1/* ELF linking support for BFD.
2   Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4   This file is part of BFD, the Binary File Descriptor library.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19   MA 02110-1301, USA.  */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfd_stdint.h"
24#include "bfdlink.h"
25#include "libbfd.h"
26#define ARCH_SIZE 0
27#include "elf-bfd.h"
28#include "safe-ctype.h"
29#include "libiberty.h"
30#include "objalloc.h"
31#if BFD_SUPPORTS_PLUGINS
32#include "plugin-api.h"
33#include "plugin.h"
34#endif
35
36/* This struct is used to pass information to routines called via
37   elf_link_hash_traverse which must return failure.  */
38
39struct elf_info_failed
40{
41  struct bfd_link_info *info;
42  bfd_boolean failed;
43};
44
45/* This structure is used to pass information to
46   _bfd_elf_link_find_version_dependencies.  */
47
48struct elf_find_verdep_info
49{
50  /* General link information.  */
51  struct bfd_link_info *info;
52  /* The number of dependencies.  */
53  unsigned int vers;
54  /* Whether we had a failure.  */
55  bfd_boolean failed;
56};
57
58static bfd_boolean _bfd_elf_fix_symbol_flags
59  (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61asection *
62_bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63			     unsigned long r_symndx,
64			     bfd_boolean discard)
65{
66  if (r_symndx >= cookie->locsymcount
67      || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68    {
69      struct elf_link_hash_entry *h;
70
71      h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73      while (h->root.type == bfd_link_hash_indirect
74	     || h->root.type == bfd_link_hash_warning)
75	h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77      if ((h->root.type == bfd_link_hash_defined
78	   || h->root.type == bfd_link_hash_defweak)
79	   && discarded_section (h->root.u.def.section))
80        return h->root.u.def.section;
81      else
82	return NULL;
83    }
84  else
85    {
86      /* It's not a relocation against a global symbol,
87	 but it could be a relocation against a local
88	 symbol for a discarded section.  */
89      asection *isec;
90      Elf_Internal_Sym *isym;
91
92      /* Need to: get the symbol; get the section.  */
93      isym = &cookie->locsyms[r_symndx];
94      isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95      if (isec != NULL
96	  && discard ? discarded_section (isec) : 1)
97	return isec;
98     }
99  return NULL;
100}
101
102/* Define a symbol in a dynamic linkage section.  */
103
104struct elf_link_hash_entry *
105_bfd_elf_define_linkage_sym (bfd *abfd,
106			     struct bfd_link_info *info,
107			     asection *sec,
108			     const char *name)
109{
110  struct elf_link_hash_entry *h;
111  struct bfd_link_hash_entry *bh;
112  const struct elf_backend_data *bed;
113
114  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115  if (h != NULL)
116    {
117      /* Zap symbol defined in an as-needed lib that wasn't linked.
118	 This is a symptom of a larger problem:  Absolute symbols
119	 defined in shared libraries can't be overridden, because we
120	 lose the link to the bfd which is via the symbol section.  */
121      h->root.type = bfd_link_hash_new;
122    }
123
124  bh = &h->root;
125  bed = get_elf_backend_data (abfd);
126  if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
127					 sec, 0, NULL, FALSE, bed->collect,
128					 &bh))
129    return NULL;
130  h = (struct elf_link_hash_entry *) bh;
131  h->def_regular = 1;
132  h->non_elf = 0;
133  h->root.linker_def = 1;
134  h->type = STT_OBJECT;
135  if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
136    h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
137
138  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
139  return h;
140}
141
142bfd_boolean
143_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
144{
145  flagword flags;
146  asection *s;
147  struct elf_link_hash_entry *h;
148  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
149  struct elf_link_hash_table *htab = elf_hash_table (info);
150
151  /* This function may be called more than once.  */
152  if (htab->sgot != NULL)
153    return TRUE;
154
155  flags = bed->dynamic_sec_flags;
156
157  s = bfd_make_section_anyway_with_flags (abfd,
158					  (bed->rela_plts_and_copies_p
159					   ? ".rela.got" : ".rel.got"),
160					  (bed->dynamic_sec_flags
161					   | SEC_READONLY));
162  if (s == NULL
163      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
164    return FALSE;
165  htab->srelgot = s;
166
167  s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
168  if (s == NULL
169      || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
170    return FALSE;
171  htab->sgot = s;
172
173  if (bed->want_got_plt)
174    {
175      s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
176      if (s == NULL
177	  || !bfd_set_section_alignment (abfd, s,
178					 bed->s->log_file_align))
179	return FALSE;
180      htab->sgotplt = s;
181    }
182
183  /* The first bit of the global offset table is the header.  */
184  s->size += bed->got_header_size;
185
186  if (bed->want_got_sym)
187    {
188      /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
189	 (or .got.plt) section.  We don't do this in the linker script
190	 because we don't want to define the symbol if we are not creating
191	 a global offset table.  */
192      h = _bfd_elf_define_linkage_sym (abfd, info, s,
193				       "_GLOBAL_OFFSET_TABLE_");
194      elf_hash_table (info)->hgot = h;
195      if (h == NULL)
196	return FALSE;
197    }
198
199  return TRUE;
200}
201
202/* Create a strtab to hold the dynamic symbol names.  */
203static bfd_boolean
204_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
205{
206  struct elf_link_hash_table *hash_table;
207
208  hash_table = elf_hash_table (info);
209  if (hash_table->dynobj == NULL)
210    {
211      /* We may not set dynobj, an input file holding linker created
212	 dynamic sections to abfd, which may be a dynamic object with
213	 its own dynamic sections.  We need to find a normal input file
214	 to hold linker created sections if possible.  */
215      if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
216	{
217	  bfd *ibfd;
218	  for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
219	    if ((ibfd->flags
220		 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
221	      {
222		abfd = ibfd;
223		break;
224	      }
225	}
226      hash_table->dynobj = abfd;
227    }
228
229  if (hash_table->dynstr == NULL)
230    {
231      hash_table->dynstr = _bfd_elf_strtab_init ();
232      if (hash_table->dynstr == NULL)
233	return FALSE;
234    }
235  return TRUE;
236}
237
238/* Create some sections which will be filled in with dynamic linking
239   information.  ABFD is an input file which requires dynamic sections
240   to be created.  The dynamic sections take up virtual memory space
241   when the final executable is run, so we need to create them before
242   addresses are assigned to the output sections.  We work out the
243   actual contents and size of these sections later.  */
244
245bfd_boolean
246_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
247{
248  flagword flags;
249  asection *s;
250  const struct elf_backend_data *bed;
251  struct elf_link_hash_entry *h;
252
253  if (! is_elf_hash_table (info->hash))
254    return FALSE;
255
256  if (elf_hash_table (info)->dynamic_sections_created)
257    return TRUE;
258
259  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
260    return FALSE;
261
262  abfd = elf_hash_table (info)->dynobj;
263  bed = get_elf_backend_data (abfd);
264
265  flags = bed->dynamic_sec_flags;
266
267  /* A dynamically linked executable has a .interp section, but a
268     shared library does not.  */
269  if (bfd_link_executable (info) && !info->nointerp)
270    {
271      s = bfd_make_section_anyway_with_flags (abfd, ".interp",
272					      flags | SEC_READONLY);
273      if (s == NULL)
274	return FALSE;
275    }
276
277  /* Create sections to hold version informations.  These are removed
278     if they are not needed.  */
279  s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
280					  flags | SEC_READONLY);
281  if (s == NULL
282      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
283    return FALSE;
284
285  s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
286					  flags | SEC_READONLY);
287  if (s == NULL
288      || ! bfd_set_section_alignment (abfd, s, 1))
289    return FALSE;
290
291  s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
292					  flags | SEC_READONLY);
293  if (s == NULL
294      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
295    return FALSE;
296
297  s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
298					  flags | SEC_READONLY);
299  if (s == NULL
300      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
301    return FALSE;
302  elf_hash_table (info)->dynsym = s;
303
304  s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
305					  flags | SEC_READONLY);
306  if (s == NULL)
307    return FALSE;
308
309  s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
310  if (s == NULL
311      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
312    return FALSE;
313
314  /* The special symbol _DYNAMIC is always set to the start of the
315     .dynamic section.  We could set _DYNAMIC in a linker script, but we
316     only want to define it if we are, in fact, creating a .dynamic
317     section.  We don't want to define it if there is no .dynamic
318     section, since on some ELF platforms the start up code examines it
319     to decide how to initialize the process.  */
320  h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
321  elf_hash_table (info)->hdynamic = h;
322  if (h == NULL)
323    return FALSE;
324
325  if (info->emit_hash)
326    {
327      s = bfd_make_section_anyway_with_flags (abfd, ".hash",
328					      flags | SEC_READONLY);
329      if (s == NULL
330	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
331	return FALSE;
332      elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
333    }
334
335  if (info->emit_gnu_hash)
336    {
337      s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
338					      flags | SEC_READONLY);
339      if (s == NULL
340	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
341	return FALSE;
342      /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
343	 4 32-bit words followed by variable count of 64-bit words, then
344	 variable count of 32-bit words.  */
345      if (bed->s->arch_size == 64)
346	elf_section_data (s)->this_hdr.sh_entsize = 0;
347      else
348	elf_section_data (s)->this_hdr.sh_entsize = 4;
349    }
350
351  /* Let the backend create the rest of the sections.  This lets the
352     backend set the right flags.  The backend will normally create
353     the .got and .plt sections.  */
354  if (bed->elf_backend_create_dynamic_sections == NULL
355      || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
356    return FALSE;
357
358  elf_hash_table (info)->dynamic_sections_created = TRUE;
359
360  return TRUE;
361}
362
363/* Create dynamic sections when linking against a dynamic object.  */
364
365bfd_boolean
366_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
367{
368  flagword flags, pltflags;
369  struct elf_link_hash_entry *h;
370  asection *s;
371  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
372  struct elf_link_hash_table *htab = elf_hash_table (info);
373
374  /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
375     .rel[a].bss sections.  */
376  flags = bed->dynamic_sec_flags;
377
378  pltflags = flags;
379  if (bed->plt_not_loaded)
380    /* We do not clear SEC_ALLOC here because we still want the OS to
381       allocate space for the section; it's just that there's nothing
382       to read in from the object file.  */
383    pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
384  else
385    pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
386  if (bed->plt_readonly)
387    pltflags |= SEC_READONLY;
388
389  s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
390  if (s == NULL
391      || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
392    return FALSE;
393  htab->splt = s;
394
395  /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
396     .plt section.  */
397  if (bed->want_plt_sym)
398    {
399      h = _bfd_elf_define_linkage_sym (abfd, info, s,
400				       "_PROCEDURE_LINKAGE_TABLE_");
401      elf_hash_table (info)->hplt = h;
402      if (h == NULL)
403	return FALSE;
404    }
405
406  s = bfd_make_section_anyway_with_flags (abfd,
407					  (bed->rela_plts_and_copies_p
408					   ? ".rela.plt" : ".rel.plt"),
409					  flags | SEC_READONLY);
410  if (s == NULL
411      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
412    return FALSE;
413  htab->srelplt = s;
414
415  if (! _bfd_elf_create_got_section (abfd, info))
416    return FALSE;
417
418  if (bed->want_dynbss)
419    {
420      /* The .dynbss section is a place to put symbols which are defined
421	 by dynamic objects, are referenced by regular objects, and are
422	 not functions.  We must allocate space for them in the process
423	 image and use a R_*_COPY reloc to tell the dynamic linker to
424	 initialize them at run time.  The linker script puts the .dynbss
425	 section into the .bss section of the final image.  */
426      s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
427					      SEC_ALLOC | SEC_LINKER_CREATED);
428      if (s == NULL)
429	return FALSE;
430      htab->sdynbss = s;
431
432      if (bed->want_dynrelro)
433	{
434	  /* Similarly, but for symbols that were originally in read-only
435	     sections.  This section doesn't really need to have contents,
436	     but make it like other .data.rel.ro sections.  */
437	  s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
438						  flags);
439	  if (s == NULL)
440	    return FALSE;
441	  htab->sdynrelro = s;
442	}
443
444      /* The .rel[a].bss section holds copy relocs.  This section is not
445	 normally needed.  We need to create it here, though, so that the
446	 linker will map it to an output section.  We can't just create it
447	 only if we need it, because we will not know whether we need it
448	 until we have seen all the input files, and the first time the
449	 main linker code calls BFD after examining all the input files
450	 (size_dynamic_sections) the input sections have already been
451	 mapped to the output sections.  If the section turns out not to
452	 be needed, we can discard it later.  We will never need this
453	 section when generating a shared object, since they do not use
454	 copy relocs.  */
455      if (bfd_link_executable (info))
456	{
457	  s = bfd_make_section_anyway_with_flags (abfd,
458						  (bed->rela_plts_and_copies_p
459						   ? ".rela.bss" : ".rel.bss"),
460						  flags | SEC_READONLY);
461	  if (s == NULL
462	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
463	    return FALSE;
464	  htab->srelbss = s;
465
466	  if (bed->want_dynrelro)
467	    {
468	      s = (bfd_make_section_anyway_with_flags
469		   (abfd, (bed->rela_plts_and_copies_p
470			   ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
471		    flags | SEC_READONLY));
472	      if (s == NULL
473		  || ! bfd_set_section_alignment (abfd, s,
474						  bed->s->log_file_align))
475		return FALSE;
476	      htab->sreldynrelro = s;
477	    }
478	}
479    }
480
481  return TRUE;
482}
483
484/* Record a new dynamic symbol.  We record the dynamic symbols as we
485   read the input files, since we need to have a list of all of them
486   before we can determine the final sizes of the output sections.
487   Note that we may actually call this function even though we are not
488   going to output any dynamic symbols; in some cases we know that a
489   symbol should be in the dynamic symbol table, but only if there is
490   one.  */
491
492bfd_boolean
493bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
494				    struct elf_link_hash_entry *h)
495{
496  if (h->dynindx == -1)
497    {
498      struct elf_strtab_hash *dynstr;
499      char *p;
500      const char *name;
501      size_t indx;
502
503      /* XXX: The ABI draft says the linker must turn hidden and
504	 internal symbols into STB_LOCAL symbols when producing the
505	 DSO. However, if ld.so honors st_other in the dynamic table,
506	 this would not be necessary.  */
507      switch (ELF_ST_VISIBILITY (h->other))
508	{
509	case STV_INTERNAL:
510	case STV_HIDDEN:
511	  if (h->root.type != bfd_link_hash_undefined
512	      && h->root.type != bfd_link_hash_undefweak)
513	    {
514	      h->forced_local = 1;
515	      if (!elf_hash_table (info)->is_relocatable_executable)
516		return TRUE;
517	    }
518
519	default:
520	  break;
521	}
522
523      h->dynindx = elf_hash_table (info)->dynsymcount;
524      ++elf_hash_table (info)->dynsymcount;
525
526      dynstr = elf_hash_table (info)->dynstr;
527      if (dynstr == NULL)
528	{
529	  /* Create a strtab to hold the dynamic symbol names.  */
530	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
531	  if (dynstr == NULL)
532	    return FALSE;
533	}
534
535      /* We don't put any version information in the dynamic string
536	 table.  */
537      name = h->root.root.string;
538      p = strchr (name, ELF_VER_CHR);
539      if (p != NULL)
540	/* We know that the p points into writable memory.  In fact,
541	   there are only a few symbols that have read-only names, being
542	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
543	   by the backends.  Most symbols will have names pointing into
544	   an ELF string table read from a file, or to objalloc memory.  */
545	*p = 0;
546
547      indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
548
549      if (p != NULL)
550	*p = ELF_VER_CHR;
551
552      if (indx == (size_t) -1)
553	return FALSE;
554      h->dynstr_index = indx;
555    }
556
557  return TRUE;
558}
559
560/* Mark a symbol dynamic.  */
561
562static void
563bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
564				  struct elf_link_hash_entry *h,
565				  Elf_Internal_Sym *sym)
566{
567  struct bfd_elf_dynamic_list *d = info->dynamic_list;
568
569  /* It may be called more than once on the same H.  */
570  if(h->dynamic || bfd_link_relocatable (info))
571    return;
572
573  if ((info->dynamic_data
574       && (h->type == STT_OBJECT
575	   || h->type == STT_COMMON
576	   || (sym != NULL
577	       && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
578		   || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
579      || (d != NULL
580	  && h->root.type == bfd_link_hash_new
581	  && (*d->match) (&d->head, NULL, h->root.root.string)))
582    h->dynamic = 1;
583}
584
585/* Record an assignment to a symbol made by a linker script.  We need
586   this in case some dynamic object refers to this symbol.  */
587
588bfd_boolean
589bfd_elf_record_link_assignment (bfd *output_bfd,
590				struct bfd_link_info *info,
591				const char *name,
592				bfd_boolean provide,
593				bfd_boolean hidden)
594{
595  struct elf_link_hash_entry *h, *hv;
596  struct elf_link_hash_table *htab;
597  const struct elf_backend_data *bed;
598
599  if (!is_elf_hash_table (info->hash))
600    return TRUE;
601
602  htab = elf_hash_table (info);
603  h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
604  if (h == NULL)
605    return provide;
606
607  if (h->root.type == bfd_link_hash_warning)
608    h = (struct elf_link_hash_entry *) h->root.u.i.link;
609
610  if (h->versioned == unknown)
611    {
612      /* Set versioned if symbol version is unknown.  */
613      char *version = strrchr (name, ELF_VER_CHR);
614      if (version)
615	{
616	  if (version > name && version[-1] != ELF_VER_CHR)
617	    h->versioned = versioned_hidden;
618	  else
619	    h->versioned = versioned;
620	}
621    }
622
623  switch (h->root.type)
624    {
625    case bfd_link_hash_defined:
626    case bfd_link_hash_defweak:
627    case bfd_link_hash_common:
628      break;
629    case bfd_link_hash_undefweak:
630    case bfd_link_hash_undefined:
631      /* Since we're defining the symbol, don't let it seem to have not
632	 been defined.  record_dynamic_symbol and size_dynamic_sections
633	 may depend on this.  */
634      h->root.type = bfd_link_hash_new;
635      if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
636	bfd_link_repair_undef_list (&htab->root);
637      break;
638    case bfd_link_hash_new:
639      bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640      h->non_elf = 0;
641      break;
642    case bfd_link_hash_indirect:
643      /* We had a versioned symbol in a dynamic library.  We make the
644	 the versioned symbol point to this one.  */
645      bed = get_elf_backend_data (output_bfd);
646      hv = h;
647      while (hv->root.type == bfd_link_hash_indirect
648	     || hv->root.type == bfd_link_hash_warning)
649	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
650      /* We don't need to update h->root.u since linker will set them
651	 later.  */
652      h->root.type = bfd_link_hash_undefined;
653      hv->root.type = bfd_link_hash_indirect;
654      hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
655      (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
656      break;
657    default:
658      BFD_FAIL ();
659      return FALSE;
660    }
661
662  /* If this symbol is being provided by the linker script, and it is
663     currently defined by a dynamic object, but not by a regular
664     object, then mark it as undefined so that the generic linker will
665     force the correct value.  */
666  if (provide
667      && h->def_dynamic
668      && !h->def_regular)
669    h->root.type = bfd_link_hash_undefined;
670
671  /* If this symbol is not being provided by the linker script, and it is
672     currently defined by a dynamic object, but not by a regular object,
673     then undo any forced local marking that may have been set by input
674     section garbage collection and clear out any version information
675     because the symbol will not be associated with the dynamic object
676     any more.  */
677  if (!provide
678      && h->def_dynamic
679      && !h->def_regular)
680    {
681      h->forced_local = 0;
682      h->verinfo.verdef = NULL;
683    }
684
685  h->def_regular = 1;
686
687  if (hidden)
688    {
689      bed = get_elf_backend_data (output_bfd);
690      if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
691	h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
692      (*bed->elf_backend_hide_symbol) (info, h, TRUE);
693    }
694
695  /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
696     and executables.  */
697  if (!bfd_link_relocatable (info)
698      && h->dynindx != -1
699      && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
700	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
701    h->forced_local = 1;
702
703  if ((h->def_dynamic
704       || h->ref_dynamic
705       || bfd_link_dll (info)
706       || elf_hash_table (info)->is_relocatable_executable)
707      && h->dynindx == -1)
708    {
709      if (! bfd_elf_link_record_dynamic_symbol (info, h))
710	return FALSE;
711
712      /* If this is a weak defined symbol, and we know a corresponding
713	 real symbol from the same dynamic object, make sure the real
714	 symbol is also made into a dynamic symbol.  */
715      if (h->u.weakdef != NULL
716	  && h->u.weakdef->dynindx == -1)
717	{
718	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
719	    return FALSE;
720	}
721    }
722
723  return TRUE;
724}
725
726/* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
727   success, and 2 on a failure caused by attempting to record a symbol
728   in a discarded section, eg. a discarded link-once section symbol.  */
729
730int
731bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
732					  bfd *input_bfd,
733					  long input_indx)
734{
735  bfd_size_type amt;
736  struct elf_link_local_dynamic_entry *entry;
737  struct elf_link_hash_table *eht;
738  struct elf_strtab_hash *dynstr;
739  size_t dynstr_index;
740  char *name;
741  Elf_External_Sym_Shndx eshndx;
742  char esym[sizeof (Elf64_External_Sym)];
743
744  if (! is_elf_hash_table (info->hash))
745    return 0;
746
747  /* See if the entry exists already.  */
748  for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
749    if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
750      return 1;
751
752  amt = sizeof (*entry);
753  entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
754  if (entry == NULL)
755    return 0;
756
757  /* Go find the symbol, so that we can find it's name.  */
758  if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
759			     1, input_indx, &entry->isym, esym, &eshndx))
760    {
761      bfd_release (input_bfd, entry);
762      return 0;
763    }
764
765  if (entry->isym.st_shndx != SHN_UNDEF
766      && entry->isym.st_shndx < SHN_LORESERVE)
767    {
768      asection *s;
769
770      s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
771      if (s == NULL || bfd_is_abs_section (s->output_section))
772	{
773	  /* We can still bfd_release here as nothing has done another
774	     bfd_alloc.  We can't do this later in this function.  */
775	  bfd_release (input_bfd, entry);
776	  return 2;
777	}
778    }
779
780  name = (bfd_elf_string_from_elf_section
781	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
782	   entry->isym.st_name));
783
784  dynstr = elf_hash_table (info)->dynstr;
785  if (dynstr == NULL)
786    {
787      /* Create a strtab to hold the dynamic symbol names.  */
788      elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
789      if (dynstr == NULL)
790	return 0;
791    }
792
793  dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
794  if (dynstr_index == (size_t) -1)
795    return 0;
796  entry->isym.st_name = dynstr_index;
797
798  eht = elf_hash_table (info);
799
800  entry->next = eht->dynlocal;
801  eht->dynlocal = entry;
802  entry->input_bfd = input_bfd;
803  entry->input_indx = input_indx;
804  eht->dynsymcount++;
805
806  /* Whatever binding the symbol had before, it's now local.  */
807  entry->isym.st_info
808    = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
809
810  /* The dynindx will be set at the end of size_dynamic_sections.  */
811
812  return 1;
813}
814
815/* Return the dynindex of a local dynamic symbol.  */
816
817long
818_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
819				    bfd *input_bfd,
820				    long input_indx)
821{
822  struct elf_link_local_dynamic_entry *e;
823
824  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
825    if (e->input_bfd == input_bfd && e->input_indx == input_indx)
826      return e->dynindx;
827  return -1;
828}
829
830/* This function is used to renumber the dynamic symbols, if some of
831   them are removed because they are marked as local.  This is called
832   via elf_link_hash_traverse.  */
833
834static bfd_boolean
835elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
836				      void *data)
837{
838  size_t *count = (size_t *) data;
839
840  if (h->forced_local)
841    return TRUE;
842
843  if (h->dynindx != -1)
844    h->dynindx = ++(*count);
845
846  return TRUE;
847}
848
849
850/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
851   STB_LOCAL binding.  */
852
853static bfd_boolean
854elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
855					    void *data)
856{
857  size_t *count = (size_t *) data;
858
859  if (!h->forced_local)
860    return TRUE;
861
862  if (h->dynindx != -1)
863    h->dynindx = ++(*count);
864
865  return TRUE;
866}
867
868/* Return true if the dynamic symbol for a given section should be
869   omitted when creating a shared library.  */
870bfd_boolean
871_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
872				   struct bfd_link_info *info,
873				   asection *p)
874{
875  struct elf_link_hash_table *htab;
876  asection *ip;
877
878  switch (elf_section_data (p)->this_hdr.sh_type)
879    {
880    case SHT_PROGBITS:
881    case SHT_NOBITS:
882      /* If sh_type is yet undecided, assume it could be
883	 SHT_PROGBITS/SHT_NOBITS.  */
884    case SHT_NULL:
885      htab = elf_hash_table (info);
886      if (p == htab->tls_sec)
887	return FALSE;
888
889      if (htab->text_index_section != NULL)
890	return p != htab->text_index_section && p != htab->data_index_section;
891
892      return (htab->dynobj != NULL
893	      && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
894	      && ip->output_section == p);
895
896      /* There shouldn't be section relative relocations
897	 against any other section.  */
898    default:
899      return TRUE;
900    }
901}
902
903/* Assign dynsym indices.  In a shared library we generate a section
904   symbol for each output section, which come first.  Next come symbols
905   which have been forced to local binding.  Then all of the back-end
906   allocated local dynamic syms, followed by the rest of the global
907   symbols.  */
908
909static unsigned long
910_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
911				struct bfd_link_info *info,
912				unsigned long *section_sym_count)
913{
914  unsigned long dynsymcount = 0;
915
916  if (bfd_link_pic (info)
917      || elf_hash_table (info)->is_relocatable_executable)
918    {
919      const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
920      asection *p;
921      for (p = output_bfd->sections; p ; p = p->next)
922	if ((p->flags & SEC_EXCLUDE) == 0
923	    && (p->flags & SEC_ALLOC) != 0
924	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
925	  elf_section_data (p)->dynindx = ++dynsymcount;
926	else
927	  elf_section_data (p)->dynindx = 0;
928    }
929  *section_sym_count = dynsymcount;
930
931  elf_link_hash_traverse (elf_hash_table (info),
932			  elf_link_renumber_local_hash_table_dynsyms,
933			  &dynsymcount);
934
935  if (elf_hash_table (info)->dynlocal)
936    {
937      struct elf_link_local_dynamic_entry *p;
938      for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
939	p->dynindx = ++dynsymcount;
940    }
941  elf_hash_table (info)->local_dynsymcount = dynsymcount;
942
943  elf_link_hash_traverse (elf_hash_table (info),
944			  elf_link_renumber_hash_table_dynsyms,
945			  &dynsymcount);
946
947  /* There is an unused NULL entry at the head of the table which we
948     must account for in our count even if the table is empty since it
949     is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
950     .dynamic section.  */
951  dynsymcount++;
952
953  elf_hash_table (info)->dynsymcount = dynsymcount;
954  return dynsymcount;
955}
956
957/* Merge st_other field.  */
958
959static void
960elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
961		    const Elf_Internal_Sym *isym, asection *sec,
962		    bfd_boolean definition, bfd_boolean dynamic)
963{
964  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
965
966  /* If st_other has a processor-specific meaning, specific
967     code might be needed here.  */
968  if (bed->elf_backend_merge_symbol_attribute)
969    (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
970						dynamic);
971
972  if (!dynamic)
973    {
974      unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
975      unsigned hvis = ELF_ST_VISIBILITY (h->other);
976
977      /* Keep the most constraining visibility.  Leave the remainder
978	 of the st_other field to elf_backend_merge_symbol_attribute.  */
979      if (symvis - 1 < hvis - 1)
980	h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
981    }
982  else if (definition
983	   && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
984	   && (sec->flags & SEC_READONLY) == 0)
985    h->protected_def = 1;
986}
987
988/* This function is called when we want to merge a new symbol with an
989   existing symbol.  It handles the various cases which arise when we
990   find a definition in a dynamic object, or when there is already a
991   definition in a dynamic object.  The new symbol is described by
992   NAME, SYM, PSEC, and PVALUE.  We set SYM_HASH to the hash table
993   entry.  We set POLDBFD to the old symbol's BFD.  We set POLD_WEAK
994   if the old symbol was weak.  We set POLD_ALIGNMENT to the alignment
995   of an old common symbol.  We set OVERRIDE if the old symbol is
996   overriding a new definition.  We set TYPE_CHANGE_OK if it is OK for
997   the type to change.  We set SIZE_CHANGE_OK if it is OK for the size
998   to change.  By OK to change, we mean that we shouldn't warn if the
999   type or size does change.  */
1000
1001static bfd_boolean
1002_bfd_elf_merge_symbol (bfd *abfd,
1003		       struct bfd_link_info *info,
1004		       const char *name,
1005		       Elf_Internal_Sym *sym,
1006		       asection **psec,
1007		       bfd_vma *pvalue,
1008		       struct elf_link_hash_entry **sym_hash,
1009		       bfd **poldbfd,
1010		       bfd_boolean *pold_weak,
1011		       unsigned int *pold_alignment,
1012		       bfd_boolean *skip,
1013		       bfd_boolean *override,
1014		       bfd_boolean *type_change_ok,
1015		       bfd_boolean *size_change_ok,
1016		       bfd_boolean *matched)
1017{
1018  asection *sec, *oldsec;
1019  struct elf_link_hash_entry *h;
1020  struct elf_link_hash_entry *hi;
1021  struct elf_link_hash_entry *flip;
1022  int bind;
1023  bfd *oldbfd;
1024  bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1025  bfd_boolean newweak, oldweak, newfunc, oldfunc;
1026  const struct elf_backend_data *bed;
1027  char *new_version;
1028
1029  *skip = FALSE;
1030  *override = FALSE;
1031
1032  sec = *psec;
1033  bind = ELF_ST_BIND (sym->st_info);
1034
1035  if (! bfd_is_und_section (sec))
1036    h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1037  else
1038    h = ((struct elf_link_hash_entry *)
1039	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1040  if (h == NULL)
1041    return FALSE;
1042  *sym_hash = h;
1043
1044  bed = get_elf_backend_data (abfd);
1045
1046  /* NEW_VERSION is the symbol version of the new symbol.  */
1047  if (h->versioned != unversioned)
1048    {
1049      /* Symbol version is unknown or versioned.  */
1050      new_version = strrchr (name, ELF_VER_CHR);
1051      if (new_version)
1052	{
1053	  if (h->versioned == unknown)
1054	    {
1055	      if (new_version > name && new_version[-1] != ELF_VER_CHR)
1056		h->versioned = versioned_hidden;
1057	      else
1058		h->versioned = versioned;
1059	    }
1060	  new_version += 1;
1061	  if (new_version[0] == '\0')
1062	    new_version = NULL;
1063	}
1064      else
1065	h->versioned = unversioned;
1066    }
1067  else
1068    new_version = NULL;
1069
1070  /* For merging, we only care about real symbols.  But we need to make
1071     sure that indirect symbol dynamic flags are updated.  */
1072  hi = h;
1073  while (h->root.type == bfd_link_hash_indirect
1074	 || h->root.type == bfd_link_hash_warning)
1075    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1076
1077  if (!*matched)
1078    {
1079      if (hi == h || h->root.type == bfd_link_hash_new)
1080	*matched = TRUE;
1081      else
1082	{
1083	  /* OLD_HIDDEN is true if the existing symbol is only visible
1084	     to the symbol with the same symbol version.  NEW_HIDDEN is
1085	     true if the new symbol is only visible to the symbol with
1086	     the same symbol version.  */
1087	  bfd_boolean old_hidden = h->versioned == versioned_hidden;
1088	  bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1089	  if (!old_hidden && !new_hidden)
1090	    /* The new symbol matches the existing symbol if both
1091	       aren't hidden.  */
1092	    *matched = TRUE;
1093	  else
1094	    {
1095	      /* OLD_VERSION is the symbol version of the existing
1096		 symbol. */
1097	      char *old_version;
1098
1099	      if (h->versioned >= versioned)
1100		old_version = strrchr (h->root.root.string,
1101				       ELF_VER_CHR) + 1;
1102	      else
1103		 old_version = NULL;
1104
1105	      /* The new symbol matches the existing symbol if they
1106		 have the same symbol version.  */
1107	      *matched = (old_version == new_version
1108			  || (old_version != NULL
1109			      && new_version != NULL
1110			      && strcmp (old_version, new_version) == 0));
1111	    }
1112	}
1113    }
1114
1115  /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1116     existing symbol.  */
1117
1118  oldbfd = NULL;
1119  oldsec = NULL;
1120  switch (h->root.type)
1121    {
1122    default:
1123      break;
1124
1125    case bfd_link_hash_undefined:
1126    case bfd_link_hash_undefweak:
1127      oldbfd = h->root.u.undef.abfd;
1128      break;
1129
1130    case bfd_link_hash_defined:
1131    case bfd_link_hash_defweak:
1132      oldbfd = h->root.u.def.section->owner;
1133      oldsec = h->root.u.def.section;
1134      break;
1135
1136    case bfd_link_hash_common:
1137      oldbfd = h->root.u.c.p->section->owner;
1138      oldsec = h->root.u.c.p->section;
1139      if (pold_alignment)
1140	*pold_alignment = h->root.u.c.p->alignment_power;
1141      break;
1142    }
1143  if (poldbfd && *poldbfd == NULL)
1144    *poldbfd = oldbfd;
1145
1146  /* Differentiate strong and weak symbols.  */
1147  newweak = bind == STB_WEAK;
1148  oldweak = (h->root.type == bfd_link_hash_defweak
1149	     || h->root.type == bfd_link_hash_undefweak);
1150  if (pold_weak)
1151    *pold_weak = oldweak;
1152
1153  /* This code is for coping with dynamic objects, and is only useful
1154     if we are doing an ELF link.  */
1155  if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1156    return TRUE;
1157
1158  /* We have to check it for every instance since the first few may be
1159     references and not all compilers emit symbol type for undefined
1160     symbols.  */
1161  bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1162
1163  /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1164     respectively, is from a dynamic object.  */
1165
1166  newdyn = (abfd->flags & DYNAMIC) != 0;
1167
1168  /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1169     syms and defined syms in dynamic libraries respectively.
