1// ehframe.cc -- handle exception frame sections for gold
2
3// Copyright (C) 2006-2017 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26#include <algorithm>
27
28#include "elfcpp.h"
29#include "dwarf.h"
30#include "symtab.h"
31#include "reloc.h"
32#include "ehframe.h"
33
34namespace gold
35{
36
37// This file handles generation of the exception frame header that
38// gcc's runtime support libraries use to find unwind information at
39// runtime.  This file also handles discarding duplicate exception
40// frame information.
41
42// The exception frame header starts with four bytes:
43
44// 0: The version number, currently 1.
45
46// 1: The encoding of the pointer to the exception frames.  This can
47//    be any DWARF unwind encoding (DW_EH_PE_*).  It is normally a 4
48//    byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50// 2: The encoding of the count of the number of FDE pointers in the
51//    lookup table.  This can be any DWARF unwind encoding, and in
52//    particular can be DW_EH_PE_omit if the count is omitted.  It is
53//    normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55// 3: The encoding of the lookup table entries.  Currently gcc's
56//    libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57//    which means that the values are 4 byte offsets from the start of
58//    the table.
59
60// The exception frame header is followed by a pointer to the contents
61// of the exception frame section (.eh_frame).  This pointer is
62// encoded as specified in the byte at offset 1 of the header (i.e.,
63// it is normally a 4 byte PC relative offset).
64
65// If there is a lookup table, this is followed by the count of the
66// number of FDE pointers, encoded as specified in the byte at offset
67// 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69// This is followed by the table, which should start at an 4-byte
70// aligned address in memory.  Each entry in the table is 8 bytes.
71// Each entry represents an FDE.  The first four bytes of each entry
72// are an offset to the starting PC for the FDE.  The last four bytes
73// of each entry are an offset to the FDE data.  The offsets are from
74// the start of the exception frame header information.  The entries
75// are in sorted order by starting PC.
76
77const int eh_frame_hdr_size = 4;
78
79// Construct the exception frame header.
80
81Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82			   const Eh_frame* eh_frame_data)
83  : Output_section_data(4),
84    eh_frame_section_(eh_frame_section),
85    eh_frame_data_(eh_frame_data),
86    fde_offsets_(),
87    any_unrecognized_eh_frame_sections_(false)
88{
89}
90
91// Set the size of the exception frame header.
92
93void
94Eh_frame_hdr::set_final_data_size()
95{
96  unsigned int data_size = eh_frame_hdr_size + 4;
97  if (!this->any_unrecognized_eh_frame_sections_)
98    {
99      unsigned int fde_count = this->eh_frame_data_->fde_count();
100      if (fde_count != 0)
101	data_size += 4 + 8 * fde_count;
102      this->fde_offsets_.reserve(fde_count);
103    }
104  this->set_data_size(data_size);
105}
106
107// Write the data to the file.
108
109void
110Eh_frame_hdr::do_write(Output_file* of)
111{
112  switch (parameters->size_and_endianness())
113    {
114#ifdef HAVE_TARGET_32_LITTLE
115    case Parameters::TARGET_32_LITTLE:
116      this->do_sized_write<32, false>(of);
117      break;
118#endif
119#ifdef HAVE_TARGET_32_BIG
120    case Parameters::TARGET_32_BIG:
121      this->do_sized_write<32, true>(of);
122      break;
123#endif
124#ifdef HAVE_TARGET_64_LITTLE
125    case Parameters::TARGET_64_LITTLE:
126      this->do_sized_write<64, false>(of);
127      break;
128#endif
129#ifdef HAVE_TARGET_64_BIG
130    case Parameters::TARGET_64_BIG:
131      this->do_sized_write<64, true>(of);
132      break;
133#endif
134    default:
135      gold_unreachable();
136    }
137}
138
139// Write the data to the file with the right endianness.
140
141template<int size, bool big_endian>
142void
143Eh_frame_hdr::do_sized_write(Output_file* of)
144{
145  const off_t off = this->offset();
146  const off_t oview_size = this->data_size();
147  unsigned char* const oview = of->get_output_view(off, oview_size);
148
149  // Version number.
150  oview[0] = 1;
151
152  // Write out a 4 byte PC relative offset to the address of the
153  // .eh_frame section.
154  oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155  uint64_t eh_frame_address = this->eh_frame_section_->address();
156  uint64_t eh_frame_hdr_address = this->address();
157  uint64_t eh_frame_offset = (eh_frame_address -
158			      (eh_frame_hdr_address + 4));
159  elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
161  if (this->any_unrecognized_eh_frame_sections_
162      || this->fde_offsets_.empty())
163    {
164      // There are no FDEs, or we didn't recognize the format of the
165      // some of the .eh_frame sections, so we can't write out the
166      // sorted table.
167      oview[2] = elfcpp::DW_EH_PE_omit;
168      oview[3] = elfcpp::DW_EH_PE_omit;
169
170      gold_assert(oview_size == 8);
171    }
172  else
173    {
174      oview[2] = elfcpp::DW_EH_PE_udata4;
175      oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
177      elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178					     this->fde_offsets_.size());
179
180      // We have the offsets of the FDEs in the .eh_frame section.  We
181      // couldn't easily get the PC values before, as they depend on
182      // relocations which are, of course, target specific.  This code
183      // is run after all those relocations have been applied to the
184      // output file.  Here we read the output file again to find the
185      // PC values.  Then we sort the list and write it out.
