the
4737  // extract-tp, add, cmp sequence.
4738
4739  if (this->ss_match_ear(view, view_size, &curoffset))
4740    {
4741      // Found extract-tp, now look for an add and compare.
4742      conditional = true;
4743      if (this->ss_match_c(view, view_size, &curoffset))
4744	{
4745	  // Found a direct compare of stack pointer with the guard,
4746	  // we're done here.
4747	}
4748      else if (this->ss_match_l(view, view_size, &curoffset, &guard_reg))
4749	{
4750	  // Found a load of guard to register, look for an add and compare.
4751          if (this->ss_match_ahi(view, view_size, &curoffset, guard_reg,
4752				 &fsadd_frame_size))
4753	    {
4754	      fsadd_type = SS_ADD_AHI;
4755	      fsadd_offset = curoffset - 2;
4756	    }
4757	  else if (this->ss_match_alfi(view, view_size, &curoffset, guard_reg,
4758				       &fsadd_frame_size))
4759	    {
4760	      fsadd_type = SS_ADD_ALFI;
4761	      fsadd_offset = curoffset - 4;
4762	    }
4763	  else
4764            {
4765	      goto bad;
4766            }
4767	  // Now, there has to be a compare.
4768          if (!this->ss_match_cr(view, view_size, &curoffset, guard_reg))
4769	    goto bad;
4770	}
4771      else
4772        {
4773	  goto bad;
4774        }
4775      cmpend = curoffset;
4776    }
4777
4778  // Second, look for the call.
4779  if (!this->match_view_u(view, view_size, curoffset, ss_code_larl,
4780			  sizeof ss_code_larl))
4781    goto bad;
4782  curoffset += sizeof ss_code_larl;
4783
4784  // Find out larl's operand.  It should be a local symbol in .rodata
4785  // section.
4786  for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
4787    {
4788      Reltype reloc(pr);
4789      if (static_cast<section_offset_type>(reloc.get_r_offset())
4790          == curoffset)
4791        {
4792          typename elfcpp::Elf_types<size>::Elf_WXword r_info
4793            = reloc.get_r_info();
4794          unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
4795          unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4796          if (r_type != elfcpp::R_390_PC32DBL)
4797            goto bad;
4798          if (r_sym >= object->local_symbol_count())
4799            goto bad;
4800          Sized_relobj_file<size, true> *object_sized =
4801            static_cast<Sized_relobj_file<size, true> *>(object);
4802          const Symbol_value<size>* sym = object_sized->local_symbol(r_sym);
4803          bool param_shndx_ordinary;
4804          const unsigned int param_shndx =
4805            sym->input_shndx(&param_shndx_ordinary);
4806          if (!param_shndx_ordinary)
4807            goto bad;
4808          param_offset = sym->input_value() + reloc.get_r_addend() - 2
4809                         - object->output_section(param_shndx)->address()
4810                         - object->output_section_offset(param_shndx);
4811          param_view = object->get_output_view(param_shndx,
4812                                                  &param_view_size);
4813          break;
4814        }
4815    }
4816
4817  if (!param_view)
4818    goto bad;
4819
4820  curoffset += 4;
4821
4822  // Now, there has to be a jump to __morestack.
4823  jump_offset = curoffset;
4824
4825  if (this->match_view_u(view, view_size, curoffset,
4826                       conditional ? ss_code_jgl : ss_code_jg,
4827                       sizeof ss_code_jg))
4828    curoffset += sizeof ss_code_jg;
4829  else
4830    goto bad;
4831
4832  curoffset += 4;
4833
4834  // Read the frame size.
4835  if (convert_to_section_size_type(param_offset + size / 8) > param_view_size)
4836    goto bad;
4837  frame_size = elfcpp::Swap<size, true>::readval(param_view + param_offset);
4838
4839  // Sanity check.
4840  if (fsadd_type != SS_ADD_NONE && fsadd_frame_size != frame_size)
4841    goto bad;
4842
4843  // Bump the frame size.