1170     ref_dynamic on the other hand can be set for a symbol defined in
1171     a dynamic library, and def_dynamic may not be set;  When the
1172     definition in a dynamic lib is overridden by a definition in the
1173     executable use of the symbol in the dynamic lib becomes a
1174     reference to the executable symbol.  */
1175  if (newdyn)
1176    {
1177      if (bfd_is_und_section (sec))
1178	{
1179	  if (bind != STB_WEAK)
1180	    {
1181	      h->ref_dynamic_nonweak = 1;
1182	      hi->ref_dynamic_nonweak = 1;
1183	    }
1184	}
1185      else
1186	{
1187	  /* Update the existing symbol only if they match. */
1188	  if (*matched)
1189	    h->dynamic_def = 1;
1190	  hi->dynamic_def = 1;
1191	}
1192    }
1193
1194  /* If we just created the symbol, mark it as being an ELF symbol.
1195     Other than that, there is nothing to do--there is no merge issue
1196     with a newly defined symbol--so we just return.  */
1197
1198  if (h->root.type == bfd_link_hash_new)
1199    {
1200      h->non_elf = 0;
1201      return TRUE;
1202    }
1203
1204  /* In cases involving weak versioned symbols, we may wind up trying
1205     to merge a symbol with itself.  Catch that here, to avoid the
1206     confusion that results if we try to override a symbol with
1207     itself.  The additional tests catch cases like
1208     _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1209     dynamic object, which we do want to handle here.  */
1210  if (abfd == oldbfd
1211      && (newweak || oldweak)
1212      && ((abfd->flags & DYNAMIC) == 0
1213	  || !h->def_regular))
1214    return TRUE;
1215
1216  olddyn = FALSE;
1217  if (oldbfd != NULL)
1218    olddyn = (oldbfd->flags & DYNAMIC) != 0;
1219  else if (oldsec != NULL)
1220    {
1221      /* This handles the special SHN_MIPS_{TEXT,DATA} section
1222	 indices used by MIPS ELF.  */
1223      olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1224    }
1225
1226  /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1227     respectively, appear to be a definition rather than reference.  */
1228
1229  newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1230
1231  olddef = (h->root.type != bfd_link_hash_undefined
1232	    && h->root.type != bfd_link_hash_undefweak
1233	    && h->root.type != bfd_link_hash_common);
1234
1235  /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1236     respectively, appear to be a function.  */
1237
1238  newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1239	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1240
1241  oldfunc = (h->type != STT_NOTYPE
1242	     && bed->is_function_type (h->type));
1243
1244  /* If creating a default indirect symbol ("foo" or "foo@") from a
1245     dynamic versioned definition ("foo@@") skip doing so if there is
1246     an existing regular definition with a different type.  We don't
1247     want, for example, a "time" variable in the executable overriding
1248     a "time" function in a shared library.  */
1249  if (pold_alignment == NULL
1250      && newdyn
1251      && newdef
1252      && !olddyn
1253      && (olddef || h->root.type == bfd_link_hash_common)
1254      && ELF_ST_TYPE (sym->st_info) != h->type
1255      && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1256      && h->type != STT_NOTYPE
1257      && !(newfunc && oldfunc))
1258    {
1259      *skip = TRUE;
1260      return TRUE;
1261    }
1262
1263  /* Check TLS symbols.  We don't check undefined symbols introduced
1264     by "ld -u" which have no type (and oldbfd NULL), and we don't
1265     check symbols from plugins because they also have no type.  */
1266  if (oldbfd != NULL
1267      && (oldbfd->flags & BFD_PLUGIN) == 0
1268      && (abfd->flags & BFD_PLUGIN) == 0
1269      && ELF_ST_TYPE (sym->st_info) != h->type
1270      && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1271    {
1272      bfd *ntbfd, *tbfd;
1273      bfd_boolean ntdef, tdef;
1274      asection *ntsec, *tsec;
1275
1276      if (h->type == STT_TLS)
1277	{
1278	  ntbfd = abfd;
1279	  ntsec = sec;
1280	  ntdef = newdef;
1281	  tbfd = oldbfd;
1282	  tsec = oldsec;
1283	  tdef = olddef;
1284	}
1285      else
1286	{
1287	  ntbfd = oldbfd;
1288	  ntsec = oldsec;
1289	  ntdef = olddef;
1290	  tbfd = abfd;
1291	  tsec = sec;
1292	  tdef = newdef;
1293	}
1294
1295      if (tdef && ntdef)
1296	_bfd_error_handler
1297	  /* xgettext:c-format */
1298	  (_("%s: TLS definition in %B section %A "
1299	     "mismatches non-TLS definition in %B section %A"),
1300	   tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1301      else if (!tdef && !ntdef)
1302	_bfd_error_handler
1303	  /* xgettext:c-format */
1304	  (_("%s: TLS reference in %B "
1305	     "mismatches non-TLS reference in %B"),
1306	   tbfd, ntbfd, h->root.root.string);
1307      else if (tdef)
1308	_bfd_error_handler
1309	  /* xgettext:c-format */
1310	  (_("%s: TLS definition in %B section %A "
1311	     "mismatches non-TLS reference in %B"),
1312	   tbfd, tsec, ntbfd, h->root.root.string);
1313      else
1314	_bfd_error_handler
1315	  /* xgettext:c-format */
1316	  (_("%s: TLS reference in %B "
1317	     "mismatches non-TLS definition in %B section %A"),
1318	   tbfd, ntbfd, ntsec, h->root.root.string);
1319
1320      bfd_set_error (bfd_error_bad_value);
1321      return FALSE;
1322    }
1323
1324  /* If the old symbol has non-default visibility, we ignore the new
1325     definition from a dynamic object.  */
1326  if (newdyn
1327      && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1328      && !bfd_is_und_section (sec))
1329    {
1330      *skip = TRUE;
1331      /* Make sure this symbol is dynamic.  */
1332      h->ref_dynamic = 1;
1333      hi->ref_dynamic = 1;
1334      /* A protected symbol has external availability. Make sure it is
1335	 recorded as dynamic.
1336
1337	 FIXME: Should we check type and size for protected symbol?  */
1338      if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1339	return bfd_elf_link_record_dynamic_symbol (info, h);
1340      else
1341	return TRUE;
1342    }
1343  else if (!newdyn
1344	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1345	   && h->def_dynamic)
1346    {
1347      /* If the new symbol with non-default visibility comes from a
1348	 relocatable file and the old definition comes from a dynamic
1349	 object, we remove the old definition.  */
1350      if (hi->root.type == bfd_link_hash_indirect)
1351	{
1352	  /* Handle the case where the old dynamic definition is
1353	     default versioned.  We need to copy the symbol info from
1354	     the symbol with default version to the normal one if it
1355	     was referenced before.  */
1356	  if (h->ref_regular)
1357	    {
1358	      hi->root.type = h->root.type;
1359	      h->root.type = bfd_link_hash_indirect;
1360	      (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1361
1362	      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1363	      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1364		{
1365		  /* If the new symbol is hidden or internal, completely undo
1366		     any dynamic link state.  */
1367		  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1368		  h->forced_local = 0;
1369		  h->ref_dynamic = 0;
1370		}
1371	      else
1372		h->ref_dynamic = 1;
1373
1374	      h->def_dynamic = 0;
1375	      /* FIXME: Should we check type and size for protected symbol?  */
1376	      h->size = 0;
1377	      h->type = 0;
1378
1379	      h = hi;
1380	    }
1381	  else
1382	    h = hi;
1383	}
1384
1385      /* If the old symbol was undefined before, then it will still be
1386	 on the undefs list.  If the new symbol is undefined or
1387	 common, we can't make it bfd_link_hash_new here, because new
1388	 undefined or common symbols will be added to the undefs list
1389	 by _bfd_generic_link_add_one_symbol.  Symbols may not be
1390	 added twice to the undefs list.  Also, if the new symbol is
1391	 undefweak then we don't want to lose the strong undef.  */
1392      if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1393	{
1394	  h->root.type = bfd_link_hash_undefined;
1395	  h->root.u.undef.abfd = abfd;
1396	}
1397      else
1398	{
1399	  h->root.type = bfd_link_hash_new;
1400	  h->root.u.undef.abfd = NULL;
1401	}
1402
1403      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1404	{
1405	  /* If the new symbol is hidden or internal, completely undo
1406	     any dynamic link state.  */
1407	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1408	  h->forced_local = 0;
1409	  h->ref_dynamic = 0;
1410	}
1411      else
1412	h->ref_dynamic = 1;
1413      h->def_dynamic = 0;
1414      /* FIXME: Should we check type and size for protected symbol?  */
1415      h->size = 0;
1416      h->type = 0;
1417      return TRUE;
1418    }
1419
1420  /* If a new weak symbol definition comes from a regular file and the
1421     old symbol comes from a dynamic library, we treat the new one as
1422     strong.  Similarly, an old weak symbol definition from a regular
1423     file is treated as strong when the new symbol comes from a dynamic
1424     library.  Further, an old weak symbol from a dynamic library is
1425     treated as strong if the new symbol is from a dynamic library.
1426     This reflects the way glibc's ld.so works.
1427
1428     Do this before setting *type_change_ok or *size_change_ok so that
1429     we warn properly when dynamic library symbols are overridden.  */
1430
1431  if (newdef && !newdyn && olddyn)
1432    newweak = FALSE;
1433  if (olddef && newdyn)
1434    oldweak = FALSE;
1435
1436  /* Allow changes between different types of function symbol.  */
1437  if (newfunc && oldfunc)
1438    *type_change_ok = TRUE;
1439
1440  /* It's OK to change the type if either the existing symbol or the
1441     new symbol is weak.  A type change is also OK if the old symbol
1442     is undefined and the new symbol is defined.  */
1443
1444  if (oldweak
1445      || newweak
1446      || (newdef
1447	  && h->root.type == bfd_link_hash_undefined))
1448    *type_change_ok = TRUE;
1449
1450  /* It's OK to change the size if either the existing symbol or the
1451     new symbol is weak, or if the old symbol is undefined.  */
1452
1453  if (*type_change_ok
1454      || h->root.type == bfd_link_hash_undefined)
1455    *size_change_ok = TRUE;
1456
1457  /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1458     symbol, respectively, appears to be a common symbol in a dynamic
1459     object.  If a symbol appears in an uninitialized section, and is
1460     not weak, and is not a function, then it may be a common symbol
1461     which was resolved when the dynamic object was created.  We want
1462     to treat such symbols specially, because they raise special
1463     considerations when setting the symbol size: if the symbol
1464     appears as a common symbol in a regular object, and the size in
1465     the regular object is larger, we must make sure that we use the
1466     larger size.  This problematic case can always be avoided in C,
1467     but it must be handled correctly when using Fortran shared
1468     libraries.
1469
1470     Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1471     likewise for OLDDYNCOMMON and OLDDEF.
1472
1473     Note that this test is just a heuristic, and that it is quite
1474     possible to have an uninitialized symbol in a shared object which
1475     is really a definition, rather than a common symbol.  This could
1476     lead to some minor confusion when the symbol really is a common
1477     symbol in some regular object.  However, I think it will be
1478     harmless.  */
1479
1480  if (newdyn
1481      && newdef
1482      && !newweak
1483      && (sec->flags & SEC_ALLOC) != 0
1484      && (sec->flags & SEC_LOAD) == 0
1485      && sym->st_size > 0
1486      && !newfunc)
1487    newdyncommon = TRUE;
1488  else
1489    newdyncommon = FALSE;
1490
1491  if (olddyn
1492      && olddef
1493      && h->root.type == bfd_link_hash_defined
1494      && h->def_dynamic
1495      && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1496      && (h->root.u.def.section->flags & SEC_LOAD) == 0
1497      && h->size > 0
1498      && !oldfunc)
1499    olddyncommon = TRUE;
1500  else
1501    olddyncommon = FALSE;
1502
1503  /* We now know everything about the old and new symbols.  We ask the
1504     backend to check if we can merge them.  */
1505  if (bed->merge_symbol != NULL)
1506    {
1507      if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1508	return FALSE;
1509      sec = *psec;
1510    }
1511
1512  /* If both the old and the new symbols look like common symbols in a
1513     dynamic object, set the size of the symbol to the larger of the
1514     two.  */
1515
1516  if (olddyncommon
1517      && newdyncommon
1518      && sym->st_size != h->size)
1519    {
1520      /* Since we think we have two common symbols, issue a multiple
1521	 common warning if desired.  Note that we only warn if the
1522	 size is different.  If the size is the same, we simply let
1523	 the old symbol override the new one as normally happens with
1524	 symbols defined in dynamic objects.  */
1525
1526      (*info->callbacks->multiple_common) (info, &h->root, abfd,
1527					   bfd_link_hash_common, sym->st_size);
1528      if (sym->st_size > h->size)
1529	h->size = sym->st_size;
1530
1531      *size_change_ok = TRUE;
1532    }
1533
1534  /* If we are looking at a dynamic object, and we have found a
1535     definition, we need to see if the symbol was already defined by
1536     some other object.  If so, we want to use the existing
1537     definition, and we do not want to report a multiple symbol
1538     definition error; we do this by clobbering *PSEC to be
1539     bfd_und_section_ptr.
1540
1541     We treat a common symbol as a definition if the symbol in the
1542     shared library is a function, since common symbols always
1543     represent variables; this can cause confusion in principle, but
1544     any such confusion would seem to indicate an erroneous program or
1545     shared library.  We also permit a common symbol in a regular
1546     object to override a weak symbol in a shared object.  */
1547
1548  if (newdyn
1549      && newdef
1550      && (olddef
1551	  || (h->root.type == bfd_link_hash_common
1552	      && (newweak || newfunc))))
1553    {
1554      *override = TRUE;
1555      newdef = FALSE;
1556      newdyncommon = FALSE;
1557
1558      *psec = sec = bfd_und_section_ptr;
1559      *size_change_ok = TRUE;
1560
1561      /* If we get here when the old symbol is a common symbol, then
1562	 we are explicitly letting it override a weak symbol or
1563	 function in a dynamic object, and we don't want to warn about
1564	 a type change.  If the old symbol is a defined symbol, a type
1565	 change warning may still be appropriate.  */
1566
1567      if (h->root.type == bfd_link_hash_common)
1568	*type_change_ok = TRUE;
1569    }
1570
1571  /* Handle the special case of an old common symbol merging with a
1572     new symbol which looks like a common symbol in a shared object.
1573     We change *PSEC and *PVALUE to make the new symbol look like a
1574     common symbol, and let _bfd_generic_link_add_one_symbol do the
1575     right thing.  */
1576
1577  if (newdyncommon
1578      && h->root.type == bfd_link_hash_common)
1579    {
1580      *override = TRUE;
1581      newdef = FALSE;
1582      newdyncommon = FALSE;
1583      *pvalue = sym->st_size;
1584      *psec = sec = bed->common_section (oldsec);
1585      *size_change_ok = TRUE;
1586    }
1587
1588  /* Skip weak definitions of symbols that are already defined.  */
1589  if (newdef && olddef && newweak)
1590    {
1591      /* Don't skip new non-IR weak syms.  */
1592      if (!(oldbfd != NULL
1593	    && (oldbfd->flags & BFD_PLUGIN) != 0
1594	    && (abfd->flags & BFD_PLUGIN) == 0))
1595	{
1596	  newdef = FALSE;
1597	  *skip = TRUE;
1598	}
1599
1600      /* Merge st_other.  If the symbol already has a dynamic index,
1601	 but visibility says it should not be visible, turn it into a
1602	 local symbol.  */
1603      elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1604      if (h->dynindx != -1)
1605	switch (ELF_ST_VISIBILITY (h->other))
1606	  {
1607	  case STV_INTERNAL:
1608	  case STV_HIDDEN:
1609	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1610	    break;
1611	  }
1612    }
1613
1614  /* If the old symbol is from a dynamic object, and the new symbol is
1615     a definition which is not from a dynamic object, then the new
1616     symbol overrides the old symbol.  Symbols from regular files
1617     always take precedence over symbols from dynamic objects, even if
1618     they are defined after the dynamic object in the link.
1619
1620     As above, we again permit a common symbol in a regular object to
1621     override a definition in a shared object if the shared object
1622     symbol is a function or is weak.  */
1623
1624  flip = NULL;
1625  if (!newdyn
1626      && (newdef
1627	  || (bfd_is_com_section (sec)
1628	      && (oldweak || oldfunc)))
1629      && olddyn
1630      && olddef
1631      && h->def_dynamic)
1632    {
1633      /* Change the hash table entry to undefined, and let
1634	 _bfd_generic_link_add_one_symbol do the right thing with the
1635	 new definition.  */
1636
1637      h->root.type = bfd_link_hash_undefined;
1638      h->root.u.undef.abfd = h->root.u.def.section->owner;
1639      *size_change_ok = TRUE;
1640
1641      olddef = FALSE;
1642      olddyncommon = FALSE;
1643
1644      /* We again permit a type change when a common symbol may be
1645	 overriding a function.  */
1646
1647      if (bfd_is_com_section (sec))
1648	{
1649	  if (oldfunc)
1650	    {
1651	      /* If a common symbol overrides a function, make sure
1652		 that it isn't defined dynamically nor has type
1653		 function.  */
1654	      h->def_dynamic = 0;
1655	      h->type = STT_NOTYPE;
1656	    }
1657	  *type_change_ok = TRUE;
1658	}
1659
1660      if (hi->root.type == bfd_link_hash_indirect)
1661	flip = hi;
1662      else
1663	/* This union may have been set to be non-NULL when this symbol
1664	   was seen in a dynamic object.  We must force the union to be
1665	   NULL, so that it is correct for a regular symbol.  */
1666	h->verinfo.vertree = NULL;
1667    }
1668
1669  /* Handle the special case of a new common symbol merging with an
1670     old symbol that looks like it might be a common symbol defined in
1671     a shared object.  Note that we have already handled the case in
1672     which a new common symbol should simply override the definition
1673     in the shared library.  */
1674
1675  if (! newdyn
1676      && bfd_is_com_section (sec)
1677      && olddyncommon)
1678    {
1679      /* It would be best if we could set the hash table entry to a
1680	 common symbol, but we don't know what to use for the section
1681	 or the alignment.  */
1682      (*info->callbacks->multiple_common) (info, &h->root, abfd,
1683					   bfd_link_hash_common, sym->st_size);
1684
1685      /* If the presumed common symbol in the dynamic object is
1686	 larger, pretend that the new symbol has its size.  */
1687
1688      if (h->size > *pvalue)
1689	*pvalue = h->size;
1690
1691      /* We need to remember the alignment required by the symbol
1692	 in the dynamic object.  */
1693      BFD_ASSERT (pold_alignment);
1694      *pold_alignment = h->root.u.def.section->alignment_power;
1695
1696      olddef = FALSE;
1697      olddyncommon = FALSE;
1698
1699      h->root.type = bfd_link_hash_undefined;
1700      h->root.u.undef.abfd = h->root.u.def.section->owner;
1701
1702      *size_change_ok = TRUE;
1703      *type_change_ok = TRUE;
1704
1705      if (hi->root.type == bfd_link_hash_indirect)
1706	flip = hi;
1707      else
1708	h->verinfo.vertree = NULL;
1709    }
1710
1711  if (flip != NULL)
1712    {
1713      /* Handle the case where we had a versioned symbol in a dynamic
1714	 library and now find a definition in a normal object.  In this
1715	 case, we make the versioned symbol point to the normal one.  */
1716      flip->root.type = h->root.type;
1717      flip->root.u.undef.abfd = h->root.u.undef.abfd;
1718      h->root.type = bfd_link_hash_indirect;
1719      h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1720      (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1721      if (h->def_dynamic)
1722	{
1723	  h->def_dynamic = 0;
1724	  flip->ref_dynamic = 1;
1725	}
1726    }
1727
1728  return TRUE;
1729}
1730
1731/* This function is called to create an indirect symbol from the
1732   default for the symbol with the default version if needed. The
1733   symbol is described by H, NAME, SYM, SEC, and VALUE.  We
1734   set DYNSYM if the new indirect symbol is dynamic.  */
1735
1736static bfd_boolean
1737_bfd_elf_add_default_symbol (bfd *abfd,
1738			     struct bfd_link_info *info,
1739			     struct elf_link_hash_entry *h,
1740			     const char *name,
1741			     Elf_Internal_Sym *sym,
1742			     asection *sec,
1743			     bfd_vma value,
1744			     bfd **poldbfd,
1745			     bfd_boolean *dynsym)
1746{
1747  bfd_boolean type_change_ok;
1748  bfd_boolean size_change_ok;
1749  bfd_boolean skip;
1750  char *shortname;
1751  struct elf_link_hash_entry *hi;
1752  struct bfd_link_hash_entry *bh;
1753  const struct elf_backend_data *bed;
1754  bfd_boolean collect;
1755  bfd_boolean dynamic;
1756  bfd_boolean override;
1757  char *p;
1758  size_t len, shortlen;
1759  asection *tmp_sec;
1760  bfd_boolean matched;
1761
1762  if (h->versioned == unversioned || h->versioned == versioned_hidden)
1763    return TRUE;
1764
1765  /* If this symbol has a version, and it is the default version, we
1766     create an indirect symbol from the default name to the fully
1767     decorated name.  This will cause external references which do not
1768     specify a version to be bound to this version of the symbol.  */
1769  p = strchr (name, ELF_VER_CHR);
1770  if (h->versioned == unknown)
1771    {
1772      if (p == NULL)
1773	{
1774	  h->versioned = unversioned;
1775	  return TRUE;
1776	}
1777      else
1778	{
1779	  if (p[1] != ELF_VER_CHR)
1780	    {
1781	      h->versioned = versioned_hidden;
1782	      return TRUE;
1783	    }
1784	  else
1785	    h->versioned = versioned;
1786	}
1787    }
1788  else
1789    {
1790      /* PR ld/19073: We may see an unversioned definition after the
1791	 default version.  */
1792      if (p == NULL)
1793	return TRUE;
1794    }
1795
1796  bed = get_elf_backend_data (abfd);
1797  collect = bed->collect;
1798  dynamic = (abfd->flags & DYNAMIC) != 0;
1799
1800  shortlen = p - name;
1801  shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1802  if (shortname == NULL)
1803    return FALSE;
1804  memcpy (shortname, name, shortlen);
1805  shortname[shortlen] = '\0';
1806
1807  /* We are going to create a new symbol.  Merge it with any existing
1808     symbol with this name.  For the purposes of the merge, act as
1809     though we were defining the symbol we just defined, although we
1810     actually going to define an indirect symbol.  */
1811  type_change_ok = FALSE;
1812  size_change_ok = FALSE;
1813  matched = TRUE;
1814  tmp_sec = sec;
1815  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1816			      &hi, poldbfd, NULL, NULL, &skip, &override,
1817			      &type_change_ok, &size_change_ok, &matched))
1818    return FALSE;
1819
1820  if (skip)
1821    goto nondefault;
1822
1823  if (hi->def_regular)
1824    {
1825      /* If the undecorated symbol will have a version added by a
1826	 script different to H, then don't indirect to/from the
1827	 undecorated symbol.  This isn't ideal because we may not yet
1828	 have seen symbol versions, if given by a script on the
1829	 command line rather than via --version-script.  */
1830      if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1831	{
1832	  bfd_boolean hide;
1833
1834	  hi->verinfo.vertree
1835	    = bfd_find_version_for_sym (info->version_info,
1836					hi->root.root.string, &hide);
1837	  if (hi->verinfo.vertree != NULL && hide)
1838	    {
1839	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1840	      goto nondefault;
1841	    }
1842	}
1843      if (hi->verinfo.vertree != NULL
1844	  && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1845	goto nondefault;
1846    }
1847
1848  if (! override)
1849    {
1850      /* Add the default symbol if not performing a relocatable link.  */
1851      if (! bfd_link_relocatable (info))
1852	{
1853	  bh = &hi->root;
1854	  if (! (_bfd_generic_link_add_one_symbol
1855		 (info, abfd, shortname, BSF_INDIRECT,
1856		  bfd_ind_section_ptr,
1857		  0, name, FALSE, collect, &bh)))
1858	    return FALSE;
1859	  hi = (struct elf_link_hash_entry *) bh;
1860	}
1861    }
1862  else
1863    {
1864      /* In this case the symbol named SHORTNAME is overriding the
1865	 indirect symbol we want to add.  We were planning on making
1866	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1867	 is the name without a version.  NAME is the fully versioned
1868	 name, and it is the default version.
1869
1870	 Overriding means that we already saw a definition for the
1871	 symbol SHORTNAME in a regular object, and it is overriding
1872	 the symbol defined in the dynamic object.
1873
1874	 When this happens, we actually want to change NAME, the
1875	 symbol we just added, to refer to SHORTNAME.  This will cause
1876	 references to NAME in the shared object to become references
1877	 to SHORTNAME in the regular object.  This is what we expect
1878	 when we override a function in a shared object: that the
1879	 references in the shared object will be mapped to the
1880	 definition in the regular object.  */
1881
1882      while (hi->root.type == bfd_link_hash_indirect
1883	     || hi->root.type == bfd_link_hash_warning)
1884	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1885
1886      h->root.type = bfd_link_hash_indirect;
1887      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1888      if (h->def_dynamic)
1889	{
1890	  h->def_dynamic = 0;
1891	  hi->ref_dynamic = 1;
1892	  if (hi->ref_regular
1893	      || hi->def_regular)
1894	    {
1895	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1896		return FALSE;
1897	    }
1898	}
1899
1900      /* Now set HI to H, so that the following code will set the
1901	 other fields correctly.  */
1902      hi = h;
1903    }
1904
1905  /* Check if HI is a warning symbol.  */
1906  if (hi->root.type == bfd_link_hash_warning)
1907    hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1908
1909  /* If there is a duplicate definition somewhere, then HI may not
1910     point to an indirect symbol.  We will have reported an error to
1911     the user in that case.  */
1912
1913  if (hi->root.type == bfd_link_hash_indirect)
1914    {
1915      struct elf_link_hash_entry *ht;
1916
1917      ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1918      (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1919
1920      /* A reference to the SHORTNAME symbol from a dynamic library
1921	 will be satisfied by the versioned symbol at runtime.  In
1922	 effect, we have a reference to the versioned symbol.  */
1923      ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1924      hi->dynamic_def |= ht->dynamic_def;
1925
1926      /* See if the new flags lead us to realize that the symbol must
1927	 be dynamic.  */
1928      if (! *dynsym)
1929	{
1930	  if (! dynamic)
1931	    {
1932	      if (! bfd_link_executable (info)
1933		  || hi->def_dynamic
1934		  || hi->ref_dynamic)
1935		*dynsym = TRUE;
1936	    }
1937	  else
1938	    {
1939	      if (hi->ref_regular)
1940		*dynsym = TRUE;
1941	    }
1942	}
1943    }
1944
1945  /* We also need to define an indirection from the nondefault version
1946     of the symbol.  */
1947
1948nondefault:
1949  len = strlen (name);
1950  shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1951  if (shortname == NULL)
1952    return FALSE;
1953  memcpy (shortname, name, shortlen);
1954  memcpy (shortname + shortlen, p + 1, len - shortlen);
1955
1956  /* Once again, merge with any existing symbol.  */
1957  type_change_ok = FALSE;
1958  size_change_ok = FALSE;
1959  tmp_sec = sec;
1960  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1961			      &hi, poldbfd, NULL, NULL, &skip, &override,
1962			      &type_change_ok, &size_change_ok, &matched))
1963    return FALSE;
1964
1965  if (skip)
1966    return TRUE;
1967
1968  if (override)
1969    {
1970      /* Here SHORTNAME is a versioned name, so we don't expect to see
1971	 the type of override we do in the case above unless it is
1972	 overridden by a versioned definition.  */
1973      if (hi->root.type != bfd_link_hash_defined
1974	  && hi->root.type != bfd_link_hash_defweak)
1975	_bfd_error_handler
1976	  /* xgettext:c-format */
1977	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1978	   abfd, shortname);
1979    }
1980  else
1981    {
1982      bh = &hi->root;
1983      if (! (_bfd_generic_link_add_one_symbol
1984	     (info, abfd, shortname, BSF_INDIRECT,
1985	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1986	return FALSE;
1987      hi = (struct elf_link_hash_entry *) bh;
1988
1989      /* If there is a duplicate definition somewhere, then HI may not
1990	 point to an indirect symbol.  We will have reported an error
1991	 to the user in that case.  */
1992
1993      if (hi->root.type == bfd_link_hash_indirect)
1994	{
1995	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1996	  h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1997	  hi->dynamic_def |= h->dynamic_def;
1998
1999	  /* See if the new flags lead us to realize that the symbol
2000	     must be dynamic.  */
2001	  if (! *dynsym)
2002	    {
2003	      if (! dynamic)
2004		{
2005		  if (! bfd_link_executable (info)
2006		      || hi->ref_dynamic)
2007		    *dynsym = TRUE;
2008		}
2009	      else
2010		{
2011		  if (hi->ref_regular)
2012		    *dynsym = TRUE;
2013		}
2014	    }
2015	}
2016    }
2017
2018  return TRUE;
2019}
2020
2021/* This routine is used to export all defined symbols into the dynamic
2022   symbol table.  It is called via elf_link_hash_traverse.  */
2023
2024static bfd_boolean
2025_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2026{
2027  struct elf_info_failed *eif = (struct elf_info_failed *) data;
2028
2029  /* Ignore indirect symbols.  These are added by the versioning code.  */
2030  if (h->root.type == bfd_link_hash_indirect)
2031    return TRUE;
2032
2033  /* Ignore this if we won't export it.  */
2034  if (!eif->info->export_dynamic && !h->dynamic)
2035    return TRUE;
2036
2037  if (h->dynindx == -1
2038      && (h->def_regular || h->ref_regular)
2039      && ! bfd_hide_sym_by_version (eif->info->version_info,
2040				    h->root.root.string))
2041    {
2042      if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2043	{
2044	  eif->failed = TRUE;
2045	  return FALSE;
2046	}
2047    }
2048
2049  return TRUE;
2050}
2051
2052/* Look through the symbols which are defined in other shared
2053   libraries and referenced here.  Update the list of version
2054   dependencies.  This will be put into the .gnu.version_r section.