186
187      Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188      this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189						&fde_addresses);
190
191      std::sort(fde_addresses.begin(), fde_addresses.end(),
192		Fde_address_compare<size>());
193
194      typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195      output_address = this->address();
196
197      unsigned char* pfde = oview + 12;
198      for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199	   p != fde_addresses.end();
200	   ++p)
201	{
202	  elfcpp::Swap<32, big_endian>::writeval(pfde,
203						 p->first - output_address);
204	  elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205						 p->second - output_address);
206	  pfde += 8;
207	}
208
209      gold_assert(pfde - oview == oview_size);
210    }
211
212  of->write_output_view(off, oview_size, oview);
213}
214
215// Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216// the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217// FDE's encoding is FDE_ENCODING, return the output address of the
218// FDE's PC.
219
220template<int size, bool big_endian>
221typename elfcpp::Elf_types<size>::Elf_Addr
222Eh_frame_hdr::get_fde_pc(
223    typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224    const unsigned char* eh_frame_contents,
225    section_offset_type fde_offset,
226    unsigned char fde_encoding)
227{
228  // The FDE starts with a 4 byte length and a 4 byte offset to the
229  // CIE.  The PC follows.
230  const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
232  typename elfcpp::Elf_types<size>::Elf_Addr pc;
233  bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234  int pc_size = fde_encoding & 7;
235  if (pc_size == elfcpp::DW_EH_PE_absptr)
236    {
237      if (size == 32)
238	pc_size = elfcpp::DW_EH_PE_udata4;
239      else if (size == 64)
240	pc_size = elfcpp::DW_EH_PE_udata8;
241      else
242	gold_unreachable();
243    }
244
245  switch (pc_size)
246    {
247    case elfcpp::DW_EH_PE_udata2:
248      pc = elfcpp::Swap<16, big_endian>::readval(p);
249      if (is_signed)
250	pc = (pc ^ 0x8000) - 0x8000;
251      break;
252
253    case elfcpp::DW_EH_PE_udata4:
254      pc = elfcpp::Swap<32, big_endian>::readval(p);
255      if (size > 32 && is_signed)
256	pc = (pc ^ 0x80000000) - 0x80000000;
257      break;
258
259    case elfcpp::DW_EH_PE_udata8:
260      gold_assert(size == 64);
261      pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262      break;
263
264    default:
265      // All other cases were rejected in Eh_frame::read_cie.
266      gold_unreachable();
267    }
268
269  switch (fde_encoding & 0x70)
270    {
271    case 0:
272      break;
273
274    case elfcpp::DW_EH_PE_pcrel:
275      pc += eh_frame_address + fde_offset + 8;
276      break;
277
278    case elfcpp::DW_EH_PE_datarel:
279      pc += parameters->target().ehframe_datarel_base();
280      break;
281
282    default:
283      // If other cases arise, then we have to handle them, or we have
284      // to reject them by returning false in Eh_frame::read_cie.
285      gold_unreachable();
286    }
287
288  gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
289
290  return pc;
291}
292
293// Given an array of FDE offsets in the .eh_frame section, return an
294// array of offsets from the exception frame header to the FDE's
295// output PC and to the output address of the FDE itself.  We get the
296// FDE's PC by actually looking in the .eh_frame section we just wrote
297// to the output file.
298
299template<int size, bool big_endian>
300void
301Eh_frame_hdr::get_fde_addresses(Output_file* of,
302				const Fde_offsets* fde_offsets,
303				Fde_addresses<size>* fde_addresses)
304{
305  typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
306  eh_frame_address = this->eh_frame_section_->address();
307  off_t eh_frame_offset = this->eh_frame_section_->offset();
308  off_t eh_frame_size = this->eh_frame_section_->data_size();
309  const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
310							      eh_frame_size);
311
312  for (Fde_offsets::const_iterator p = fde_offsets->begin();
313       p != fde_offsets->end();
314       ++p)
315    {
316      typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
317      fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
318						  eh_frame_contents,
319						  p->first, p->second);
320      fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
321    }
322
323  of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
324}
325
326// Class Fde.
327
328// Write the FDE to OVIEW starting at OFFSET.  CIE_OFFSET is the
329// offset of the CIE in OVIEW.  OUTPUT_OFFSET is the offset of the
330// Eh_frame section within the output section.  FDE_ENCODING is the
331// encoding, from the CIE.  ADDRALIGN is the required alignment.
332// ADDRESS is the virtual address of OVIEW.  Record the FDE pc for
333// EH_FRAME_HDR.  Return the new offset.
334
335template<int size, bool big_endian>
336section_offset_type
337Fde::write(unsigned char* oview, section_offset_type output_offset,
338	   section_offset_type offset, uint64_t address, unsigned int addralign,
339	   section_offset_type cie_offset, unsigned char fde_encoding,
340	   Eh_frame_hdr* eh_frame_hdr)
341{
342  gold_assert((offset & (addralign - 1)) == 0);
343
344  size_t length = this->contents_.length();
345
346  // We add 8 when getting the aligned length to account for the
347  // length word and the CIE offset.
