1/* atof_generic.c - turn a string of digits into a Flonum
2   Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4   This file is part of GAS, the GNU Assembler.
5
6   GAS is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3, or (at your option)
9   any later version.
10
11   GAS is distributed in the hope that it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14   License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with GAS; see the file COPYING.  If not, write to the Free
18   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19   02110-1301, USA.  */
20
21#include "as.h"
22#include "safe-ctype.h"
23
24#ifndef FALSE
25#define FALSE (0)
26#endif
27#ifndef TRUE
28#define TRUE  (1)
29#endif
30
31#ifdef TRACE
32static void flonum_print (const FLONUM_TYPE *);
33#endif
34
35#define ASSUME_DECIMAL_MARK_IS_DOT
36
37/***********************************************************************\
38 *									*
39 *	Given a string of decimal digits , with optional decimal	*
40 *	mark and optional decimal exponent (place value) of the		*
41 *	lowest_order decimal digit: produce a floating point		*
42 *	number. The number is 'generic' floating point: our		*
43 *	caller will encode it for a specific machine architecture.	*
44 *									*
45 *	Assumptions							*
46 *		uses base (radix) 2					*
47 *		this machine uses 2's complement binary integers	*
48 *		target flonums use "      "         "       "		*
49 *		target flonums exponents fit in a long			*
50 *									*
51 \***********************************************************************/
52
53/*
54
55  Syntax:
56
57  <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
58  <optional-sign> ::= '+' | '-' | {empty}
59  <decimal-number> ::= <integer>
60  | <integer> <radix-character>
61  | <integer> <radix-character> <integer>
62  | <radix-character> <integer>
63
64  <optional-exponent> ::= {empty}
65  | <exponent-character> <optional-sign> <integer>
66
67  <integer> ::= <digit> | <digit> <integer>
68  <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
69  <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
70  <radix-character> ::= {one character from "string_of_decimal_marks"}
71
72  */
73
74int
75atof_generic (/* return pointer to just AFTER number we read.  */
76	      char **address_of_string_pointer,
77	      /* At most one per number.  */
78	      const char *string_of_decimal_marks,
79	      const char *string_of_decimal_exponent_marks,
80	      FLONUM_TYPE *address_of_generic_floating_point_number)
81{
82  int return_value;		/* 0 means OK.  */
83  char *first_digit;
84  unsigned int number_of_digits_before_decimal;
85  unsigned int number_of_digits_after_decimal;
86  long decimal_exponent;
87  unsigned int number_of_digits_available;
88  char digits_sign_char;
89
90  /*
91   * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
92   * It would be simpler to modify the string, but we don't; just to be nice
93   * to caller.
94   * We need to know how many digits we have, so we can allocate space for
95   * the digits' value.
96   */
97
98  char *p;
99  char c;
100  int seen_significant_digit;
101
102#ifdef ASSUME_DECIMAL_MARK_IS_DOT
103  gas_assert (string_of_decimal_marks[0] == '.'
104	  && string_of_decimal_marks[1] == 0);
105#define IS_DECIMAL_MARK(c)	((c) == '.')
106#else
107#define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
108#endif
109
110  first_digit = *address_of_string_pointer;
111  c = *first_digit;
112
113  if (c == '-' || c == '+')
114    {
115      digits_sign_char = c;
116      first_digit++;
117    }
118  else
119    digits_sign_char = '+';
120
121  switch (first_digit[0])
122    {
123    case 'n':
124    case 'N':
125      if (!strncasecmp ("nan", first_digit, 3))
126	{
127	  address_of_generic_floating_point_number->sign = 0;
128	  address_of_generic_floating_point_number->exponent = 0;
129	  address_of_generic_floating_point_number->leader =
130	    address_of_generic_floating_point_number->low;
131	  *address_of_string_pointer = first_digit + 3;
132	  return 0;
133	}
134      break;
135
136    case 'i':
137    case 'I':
138      if (!strncasecmp ("inf", first_digit, 3))
139	{
140	  address_of_generic_floating_point_number->sign =
141	    digits_sign_char == '+' ? 'P' : 'N';
142	  address_of_generic_floating_point_number->exponent = 0;
143	  address_of_generic_floating_point_number->leader =
144	    address_of_generic_floating_point_number->low;
145
146	  first_digit += 3;
147	  if (!strncasecmp ("inity", first_digit, 5))
148	    first_digit += 5;
149
150	  *address_of_string_pointer = first_digit;
151
152	  return 0;
153	}
154      break;
155    }
156
157  number_of_digits_before_decimal = 0;
158  number_of_digits_after_decimal = 0;
159  decimal_exponent = 0;
160  seen_significant_digit = 0;
161  for (p = first_digit;
162       (((c = *p) != '\0')
163	&& (!c || !IS_DECIMAL_MARK (c))
164	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
165       p++)
166    {
167      if (ISDIGIT (c))
168	{
169	  if (seen_significant_digit || c > '0')
170	    {
171	      ++number_of_digits_before_decimal;
172	      seen_significant_digit = 1;
173	    }
174	  else
175	    {
176	      first_digit++;
177	    }
178	}
179      else
180	{
181	  break;		/* p -> char after pre-decimal digits.  */
182	}
183    }				/* For each digit before decimal mark.  */
184
185#ifndef OLD_FLOAT_READS
186  /* Ignore trailing 0's after the decimal point.  The original code here
187   * (ifdef'd out) does not do this, and numbers like
188   *	4.29496729600000000000e+09	(2**31)
189   * come out inexact for some reason related to length of the digit
190   * string.