2055   This function is called via elf_link_hash_traverse.  */
2056
2057static bfd_boolean
2058_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2059					 void *data)
2060{
2061  struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2062  Elf_Internal_Verneed *t;
2063  Elf_Internal_Vernaux *a;
2064  bfd_size_type amt;
2065
2066  /* We only care about symbols defined in shared objects with version
2067     information.  */
2068  if (!h->def_dynamic
2069      || h->def_regular
2070      || h->dynindx == -1
2071      || h->verinfo.verdef == NULL
2072      || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2073	  & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2074    return TRUE;
2075
2076  /* See if we already know about this version.  */
2077  for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2078       t != NULL;
2079       t = t->vn_nextref)
2080    {
2081      if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2082	continue;
2083
2084      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2085	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2086	  return TRUE;
2087
2088      break;
2089    }
2090
2091  /* This is a new version.  Add it to tree we are building.  */
2092
2093  if (t == NULL)
2094    {
2095      amt = sizeof *t;
2096      t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2097      if (t == NULL)
2098	{
2099	  rinfo->failed = TRUE;
2100	  return FALSE;
2101	}
2102
2103      t->vn_bfd = h->verinfo.verdef->vd_bfd;
2104      t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2105      elf_tdata (rinfo->info->output_bfd)->verref = t;
2106    }
2107
2108  amt = sizeof *a;
2109  a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2110  if (a == NULL)
2111    {
2112      rinfo->failed = TRUE;
2113      return FALSE;
2114    }
2115
2116  /* Note that we are copying a string pointer here, and testing it
2117     above.  If bfd_elf_string_from_elf_section is ever changed to
2118     discard the string data when low in memory, this will have to be
2119     fixed.  */
2120  a->vna_nodename = h->verinfo.verdef->vd_nodename;
2121
2122  a->vna_flags = h->verinfo.verdef->vd_flags;
2123  a->vna_nextptr = t->vn_auxptr;
2124
2125  h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2126  ++rinfo->vers;
2127
2128  a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2129
2130  t->vn_auxptr = a;
2131
2132  return TRUE;
2133}
2134
2135/* Figure out appropriate versions for all the symbols.  We may not
2136   have the version number script until we have read all of the input
2137   files, so until that point we don't know which symbols should be
2138   local.  This function is called via elf_link_hash_traverse.  */
2139
2140static bfd_boolean
2141_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2142{
2143  struct elf_info_failed *sinfo;
2144  struct bfd_link_info *info;
2145  const struct elf_backend_data *bed;
2146  struct elf_info_failed eif;
2147  char *p;
2148
2149  sinfo = (struct elf_info_failed *) data;
2150  info = sinfo->info;
2151
2152  /* Fix the symbol flags.  */
2153  eif.failed = FALSE;
2154  eif.info = info;
2155  if (! _bfd_elf_fix_symbol_flags (h, &eif))
2156    {
2157      if (eif.failed)
2158	sinfo->failed = TRUE;
2159      return FALSE;
2160    }
2161
2162  /* We only need version numbers for symbols defined in regular
2163     objects.  */
2164  if (!h->def_regular)
2165    return TRUE;
2166
2167  bed = get_elf_backend_data (info->output_bfd);
2168  p = strchr (h->root.root.string, ELF_VER_CHR);
2169  if (p != NULL && h->verinfo.vertree == NULL)
2170    {
2171      struct bfd_elf_version_tree *t;
2172
2173      ++p;
2174      if (*p == ELF_VER_CHR)
2175	++p;
2176
2177      /* If there is no version string, we can just return out.  */
2178      if (*p == '\0')
2179	return TRUE;
2180
2181      /* Look for the version.  If we find it, it is no longer weak.  */
2182      for (t = sinfo->info->version_info; t != NULL; t = t->next)
2183	{
2184	  if (strcmp (t->name, p) == 0)
2185	    {
2186	      size_t len;
2187	      char *alc;
2188	      struct bfd_elf_version_expr *d;
2189
2190	      len = p - h->root.root.string;
2191	      alc = (char *) bfd_malloc (len);
2192	      if (alc == NULL)
2193		{
2194		  sinfo->failed = TRUE;
2195		  return FALSE;
2196		}
2197	      memcpy (alc, h->root.root.string, len - 1);
2198	      alc[len - 1] = '\0';
2199	      if (alc[len - 2] == ELF_VER_CHR)
2200		alc[len - 2] = '\0';
2201
2202	      h->verinfo.vertree = t;
2203	      t->used = TRUE;
2204	      d = NULL;
2205
2206	      if (t->globals.list != NULL)
2207		d = (*t->match) (&t->globals, NULL, alc);
2208
2209	      /* See if there is anything to force this symbol to
2210		 local scope.  */
2211	      if (d == NULL && t->locals.list != NULL)
2212		{
2213		  d = (*t->match) (&t->locals, NULL, alc);
2214		  if (d != NULL
2215		      && h->dynindx != -1
2216		      && ! info->export_dynamic)
2217		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2218		}
2219
2220	      free (alc);
2221	      break;
2222	    }
2223	}
2224
2225      /* If we are building an application, we need to create a
2226	 version node for this version.  */
2227      if (t == NULL && bfd_link_executable (info))
2228	{
2229	  struct bfd_elf_version_tree **pp;
2230	  int version_index;
2231
2232	  /* If we aren't going to export this symbol, we don't need
2233	     to worry about it.  */
2234	  if (h->dynindx == -1)
2235	    return TRUE;
2236
2237	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2238							  sizeof *t);
2239	  if (t == NULL)
2240	    {
2241	      sinfo->failed = TRUE;
2242	      return FALSE;
2243	    }
2244
2245	  t->name = p;
2246	  t->name_indx = (unsigned int) -1;
2247	  t->used = TRUE;
2248
2249	  version_index = 1;
2250	  /* Don't count anonymous version tag.  */
2251	  if (sinfo->info->version_info != NULL
2252	      && sinfo->info->version_info->vernum == 0)
2253	    version_index = 0;
2254	  for (pp = &sinfo->info->version_info;
2255	       *pp != NULL;
2256	       pp = &(*pp)->next)
2257	    ++version_index;
2258	  t->vernum = version_index;
2259
2260	  *pp = t;
2261
2262	  h->verinfo.vertree = t;
2263	}
2264      else if (t == NULL)
2265	{
2266	  /* We could not find the version for a symbol when
2267	     generating a shared archive.  Return an error.  */
2268	  _bfd_error_handler
2269	    /* xgettext:c-format */
2270	    (_("%B: version node not found for symbol %s"),
2271	     info->output_bfd, h->root.root.string);
2272	  bfd_set_error (bfd_error_bad_value);
2273	  sinfo->failed = TRUE;
2274	  return FALSE;
2275	}
2276    }
2277
2278  /* If we don't have a version for this symbol, see if we can find
2279     something.  */
2280  if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2281    {
2282      bfd_boolean hide;
2283
2284      h->verinfo.vertree
2285	= bfd_find_version_for_sym (sinfo->info->version_info,
2286				    h->root.root.string, &hide);
2287      if (h->verinfo.vertree != NULL && hide)
2288	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2289    }
2290
2291  return TRUE;
2292}
2293
2294/* Read and swap the relocs from the section indicated by SHDR.  This
2295   may be either a REL or a RELA section.  The relocations are
2296   translated into RELA relocations and stored in INTERNAL_RELOCS,
2297   which should have already been allocated to contain enough space.
2298   The EXTERNAL_RELOCS are a buffer where the external form of the
2299   relocations should be stored.
2300
2301   Returns FALSE if something goes wrong.  */
2302
2303static bfd_boolean
2304elf_link_read_relocs_from_section (bfd *abfd,
2305				   asection *sec,
2306				   Elf_Internal_Shdr *shdr,
2307				   void *external_relocs,
2308				   Elf_Internal_Rela *internal_relocs)
2309{
2310  const struct elf_backend_data *bed;
2311  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2312  const bfd_byte *erela;
2313  const bfd_byte *erelaend;
2314  Elf_Internal_Rela *irela;
2315  Elf_Internal_Shdr *symtab_hdr;
2316  size_t nsyms;
2317
2318  /* Position ourselves at the start of the section.  */
2319  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2320    return FALSE;
2321
2322  /* Read the relocations.  */
2323  if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2324    return FALSE;
2325
2326  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2327  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2328
2329  bed = get_elf_backend_data (abfd);
2330
2331  /* Convert the external relocations to the internal format.  */
2332  if (shdr->sh_entsize == bed->s->sizeof_rel)
2333    swap_in = bed->s->swap_reloc_in;
2334  else if (shdr->sh_entsize == bed->s->sizeof_rela)
2335    swap_in = bed->s->swap_reloca_in;
2336  else
2337    {
2338      bfd_set_error (bfd_error_wrong_format);
2339      return FALSE;
2340    }
2341
2342  erela = (const bfd_byte *) external_relocs;
2343  erelaend = erela + shdr->sh_size;
2344  irela = internal_relocs;
2345  while (erela < erelaend)
2346    {
2347      bfd_vma r_symndx;
2348
2349      (*swap_in) (abfd, erela, irela);
2350      r_symndx = ELF32_R_SYM (irela->r_info);
2351      if (bed->s->arch_size == 64)
2352	r_symndx >>= 24;
2353      if (nsyms > 0)
2354	{
2355	  if ((size_t) r_symndx >= nsyms)
2356	    {
2357	      _bfd_error_handler
2358		/* xgettext:c-format */
2359		(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2360		   " for offset 0x%lx in section `%A'"),
2361		 abfd, sec,
2362		 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2363	      bfd_set_error (bfd_error_bad_value);
2364	      return FALSE;
2365	    }
2366	}
2367      else if (r_symndx != STN_UNDEF)
2368	{
2369	  _bfd_error_handler
2370	    /* xgettext:c-format */
2371	    (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2372	       " when the object file has no symbol table"),
2373	     abfd, sec,
2374	     (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2375	  bfd_set_error (bfd_error_bad_value);
2376	  return FALSE;
2377	}
2378      irela += bed->s->int_rels_per_ext_rel;
2379      erela += shdr->sh_entsize;
2380    }
2381
2382  return TRUE;
2383}
2384
2385/* Read and swap the relocs for a section O.  They may have been
2386   cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2387   not NULL, they are used as buffers to read into.  They are known to
2388   be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2389   the return value is allocated using either malloc or bfd_alloc,
2390   according to the KEEP_MEMORY argument.  If O has two relocation
2391   sections (both REL and RELA relocations), then the REL_HDR
2392   relocations will appear first in INTERNAL_RELOCS, followed by the
2393   RELA_HDR relocations.  */
2394
2395Elf_Internal_Rela *
2396_bfd_elf_link_read_relocs (bfd *abfd,
2397			   asection *o,
2398			   void *external_relocs,
2399			   Elf_Internal_Rela *internal_relocs,
2400			   bfd_boolean keep_memory)
2401{
2402  void *alloc1 = NULL;
2403  Elf_Internal_Rela *alloc2 = NULL;
2404  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2405  struct bfd_elf_section_data *esdo = elf_section_data (o);
2406  Elf_Internal_Rela *internal_rela_relocs;
2407
2408  if (esdo->relocs != NULL)
2409    return esdo->relocs;
2410
2411  if (o->reloc_count == 0)
2412    return NULL;
2413
2414  if (internal_relocs == NULL)
2415    {
2416      bfd_size_type size;
2417
2418      size = o->reloc_count;
2419      size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2420      if (keep_memory)
2421	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2422      else
2423	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2424      if (internal_relocs == NULL)
2425	goto error_return;
2426    }
2427
2428  if (external_relocs == NULL)
2429    {
2430      bfd_size_type size = 0;
2431
2432      if (esdo->rel.hdr)
2433	size += esdo->rel.hdr->sh_size;
2434      if (esdo->rela.hdr)
2435	size += esdo->rela.hdr->sh_size;
2436
2437      alloc1 = bfd_malloc (size);
2438      if (alloc1 == NULL)
2439	goto error_return;
2440      external_relocs = alloc1;
2441    }
2442
2443  internal_rela_relocs = internal_relocs;
2444  if (esdo->rel.hdr)
2445    {
2446      if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2447					      external_relocs,
2448					      internal_relocs))
2449	goto error_return;
2450      external_relocs = (((bfd_byte *) external_relocs)
2451			 + esdo->rel.hdr->sh_size);
2452      internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2453			       * bed->s->int_rels_per_ext_rel);
2454    }
2455
2456  if (esdo->rela.hdr
2457      && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2458					      external_relocs,
2459					      internal_rela_relocs)))
2460    goto error_return;
2461
2462  /* Cache the results for next time, if we can.  */
2463  if (keep_memory)
2464    esdo->relocs = internal_relocs;
2465
2466  if (alloc1 != NULL)
2467    free (alloc1);
2468
2469  /* Don't free alloc2, since if it was allocated we are passing it
2470     back (under the name of internal_relocs).  */
2471
2472  return internal_relocs;
2473
2474 error_return:
2475  if (alloc1 != NULL)
2476    free (alloc1);
2477  if (alloc2 != NULL)
2478    {
2479      if (keep_memory)
2480	bfd_release (abfd, alloc2);
2481      else
2482	free (alloc2);
2483    }
2484  return NULL;
2485}
2486
2487/* Compute the size of, and allocate space for, REL_HDR which is the
2488   section header for a section containing relocations for O.  */
2489
2490static bfd_boolean
2491_bfd_elf_link_size_reloc_section (bfd *abfd,
2492				  struct bfd_elf_section_reloc_data *reldata)
2493{
2494  Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2495
2496  /* That allows us to calculate the size of the section.  */
2497  rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2498
2499  /* The contents field must last into write_object_contents, so we
2500     allocate it with bfd_alloc rather than malloc.  Also since we
2501     cannot be sure that the contents will actually be filled in,
2502     we zero the allocated space.  */
2503  rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2504  if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2505    return FALSE;
2506
2507  if (reldata->hashes == NULL && reldata->count)
2508    {
2509      struct elf_link_hash_entry **p;
2510
2511      p = ((struct elf_link_hash_entry **)
2512	   bfd_zmalloc (reldata->count * sizeof (*p)));
2513      if (p == NULL)
2514	return FALSE;
2515
2516      reldata->hashes = p;
2517    }
2518
2519  return TRUE;
2520}
2521
2522/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2523   originated from the section given by INPUT_REL_HDR) to the
2524   OUTPUT_BFD.  */
2525
2526bfd_boolean
2527_bfd_elf_link_output_relocs (bfd *output_bfd,
2528			     asection *input_section,
2529			     Elf_Internal_Shdr *input_rel_hdr,
2530			     Elf_Internal_Rela *internal_relocs,
2531			     struct elf_link_hash_entry **rel_hash
2532			       ATTRIBUTE_UNUSED)
2533{
2534  Elf_Internal_Rela *irela;
2535  Elf_Internal_Rela *irelaend;
2536  bfd_byte *erel;
2537  struct bfd_elf_section_reloc_data *output_reldata;
2538  asection *output_section;
2539  const struct elf_backend_data *bed;
2540  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2541  struct bfd_elf_section_data *esdo;
2542
2543  output_section = input_section->output_section;
2544
2545  bed = get_elf_backend_data (output_bfd);
2546  esdo = elf_section_data (output_section);
2547  if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2548    {
2549      output_reldata = &esdo->rel;
2550      swap_out = bed->s->swap_reloc_out;
2551    }
2552  else if (esdo->rela.hdr
2553	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2554    {
2555      output_reldata = &esdo->rela;
2556      swap_out = bed->s->swap_reloca_out;
2557    }
2558  else
2559    {
2560      _bfd_error_handler
2561	/* xgettext:c-format */
2562	(_("%B: relocation size mismatch in %B section %A"),
2563	 output_bfd, input_section->owner, input_section);
2564      bfd_set_error (bfd_error_wrong_format);
2565      return FALSE;
2566    }
2567
2568  erel = output_reldata->hdr->contents;
2569  erel += output_reldata->count * input_rel_hdr->sh_entsize;
2570  irela = internal_relocs;
2571  irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2572		      * bed->s->int_rels_per_ext_rel);
2573  while (irela < irelaend)
2574    {
2575      (*swap_out) (output_bfd, irela, erel);
2576      irela += bed->s->int_rels_per_ext_rel;
2577      erel += input_rel_hdr->sh_entsize;
2578    }
2579
2580  /* Bump the counter, so that we know where to add the next set of
2581     relocations.  */
2582  output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2583
2584  return TRUE;
2585}
2586
2587/* Make weak undefined symbols in PIE dynamic.  */
2588
2589bfd_boolean
2590_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2591				 struct elf_link_hash_entry *h)
2592{
2593  if (bfd_link_pie (info)
2594      && h->dynindx == -1
2595      && h->root.type == bfd_link_hash_undefweak)
2596    return bfd_elf_link_record_dynamic_symbol (info, h);
2597
2598  return TRUE;
2599}
2600
2601/* Fix up the flags for a symbol.  This handles various cases which
2602   can only be fixed after all the input files are seen.  This is
2603   currently called by both adjust_dynamic_symbol and
2604   assign_sym_version, which is unnecessary but perhaps more robust in
2605   the face of future changes.  */
2606
2607static bfd_boolean
2608_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2609			   struct elf_info_failed *eif)
2610{
2611  const struct elf_backend_data *bed;
2612
2613  /* If this symbol was mentioned in a non-ELF file, try to set
2614     DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2615     permit a non-ELF file to correctly refer to a symbol defined in
2616     an ELF dynamic object.  */
2617  if (h->non_elf)
2618    {
2619      while (h->root.type == bfd_link_hash_indirect)
2620	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2621
2622      if (h->root.type != bfd_link_hash_defined
2623	  && h->root.type != bfd_link_hash_defweak)
2624	{
2625	  h->ref_regular = 1;
2626	  h->ref_regular_nonweak = 1;
2627	}
2628      else
2629	{
2630	  if (h->root.u.def.section->owner != NULL
2631	      && (bfd_get_flavour (h->root.u.def.section->owner)
2632		  == bfd_target_elf_flavour))
2633	    {
2634	      h->ref_regular = 1;
2635	      h->ref_regular_nonweak = 1;
2636	    }
2637	  else
2638	    h->def_regular = 1;
2639	}
2640
2641      if (h->dynindx == -1
2642	  && (h->def_dynamic
2643	      || h->ref_dynamic))
2644	{
2645	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2646	    {
2647	      eif->failed = TRUE;
2648	      return FALSE;
2649	    }
2650	}
2651    }
2652  else
2653    {
2654      /* Unfortunately, NON_ELF is only correct if the symbol
2655	 was first seen in a non-ELF file.  Fortunately, if the symbol
2656	 was first seen in an ELF file, we're probably OK unless the
2657	 symbol was defined in a non-ELF file.  Catch that case here.
2658	 FIXME: We're still in trouble if the symbol was first seen in
2659	 a dynamic object, and then later in a non-ELF regular object.  */
2660      if ((h->root.type == bfd_link_hash_defined
2661	   || h->root.type == bfd_link_hash_defweak)
2662	  && !h->def_regular
2663	  && (h->root.u.def.section->owner != NULL
2664	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2665		 != bfd_target_elf_flavour)
2666	      : (bfd_is_abs_section (h->root.u.def.section)
2667		 && !h->def_dynamic)))
2668	h->def_regular = 1;
2669    }
2670
2671  /* Backend specific symbol fixup.  */
2672  bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2673  if (bed->elf_backend_fixup_symbol
2674      && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2675    return FALSE;
2676
2677  /* If this is a final link, and the symbol was defined as a common
2678     symbol in a regular object file, and there was no definition in
2679     any dynamic object, then the linker will have allocated space for
2680     the symbol in a common section but the DEF_REGULAR
2681     flag will not have been set.  */
2682  if (h->root.type == bfd_link_hash_defined
2683      && !h->def_regular
2684      && h->ref_regular
2685      && !h->def_dynamic
2686      && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2687    h->def_regular = 1;
2688
2689  /* If a weak undefined symbol has non-default visibility, we also
2690     hide it from the dynamic linker.  */
2691  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2692      && h->root.type == bfd_link_hash_undefweak)
2693    (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2694
2695  /* A hidden versioned symbol in executable should be forced local if
2696     it is is locally defined, not referenced by shared library and not
2697     exported.  */
2698  else if (bfd_link_executable (eif->info)
2699	   && h->versioned == versioned_hidden
2700	   && !eif->info->export_dynamic
2701	   && !h->dynamic
2702	   && !h->ref_dynamic
2703	   && h->def_regular)
2704    (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2705
2706  /* If -Bsymbolic was used (which means to bind references to global
2707     symbols to the definition within the shared object), and this
2708     symbol was defined in a regular object, then it actually doesn't
2709     need a PLT entry.  Likewise, if the symbol has non-default
2710     visibility.  If the symbol has hidden or internal visibility, we
2711     will force it local.  */
2712  else if (h->needs_plt
2713	   && bfd_link_pic (eif->info)
2714	   && is_elf_hash_table (eif->info->hash)
2715	   && (SYMBOLIC_BIND (eif->info, h)
2716	       || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2717	   && h->def_regular)
2718    {
2719      bfd_boolean force_local;
2720
2721      force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2722		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2723      (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2724    }
2725
2726  /* If this is a weak defined symbol in a dynamic object, and we know
2727     the real definition in the dynamic object, copy interesting flags
2728     over to the real definition.  */
2729  if (h->u.weakdef != NULL)
2730    {
2731      /* If the real definition is defined by a regular object file,
2732	 don't do anything special.  See the longer description in
2733	 _bfd_elf_adjust_dynamic_symbol, below.  */
2734      if (h->u.weakdef->def_regular)
2735	h->u.weakdef = NULL;
2736      else
2737	{
2738	  struct elf_link_hash_entry *weakdef = h->u.weakdef;
2739
2740	  while (h->root.type == bfd_link_hash_indirect)
2741	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2742
2743	  BFD_ASSERT (h->root.type == bfd_link_hash_defined
2744		      || h->root.type == bfd_link_hash_defweak);
2745	  BFD_ASSERT (weakdef->def_dynamic);
2746	  BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2747		      || weakdef->root.type == bfd_link_hash_defweak);
2748	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2749	}
2750    }
2751
2752  return TRUE;
2753}
2754
2755/* Make the backend pick a good value for a dynamic symbol.  This is
2756   called via elf_link_hash_traverse, and also calls itself
2757   recursively.  */
2758
2759static bfd_boolean
2760_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2761{
2762  struct elf_info_failed *eif = (struct elf_info_failed *) data;
2763  bfd *dynobj;
2764  const struct elf_backend_data *bed;
2765
2766  if (! is_elf_hash_table (eif->info->hash))
2767    return FALSE;
2768
2769  /* Ignore indirect symbols.  These are added by the versioning code.  */
2770  if (h->root.type == bfd_link_hash_indirect)
2771    return TRUE;
2772
2773  /* Fix the symbol flags.  */
2774  if (! _bfd_elf_fix_symbol_flags (h, eif))
2775    return FALSE;
2776
2777  /* If this symbol does not require a PLT entry, and it is not
2778     defined by a dynamic object, or is not referenced by a regular
2779     object, ignore it.  We do have to handle a weak defined symbol,
2780     even if no regular object refers to it, if we decided to add it
2781     to the dynamic symbol table.  FIXME: Do we normally need to worry
2782     about symbols which are defined by one dynamic object and
2783     referenced by another one?  */
2784  if (!h->needs_plt
2785      && h->type != STT_GNU_IFUNC
2786      && (h->def_regular
2787	  || !h->def_dynamic
2788	  || (!h->ref_regular
2789	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2790    {
2791      h->plt = elf_hash_table (eif->info)->init_plt_offset;
2792      return TRUE;
2793    }
2794
2795  /* If we've already adjusted this symbol, don't do it again.  This
2796     can happen via a recursive call.  */
2797  if (h->dynamic_adjusted)
2798    return TRUE;
2799
2800  /* Don't look at this symbol again.  Note that we must set this
2801     after checking the above conditions, because we may look at a
2802     symbol once, decide not to do anything, and then get called
2803     recursively later after REF_REGULAR is set below.  */
2804  h->dynamic_adjusted = 1;
2805
2806  /* If this is a weak definition, and we know a real definition, and
2807     the real symbol is not itself defined by a regular object file,
2808     then get a good value for the real definition.  We handle the
2809     real symbol first, for the convenience of the backend routine.
2810
2811     Note that there is a confusing case here.  If the real definition
2812     is defined by a regular object file, we don't get the real symbol
2813     from the dynamic object, but we do get the weak symbol.  If the
2814     processor backend uses a COPY reloc, then if some routine in the
2815     dynamic object changes the real symbol, we will not see that
2816     change in the corresponding weak symbol.  This is the way other
2817     ELF linkers work as well, and seems to be a result of the shared
2818     library model.
2819
2820     I will clarify this issue.  Most SVR4 shared libraries define the
2821     variable _timezone and define timezone as a weak synonym.  The
2822     tzset call changes _timezone.  If you write
2823       extern int timezone;
2824       int _timezone = 5;
2825       int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2826     you might expect that, since timezone is a synonym for _timezone,
2827     the same number will print both times.  However, if the processor
2828     backend uses a COPY reloc, then actually timezone will be copied
2829     into your process image, and, since you define _timezone
2830     yourself, _timezone will not.  Thus timezone and _timezone will
2831     wind up at different memory locations.  The tzset call will set
2832     _timezone, leaving timezone unchanged.  */
2833
2834  if (h->u.weakdef != NULL)
2835    {
2836      /* If we get to this point, there is an implicit reference to
2837	 H->U.WEAKDEF by a regular object file via the weak symbol H.  */
2838      h->u.weakdef->ref_regular = 1;
2839
2840      /* Ensure that the backend adjust_dynamic_symbol function sees
2841	 H->U.WEAKDEF before H by recursively calling ourselves.  */
2842      if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2843	return FALSE;
2844    }
2845
2846  /* If a symbol has no type and no size and does not require a PLT
2847     entry, then we are probably about to do the wrong thing here: we
2848     are probably going to create a COPY reloc for an empty object.
2849     This case can arise when a shared object is built with assembly
2850     code, and the assembly code fails to set the symbol type.  */
2851  if (h->size == 0
2852      && h->type == STT_NOTYPE
2853      && !h->needs_plt)
2854    _bfd_error_handler
2855      (_("warning: type and size of dynamic symbol `%s' are not defined"),
2856       h->root.root.string);
2857
2858  dynobj = elf_hash_table (eif->info)->dynobj;
2859  bed = get_elf_backend_data (dynobj);
2860
2861  if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2862    {
2863      eif->failed = TRUE;
2864      return FALSE;
2865    }
2866
2867  return TRUE;
2868}
2869
2870/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2871   DYNBSS.  */
2872
2873bfd_boolean
2874_bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2875			      struct elf_link_hash_entry *h,
2876			      asection *dynbss)
2877{
2878  unsigned int power_of_two;
2879  bfd_vma mask;
2880  asection *sec = h->root.u.def.section;
2881
2882  /* The section aligment of definition is the maximum alignment
2883     requirement of symbols defined in the section.  Since we don't
2884     know the symbol alignment requirement, we start with the
2885     maximum alignment and check low bits of the symbol address
2886     for the minimum alignment.  */
2887  power_of_two = bfd_get_section_alignment (sec->owner, sec);
2888  mask = ((bfd_vma) 1 << power_of_two) - 1;
2889  while ((h->root.u.def.value & mask) != 0)
2890    {
2891       mask >>= 1;
2892       --power_of_two;
2893    }
2894
2895  if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2896						dynbss))
2897    {
2898      /* Adjust the section alignment if needed.  */
2899      if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2900				       power_of_two))
2901	return FALSE;
2902    }
2903
2904  /* We make sure that the symbol will be aligned properly.  */
2905  dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2906
2907  /* Define the symbol as being at this point in DYNBSS.  */
2908  h->root.u.def.section = dynbss;
2909  h->root.u.def.value = dynbss->size;
2910
2911  /* Increment the size of DYNBSS to make room for the symbol.  */
2912  dynbss->size += h->size;
2913
2914  /* No error if extern_protected_data is true.  */
2915  if (h->protected_def
2916      && (!info->extern_protected_data
2917	  || (info->extern_protected_data < 0
2918	      && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2919    info->callbacks->einfo
2920      (_("%P: copy reloc against protected `%T' is dangerous\n"),
2921       h->root.root.string);
2922
2923  return TRUE;
2924}
2925
2926/* Adjust all external symbols pointing into SEC_MERGE sections
2927   to reflect the object merging within the sections.  */
2928
2929static bfd_boolean
2930_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2931{
2932  asection *sec;
2933
2934  if ((h->root.type == bfd_link_hash_defined
2935       || h->root.type == bfd_link_hash_defweak)
2936      && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2937      && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2938    {
2939      bfd *output_bfd = (bfd *) data;
2940
2941      h->root.u.def.value =
2942	_bfd_merged_section_offset (output_bfd,
2943				    &h->root.u.def.section,
2944				    elf_section_data (sec)->sec_info,
2945				    h->root.u.def.value);
2946    }
2947
2948  return TRUE;
2949}
2950
2951/* Returns false if the symbol referred to by H should be considered
2952   to resolve local to the current module, and true if it should be
2953   considered to bind dynamically.  */
2954
2955bfd_boolean
2956_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2957			   struct bfd_link_info *info,
2958			   bfd_boolean not_local_protected)
2959{
2960  bfd_boolean binding_stays_local_p;
2961  const struct elf_backend_data *bed;
2962  struct elf_link_hash_table *hash_table;
2963
2964  if (h == NULL)
2965    return FALSE;
2966
2967  while (h->root.type == bfd_link_hash_indirect
2968	 || h->root.type == bfd_link_hash_warning)
2969    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2970
2971  /* If it was forced local, then clearly it's not dynamic.  */
2972  if (h->dynindx == -1)
2973    return FALSE;
2974  if (h->forced_local)
2975    return FALSE;
2976
2977  /* Identify the cases where name binding rules say that a
2978     visible symbol resolves locally.  */
2979  binding_stays_local_p = (bfd_link_executable (info)
2980			   || SYMBOLIC_BIND (info, h));
2981
2982  switch (ELF_ST_VISIBILITY (h->other))
2983    {
2984    case STV_INTERNAL:
2985    case STV_HIDDEN:
2986      return FALSE;
2987
2988    case STV_PROTECTED:
2989      hash_table = elf_hash_table (info);
2990      if (!is_elf_hash_table (hash_table))
2991	return FALSE;
2992
2993      bed = get_elf_backend_data (hash_table->dynobj);
2994
2995      /* Proper resolution for function pointer equality may require
2996	 that these symbols perhaps be resolved dynamically, even though
2997	 we should be resolving them to the current module.  */
2998      if (!not_local_protected || !bed->is_function_type (h->type))
2999	binding_stays_local_p = TRUE;
3000      break;
3001
3002    default:
3003      break;
3004    }
3005
3006  /* If it isn't defined locally, then clearly it's dynamic.  */
3007  if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3008    return TRUE;
3009
3010  /* Otherwise, the symbol is dynamic if binding rules don't tell
3011     us that it remains local.  */
3012  return !binding_stays_local_p;
3013}
3014
3015/* Return true if the symbol referred to by H should be considered
3016   to resolve local to the current module, and false otherwise.  Differs
3017   from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3018   undefined symbols.  The two functions are virtually identical except
3019   for the place where forced_local and dynindx == -1 are tested.  If
3020   either of those tests are true, _bfd_elf_dynamic_symbol_p will say
3021   the symbol is local, while _bfd_elf_symbol_refs_local_p will say
3022   the symbol is local only for defined symbols.
