1/* Object file "section" support for the BFD library.
2   Copyright (C) 1990-2017 Free Software Foundation, Inc.
3   Written by Cygnus Support.
4
5   This file is part of BFD, the Binary File Descriptor library.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20   MA 02110-1301, USA.  */
21
22/*
23SECTION
24	Sections
25
26	The raw data contained within a BFD is maintained through the
27	section abstraction.  A single BFD may have any number of
28	sections.  It keeps hold of them by pointing to the first;
29	each one points to the next in the list.
30
31	Sections are supported in BFD in <<section.c>>.
32
33@menu
34@* Section Input::
35@* Section Output::
36@* typedef asection::
37@* section prototypes::
38@end menu
39
40INODE
41Section Input, Section Output, Sections, Sections
42SUBSECTION
43	Section input
44
45	When a BFD is opened for reading, the section structures are
46	created and attached to the BFD.
47
48	Each section has a name which describes the section in the
49	outside world---for example, <<a.out>> would contain at least
50	three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52	Names need not be unique; for example a COFF file may have several
53	sections named <<.data>>.
54
55	Sometimes a BFD will contain more than the ``natural'' number of
56	sections. A back end may attach other sections containing
57	constructor data, or an application may add a section (using
58	<<bfd_make_section>>) to the sections attached to an already open
59	BFD. For example, the linker creates an extra section
60	<<COMMON>> for each input file's BFD to hold information about
61	common storage.
62
63	The raw data is not necessarily read in when
64	the section descriptor is created. Some targets may leave the
65	data in place until a <<bfd_get_section_contents>> call is
66	made. Other back ends may read in all the data at once.  For
67	example, an S-record file has to be read once to determine the
68	size of the data. An IEEE-695 file doesn't contain raw data in
69	sections, but data and relocation expressions intermixed, so
70	the data area has to be parsed to get out the data and
71	relocations.
72
73INODE
74Section Output, typedef asection, Section Input, Sections
75
76SUBSECTION
77	Section output
78
79	To write a new object style BFD, the various sections to be
80	written have to be created. They are attached to the BFD in
81	the same way as input sections; data is written to the
82	sections using <<bfd_set_section_contents>>.
83
84	Any program that creates or combines sections (e.g., the assembler
85	and linker) must use the <<asection>> fields <<output_section>> and
86	<<output_offset>> to indicate the file sections to which each
87	section must be written.  (If the section is being created from
88	scratch, <<output_section>> should probably point to the section
89	itself and <<output_offset>> should probably be zero.)
90
91	The data to be written comes from input sections attached
92	(via <<output_section>> pointers) to
93	the output sections.  The output section structure can be
94	considered a filter for the input section: the output section
95	determines the vma of the output data and the name, but the
96	input section determines the offset into the output section of
97	the data to be written.
98
99	E.g., to create a section "O", starting at 0x100, 0x123 long,
100	containing two subsections, "A" at offset 0x0 (i.e., at vma
101	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102	structures would look like:
103
104|   section name          "A"
105|     output_offset   0x00
106|     size            0x20
107|     output_section ----------->  section name    "O"
108|                             |    vma             0x100
109|   section name          "B" |    size            0x123
110|     output_offset   0x20    |
111|     size            0x103   |
112|     output_section  --------|
113
114SUBSECTION
115	Link orders
116
117	The data within a section is stored in a @dfn{link_order}.
118	These are much like the fixups in <<gas>>.  The link_order
119	abstraction allows a section to grow and shrink within itself.
120
121	A link_order knows how big it is, and which is the next
122	link_order and where the raw data for it is; it also points to
123	a list of relocations which apply to it.
124
125	The link_order is used by the linker to perform relaxing on
126	final code.  The compiler creates code which is as big as
127	necessary to make it work without relaxing, and the user can
128	select whether to relax.  Sometimes relaxing takes a lot of
129	time.  The linker runs around the relocations to see if any
130	are attached to data which can be shrunk, if so it does it on
131	a link_order by link_order basis.
132
133*/
134
135#include "sysdep.h"
136#include "bfd.h"
137#include "libbfd.h"
138#include "bfdlink.h"
139
140/*
141DOCDD
142INODE
143typedef asection, section prototypes, Section Output, Sections
144SUBSECTION
145	typedef asection
146
147	Here is the section structure:
148
149CODE_FRAGMENT
150.
151.typedef struct bfd_section
152.{
153.  {* The name of the section; the name isn't a copy, the pointer is
154.     the same as that passed to bfd_make_section.  *}
155.  const char *name;
156.
157.  {* A unique sequence number.  *}
158.  unsigned int id;
159.
160.  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
161.  unsigned int index;
162.
163.  {* The next section in the list belonging to the BFD, or NULL.  *}
164.  struct bfd_section *next;
165.
166.  {* The previous section in the list belonging to the BFD, or NULL.  *}
167.  struct bfd_section *prev;
168.
169.  {* The field flags contains attributes of the section. Some
170.     flags are read in from the object file, and some are
171.     synthesized from other information.  *}
172.  flagword flags;
173.
174.#define SEC_NO_FLAGS   0x000
175.
176.  {* Tells the OS to allocate space for this section when loading.
177.     This is clear for a section containing debug information only.  *}
178.#define SEC_ALLOC      0x001
179.
180.  {* Tells the OS to load the section from the file when loading.
181.     This is clear for a .bss section.  *}
182.#define SEC_LOAD       0x002
183.
184.  {* The section contains data still to be relocated, so there is
185.     some relocation information too.  *}
186.#define SEC_RELOC      0x004
187.
188.  {* A signal to the OS that the section contains read only data.  *}
189.#define SEC_READONLY   0x008
190.
191.  {* The section contains code only.  *}
192.#define SEC_CODE       0x010
193.
194.  {* The section contains data only.  *}
195.#define SEC_DATA       0x020
196.
197.  {* The section will reside in ROM.  *}
198.#define SEC_ROM        0x040
199.
200.  {* The section contains constructor information. This section
201.     type is used by the linker to create lists of constructors and
202.     destructors used by <<g++>>. When a back end sees a symbol
203.     which should be used in a constructor list, it creates a new
204.     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205.     the symbol to it, and builds a relocation. To build the lists
206.     of constructors, all the linker has to do is catenate all the
207.     sections called <<__CTOR_LIST__>> and relocate the data
208.     contained within - exactly the operations it would peform on
209.     standard data.  *}
210.#define SEC_CONSTRUCTOR 0x080
211.