191   */
192  if (c && IS_DECIMAL_MARK (c))
193    {
194      unsigned int zeros = 0;	/* Length of current string of zeros */
195
196      for (p++; (c = *p) && ISDIGIT (c); p++)
197	{
198	  if (c == '0')
199	    {
200	      zeros++;
201	    }
202	  else
203	    {
204	      number_of_digits_after_decimal += 1 + zeros;
205	      zeros = 0;
206	    }
207	}
208    }
209#else
210  if (c && IS_DECIMAL_MARK (c))
211    {
212      for (p++;
213	   (((c = *p) != '\0')
214	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
215	   p++)
216	{
217	  if (ISDIGIT (c))
218	    {
219	      /* This may be retracted below.  */
220	      number_of_digits_after_decimal++;
221
222	      if ( /* seen_significant_digit || */ c > '0')
223		{
224		  seen_significant_digit = TRUE;
225		}
226	    }
227	  else
228	    {
229	      if (!seen_significant_digit)
230		{
231		  number_of_digits_after_decimal = 0;
232		}
233	      break;
234	    }
235	}			/* For each digit after decimal mark.  */
236    }
237
238  while (number_of_digits_after_decimal
239	 && first_digit[number_of_digits_before_decimal
240			+ number_of_digits_after_decimal] == '0')
241    --number_of_digits_after_decimal;
242#endif
243
244  if (flag_m68k_mri)
245    {
246      while (c == '_')
247	c = *++p;
248    }
249  if (c && strchr (string_of_decimal_exponent_marks, c))
250    {
251      char digits_exponent_sign_char;
252
253      c = *++p;
254      if (flag_m68k_mri)
255	{
256	  while (c == '_')
257	    c = *++p;
258	}
259      if (c && strchr ("+-", c))
260	{
261	  digits_exponent_sign_char = c;
262	  c = *++p;
263	}
264      else
265	{
266	  digits_exponent_sign_char = '+';
267	}
268
269      for (; (c); c = *++p)
270	{
271	  if (ISDIGIT (c))
272	    {
273	      decimal_exponent = decimal_exponent * 10 + c - '0';
274	      /*
275	       * BUG! If we overflow here, we lose!
276	       */
277	    }
278	  else
279	    {
280	      break;
281	    }
282	}
283
284      if (digits_exponent_sign_char == '-')
285	{
286	  decimal_exponent = -decimal_exponent;
287	}
288    }
289
290  *address_of_string_pointer = p;
291
292  number_of_digits_available =
293    number_of_digits_before_decimal + number_of_digits_after_decimal;
294  return_value = 0;
295  if (number_of_digits_available == 0)
296    {
297      address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
298      address_of_generic_floating_point_number->leader
299	= -1 + address_of_generic_floating_point_number->low;
300      address_of_generic_floating_point_number->sign = digits_sign_char;
301      /* We have just concocted (+/-)0.0E0 */
302
303    }
304  else
305    {
306      int count;		/* Number of useful digits left to scan.  */
307
308      LITTLENUM_TYPE *temporary_binary_low = NULL;
309      LITTLENUM_TYPE *power_binary_low = NULL;
310      LITTLENUM_TYPE *digits_binary_low;
311      unsigned int precision;
312      unsigned int maximum_useful_digits;
313      unsigned int number_of_digits_to_use;
314      unsigned int more_than_enough_bits_for_digits;
315      unsigned int more_than_enough_littlenums_for_digits;
316      unsigned int size_of_digits_in_littlenums;
317      unsigned int size_of_digits_in_chars;
318      FLONUM_TYPE power_of_10_flonum;
319      FLONUM_TYPE digits_flonum;
320
321      precision = (address_of_generic_floating_point_number->high
322		   - address_of_generic_floating_point_number->low
323		   + 1);	/* Number of destination littlenums.  */
324
325      /* Includes guard bits (two littlenums worth) */
326      maximum_useful_digits = (((precision - 2))
327			       * ( (LITTLENUM_NUMBER_OF_BITS))
328			       * 1000000 / 3321928)
329	+ 2;			/* 2 :: guard digits.  */
330
331      if (number_of_digits_available > maximum_useful_digits)
332	{
333	  number_of_digits_to_use = maximum_useful_digits;
334	}
335      else
336	{
337	  number_of_digits_to_use = number_of_digits_available;
338	}
339
340      /* Cast these to SIGNED LONG first, otherwise, on systems with
341	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
342	 cause unexpected results.  */
343      decimal_exponent += ((long) number_of_digits_before_decimal
344			   - (long) number_of_digits_to_use);
345
346      more_than_enough_bits_for_digits
347	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
348
349      more_than_enough_littlenums_for_digits
350	= (more_than_enough_bits_for_digits
351	   / LITTLENUM_NUMBER_OF_BITS)
352	+ 2;
353
354      /* Compute (digits) part. In "12.34E56" this is the "1234" part.