3023   It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3024   !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3025   treatment of undefined weak symbols.  For those that do not make
3026   undefined weak symbols dynamic, both functions may return false.  */
3027
3028bfd_boolean
3029_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3030			      struct bfd_link_info *info,
3031			      bfd_boolean local_protected)
3032{
3033  const struct elf_backend_data *bed;
3034  struct elf_link_hash_table *hash_table;
3035
3036  /* If it's a local sym, of course we resolve locally.  */
3037  if (h == NULL)
3038    return TRUE;
3039
3040  /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
3041  if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3042      || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3043    return TRUE;
3044
3045  /* Common symbols that become definitions don't get the DEF_REGULAR
3046     flag set, so test it first, and don't bail out.  */
3047  if (ELF_COMMON_DEF_P (h))
3048    /* Do nothing.  */;
3049  /* If we don't have a definition in a regular file, then we can't
3050     resolve locally.  The sym is either undefined or dynamic.  */
3051  else if (!h->def_regular)
3052    return FALSE;
3053
3054  /* Forced local symbols resolve locally.  */
3055  if (h->forced_local)
3056    return TRUE;
3057
3058  /* As do non-dynamic symbols.  */
3059  if (h->dynindx == -1)
3060    return TRUE;
3061
3062  /* At this point, we know the symbol is defined and dynamic.  In an
3063     executable it must resolve locally, likewise when building symbolic
3064     shared libraries.  */
3065  if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3066    return TRUE;
3067
3068  /* Now deal with defined dynamic symbols in shared libraries.  Ones
3069     with default visibility might not resolve locally.  */
3070  if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3071    return FALSE;
3072
3073  hash_table = elf_hash_table (info);
3074  if (!is_elf_hash_table (hash_table))
3075    return TRUE;
3076
3077  bed = get_elf_backend_data (hash_table->dynobj);
3078
3079  /* If extern_protected_data is false, STV_PROTECTED non-function
3080     symbols are local.  */
3081  if ((!info->extern_protected_data
3082       || (info->extern_protected_data < 0
3083	   && !bed->extern_protected_data))
3084      && !bed->is_function_type (h->type))
3085    return TRUE;
3086
3087  /* Function pointer equality tests may require that STV_PROTECTED
3088     symbols be treated as dynamic symbols.  If the address of a
3089     function not defined in an executable is set to that function's
3090     plt entry in the executable, then the address of the function in
3091     a shared library must also be the plt entry in the executable.  */
3092  return local_protected;
3093}
3094
3095/* Caches some TLS segment info, and ensures that the TLS segment vma is
3096   aligned.  Returns the first TLS output section.  */
3097
3098struct bfd_section *
3099_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3100{
3101  struct bfd_section *sec, *tls;
3102  unsigned int align = 0;
3103
3104  for (sec = obfd->sections; sec != NULL; sec = sec->next)
3105    if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3106      break;
3107  tls = sec;
3108
3109  for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3110    if (sec->alignment_power > align)
3111      align = sec->alignment_power;
3112
3113  elf_hash_table (info)->tls_sec = tls;
3114
3115  /* Ensure the alignment of the first section is the largest alignment,
3116     so that the tls segment starts aligned.  */
3117  if (tls != NULL)
3118    tls->alignment_power = align;
3119
3120  return tls;
3121}
3122
3123/* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
3124static bfd_boolean
3125is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3126				  Elf_Internal_Sym *sym)
3127{
3128  const struct elf_backend_data *bed;
3129
3130  /* Local symbols do not count, but target specific ones might.  */
3131  if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3132      && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3133    return FALSE;
3134
3135  bed = get_elf_backend_data (abfd);
3136  /* Function symbols do not count.  */
3137  if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3138    return FALSE;
3139
3140  /* If the section is undefined, then so is the symbol.  */
3141  if (sym->st_shndx == SHN_UNDEF)
3142    return FALSE;
3143
3144  /* If the symbol is defined in the common section, then
3145     it is a common definition and so does not count.  */
3146  if (bed->common_definition (sym))
3147    return FALSE;
3148
3149  /* If the symbol is in a target specific section then we
3150     must rely upon the backend to tell us what it is.  */
3151  if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3152    /* FIXME - this function is not coded yet:
3153
3154       return _bfd_is_global_symbol_definition (abfd, sym);
3155
3156       Instead for now assume that the definition is not global,
3157       Even if this is wrong, at least the linker will behave
3158       in the same way that it used to do.  */
3159    return FALSE;
3160
3161  return TRUE;
3162}
3163
3164/* Search the symbol table of the archive element of the archive ABFD
3165   whose archive map contains a mention of SYMDEF, and determine if
3166   the symbol is defined in this element.  */
3167static bfd_boolean
3168elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3169{
3170  Elf_Internal_Shdr * hdr;
3171  size_t symcount;
3172  size_t extsymcount;
3173  size_t extsymoff;
3174  Elf_Internal_Sym *isymbuf;
3175  Elf_Internal_Sym *isym;
3176  Elf_Internal_Sym *isymend;
3177  bfd_boolean result;
3178
3179  abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3180  if (abfd == NULL)
3181    return FALSE;
3182
3183  if (! bfd_check_format (abfd, bfd_object))
3184    return FALSE;
3185
3186  /* Select the appropriate symbol table.  If we don't know if the
3187     object file is an IR object, give linker LTO plugin a chance to
3188     get the correct symbol table.  */
3189  if (abfd->plugin_format == bfd_plugin_yes
3190#if BFD_SUPPORTS_PLUGINS
3191      || (abfd->plugin_format == bfd_plugin_unknown
3192	  && bfd_link_plugin_object_p (abfd))
3193#endif
3194      )
3195    {
3196      /* Use the IR symbol table if the object has been claimed by
3197	 plugin.  */
3198      abfd = abfd->plugin_dummy_bfd;
3199      hdr = &elf_tdata (abfd)->symtab_hdr;
3200    }
3201  else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3202    hdr = &elf_tdata (abfd)->symtab_hdr;
3203  else
3204    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3205
3206  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3207
3208  /* The sh_info field of the symtab header tells us where the
3209     external symbols start.  We don't care about the local symbols.  */
3210  if (elf_bad_symtab (abfd))
3211    {
3212      extsymcount = symcount;
3213      extsymoff = 0;
3214    }
3215  else
3216    {
3217      extsymcount = symcount - hdr->sh_info;
3218      extsymoff = hdr->sh_info;
3219    }
3220
3221  if (extsymcount == 0)
3222    return FALSE;
3223
3224  /* Read in the symbol table.  */
3225  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3226				  NULL, NULL, NULL);
3227  if (isymbuf == NULL)
3228    return FALSE;
3229
3230  /* Scan the symbol table looking for SYMDEF.  */
3231  result = FALSE;
3232  for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3233    {
3234      const char *name;
3235
3236      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3237					      isym->st_name);
3238      if (name == NULL)
3239	break;
3240
3241      if (strcmp (name, symdef->name) == 0)
3242	{
3243	  result = is_global_data_symbol_definition (abfd, isym);
3244	  break;
3245	}
3246    }
3247
3248  free (isymbuf);
3249
3250  return result;
3251}
3252
3253/* Add an entry to the .dynamic table.  */
3254
3255bfd_boolean
3256_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3257			    bfd_vma tag,
3258			    bfd_vma val)
3259{
3260  struct elf_link_hash_table *hash_table;
3261  const struct elf_backend_data *bed;
3262  asection *s;
3263  bfd_size_type newsize;
3264  bfd_byte *newcontents;
3265  Elf_Internal_Dyn dyn;
3266
3267  hash_table = elf_hash_table (info);
3268  if (! is_elf_hash_table (hash_table))
3269    return FALSE;
3270
3271  bed = get_elf_backend_data (hash_table->dynobj);
3272  s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3273  BFD_ASSERT (s != NULL);
3274
3275  newsize = s->size + bed->s->sizeof_dyn;
3276  newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3277  if (newcontents == NULL)
3278    return FALSE;
3279
3280  dyn.d_tag = tag;
3281  dyn.d_un.d_val = val;
3282  bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3283
3284  s->size = newsize;
3285  s->contents = newcontents;
3286
3287  return TRUE;
3288}
3289
3290/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3291   otherwise just check whether one already exists.  Returns -1 on error,
3292   1 if a DT_NEEDED tag already exists, and 0 on success.  */
3293
3294static int
3295elf_add_dt_needed_tag (bfd *abfd,
3296		       struct bfd_link_info *info,
3297		       const char *soname,
3298		       bfd_boolean do_it)
3299{
3300  struct elf_link_hash_table *hash_table;
3301  size_t strindex;
3302
3303  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3304    return -1;
3305
3306  hash_table = elf_hash_table (info);
3307  strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3308  if (strindex == (size_t) -1)
3309    return -1;
3310
3311  if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3312    {
3313      asection *sdyn;
3314      const struct elf_backend_data *bed;
3315      bfd_byte *extdyn;
3316
3317      bed = get_elf_backend_data (hash_table->dynobj);
3318      sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3319      if (sdyn != NULL)
3320	for (extdyn = sdyn->contents;
3321	     extdyn < sdyn->contents + sdyn->size;
3322	     extdyn += bed->s->sizeof_dyn)
3323	  {
3324	    Elf_Internal_Dyn dyn;
3325
3326	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3327	    if (dyn.d_tag == DT_NEEDED
3328		&& dyn.d_un.d_val == strindex)
3329	      {
3330		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3331		return 1;
3332	      }
3333	  }
3334    }
3335
3336  if (do_it)
3337    {
3338      if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3339	return -1;
3340
3341      if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3342	return -1;
3343    }
3344  else
3345    /* We were just checking for existence of the tag.  */
3346    _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3347
3348  return 0;
3349}
3350
3351/* Return true if SONAME is on the needed list between NEEDED and STOP
3352   (or the end of list if STOP is NULL), and needed by a library that
3353   will be loaded.  */
3354
3355static bfd_boolean
3356on_needed_list (const char *soname,
3357		struct bfd_link_needed_list *needed,
3358		struct bfd_link_needed_list *stop)
3359{
3360  struct bfd_link_needed_list *look;
3361  for (look = needed; look != stop; look = look->next)
3362    if (strcmp (soname, look->name) == 0
3363	&& ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3364	    /* If needed by a library that itself is not directly
3365	       needed, recursively check whether that library is
3366	       indirectly needed.  Since we add DT_NEEDED entries to
3367	       the end of the list, library dependencies appear after
3368	       the library.  Therefore search prior to the current
3369	       LOOK, preventing possible infinite recursion.  */
3370	    || on_needed_list (elf_dt_name (look->by), needed, look)))
3371      return TRUE;
3372
3373  return FALSE;
3374}
3375
3376/* Sort symbol by value, section, and size.  */
3377static int
3378elf_sort_symbol (const void *arg1, const void *arg2)
3379{
3380  const struct elf_link_hash_entry *h1;
3381  const struct elf_link_hash_entry *h2;
3382  bfd_signed_vma vdiff;
3383
3384  h1 = *(const struct elf_link_hash_entry **) arg1;
3385  h2 = *(const struct elf_link_hash_entry **) arg2;
3386  vdiff = h1->root.u.def.value - h2->root.u.def.value;
3387  if (vdiff != 0)
3388    return vdiff > 0 ? 1 : -1;
3389  else
3390    {
3391      int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3392      if (sdiff != 0)
3393	return sdiff > 0 ? 1 : -1;
3394    }
3395  vdiff = h1->size - h2->size;
3396  return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3397}
3398
3399/* This function is used to adjust offsets into .dynstr for
3400   dynamic symbols.  This is called via elf_link_hash_traverse.  */
3401
3402static bfd_boolean
3403elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3404{
3405  struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3406
3407  if (h->dynindx != -1)
3408    h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3409  return TRUE;
3410}
3411
3412/* Assign string offsets in .dynstr, update all structures referencing
3413   them.  */
3414
3415static bfd_boolean
3416elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3417{
3418  struct elf_link_hash_table *hash_table = elf_hash_table (info);
3419  struct elf_link_local_dynamic_entry *entry;
3420  struct elf_strtab_hash *dynstr = hash_table->dynstr;
3421  bfd *dynobj = hash_table->dynobj;
3422  asection *sdyn;
3423  bfd_size_type size;
3424  const struct elf_backend_data *bed;
3425  bfd_byte *extdyn;
3426
3427  _bfd_elf_strtab_finalize (dynstr);
3428  size = _bfd_elf_strtab_size (dynstr);
3429
3430  bed = get_elf_backend_data (dynobj);
3431  sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3432  BFD_ASSERT (sdyn != NULL);
3433
3434  /* Update all .dynamic entries referencing .dynstr strings.  */
3435  for (extdyn = sdyn->contents;
3436       extdyn < sdyn->contents + sdyn->size;
3437       extdyn += bed->s->sizeof_dyn)
3438    {
3439      Elf_Internal_Dyn dyn;
3440
3441      bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3442      switch (dyn.d_tag)
3443	{
3444	case DT_STRSZ:
3445	  dyn.d_un.d_val = size;
3446	  break;
3447	case DT_NEEDED:
3448	case DT_SONAME:
3449	case DT_RPATH:
3450	case DT_RUNPATH:
3451	case DT_FILTER:
3452	case DT_AUXILIARY:
3453	case DT_AUDIT:
3454	case DT_DEPAUDIT:
3455	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3456	  break;
3457	default:
3458	  continue;
3459	}
3460      bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3461    }
3462
3463  /* Now update local dynamic symbols.  */
3464  for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3465    entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3466						  entry->isym.st_name);
3467
3468  /* And the rest of dynamic symbols.  */
3469  elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3470
3471  /* Adjust version definitions.  */
3472  if (elf_tdata (output_bfd)->cverdefs)
3473    {
3474      asection *s;
3475      bfd_byte *p;
3476      size_t i;
3477      Elf_Internal_Verdef def;
3478      Elf_Internal_Verdaux defaux;
3479
3480      s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3481      p = s->contents;
3482      do
3483	{
3484	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3485				   &def);
3486	  p += sizeof (Elf_External_Verdef);
3487	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3488	    continue;
3489	  for (i = 0; i < def.vd_cnt; ++i)
3490	    {
3491	      _bfd_elf_swap_verdaux_in (output_bfd,
3492					(Elf_External_Verdaux *) p, &defaux);
3493	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3494							defaux.vda_name);
3495	      _bfd_elf_swap_verdaux_out (output_bfd,
3496					 &defaux, (Elf_External_Verdaux *) p);
3497	      p += sizeof (Elf_External_Verdaux);
3498	    }
3499	}
3500      while (def.vd_next);
3501    }
3502
3503  /* Adjust version references.  */
3504  if (elf_tdata (output_bfd)->verref)
3505    {
3506      asection *s;
3507      bfd_byte *p;
3508      size_t i;
3509      Elf_Internal_Verneed need;
3510      Elf_Internal_Vernaux needaux;
3511
3512      s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3513      p = s->contents;
3514      do
3515	{
3516	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3517				    &need);
3518	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3519	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3520				     (Elf_External_Verneed *) p);
3521	  p += sizeof (Elf_External_Verneed);
3522	  for (i = 0; i < need.vn_cnt; ++i)
3523	    {
3524	      _bfd_elf_swap_vernaux_in (output_bfd,
3525					(Elf_External_Vernaux *) p, &needaux);
3526	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3527							 needaux.vna_name);
3528	      _bfd_elf_swap_vernaux_out (output_bfd,
3529					 &needaux,
3530					 (Elf_External_Vernaux *) p);
3531	      p += sizeof (Elf_External_Vernaux);
3532	    }
3533	}
3534      while (need.vn_next);
3535    }
3536
3537  return TRUE;
3538}
3539
3540/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3541   The default is to only match when the INPUT and OUTPUT are exactly
3542   the same target.  */
3543
3544bfd_boolean
3545_bfd_elf_default_relocs_compatible (const bfd_target *input,
3546				    const bfd_target *output)
3547{
3548  return input == output;
3549}
3550
3551/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3552   This version is used when different targets for the same architecture
3553   are virtually identical.  */
3554
3555bfd_boolean
3556_bfd_elf_relocs_compatible (const bfd_target *input,
3557			    const bfd_target *output)
3558{
3559  const struct elf_backend_data *obed, *ibed;
3560
3561  if (input == output)
3562    return TRUE;
3563
3564  ibed = xvec_get_elf_backend_data (input);
3565  obed = xvec_get_elf_backend_data (output);
3566
3567  if (ibed->arch != obed->arch)
3568    return FALSE;
3569
3570  /* If both backends are using this function, deem them compatible.  */
3571  return ibed->relocs_compatible == obed->relocs_compatible;
3572}
3573
3574/* Make a special call to the linker "notice" function to tell it that
3575   we are about to handle an as-needed lib, or have finished
3576   processing the lib.  */
3577
3578bfd_boolean
3579_bfd_elf_notice_as_needed (bfd *ibfd,
3580			   struct bfd_link_info *info,
3581			   enum notice_asneeded_action act)
3582{
3583  return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3584}
3585
3586/* Check relocations an ELF object file.  */
3587
3588bfd_boolean
3589_bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3590{
3591  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3592  struct elf_link_hash_table *htab = elf_hash_table (info);
3593
3594  /* If this object is the same format as the output object, and it is
3595     not a shared library, then let the backend look through the
3596     relocs.
3597
3598     This is required to build global offset table entries and to
3599     arrange for dynamic relocs.  It is not required for the
3600     particular common case of linking non PIC code, even when linking
3601     against shared libraries, but unfortunately there is no way of
3602     knowing whether an object file has been compiled PIC or not.
3603     Looking through the relocs is not particularly time consuming.
3604     The problem is that we must either (1) keep the relocs in memory,
3605     which causes the linker to require additional runtime memory or
3606     (2) read the relocs twice from the input file, which wastes time.
3607     This would be a good case for using mmap.
3608
3609     I have no idea how to handle linking PIC code into a file of a
3610     different format.  It probably can't be done.  */
3611  if ((abfd->flags & DYNAMIC) == 0
3612      && is_elf_hash_table (htab)
3613      && bed->check_relocs != NULL
3614      && elf_object_id (abfd) == elf_hash_table_id (htab)
3615      && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3616    {
3617      asection *o;
3618
3619      for (o = abfd->sections; o != NULL; o = o->next)
3620	{
3621	  Elf_Internal_Rela *internal_relocs;
3622	  bfd_boolean ok;
3623
3624	  /* Don't check relocations in excluded sections.  */
3625	  if ((o->flags & SEC_RELOC) == 0
3626	      || (o->flags & SEC_EXCLUDE) != 0
3627	      || o->reloc_count == 0
3628	      || ((info->strip == strip_all || info->strip == strip_debugger)
3629		  && (o->flags & SEC_DEBUGGING) != 0)
3630	      || bfd_is_abs_section (o->output_section))
3631	    continue;
3632
3633	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3634						       info->keep_memory);
3635	  if (internal_relocs == NULL)
3636	    return FALSE;
3637
3638	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3639
3640	  if (elf_section_data (o)->relocs != internal_relocs)
3641	    free (internal_relocs);
3642
3643	  if (! ok)
3644	    return FALSE;
3645	}
3646    }
3647
3648  return TRUE;
3649}
3650
3651/* Add symbols from an ELF object file to the linker hash table.  */
3652
3653static bfd_boolean
3654elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3655{
3656  Elf_Internal_Ehdr *ehdr;
3657  Elf_Internal_Shdr *hdr;
3658  size_t symcount;
3659  size_t extsymcount;
3660  size_t extsymoff;
3661  struct elf_link_hash_entry **sym_hash;
3662  bfd_boolean dynamic;
3663  Elf_External_Versym *extversym = NULL;
3664  Elf_External_Versym *ever;
3665  struct elf_link_hash_entry *weaks;
3666  struct elf_link_hash_entry **nondeflt_vers = NULL;
3667  size_t nondeflt_vers_cnt = 0;
3668  Elf_Internal_Sym *isymbuf = NULL;
3669  Elf_Internal_Sym *isym;
3670  Elf_Internal_Sym *isymend;
3671  const struct elf_backend_data *bed;
3672  bfd_boolean add_needed;
3673  struct elf_link_hash_table *htab;
3674  bfd_size_type amt;
3675  void *alloc_mark = NULL;
3676  struct bfd_hash_entry **old_table = NULL;
3677  unsigned int old_size = 0;
3678  unsigned int old_count = 0;
3679  void *old_tab = NULL;
3680  void *old_ent;
3681  struct bfd_link_hash_entry *old_undefs = NULL;
3682  struct bfd_link_hash_entry *old_undefs_tail = NULL;
3683  void *old_strtab = NULL;
3684  size_t tabsize = 0;
3685  asection *s;
3686  bfd_boolean just_syms;
3687
3688  htab = elf_hash_table (info);
3689  bed = get_elf_backend_data (abfd);
3690
3691  if ((abfd->flags & DYNAMIC) == 0)
3692    dynamic = FALSE;
3693  else
3694    {
3695      dynamic = TRUE;
3696
3697      /* You can't use -r against a dynamic object.  Also, there's no
3698	 hope of using a dynamic object which does not exactly match
3699	 the format of the output file.  */
3700      if (bfd_link_relocatable (info)
3701	  || !is_elf_hash_table (htab)
3702	  || info->output_bfd->xvec != abfd->xvec)
3703	{
3704	  if (bfd_link_relocatable (info))
3705	    bfd_set_error (bfd_error_invalid_operation);
3706	  else
3707	    bfd_set_error (bfd_error_wrong_format);
3708	  goto error_return;
3709	}
3710    }
3711
3712  ehdr = elf_elfheader (abfd);
3713  if (info->warn_alternate_em
3714      && bed->elf_machine_code != ehdr->e_machine
3715      && ((bed->elf_machine_alt1 != 0
3716	   && ehdr->e_machine == bed->elf_machine_alt1)
3717	  || (bed->elf_machine_alt2 != 0
3718	      && ehdr->e_machine == bed->elf_machine_alt2)))
3719    info->callbacks->einfo
3720      /* xgettext:c-format */
3721      (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3722       ehdr->e_machine, abfd, bed->elf_machine_code);
3723
3724  /* As a GNU extension, any input sections which are named
3725     .gnu.warning.SYMBOL are treated as warning symbols for the given
3726     symbol.  This differs from .gnu.warning sections, which generate
3727     warnings when they are included in an output file.  */
3728  /* PR 12761: Also generate this warning when building shared libraries.  */
3729  for (s = abfd->sections; s != NULL; s = s->next)
3730    {
3731      const char *name;
3732
3733      name = bfd_get_section_name (abfd, s);
3734      if (CONST_STRNEQ (name, ".gnu.warning."))
3735	{
3736	  char *msg;
3737	  bfd_size_type sz;
3738
3739	  name += sizeof ".gnu.warning." - 1;
3740
3741	  /* If this is a shared object, then look up the symbol
3742	     in the hash table.  If it is there, and it is already
3743	     been defined, then we will not be using the entry
3744	     from this shared object, so we don't need to warn.
3745	     FIXME: If we see the definition in a regular object
3746	     later on, we will warn, but we shouldn't.  The only
3747	     fix is to keep track of what warnings we are supposed
3748	     to emit, and then handle them all at the end of the
3749	     link.  */
3750	  if (dynamic)
3751	    {
3752	      struct elf_link_hash_entry *h;
3753
3754	      h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3755
3756	      /* FIXME: What about bfd_link_hash_common?  */
3757	      if (h != NULL
3758		  && (h->root.type == bfd_link_hash_defined
3759		      || h->root.type == bfd_link_hash_defweak))
3760		continue;
3761	    }
3762
3763	  sz = s->size;
3764	  msg = (char *) bfd_alloc (abfd, sz + 1);
3765	  if (msg == NULL)
3766	    goto error_return;
3767
3768	  if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3769	    goto error_return;
3770
3771	  msg[sz] = '\0';
3772
3773	  if (! (_bfd_generic_link_add_one_symbol
3774		 (info, abfd, name, BSF_WARNING, s, 0, msg,
3775		  FALSE, bed->collect, NULL)))
3776	    goto error_return;
3777
3778	  if (bfd_link_executable (info))
3779	    {
3780	      /* Clobber the section size so that the warning does
3781		 not get copied into the output file.  */
3782	      s->size = 0;
3783
3784	      /* Also set SEC_EXCLUDE, so that symbols defined in
3785		 the warning section don't get copied to the output.  */
3786	      s->flags |= SEC_EXCLUDE;
3787	    }
3788	}
3789    }
3790
3791  just_syms = ((s = abfd->sections) != NULL
3792	       && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3793
3794  add_needed = TRUE;
3795  if (! dynamic)
3796    {
3797      /* If we are creating a shared library, create all the dynamic
3798	 sections immediately.  We need to attach them to something,
3799	 so we attach them to this BFD, provided it is the right
3800	 format and is not from ld --just-symbols.  Always create the
3801	 dynamic sections for -E/--dynamic-list.  FIXME: If there
3802	 are no input BFD's of the same format as the output, we can't
3803	 make a shared library.  */
3804      if (!just_syms
3805	  && (bfd_link_pic (info)
3806	      || (!bfd_link_relocatable (info)
3807		  && (info->export_dynamic || info->dynamic)))
3808	  && is_elf_hash_table (htab)
3809	  && info->output_bfd->xvec == abfd->xvec
3810	  && !htab->dynamic_sections_created)
3811	{
3812	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3813	    goto error_return;
3814	}
3815    }
3816  else if (!is_elf_hash_table (htab))
3817    goto error_return;
3818  else
3819    {
3820      const char *soname = NULL;
3821      char *audit = NULL;
3822      struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3823      const Elf_Internal_Phdr *phdr;
3824      int ret;
3825
3826      /* ld --just-symbols and dynamic objects don't mix very well.
3827	 ld shouldn't allow it.  */
3828      if (just_syms)
3829	abort ();
3830
3831      /* If this dynamic lib was specified on the command line with
3832	 --as-needed in effect, then we don't want to add a DT_NEEDED
3833	 tag unless the lib is actually used.  Similary for libs brought
3834	 in by another lib's DT_NEEDED.  When --no-add-needed is used
3835	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3836	 any dynamic library in DT_NEEDED tags in the dynamic lib at
3837	 all.  */
3838      add_needed = (elf_dyn_lib_class (abfd)
3839		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3840		       | DYN_NO_NEEDED)) == 0;
3841
3842      s = bfd_get_section_by_name (abfd, ".dynamic");
3843      if (s != NULL)
3844	{
3845	  bfd_byte *dynbuf;
3846	  bfd_byte *extdyn;
3847	  unsigned int elfsec;
3848	  unsigned long shlink;
3849
3850	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3851	    {
3852error_free_dyn:
3853	      free (dynbuf);
3854	      goto error_return;
3855	    }
3856
3857	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3858	  if (elfsec == SHN_BAD)
3859	    goto error_free_dyn;
3860	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3861
3862	  for (extdyn = dynbuf;
3863	       extdyn < dynbuf + s->size;
3864	       extdyn += bed->s->sizeof_dyn)
3865	    {
3866	      Elf_Internal_Dyn dyn;
3867
3868	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3869	      if (dyn.d_tag == DT_SONAME)
3870		{
3871		  unsigned int tagv = dyn.d_un.d_val;
3872		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3873		  if (soname == NULL)
3874		    goto error_free_dyn;
3875		}
3876	      if (dyn.d_tag == DT_NEEDED)
3877		{
3878		  struct bfd_link_needed_list *n, **pn;
3879		  char *fnm, *anm;
3880		  unsigned int tagv = dyn.d_un.d_val;
3881
3882		  amt = sizeof (struct bfd_link_needed_list);
3883		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3884		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3885		  if (n == NULL || fnm == NULL)
3886		    goto error_free_dyn;
3887		  amt = strlen (fnm) + 1;
3888		  anm = (char *) bfd_alloc (abfd, amt);
3889		  if (anm == NULL)
3890		    goto error_free_dyn;
3891		  memcpy (anm, fnm, amt);
3892		  n->name = anm;
3893		  n->by = abfd;
3894		  n->next = NULL;
3895		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3896		    ;
3897		  *pn = n;
3898		}
3899	      if (dyn.d_tag == DT_RUNPATH)
3900		{
3901		  struct bfd_link_needed_list *n, **pn;
3902		  char *fnm, *anm;
3903		  unsigned int tagv = dyn.d_un.d_val;
3904
3905		  amt = sizeof (struct bfd_link_needed_list);
3906		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3907		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3908		  if (n == NULL || fnm == NULL)
3909		    goto error_free_dyn;
3910		  amt = strlen (fnm) + 1;
3911		  anm = (char *) bfd_alloc (abfd, amt);
3912		  if (anm == NULL)
3913		    goto error_free_dyn;
3914		  memcpy (anm, fnm, amt);
3915		  n->name = anm;
3916		  n->by = abfd;
3917		  n->next = NULL;
3918		  for (pn = & runpath;
3919		       *pn != NULL;
3920		       pn = &(*pn)->next)
3921		    ;
3922		  *pn = n;
3923		}
3924	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3925	      if (!runpath && dyn.d_tag == DT_RPATH)
3926		{
3927		  struct bfd_link_needed_list *n, **pn;
3928		  char *fnm, *anm;
3929		  unsigned int tagv = dyn.d_un.d_val;
3930
3931		  amt = sizeof (struct bfd_link_needed_list);
3932		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3933		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3934		  if (n == NULL || fnm == NULL)
3935		    goto error_free_dyn;
3936		  amt = strlen (fnm) + 1;
3937		  anm = (char *) bfd_alloc (abfd, amt);
3938		  if (anm == NULL)
3939		    goto error_free_dyn;
3940		  memcpy (anm, fnm, amt);
3941		  n->name = anm;
3942		  n->by = abfd;
3943		  n->next = NULL;
3944		  for (pn = & rpath;
3945		       *pn != NULL;
3946		       pn = &(*pn)->next)
3947		    ;
3948		  *pn = n;
3949		}
3950	      if (dyn.d_tag == DT_AUDIT)
3951		{
3952		  unsigned int tagv = dyn.d_un.d_val;
3953		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3954		}
3955	    }
3956
3957	  free (dynbuf);
3958	}
3959
3960      /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3961	 frees all more recently bfd_alloc'd blocks as well.  */
3962      if (runpath)
3963	rpath = runpath;
3964
3965      if (rpath)
3966	{
3967	  struct bfd_link_needed_list **pn;
3968	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3969	    ;
3970	  *pn = rpath;
3971	}
3972
3973      /* If we have a PT_GNU_RELRO program header, mark as read-only
3974	 all sections contained fully therein.  This makes relro
3975	 shared library sections appear as they will at run-time.  */
3976      phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
3977      while (--phdr >= elf_tdata (abfd)->phdr)
3978	if (phdr->p_type == PT_GNU_RELRO)
3979	  {
3980	    for (s = abfd->sections; s != NULL; s = s->next)
3981	      if ((s->flags & SEC_ALLOC) != 0
3982		  && s->vma >= phdr->p_vaddr
3983		  && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
3984		s->flags |= SEC_READONLY;
3985	    break;
3986	  }
3987
3988      /* We do not want to include any of the sections in a dynamic
3989	 object in the output file.  We hack by simply clobbering the
3990	 list of sections in the BFD.  This could be handled more
3991	 cleanly by, say, a new section flag; the existing
3992	 SEC_NEVER_LOAD flag is not the one we want, because that one
3993	 still implies that the section takes up space in the output
3994	 file.  */
3995      bfd_section_list_clear (abfd);
3996
3997      /* Find the name to use in a DT_NEEDED entry that refers to this
3998	 object.  If the object has a DT_SONAME entry, we use it.
3999	 Otherwise, if the generic linker stuck something in
4000	 elf_dt_name, we use that.  Otherwise, we just use the file
4001	 name.  */
4002      if (soname == NULL || *soname == '\0')
4003	{
4004	  soname = elf_dt_name (abfd);
4005	  if (soname == NULL || *soname == '\0')
4006	    soname = bfd_get_filename (abfd);
4007	}
4008
4009      /* Save the SONAME because sometimes the linker emulation code
4010	 will need to know it.  */
4011      elf_dt_name (abfd) = soname;
4012
4013      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4014      if (ret < 0)
4015	goto error_return;
4016
4017      /* If we have already included this dynamic object in the
4018	 link, just ignore it.  There is no reason to include a
4019	 particular dynamic object more than once.  */
4020      if (ret > 0)
4021	return TRUE;
4022
4023      /* Save the DT_AUDIT entry for the linker emulation code. */
4024      elf_dt_audit (abfd) = audit;
4025    }
4026
4027  /* If this is a dynamic object, we always link against the .dynsym
4028     symbol table, not the .symtab symbol table.  The dynamic linker
4029     will only see the .dynsym symbol table, so there is no reason to
4030     look at .symtab for a dynamic object.  */
4031
4032  if (! dynamic || elf_dynsymtab (abfd) == 0)
4033    hdr = &elf_tdata (abfd)->symtab_hdr;
4034  else
4035    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4036
4037  symcount = hdr->sh_size / bed->s->sizeof_sym;
4038
4039  /* The sh_info field of the symtab header tells us where the
4040     external symbols start.  We don't care about the local symbols at
4041     this point.  */
4042  if (elf_bad_symtab (abfd))
4043    {
4044      extsymcount = symcount;
4045      extsymoff = 0;
4046    }
4047  else
4048    {
4049      extsymcount = symcount - hdr->sh_info;
4050      extsymoff = hdr->sh_info;
4051    }
4052
4053  sym_hash = elf_sym_hashes (abfd);
4054  if (extsymcount != 0)
4055    {
4056      isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4057				      NULL, NULL, NULL);
4058      if (isymbuf == NULL)
4059	goto error_return;
4060
4061      if (sym_hash == NULL)
4062	{
4063	  /* We store a pointer to the hash table entry for each
4064	     external symbol.  */
4065	  amt = extsymcount;
4066	  amt *= sizeof (struct elf_link_hash_entry *);
4067	  sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4068	  if (sym_hash == NULL)
4069	    goto error_free_sym;
4070	  elf_sym_hashes (abfd) = sym_hash;
4071	}
4072    }
4073
4074  if (dynamic)
4075    {
4076      /* Read in any version definitions.  */
4077      if (!_bfd_elf_slurp_version_tables (abfd,
4078					  info->default_imported_symver))
4079	goto error_free_sym;
4080
4081      /* Read in the symbol versions, but don't bother to convert them
4082	 to internal format.  */
4083      if (elf_dynversym (abfd) != 0)
4084	{
4085	  Elf_Internal_Shdr *versymhdr;
4086
4087	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4088	  extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4089	  if (extversym == NULL)
4090	    goto error_free_sym;
4091	  amt = versymhdr->sh_size;
4092	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4093	      || bfd_bread (extversym, amt, abfd) != amt)
4094	    goto error_free_vers;
4095	}
4096    }
4097
4098  /* If we are loading an as-needed shared lib, save the symbol table
4099     state before we start adding symbols.  If the lib turns out
4100     to be unneeded, restore the state.  */
4101  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4102    {
4103      unsigned int i;
4104      size_t entsize;
4105
4106      for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4107	{
4108	  struct bfd_hash_entry *p;
4109	  struct elf_link_hash_entry *h;
4110
4111	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4112	    {
4113	      h = (struct elf_link_hash_entry *) p;
4114	      entsize += htab->root.table.entsize;
4115	      if (h->root.type == bfd_link_hash_warning)
4116		entsize += htab->root.table.entsize;
4117	    }
4118	}
4119
4120      tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4121      old_tab = bfd_malloc (tabsize + entsize);
4122      if (old_tab == NULL)
4123	goto error_free_vers;
4124
4125      /* Remember the current objalloc pointer, so that all mem for
4126	 symbols added can later be reclaimed.  */
4127      alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4128      if (alloc_mark == NULL)
4129	goto error_free_vers;
4130
4131      /* Make a special call to the linker "notice" function to
4132	 tell it that we are about to handle an as-needed lib.  */
4133      if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4134	goto error_free_vers;
4135
4136      /* Clone the symbol table.  Remember some pointers into the
4137	 symbol table, and dynamic symbol count.  */
4138      old_ent = (char *) old_tab + tabsize;
4139      memcpy (old_tab, htab->root.table.table, tabsize);
4140      old_undefs = htab->root.undefs;
4141      old_undefs_tail = htab->root.undefs_tail;
4142      old_table = htab->root.table.table;
4143      old_size = htab->root.table.size;
4144      old_count = htab->root.table.count;
4145      old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4146      if (old_strtab == NULL)
4147	goto error_free_vers;
4148
4149      for (i = 0; i < htab->root.table.size; i++)
4150	{
4151	  struct bfd_hash_entry *p;
4152	  struct elf_link_hash_entry *h;
4153
4154	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4155	    {
4156	      memcpy (old_ent, p, htab->root.table.entsize);
4157	      old_ent = (char *) old_ent + htab->root.table.entsize;
4158	      h = (struct elf_link_hash_entry *) p;
4159	      if (h->root.type == bfd_link_hash_warning)
4160		{
4161		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4162		  old_ent = (char *) old_ent + htab->root.table.entsize;
4163		}
4164	    }
4165	}
4166    }
4167
4168  weaks = NULL;
4169  ever = extversym != NULL ? extversym + extsymoff : NULL;
4170  for (isym = isymbuf, isymend = isymbuf + extsymcount;
4171       isym < isymend;
4172       isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4173    {
4174      int bind;
4175      bfd_vma value;
4176      asection *sec, *new_sec;
4177      flagword flags;
4178      const char *name;
4179      struct elf_link_hash_entry *h;
4180      struct elf_link_hash_entry *hi;
4181      bfd_boolean definition;
4182      bfd_boolean size_change_ok;
4183      bfd_boolean type_change_ok;
4184      bfd_boolean new_weakdef;
4185      bfd_boolean new_weak;
4186      bfd_boolean old_weak;
4187      bfd_boolean override;
4188      bfd_boolean common;
4189      bfd_boolean discarded;
4190      unsigned int old_alignment;
4191      bfd *old_bfd;
4192      bfd_boolean matched;
4193
4194      override = FALSE;
4195
4196      flags = BSF_NO_FLAGS;
4197      sec = NULL;
4198      value = isym->st_value;
4199      common = bed->common_definition (isym);
4200      discarded = FALSE;
4201
4202      bind = ELF_ST_BIND (isym->st_info);
4203      switch (bind)
4204	{
4205	case STB_LOCAL:
4206	  /* This should be impossible, since ELF requires that all
4207	     global symbols follow all local symbols, and that sh_info
4208	     point to the first global symbol.  Unfortunately, Irix 5
4209	     screws this up.  */
4210	  continue;
4211
4212	case STB_GLOBAL:
4213	  if (isym->st_shndx != SHN_UNDEF && !common)
4214	    flags = BSF_GLOBAL;
4215	  break;
4216
4217	case STB_WEAK:
4218	  flags = BSF_WEAK;
4219	  break;
4220
4221	case STB_GNU_UNIQUE:
4222	  flags = BSF_GNU_UNIQUE;
4223	  break;
4224
4225	default:
4226	  /* Leave it up to the processor backend.  */
4227	  break;
4228	}
4229
4230      if (isym->st_shndx == SHN_UNDEF)
4231	sec = bfd_und_section_ptr;
4232      else if (isym->st_shndx == SHN_ABS)
4233	sec = bfd_abs_section_ptr;
4234      else if (isym->st_shndx == SHN_COMMON)
4235	{
4236	  sec = bfd_com_section_ptr;
4237	  /* What ELF calls the size we call the value.  What ELF
4238	     calls the value we call the alignment.  */
4239	  value = isym->st_size;
4240	}
4241      else
4242	{
4243	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4244	  if (sec == NULL)
4245	    sec = bfd_abs_section_ptr;
4246	  else if (discarded_section (sec))
4247	    {
4248	      /* Symbols from discarded section are undefined.  We keep
4249		 its visibility.  */
4250	      sec = bfd_und_section_ptr;
4251	      discarded = TRUE;
4252	      isym->st_shndx = SHN_UNDEF;
4253	    }
4254	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4255	    value -= sec->vma;
4256	}
4257
4258      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4259					      isym->st_name);
4260      if (name == NULL)
4261	goto error_free_vers;
4262
4263      if (isym->st_shndx == SHN_COMMON
4264	  && (abfd->flags & BFD_PLUGIN) != 0)
4265	{
4266	  asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4267
4268	  if (xc == NULL)
4269	    {
4270	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4271				 | SEC_EXCLUDE);
4272	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4273	      if (xc == NULL)
4274		goto error_free_vers;
4275	    }
4276	  sec = xc;
4277	}
4278      else if (isym->st_shndx == SHN_COMMON
4279	       && ELF_ST_TYPE (isym->st_info) == STT_TLS
4280	       && !bfd_link_relocatable (info))
4281	{
4282	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4283
4284	  if (tcomm == NULL)
4285	    {
4286	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4287				 | SEC_LINKER_CREATED);
4288	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4289	      if (tcomm == NULL)
4290		goto error_free_vers;
4291	    }
4292	  sec = tcomm;
4293	}
4294      else if (bed->elf_add_symbol_hook)
4295	{
4296	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4297					     &sec, &value))
4298	    goto error_free_vers;
4299
4300	  /* The hook function sets the name to NULL if this symbol
4301	     should be skipped for some reason.  */
4302	  if (name == NULL)
4303	    continue;
4304	}
4305
4306      /* Sanity check that all possibilities were handled.  */
4307      if (sec == NULL)
4308	{
4309	  bfd_set_error (bfd_error_bad_value);
4310	  goto error_free_vers;
4311	}
4312
4313      /* Silently discard TLS symbols from --just-syms.  There's
4314	 no way to combine a static TLS block with a new TLS block
4315	 for this executable.  */
4316      if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4317	  && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4318	continue;
4319
4320      if (bfd_is_und_section (sec)
4321	  || bfd_is_com_section (sec))
4322	definition = FALSE;
4323      else
4324	definition = TRUE;
4325
4326      size_change_ok = FALSE;
4327      type_change_ok = bed->type_change_ok;
4328      old_weak = FALSE;
4329      matched = FALSE;
4330      old_alignment = 0;
4331      old_bfd = NULL;
4332      new_sec = sec;
4333
4334      if (is_elf_hash_table (htab))
4335	{
4336	  Elf_Internal_Versym iver;
4337	  unsigned int vernum = 0;
4338	  bfd_boolean skip;
4339
4340	  if (ever == NULL)
4341	    {
4342	      if (info->default_imported_symver)
4343		/* Use the default symbol version created earlier.  */
4344		iver.vs_vers = elf_tdata (abfd)->cverdefs;
4345	      else
4346		iver.vs_vers = 0;
4347	    }
4348	  else
4349	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
4350
4351	  vernum = iver.vs_vers & VERSYM_VERSION;
4352
4353	  /* If this is a hidden symbol, or if it is not version
4354	     1, we append the version name to the symbol name.