212.  {* The section has contents - a data section could be
213.     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214.     <<SEC_HAS_CONTENTS>>  *}
215.#define SEC_HAS_CONTENTS 0x100
216.
217.  {* An instruction to the linker to not output the section
218.     even if it has information which would normally be written.  *}
219.#define SEC_NEVER_LOAD 0x200
220.
221.  {* The section contains thread local data.  *}
222.#define SEC_THREAD_LOCAL 0x400
223.
224.  {* The section has GOT references.  This flag is only for the
225.     linker, and is currently only used by the elf32-hppa back end.
226.     It will be set if global offset table references were detected
227.     in this section, which indicate to the linker that the section
228.     contains PIC code, and must be handled specially when doing a
229.     static link.  *}
230.#define SEC_HAS_GOT_REF 0x800
231.
232.  {* The section contains common symbols (symbols may be defined
233.     multiple times, the value of a symbol is the amount of
234.     space it requires, and the largest symbol value is the one
235.     used).  Most targets have exactly one of these (which we
236.     translate to bfd_com_section_ptr), but ECOFF has two.  *}
237.#define SEC_IS_COMMON 0x1000
238.
239.  {* The section contains only debugging information.  For
240.     example, this is set for ELF .debug and .stab sections.
241.     strip tests this flag to see if a section can be
242.     discarded.  *}
243.#define SEC_DEBUGGING 0x2000
244.
245.  {* The contents of this section are held in memory pointed to
246.     by the contents field.  This is checked by bfd_get_section_contents,
247.     and the data is retrieved from memory if appropriate.  *}
248.#define SEC_IN_MEMORY 0x4000
249.
250.  {* The contents of this section are to be excluded by the
251.     linker for executable and shared objects unless those
252.     objects are to be further relocated.  *}
253.#define SEC_EXCLUDE 0x8000
254.
255.  {* The contents of this section are to be sorted based on the sum of
256.     the symbol and addend values specified by the associated relocation
257.     entries.  Entries without associated relocation entries will be
258.     appended to the end of the section in an unspecified order.  *}
259.#define SEC_SORT_ENTRIES 0x10000
260.
261.  {* When linking, duplicate sections of the same name should be
262.     discarded, rather than being combined into a single section as
263.     is usually done.  This is similar to how common symbols are
264.     handled.  See SEC_LINK_DUPLICATES below.  *}
265.#define SEC_LINK_ONCE 0x20000
266.
267.  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
268.     should handle duplicate sections.  *}
269.#define SEC_LINK_DUPLICATES 0xc0000
270.
271.  {* This value for SEC_LINK_DUPLICATES means that duplicate
272.     sections with the same name should simply be discarded.  *}
273.#define SEC_LINK_DUPLICATES_DISCARD 0x0
274.
275.  {* This value for SEC_LINK_DUPLICATES means that the linker
276.     should warn if there are any duplicate sections, although
277.     it should still only link one copy.  *}
278.#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
279.
280.  {* This value for SEC_LINK_DUPLICATES means that the linker
281.     should warn if any duplicate sections are a different size.  *}
282.#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
283.
284.  {* This value for SEC_LINK_DUPLICATES means that the linker
285.     should warn if any duplicate sections contain different
286.     contents.  *}
287.#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
288.  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
289.
290.  {* This section was created by the linker as part of dynamic
291.     relocation or other arcane processing.  It is skipped when
292.     going through the first-pass output, trusting that someone
293.     else up the line will take care of it later.  *}
294.#define SEC_LINKER_CREATED 0x100000
295.
296.  {* This section should not be subject to garbage collection.
297.     Also set to inform the linker that this section should not be
298.     listed in the link map as discarded.  *}
299.#define SEC_KEEP 0x200000
300.
301.  {* This section contains "short" data, and should be placed
302.     "near" the GP.  *}
303.#define SEC_SMALL_DATA 0x400000
304.
305.  {* Attempt to merge identical entities in the section.
306.     Entity size is given in the entsize field.  *}
307.#define SEC_MERGE 0x800000
308.
309.  {* If given with SEC_MERGE, entities to merge are zero terminated
310.     strings where entsize specifies character size instead of fixed
311.     size entries.  *}
312.#define SEC_STRINGS 0x1000000
313.
314.  {* This section contains data about section groups.  *}
315.#define SEC_GROUP 0x2000000
316.
317.  {* The section is a COFF shared library section.  This flag is
318.     only for the linker.  If this type of section appears in
319.     the input file, the linker must copy it to the output file
320.     without changing the vma or size.  FIXME: Although this
321.     was originally intended to be general, it really is COFF
322.     specific (and the flag was renamed to indicate this).  It
323.     might be cleaner to have some more general mechanism to
324.     allow the back end to control what the linker does with
325.     sections.  *}
326.#define SEC_COFF_SHARED_LIBRARY 0x4000000
327.
328.  {* This input section should be copied to output in reverse order
329.     as an array of pointers.  This is for ELF linker internal use
330.     only.  *}
331.#define SEC_ELF_REVERSE_COPY 0x4000000
332.
333.  {* This section contains data which may be shared with other
334.     executables or shared objects. This is for COFF only.  *}
335.#define SEC_COFF_SHARED 0x8000000
336.
337.  {* This section should be compressed.  This is for ELF linker
338.     internal use only.  *}
339.#define SEC_ELF_COMPRESS 0x8000000
340.
341.  {* When a section with this flag is being linked, then if the size of
342.     the input section is less than a page, it should not cross a page
343.     boundary.  If the size of the input section is one page or more,
344.     it should be aligned on a page boundary.  This is for TI
345.     TMS320C54X only.  *}
346.#define SEC_TIC54X_BLOCK 0x10000000
347.
348.  {* This section should be renamed.  This is for ELF linker
349.     internal use only.  *}
350.#define SEC_ELF_RENAME 0x10000000
351.
352.  {* Conditionally link this section; do not link if there are no
353.     references found to any symbol in the section.  This is for TI
354.     TMS320C54X only.  *}
355.#define SEC_TIC54X_CLINK 0x20000000
356.
357.  {* This section contains vliw code.  This is for Toshiba MeP only.  *}
358.#define SEC_MEP_VLIW 0x20000000
359.
360.  {* Indicate that section has the no read flag set. This happens
361.     when memory read flag isn't set. *}
362.#define SEC_COFF_NOREAD 0x40000000
363.
364.  {* Indicate that section has the purecode flag set.  *}
365.#define SEC_ELF_PURECODE 0x80000000
366.
367.  {*  End of section flags.  *}
368.
369.  {* Some internal packed boolean fields.  *}
370.