355	 Arithmetic is exact here. If no digits are supplied then this
356	 part is a 0 valued binary integer.  Allocate room to build up
357	 the binary number as littlenums.  We want this memory to
358	 disappear when we leave this function.  Assume no alignment
359	 problems => (room for n objects) == n * (room for 1
360	 object).  */
361
362      size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
363      size_of_digits_in_chars = size_of_digits_in_littlenums
364	* sizeof (LITTLENUM_TYPE);
365
366      digits_binary_low = (LITTLENUM_TYPE *)
367	xmalloc (size_of_digits_in_chars);
368
369      memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
370
371      /* Digits_binary_low[] is allocated and zeroed.  */
372
373      /*
374       * Parse the decimal digits as if * digits_low was in the units position.
375       * Emit a binary number into digits_binary_low[].
376       *
377       * Use a large-precision version of:
378       * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
379       */
380
381      for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
382	{
383	  c = *p;
384	  if (ISDIGIT (c))
385	    {
386	      /*
387	       * Multiply by 10. Assume can never overflow.
388	       * Add this digit to digits_binary_low[].
389	       */
390
391	      long carry;
392	      LITTLENUM_TYPE *littlenum_pointer;
393	      LITTLENUM_TYPE *littlenum_limit;
394
395	      littlenum_limit = digits_binary_low
396		+ more_than_enough_littlenums_for_digits
397		- 1;
398
399	      carry = c - '0';	/* char -> binary */
400
401	      for (littlenum_pointer = digits_binary_low;
402		   littlenum_pointer <= littlenum_limit;
403		   littlenum_pointer++)
404		{
405		  long work;
406
407		  work = carry + 10 * (long) (*littlenum_pointer);
408		  *littlenum_pointer = work & LITTLENUM_MASK;
409		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
410		}
411
412	      if (carry != 0)
413		{
414		  /*
415		   * We have a GROSS internal error.
416		   * This should never happen.
417		   */
418		  as_fatal (_("failed sanity check"));
419		}
420	    }
421	  else
422	    {
423	      ++count;		/* '.' doesn't alter digits used count.  */
424	    }
425	}
426
427      /*
428       * Digits_binary_low[] properly encodes the value of the digits.
429       * Forget about any high-order littlenums that are 0.
430       */
431      while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
432	     && size_of_digits_in_littlenums >= 2)
433	size_of_digits_in_littlenums--;
434
435      digits_flonum.low = digits_binary_low;
436      digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
437      digits_flonum.leader = digits_flonum.high;
438      digits_flonum.exponent = 0;
439      /*
440       * The value of digits_flonum . sign should not be important.
441       * We have already decided the output's sign.
442       * We trust that the sign won't influence the other parts of the number!
443       * So we give it a value for these reasons:
444       * (1) courtesy to humans reading/debugging
445       *     these numbers so they don't get excited about strange values
446       * (2) in future there may be more meaning attached to sign,
447       *     and what was
448       *     harmless noise may become disruptive, ill-conditioned (or worse)
449       *     input.
450       */
451      digits_flonum.sign = '+';
452
453      {
454	/*
455	 * Compute the mantssa (& exponent) of the power of 10.
456	 * If successful, then multiply the power of 10 by the digits
457	 * giving return_binary_mantissa and return_binary_exponent.