4355	     However, we do not modify a non-hidden absolute symbol
4356	     if it is not a function, because it might be the version
4357	     symbol itself.  FIXME: What if it isn't?  */
4358	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4359	      || (vernum > 1
4360		  && (!bfd_is_abs_section (sec)
4361		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4362	    {
4363	      const char *verstr;
4364	      size_t namelen, verlen, newlen;
4365	      char *newname, *p;
4366
4367	      if (isym->st_shndx != SHN_UNDEF)
4368		{
4369		  if (vernum > elf_tdata (abfd)->cverdefs)
4370		    verstr = NULL;
4371		  else if (vernum > 1)
4372		    verstr =
4373		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4374		  else
4375		    verstr = "";
4376
4377		  if (verstr == NULL)
4378		    {
4379		      _bfd_error_handler
4380			/* xgettext:c-format */
4381			(_("%B: %s: invalid version %u (max %d)"),
4382			 abfd, name, vernum,
4383			 elf_tdata (abfd)->cverdefs);
4384		      bfd_set_error (bfd_error_bad_value);
4385		      goto error_free_vers;
4386		    }
4387		}
4388	      else
4389		{
4390		  /* We cannot simply test for the number of
4391		     entries in the VERNEED section since the
4392		     numbers for the needed versions do not start
4393		     at 0.  */
4394		  Elf_Internal_Verneed *t;
4395
4396		  verstr = NULL;
4397		  for (t = elf_tdata (abfd)->verref;
4398		       t != NULL;
4399		       t = t->vn_nextref)
4400		    {
4401		      Elf_Internal_Vernaux *a;
4402
4403		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4404			{
4405			  if (a->vna_other == vernum)
4406			    {
4407			      verstr = a->vna_nodename;
4408			      break;
4409			    }
4410			}
4411		      if (a != NULL)
4412			break;
4413		    }
4414		  if (verstr == NULL)
4415		    {
4416		      _bfd_error_handler
4417			/* xgettext:c-format */
4418			(_("%B: %s: invalid needed version %d"),
4419			 abfd, name, vernum);
4420		      bfd_set_error (bfd_error_bad_value);
4421		      goto error_free_vers;
4422		    }
4423		}
4424
4425	      namelen = strlen (name);
4426	      verlen = strlen (verstr);
4427	      newlen = namelen + verlen + 2;
4428	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4429		  && isym->st_shndx != SHN_UNDEF)
4430		++newlen;
4431
4432	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4433	      if (newname == NULL)
4434		goto error_free_vers;
4435	      memcpy (newname, name, namelen);
4436	      p = newname + namelen;
4437	      *p++ = ELF_VER_CHR;
4438	      /* If this is a defined non-hidden version symbol,
4439		 we add another @ to the name.  This indicates the
4440		 default version of the symbol.  */
4441	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4442		  && isym->st_shndx != SHN_UNDEF)
4443		*p++ = ELF_VER_CHR;
4444	      memcpy (p, verstr, verlen + 1);
4445
4446	      name = newname;
4447	    }
4448
4449	  /* If this symbol has default visibility and the user has
4450	     requested we not re-export it, then mark it as hidden.  */
4451	  if (!bfd_is_und_section (sec)
4452	      && !dynamic
4453	      && abfd->no_export
4454	      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4455	    isym->st_other = (STV_HIDDEN
4456			      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4457
4458	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4459				      sym_hash, &old_bfd, &old_weak,
4460				      &old_alignment, &skip, &override,
4461				      &type_change_ok, &size_change_ok,
4462				      &matched))
4463	    goto error_free_vers;
4464
4465	  if (skip)
4466	    continue;
4467
4468	  /* Override a definition only if the new symbol matches the
4469	     existing one.  */
4470	  if (override && matched)
4471	    definition = FALSE;
4472
4473	  h = *sym_hash;
4474	  while (h->root.type == bfd_link_hash_indirect
4475		 || h->root.type == bfd_link_hash_warning)
4476	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4477
4478	  if (elf_tdata (abfd)->verdef != NULL
4479	      && vernum > 1
4480	      && definition)
4481	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4482	}
4483
4484      if (! (_bfd_generic_link_add_one_symbol
4485	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4486	      (struct bfd_link_hash_entry **) sym_hash)))
4487	goto error_free_vers;
4488
4489      if ((flags & BSF_GNU_UNIQUE)
4490	  && (abfd->flags & DYNAMIC) == 0
4491	  && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4492	elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4493
4494      h = *sym_hash;
4495      /* We need to make sure that indirect symbol dynamic flags are
4496	 updated.  */
4497      hi = h;
4498      while (h->root.type == bfd_link_hash_indirect
4499	     || h->root.type == bfd_link_hash_warning)
4500	h = (struct elf_link_hash_entry *) h->root.u.i.link;
4501
4502      /* Setting the index to -3 tells elf_link_output_extsym that
4503	 this symbol is defined in a discarded section.  */
4504      if (discarded)
4505	h->indx = -3;
4506
4507      *sym_hash = h;
4508
4509      new_weak = (flags & BSF_WEAK) != 0;
4510      new_weakdef = FALSE;
4511      if (dynamic
4512	  && definition
4513	  && new_weak
4514	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4515	  && is_elf_hash_table (htab)
4516	  && h->u.weakdef == NULL)
4517	{
4518	  /* Keep a list of all weak defined non function symbols from
4519	     a dynamic object, using the weakdef field.  Later in this
4520	     function we will set the weakdef field to the correct
4521	     value.  We only put non-function symbols from dynamic
4522	     objects on this list, because that happens to be the only
4523	     time we need to know the normal symbol corresponding to a
4524	     weak symbol, and the information is time consuming to
4525	     figure out.  If the weakdef field is not already NULL,
4526	     then this symbol was already defined by some previous
4527	     dynamic object, and we will be using that previous
4528	     definition anyhow.  */
4529
4530	  h->u.weakdef = weaks;
4531	  weaks = h;
4532	  new_weakdef = TRUE;
4533	}
4534
4535      /* Set the alignment of a common symbol.  */
4536      if ((common || bfd_is_com_section (sec))
4537	  && h->root.type == bfd_link_hash_common)
4538	{
4539	  unsigned int align;
4540
4541	  if (common)
4542	    align = bfd_log2 (isym->st_value);
4543	  else
4544	    {
4545	      /* The new symbol is a common symbol in a shared object.
4546		 We need to get the alignment from the section.  */
4547	      align = new_sec->alignment_power;
4548	    }
4549	  if (align > old_alignment)
4550	    h->root.u.c.p->alignment_power = align;
4551	  else
4552	    h->root.u.c.p->alignment_power = old_alignment;
4553	}
4554
4555      if (is_elf_hash_table (htab))
4556	{
4557	  /* Set a flag in the hash table entry indicating the type of
4558	     reference or definition we just found.  A dynamic symbol
4559	     is one which is referenced or defined by both a regular
4560	     object and a shared object.  */
4561	  bfd_boolean dynsym = FALSE;
4562
4563	  /* Plugin symbols aren't normal.  Don't set def_regular or
4564	     ref_regular for them, or make them dynamic.  */
4565	  if ((abfd->flags & BFD_PLUGIN) != 0)
4566	    ;
4567	  else if (! dynamic)
4568	    {
4569	      if (! definition)
4570		{
4571		  h->ref_regular = 1;
4572		  if (bind != STB_WEAK)
4573		    h->ref_regular_nonweak = 1;
4574		}
4575	      else
4576		{
4577		  h->def_regular = 1;
4578		  if (h->def_dynamic)
4579		    {
4580		      h->def_dynamic = 0;
4581		      h->ref_dynamic = 1;
4582		    }
4583		}
4584
4585	      /* If the indirect symbol has been forced local, don't
4586		 make the real symbol dynamic.  */
4587	      if ((h == hi || !hi->forced_local)
4588		  && (bfd_link_dll (info)
4589		      || h->def_dynamic
4590		      || h->ref_dynamic))
4591		dynsym = TRUE;
4592	    }
4593	  else
4594	    {
4595	      if (! definition)
4596		{
4597		  h->ref_dynamic = 1;
4598		  hi->ref_dynamic = 1;
4599		}
4600	      else
4601		{
4602		  h->def_dynamic = 1;
4603		  hi->def_dynamic = 1;
4604		}
4605
4606	      /* If the indirect symbol has been forced local, don't
4607		 make the real symbol dynamic.  */
4608	      if ((h == hi || !hi->forced_local)
4609		  && (h->def_regular
4610		      || h->ref_regular
4611		      || (h->u.weakdef != NULL
4612			  && ! new_weakdef
4613			  && h->u.weakdef->dynindx != -1)))
4614		dynsym = TRUE;
4615	    }
4616
4617	  /* Check to see if we need to add an indirect symbol for
4618	     the default name.  */
4619	  if (definition
4620	      || (!override && h->root.type == bfd_link_hash_common))
4621	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4622					      sec, value, &old_bfd, &dynsym))
4623	      goto error_free_vers;
4624
4625	  /* Check the alignment when a common symbol is involved. This
4626	     can change when a common symbol is overridden by a normal
4627	     definition or a common symbol is ignored due to the old
4628	     normal definition. We need to make sure the maximum
4629	     alignment is maintained.  */
4630	  if ((old_alignment || common)
4631	      && h->root.type != bfd_link_hash_common)
4632	    {
4633	      unsigned int common_align;
4634	      unsigned int normal_align;
4635	      unsigned int symbol_align;
4636	      bfd *normal_bfd;
4637	      bfd *common_bfd;
4638
4639	      BFD_ASSERT (h->root.type == bfd_link_hash_defined
4640			  || h->root.type == bfd_link_hash_defweak);
4641
4642	      symbol_align = ffs (h->root.u.def.value) - 1;
4643	      if (h->root.u.def.section->owner != NULL
4644		  && (h->root.u.def.section->owner->flags
4645		       & (DYNAMIC | BFD_PLUGIN)) == 0)
4646		{
4647		  normal_align = h->root.u.def.section->alignment_power;
4648		  if (normal_align > symbol_align)
4649		    normal_align = symbol_align;
4650		}
4651	      else
4652		normal_align = symbol_align;
4653
4654	      if (old_alignment)
4655		{
4656		  common_align = old_alignment;
4657		  common_bfd = old_bfd;
4658		  normal_bfd = abfd;
4659		}
4660	      else
4661		{
4662		  common_align = bfd_log2 (isym->st_value);
4663		  common_bfd = abfd;
4664		  normal_bfd = old_bfd;
4665		}
4666
4667	      if (normal_align < common_align)
4668		{
4669		  /* PR binutils/2735 */
4670		  if (normal_bfd == NULL)
4671		    _bfd_error_handler
4672		      /* xgettext:c-format */
4673		      (_("Warning: alignment %u of common symbol `%s' in %B is"
4674			 " greater than the alignment (%u) of its section %A"),
4675		       common_bfd, h->root.u.def.section,
4676		       1 << common_align, name, 1 << normal_align);
4677		  else
4678		    _bfd_error_handler
4679		      /* xgettext:c-format */
4680		      (_("Warning: alignment %u of symbol `%s' in %B"
4681			 " is smaller than %u in %B"),
4682		       normal_bfd, common_bfd,
4683		       1 << normal_align, name, 1 << common_align);
4684		}
4685	    }
4686
4687	  /* Remember the symbol size if it isn't undefined.  */
4688	  if (isym->st_size != 0
4689	      && isym->st_shndx != SHN_UNDEF
4690	      && (definition || h->size == 0))
4691	    {
4692	      if (h->size != 0
4693		  && h->size != isym->st_size
4694		  && ! size_change_ok)
4695		_bfd_error_handler
4696		  /* xgettext:c-format */
4697		  (_("Warning: size of symbol `%s' changed"
4698		     " from %lu in %B to %lu in %B"),
4699		   old_bfd, abfd,
4700		   name, (unsigned long) h->size,
4701		   (unsigned long) isym->st_size);
4702
4703	      h->size = isym->st_size;
4704	    }
4705
4706	  /* If this is a common symbol, then we always want H->SIZE
4707	     to be the size of the common symbol.  The code just above
4708	     won't fix the size if a common symbol becomes larger.  We
4709	     don't warn about a size change here, because that is
4710	     covered by --warn-common.  Allow changes between different
4711	     function types.  */
4712	  if (h->root.type == bfd_link_hash_common)
4713	    h->size = h->root.u.c.size;
4714
4715	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4716	      && ((definition && !new_weak)
4717		  || (old_weak && h->root.type == bfd_link_hash_common)
4718		  || h->type == STT_NOTYPE))
4719	    {
4720	      unsigned int type = ELF_ST_TYPE (isym->st_info);
4721
4722	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
4723		 symbol.  */
4724	      if (type == STT_GNU_IFUNC
4725		  && (abfd->flags & DYNAMIC) != 0)
4726		type = STT_FUNC;
4727
4728	      if (h->type != type)
4729		{
4730		  if (h->type != STT_NOTYPE && ! type_change_ok)
4731		    /* xgettext:c-format */
4732		    _bfd_error_handler
4733		      (_("Warning: type of symbol `%s' changed"
4734			 " from %d to %d in %B"),
4735		       abfd, name, h->type, type);
4736
4737		  h->type = type;
4738		}
4739	    }
4740
4741	  /* Merge st_other field.  */
4742	  elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4743
4744	  /* We don't want to make debug symbol dynamic.  */
4745	  if (definition
4746	      && (sec->flags & SEC_DEBUGGING)
4747	      && !bfd_link_relocatable (info))
4748	    dynsym = FALSE;
4749
4750	  /* Nor should we make plugin symbols dynamic.  */
4751	  if ((abfd->flags & BFD_PLUGIN) != 0)
4752	    dynsym = FALSE;
4753
4754	  if (definition)
4755	    {
4756	      h->target_internal = isym->st_target_internal;
4757	      h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4758	    }
4759
4760	  if (definition && !dynamic)
4761	    {
4762	      char *p = strchr (name, ELF_VER_CHR);
4763	      if (p != NULL && p[1] != ELF_VER_CHR)
4764		{
4765		  /* Queue non-default versions so that .symver x, x@FOO
4766		     aliases can be checked.  */
4767		  if (!nondeflt_vers)
4768		    {
4769		      amt = ((isymend - isym + 1)
4770			     * sizeof (struct elf_link_hash_entry *));
4771		      nondeflt_vers
4772			= (struct elf_link_hash_entry **) bfd_malloc (amt);
4773		      if (!nondeflt_vers)
4774			goto error_free_vers;
4775		    }
4776		  nondeflt_vers[nondeflt_vers_cnt++] = h;
4777		}
4778	    }
4779
4780	  if (dynsym && h->dynindx == -1)
4781	    {
4782	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4783		goto error_free_vers;
4784	      if (h->u.weakdef != NULL
4785		  && ! new_weakdef
4786		  && h->u.weakdef->dynindx == -1)
4787		{
4788		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4789		    goto error_free_vers;
4790		}
4791	    }
4792	  else if (h->dynindx != -1)
4793	    /* If the symbol already has a dynamic index, but
4794	       visibility says it should not be visible, turn it into
4795	       a local symbol.  */
4796	    switch (ELF_ST_VISIBILITY (h->other))
4797	      {
4798	      case STV_INTERNAL:
4799	      case STV_HIDDEN:
4800		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
4801		dynsym = FALSE;
4802		break;
4803	      }
4804
4805	  /* Don't add DT_NEEDED for references from the dummy bfd nor
4806	     for unmatched symbol.  */
4807	  if (!add_needed
4808	      && matched
4809	      && definition
4810	      && ((dynsym
4811		   && h->ref_regular_nonweak
4812		   && (old_bfd == NULL
4813		       || (old_bfd->flags & BFD_PLUGIN) == 0))
4814		  || (h->ref_dynamic_nonweak
4815		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4816		      && !on_needed_list (elf_dt_name (abfd),
4817					  htab->needed, NULL))))
4818	    {
4819	      int ret;
4820	      const char *soname = elf_dt_name (abfd);
4821
4822	      info->callbacks->minfo ("%!", soname, old_bfd,
4823				      h->root.root.string);
4824
4825	      /* A symbol from a library loaded via DT_NEEDED of some
4826		 other library is referenced by a regular object.
4827		 Add a DT_NEEDED entry for it.  Issue an error if
4828		 --no-add-needed is used and the reference was not
4829		 a weak one.  */
4830	      if (old_bfd != NULL
4831		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4832		{
4833		  _bfd_error_handler
4834		    /* xgettext:c-format */
4835		    (_("%B: undefined reference to symbol '%s'"),
4836		     old_bfd, name);
4837		  bfd_set_error (bfd_error_missing_dso);
4838		  goto error_free_vers;
4839		}
4840
4841	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4842		(elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4843
4844	      add_needed = TRUE;
4845	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4846	      if (ret < 0)
4847		goto error_free_vers;
4848
4849	      BFD_ASSERT (ret == 0);
4850	    }
4851	}
4852    }
4853
4854  if (extversym != NULL)
4855    {
4856      free (extversym);
4857      extversym = NULL;
4858    }
4859
4860  if (isymbuf != NULL)
4861    {
4862      free (isymbuf);
4863      isymbuf = NULL;
4864    }
4865
4866  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4867    {
4868      unsigned int i;
4869
4870      /* Restore the symbol table.  */
4871      old_ent = (char *) old_tab + tabsize;
4872      memset (elf_sym_hashes (abfd), 0,
4873	      extsymcount * sizeof (struct elf_link_hash_entry *));
4874      htab->root.table.table = old_table;
4875      htab->root.table.size = old_size;
4876      htab->root.table.count = old_count;
4877      memcpy (htab->root.table.table, old_tab, tabsize);
4878      htab->root.undefs = old_undefs;
4879      htab->root.undefs_tail = old_undefs_tail;
4880      _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4881      free (old_strtab);
4882      old_strtab = NULL;
4883      for (i = 0; i < htab->root.table.size; i++)
4884	{
4885	  struct bfd_hash_entry *p;
4886	  struct elf_link_hash_entry *h;
4887	  bfd_size_type size;
4888	  unsigned int alignment_power;
4889
4890	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4891	    {
4892	      h = (struct elf_link_hash_entry *) p;
4893	      if (h->root.type == bfd_link_hash_warning)
4894		h = (struct elf_link_hash_entry *) h->root.u.i.link;
4895
4896	      /* Preserve the maximum alignment and size for common
4897		 symbols even if this dynamic lib isn't on DT_NEEDED
4898		 since it can still be loaded at run time by another
4899		 dynamic lib.  */
4900	      if (h->root.type == bfd_link_hash_common)
4901		{
4902		  size = h->root.u.c.size;
4903		  alignment_power = h->root.u.c.p->alignment_power;
4904		}
4905	      else
4906		{
4907		  size = 0;
4908		  alignment_power = 0;
4909		}
4910	      memcpy (p, old_ent, htab->root.table.entsize);
4911	      old_ent = (char *) old_ent + htab->root.table.entsize;
4912	      h = (struct elf_link_hash_entry *) p;
4913	      if (h->root.type == bfd_link_hash_warning)
4914		{
4915		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4916		  old_ent = (char *) old_ent + htab->root.table.entsize;
4917		  h = (struct elf_link_hash_entry *) h->root.u.i.link;
4918		}
4919	      if (h->root.type == bfd_link_hash_common)
4920		{
4921		  if (size > h->root.u.c.size)
4922		    h->root.u.c.size = size;
4923		  if (alignment_power > h->root.u.c.p->alignment_power)
4924		    h->root.u.c.p->alignment_power = alignment_power;
4925		}
4926	    }
4927	}
4928
4929      /* Make a special call to the linker "notice" function to
4930	 tell it that symbols added for crefs may need to be removed.  */
4931      if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4932	goto error_free_vers;
4933
4934      free (old_tab);
4935      objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4936			   alloc_mark);
4937      if (nondeflt_vers != NULL)
4938	free (nondeflt_vers);
4939      return TRUE;
4940    }
4941
4942  if (old_tab != NULL)
4943    {
4944      if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4945	goto error_free_vers;
4946      free (old_tab);
4947      old_tab = NULL;
4948    }
4949
4950  /* Now that all the symbols from this input file are created, if
4951     not performing a relocatable link, handle .symver foo, foo@BAR
4952     such that any relocs against foo become foo@BAR.  */
4953  if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4954    {
4955      size_t cnt, symidx;
4956
4957      for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4958	{
4959	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4960	  char *shortname, *p;
4961
4962	  p = strchr (h->root.root.string, ELF_VER_CHR);
4963	  if (p == NULL
4964	      || (h->root.type != bfd_link_hash_defined
4965		  && h->root.type != bfd_link_hash_defweak))
4966	    continue;
4967
4968	  amt = p - h->root.root.string;
4969	  shortname = (char *) bfd_malloc (amt + 1);
4970	  if (!shortname)
4971	    goto error_free_vers;
4972	  memcpy (shortname, h->root.root.string, amt);
4973	  shortname[amt] = '\0';
4974
4975	  hi = (struct elf_link_hash_entry *)
4976	       bfd_link_hash_lookup (&htab->root, shortname,
4977				     FALSE, FALSE, FALSE);
4978	  if (hi != NULL
4979	      && hi->root.type == h->root.type
4980	      && hi->root.u.def.value == h->root.u.def.value
4981	      && hi->root.u.def.section == h->root.u.def.section)
4982	    {
4983	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4984	      hi->root.type = bfd_link_hash_indirect;
4985	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4986	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4987	      sym_hash = elf_sym_hashes (abfd);
4988	      if (sym_hash)
4989		for (symidx = 0; symidx < extsymcount; ++symidx)
4990		  if (sym_hash[symidx] == hi)
4991		    {
4992		      sym_hash[symidx] = h;
4993		      break;
4994		    }
4995	    }
4996	  free (shortname);
4997	}
4998      free (nondeflt_vers);
4999      nondeflt_vers = NULL;
5000    }
5001
5002  /* Now set the weakdefs field correctly for all the weak defined
5003     symbols we found.  The only way to do this is to search all the
5004     symbols.  Since we only need the information for non functions in
5005     dynamic objects, that's the only time we actually put anything on
5006     the list WEAKS.  We need this information so that if a regular
5007     object refers to a symbol defined weakly in a dynamic object, the
5008     real symbol in the dynamic object is also put in the dynamic
5009     symbols; we also must arrange for both symbols to point to the
5010     same memory location.  We could handle the general case of symbol
5011     aliasing, but a general symbol alias can only be generated in
5012     assembler code, handling it correctly would be very time
5013     consuming, and other ELF linkers don't handle general aliasing
5014     either.  */
5015  if (weaks != NULL)
5016    {
5017      struct elf_link_hash_entry **hpp;
5018      struct elf_link_hash_entry **hppend;
5019      struct elf_link_hash_entry **sorted_sym_hash;
5020      struct elf_link_hash_entry *h;
5021      size_t sym_count;
5022
5023      /* Since we have to search the whole symbol list for each weak
5024	 defined symbol, search time for N weak defined symbols will be
5025	 O(N^2). Binary search will cut it down to O(NlogN).  */
5026      amt = extsymcount;
5027      amt *= sizeof (struct elf_link_hash_entry *);
5028      sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5029      if (sorted_sym_hash == NULL)
5030	goto error_return;
5031      sym_hash = sorted_sym_hash;
5032      hpp = elf_sym_hashes (abfd);
5033      hppend = hpp + extsymcount;
5034      sym_count = 0;
5035      for (; hpp < hppend; hpp++)
5036	{
5037	  h = *hpp;
5038	  if (h != NULL
5039	      && h->root.type == bfd_link_hash_defined
5040	      && !bed->is_function_type (h->type))
5041	    {
5042	      *sym_hash = h;
5043	      sym_hash++;
5044	      sym_count++;
5045	    }
5046	}
5047
5048      qsort (sorted_sym_hash, sym_count,
5049	     sizeof (struct elf_link_hash_entry *),
5050	     elf_sort_symbol);
5051
5052      while (weaks != NULL)
5053	{
5054	  struct elf_link_hash_entry *hlook;
5055	  asection *slook;
5056	  bfd_vma vlook;
5057	  size_t i, j, idx = 0;
5058
5059	  hlook = weaks;
5060	  weaks = hlook->u.weakdef;
5061	  hlook->u.weakdef = NULL;
5062
5063	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5064		      || hlook->root.type == bfd_link_hash_defweak
5065		      || hlook->root.type == bfd_link_hash_common
5066		      || hlook->root.type == bfd_link_hash_indirect);
5067	  slook = hlook->root.u.def.section;
5068	  vlook = hlook->root.u.def.value;
5069
5070	  i = 0;
5071	  j = sym_count;
5072	  while (i != j)
5073	    {
5074	      bfd_signed_vma vdiff;
5075	      idx = (i + j) / 2;
5076	      h = sorted_sym_hash[idx];
5077	      vdiff = vlook - h->root.u.def.value;
5078	      if (vdiff < 0)
5079		j = idx;
5080	      else if (vdiff > 0)
5081		i = idx + 1;
5082	      else
5083		{
5084		  int sdiff = slook->id - h->root.u.def.section->id;
5085		  if (sdiff < 0)
5086		    j = idx;
5087		  else if (sdiff > 0)
5088		    i = idx + 1;
5089		  else
5090		    break;
5091		}
5092	    }
5093
5094	  /* We didn't find a value/section match.  */
5095	  if (i == j)
5096	    continue;
5097
5098	  /* With multiple aliases, or when the weak symbol is already
5099	     strongly defined, we have multiple matching symbols and
5100	     the binary search above may land on any of them.  Step
5101	     one past the matching symbol(s).  */
5102	  while (++idx != j)
5103	    {
5104	      h = sorted_sym_hash[idx];
5105	      if (h->root.u.def.section != slook
5106		  || h->root.u.def.value != vlook)
5107		break;
5108	    }
5109
5110	  /* Now look back over the aliases.  Since we sorted by size
5111	     as well as value and section, we'll choose the one with
5112	     the largest size.  */
5113	  while (idx-- != i)
5114	    {
5115	      h = sorted_sym_hash[idx];
5116
5117	      /* Stop if value or section doesn't match.  */
5118	      if (h->root.u.def.section != slook
5119		  || h->root.u.def.value != vlook)
5120		break;
5121	      else if (h != hlook)
5122		{
5123		  hlook->u.weakdef = h;
5124
5125		  /* If the weak definition is in the list of dynamic
5126		     symbols, make sure the real definition is put
5127		     there as well.  */
5128		  if (hlook->dynindx != -1 && h->dynindx == -1)
5129		    {
5130		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5131			{
5132			err_free_sym_hash:
5133			  free (sorted_sym_hash);
5134			  goto error_return;
5135			}
5136		    }
5137
5138		  /* If the real definition is in the list of dynamic
5139		     symbols, make sure the weak definition is put
5140		     there as well.  If we don't do this, then the
5141		     dynamic loader might not merge the entries for the
5142		     real definition and the weak definition.  */
5143		  if (h->dynindx != -1 && hlook->dynindx == -1)
5144		    {
5145		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5146			goto err_free_sym_hash;
5147		    }
5148		  break;
5149		}
5150	    }
5151	}
5152
5153      free (sorted_sym_hash);
5154    }
5155
5156  if (bed->check_directives
5157      && !(*bed->check_directives) (abfd, info))
5158    return FALSE;
5159
5160  if (!info->check_relocs_after_open_input
5161      && !_bfd_elf_link_check_relocs (abfd, info))
5162    return FALSE;
5163
5164  /* If this is a non-traditional link, try to optimize the handling
5165     of the .stab/.stabstr sections.  */
5166  if (! dynamic
5167      && ! info->traditional_format
5168      && is_elf_hash_table (htab)
5169      && (info->strip != strip_all && info->strip != strip_debugger))
5170    {
5171      asection *stabstr;
5172
5173      stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5174      if (stabstr != NULL)
5175	{
5176	  bfd_size_type string_offset = 0;
5177	  asection *stab;
5178
5179	  for (stab = abfd->sections; stab; stab = stab->next)
5180	    if (CONST_STRNEQ (stab->name, ".stab")
5181		&& (!stab->name[5] ||
5182		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5183		&& (stab->flags & SEC_MERGE) == 0
5184		&& !bfd_is_abs_section (stab->output_section))
5185	      {
5186		struct bfd_elf_section_data *secdata;
5187
5188		secdata = elf_section_data (stab);
5189		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5190					       stabstr, &secdata->sec_info,
5191					       &string_offset))
5192		  goto error_return;
5193		if (secdata->sec_info)
5194		  stab->sec_info_type = SEC_INFO_TYPE_STABS;
5195	    }
5196	}
5197    }
5198
5199  if (is_elf_hash_table (htab) && add_needed)
5200    {
5201      /* Add this bfd to the loaded list.  */
5202      struct elf_link_loaded_list *n;
5203
5204      n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5205      if (n == NULL)
5206	goto error_return;
5207      n->abfd = abfd;
5208      n->next = htab->loaded;
5209      htab->loaded = n;
5210    }
5211
5212  return TRUE;
5213
5214 error_free_vers:
5215  if (old_tab != NULL)
5216    free (old_tab);
5217  if (old_strtab != NULL)
5218    free (old_strtab);
5219  if (nondeflt_vers != NULL)
5220    free (nondeflt_vers);
5221  if (extversym != NULL)
5222    free (extversym);
5223 error_free_sym:
5224  if (isymbuf != NULL)
5225    free (isymbuf);
5226 error_return:
5227  return FALSE;
5228}
5229
5230/* Return the linker hash table entry of a symbol that might be
5231   satisfied by an archive symbol.  Return -1 on error.  */
5232
5233struct elf_link_hash_entry *
5234_bfd_elf_archive_symbol_lookup (bfd *abfd,
5235				struct bfd_link_info *info,
5236				const char *name)
5237{
5238  struct elf_link_hash_entry *h;
5239  char *p, *copy;
5240  size_t len, first;
5241
5242  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5243  if (h != NULL)
5244    return h;
5245
5246  /* If this is a default version (the name contains @@), look up the
5247     symbol again with only one `@' as well as without the version.