371.  {* See the vma field.  *}
372.  unsigned int user_set_vma : 1;
373.
374.  {* A mark flag used by some of the linker backends.  *}
375.  unsigned int linker_mark : 1;
376.
377.  {* Another mark flag used by some of the linker backends.  Set for
378.     output sections that have an input section.  *}
379.  unsigned int linker_has_input : 1;
380.
381.  {* Mark flag used by some linker backends for garbage collection.  *}
382.  unsigned int gc_mark : 1;
383.
384.  {* Section compression status.  *}
385.  unsigned int compress_status : 2;
386.#define COMPRESS_SECTION_NONE    0
387.#define COMPRESS_SECTION_DONE    1
388.#define DECOMPRESS_SECTION_SIZED 2
389.
390.  {* The following flags are used by the ELF linker. *}
391.
392.  {* Mark sections which have been allocated to segments.  *}
393.  unsigned int segment_mark : 1;
394.
395.  {* Type of sec_info information.  *}
396.  unsigned int sec_info_type:3;
397.#define SEC_INFO_TYPE_NONE      0
398.#define SEC_INFO_TYPE_STABS     1
399.#define SEC_INFO_TYPE_MERGE     2
400.#define SEC_INFO_TYPE_EH_FRAME  3
401.#define SEC_INFO_TYPE_JUST_SYMS 4
402.#define SEC_INFO_TYPE_TARGET    5
403.#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
404.
405.  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
406.  unsigned int use_rela_p:1;
407.
408.  {* Bits used by various backends.  The generic code doesn't touch
409.     these fields.  *}
410.
411.  unsigned int sec_flg0:1;
412.  unsigned int sec_flg1:1;
413.  unsigned int sec_flg2:1;
414.  unsigned int sec_flg3:1;
415.  unsigned int sec_flg4:1;
416.  unsigned int sec_flg5:1;
417.
418.  {* End of internal packed boolean fields.  *}
419.
420.  {*  The virtual memory address of the section - where it will be
421.      at run time.  The symbols are relocated against this.  The
422.      user_set_vma flag is maintained by bfd; if it's not set, the
423.      backend can assign addresses (for example, in <<a.out>>, where
424.      the default address for <<.data>> is dependent on the specific
425.      target and various flags).  *}
426.  bfd_vma vma;
427.
428.  {*  The load address of the section - where it would be in a
429.      rom image; really only used for writing section header
430.      information.  *}
431.  bfd_vma lma;
432.
433.  {* The size of the section in *octets*, as it will be output.
434.     Contains a value even if the section has no contents (e.g., the
435.     size of <<.bss>>).  *}
436.  bfd_size_type size;
437.
438.  {* For input sections, the original size on disk of the section, in
439.     octets.  This field should be set for any section whose size is
440.     changed by linker relaxation.  It is required for sections where
441.     the linker relaxation scheme doesn't cache altered section and
442.     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
443.     targets), and thus the original size needs to be kept to read the
444.     section multiple times.  For output sections, rawsize holds the
445.     section size calculated on a previous linker relaxation pass.  *}
446.  bfd_size_type rawsize;
447.
448.  {* The compressed size of the section in octets.  *}
449.  bfd_size_type compressed_size;
450.
451.  {* Relaxation table. *}
452.  struct relax_table *relax;
453.
454.  {* Count of used relaxation table entries. *}
455.  int relax_count;
456.
457.
458.  {* If this section is going to be output, then this value is the
459.     offset in *bytes* into the output section of the first byte in the
460.     input section (byte ==> smallest addressable unit on the
461.     target).  In most cases, if this was going to start at the
462.     100th octet (8-bit quantity) in the output section, this value
463.     would be 100.  However, if the target byte size is 16 bits
464.     (bfd_octets_per_byte is "2"), this value would be 50.  *}
465.  bfd_vma output_offset;
466.
467.  {* The output section through which to map on output.  *}
468.  struct bfd_section *output_section;
469.
470.  {* The alignment requirement of the section, as an exponent of 2 -
471.     e.g., 3 aligns to 2^3 (or 8).  *}
472.  unsigned int alignment_power;
473.
474.  {* If an input section, a pointer to a vector of relocation
475.     records for the data in this section.  *}
476.  struct reloc_cache_entry *relocation;
477.
478.  {* If an output section, a pointer to a vector of pointers to
479.     relocation records for the data in this section.  *}
480.  struct reloc_cache_entry **orelocation;
481.
482.  {* The number of relocation records in one of the above.  *}
483.  unsigned reloc_count;
484.
485.  {* Information below is back end specific - and not always used
486.     or updated.  *}
487.
488.  {* File position of section data.  *}
489.  file_ptr filepos;
490.
491.  {* File position of relocation info.  *}
492.  file_ptr rel_filepos;
493.
494.  {* File position of line data.  *}
495.  file_ptr line_filepos;
496.
497.  {* Pointer to data for applications.  *}
498.  void *userdata;
499.
500.  {* If the SEC_IN_MEMORY flag is set, this points to the actual
501.     contents.  *}
502.  unsigned char *contents;
503.
504.  {* Attached line number information.  *}
505.  alent *lineno;
506.
507.  {* Number of line number records.  *}
508.  unsigned int lineno_count;
509.
510.  {* Entity size for merging purposes.  *}
511.  unsigned int entsize;
512.
513.  {* Points to the kept section if this section is a link-once section,
514.     and is discarded.  *}
515.  struct bfd_section *kept_section;
516.
517.  {* When a section is being output, this value changes as more
518.     linenumbers are written out.  *}
519.  file_ptr moving_line_filepos;
520.
521.  {* What the section number is in the target world.  *}
522.  int target_index;
523.
524.  void *used_by_bfd;
525.
526.  {* If this is a constructor section then here is a list of the
527.     relocations created to relocate items within it.  *}
528.  struct relent_chain *constructor_chain;
529.
530.  {* The BFD which owns the section.  *}
531.  bfd *owner;
532.
533.  {* A symbol which points at this section only.  *}
534.  struct bfd_symbol *symbol;
535.  struct bfd_symbol **symbol_ptr_ptr;
536.
537.  {* Early in the link process, map_head and map_tail are used to build
538.     a list of input sections attached to an output section.  Later,
539.     output sections use these fields for a list of bfd_link_order
540.     structs.  *}
541.  union {
542.    struct bfd_link_order *link_order;
543.    struct bfd_section *s;
544.  } map_head, map_tail;
545.} asection;
546.
547.{* Relax table contains information about instructions which can
548.   be removed by relaxation -- replacing a long address with a
549.   short address.  *}
550.struct relax_table {
551.  {* Address where bytes may be deleted. *}
552.  bfd_vma addr;
553.