4844  frame_size += parameters->options().split_stack_adjust_size();
4845
4846  // Store it to the param block.
4847  elfcpp::Swap<size, true>::writeval(param_view + param_offset, frame_size);
4848
4849  if (!conditional)
4850    {
4851      // If the call was already unconditional, we're done.
4852    }
4853  else if (frame_size <= 0xffffffff && fsadd_type == SS_ADD_ALFI)
4854    {
4855      // Using alfi to add the frame size, and it still fits.  Adjust it.
4856      elfcpp::Swap_unaligned<32, true>::writeval(view + fsadd_offset,
4857						 frame_size);
4858    }
4859  else
4860    {
4861      // We were either relying on the backoff area, or used ahi to load
4862      // frame size.  This won't fly, as our new frame size is too large.
4863      // Convert the sequence to unconditional by nopping out the comparison,
4864      // and rewiring the jump.
4865      this->set_view_to_nop(view, view_size, ssoffset, cmpend - ssoffset);
4866
4867      // The jump is jgl, we'll mutate it to jg.
4868      view[jump_offset+1] = 0xf4;
4869    }
4870
4871  return;
4872
4873bad:
4874  if (!object->has_no_split_stack())
4875      object->error(_("failed to match split-stack sequence at "
4876		      "section %u offset %0zx"),
4877		    shndx, static_cast<size_t>(fnoffset));
4878}
4879
4880// Relocate section data.
4881
4882template<int size>
4883void
4884Target_s390<size>::relocate_section(
4885    const Relocate_info<size, true>* relinfo,
4886    unsigned int sh_type,
4887    const unsigned char* prelocs,
4888    size_t reloc_count,
4889    Output_section* output_section,
4890    bool needs_special_offset_handling,
4891    unsigned char* view,
4892    typename elfcpp::Elf_types<size>::Elf_Addr address,
4893    section_size_type view_size,
4894    const Reloc_symbol_changes* reloc_symbol_changes)
4895{
4896  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4897      Classify_reloc;
4898
4899  gold_assert(sh_type == elfcpp::SHT_RELA);
4900
4901  gold::relocate_section<size, true, Target_s390<size>, Relocate,
4902			 gold::Default_comdat_behavior, Classify_reloc>(
4903    relinfo,
4904    this,
4905    prelocs,
4906    reloc_count,
4907    output_section,
4908    needs_special_offset_handling,
4909    view,
4910    address,
4911    view_size,
4912    reloc_symbol_changes);
4913}
4914
4915// Apply an incremental relocation.  Incremental relocations always refer
4916// to global symbols.
4917
4918template<int size>
4919void
4920Target_s390<size>::apply_relocation(
4921    const Relocate_info<size, true>* relinfo,
4922    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4923    unsigned int r_type,
4924    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4925    const Symbol* gsym,
4926    unsigned char* view,
4927    typename elfcpp::Elf_types<size>::Elf_Addr address,
4928    section_size_type view_size)
4929{
4930  gold::apply_relocation<size, true, Target_s390<size>,
4931			 typename Target_s390<size>::Relocate>(
4932    relinfo,
4933    this,
4934    r_offset,
4935    r_type,
4936    r_addend,
4937    gsym,
4938    view,
4939    address,
4940    view_size);
4941}
4942
4943// The selector for s390 object files.
4944
4945template<int size>
4946class Target_selector_s390 : public Target_selector
4947{
4948public:
4949  Target_selector_s390()
4950    : Target_selector(elfcpp::EM_S390, size, true,
4951		      (size == 64 ? "elf64-s390" : "elf32-s390"),
4952		      (size == 64 ? "elf64_s390" : "elf32_s390"))
4953  { }
4954
4955  virtual Target*
4956  do_instantiate_target()
4957  { return new Target_s390<size>(); }
4958};
4959
4960Target_selector_s390<32> target_selector_s390;
4961Target_selector_s390<64> target_selector_s390x;
4962
4963} // End anonymous namespace.
4964