5248     The effect is that references to the symbol with and without the
5249     version will be matched by the default symbol in the archive.  */
5250
5251  p = strchr (name, ELF_VER_CHR);
5252  if (p == NULL || p[1] != ELF_VER_CHR)
5253    return h;
5254
5255  /* First check with only one `@'.  */
5256  len = strlen (name);
5257  copy = (char *) bfd_alloc (abfd, len);
5258  if (copy == NULL)
5259    return (struct elf_link_hash_entry *) 0 - 1;
5260
5261  first = p - name + 1;
5262  memcpy (copy, name, first);
5263  memcpy (copy + first, name + first + 1, len - first);
5264
5265  h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5266  if (h == NULL)
5267    {
5268      /* We also need to check references to the symbol without the
5269	 version.  */
5270      copy[first - 1] = '\0';
5271      h = elf_link_hash_lookup (elf_hash_table (info), copy,
5272				FALSE, FALSE, TRUE);
5273    }
5274
5275  bfd_release (abfd, copy);
5276  return h;
5277}
5278
5279/* Add symbols from an ELF archive file to the linker hash table.  We
5280   don't use _bfd_generic_link_add_archive_symbols because we need to
5281   handle versioned symbols.
5282
5283   Fortunately, ELF archive handling is simpler than that done by
5284   _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5285   oddities.  In ELF, if we find a symbol in the archive map, and the
5286   symbol is currently undefined, we know that we must pull in that
5287   object file.
5288
5289   Unfortunately, we do have to make multiple passes over the symbol
5290   table until nothing further is resolved.  */
5291
5292static bfd_boolean
5293elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5294{
5295  symindex c;
5296  unsigned char *included = NULL;
5297  carsym *symdefs;
5298  bfd_boolean loop;
5299  bfd_size_type amt;
5300  const struct elf_backend_data *bed;
5301  struct elf_link_hash_entry * (*archive_symbol_lookup)
5302    (bfd *, struct bfd_link_info *, const char *);
5303
5304  if (! bfd_has_map (abfd))
5305    {
5306      /* An empty archive is a special case.  */
5307      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5308	return TRUE;
5309      bfd_set_error (bfd_error_no_armap);
5310      return FALSE;
5311    }
5312
5313  /* Keep track of all symbols we know to be already defined, and all
5314     files we know to be already included.  This is to speed up the
5315     second and subsequent passes.  */
5316  c = bfd_ardata (abfd)->symdef_count;
5317  if (c == 0)
5318    return TRUE;
5319  amt = c;
5320  amt *= sizeof (*included);
5321  included = (unsigned char *) bfd_zmalloc (amt);
5322  if (included == NULL)
5323    return FALSE;
5324
5325  symdefs = bfd_ardata (abfd)->symdefs;
5326  bed = get_elf_backend_data (abfd);
5327  archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5328
5329  do
5330    {
5331      file_ptr last;
5332      symindex i;
5333      carsym *symdef;
5334      carsym *symdefend;
5335
5336      loop = FALSE;
5337      last = -1;
5338
5339      symdef = symdefs;
5340      symdefend = symdef + c;
5341      for (i = 0; symdef < symdefend; symdef++, i++)
5342	{
5343	  struct elf_link_hash_entry *h;
5344	  bfd *element;
5345	  struct bfd_link_hash_entry *undefs_tail;
5346	  symindex mark;
5347
5348	  if (included[i])
5349	    continue;
5350	  if (symdef->file_offset == last)
5351	    {
5352	      included[i] = TRUE;
5353	      continue;
5354	    }
5355
5356	  h = archive_symbol_lookup (abfd, info, symdef->name);
5357	  if (h == (struct elf_link_hash_entry *) 0 - 1)
5358	    goto error_return;
5359
5360	  if (h == NULL)
5361	    continue;
5362
5363	  if (h->root.type == bfd_link_hash_common)
5364	    {
5365	      /* We currently have a common symbol.  The archive map contains
5366		 a reference to this symbol, so we may want to include it.  We
5367		 only want to include it however, if this archive element
5368		 contains a definition of the symbol, not just another common
5369		 declaration of it.
5370
5371		 Unfortunately some archivers (including GNU ar) will put
5372		 declarations of common symbols into their archive maps, as
5373		 well as real definitions, so we cannot just go by the archive
5374		 map alone.  Instead we must read in the element's symbol
5375		 table and check that to see what kind of symbol definition
5376		 this is.  */
5377	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5378		continue;
5379	    }
5380	  else if (h->root.type != bfd_link_hash_undefined)
5381	    {
5382	      if (h->root.type != bfd_link_hash_undefweak)
5383		/* Symbol must be defined.  Don't check it again.  */
5384		included[i] = TRUE;
5385	      continue;
5386	    }
5387
5388	  /* We need to include this archive member.  */
5389	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5390	  if (element == NULL)
5391	    goto error_return;
5392
5393	  if (! bfd_check_format (element, bfd_object))
5394	    goto error_return;
5395
5396	  undefs_tail = info->hash->undefs_tail;
5397
5398	  if (!(*info->callbacks
5399		->add_archive_element) (info, element, symdef->name, &element))
5400	    continue;
5401	  if (!bfd_link_add_symbols (element, info))
5402	    goto error_return;
5403
5404	  /* If there are any new undefined symbols, we need to make
5405	     another pass through the archive in order to see whether
5406	     they can be defined.  FIXME: This isn't perfect, because
5407	     common symbols wind up on undefs_tail and because an
5408	     undefined symbol which is defined later on in this pass
5409	     does not require another pass.  This isn't a bug, but it
5410	     does make the code less efficient than it could be.  */
5411	  if (undefs_tail != info->hash->undefs_tail)
5412	    loop = TRUE;
5413
5414	  /* Look backward to mark all symbols from this object file
5415	     which we have already seen in this pass.  */
5416	  mark = i;
5417	  do
5418	    {
5419	      included[mark] = TRUE;
5420	      if (mark == 0)
5421		break;
5422	      --mark;
5423	    }
5424	  while (symdefs[mark].file_offset == symdef->file_offset);
5425
5426	  /* We mark subsequent symbols from this object file as we go
5427	     on through the loop.  */
5428	  last = symdef->file_offset;
5429	}
5430    }
5431  while (loop);
5432
5433  free (included);
5434
5435  return TRUE;
5436
5437 error_return:
5438  if (included != NULL)
5439    free (included);
5440  return FALSE;
5441}
5442
5443/* Given an ELF BFD, add symbols to the global hash table as
5444   appropriate.  */
5445
5446bfd_boolean
5447bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5448{
5449  switch (bfd_get_format (abfd))
5450    {
5451    case bfd_object:
5452      return elf_link_add_object_symbols (abfd, info);
5453    case bfd_archive:
5454      return elf_link_add_archive_symbols (abfd, info);
5455    default:
5456      bfd_set_error (bfd_error_wrong_format);
5457      return FALSE;
5458    }
5459}
5460
5461struct hash_codes_info
5462{
5463  unsigned long *hashcodes;
5464  bfd_boolean error;
5465};
5466
5467/* This function will be called though elf_link_hash_traverse to store
5468   all hash value of the exported symbols in an array.  */
5469
5470static bfd_boolean
5471elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5472{
5473  struct hash_codes_info *inf = (struct hash_codes_info *) data;
5474  const char *name;
5475  unsigned long ha;
5476  char *alc = NULL;
5477
5478  /* Ignore indirect symbols.  These are added by the versioning code.  */
5479  if (h->dynindx == -1)
5480    return TRUE;
5481
5482  name = h->root.root.string;
5483  if (h->versioned >= versioned)
5484    {
5485      char *p = strchr (name, ELF_VER_CHR);
5486      if (p != NULL)
5487	{
5488	  alc = (char *) bfd_malloc (p - name + 1);
5489	  if (alc == NULL)
5490	    {
5491	      inf->error = TRUE;
5492	      return FALSE;
5493	    }
5494	  memcpy (alc, name, p - name);
5495	  alc[p - name] = '\0';
5496	  name = alc;
5497	}
5498    }
5499
5500  /* Compute the hash value.  */
5501  ha = bfd_elf_hash (name);
5502
5503  /* Store the found hash value in the array given as the argument.  */
5504  *(inf->hashcodes)++ = ha;
5505
5506  /* And store it in the struct so that we can put it in the hash table
5507     later.  */
5508  h->u.elf_hash_value = ha;
5509
5510  if (alc != NULL)
5511    free (alc);
5512
5513  return TRUE;
5514}
5515
5516struct collect_gnu_hash_codes
5517{
5518  bfd *output_bfd;
5519  const struct elf_backend_data *bed;
5520  unsigned long int nsyms;
5521  unsigned long int maskbits;
5522  unsigned long int *hashcodes;
5523  unsigned long int *hashval;
5524  unsigned long int *indx;
5525  unsigned long int *counts;
5526  bfd_vma *bitmask;
5527  bfd_byte *contents;
5528  long int min_dynindx;
5529  unsigned long int bucketcount;
5530  unsigned long int symindx;
5531  long int local_indx;
5532  long int shift1, shift2;
5533  unsigned long int mask;
5534  bfd_boolean error;
5535};
5536
5537/* This function will be called though elf_link_hash_traverse to store
5538   all hash value of the exported symbols in an array.  */
5539
5540static bfd_boolean
5541elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5542{
5543  struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5544  const char *name;
5545  unsigned long ha;
5546  char *alc = NULL;
5547
5548  /* Ignore indirect symbols.  These are added by the versioning code.  */
5549  if (h->dynindx == -1)
5550    return TRUE;
5551
5552  /* Ignore also local symbols and undefined symbols.  */
5553  if (! (*s->bed->elf_hash_symbol) (h))
5554    return TRUE;
5555
5556  name = h->root.root.string;
5557  if (h->versioned >= versioned)
5558    {
5559      char *p = strchr (name, ELF_VER_CHR);
5560      if (p != NULL)
5561	{
5562	  alc = (char *) bfd_malloc (p - name + 1);
5563	  if (alc == NULL)
5564	    {
5565	      s->error = TRUE;
5566	      return FALSE;
5567	    }
5568	  memcpy (alc, name, p - name);
5569	  alc[p - name] = '\0';
5570	  name = alc;
5571	}
5572    }
5573
5574  /* Compute the hash value.  */
5575  ha = bfd_elf_gnu_hash (name);
5576
5577  /* Store the found hash value in the array for compute_bucket_count,
5578     and also for .dynsym reordering purposes.  */
5579  s->hashcodes[s->nsyms] = ha;
5580  s->hashval[h->dynindx] = ha;
5581  ++s->nsyms;
5582  if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5583    s->min_dynindx = h->dynindx;
5584
5585  if (alc != NULL)
5586    free (alc);
5587
5588  return TRUE;
5589}
5590
5591/* This function will be called though elf_link_hash_traverse to do
5592   final dynaminc symbol renumbering.  */
5593
5594static bfd_boolean
5595elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5596{
5597  struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5598  unsigned long int bucket;
5599  unsigned long int val;
5600
5601  /* Ignore indirect symbols.  */
5602  if (h->dynindx == -1)
5603    return TRUE;
5604
5605  /* Ignore also local symbols and undefined symbols.  */
5606  if (! (*s->bed->elf_hash_symbol) (h))
5607    {
5608      if (h->dynindx >= s->min_dynindx)
5609	h->dynindx = s->local_indx++;
5610      return TRUE;
5611    }
5612
5613  bucket = s->hashval[h->dynindx] % s->bucketcount;
5614  val = (s->hashval[h->dynindx] >> s->shift1)
5615	& ((s->maskbits >> s->shift1) - 1);
5616  s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5617  s->bitmask[val]
5618    |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5619  val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5620  if (s->counts[bucket] == 1)
5621    /* Last element terminates the chain.  */
5622    val |= 1;
5623  bfd_put_32 (s->output_bfd, val,
5624	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5625  --s->counts[bucket];
5626  h->dynindx = s->indx[bucket]++;
5627  return TRUE;
5628}
5629
5630/* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5631
5632bfd_boolean
5633_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5634{
5635  return !(h->forced_local
5636	   || h->root.type == bfd_link_hash_undefined
5637	   || h->root.type == bfd_link_hash_undefweak
5638	   || ((h->root.type == bfd_link_hash_defined
5639		|| h->root.type == bfd_link_hash_defweak)
5640	       && h->root.u.def.section->output_section == NULL));
5641}
5642
5643/* Array used to determine the number of hash table buckets to use
5644   based on the number of symbols there are.  If there are fewer than
5645   3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5646   fewer than 37 we use 17 buckets, and so forth.  We never use more
5647   than 32771 buckets.  */
5648
5649static const size_t elf_buckets[] =
5650{
5651  1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5652  16411, 32771, 0
5653};
5654
5655/* Compute bucket count for hashing table.  We do not use a static set
5656   of possible tables sizes anymore.  Instead we determine for all
5657   possible reasonable sizes of the table the outcome (i.e., the
5658   number of collisions etc) and choose the best solution.  The
5659   weighting functions are not too simple to allow the table to grow
5660   without bounds.  Instead one of the weighting factors is the size.
5661   Therefore the result is always a good payoff between few collisions
5662   (= short chain lengths) and table size.  */
5663static size_t
5664compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5665		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5666		      unsigned long int nsyms,
5667		      int gnu_hash)
5668{
5669  size_t best_size = 0;
5670  unsigned long int i;
5671
5672  /* We have a problem here.  The following code to optimize the table
5673     size requires an integer type with more the 32 bits.  If
5674     BFD_HOST_U_64_BIT is set we know about such a type.  */
5675#ifdef BFD_HOST_U_64_BIT
5676  if (info->optimize)
5677    {
5678      size_t minsize;
5679      size_t maxsize;
5680      BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5681      bfd *dynobj = elf_hash_table (info)->dynobj;
5682      size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5683      const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5684      unsigned long int *counts;
5685      bfd_size_type amt;
5686      unsigned int no_improvement_count = 0;
5687
5688      /* Possible optimization parameters: if we have NSYMS symbols we say
5689	 that the hashing table must at least have NSYMS/4 and at most
5690	 2*NSYMS buckets.  */
5691      minsize = nsyms / 4;
5692      if (minsize == 0)
5693	minsize = 1;
5694      best_size = maxsize = nsyms * 2;
5695      if (gnu_hash)
5696	{
5697	  if (minsize < 2)
5698	    minsize = 2;
5699	  if ((best_size & 31) == 0)
5700	    ++best_size;
5701	}
5702
5703      /* Create array where we count the collisions in.  We must use bfd_malloc
5704	 since the size could be large.  */
5705      amt = maxsize;
5706      amt *= sizeof (unsigned long int);
5707      counts = (unsigned long int *) bfd_malloc (amt);
5708      if (counts == NULL)
5709	return 0;
5710
5711      /* Compute the "optimal" size for the hash table.  The criteria is a
5712	 minimal chain length.  The minor criteria is (of course) the size
5713	 of the table.  */
5714      for (i = minsize; i < maxsize; ++i)
5715	{
5716	  /* Walk through the array of hashcodes and count the collisions.  */
5717	  BFD_HOST_U_64_BIT max;
5718	  unsigned long int j;
5719	  unsigned long int fact;
5720
5721	  if (gnu_hash && (i & 31) == 0)
5722	    continue;
5723
5724	  memset (counts, '\0', i * sizeof (unsigned long int));
5725
5726	  /* Determine how often each hash bucket is used.  */
5727	  for (j = 0; j < nsyms; ++j)
5728	    ++counts[hashcodes[j] % i];
5729
5730	  /* For the weight function we need some information about the
5731	     pagesize on the target.  This is information need not be 100%
5732	     accurate.  Since this information is not available (so far) we
5733	     define it here to a reasonable default value.  If it is crucial
5734	     to have a better value some day simply define this value.  */
5735# ifndef BFD_TARGET_PAGESIZE
5736#  define BFD_TARGET_PAGESIZE	(4096)
5737# endif
5738
5739	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5740	     and the chains.  */
5741	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5742
5743# if 1
5744	  /* Variant 1: optimize for short chains.  We add the squares
5745	     of all the chain lengths (which favors many small chain
5746	     over a few long chains).  */
5747	  for (j = 0; j < i; ++j)
5748	    max += counts[j] * counts[j];
5749
5750	  /* This adds penalties for the overall size of the table.  */
5751	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5752	  max *= fact * fact;
5753# else
5754	  /* Variant 2: Optimize a lot more for small table.  Here we
5755	     also add squares of the size but we also add penalties for
5756	     empty slots (the +1 term).  */
5757	  for (j = 0; j < i; ++j)
5758	    max += (1 + counts[j]) * (1 + counts[j]);
5759
5760	  /* The overall size of the table is considered, but not as
5761	     strong as in variant 1, where it is squared.  */
5762	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5763	  max *= fact;
5764# endif
5765
5766	  /* Compare with current best results.  */
5767	  if (max < best_chlen)
5768	    {
5769	      best_chlen = max;
5770	      best_size = i;
5771	      no_improvement_count = 0;
5772	    }
5773	  /* PR 11843: Avoid futile long searches for the best bucket size
5774	     when there are a large number of symbols.  */
5775	  else if (++no_improvement_count == 100)
5776	    break;
5777	}
5778
5779      free (counts);
5780    }
5781  else
5782#endif /* defined (BFD_HOST_U_64_BIT) */
5783    {
5784      /* This is the fallback solution if no 64bit type is available or if we
5785	 are not supposed to spend much time on optimizations.  We select the
5786	 bucket count using a fixed set of numbers.  */
5787      for (i = 0; elf_buckets[i] != 0; i++)
5788	{
5789	  best_size = elf_buckets[i];
5790	  if (nsyms < elf_buckets[i + 1])
5791	    break;
5792	}
5793      if (gnu_hash && best_size < 2)
5794	best_size = 2;
5795    }
5796
5797  return best_size;
5798}
5799
5800/* Size any SHT_GROUP section for ld -r.  */
5801
5802bfd_boolean
5803_bfd_elf_size_group_sections (struct bfd_link_info *info)
5804{
5805  bfd *ibfd;
5806
5807  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5808    if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5809	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5810      return FALSE;
5811  return TRUE;
5812}
5813
5814/* Set a default stack segment size.  The value in INFO wins.  If it
5815   is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5816   undefined it is initialized.  */
5817
5818bfd_boolean
5819bfd_elf_stack_segment_size (bfd *output_bfd,
5820			    struct bfd_link_info *info,
5821			    const char *legacy_symbol,
5822			    bfd_vma default_size)
5823{
5824  struct elf_link_hash_entry *h = NULL;
5825
5826  /* Look for legacy symbol.  */
5827  if (legacy_symbol)
5828    h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5829			      FALSE, FALSE, FALSE);
5830  if (h && (h->root.type == bfd_link_hash_defined
5831	    || h->root.type == bfd_link_hash_defweak)
5832      && h->def_regular
5833      && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5834    {
5835      /* The symbol has no type if specified on the command line.  */
5836      h->type = STT_OBJECT;
5837      if (info->stacksize)
5838	/* xgettext:c-format */
5839	_bfd_error_handler (_("%B: stack size specified and %s set"),
5840			    output_bfd, legacy_symbol);
5841      else if (h->root.u.def.section != bfd_abs_section_ptr)
5842	/* xgettext:c-format */
5843	_bfd_error_handler (_("%B: %s not absolute"),
5844			    output_bfd, legacy_symbol);
5845      else
5846	info->stacksize = h->root.u.def.value;
5847    }
5848
5849  if (!info->stacksize)
5850    /* If the user didn't set a size, or explicitly inhibit the
5851       size, set it now.  */
5852    info->stacksize = default_size;
5853
5854  /* Provide the legacy symbol, if it is referenced.  */
5855  if (h && (h->root.type == bfd_link_hash_undefined
5856	    || h->root.type == bfd_link_hash_undefweak))
5857    {
5858      struct bfd_link_hash_entry *bh = NULL;
5859
5860      if (!(_bfd_generic_link_add_one_symbol
5861	    (info, output_bfd, legacy_symbol,
5862	     BSF_GLOBAL, bfd_abs_section_ptr,
5863	     info->stacksize >= 0 ? info->stacksize : 0,
5864	     NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5865	return FALSE;
5866
5867      h = (struct elf_link_hash_entry *) bh;
5868      h->def_regular = 1;
5869      h->type = STT_OBJECT;
5870    }
5871
5872  return TRUE;
5873}
5874
5875/* Set up the sizes and contents of the ELF dynamic sections.  This is
5876   called by the ELF linker emulation before_allocation routine.  We
5877   must set the sizes of the sections before the linker sets the
5878   addresses of the various sections.  */
5879
5880bfd_boolean
5881bfd_elf_size_dynamic_sections (bfd *output_bfd,
5882			       const char *soname,
5883			       const char *rpath,
5884			       const char *filter_shlib,
5885			       const char *audit,
5886			       const char *depaudit,
5887			       const char * const *auxiliary_filters,
5888			       struct bfd_link_info *info,
5889			       asection **sinterpptr)
5890{
5891  size_t soname_indx;
5892  bfd *dynobj;
5893  const struct elf_backend_data *bed;
5894  struct elf_info_failed asvinfo;
5895
5896  *sinterpptr = NULL;
5897
5898  soname_indx = (size_t) -1;
5899
5900  if (!is_elf_hash_table (info->hash))
5901    return TRUE;
5902
5903  bed = get_elf_backend_data (output_bfd);
5904
5905  /* Any syms created from now on start with -1 in
5906     got.refcount/offset and plt.refcount/offset.  */
5907  elf_hash_table (info)->init_got_refcount
5908    = elf_hash_table (info)->init_got_offset;
5909  elf_hash_table (info)->init_plt_refcount
5910    = elf_hash_table (info)->init_plt_offset;
5911
5912  if (bfd_link_relocatable (info)
5913      && !_bfd_elf_size_group_sections (info))
5914    return FALSE;
5915
5916  /* The backend may have to create some sections regardless of whether
5917     we're dynamic or not.  */
5918  if (bed->elf_backend_always_size_sections
5919      && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5920    return FALSE;
5921
5922  /* Determine any GNU_STACK segment requirements, after the backend
5923     has had a chance to set a default segment size.  */
5924  if (info->execstack)
5925    elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5926  else if (info->noexecstack)
5927    elf_stack_flags (output_bfd) = PF_R | PF_W;
5928  else
5929    {
5930      bfd *inputobj;
5931      asection *notesec = NULL;
5932      int exec = 0;
5933
5934      for (inputobj = info->input_bfds;
5935	   inputobj;
5936	   inputobj = inputobj->link.next)
5937	{
5938	  asection *s;
5939
5940	  if (inputobj->flags
5941	      & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5942	    continue;
5943	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5944	  if (s)
5945	    {
5946	      if (s->flags & SEC_CODE)
5947		exec = PF_X;
5948	      notesec = s;
5949	    }
5950	  else if (bed->default_execstack)
5951	    exec = PF_X;
5952	}
5953      if (notesec || info->stacksize > 0)
5954	elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5955      if (notesec && exec && bfd_link_relocatable (info)
5956	  && notesec->output_section != bfd_abs_section_ptr)
5957	notesec->output_section->flags |= SEC_CODE;
5958    }
5959
5960  dynobj = elf_hash_table (info)->dynobj;
5961
5962  if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5963    {
5964      struct elf_info_failed eif;
5965      struct elf_link_hash_entry *h;
5966      asection *dynstr;
5967      struct bfd_elf_version_tree *t;
5968      struct bfd_elf_version_expr *d;
5969      asection *s;
5970      bfd_boolean all_defined;
5971
5972      *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5973      BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5974
5975      if (soname != NULL)
5976	{
5977	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5978					     soname, TRUE);
5979	  if (soname_indx == (size_t) -1
5980	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5981	    return FALSE;
5982	}
5983
5984      if (info->symbolic)
5985	{
5986	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5987	    return FALSE;
5988	  info->flags |= DF_SYMBOLIC;
5989	}
5990
5991      if (rpath != NULL)
5992	{
5993	  size_t indx;
5994	  bfd_vma tag;
5995
5996	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5997				      TRUE);
5998	  if (indx == (size_t) -1)
5999	    return FALSE;
6000
6001	  tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6002	  if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6003	    return FALSE;
6004	}
6005
6006      if (filter_shlib != NULL)
6007	{
6008	  size_t indx;
6009
6010	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6011				      filter_shlib, TRUE);
6012	  if (indx == (size_t) -1
6013	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6014	    return FALSE;
6015	}
6016
6017      if (auxiliary_filters != NULL)
6018	{
6019	  const char * const *p;
6020
6021	  for (p = auxiliary_filters; *p != NULL; p++)
6022	    {
6023	      size_t indx;
6024
6025	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6026					  *p, TRUE);
6027	      if (indx == (size_t) -1
6028		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6029		return FALSE;
6030	    }
6031	}
6032
6033      if (audit != NULL)
6034	{
6035	  size_t indx;
6036
6037	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6038				      TRUE);
6039	  if (indx == (size_t) -1
6040	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6041	    return FALSE;
6042	}
6043
6044      if (depaudit != NULL)
6045	{
6046	  size_t indx;
6047
6048	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6049				      TRUE);
6050	  if (indx == (size_t) -1
6051	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6052	    return FALSE;
6053	}
6054
6055      eif.info = info;
6056      eif.failed = FALSE;
6057
6058      /* If we are supposed to export all symbols into the dynamic symbol
6059	 table (this is not the normal case), then do so.  */
6060      if (info->export_dynamic
6061	  || (bfd_link_executable (info) && info->dynamic))
6062	{
6063	  elf_link_hash_traverse (elf_hash_table (info),
6064				  _bfd_elf_export_symbol,
6065				  &eif);
6066	  if (eif.failed)
6067	    return FALSE;
6068	}
6069
6070      /* Make all global versions with definition.  */
6071      for (t = info->version_info; t != NULL; t = t->next)
6072	for (d = t->globals.list; d != NULL; d = d->next)
6073	  if (!d->symver && d->literal)
6074	    {
6075	      const char *verstr, *name;
6076	      size_t namelen, verlen, newlen;
6077	      char *newname, *p, leading_char;
6078	      struct elf_link_hash_entry *newh;
6079
6080	      leading_char = bfd_get_symbol_leading_char (output_bfd);
6081	      name = d->pattern;
6082	      namelen = strlen (name) + (leading_char != '\0');
6083	      verstr = t->name;
6084	      verlen = strlen (verstr);
6085	      newlen = namelen + verlen + 3;
6086
6087	      newname = (char *) bfd_malloc (newlen);
6088	      if (newname == NULL)
6089		return FALSE;
6090	      newname[0] = leading_char;
6091	      memcpy (newname + (leading_char != '\0'), name, namelen);
6092
6093	      /* Check the hidden versioned definition.  */
6094	      p = newname + namelen;
6095	      *p++ = ELF_VER_CHR;
6096	      memcpy (p, verstr, verlen + 1);
6097	      newh = elf_link_hash_lookup (elf_hash_table (info),
6098					   newname, FALSE, FALSE,
6099					   FALSE);
6100	      if (newh == NULL
6101		  || (newh->root.type != bfd_link_hash_defined
6102		      && newh->root.type != bfd_link_hash_defweak))
6103		{
6104		  /* Check the default versioned definition.  */
6105		  *p++ = ELF_VER_CHR;
6106		  memcpy (p, verstr, verlen + 1);
6107		  newh = elf_link_hash_lookup (elf_hash_table (info),
6108					       newname, FALSE, FALSE,
6109					       FALSE);
6110		}
6111	      free (newname);
6112
6113	      /* Mark this version if there is a definition and it is
6114		 not defined in a shared object.  */
6115	      if (newh != NULL
6116		  && !newh->def_dynamic
6117		  && (newh->root.type == bfd_link_hash_defined
6118		      || newh->root.type == bfd_link_hash_defweak))
6119		d->symver = 1;
6120	    }
6121
6122      /* Attach all the symbols to their version information.  */
6123      asvinfo.info = info;
6124      asvinfo.failed = FALSE;
6125
6126      elf_link_hash_traverse (elf_hash_table (info),
6127			      _bfd_elf_link_assign_sym_version,
6128			      &asvinfo);
6129      if (asvinfo.failed)
6130	return FALSE;
6131
6132      if (!info->allow_undefined_version)
6133	{
6134	  /* Check if all global versions have a definition.  */
6135	  all_defined = TRUE;
6136	  for (t = info->version_info; t != NULL; t = t->next)
6137	    for (d = t->globals.list; d != NULL; d = d->next)
6138	      if (d->literal && !d->symver && !d->script)
6139		{
6140		  _bfd_error_handler
6141		    (_("%s: undefined version: %s"),
6142		     d->pattern, t->name);
6143		  all_defined = FALSE;
6144		}
6145
6146	  if (!all_defined)
6147	    {
6148	      bfd_set_error (bfd_error_bad_value);
6149	      return FALSE;
6150	    }
6151	}
6152
6153      /* Find all symbols which were defined in a dynamic object and make
6154	 the backend pick a reasonable value for them.  */
6155      elf_link_hash_traverse (elf_hash_table (info),
6156			      _bfd_elf_adjust_dynamic_symbol,
6157			      &eif);
6158      if (eif.failed)
6159	return FALSE;
6160
6161      /* Add some entries to the .dynamic section.  We fill in some of the
6162	 values later, in bfd_elf_final_link, but we must add the entries
6163	 now so that we know the final size of the .dynamic section.  */
6164
6165      /* If there are initialization and/or finalization functions to
6166	 call then add the corresponding DT_INIT/DT_FINI entries.  */
6167      h = (info->init_function
6168	   ? elf_link_hash_lookup (elf_hash_table (info),
6169				   info->init_function, FALSE,
6170				   FALSE, FALSE)
6171	   : NULL);
6172      if (h != NULL
6173	  && (h->ref_regular
6174	      || h->def_regular))
6175	{
6176	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6177	    return FALSE;
6178	}
6179      h = (info->fini_function
6180	   ? elf_link_hash_lookup (elf_hash_table (info),
6181				   info->fini_function, FALSE,
6182				   FALSE, FALSE)
6183	   : NULL);
6184      if (h != NULL
6185	  && (h->ref_regular
6186	      || h->def_regular))
6187	{
6188	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6189	    return FALSE;
6190	}
6191
6192      s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6193      if (s != NULL && s->linker_has_input)
6194	{
6195	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
6196	  if (! bfd_link_executable (info))
6197	    {
6198	      bfd *sub;
6199	      asection *o;
6200
6201	      for (sub = info->input_bfds; sub != NULL;