554.  {* Number of bytes to be deleted.  *}
555.  int size;
556.};
557.
558.{* Note: the following are provided as inline functions rather than macros
559.   because not all callers use the return value.  A macro implementation
560.   would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
561.   compilers will complain about comma expressions that have no effect.  *}
562.static inline bfd_boolean
563.bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
564.{
565.  ptr->userdata = val;
566.  return TRUE;
567.}
568.
569.static inline bfd_boolean
570.bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
571.{
572.  ptr->vma = ptr->lma = val;
573.  ptr->user_set_vma = TRUE;
574.  return TRUE;
575.}
576.
577.static inline bfd_boolean
578.bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
579.{
580.  ptr->alignment_power = val;
581.  return TRUE;
582.}
583.
584.{* These sections are global, and are managed by BFD.  The application
585.   and target back end are not permitted to change the values in
586.   these sections.  *}
587.extern asection _bfd_std_section[4];
588.
589.#define BFD_ABS_SECTION_NAME "*ABS*"
590.#define BFD_UND_SECTION_NAME "*UND*"
591.#define BFD_COM_SECTION_NAME "*COM*"
592.#define BFD_IND_SECTION_NAME "*IND*"
593.
594.{* Pointer to the common section.  *}
595.#define bfd_com_section_ptr (&_bfd_std_section[0])
596.{* Pointer to the undefined section.  *}
597.#define bfd_und_section_ptr (&_bfd_std_section[1])
598.{* Pointer to the absolute section.  *}
599.#define bfd_abs_section_ptr (&_bfd_std_section[2])
600.{* Pointer to the indirect section.  *}
601.#define bfd_ind_section_ptr (&_bfd_std_section[3])
602.
603.#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
604.#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
605.#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
606.
607.#define bfd_is_const_section(SEC)		\
608. (   ((SEC) == bfd_abs_section_ptr)		\
609.  || ((SEC) == bfd_und_section_ptr)		\
610.  || ((SEC) == bfd_com_section_ptr)		\
611.  || ((SEC) == bfd_ind_section_ptr))
612.
613.{* Macros to handle insertion and deletion of a bfd's sections.  These
614.   only handle the list pointers, ie. do not adjust section_count,
615.   target_index etc.  *}
616.#define bfd_section_list_remove(ABFD, S) \
617.  do							\
618.    {							\
619.      asection *_s = S;				\
620.      asection *_next = _s->next;			\
621.      asection *_prev = _s->prev;			\
622.      if (_prev)					\
623.        _prev->next = _next;				\
624.      else						\
625.        (ABFD)->sections = _next;			\
626.      if (_next)					\
627.        _next->prev = _prev;				\
628.      else						\
629.        (ABFD)->section_last = _prev;			\
630.    }							\
631.  while (0)
632.#define bfd_section_list_append(ABFD, S) \
633.  do							\
634.    {							\
635.      asection *_s = S;				\
636.      bfd *_abfd = ABFD;				\
637.      _s->next = NULL;					\
638.      if (_abfd->section_last)				\
639.        {						\
640.          _s->prev = _abfd->section_last;		\
641.          _abfd->section_last->next = _s;		\
642.        }						\
643.      else						\
644.        {						\
645.          _s->prev = NULL;				\
646.          _abfd->sections = _s;			\
647.        }						\
648.      _abfd->section_last = _s;			\
649.    }							\
650.  while (0)
651.#define bfd_section_list_prepend(ABFD, S) \
652.  do							\
653.    {							\
654.      asection *_s = S;				\
655.      bfd *_abfd = ABFD;				\
656.      _s->prev = NULL;					\
657.      if (_abfd->sections)				\
658.        {						\
659.          _s->next = _abfd->sections;			\
660.          _abfd->sections->prev = _s;			\
661.        }						\
662.      else						\
663.        {						\
664.          _s->next = NULL;				\
665.          _abfd->section_last = _s;			\
666.        }						\
667.      _abfd->sections = _s;				\
668.    }							\
669.  while (0)
670.#define bfd_section_list_insert_after(ABFD, A, S) \
671.  do							\
672.    {							\
673.      asection *_a = A;				\
674.      asection *_s = S;				\
675.      asection *_next = _a->next;			\
676.      _s->next = _next;				\
677.      _s->prev = _a;					\
678.      _a->next = _s;					\
679.      if (_next)					\
680.        _next->prev = _s;				\
681.      else						\
682.        (ABFD)->section_last = _s;			\
683.    }							\
684.  while (0)
685.#define bfd_section_list_insert_before(ABFD, B, S) \
686.  do							\
687.    {							\
688.      asection *_b = B;				\
689.      asection *_s = S;				\
690.      asection *_prev = _b->prev;			\
691.      _s->prev = _prev;				\
692.      _s->next = _b;					\
693.      _b->prev = _s;					\
694.      if (_prev)					\
695.        _prev->next = _s;				\
696.      else						\
697.        (ABFD)->sections = _s;				\
698.    }							\
699.  while (0)
700.#define bfd_section_removed_from_list(ABFD, S) \
701.  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
702.
703.#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS)			\
704.  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
705.  {  NAME, IDX, 0,     NULL, NULL, FLAGS, 0,				\
706.									\
707.  {* linker_mark, linker_has_input, gc_mark, decompress_status,    *}	\
708.     0,           0,                1,       0,			\
709.									\
710.  {* segment_mark, sec_info_type, use_rela_p,                      *}	\
711.     0,            0,             0,					\
712.									\
713.  {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,   *}	\
714.     0,        0,        0,        0,        0,        0,		\
715.									\
716.  {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *}	\
717.     0,   0,   0,    0,       0,               0,     0,		\
718.									\
719.  {* output_offset, output_section, alignment_power,               *}	\
720.     0,             &SEC,           0,					\
721.									\
722.  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
723.     NULL,       NULL,        0,           0,       0,			\
724.									\
725.  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
726.     0,            NULL,     NULL,     NULL,   0,			\
727.									\
728.  {* entsize, kept_section, moving_line_filepos,		     *}	\
729.     0,       NULL,	      0,					\
730.									\
731.  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
732.     0,            NULL,        NULL,              NULL,		\
733.									\
734.  {* symbol,                    symbol_ptr_ptr,                    *}	\
735.     (struct bfd_symbol *) SYM, &SEC.symbol,				\
736.									\
737.  {* map_head, map_tail                                            *}	\
738.     { NULL }, { NULL }						\
739.    }
740.