458	 */
459
460	int decimal_exponent_is_negative;
461	/* This refers to the "-56" in "12.34E-56".  */
462	/* FALSE: decimal_exponent is positive (or 0) */
463	/* TRUE:  decimal_exponent is negative */
464	FLONUM_TYPE temporary_flonum;
465	unsigned int size_of_power_in_littlenums;
466	unsigned int size_of_power_in_chars;
467
468	size_of_power_in_littlenums = precision;
469	/* Precision has a built-in fudge factor so we get a few guard bits.  */
470
471	decimal_exponent_is_negative = decimal_exponent < 0;
472	if (decimal_exponent_is_negative)
473	  {
474	    decimal_exponent = -decimal_exponent;
475	  }
476
477	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
478
479	size_of_power_in_chars = size_of_power_in_littlenums
480	  * sizeof (LITTLENUM_TYPE) + 2;
481
482	power_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
483	temporary_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
484
485	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
486	*power_binary_low = 1;
487	power_of_10_flonum.exponent = 0;
488	power_of_10_flonum.low = power_binary_low;
489	power_of_10_flonum.leader = power_binary_low;
490	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
491	power_of_10_flonum.sign = '+';
492	temporary_flonum.low = temporary_binary_low;
493	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
494	/*
495	 * (power) == 1.
496	 * Space for temporary_flonum allocated.
497	 */
498
499	/*
500	 * ...
501	 *
502	 * WHILE	more bits
503	 * DO	find next bit (with place value)
504	 *	multiply into power mantissa
505	 * OD
506	 */
507	{
508	  int place_number_limit;
509	  /* Any 10^(2^n) whose "n" exceeds this */
510	  /* value will fall off the end of */
511	  /* flonum_XXXX_powers_of_ten[].  */
512	  int place_number;
513	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
514
515	  place_number_limit = table_size_of_flonum_powers_of_ten;
516
517	  multiplicand = (decimal_exponent_is_negative
518			  ? flonum_negative_powers_of_ten
519			  : flonum_positive_powers_of_ten);
520
521	  for (place_number = 1;/* Place value of this bit of exponent.  */
522	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
523	       decimal_exponent >>= 1, place_number++)
524	    {
525	      if (decimal_exponent & 1)
526		{
527		  if (place_number > place_number_limit)
528		    {
529		      /* The decimal exponent has a magnitude so great
530			 that our tables can't help us fragment it.
531			 Although this routine is in error because it
532			 can't imagine a number that big, signal an
533			 error as if it is the user's fault for
534			 presenting such a big number.  */
535		      return_value = ERROR_EXPONENT_OVERFLOW;
536		      /* quit out of loop gracefully */
537		      decimal_exponent = 0;
538		    }
539		  else
540		    {
541#ifdef TRACE
542		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
543			      place_number);
544
545		      flonum_print (&power_of_10_flonum);
546		      (void) putchar ('\n');
547#endif
548#ifdef TRACE
549		      printf ("multiplier:\n");
550		      flonum_print (multiplicand + place_number);
551		      (void) putchar ('\n');
552#endif
553		      flonum_multip (multiplicand + place_number,
554				     &power_of_10_flonum, &temporary_flonum);
555#ifdef TRACE
556		      printf ("after multiply:\n");
557		      flonum_print (&temporary_flonum);
558		      (void) putchar ('\n');
559#endif
560		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
561#ifdef TRACE
562		      printf ("after copy:\n");
563		      flonum_print (&power_of_10_flonum);
564		      (void) putchar ('\n');
565#endif
566		    } /* If this bit of decimal_exponent was computable.*/
567		} /* If this bit of decimal_exponent was set.  */
568	    } /* For each bit of binary representation of exponent */
569#ifdef TRACE
570	  printf ("after computing power_of_10_flonum:\n");
571	  flonum_print (&power_of_10_flonum);
572	  (void) putchar ('\n');
573#endif
574	}
575      }
576
577      /*
578       * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
579       * It may be the number 1, in which case we don't NEED to multiply.
580       *
581       * Multiply (decimal digits) by power_of_10_flonum.
582       */
583
584      flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
585      /* Assert sign of the number we made is '+'.  */
586      address_of_generic_floating_point_number->sign = digits_sign_char;
587
588      if (temporary_binary_low)
589	free (temporary_binary_low);
590      if (power_binary_low)
591	free (power_binary_low);
592      free (digits_binary_low);
593    }
594  return return_value;
595}
596
597#ifdef TRACE
598static void
599flonum_print (f)
600     const FLONUM_TYPE *f;
601{
602  LITTLENUM_TYPE *lp;
603  char littlenum_format[10];
604  sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
605#define print_littlenum(LP)	(printf (littlenum_format, LP))
606  printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
607  if (f->low < f->high)
608    for (lp = f->high; lp >= f->low; lp--)
609      print_littlenum (*lp);
610  else
611    for (lp = f->low; lp <= f->high; lp++)
612      print_littlenum (*lp);
613  printf ("\n");
614  fflush (stdout);
615}
616#endif
617
618/* end of atof_generic.c */
619