348  size_t aligned_full_length = align_address(length + 8, addralign);
349
350  // Write the length of the FDE as a 32-bit word.  The length word
351  // does not include the four bytes of the length word itself, but it
352  // does include the offset to the CIE.
353  elfcpp::Swap<32, big_endian>::writeval(oview + offset,
354                                         aligned_full_length - 4);
355
356  // Write the offset to the CIE as a 32-bit word.  This is the
357  // difference between the address of the offset word itself and the
358  // CIE address.
359  elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
360					 offset + 4 - cie_offset);
361
362  // Copy the rest of the FDE.  Note that this is run before
363  // relocation processing is done on this section, so the relocations
364  // will later be applied to the FDE data.
365  memcpy(oview + offset + 8, this->contents_.data(), length);
366
367  // If this FDE is associated with a PLT, fill in the PLT's address
368  // and size.
369  if (this->object_ == NULL)
370    {
371      gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
372      uint64_t paddress;
373      off_t psize;
374      parameters->target().plt_fde_location(this->u_.from_linker.plt,
375					    oview + offset + 8,
376					    &paddress, &psize);
377      uint64_t poffset = paddress - (address + offset + 8);
378      int32_t spoffset = static_cast<int32_t>(poffset);
379      uint32_t upsize = static_cast<uint32_t>(psize);
380      if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
381	  || static_cast<off_t>(upsize) != psize)
382	gold_warning(_("overflow in PLT unwind data; "
383		       "unwinding through PLT may fail"));
384      elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
385      elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
386    }
387
388  if (aligned_full_length > length + 8)
389    memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
390
391  // Tell the exception frame header about this FDE.
392  if (eh_frame_hdr != NULL)
393    eh_frame_hdr->record_fde(output_offset + offset, fde_encoding);
394
395  return offset + aligned_full_length;
396}
397
398// Class Cie.
399
400// Destructor.
401
402Cie::~Cie()
403{
404  for (std::vector<Fde*>::iterator p = this->fdes_.begin();
405       p != this->fdes_.end();
406       ++p)
407    delete *p;
408}
409
410// Set the output offset of a CIE.  Return the new output offset.
411
412section_offset_type
413Cie::set_output_offset(section_offset_type output_offset,
414		       unsigned int addralign,
415		       Output_section_data *output_data)
416{
417  size_t length = this->contents_.length();
418
419  // Add 4 for length and 4 for zero CIE identifier tag.
420  length += 8;
421
422  if (this->object_ != NULL)
423    {
424      // Add a mapping so that relocations are applied correctly.
425      this->object_->add_merge_mapping(output_data, this->shndx_,
426                                       this->input_offset_, length,
427                                       output_offset);
428    }
429
430  length = align_address(length, addralign);
431
432  for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
433       p != this->fdes_.end();
434       ++p)
435    {
436      (*p)->add_mapping(output_offset + length, output_data);
437
438      size_t fde_length = (*p)->length();
439      fde_length = align_address(fde_length, addralign);
440      length += fde_length;
441    }
442
443  return output_offset + length;
444}
445
446// Write the CIE to OVIEW starting at OFFSET.  OUTPUT_OFFSET is the
447// offset of the Eh_frame section within the output section.  Round up
448// the bytes to ADDRALIGN.  ADDRESS is the virtual address of OVIEW.
449// EH_FRAME_HDR is the exception frame header for FDE recording.
450// POST_FDES stashes FDEs created after mappings were done, for later
451// writing.  Return the new offset.
452
453template<int size, bool big_endian>
454section_offset_type
455Cie::write(unsigned char* oview, section_offset_type output_offset,
456	   section_offset_type offset, uint64_t address,
457	   unsigned int addralign, Eh_frame_hdr* eh_frame_hdr,
458	   Post_fdes* post_fdes)
459{
460  gold_assert((offset & (addralign - 1)) == 0);
461
462  section_offset_type cie_offset = offset;
463
464  size_t length = this->contents_.length();
465
466  // We add 8 when getting the aligned length to account for the
467  // length word and the CIE tag.
468  size_t aligned_full_length = align_address(length + 8, addralign);
469
470  // Write the length of the CIE as a 32-bit word.  The length word
471  // does not include the four bytes of the length word itself.
472  elfcpp::Swap<32, big_endian>::writeval(oview + offset,
473                                         aligned_full_length - 4);
474
475  // Write the tag which marks this as a CIE: a 32-bit zero.
476  elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
477
478  // Write out the CIE data.
479  memcpy(oview + offset + 8, this->contents_.data(), length);
480
481  if (aligned_full_length > length + 8)
482    memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
483
484  offset += aligned_full_length;
485
486  // Write out the associated FDEs.
487  unsigned char fde_encoding = this->fde_encoding_;
488  for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
489       p != this->fdes_.end();
490       ++p)
491    {
492      if ((*p)->post_map())
493	post_fdes->push_back(Post_fde(*p, cie_offset, fde_encoding));
494      else
495	offset = (*p)->write<size, big_endian>(oview, output_offset, offset,
496					       address, addralign, cie_offset,
497					       fde_encoding, eh_frame_hdr);
498    }
499
500  return offset;
501}
502
503// We track all the CIEs we see, and merge them when possible.  This
504// works because each FDE holds an offset to the relevant CIE: we
505// rewrite the FDEs to point to the merged CIE.  This is worthwhile
506// because in a typical C++ program many FDEs in many different object
507// files will use the same CIE.