741*/
742
743/* We use a macro to initialize the static asymbol structures because
744   traditional C does not permit us to initialize a union member while
745   gcc warns if we don't initialize it.  */
746 /* the_bfd, name, value, attr, section [, udata] */
747#ifdef __STDC__
748#define GLOBAL_SYM_INIT(NAME, SECTION) \
749  { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
750#else
751#define GLOBAL_SYM_INIT(NAME, SECTION) \
752  { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
753#endif
754
755/* These symbols are global, not specific to any BFD.  Therefore, anything
756   that tries to change them is broken, and should be repaired.  */
757
758static const asymbol global_syms[] =
759{
760  GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
761  GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
762  GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
763  GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
764};
765
766#define STD_SECTION(NAME, IDX, FLAGS) \
767  BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
768
769asection _bfd_std_section[] = {
770  STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
771  STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
772  STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
773  STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
774};
775#undef STD_SECTION
776
777/* Initialize an entry in the section hash table.  */
778
779struct bfd_hash_entry *
780bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
781			  struct bfd_hash_table *table,
782			  const char *string)
783{
784  /* Allocate the structure if it has not already been allocated by a
785     subclass.  */
786  if (entry == NULL)
787    {
788      entry = (struct bfd_hash_entry *)
789	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
790      if (entry == NULL)
791	return entry;
792    }
793
794  /* Call the allocation method of the superclass.  */
795  entry = bfd_hash_newfunc (entry, table, string);
796  if (entry != NULL)
797    memset (&((struct section_hash_entry *) entry)->section, 0,
798	    sizeof (asection));
799
800  return entry;
801}
802
803#define section_hash_lookup(table, string, create, copy) \
804  ((struct section_hash_entry *) \
805   bfd_hash_lookup ((table), (string), (create), (copy)))
806
807/* Create a symbol whose only job is to point to this section.  This
808   is useful for things like relocs which are relative to the base
809   of a section.  */
810
811bfd_boolean
812_bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
813{
814  newsect->symbol = bfd_make_empty_symbol (abfd);
815  if (newsect->symbol == NULL)
816    return FALSE;
817
818  newsect->symbol->name = newsect->name;
819  newsect->symbol->value = 0;
820  newsect->symbol->section = newsect;
821  newsect->symbol->flags = BSF_SECTION_SYM;
822
823  newsect->symbol_ptr_ptr = &newsect->symbol;
824  return TRUE;
825}
826
827static unsigned int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
828
829/* Initializes a new section.  NEWSECT->NAME is already set.  */
830
831static asection *
832bfd_section_init (bfd *abfd, asection *newsect)
833{
834  newsect->id = section_id;
835  newsect->index = abfd->section_count;
836  newsect->owner = abfd;
837
838  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
839    return NULL;
840
841  section_id++;
842  abfd->section_count++;
843  bfd_section_list_append (abfd, newsect);
844  return newsect;
845}
846
847/*
848DOCDD
849INODE
850section prototypes,  , typedef asection, Sections
851SUBSECTION
852	Section prototypes
853
854These are the functions exported by the section handling part of BFD.
855*/
856
857/*
858FUNCTION
859	bfd_section_list_clear
860
861SYNOPSIS
862	void bfd_section_list_clear (bfd *);
863
864DESCRIPTION
865	Clears the section list, and also resets the section count and
866	hash table entries.
867*/
868
869void
870bfd_section_list_clear (bfd *abfd)
871{
872  abfd->sections = NULL;
873  abfd->section_last = NULL;
874  abfd->section_count = 0;
875  memset (abfd->section_htab.table, 0,
876	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
877  abfd->section_htab.count = 0;
878}
879
880/*
881FUNCTION
882	bfd_get_section_by_name
883
884SYNOPSIS
885	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
886
887DESCRIPTION
888	Return the most recently created section attached to @var{abfd}
889	named @var{name}.  Return NULL if no such section exists.
890*/
891
892asection *
893bfd_get_section_by_name (bfd *abfd, const char *name)
894{
895  struct section_hash_entry *sh;
896
897  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
898  if (sh != NULL)
899    return &sh->section;
900
901  return NULL;
902}
903
904/*
905FUNCTION
906       bfd_get_next_section_by_name
907
908SYNOPSIS
909       asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
910
911DESCRIPTION
912       Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
913       return the next most recently created section attached to the same
914       BFD with the same name, or if no such section exists in the same BFD and
915       IBFD is non-NULL, the next section with the same name in any input
916       BFD following IBFD.  Return NULL on finding no section.
917*/
918
919asection *
920bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
921{
922  struct section_hash_entry *sh;
923  const char *name;
924  unsigned long hash;
925
926  sh = ((struct section_hash_entry *)
927	((char *) sec - offsetof (struct section_hash_entry, section)));
928
929  hash = sh->root.hash;
930  name = sec->name;
931  for (sh = (struct section_hash_entry *) sh->root.next;
932       sh != NULL;
933       sh = (struct section_hash_entry *) sh->root.next)
934    if (sh->root.hash == hash
935       && strcmp (sh->root.string, name) == 0)
936      return &sh->section;
937
938  if (ibfd != NULL)
939    {
940      while ((ibfd = ibfd->link.next) != NULL)
941	{
942	  asection *s = bfd_get_section_by_name (ibfd, name);
943	  if (s != NULL)
944	    return s;
945	}
946    }
947
948  return NULL;
949}
950
951/*
952FUNCTION
953	bfd_get_linker_section
954
955SYNOPSIS
956	asection *bfd_get_linker_section (bfd *abfd, const char *name);
957
958DESCRIPTION
959	Return the linker created section attached to @var{abfd}
960	named @var{name}.  Return NULL if no such section exists.
961*/
962
963asection *
964bfd_get_linker_section (bfd *abfd, const char *name)
965{
966  asection *sec = bfd_get_section_by_name (abfd, name);
967
968  while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
969    sec = bfd_get_next_section_by_name (NULL, sec);
970  return sec;
971}
972
973/*
974FUNCTION
975	bfd_get_section_by_name_if
976
977SYNOPSIS
978	asection *bfd_get_section_by_name_if
979	  (bfd *abfd,
980	   const char *name,
981	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
982	   void *obj);
983
984DESCRIPTION
985	Call the provided function @var{func} for each section
986	attached to the BFD @var{abfd} whose name matches @var{name},
987	passing @var{obj} as an argument. The function will be called
988	as if by
989
990|	func (abfd, the_section, obj);
991
992	It returns the first section for which @var{func} returns true,
993	otherwise <<NULL>>.