6202		   sub = sub->link.next)
6203		if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6204		  for (o = sub->sections; o != NULL; o = o->next)
6205		    if (elf_section_data (o)->this_hdr.sh_type
6206			== SHT_PREINIT_ARRAY)
6207		      {
6208			_bfd_error_handler
6209			  (_("%B: .preinit_array section is not allowed in DSO"),
6210			   sub);
6211			break;
6212		      }
6213
6214	      bfd_set_error (bfd_error_nonrepresentable_section);
6215	      return FALSE;
6216	    }
6217
6218	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6219	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6220	    return FALSE;
6221	}
6222      s = bfd_get_section_by_name (output_bfd, ".init_array");
6223      if (s != NULL && s->linker_has_input)
6224	{
6225	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6226	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6227	    return FALSE;
6228	}
6229      s = bfd_get_section_by_name (output_bfd, ".fini_array");
6230      if (s != NULL && s->linker_has_input)
6231	{
6232	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6233	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6234	    return FALSE;
6235	}
6236
6237      dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6238      /* If .dynstr is excluded from the link, we don't want any of
6239	 these tags.  Strictly, we should be checking each section
6240	 individually;  This quick check covers for the case where
6241	 someone does a /DISCARD/ : { *(*) }.  */
6242      if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6243	{
6244	  bfd_size_type strsize;
6245
6246	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6247	  if ((info->emit_hash
6248	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6249	      || (info->emit_gnu_hash
6250		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6251	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6252	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6253	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6254	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6255					      bed->s->sizeof_sym))
6256	    return FALSE;
6257	}
6258    }
6259
6260  if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6261    return FALSE;
6262
6263  /* The backend must work out the sizes of all the other dynamic
6264     sections.  */
6265  if (dynobj != NULL
6266      && bed->elf_backend_size_dynamic_sections != NULL
6267      && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6268    return FALSE;
6269
6270  if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6271    {
6272      unsigned long section_sym_count;
6273      struct bfd_elf_version_tree *verdefs;
6274      asection *s;
6275
6276      /* Set up the version definition section.  */
6277      s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6278      BFD_ASSERT (s != NULL);
6279
6280      /* We may have created additional version definitions if we are
6281	 just linking a regular application.  */
6282      verdefs = info->version_info;
6283
6284      /* Skip anonymous version tag.  */
6285      if (verdefs != NULL && verdefs->vernum == 0)
6286	verdefs = verdefs->next;
6287
6288      if (verdefs == NULL && !info->create_default_symver)
6289	s->flags |= SEC_EXCLUDE;
6290      else
6291	{
6292	  unsigned int cdefs;
6293	  bfd_size_type size;
6294	  struct bfd_elf_version_tree *t;
6295	  bfd_byte *p;
6296	  Elf_Internal_Verdef def;
6297	  Elf_Internal_Verdaux defaux;
6298	  struct bfd_link_hash_entry *bh;
6299	  struct elf_link_hash_entry *h;
6300	  const char *name;
6301
6302	  cdefs = 0;
6303	  size = 0;
6304
6305	  /* Make space for the base version.  */
6306	  size += sizeof (Elf_External_Verdef);
6307	  size += sizeof (Elf_External_Verdaux);
6308	  ++cdefs;
6309
6310	  /* Make space for the default version.  */
6311	  if (info->create_default_symver)
6312	    {
6313	      size += sizeof (Elf_External_Verdef);
6314	      ++cdefs;
6315	    }
6316
6317	  for (t = verdefs; t != NULL; t = t->next)
6318	    {
6319	      struct bfd_elf_version_deps *n;
6320
6321	      /* Don't emit base version twice.  */
6322	      if (t->vernum == 0)
6323		continue;
6324
6325	      size += sizeof (Elf_External_Verdef);
6326	      size += sizeof (Elf_External_Verdaux);
6327	      ++cdefs;
6328
6329	      for (n = t->deps; n != NULL; n = n->next)
6330		size += sizeof (Elf_External_Verdaux);
6331	    }
6332
6333	  s->size = size;
6334	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6335	  if (s->contents == NULL && s->size != 0)
6336	    return FALSE;
6337
6338	  /* Fill in the version definition section.  */
6339
6340	  p = s->contents;
6341
6342	  def.vd_version = VER_DEF_CURRENT;
6343	  def.vd_flags = VER_FLG_BASE;
6344	  def.vd_ndx = 1;
6345	  def.vd_cnt = 1;
6346	  if (info->create_default_symver)
6347	    {
6348	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6349	      def.vd_next = sizeof (Elf_External_Verdef);
6350	    }
6351	  else
6352	    {
6353	      def.vd_aux = sizeof (Elf_External_Verdef);
6354	      def.vd_next = (sizeof (Elf_External_Verdef)
6355			     + sizeof (Elf_External_Verdaux));
6356	    }
6357
6358	  if (soname_indx != (size_t) -1)
6359	    {
6360	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6361				      soname_indx);
6362	      def.vd_hash = bfd_elf_hash (soname);
6363	      defaux.vda_name = soname_indx;
6364	      name = soname;
6365	    }
6366	  else
6367	    {
6368	      size_t indx;
6369
6370	      name = lbasename (output_bfd->filename);
6371	      def.vd_hash = bfd_elf_hash (name);
6372	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6373					  name, FALSE);
6374	      if (indx == (size_t) -1)
6375		return FALSE;
6376	      defaux.vda_name = indx;
6377	    }
6378	  defaux.vda_next = 0;
6379
6380	  _bfd_elf_swap_verdef_out (output_bfd, &def,
6381				    (Elf_External_Verdef *) p);
6382	  p += sizeof (Elf_External_Verdef);
6383	  if (info->create_default_symver)
6384	    {
6385	      /* Add a symbol representing this version.  */
6386	      bh = NULL;
6387	      if (! (_bfd_generic_link_add_one_symbol
6388		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6389		      0, NULL, FALSE,
6390		      get_elf_backend_data (dynobj)->collect, &bh)))
6391		return FALSE;
6392	      h = (struct elf_link_hash_entry *) bh;
6393	      h->non_elf = 0;
6394	      h->def_regular = 1;
6395	      h->type = STT_OBJECT;
6396	      h->verinfo.vertree = NULL;
6397
6398	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6399		return FALSE;
6400
6401	      /* Create a duplicate of the base version with the same
6402		 aux block, but different flags.  */
6403	      def.vd_flags = 0;
6404	      def.vd_ndx = 2;
6405	      def.vd_aux = sizeof (Elf_External_Verdef);
6406	      if (verdefs)
6407		def.vd_next = (sizeof (Elf_External_Verdef)
6408			       + sizeof (Elf_External_Verdaux));
6409	      else
6410		def.vd_next = 0;
6411	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6412					(Elf_External_Verdef *) p);
6413	      p += sizeof (Elf_External_Verdef);
6414	    }
6415	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6416				     (Elf_External_Verdaux *) p);
6417	  p += sizeof (Elf_External_Verdaux);
6418
6419	  for (t = verdefs; t != NULL; t = t->next)
6420	    {
6421	      unsigned int cdeps;
6422	      struct bfd_elf_version_deps *n;
6423
6424	      /* Don't emit the base version twice.  */
6425	      if (t->vernum == 0)
6426		continue;
6427
6428	      cdeps = 0;
6429	      for (n = t->deps; n != NULL; n = n->next)
6430		++cdeps;
6431
6432	      /* Add a symbol representing this version.  */
6433	      bh = NULL;
6434	      if (! (_bfd_generic_link_add_one_symbol
6435		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6436		      0, NULL, FALSE,
6437		      get_elf_backend_data (dynobj)->collect, &bh)))
6438		return FALSE;
6439	      h = (struct elf_link_hash_entry *) bh;
6440	      h->non_elf = 0;
6441	      h->def_regular = 1;
6442	      h->type = STT_OBJECT;
6443	      h->verinfo.vertree = t;
6444
6445	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6446		return FALSE;
6447
6448	      def.vd_version = VER_DEF_CURRENT;
6449	      def.vd_flags = 0;
6450	      if (t->globals.list == NULL
6451		  && t->locals.list == NULL
6452		  && ! t->used)
6453		def.vd_flags |= VER_FLG_WEAK;
6454	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6455	      def.vd_cnt = cdeps + 1;
6456	      def.vd_hash = bfd_elf_hash (t->name);
6457	      def.vd_aux = sizeof (Elf_External_Verdef);
6458	      def.vd_next = 0;
6459
6460	      /* If a basever node is next, it *must* be the last node in
6461		 the chain, otherwise Verdef construction breaks.  */
6462	      if (t->next != NULL && t->next->vernum == 0)
6463		BFD_ASSERT (t->next->next == NULL);
6464
6465	      if (t->next != NULL && t->next->vernum != 0)
6466		def.vd_next = (sizeof (Elf_External_Verdef)
6467			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6468
6469	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6470					(Elf_External_Verdef *) p);
6471	      p += sizeof (Elf_External_Verdef);
6472
6473	      defaux.vda_name = h->dynstr_index;
6474	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6475				      h->dynstr_index);
6476	      defaux.vda_next = 0;
6477	      if (t->deps != NULL)
6478		defaux.vda_next = sizeof (Elf_External_Verdaux);
6479	      t->name_indx = defaux.vda_name;
6480
6481	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6482					 (Elf_External_Verdaux *) p);
6483	      p += sizeof (Elf_External_Verdaux);
6484
6485	      for (n = t->deps; n != NULL; n = n->next)
6486		{
6487		  if (n->version_needed == NULL)
6488		    {
6489		      /* This can happen if there was an error in the
6490			 version script.  */
6491		      defaux.vda_name = 0;
6492		    }
6493		  else
6494		    {
6495		      defaux.vda_name = n->version_needed->name_indx;
6496		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6497					      defaux.vda_name);
6498		    }
6499		  if (n->next == NULL)
6500		    defaux.vda_next = 0;
6501		  else
6502		    defaux.vda_next = sizeof (Elf_External_Verdaux);
6503
6504		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6505					     (Elf_External_Verdaux *) p);
6506		  p += sizeof (Elf_External_Verdaux);
6507		}
6508	    }
6509
6510	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6511	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6512	    return FALSE;
6513
6514	  elf_tdata (output_bfd)->cverdefs = cdefs;
6515	}
6516
6517      if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6518	{
6519	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6520	    return FALSE;
6521	}
6522      else if (info->flags & DF_BIND_NOW)
6523	{
6524	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6525	    return FALSE;
6526	}
6527
6528      if (info->flags_1)
6529	{
6530	  if (bfd_link_executable (info))
6531	    info->flags_1 &= ~ (DF_1_INITFIRST
6532				| DF_1_NODELETE
6533				| DF_1_NOOPEN);
6534	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6535	    return FALSE;
6536	}
6537
6538      /* Work out the size of the version reference section.  */
6539
6540      s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6541      BFD_ASSERT (s != NULL);
6542      {
6543	struct elf_find_verdep_info sinfo;
6544
6545	sinfo.info = info;
6546	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6547	if (sinfo.vers == 0)
6548	  sinfo.vers = 1;
6549	sinfo.failed = FALSE;
6550
6551	elf_link_hash_traverse (elf_hash_table (info),
6552				_bfd_elf_link_find_version_dependencies,
6553				&sinfo);
6554	if (sinfo.failed)
6555	  return FALSE;
6556
6557	if (elf_tdata (output_bfd)->verref == NULL)
6558	  s->flags |= SEC_EXCLUDE;
6559	else
6560	  {
6561	    Elf_Internal_Verneed *t;
6562	    unsigned int size;
6563	    unsigned int crefs;
6564	    bfd_byte *p;
6565
6566	    /* Build the version dependency section.  */
6567	    size = 0;
6568	    crefs = 0;
6569	    for (t = elf_tdata (output_bfd)->verref;
6570		 t != NULL;
6571		 t = t->vn_nextref)
6572	      {
6573		Elf_Internal_Vernaux *a;
6574
6575		size += sizeof (Elf_External_Verneed);
6576		++crefs;
6577		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6578		  size += sizeof (Elf_External_Vernaux);
6579	      }
6580
6581	    s->size = size;
6582	    s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6583	    if (s->contents == NULL)
6584	      return FALSE;
6585
6586	    p = s->contents;
6587	    for (t = elf_tdata (output_bfd)->verref;
6588		 t != NULL;
6589		 t = t->vn_nextref)
6590	      {
6591		unsigned int caux;
6592		Elf_Internal_Vernaux *a;
6593		size_t indx;
6594
6595		caux = 0;
6596		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6597		  ++caux;
6598
6599		t->vn_version = VER_NEED_CURRENT;
6600		t->vn_cnt = caux;
6601		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6602					    elf_dt_name (t->vn_bfd) != NULL
6603					    ? elf_dt_name (t->vn_bfd)
6604					    : lbasename (t->vn_bfd->filename),
6605					    FALSE);
6606		if (indx == (size_t) -1)
6607		  return FALSE;
6608		t->vn_file = indx;
6609		t->vn_aux = sizeof (Elf_External_Verneed);
6610		if (t->vn_nextref == NULL)
6611		  t->vn_next = 0;
6612		else
6613		  t->vn_next = (sizeof (Elf_External_Verneed)
6614				+ caux * sizeof (Elf_External_Vernaux));
6615
6616		_bfd_elf_swap_verneed_out (output_bfd, t,
6617					   (Elf_External_Verneed *) p);
6618		p += sizeof (Elf_External_Verneed);
6619
6620		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6621		  {
6622		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6623		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6624						a->vna_nodename, FALSE);
6625		    if (indx == (size_t) -1)
6626		      return FALSE;
6627		    a->vna_name = indx;
6628		    if (a->vna_nextptr == NULL)
6629		      a->vna_next = 0;
6630		    else
6631		      a->vna_next = sizeof (Elf_External_Vernaux);
6632
6633		    _bfd_elf_swap_vernaux_out (output_bfd, a,
6634					       (Elf_External_Vernaux *) p);
6635		    p += sizeof (Elf_External_Vernaux);
6636		  }
6637	      }
6638
6639	    if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6640		|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6641	      return FALSE;
6642
6643	    elf_tdata (output_bfd)->cverrefs = crefs;
6644	  }
6645      }
6646
6647      if ((elf_tdata (output_bfd)->cverrefs == 0
6648	   && elf_tdata (output_bfd)->cverdefs == 0)
6649	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6650					     &section_sym_count) == 0)
6651	{
6652	  s = bfd_get_linker_section (dynobj, ".gnu.version");
6653	  s->flags |= SEC_EXCLUDE;
6654	}
6655    }
6656  return TRUE;
6657}
6658
6659/* Find the first non-excluded output section.  We'll use its
6660   section symbol for some emitted relocs.  */
6661void
6662_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6663{
6664  asection *s;
6665
6666  for (s = output_bfd->sections; s != NULL; s = s->next)
6667    if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6668	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6669      {
6670	elf_hash_table (info)->text_index_section = s;
6671	break;
6672      }
6673}
6674
6675/* Find two non-excluded output sections, one for code, one for data.
6676   We'll use their section symbols for some emitted relocs.  */
6677void
6678_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6679{
6680  asection *s;
6681
6682  /* Data first, since setting text_index_section changes
6683     _bfd_elf_link_omit_section_dynsym.  */
6684  for (s = output_bfd->sections; s != NULL; s = s->next)
6685    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6686	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6687      {
6688	elf_hash_table (info)->data_index_section = s;
6689	break;
6690      }
6691
6692  for (s = output_bfd->sections; s != NULL; s = s->next)
6693    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6694	 == (SEC_ALLOC | SEC_READONLY))
6695	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6696      {
6697	elf_hash_table (info)->text_index_section = s;
6698	break;
6699      }
6700
6701  if (elf_hash_table (info)->text_index_section == NULL)
6702    elf_hash_table (info)->text_index_section
6703      = elf_hash_table (info)->data_index_section;
6704}
6705
6706bfd_boolean
6707bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6708{
6709  const struct elf_backend_data *bed;
6710  unsigned long section_sym_count;
6711  bfd_size_type dynsymcount;
6712
6713  if (!is_elf_hash_table (info->hash))
6714    return TRUE;
6715
6716  bed = get_elf_backend_data (output_bfd);
6717  (*bed->elf_backend_init_index_section) (output_bfd, info);
6718
6719  /* Assign dynsym indices.  In a shared library we generate a section
6720     symbol for each output section, which come first.  Next come all
6721     of the back-end allocated local dynamic syms, followed by the rest
6722     of the global symbols.
6723
6724     This is usually not needed for static binaries, however backends
6725     can request to always do it, e.g. the MIPS backend uses dynamic
6726     symbol counts to lay out GOT, which will be produced in the
6727     presence of GOT relocations even in static binaries (holding fixed
6728     data in that case, to satisfy those relocations).  */
6729
6730  if (elf_hash_table (info)->dynamic_sections_created
6731      || bed->always_renumber_dynsyms)
6732    dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6733						  &section_sym_count);
6734
6735  if (elf_hash_table (info)->dynamic_sections_created)
6736    {
6737      bfd *dynobj;
6738      asection *s;
6739      unsigned int dtagcount;
6740
6741      dynobj = elf_hash_table (info)->dynobj;
6742
6743      /* Work out the size of the symbol version section.  */
6744      s = bfd_get_linker_section (dynobj, ".gnu.version");
6745      BFD_ASSERT (s != NULL);
6746      if ((s->flags & SEC_EXCLUDE) == 0)
6747	{
6748	  s->size = dynsymcount * sizeof (Elf_External_Versym);
6749	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6750	  if (s->contents == NULL)
6751	    return FALSE;
6752
6753	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6754	    return FALSE;
6755	}
6756
6757      /* Set the size of the .dynsym and .hash sections.  We counted
6758	 the number of dynamic symbols in elf_link_add_object_symbols.
6759	 We will build the contents of .dynsym and .hash when we build
6760	 the final symbol table, because until then we do not know the
6761	 correct value to give the symbols.  We built the .dynstr
6762	 section as we went along in elf_link_add_object_symbols.  */
6763      s = elf_hash_table (info)->dynsym;
6764      BFD_ASSERT (s != NULL);
6765      s->size = dynsymcount * bed->s->sizeof_sym;
6766
6767      s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6768      if (s->contents == NULL)
6769	return FALSE;
6770
6771      /* The first entry in .dynsym is a dummy symbol.  Clear all the
6772	 section syms, in case we don't output them all.  */
6773      ++section_sym_count;
6774      memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6775
6776      elf_hash_table (info)->bucketcount = 0;
6777
6778      /* Compute the size of the hashing table.  As a side effect this
6779	 computes the hash values for all the names we export.  */
6780      if (info->emit_hash)
6781	{
6782	  unsigned long int *hashcodes;
6783	  struct hash_codes_info hashinf;
6784	  bfd_size_type amt;
6785	  unsigned long int nsyms;
6786	  size_t bucketcount;
6787	  size_t hash_entry_size;
6788
6789	  /* Compute the hash values for all exported symbols.  At the same
6790	     time store the values in an array so that we could use them for
6791	     optimizations.  */
6792	  amt = dynsymcount * sizeof (unsigned long int);
6793	  hashcodes = (unsigned long int *) bfd_malloc (amt);
6794	  if (hashcodes == NULL)
6795	    return FALSE;
6796	  hashinf.hashcodes = hashcodes;
6797	  hashinf.error = FALSE;
6798
6799	  /* Put all hash values in HASHCODES.  */
6800	  elf_link_hash_traverse (elf_hash_table (info),
6801				  elf_collect_hash_codes, &hashinf);
6802	  if (hashinf.error)
6803	    {
6804	      free (hashcodes);
6805	      return FALSE;
6806	    }
6807
6808	  nsyms = hashinf.hashcodes - hashcodes;
6809	  bucketcount
6810	    = compute_bucket_count (info, hashcodes, nsyms, 0);
6811	  free (hashcodes);
6812
6813	  if (bucketcount == 0)
6814	    return FALSE;
6815
6816	  elf_hash_table (info)->bucketcount = bucketcount;
6817
6818	  s = bfd_get_linker_section (dynobj, ".hash");
6819	  BFD_ASSERT (s != NULL);
6820	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6821	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6822	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6823	  if (s->contents == NULL)
6824	    return FALSE;
6825
6826	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6827	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6828		   s->contents + hash_entry_size);
6829	}
6830
6831      if (info->emit_gnu_hash)
6832	{
6833	  size_t i, cnt;
6834	  unsigned char *contents;
6835	  struct collect_gnu_hash_codes cinfo;
6836	  bfd_size_type amt;
6837	  size_t bucketcount;
6838
6839	  memset (&cinfo, 0, sizeof (cinfo));
6840
6841	  /* Compute the hash values for all exported symbols.  At the same
6842	     time store the values in an array so that we could use them for
6843	     optimizations.  */
6844	  amt = dynsymcount * 2 * sizeof (unsigned long int);
6845	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6846	  if (cinfo.hashcodes == NULL)
6847	    return FALSE;
6848
6849	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
6850	  cinfo.min_dynindx = -1;
6851	  cinfo.output_bfd = output_bfd;
6852	  cinfo.bed = bed;
6853
6854	  /* Put all hash values in HASHCODES.  */
6855	  elf_link_hash_traverse (elf_hash_table (info),
6856				  elf_collect_gnu_hash_codes, &cinfo);
6857	  if (cinfo.error)
6858	    {
6859	      free (cinfo.hashcodes);
6860	      return FALSE;
6861	    }
6862
6863	  bucketcount
6864	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6865
6866	  if (bucketcount == 0)
6867	    {
6868	      free (cinfo.hashcodes);
6869	      return FALSE;
6870	    }
6871
6872	  s = bfd_get_linker_section (dynobj, ".gnu.hash");
6873	  BFD_ASSERT (s != NULL);
6874
6875	  if (cinfo.nsyms == 0)
6876	    {
6877	      /* Empty .gnu.hash section is special.  */
6878	      BFD_ASSERT (cinfo.min_dynindx == -1);
6879	      free (cinfo.hashcodes);
6880	      s->size = 5 * 4 + bed->s->arch_size / 8;
6881	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6882	      if (contents == NULL)
6883		return FALSE;
6884	      s->contents = contents;
6885	      /* 1 empty bucket.  */
6886	      bfd_put_32 (output_bfd, 1, contents);
6887	      /* SYMIDX above the special symbol 0.  */
6888	      bfd_put_32 (output_bfd, 1, contents + 4);
6889	      /* Just one word for bitmask.  */
6890	      bfd_put_32 (output_bfd, 1, contents + 8);
6891	      /* Only hash fn bloom filter.  */
6892	      bfd_put_32 (output_bfd, 0, contents + 12);
6893	      /* No hashes are valid - empty bitmask.  */
6894	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6895	      /* No hashes in the only bucket.  */
6896	      bfd_put_32 (output_bfd, 0,
6897			  contents + 16 + bed->s->arch_size / 8);
6898	    }
6899	  else
6900	    {
6901	      unsigned long int maskwords, maskbitslog2, x;
6902	      BFD_ASSERT (cinfo.min_dynindx != -1);
6903
6904	      x = cinfo.nsyms;
6905	      maskbitslog2 = 1;
6906	      while ((x >>= 1) != 0)
6907		++maskbitslog2;
6908	      if (maskbitslog2 < 3)
6909		maskbitslog2 = 5;
6910	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6911		maskbitslog2 = maskbitslog2 + 3;
6912	      else
6913		maskbitslog2 = maskbitslog2 + 2;
6914	      if (bed->s->arch_size == 64)
6915		{
6916		  if (maskbitslog2 == 5)
6917		    maskbitslog2 = 6;
6918		  cinfo.shift1 = 6;
6919		}
6920	      else
6921		cinfo.shift1 = 5;
6922	      cinfo.mask = (1 << cinfo.shift1) - 1;
6923	      cinfo.shift2 = maskbitslog2;
6924	      cinfo.maskbits = 1 << maskbitslog2;
6925	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6926	      amt = bucketcount * sizeof (unsigned long int) * 2;
6927	      amt += maskwords * sizeof (bfd_vma);
6928	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6929	      if (cinfo.bitmask == NULL)
6930		{
6931		  free (cinfo.hashcodes);
6932		  return FALSE;
6933		}
6934
6935	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6936	      cinfo.indx = cinfo.counts + bucketcount;
6937	      cinfo.symindx = dynsymcount - cinfo.nsyms;
6938	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6939
6940	      /* Determine how often each hash bucket is used.  */
6941	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6942	      for (i = 0; i < cinfo.nsyms; ++i)
6943		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6944
6945	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6946		if (cinfo.counts[i] != 0)
6947		  {
6948		    cinfo.indx[i] = cnt;
6949		    cnt += cinfo.counts[i];
6950		  }
6951	      BFD_ASSERT (cnt == dynsymcount);
6952	      cinfo.bucketcount = bucketcount;
6953	      cinfo.local_indx = cinfo.min_dynindx;
6954
6955	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6956	      s->size += cinfo.maskbits / 8;
6957	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6958	      if (contents == NULL)
6959		{
6960		  free (cinfo.bitmask);
6961		  free (cinfo.hashcodes);
6962		  return FALSE;
6963		}
6964
6965	      s->contents = contents;
6966	      bfd_put_32 (output_bfd, bucketcount, contents);
6967	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6968	      bfd_put_32 (output_bfd, maskwords, contents + 8);
6969	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6970	      contents += 16 + cinfo.maskbits / 8;
6971
6972	      for (i = 0; i < bucketcount; ++i)
6973		{
6974		  if (cinfo.counts[i] == 0)
6975		    bfd_put_32 (output_bfd, 0, contents);
6976		  else
6977		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6978		  contents += 4;
6979		}
6980
6981	      cinfo.contents = contents;
6982
6983	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
6984	      elf_link_hash_traverse (elf_hash_table (info),
6985				      elf_renumber_gnu_hash_syms, &cinfo);
6986
6987	      contents = s->contents + 16;
6988	      for (i = 0; i < maskwords; ++i)
6989		{
6990		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6991			   contents);
6992		  contents += bed->s->arch_size / 8;
6993		}
6994
6995	      free (cinfo.bitmask);
6996	      free (cinfo.hashcodes);
6997	    }
6998	}
6999
7000      s = bfd_get_linker_section (dynobj, ".dynstr");
7001      BFD_ASSERT (s != NULL);
7002
7003      elf_finalize_dynstr (output_bfd, info);
7004
7005      s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7006
7007      for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7008	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7009	  return FALSE;
7010    }
7011
7012  return TRUE;
7013}
7014
7015/* Make sure sec_info_type is cleared if sec_info is cleared too.  */
7016
7017static void
7018merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7019			    asection *sec)
7020{
7021  BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7022  sec->sec_info_type = SEC_INFO_TYPE_NONE;
7023}
7024
7025/* Finish SHF_MERGE section merging.  */
7026
7027bfd_boolean
7028_bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7029{
7030  bfd *ibfd;
7031  asection *sec;
7032
7033  if (!is_elf_hash_table (info->hash))
7034    return FALSE;
7035
7036  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7037    if ((ibfd->flags & DYNAMIC) == 0
7038	&& bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7039	&& (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7040	    == get_elf_backend_data (obfd)->s->elfclass))
7041      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7042	if ((sec->flags & SEC_MERGE) != 0
7043	    && !bfd_is_abs_section (sec->output_section))
7044	  {
7045	    struct bfd_elf_section_data *secdata;
7046
7047	    secdata = elf_section_data (sec);
7048	    if (! _bfd_add_merge_section (obfd,
7049					  &elf_hash_table (info)->merge_info,
7050					  sec, &secdata->sec_info))
7051	      return FALSE;
7052	    else if (secdata->sec_info)
7053	      sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7054	  }
7055
7056  if (elf_hash_table (info)->merge_info != NULL)
7057    _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7058			 merge_sections_remove_hook);
7059  return TRUE;
7060}
7061
7062/* Create an entry in an ELF linker hash table.  */
7063
7064struct bfd_hash_entry *
7065_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7066			    struct bfd_hash_table *table,
7067			    const char *string)
7068{
7069  /* Allocate the structure if it has not already been allocated by a
7070     subclass.  */
7071  if (entry == NULL)
7072    {
7073      entry = (struct bfd_hash_entry *)
7074	bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7075      if (entry == NULL)
7076	return entry;
7077    }
7078
7079  /* Call the allocation method of the superclass.  */
7080  entry = _bfd_link_hash_newfunc (entry, table, string);
7081  if (entry != NULL)
7082    {
7083      struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7084      struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7085
7086      /* Set local fields.  */
7087      ret->indx = -1;
7088      ret->dynindx = -1;
7089      ret->got = htab->init_got_refcount;
7090      ret->plt = htab->init_plt_refcount;
7091      memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7092			      - offsetof (struct elf_link_hash_entry, size)));
7093      /* Assume that we have been called by a non-ELF symbol reader.
7094	 This flag is then reset by the code which reads an ELF input
7095	 file.  This ensures that a symbol created by a non-ELF symbol
7096	 reader will have the flag set correctly.  */
7097      ret->non_elf = 1;
7098    }
7099
7100  return entry;
7101}
7102
7103/* Copy data from an indirect symbol to its direct symbol, hiding the
7104   old indirect symbol.  Also used for copying flags to a weakdef.  */
7105
7106void
7107_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7108				  struct elf_link_hash_entry *dir,
7109				  struct elf_link_hash_entry *ind)
7110{
7111  struct elf_link_hash_table *htab;
7112
7113  /* Copy down any references that we may have already seen to the
7114     symbol which just became indirect.  */
7115
7116  if (dir->versioned != versioned_hidden)
7117    dir->ref_dynamic |= ind->ref_dynamic;
7118  dir->ref_regular |= ind->ref_regular;
7119  dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7120  dir->non_got_ref |= ind->non_got_ref;
7121  dir->needs_plt |= ind->needs_plt;
7122  dir->pointer_equality_needed |= ind->pointer_equality_needed;
7123
7124  if (ind->root.type != bfd_link_hash_indirect)
7125    return;
7126
7127  /* Copy over the global and procedure linkage table refcount entries.