508
509// An equality operator for Cie.
510
511bool
512operator==(const Cie& cie1, const Cie& cie2)
513{
514  return (cie1.personality_name_ == cie2.personality_name_
515	  && cie1.contents_ == cie2.contents_);
516}
517
518// A less-than operator for Cie.
519
520bool
521operator<(const Cie& cie1, const Cie& cie2)
522{
523  if (cie1.personality_name_ != cie2.personality_name_)
524    return cie1.personality_name_ < cie2.personality_name_;
525  return cie1.contents_ < cie2.contents_;
526}
527
528// Class Eh_frame.
529
530Eh_frame::Eh_frame()
531  : Output_section_data(Output_data::default_alignment()),
532    eh_frame_hdr_(NULL),
533    cie_offsets_(),
534    unmergeable_cie_offsets_(),
535    mappings_are_done_(false),
536    final_data_size_(0)
537{
538}
539
540// Skip an LEB128, updating *PP to point to the next character.
541// Return false if we ran off the end of the string.
542
543bool
544Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
545{
546  const unsigned char* p;
547  for (p = *pp; p < pend; ++p)
548    {
549      if ((*p & 0x80) == 0)
550	{
551	  *pp = p + 1;
552	  return true;
553	}
554    }
555  return false;
556}
557
558// Add input section SHNDX in OBJECT to an exception frame section.
559// SYMBOLS is the contents of the symbol table section (size
560// SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
561// SYMBOL_NAMES_SIZE).  RELOC_SHNDX is the index of a relocation
562// section applying to SHNDX, or 0 if none, or -1U if more than one.
563// RELOC_TYPE is the type of the reloc section if there is one, either
564// SHT_REL or SHT_RELA.  We try to parse the input exception frame
565// data into our data structures.  If we can't do it, we return false
566// to mean that the section should be handled as a normal input
567// section.
568
569template<int size, bool big_endian>
570Eh_frame::Eh_frame_section_disposition
571Eh_frame::add_ehframe_input_section(
572    Sized_relobj_file<size, big_endian>* object,
573    const unsigned char* symbols,
574    section_size_type symbols_size,
575    const unsigned char* symbol_names,
576    section_size_type symbol_names_size,
577    unsigned int shndx,
578    unsigned int reloc_shndx,
579    unsigned int reloc_type)
580{
581  // Get the section contents.
582  section_size_type contents_len;
583  const unsigned char* pcontents = object->section_contents(shndx,
584							    &contents_len,
585							    false);
586  if (contents_len == 0)
587    return EH_EMPTY_SECTION;
588
589  // If this is the marker section for the end of the data, then
590  // return false to force it to be handled as an ordinary input
591  // section.  If we don't do this, we won't correctly handle the case
592  // of unrecognized .eh_frame sections.
593  if (contents_len == 4
594      && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
595    return EH_END_MARKER_SECTION;
596
597  New_cies new_cies;
598  if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
599					  symbol_names, symbol_names_size,
600					  shndx, reloc_shndx,
601					  reloc_type, pcontents,
602					  contents_len, &new_cies))
603    {
604      if (this->eh_frame_hdr_ != NULL)
605	this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
606
607      for (New_cies::iterator p = new_cies.begin();
608	   p != new_cies.end();
609	   ++p)
610	delete p->first;
611
612      return EH_UNRECOGNIZED_SECTION;
613    }
614
615  // Now that we know we are using this section, record any new CIEs
616  // that we found.
617  for (New_cies::const_iterator p = new_cies.begin();
618       p != new_cies.end();
619       ++p)
620    {
621      if (p->second)
622	this->cie_offsets_.insert(p->first);
623      else
624	this->unmergeable_cie_offsets_.push_back(p->first);
625    }
626
627  return EH_OPTIMIZABLE_SECTION;
628}
629
630// The bulk of the implementation of add_ehframe_input_section.
631
632template<int size, bool big_endian>
633bool
634Eh_frame::do_add_ehframe_input_section(
635    Sized_relobj_file<size, big_endian>* object,
636    const unsigned char* symbols,
637    section_size_type symbols_size,
638    const unsigned char* symbol_names,
639    section_size_type symbol_names_size,
640    unsigned int shndx,
641    unsigned int reloc_shndx,
642    unsigned int reloc_type,
643    const unsigned char* pcontents,
644    section_size_type contents_len,
645    New_cies* new_cies)
646{
647  Track_relocs<size, big_endian> relocs;
648
649  const unsigned char* p = pcontents;
650  const unsigned char* pend = p + contents_len;
651
652  // Get the contents of the reloc section if any.
653  if (!relocs.initialize(object, reloc_shndx, reloc_type))
654    return false;
655
656  // Keep track of which CIEs are at which offsets.
657  Offsets_to_cie cies;
658
659  while (p < pend)
660    {
661      if (pend - p < 4)
662	return false;
663
664      // There shouldn't be any relocations here.