994
995*/
996
997asection *
998bfd_get_section_by_name_if (bfd *abfd, const char *name,
999			    bfd_boolean (*operation) (bfd *,
1000						      asection *,
1001						      void *),
1002			    void *user_storage)
1003{
1004  struct section_hash_entry *sh;
1005  unsigned long hash;
1006
1007  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
1008  if (sh == NULL)
1009    return NULL;
1010
1011  hash = sh->root.hash;
1012  for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1013    if (sh->root.hash == hash
1014	&& strcmp (sh->root.string, name) == 0
1015	&& (*operation) (abfd, &sh->section, user_storage))
1016      return &sh->section;
1017
1018  return NULL;
1019}
1020
1021/*
1022FUNCTION
1023	bfd_get_unique_section_name
1024
1025SYNOPSIS
1026	char *bfd_get_unique_section_name
1027	  (bfd *abfd, const char *templat, int *count);
1028
1029DESCRIPTION
1030	Invent a section name that is unique in @var{abfd} by tacking
1031	a dot and a digit suffix onto the original @var{templat}.  If
1032	@var{count} is non-NULL, then it specifies the first number
1033	tried as a suffix to generate a unique name.  The value
1034	pointed to by @var{count} will be incremented in this case.
1035*/
1036
1037char *
1038bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1039{
1040  int num;
1041  unsigned int len;
1042  char *sname;
1043
1044  len = strlen (templat);
1045  sname = (char *) bfd_malloc (len + 8);
1046  if (sname == NULL)
1047    return NULL;
1048  memcpy (sname, templat, len);
1049  num = 1;
1050  if (count != NULL)
1051    num = *count;
1052
1053  do
1054    {
1055      /* If we have a million sections, something is badly wrong.  */
1056      if (num > 999999)
1057	abort ();
1058      sprintf (sname + len, ".%d", num++);
1059    }
1060  while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1061
1062  if (count != NULL)
1063    *count = num;
1064  return sname;
1065}
1066
1067/*
1068FUNCTION
1069	bfd_make_section_old_way
1070
1071SYNOPSIS
1072	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1073
1074DESCRIPTION
1075	Create a new empty section called @var{name}
1076	and attach it to the end of the chain of sections for the
1077	BFD @var{abfd}. An attempt to create a section with a name which
1078	is already in use returns its pointer without changing the
1079	section chain.
1080
1081	It has the funny name since this is the way it used to be
1082	before it was rewritten....
1083
1084	Possible errors are:
1085	o <<bfd_error_invalid_operation>> -
1086	If output has already started for this BFD.
1087	o <<bfd_error_no_memory>> -
1088	If memory allocation fails.
1089
1090*/
1091
1092asection *
1093bfd_make_section_old_way (bfd *abfd, const char *name)
1094{
1095  asection *newsect;
1096
1097  if (abfd->output_has_begun)
1098    {
1099      bfd_set_error (bfd_error_invalid_operation);
1100      return NULL;
1101    }
1102
1103  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1104    newsect = bfd_abs_section_ptr;
1105  else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1106    newsect = bfd_com_section_ptr;
1107  else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1108    newsect = bfd_und_section_ptr;
1109  else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1110    newsect = bfd_ind_section_ptr;
1111  else
1112    {
1113      struct section_hash_entry *sh;
1114
1115      sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1116      if (sh == NULL)
1117	return NULL;
1118
1119      newsect = &sh->section;
1120      if (newsect->name != NULL)
1121	{
1122	  /* Section already exists.  */
1123	  return newsect;
1124	}
1125
1126      newsect->name = name;
1127      return bfd_section_init (abfd, newsect);
1128    }
1129
1130  /* Call new_section_hook when "creating" the standard abs, com, und
1131     and ind sections to tack on format specific section data.
1132     Also, create a proper section symbol.  */
1133  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1134    return NULL;
1135  return newsect;
1136}
1137
1138/*
1139FUNCTION
1140	bfd_make_section_anyway_with_flags
1141
1142SYNOPSIS
1143	asection *bfd_make_section_anyway_with_flags
1144	  (bfd *abfd, const char *name, flagword flags);
1145
1146DESCRIPTION
1147   Create a new empty section called @var{name} and attach it to the end of
1148   the chain of sections for @var{abfd}.  Create a new section even if there
1149   is already a section with that name.  Also set the attributes of the
1150   new section to the value @var{flags}.
1151
1152   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1153   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1154   o <<bfd_error_no_memory>> - If memory allocation fails.
1155*/
1156
1157sec_ptr
1158bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1159				    flagword flags)
1160{
1161  struct section_hash_entry *sh;
1162  asection *newsect;
1163
1164  if (abfd->output_has_begun)
1165    {
1166      bfd_set_error (bfd_error_invalid_operation);
1167      return NULL;
1168    }
1169
1170  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1171  if (sh == NULL)
1172    return NULL;
1173
1174  newsect = &sh->section;
1175  if (newsect->name != NULL)
1176    {
1177      /* We are making a section of the same name.  Put it in the
1178	 section hash table.  Even though we can't find it directly by a
1179	 hash lookup, we'll be able to find the section by traversing
1180	 sh->root.next quicker than looking at all the bfd sections.  */
1181      struct section_hash_entry *new_sh;
1182      new_sh = (struct section_hash_entry *)
1183	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1184      if (new_sh == NULL)
1185	return NULL;
1186
1187      new_sh->root = sh->root;
1188      sh->root.next = &new_sh->root;
1189      newsect = &new_sh->section;
1190    }
1191
1192  newsect->flags = flags;
1193  newsect->name = name;
1194  return bfd_section_init (abfd, newsect);
1195}
1196
1197/*
1198FUNCTION
1199	bfd_make_section_anyway
1200
1201SYNOPSIS
1202	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1203
1204DESCRIPTION
1205   Create a new empty section called @var{name} and attach it to the end of
1206   the chain of sections for @var{abfd}.  Create a new section even if there
1207   is already a section with that name.
1208
1209   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1210   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1211   o <<bfd_error_no_memory>> - If memory allocation fails.
1212*/
1213
1214sec_ptr
1215bfd_make_section_anyway (bfd *abfd, const char *name)
1216{
1217  return bfd_make_section_anyway_with_flags (abfd, name, 0);
1218}
1219
1220/*
1221FUNCTION
1222	bfd_make_section_with_flags
1223
1224SYNOPSIS
1225	asection *bfd_make_section_with_flags
1226	  (bfd *, const char *name, flagword flags);
1227
1228DESCRIPTION
1229   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1230   bfd_set_error ()) without changing the section chain if there is already a
1231   section named @var{name}.  Also set the attributes of the new section to
1232   the value @var{flags}.  If there is an error, return <<NULL>> and set
1233   <<bfd_error>>.
1234*/
1235
1236asection *
1237bfd_make_section_with_flags (bfd *abfd, const char *name,
1238			     flagword flags)
1239{
1240  struct section_hash_entry *sh;
1241  asection *newsect;
1242
1243  if (abfd->output_has_begun)
1244    {
1245      bfd_set_error (bfd_error_invalid_operation);
1246      return NULL;
1247    }
1248
1249  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1250      || strcmp (name, BFD_COM_SECTION_NAME) == 0
1251      || strcmp (name, BFD_UND_SECTION_NAME) == 0
1252      || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1253    return NULL;
1254
1255  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1256  if (sh == NULL)
1257    return NULL;
1258
1259  newsect = &sh->section;
1260  if (newsect->name != NULL)
1261    {
1262      /* Section already exists.  */
1263      return NULL;
1264    }
1265
1266  newsect->name = name;
1267  newsect->flags = flags;
1268  return bfd_section_init (abfd, newsect);
1269}
1270
1271/*
1272FUNCTION
1273	bfd_make_section
1274
1275SYNOPSIS
1276	asection *bfd_make_section (bfd *, const char *name);
1277
1278DESCRIPTION
1279   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1280   bfd_set_error ()) without changing the section chain if there is already a
1281   section named @var{name}.  If there is an error, return <<NULL>> and set
1282   <<bfd_error>>.
1283*/
1284
1285asection *
1286bfd_make_section (bfd *abfd, const char *name)
1287{
1288  return bfd_make_section_with_flags (abfd, name, 0);
1289}
1290
1291/*
1292FUNCTION
1293	bfd_get_next_section_id
1294
1295SYNOPSIS
1296	int bfd_get_next_section_id (void);
1297
1298DESCRIPTION
1299	Returns the id that the next section created will have.
1300*/
1301
1302int
1303bfd_get_next_section_id (void)
1304{
1305  return section_id;
1306}
1307
1308/*
1309FUNCTION
1310	bfd_set_section_flags
1311
1312SYNOPSIS
1313	bfd_boolean bfd_set_section_flags
1314	  (bfd *abfd, asection *sec, flagword flags);
1315
1316DESCRIPTION
1317	Set the attributes of the section @var{sec} in the BFD
1318	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1319	<<FALSE>> on error. Possible error returns are:
1320
1321	o <<bfd_error_invalid_operation>> -
1322	The section cannot have one or more of the attributes
1323	requested. For example, a .bss section in <<a.out>> may not
1324	have the <<SEC_HAS_CONTENTS>> field set.
1325
1326*/
1327
1328bfd_boolean
1329bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1330		       sec_ptr section,
1331		       flagword flags)
1332{
1333  section->flags = flags;
1334  return TRUE;
1335}
1336
1337/*
1338FUNCTION
1339	bfd_rename_section
1340
1341SYNOPSIS
1342	void bfd_rename_section
1343	  (bfd *abfd, asection *sec, const char *newname);
1344
1345DESCRIPTION
1346	Rename section @var{sec} in @var{abfd} to @var{newname}.
1347*/
1348
1349void
1350bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1351{
1352  struct section_hash_entry *sh;
1353
1354  sh = (struct section_hash_entry *)
1355    ((char *) sec - offsetof (struct section_hash_entry, section));
1356  sh->section.name = newname;
1357  bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1358}
1359
1360/*
1361FUNCTION
1362	bfd_map_over_sections
1363
1364SYNOPSIS
1365	void bfd_map_over_sections
1366	  (bfd *abfd,
1367	   void (*func) (bfd *abfd, asection *sect, void *obj),
1368	   void *obj);
1369
1370DESCRIPTION
1371	Call the provided function @var{func} for each section
1372	attached to the BFD @var{abfd}, passing @var{obj} as an
1373	argument. The function will be called as if by
1374
1375|	func (abfd, the_section, obj);
1376
1377	This is the preferred method for iterating over sections; an
1378	alternative would be to use a loop:
1379
1380|	   asection *p;
1381|	   for (p = abfd->sections; p != NULL; p = p->next)
1382|	      func (abfd, p, ...)
1383
1384*/
1385
1386void
1387bfd_map_over_sections (bfd *abfd,
1388		       void (*operation) (bfd *, asection *, void *),
1389		       void *user_storage)
1390{
1391  asection *sect;
1392  unsigned int i = 0;
1393
1394  for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1395    (*operation) (abfd, sect, user_storage);
1396
1397  if (i != abfd->section_count)	/* Debugging */
1398    abort ();
1399}
1400
1401/*
1402FUNCTION
1403	bfd_sections_find_if
1404
1405SYNOPSIS
1406	asection *bfd_sections_find_if
1407	  (bfd *abfd,
1408	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1409	   void *obj);
1410
1411DESCRIPTION
1412	Call the provided function @var{operation} for each section
1413	attached to the BFD @var{abfd}, passing @var{obj} as an
1414	argument. The function will be called as if by
1415
1416|	operation (abfd, the_section, obj);
1417
1418	It returns the first section for which @var{operation} returns true.
1419
1420*/
1421
1422asection *
1423bfd_sections_find_if (bfd *abfd,
1424		      bfd_boolean (*operation) (bfd *, asection *, void *),
1425		      void *user_storage)
1426{
1427  asection *sect;
1428
1429  for (sect = abfd->sections; sect != NULL; sect = sect->next)
1430    if ((*operation) (abfd, sect, user_storage))
1431      break;
1432
1433  return sect;
1434}
1435
1436/*
1437FUNCTION
1438	bfd_set_section_size
1439
1440SYNOPSIS
1441	bfd_boolean bfd_set_section_size
1442	  (bfd *abfd, asection *sec, bfd_size_type val);
1443
1444DESCRIPTION
1445	Set @var{sec} to the size @var{val}. If the operation is
1446	ok, then <<TRUE>> is returned, else <<FALSE>>.