665      if (relocs.advance(p + 4 - pcontents) > 0)
666	return false;
667
668      unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
669      p += 4;
670      if (len == 0)
671	{
672	  // We should only find a zero-length entry at the end of the
673	  // section.
674	  if (p < pend)
675	    return false;
676	  break;
677	}
678      // We don't support a 64-bit .eh_frame.
679      if (len == 0xffffffff)
680	return false;
681      if (static_cast<unsigned int>(pend - p) < len)
682	return false;
683
684      const unsigned char* const pentend = p + len;
685
686      if (pend - p < 4)
687	return false;
688      if (relocs.advance(p + 4 - pcontents) > 0)
689	return false;
690
691      unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
692      p += 4;
693
694      if (id == 0)
695	{
696	  // CIE.
697	  if (!this->read_cie(object, shndx, symbols, symbols_size,
698			      symbol_names, symbol_names_size,
699			      pcontents, p, pentend, &relocs, &cies,
700			      new_cies))
701	    return false;
702	}
703      else
704	{
705	  // FDE.
706	  if (!this->read_fde(object, shndx, symbols, symbols_size,
707			      pcontents, id, p, pentend, &relocs, &cies))
708	    return false;
709	}
710
711      p = pentend;
712    }
713
714  return true;
715}
716
717// Read a CIE.  Return false if we can't parse the information.
718
719template<int size, bool big_endian>
720bool
721Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
722		   unsigned int shndx,
723		   const unsigned char* symbols,
724		   section_size_type symbols_size,
725		   const unsigned char* symbol_names,
726		   section_size_type symbol_names_size,
727		   const unsigned char* pcontents,
728		   const unsigned char* pcie,
729		   const unsigned char* pcieend,
730		   Track_relocs<size, big_endian>* relocs,
731		   Offsets_to_cie* cies,
732		   New_cies* new_cies)
733{
734  bool mergeable = true;
735
736  // We need to find the personality routine if there is one, since we
737  // can only merge CIEs which use the same routine.  We also need to
738  // find the FDE encoding if there is one, so that we can read the PC
739  // from the FDE.
740
741  const unsigned char* p = pcie;
742
743  if (pcieend - p < 1)
744    return false;
745  unsigned char version = *p++;
746  if (version != 1 && version != 3)
747    return false;
748
749  const unsigned char* paug = p;
750  const void* paugendv = memchr(p, '\0', pcieend - p);
751  const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
752  if (paugend == NULL)
753    return false;
754  p = paugend + 1;
755
756  if (paug[0] == 'e' && paug[1] == 'h')
757    {
758      // This is a CIE from gcc before version 3.0.  We can't merge
759      // these.  We can still read the FDEs.
760      mergeable = false;
761      paug += 2;
762      if (*paug != '\0')
763	return false;
764      if (pcieend - p < size / 8)
765	return false;
766      p += size / 8;
767    }
768
769  // Skip the code alignment.
770  if (!skip_leb128(&p, pcieend))
771    return false;
772
773  // Skip the data alignment.
774  if (!skip_leb128(&p, pcieend))
775    return false;
776
777  // Skip the return column.
778  if (version == 1)
779    {
780      if (pcieend - p < 1)
781	return false;
782      ++p;
783    }
784  else
785    {
786      if (!skip_leb128(&p, pcieend))
787	return false;
788    }
789
790  if (*paug == 'z')
791    {
792      ++paug;
793      // Skip the augmentation size.
794      if (!skip_leb128(&p, pcieend))
795	return false;
796    }
797
798  unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
799  int per_offset = -1;
800  while (*paug != '\0')
801    {
802      switch (*paug)
803	{
804	case 'L': // LSDA encoding.
805	  if (pcieend - p < 1)
806	    return false;
807	  ++p;
808	  break;
809
810	case 'R': // FDE encoding.
811	  if (pcieend - p < 1)
812	    return false;
813	  fde_encoding = *p;
814	  switch (fde_encoding & 7)
815	    {
816	    case elfcpp::DW_EH_PE_absptr:
817	    case elfcpp::DW_EH_PE_udata2:
818	    case elfcpp::DW_EH_PE_udata4:
819	    case elfcpp::DW_EH_PE_udata8:
820	      break;
821	    default:
822	      // We don't expect to see any other cases here, and
823	      // we're not prepared to handle them.
824	      return false;
825	    }
826	  ++p;
827	  break;
828
829	case 'S':
830	  break;
831
832	case 'P':
833	  // Personality encoding.
834	  {
835	    if (pcieend - p < 1)
836	      return false;
837	    unsigned char per_encoding = *p;
838	    ++p;
839
840	    if ((per_encoding & 0x60) == 0x60)
841	      return false;
842	    unsigned int per_width;
843	    switch (per_encoding & 7)
844	      {
845	      case elfcpp::DW_EH_PE_udata2:
846		per_width = 2;
847		break;
848	      case elfcpp::DW_EH_PE_udata4:
849		per_width = 4;
850		break;
851	      case elfcpp::DW_EH_PE_udata8:
852		per_width = 8;
853		break;
854	      case elfcpp::DW_EH_PE_absptr:
855		per_width = size / 8;
856		break;
857	      default:
858		return false;
859	      }
860
861	    if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
862	      {
863		unsigned int len = p - pcie;
864		len += per_width - 1;
865		len &= ~ (per_width - 1);
866		if (static_cast<unsigned int>(pcieend - p) < len)
867		  return false;
868		p += len;
869	      }
870
871	    per_offset = p - pcontents;
872
873	    if (static_cast<unsigned int>(pcieend - p) < per_width)
874	      return false;
875	    p += per_width;
876	  }
877	  break;
878
879	default:
880	  return false;
881	}
882
883      ++paug;
884    }
885
886  const char* personality_name = "";
887  if (per_offset != -1)
888    {
889      if (relocs->advance(per_offset) > 0)
890	return false;
891      if (relocs->next_offset() != per_offset)
892	return false;
893
894      unsigned int personality_symndx = relocs->next_symndx();
895      if (personality_symndx == -1U)
896	return false;
897
898      if (personality_symndx < object->local_symbol_count())
899	{
900	  // We can only merge this CIE if the personality routine is
901	  // a global symbol.  We can still read the FDEs.
902	  mergeable = false;
903	}
904      else
905	{
906	  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
907	  if (personality_symndx >= symbols_size / sym_size)
908	    return false;
909	  elfcpp::Sym<size, big_endian> sym(symbols
910					    + (personality_symndx * sym_size));
911	  unsigned int name_offset = sym.get_st_name();
912	  if (name_offset >= symbol_names_size)
913	    return false;
914	  personality_name = (reinterpret_cast<const char*>(symbol_names)
915			      + name_offset);
916	}
917
918      int r = relocs->advance(per_offset + 1);
919      gold_assert(r == 1);
920    }
921
922  if (relocs->advance(pcieend - pcontents) > 0)
923    return false;
924
925  Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
926	  personality_name, pcie, pcieend - pcie);
927  Cie* cie_pointer = NULL;
928  if (mergeable)
929    {
930      Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
931      if (find_cie != this->cie_offsets_.end())
932	cie_pointer = *find_cie;
933      else
934	{
935	  // See if we already saw this CIE in this object file.
936	  for (New_cies::const_iterator pc = new_cies->begin();
937	       pc != new_cies->end();
938	       ++pc)
939	    {
940	      if (*(pc->first) == cie)
941		{
942		  cie_pointer = pc->first;
943		  break;
944		}
945	    }
946	}
947    }
948
949  if (cie_pointer == NULL)
950    {
951      cie_pointer = new Cie(cie);
952      new_cies->push_back(std::make_pair(cie_pointer, mergeable));
953    }
954  else
955    {
956      // We are deleting this CIE.  Record that in our mapping from
957      // input sections to the output section.  At this point we don't
958      // know for sure that we are doing a special mapping for this
959      // input section, but that's OK--if we don't do a special
960      // mapping, nobody will ever ask for the mapping we add here.
961      object->add_merge_mapping(this, shndx, (pcie - 8) - pcontents,
962                                pcieend - (pcie - 8), -1);
963    }
964
965  // Record this CIE plus the offset in the input section.
966  cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
967
968  return true;
969}
970
971// Read an FDE.  Return false if we can't parse the information.
972
973template<int size, bool big_endian>
974bool
975Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
976		   unsigned int shndx,
977		   const unsigned char* symbols,
978		   section_size_type symbols_size,
979		   const unsigned char* pcontents,
980		   unsigned int offset,
981		   const unsigned char* pfde,
982		   const unsigned char* pfdeend,
983		   Track_relocs<size, big_endian>* relocs,
984		   Offsets_to_cie* cies)
985{
986  // OFFSET is the distance between the 4 bytes before PFDE to the
987  // start of the CIE.  The offset we recorded for the CIE is 8 bytes
988  // after the start of the CIE--after the length and the zero tag.
989  unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
990  Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
991  if (pcie == cies->end())
992    return false;
993  Cie* cie = pcie->second;
994
995  int pc_size = 0;
996  switch (cie->fde_encoding() & 7)
997    {
998    case elfcpp::DW_EH_PE_udata2:
999      pc_size = 2;
1000      break;
1001    case elfcpp::DW_EH_PE_udata4:
1002      pc_size = 4;
1003      break;
1004    case elfcpp::DW_EH_PE_udata8:
1005      gold_assert(size == 64);
1006      pc_size = 8;
1007      break;
1008    case elfcpp::DW_EH_PE_absptr:
1009      pc_size = size == 32 ? 4 : 8;
1010      break;
1011    default:
1012      // All other cases were rejected in Eh_frame::read_cie.
1013      gold_unreachable();
1014    }
1015
1016  // The FDE should start with a reloc to the start of the code which
1017  // it describes.
1018  if (relocs->advance(pfde - pcontents) > 0)
1019    return false;
1020  if (relocs->next_offset() != pfde - pcontents)
1021    {
1022      // In an object produced by a relocatable link, gold may have
1023      // discarded a COMDAT group in the previous link, but not the
1024      // corresponding FDEs. In that case, gold will have discarded
1025      // the relocations, so the FDE will have a non-relocatable zero
1026      // (regardless of whether the PC encoding is absolute, pc-relative,
1027      // or data-relative) instead of a pointer to the start of the code.