1447
1448	Possible error returns:
1449	o <<bfd_error_invalid_operation>> -
1450	Writing has started to the BFD, so setting the size is invalid.
1451
1452*/
1453
1454bfd_boolean
1455bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1456{
1457  /* Once you've started writing to any section you cannot create or change
1458     the size of any others.  */
1459
1460  if (abfd->output_has_begun)
1461    {
1462      bfd_set_error (bfd_error_invalid_operation);
1463      return FALSE;
1464    }
1465
1466  ptr->size = val;
1467  return TRUE;
1468}
1469
1470/*
1471FUNCTION
1472	bfd_set_section_contents
1473
1474SYNOPSIS
1475	bfd_boolean bfd_set_section_contents
1476	  (bfd *abfd, asection *section, const void *data,
1477	   file_ptr offset, bfd_size_type count);
1478
1479DESCRIPTION
1480	Sets the contents of the section @var{section} in BFD
1481	@var{abfd} to the data starting in memory at @var{data}. The
1482	data is written to the output section starting at offset
1483	@var{offset} for @var{count} octets.
1484
1485	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1486	returns are:
1487	o <<bfd_error_no_contents>> -
1488	The output section does not have the <<SEC_HAS_CONTENTS>>
1489	attribute, so nothing can be written to it.
1490	o and some more too
1491
1492	This routine is front end to the back end function
1493	<<_bfd_set_section_contents>>.
1494
1495*/
1496
1497bfd_boolean
1498bfd_set_section_contents (bfd *abfd,
1499			  sec_ptr section,
1500			  const void *location,
1501			  file_ptr offset,
1502			  bfd_size_type count)
1503{
1504  bfd_size_type sz;
1505
1506  if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1507    {
1508      bfd_set_error (bfd_error_no_contents);
1509      return FALSE;
1510    }
1511
1512  sz = section->size;
1513  if ((bfd_size_type) offset > sz
1514      || count > sz
1515      || offset + count > sz
1516      || count != (size_t) count)
1517    {
1518      bfd_set_error (bfd_error_bad_value);
1519      return FALSE;
1520    }
1521
1522  if (!bfd_write_p (abfd))
1523    {
1524      bfd_set_error (bfd_error_invalid_operation);
1525      return FALSE;
1526    }
1527
1528  /* Record a copy of the data in memory if desired.  */
1529  if (section->contents
1530      && location != section->contents + offset)
1531    memcpy (section->contents + offset, location, (size_t) count);
1532
1533  if (BFD_SEND (abfd, _bfd_set_section_contents,
1534		(abfd, section, location, offset, count)))
1535    {
1536      abfd->output_has_begun = TRUE;
1537      return TRUE;
1538    }
1539
1540  return FALSE;
1541}
1542
1543/*
1544FUNCTION
1545	bfd_get_section_contents
1546
1547SYNOPSIS
1548	bfd_boolean bfd_get_section_contents
1549	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1550	   bfd_size_type count);
1551
1552DESCRIPTION
1553	Read data from @var{section} in BFD @var{abfd}
1554	into memory starting at @var{location}. The data is read at an
1555	offset of @var{offset} from the start of the input section,
1556	and is read for @var{count} bytes.
1557
1558	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1559	flag set are requested or if the section does not have the
1560	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1561	with zeroes. If no errors occur, <<TRUE>> is returned, else
1562	<<FALSE>>.
1563
1564*/
1565bfd_boolean
1566bfd_get_section_contents (bfd *abfd,
1567			  sec_ptr section,
1568			  void *location,
1569			  file_ptr offset,
1570			  bfd_size_type count)
1571{
1572  bfd_size_type sz;
1573
1574  if (section->flags & SEC_CONSTRUCTOR)
1575    {
1576      memset (location, 0, (size_t) count);
1577      return TRUE;
1578    }
1579
1580  if (abfd->direction != write_direction && section->rawsize != 0)
1581    sz = section->rawsize;
1582  else
1583    sz = section->size;
1584  if ((bfd_size_type) offset > sz
1585      || count > sz
1586      || offset + count > sz
1587      || count != (size_t) count)
1588    {
1589      bfd_set_error (bfd_error_bad_value);
1590      return FALSE;
1591    }
1592
1593  if (count == 0)
1594    /* Don't bother.  */
1595    return TRUE;
1596
1597  if ((section->flags & SEC_HAS_CONTENTS) == 0)
1598    {
1599      memset (location, 0, (size_t) count);
1600      return TRUE;
1601    }
1602
1603  if ((section->flags & SEC_IN_MEMORY) != 0)
1604    {
1605      if (section->contents == NULL)
1606	{
1607	  /* This can happen because of errors earlier on in the linking process.
1608	     We do not want to seg-fault here, so clear the flag and return an
1609	     error code.  */
1610	  section->flags &= ~ SEC_IN_MEMORY;
1611	  bfd_set_error (bfd_error_invalid_operation);
1612	  return FALSE;
1613	}
1614
1615      memmove (location, section->contents + offset, (size_t) count);
1616      return TRUE;
1617    }
1618
1619  return BFD_SEND (abfd, _bfd_get_section_contents,
1620		   (abfd, section, location, offset, count));
1621}
1622
1623/*
1624FUNCTION
1625	bfd_malloc_and_get_section
1626
1627SYNOPSIS
1628	bfd_boolean bfd_malloc_and_get_section
1629	  (bfd *abfd, asection *section, bfd_byte **buf);
1630
1631DESCRIPTION
1632	Read all data from @var{section} in BFD @var{abfd}
1633	into a buffer, *@var{buf}, malloc'd by this function.
1634*/
1635
1636bfd_boolean
1637bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1638{
1639  *buf = NULL;
1640  return bfd_get_full_section_contents (abfd, sec, buf);
1641}
1642/*
1643FUNCTION
1644	bfd_copy_private_section_data
1645
1646SYNOPSIS
1647	bfd_boolean bfd_copy_private_section_data
1648	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1649
1650DESCRIPTION
1651	Copy private section information from @var{isec} in the BFD
1652	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1653	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1654	returns are:
1655
1656	o <<bfd_error_no_memory>> -
1657	Not enough memory exists to create private data for @var{osec}.
1658
1659.#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1660.     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1661.		(ibfd, isection, obfd, osection))
1662*/
1663
1664/*
1665FUNCTION
1666	bfd_generic_is_group_section
1667
1668SYNOPSIS
1669	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1670
1671DESCRIPTION
1672	Returns TRUE if @var{sec} is a member of a group.
1673*/
1674
1675bfd_boolean
1676bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1677			      const asection *sec ATTRIBUTE_UNUSED)
1678{
1679  return FALSE;
1680}
1681
1682/*
1683FUNCTION
1684	bfd_generic_discard_group
1685
1686SYNOPSIS
1687	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1688
1689DESCRIPTION
1690	Remove all members of @var{group} from the output.
1691*/
1692
1693bfd_boolean
1694bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1695			   asection *group ATTRIBUTE_UNUSED)
1696{
1697  return TRUE;
1698}
1699