1028
1029      uint64_t pc_value = 0;
1030      switch (pc_size)
1031	{
1032	case 2:
1033	  pc_value = elfcpp::Swap<16, big_endian>::readval(pfde);
1034	  break;
1035	case 4:
1036	  pc_value = elfcpp::Swap<32, big_endian>::readval(pfde);
1037	  break;
1038	case 8:
1039	  pc_value = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde);
1040	  break;
1041	default:
1042	  gold_unreachable();
1043	}
1044
1045      if (pc_value == 0)
1046	{
1047	  // This FDE applies to a discarded function.  We
1048	  // can discard this FDE.
1049	  object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
1050				    pfdeend - (pfde - 8), -1);
1051	  return true;
1052	}
1053
1054      // Otherwise, reject the FDE.
1055      return false;
1056    }
1057
1058  unsigned int symndx = relocs->next_symndx();
1059  if (symndx == -1U)
1060    return false;
1061
1062  // There can be another reloc in the FDE, if the CIE specifies an
1063  // LSDA (language specific data area).  We currently don't care.  We
1064  // will care later if we want to optimize the LSDA from an absolute
1065  // pointer to a PC relative offset when generating a shared library.
1066  relocs->advance(pfdeend - pcontents);
1067
1068  // Find the section index for code that this FDE describes.
1069  // If we have discarded the section, we can also discard the FDE.
1070  unsigned int fde_shndx;
1071  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1072  if (symndx >= symbols_size / sym_size)
1073    return false;
1074  elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
1075  bool is_ordinary;
1076  fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
1077				       &is_ordinary);
1078  bool is_discarded = (is_ordinary
1079		       && fde_shndx != elfcpp::SHN_UNDEF
1080		       && fde_shndx < object->shnum()
1081		       && !object->is_section_included(fde_shndx));
1082
1083  // Fetch the address range field from the FDE. The offset and size
1084  // of the field depends on the PC encoding given in the CIE, but
1085  // it is always an absolute value. If the address range is 0, this
1086  // FDE corresponds to a function that was discarded during optimization
1087  // (too late to discard the corresponding FDE).
1088  uint64_t address_range = 0;
1089  switch (pc_size)
1090    {
1091    case 2:
1092      address_range = elfcpp::Swap<16, big_endian>::readval(pfde + 2);
1093      break;
1094    case 4:
1095      address_range = elfcpp::Swap<32, big_endian>::readval(pfde + 4);
1096      break;
1097    case 8:
1098      address_range = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde + 8);
1099      break;
1100    default:
1101      gold_unreachable();
1102    }
1103
1104  if (is_discarded || address_range == 0)
1105    {
1106      // This FDE applies to a discarded function.  We
1107      // can discard this FDE.
1108      object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents,
1109                                pfdeend - (pfde - 8), -1);
1110      return true;
1111    }
1112
1113  cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
1114		       pfde, pfdeend - pfde));
1115
1116  return true;
1117}
1118
1119// Add unwind information for a PLT.
1120
1121void
1122Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
1123			      size_t cie_length, const unsigned char* fde_data,
1124			      size_t fde_length)
1125{
1126  Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1127	  cie_data, cie_length);
1128  Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1129  Cie* pcie;
1130  if (find_cie != this->cie_offsets_.end())
1131    pcie = *find_cie;
1132  else
1133    {
1134      gold_assert(!this->mappings_are_done_);
1135      pcie = new Cie(cie);
1136      this->cie_offsets_.insert(pcie);
1137    }
1138
1139  Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_);
1140  pcie->add_fde(fde);
1141
1142  if (this->mappings_are_done_)
1143    this->final_data_size_ += align_address(fde_length + 8, this->addralign());
1144}
1145
1146// Return the number of FDEs.
1147
1148unsigned int
1149Eh_frame::fde_count() const
1150{
1151  unsigned int ret = 0;
1152  for (Unmergeable_cie_offsets::const_iterator p =
1153	 this->unmergeable_cie_offsets_.begin();
1154       p != this->unmergeable_cie_offsets_.end();
1155       ++p)
1156    ret += (*p)->fde_count();
1157  for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1158       p != this->cie_offsets_.end();
1159       ++p)
1160    ret += (*p)->fde_count();
1161  return ret;
1162}
1163
1164// Set the final data size.
1165
1166void
1167Eh_frame::set_final_data_size()
1168{
1169  // We can be called more than once if Layout::set_segment_offsets
1170  // finds a better mapping.  We don't want to add all the mappings
1171  // again.
1172  if (this->mappings_are_done_)
1173    {
1174      this->set_data_size(this->final_data_size_);
1175      return;
1176    }
1177
1178  section_offset_type output_start = 0;
1179  if (this->is_offset_valid())
1180    output_start = this->offset() - this->output_section()->offset();
1181  section_offset_type output_offset = output_start;
1182
1183  for (Unmergeable_cie_offsets::iterator p =
1184	 this->unmergeable_cie_offsets_.begin();
1185       p != this->unmergeable_cie_offsets_.end();
1186       ++p)
1187    output_offset = (*p)->set_output_offset(output_offset,
1188					    this->addralign(),
1189					    this);
1190
1191  for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1192       p != this->cie_offsets_.end();
1193       ++p)
1194    output_offset = (*p)->set_output_offset(output_offset,
1195					    this->addralign(),
1196					    this);
1197
1198  this->mappings_are_done_ = true;
1199  this->final_data_size_ = output_offset - output_start;
1200
1201  gold_assert((output_offset & (this->addralign() - 1)) == 0);
1202  this->set_data_size(this->final_data_size_);
1203}
1204
1205// Return an output offset for an input offset.
1206
1207bool
1208Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1209			   section_offset_type offset,
1210			   section_offset_type* poutput) const
1211{
1212  return object->merge_output_offset(shndx, offset, poutput);
1213}
1214
1215// Write the data to the output file.
1216
1217void
1218Eh_frame::do_write(Output_file* of)
1219{
1220  const off_t offset = this->offset();
1221  const off_t oview_size = this->data_size();
1222  unsigned char* const oview = of->get_output_view(offset, oview_size);
1223
1224  switch (parameters->size_and_endianness())
1225    {
1226#ifdef HAVE_TARGET_32_LITTLE
1227    case Parameters::TARGET_32_LITTLE:
1228      this->do_sized_write<32, false>(oview);
1229      break;
1230#endif
1231#ifdef HAVE_TARGET_32_BIG
1232    case Parameters::TARGET_32_BIG:
1233      this->do_sized_write<32, true>(oview);
1234      break;
1235#endif
1236#ifdef HAVE_TARGET_64_LITTLE
1237    case Parameters::TARGET_64_LITTLE:
1238      this->do_sized_write<64, false>(oview);
1239      break;
1240#endif
1241#ifdef HAVE_TARGET_64_BIG
1242    case Parameters::TARGET_64_BIG:
1243      this->do_sized_write<64, true>(oview);
1244      break;
1245#endif
1246    default:
1247      gold_unreachable();
1248    }
1249
1250  of->write_output_view(offset, oview_size, oview);
1251}
1252
1253// Write the data to the output file--template version.
1254
1255template<int size, bool big_endian>
1256void
1257Eh_frame::do_sized_write(unsigned char* oview)
1258{
1259  uint64_t address = this->address();
1260  unsigned int addralign = this->addralign();
1261  section_offset_type o = 0;
1262  const off_t output_offset = this->offset() - this->output_section()->offset();
1263  Post_fdes post_fdes;
1264  for (Unmergeable_cie_offsets::iterator p =
1265	 this->unmergeable_cie_offsets_.begin();
1266       p != this->unmergeable_cie_offsets_.end();
1267       ++p)
1268    o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
1269				      addralign, this->eh_frame_hdr_,
1270				      &post_fdes);
1271  for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1272       p != this->cie_offsets_.end();
1273       ++p)
1274    o = (*p)->write<size, big_endian>(oview, output_offset, o, address,
1275				      addralign, this->eh_frame_hdr_,
1276				      &post_fdes);
1277  for (Post_fdes::iterator p = post_fdes.begin();
1278       p != post_fdes.end();
1279       ++p)
1280    o = (*p).fde->write<size, big_endian>(oview, output_offset, o, address,
1281					  addralign, (*p).cie_offset,
1282					  (*p).fde_encoding,
1283					  this->eh_frame_hdr_);
1284}
1285
1286#ifdef HAVE_TARGET_32_LITTLE
1287template
1288Eh_frame::Eh_frame_section_disposition
1289Eh_frame::add_ehframe_input_section<32, false>(
1290    Sized_relobj_file<32, false>* object,
1291    const unsigned char* symbols,
1292    section_size_type symbols_size,
1293    const unsigned char* symbol_names,
1294    section_size_type symbol_names_size,
1295    unsigned int shndx,
1296    unsigned int reloc_shndx,
1297    unsigned int reloc_type);
1298#endif
1299
1300#ifdef HAVE_TARGET_32_BIG
1301template
1302Eh_frame::Eh_frame_section_disposition
1303Eh_frame::add_ehframe_input_section<32, true>(
1304    Sized_relobj_file<32, true>* object,
1305    const unsigned char* symbols,
1306    section_size_type symbols_size,
1307    const unsigned char* symbol_names,
1308    section_size_type symbol_names_size,
1309    unsigned int shndx,
1310    unsigned int reloc_shndx,
1311    unsigned int reloc_type);
1312#endif
1313
1314#ifdef HAVE_TARGET_64_LITTLE
1315template
1316Eh_frame::Eh_frame_section_disposition
1317Eh_frame::add_ehframe_input_section<64, false>(
1318    Sized_relobj_file<64, false>* object,
1319    const unsigned char* symbols,
1320    section_size_type symbols_size,
1321    const unsigned char* symbol_names,
1322    section_size_type symbol_names_size,
1323    unsigned int shndx,
1324    unsigned int reloc_shndx,
1325    unsigned int reloc_type);
1326#endif
1327
1328#ifdef HAVE_TARGET_64_BIG
1329template
1330Eh_frame::Eh_frame_section_disposition
1331Eh_frame::add_ehframe_input_section<64, true>(
1332    Sized_relobj_file<64, true>* object,
1333    const unsigned char* symbols,
1334    section_size_type symbols_size,
1335    const unsigned char* symbol_names,
1336    section_size_type symbol_names_size,
1337    unsigned int shndx,
1338    unsigned int reloc_shndx,
1339    unsigned int reloc_type);
1340#endif
1341
1342} // End namespace gold.
1343