7128     These may have been already set up by a check_relocs routine.  */
7129  htab = elf_hash_table (info);
7130  if (ind->got.refcount > htab->init_got_refcount.refcount)
7131    {
7132      if (dir->got.refcount < 0)
7133	dir->got.refcount = 0;
7134      dir->got.refcount += ind->got.refcount;
7135      ind->got.refcount = htab->init_got_refcount.refcount;
7136    }
7137
7138  if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7139    {
7140      if (dir->plt.refcount < 0)
7141	dir->plt.refcount = 0;
7142      dir->plt.refcount += ind->plt.refcount;
7143      ind->plt.refcount = htab->init_plt_refcount.refcount;
7144    }
7145
7146  if (ind->dynindx != -1)
7147    {
7148      if (dir->dynindx != -1)
7149	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7150      dir->dynindx = ind->dynindx;
7151      dir->dynstr_index = ind->dynstr_index;
7152      ind->dynindx = -1;
7153      ind->dynstr_index = 0;
7154    }
7155}
7156
7157void
7158_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7159				struct elf_link_hash_entry *h,
7160				bfd_boolean force_local)
7161{
7162  /* STT_GNU_IFUNC symbol must go through PLT.  */
7163  if (h->type != STT_GNU_IFUNC)
7164    {
7165      h->plt = elf_hash_table (info)->init_plt_offset;
7166      h->needs_plt = 0;
7167    }
7168  if (force_local)
7169    {
7170      h->forced_local = 1;
7171      if (h->dynindx != -1)
7172	{
7173	  h->dynindx = -1;
7174	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7175				  h->dynstr_index);
7176	}
7177    }
7178}
7179
7180/* Initialize an ELF linker hash table.  *TABLE has been zeroed by our
7181   caller.  */
7182
7183bfd_boolean
7184_bfd_elf_link_hash_table_init
7185  (struct elf_link_hash_table *table,
7186   bfd *abfd,
7187   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7188				      struct bfd_hash_table *,
7189				      const char *),
7190   unsigned int entsize,
7191   enum elf_target_id target_id)
7192{
7193  bfd_boolean ret;
7194  int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7195
7196  table->init_got_refcount.refcount = can_refcount - 1;
7197  table->init_plt_refcount.refcount = can_refcount - 1;
7198  table->init_got_offset.offset = -(bfd_vma) 1;
7199  table->init_plt_offset.offset = -(bfd_vma) 1;
7200  /* The first dynamic symbol is a dummy.  */
7201  table->dynsymcount = 1;
7202
7203  ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7204
7205  table->root.type = bfd_link_elf_hash_table;
7206  table->hash_table_id = target_id;
7207
7208  return ret;
7209}
7210
7211/* Create an ELF linker hash table.  */
7212
7213struct bfd_link_hash_table *
7214_bfd_elf_link_hash_table_create (bfd *abfd)
7215{
7216  struct elf_link_hash_table *ret;
7217  bfd_size_type amt = sizeof (struct elf_link_hash_table);
7218
7219  ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7220  if (ret == NULL)
7221    return NULL;
7222
7223  if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7224				       sizeof (struct elf_link_hash_entry),
7225				       GENERIC_ELF_DATA))
7226    {
7227      free (ret);
7228      return NULL;
7229    }
7230  ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7231
7232  return &ret->root;
7233}
7234
7235/* Destroy an ELF linker hash table.  */
7236
7237void
7238_bfd_elf_link_hash_table_free (bfd *obfd)
7239{
7240  struct elf_link_hash_table *htab;
7241
7242  htab = (struct elf_link_hash_table *) obfd->link.hash;
7243  if (htab->dynstr != NULL)
7244    _bfd_elf_strtab_free (htab->dynstr);
7245  _bfd_merge_sections_free (htab->merge_info);
7246  _bfd_generic_link_hash_table_free (obfd);
7247}
7248
7249/* This is a hook for the ELF emulation code in the generic linker to
7250   tell the backend linker what file name to use for the DT_NEEDED
7251   entry for a dynamic object.  */
7252
7253void
7254bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7255{
7256  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7257      && bfd_get_format (abfd) == bfd_object)
7258    elf_dt_name (abfd) = name;
7259}
7260
7261int
7262bfd_elf_get_dyn_lib_class (bfd *abfd)
7263{
7264  int lib_class;
7265  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7266      && bfd_get_format (abfd) == bfd_object)
7267    lib_class = elf_dyn_lib_class (abfd);
7268  else
7269    lib_class = 0;
7270  return lib_class;
7271}
7272
7273void
7274bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7275{
7276  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7277      && bfd_get_format (abfd) == bfd_object)
7278    elf_dyn_lib_class (abfd) = lib_class;
7279}
7280
7281/* Get the list of DT_NEEDED entries for a link.  This is a hook for
7282   the linker ELF emulation code.  */
7283
7284struct bfd_link_needed_list *
7285bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7286			 struct bfd_link_info *info)
7287{
7288  if (! is_elf_hash_table (info->hash))
7289    return NULL;
7290  return elf_hash_table (info)->needed;
7291}
7292
7293/* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
7294   hook for the linker ELF emulation code.  */
7295
7296struct bfd_link_needed_list *
7297bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7298			  struct bfd_link_info *info)
7299{
7300  if (! is_elf_hash_table (info->hash))
7301    return NULL;
7302  return elf_hash_table (info)->runpath;
7303}
7304
7305/* Get the name actually used for a dynamic object for a link.  This
7306   is the SONAME entry if there is one.  Otherwise, it is the string
7307   passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
7308
7309const char *
7310bfd_elf_get_dt_soname (bfd *abfd)
7311{
7312  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7313      && bfd_get_format (abfd) == bfd_object)
7314    return elf_dt_name (abfd);
7315  return NULL;
7316}
7317
7318/* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
7319   the ELF linker emulation code.  */
7320
7321bfd_boolean
7322bfd_elf_get_bfd_needed_list (bfd *abfd,
7323			     struct bfd_link_needed_list **pneeded)
7324{
7325  asection *s;
7326  bfd_byte *dynbuf = NULL;
7327  unsigned int elfsec;
7328  unsigned long shlink;
7329  bfd_byte *extdyn, *extdynend;
7330  size_t extdynsize;
7331  void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7332
7333  *pneeded = NULL;
7334
7335  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7336      || bfd_get_format (abfd) != bfd_object)
7337    return TRUE;
7338
7339  s = bfd_get_section_by_name (abfd, ".dynamic");
7340  if (s == NULL || s->size == 0)
7341    return TRUE;
7342
7343  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7344    goto error_return;
7345
7346  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7347  if (elfsec == SHN_BAD)
7348    goto error_return;
7349
7350  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7351
7352  extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7353  swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7354
7355  extdyn = dynbuf;
7356  extdynend = extdyn + s->size;
7357  for (; extdyn < extdynend; extdyn += extdynsize)
7358    {
7359      Elf_Internal_Dyn dyn;
7360
7361      (*swap_dyn_in) (abfd, extdyn, &dyn);
7362
7363      if (dyn.d_tag == DT_NULL)
7364	break;
7365
7366      if (dyn.d_tag == DT_NEEDED)
7367	{
7368	  const char *string;
7369	  struct bfd_link_needed_list *l;
7370	  unsigned int tagv = dyn.d_un.d_val;
7371	  bfd_size_type amt;
7372
7373	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7374	  if (string == NULL)
7375	    goto error_return;
7376
7377	  amt = sizeof *l;
7378	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7379	  if (l == NULL)
7380	    goto error_return;
7381
7382	  l->by = abfd;
7383	  l->name = string;
7384	  l->next = *pneeded;
7385	  *pneeded = l;
7386	}
7387    }
7388
7389  free (dynbuf);
7390
7391  return TRUE;
7392
7393 error_return:
7394  if (dynbuf != NULL)
7395    free (dynbuf);
7396  return FALSE;
7397}
7398
7399struct elf_symbuf_symbol
7400{
7401  unsigned long st_name;	/* Symbol name, index in string tbl */
7402  unsigned char st_info;	/* Type and binding attributes */
7403  unsigned char st_other;	/* Visibilty, and target specific */
7404};
7405
7406struct elf_symbuf_head
7407{
7408  struct elf_symbuf_symbol *ssym;
7409  size_t count;
7410  unsigned int st_shndx;
7411};
7412
7413struct elf_symbol
7414{
7415  union
7416    {
7417      Elf_Internal_Sym *isym;
7418      struct elf_symbuf_symbol *ssym;
7419    } u;
7420  const char *name;
7421};
7422
7423/* Sort references to symbols by ascending section number.  */
7424
7425static int
7426elf_sort_elf_symbol (const void *arg1, const void *arg2)
7427{
7428  const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7429  const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7430
7431  return s1->st_shndx - s2->st_shndx;
7432}
7433
7434static int
7435elf_sym_name_compare (const void *arg1, const void *arg2)
7436{
7437  const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7438  const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7439  return strcmp (s1->name, s2->name);
7440}
7441
7442static struct elf_symbuf_head *
7443elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7444{
7445  Elf_Internal_Sym **ind, **indbufend, **indbuf;
7446  struct elf_symbuf_symbol *ssym;
7447  struct elf_symbuf_head *ssymbuf, *ssymhead;
7448  size_t i, shndx_count, total_size;
7449
7450  indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7451  if (indbuf == NULL)
7452    return NULL;
7453
7454  for (ind = indbuf, i = 0; i < symcount; i++)
7455    if (isymbuf[i].st_shndx != SHN_UNDEF)
7456      *ind++ = &isymbuf[i];
7457  indbufend = ind;
7458
7459  qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7460	 elf_sort_elf_symbol);
7461
7462  shndx_count = 0;
7463  if (indbufend > indbuf)
7464    for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7465      if (ind[0]->st_shndx != ind[1]->st_shndx)
7466	shndx_count++;
7467
7468  total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7469		+ (indbufend - indbuf) * sizeof (*ssym));
7470  ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7471  if (ssymbuf == NULL)
7472    {
7473      free (indbuf);
7474      return NULL;
7475    }
7476
7477  ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7478  ssymbuf->ssym = NULL;
7479  ssymbuf->count = shndx_count;
7480  ssymbuf->st_shndx = 0;
7481  for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7482    {
7483      if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7484	{
7485	  ssymhead++;
7486	  ssymhead->ssym = ssym;
7487	  ssymhead->count = 0;
7488	  ssymhead->st_shndx = (*ind)->st_shndx;
7489	}
7490      ssym->st_name = (*ind)->st_name;
7491      ssym->st_info = (*ind)->st_info;
7492      ssym->st_other = (*ind)->st_other;
7493      ssymhead->count++;
7494    }
7495  BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7496	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7497		  == total_size));
7498
7499  free (indbuf);
7500  return ssymbuf;
7501}
7502
7503/* Check if 2 sections define the same set of local and global
7504   symbols.  */
7505
7506static bfd_boolean
7507bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7508				   struct bfd_link_info *info)
7509{
7510  bfd *bfd1, *bfd2;
7511  const struct elf_backend_data *bed1, *bed2;
7512  Elf_Internal_Shdr *hdr1, *hdr2;
7513  size_t symcount1, symcount2;
7514  Elf_Internal_Sym *isymbuf1, *isymbuf2;
7515  struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7516  Elf_Internal_Sym *isym, *isymend;
7517  struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7518  size_t count1, count2, i;
7519  unsigned int shndx1, shndx2;
7520  bfd_boolean result;
7521
7522  bfd1 = sec1->owner;
7523  bfd2 = sec2->owner;
7524
7525  /* Both sections have to be in ELF.  */
7526  if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7527      || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7528    return FALSE;
7529
7530  if (elf_section_type (sec1) != elf_section_type (sec2))
7531    return FALSE;
7532
7533  shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7534  shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7535  if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7536    return FALSE;
7537
7538  bed1 = get_elf_backend_data (bfd1);
7539  bed2 = get_elf_backend_data (bfd2);
7540  hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7541  symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7542  hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7543  symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7544
7545  if (symcount1 == 0 || symcount2 == 0)
7546    return FALSE;
7547
7548  result = FALSE;
7549  isymbuf1 = NULL;
7550  isymbuf2 = NULL;
7551  ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7552  ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7553
7554  if (ssymbuf1 == NULL)
7555    {
7556      isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7557				       NULL, NULL, NULL);
7558      if (isymbuf1 == NULL)
7559	goto done;
7560
7561      if (!info->reduce_memory_overheads)
7562	elf_tdata (bfd1)->symbuf = ssymbuf1
7563	  = elf_create_symbuf (symcount1, isymbuf1);
7564    }
7565
7566  if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7567    {
7568      isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7569				       NULL, NULL, NULL);
7570      if (isymbuf2 == NULL)
7571	goto done;
7572
7573      if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7574	elf_tdata (bfd2)->symbuf = ssymbuf2
7575	  = elf_create_symbuf (symcount2, isymbuf2);
7576    }
7577
7578  if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7579    {
7580      /* Optimized faster version.  */
7581      size_t lo, hi, mid;
7582      struct elf_symbol *symp;
7583      struct elf_symbuf_symbol *ssym, *ssymend;
7584
7585      lo = 0;
7586      hi = ssymbuf1->count;
7587      ssymbuf1++;
7588      count1 = 0;
7589      while (lo < hi)
7590	{
7591	  mid = (lo + hi) / 2;
7592	  if (shndx1 < ssymbuf1[mid].st_shndx)
7593	    hi = mid;
7594	  else if (shndx1 > ssymbuf1[mid].st_shndx)
7595	    lo = mid + 1;
7596	  else
7597	    {
7598	      count1 = ssymbuf1[mid].count;
7599	      ssymbuf1 += mid;
7600	      break;
7601	    }
7602	}
7603
7604      lo = 0;
7605      hi = ssymbuf2->count;
7606      ssymbuf2++;
7607      count2 = 0;
7608      while (lo < hi)
7609	{
7610	  mid = (lo + hi) / 2;
7611	  if (shndx2 < ssymbuf2[mid].st_shndx)
7612	    hi = mid;
7613	  else if (shndx2 > ssymbuf2[mid].st_shndx)
7614	    lo = mid + 1;
7615	  else
7616	    {
7617	      count2 = ssymbuf2[mid].count;
7618	      ssymbuf2 += mid;
7619	      break;
7620	    }
7621	}
7622
7623      if (count1 == 0 || count2 == 0 || count1 != count2)
7624	goto done;
7625
7626      symtable1
7627	= (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7628      symtable2
7629	= (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7630      if (symtable1 == NULL || symtable2 == NULL)
7631	goto done;
7632
7633      symp = symtable1;
7634      for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7635	   ssym < ssymend; ssym++, symp++)
7636	{
7637	  symp->u.ssym = ssym;
7638	  symp->name = bfd_elf_string_from_elf_section (bfd1,
7639							hdr1->sh_link,
7640							ssym->st_name);
7641	}
7642
7643      symp = symtable2;
7644      for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7645	   ssym < ssymend; ssym++, symp++)
7646	{
7647	  symp->u.ssym = ssym;
7648	  symp->name = bfd_elf_string_from_elf_section (bfd2,
7649							hdr2->sh_link,
7650							ssym->st_name);
7651	}
7652
7653      /* Sort symbol by name.  */
7654      qsort (symtable1, count1, sizeof (struct elf_symbol),
7655	     elf_sym_name_compare);
7656      qsort (symtable2, count1, sizeof (struct elf_symbol),
7657	     elf_sym_name_compare);
7658
7659      for (i = 0; i < count1; i++)
7660	/* Two symbols must have the same binding, type and name.  */
7661	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7662	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7663	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7664	  goto done;
7665
7666      result = TRUE;
7667      goto done;
7668    }
7669
7670  symtable1 = (struct elf_symbol *)
7671      bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7672  symtable2 = (struct elf_symbol *)
7673      bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7674  if (symtable1 == NULL || symtable2 == NULL)
7675    goto done;
7676
7677  /* Count definitions in the section.  */
7678  count1 = 0;
7679  for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7680    if (isym->st_shndx == shndx1)
7681      symtable1[count1++].u.isym = isym;
7682
7683  count2 = 0;
7684  for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7685    if (isym->st_shndx == shndx2)
7686      symtable2[count2++].u.isym = isym;
7687
7688  if (count1 == 0 || count2 == 0 || count1 != count2)
7689    goto done;
7690
7691  for (i = 0; i < count1; i++)
7692    symtable1[i].name
7693      = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7694					 symtable1[i].u.isym->st_name);
7695
7696  for (i = 0; i < count2; i++)
7697    symtable2[i].name
7698      = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7699					 symtable2[i].u.isym->st_name);
7700
7701  /* Sort symbol by name.  */
7702  qsort (symtable1, count1, sizeof (struct elf_symbol),
7703	 elf_sym_name_compare);
7704  qsort (symtable2, count1, sizeof (struct elf_symbol),
7705	 elf_sym_name_compare);
7706
7707  for (i = 0; i < count1; i++)
7708    /* Two symbols must have the same binding, type and name.  */
7709    if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7710	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7711	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7712      goto done;
7713
7714  result = TRUE;
7715
7716done:
7717  if (symtable1)
7718    free (symtable1);
7719  if (symtable2)
7720    free (symtable2);
7721  if (isymbuf1)
7722    free (isymbuf1);
7723  if (isymbuf2)
7724    free (isymbuf2);
7725
7726  return result;
7727}
7728
7729/* Return TRUE if 2 section types are compatible.  */
7730
7731bfd_boolean
7732_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7733				 bfd *bbfd, const asection *bsec)
7734{
7735  if (asec == NULL
7736      || bsec == NULL
7737      || abfd->xvec->flavour != bfd_target_elf_flavour
7738      || bbfd->xvec->flavour != bfd_target_elf_flavour)
7739    return TRUE;
7740
7741  return elf_section_type (asec) == elf_section_type (bsec);
7742}
7743
7744/* Final phase of ELF linker.  */
7745
7746/* A structure we use to avoid passing large numbers of arguments.  */
7747
7748struct elf_final_link_info
7749{
7750  /* General link information.  */
7751  struct bfd_link_info *info;
7752  /* Output BFD.  */
7753  bfd *output_bfd;
7754  /* Symbol string table.  */
7755  struct elf_strtab_hash *symstrtab;
7756  /* .hash section.  */
7757  asection *hash_sec;
7758  /* symbol version section (.gnu.version).  */
7759  asection *symver_sec;
7760  /* Buffer large enough to hold contents of any section.  */
7761  bfd_byte *contents;
7762  /* Buffer large enough to hold external relocs of any section.  */
7763  void *external_relocs;
7764  /* Buffer large enough to hold internal relocs of any section.  */
7765  Elf_Internal_Rela *internal_relocs;
7766  /* Buffer large enough to hold external local symbols of any input
7767     BFD.  */
7768  bfd_byte *external_syms;
7769  /* And a buffer for symbol section indices.  */
7770  Elf_External_Sym_Shndx *locsym_shndx;
7771  /* Buffer large enough to hold internal local symbols of any input
7772     BFD.  */
7773  Elf_Internal_Sym *internal_syms;
7774  /* Array large enough to hold a symbol index for each local symbol
7775     of any input BFD.  */
7776  long *indices;
7777  /* Array large enough to hold a section pointer for each local
7778     symbol of any input BFD.  */
7779  asection **sections;
7780  /* Buffer for SHT_SYMTAB_SHNDX section.  */
7781  Elf_External_Sym_Shndx *symshndxbuf;
7782  /* Number of STT_FILE syms seen.  */
7783  size_t filesym_count;
7784};
7785
7786/* This struct is used to pass information to elf_link_output_extsym.  */
7787
7788struct elf_outext_info
7789{
7790  bfd_boolean failed;
7791  bfd_boolean localsyms;
7792  bfd_boolean file_sym_done;
7793  struct elf_final_link_info *flinfo;
7794};
7795
7796
7797/* Support for evaluating a complex relocation.
7798
7799   Complex relocations are generalized, self-describing relocations.  The
7800   implementation of them consists of two parts: complex symbols, and the
7801   relocations themselves.
7802
7803   The relocations are use a reserved elf-wide relocation type code (R_RELC
7804   external / BFD_RELOC_RELC internal) and an encoding of relocation field
7805   information (start bit, end bit, word width, etc) into the addend.  This
7806   information is extracted from CGEN-generated operand tables within gas.
7807
7808   Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7809   internal) representing prefix-notation expressions, including but not
7810   limited to those sorts of expressions normally encoded as addends in the
7811   addend field.  The symbol mangling format is:
7812
7813   <node> := <literal>
7814          |  <unary-operator> ':' <node>
7815          |  <binary-operator> ':' <node> ':' <node>
7816	  ;
7817
7818   <literal> := 's' <digits=N> ':' <N character symbol name>
7819             |  'S' <digits=N> ':' <N character section name>
7820	     |  '#' <hexdigits>
7821	     ;
7822
7823   <binary-operator> := as in C
7824   <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7825
7826static void
7827set_symbol_value (bfd *bfd_with_globals,
7828		  Elf_Internal_Sym *isymbuf,
7829		  size_t locsymcount,
7830		  size_t symidx,
7831		  bfd_vma val)
7832{
7833  struct elf_link_hash_entry **sym_hashes;
7834  struct elf_link_hash_entry *h;
7835  size_t extsymoff = locsymcount;
7836
7837  if (symidx < locsymcount)
7838    {
7839      Elf_Internal_Sym *sym;
7840
7841      sym = isymbuf + symidx;
7842      if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7843	{
7844	  /* It is a local symbol: move it to the
7845	     "absolute" section and give it a value.  */
7846	  sym->st_shndx = SHN_ABS;
7847	  sym->st_value = val;
7848	  return;
7849	}
7850      BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7851      extsymoff = 0;
7852    }
7853
7854  /* It is a global symbol: set its link type
7855     to "defined" and give it a value.  */
7856
7857  sym_hashes = elf_sym_hashes (bfd_with_globals);
7858  h = sym_hashes [symidx - extsymoff];
7859  while (h->root.type == bfd_link_hash_indirect
7860	 || h->root.type == bfd_link_hash_warning)
7861    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7862  h->root.type = bfd_link_hash_defined;
7863  h->root.u.def.value = val;
7864  h->root.u.def.section = bfd_abs_section_ptr;
7865}
7866
7867static bfd_boolean
7868resolve_symbol (const char *name,
7869		bfd *input_bfd,
7870		struct elf_final_link_info *flinfo,
7871		bfd_vma *result,
7872		Elf_Internal_Sym *isymbuf,
7873		size_t locsymcount)
7874{
7875  Elf_Internal_Sym *sym;
7876  struct bfd_link_hash_entry *global_entry;
7877  const char *candidate = NULL;
7878  Elf_Internal_Shdr *symtab_hdr;
7879  size_t i;
7880
7881  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7882
7883  for (i = 0; i < locsymcount; ++ i)
7884    {
7885      sym = isymbuf + i;
7886
7887      if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7888	continue;
7889
7890      candidate = bfd_elf_string_from_elf_section (input_bfd,
7891						   symtab_hdr->sh_link,
7892						   sym->st_name);
7893#ifdef DEBUG
7894      printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7895	      name, candidate, (unsigned long) sym->st_value);
7896#endif
7897      if (candidate && strcmp (candidate, name) == 0)
7898	{
7899	  asection *sec = flinfo->sections [i];
7900
7901	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7902	  *result += sec->output_offset + sec->output_section->vma;
7903#ifdef DEBUG
7904	  printf ("Found symbol with value %8.8lx\n",
7905		  (unsigned long) *result);
7906#endif
7907	  return TRUE;
7908	}
7909    }
7910
7911  /* Hmm, haven't found it yet. perhaps it is a global.  */
7912  global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7913				       FALSE, FALSE, TRUE);
7914  if (!global_entry)
7915    return FALSE;
7916
7917  if (global_entry->type == bfd_link_hash_defined
7918      || global_entry->type == bfd_link_hash_defweak)
7919    {
7920      *result = (global_entry->u.def.value
7921		 + global_entry->u.def.section->output_section->vma
7922		 + global_entry->u.def.section->output_offset);
7923#ifdef DEBUG
7924      printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7925	      global_entry->root.string, (unsigned long) *result);
7926#endif
7927      return TRUE;
7928    }
7929
7930  return FALSE;
7931}
7932
7933/* Looks up NAME in SECTIONS.  If found sets RESULT to NAME's address (in
7934   bytes) and returns TRUE, otherwise returns FALSE.  Accepts pseudo-section
7935   names like "foo.end" which is the end address of section "foo".  */
7936
7937static bfd_boolean
7938resolve_section (const char *name,
7939		 asection *sections,
7940		 bfd_vma *result,
7941		 bfd * abfd)
7942{
7943  asection *curr;
7944  unsigned int len;
7945
7946  for (curr = sections; curr; curr = curr->next)
7947    if (strcmp (curr->name, name) == 0)
7948      {
7949	*result = curr->vma;
7950	return TRUE;
7951      }
7952
7953  /* Hmm. still haven't found it. try pseudo-section names.  */
7954  /* FIXME: This could be coded more efficiently...  */
7955  for (curr = sections; curr; curr = curr->next)
7956    {
7957      len = strlen (curr->name);
7958      if (len > strlen (name))
7959	continue;
7960
7961      if (strncmp (curr->name, name, len) == 0)
7962	{
7963	  if (strncmp (".end", name + len, 4) == 0)
7964	    {
7965	      *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7966	      return TRUE;
7967	    }
7968
7969	  /* Insert more pseudo-section names here, if you like.  */
7970	}
7971    }
7972
7973  return FALSE;
7974}
7975
7976static void
7977undefined_reference (const char *reftype, const char *name)
7978{
7979  /* xgettext:c-format */
7980  _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7981		      reftype, name);
7982}
7983
7984static bfd_boolean
7985eval_symbol (bfd_vma *result,
7986	     const char **symp,
7987	     bfd *input_bfd,
7988	     struct elf_final_link_info *flinfo,
7989	     bfd_vma dot,
7990	     Elf_Internal_Sym *isymbuf,
7991	     size_t locsymcount,
7992	     int signed_p)
7993{
7994  size_t len;
7995  size_t symlen;
7996  bfd_vma a;
7997  bfd_vma b;
7998  char symbuf[4096];
7999  const char *sym = *symp;
8000  const char *symend;
8001  bfd_boolean symbol_is_section = FALSE;
8002
8003  len = strlen (sym);
8004  symend = sym + len;
8005
8006  if (len < 1 || len > sizeof (symbuf))
8007    {
8008      bfd_set_error (bfd_error_invalid_operation);
8009      return FALSE;
8010    }
8011
8012  switch (* sym)
8013    {
8014    case '.':
8015      *result = dot;
8016      *symp = sym + 1;
8017      return TRUE;
8018
8019    case '#':
8020      ++sym;
8021      *result = strtoul (sym, (char **) symp, 16);
8022      return TRUE;
8023
8024    case 'S':
8025      symbol_is_section = TRUE;
8026      /* Fall through.  */
8027    case 's':
8028      ++sym;
8029      symlen = strtol (sym, (char **) symp, 10);
8030      sym = *symp + 1; /* Skip the trailing ':'.  */
8031
8032      if (symend < sym || symlen + 1 > sizeof (symbuf))
8033	{
8034	  bfd_set_error (bfd_error_invalid_operation);
8035	  return FALSE;
8036	}
8037
8038      memcpy (symbuf, sym, symlen);
8039      symbuf[symlen] = '\0';
8040      *symp = sym + symlen;
8041
8042      /* Is it always possible, with complex symbols, that gas "mis-guessed"
8043	 the symbol as a section, or vice-versa. so we're pretty liberal in our
8044	 interpretation here; section means "try section first", not "must be a
8045	 section", and likewise with symbol.  */
8046
8047      if (symbol_is_section)
8048	{
8049	  if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8050	      && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8051				  isymbuf, locsymcount))
8052	    {
8053	      undefined_reference ("section", symbuf);
8054	      return FALSE;
8055	    }
8056	}
8057      else
8058	{
8059	  if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8060			       isymbuf, locsymcount)
8061	      && !resolve_section (symbuf, flinfo->output_bfd->sections,
8062				   result, input_bfd))
8063	    {
8064	      undefined_reference ("symbol", symbuf);
8065	      return FALSE;
8066	    }
8067	}
8068
8069      return TRUE;
8070
8071      /* All that remains are operators.  */
8072
8073#define UNARY_OP(op)						\
8074  if (strncmp (sym, #op, strlen (#op)) == 0)			\
8075    {								\
8076      sym += strlen (#op);					\
8077      if (*sym == ':')						\
8078	++sym;							\
8079      *symp = sym;						\
8080      if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
8081			isymbuf, locsymcount, signed_p))	\
8082	return FALSE;						\
8083      if (signed_p)						\
8084	*result = op ((bfd_signed_vma) a);			\
8085      else							\
8086	*result = op a;						\
8087      return TRUE;						\
8088    }
8089
8090#define BINARY_OP(op)						\
8091  if (strncmp (sym, #op, strlen (#op)) == 0)			\
8092    {								\
8093      sym += strlen (#op);					\
8094      if (*sym == ':')						\
8095	++sym;							\
8096      *symp = sym;						\
8097      if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
8098			isymbuf, locsymcount, signed_p))	\
8099	return FALSE;						\
8100      ++*symp;							\
8101      if (!eval_symbol (&b, symp, input_bfd, flinfo, dot,	\
8102			isymbuf, locsymcount, signed_p))	\
8103	return FALSE;						\
8104      if (signed_p)						\
8105	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
8106      else							\
8107	*result = a op b;					\
8108      return TRUE;						\
8109    }
8110
8111    default:
8112      UNARY_OP  (0-);
8113      BINARY_OP (<<);
8114      BINARY_OP (>>);
8115      BINARY_OP (==);
8116      BINARY_OP (!=);
8117      BINARY_OP (<=);
8118      BINARY_OP (>=);
8119      BINARY_OP (&&);
8120      BINARY_OP (||);
8121      UNARY_OP  (~);
8122      UNARY_OP  (!);
8123      BINARY_OP (*);
8124      BINARY_OP (/);
8125      BINARY_OP (%);
8126      BINARY_OP (^);
8127      BINARY_OP (|);
8128      BINARY_OP (&);
8129      BINARY_OP (+);
8130      BINARY_OP (-);
8131      BINARY_OP (<);
8132      BINARY_OP (>);
8133#undef UNARY_OP
8134#undef BINARY_OP
8135      _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8136      bfd_set_error (bfd_error_invalid_operation);
8137      return FALSE;
8138    }
8139}
8140
8141static void
8142put_value (bfd_vma size,
8143	   unsigned long chunksz,
8144	   bfd *input_bfd,
8145	   bfd_vma x,
8146	   bfd_byte *location)
8147{
8148  location += (size - chunksz);
8149
8150  for (; size; size -= chunksz, location -= chunksz)
8151    {
8152      switch (chunksz)
8153	{
8154	case 1:
8155	  bfd_put_8 (input_bfd, x, location);
8156	  x >>= 8;
8157	  break;
8158	case 2:
8159	  bfd_put_16 (input_bfd, x, location);
8160	  x >>= 16;
8161	  break;
8162	case 4:
8163	  bfd_put_32 (input_bfd, x, location);
8164	  /* Computed this way because x >>= 32 is undefined if x is a 32-bit value.  */
8165	  x >>= 16;
8166	  x >>= 16;
8167	  break;
8168#ifdef BFD64
8169	case 8:
8170	  bfd_put_64 (input_bfd, x, location);
8171	  /* Computed this way because x >>= 64 is undefined if x is a 64-bit value.  */
8172	  x >>= 32;
8173	  x >>= 32;
8174	  break;
8175#endif
8176	default:
8177	  abort ();
8178	  break;
8179	}
8180    }
8181}
8182
8183static bfd_vma
8184get_value (bfd_vma size,
8185	   unsigned long chunksz,
8186	   bfd *input_bfd,
8187	   bfd_byte *location)
8188{
8189  int shift;
8190  bfd_vma x = 0;
8191
8192  /* Sanity checks.  */
8193  BFD_ASSERT (chunksz <= sizeof (x)
8194	      && size >= chunksz
8195	      && chunksz != 0
8196	      && (size % chunksz) == 0
8197	      && input_bfd != NULL
8198	      && location != NULL);
8199
8200  if (chunksz == sizeof (x))
8201    {
8202      BFD_ASSERT (size == chunksz);
8203
8204      /* Make sure that we do not perform an undefined shift operation.
8205	 We know that size == chunksz so there will only be one iteration
8206	 of the loop below.  */
8207      shift = 0;
8208    }
8209  else
8210    shift = 8 * chunksz;
8211
8212  for (; size; size -= chunksz, location += chunksz)
8213    {
8214      switch (chunksz)
8215	{
8216	case 1:
8217	  x = (x << shift) | bfd_get_8 (input_bfd, location);
8218	  break;
8219	case 2:
8220	  x = (x << shift) | bfd_get_16 (input_bfd, location);
8221	  break;
8222	case 4:
8223	  x = (x << shift) | bfd_get_32 (input_bfd, location);
8224	  break;
8225#ifdef BFD64
8226	case 8:
8227	  x = (x << shift) | bfd_get_64 (input_bfd, location);
8228	  break;
8229#endif
8230	default:
8231	  abort ();
8232	}
8233    }
8234  return x;
8235}
8236
8237static void
8238decode_complex_addend (unsigned long *start,   /* in bits */
8239		       unsigned long *oplen,   /* in bits */
8240		       unsigned long *len,     /* in bits */
8241		       unsigned long *wordsz,  /* in bytes */
8242		       unsigned long *chunksz, /* in bytes */
8243		       unsigned long *lsb0_p,
8244		       unsigned long *signed_p,
8245		       unsigned long *trunc_p,
8246		       unsigned long encoded)
8247{
8248  * start     =  encoded        & 0x3F;
8249  * len       = (encoded >>  6) & 0x3F;
8250  * oplen     = (encoded >> 12) & 0x3F;
8251  * wordsz    = (encoded >> 18) & 0xF;
8252  * chunksz   = (encoded >> 22) & 0xF;
8253  * lsb0_p    = (encoded >> 27) & 1;
8254  * signed_p  = (encoded >> 28) & 1;
8255  * trunc_p   = (encoded >> 29) & 1;
8256}
8257
8258bfd_reloc_status_type
8259bfd_elf_perform_complex_relocation (bfd *input_bfd,
8260				    asection *input_section ATTRIBUTE_UNUSED,
8261				    bfd_byte *contents,
8262				    Elf_Internal_Rela *rel,
8263				    bfd_vma relocation)
8264{
8265  bfd_vma shift, x, mask;
8266  unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8267  bfd_reloc_status_type r;
8268
8269  /*  Perform this reloc, since it is complex.
8270      (this is not to say that it necessarily refers to a complex
8271      symbol; merely that it is a self-describing CGEN based reloc.
8272      i.e. the addend has the complete reloc information (bit start, end,
8273      word size, etc) encoded within it.).  */
8274
8275  decode_complex_addend (&start, &oplen, &len, &wordsz,
8276			 &chunksz, &lsb0_p, &signed_p,
8277			 &trunc_p, rel->r_addend);
8278
8279  mask = (((1L << (len - 1)) - 1) << 1) | 1;
8280
8281  if (lsb0_p)
8282    shift = (start + 1) - len;
8283  else
8284    shift = (8 * wordsz) - (start + len);
8285
8286  x = get_value (wordsz, chunksz, input_bfd,
8287		 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8288
8289#ifdef DEBUG
8290  printf ("Doing complex reloc: "
8291	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8292	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8293	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8294	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8295	  oplen, (unsigned long) x, (unsigned long) mask,
8296	  (unsigned long) relocation);
8297#endif
8298
8299  r = bfd_reloc_ok;
8300  if (! trunc_p)
8301    /* Now do an overflow check.  */
8302    r = bfd_check_overflow ((signed_p
8303			     ? complain_overflow_signed
8304			     : complain_overflow_unsigned),
8305			    len, 0, (8 * wordsz),
8306			    relocation);
8307
8308  /* Do the deed.  */
8309  x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8310
8311#ifdef DEBUG
8312  printf ("           relocation: %8.8lx\n"
8313	  "         shifted mask: %8.8lx\n"
8314	  " shifted/masked reloc: %8.8lx\n"
8315	  "               result: %8.8lx\n",
8316	  (unsigned long) relocation, (unsigned long) (mask << shift),
8317	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8318#endif
8319  put_value (wordsz, chunksz, input_bfd, x,
8320	     contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8321  return r;
8322}
8323
8324/* Functions to read r_offset from external (target order) reloc
8325   entry.  Faster than bfd_getl32 et al, because we let the compiler
8326   know the value is aligned.  */
8327
8328static bfd_vma
8329ext32l_r_offset (const void *p)
8330{
8331  union aligned32
8332  {
8333    uint32_t v;
8334    unsigned char c[4];
8335  };
8336  const union aligned32 *a
8337    = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8338
8339  uint32_t aval = (  (uint32_t) a->c[0]
8340		   | (uint32_t) a->c[1] << 8
8341		   | (uint32_t) a->c[2] << 16
8342		   | (uint32_t) a->c[3] << 24);
8343  return aval;
8344}
8345
8346static bfd_vma
8347ext32b_r_offset (const void *p)
8348{
8349  union aligned32
8350  {
8351    uint32_t v;
8352    unsigned char c[4];
8353  };
8354  const union aligned32 *a
8355    = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8356
8357  uint32_t aval = (  (uint32_t) a->c[0] << 24
8358		   | (uint32_t) a->c[1] << 16
8359		   | (uint32_t) a->c[2] << 8
8360		   | (uint32_t) a->c[3]);
8361  return aval;
8362}
8363
8364#ifdef BFD_HOST_64_BIT
8365static bfd_vma
8366ext64l_r_offset (const void *p)
8367{
8368  union aligned64
8369  {
8370    uint64_t v;
8371    unsigned char c[8];
8372  };
8373  const union aligned64 *a
8374    = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8375
8376  uint64_t aval = (  (uint64_t) a->c[0]
8377		   | (uint64_t) a->c[1] << 8
8378		   | (uint64_t) a->c[2] << 16
8379		   | (uint64_t) a->c[3] << 24
8380		   | (uint64_t) a->c[4] << 32
8381		   | (uint64_t) a->c[5] << 40
8382		   | (uint64_t) a->c[6] << 48
8383		   | (uint64_t) a->c[7] << 56);
8384  return aval;
8385}
8386
8387static bfd_vma
8388ext64b_r_offset (const void *p)
8389{
8390  union aligned64
8391  {
8392    uint64_t v;
8393    unsigned char c[8];
8394  };
8395  const union aligned64 *a
8396    = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8397
8398  uint64_t aval = (  (uint64_t) a->c[0] << 56
8399		   | (uint64_t) a->c[1] << 48
8400		   | (uint64_t) a->c[2] << 40
8401		   | (uint64_t) a->c[3] << 32
8402		   | (uint64_t) a->c[4] << 24
8403		   | (uint64_t) a->c[5] << 16
8404		   | (uint64_t) a->c[6] << 8
8405		   | (uint64_t) a->c[7]);
8406  return aval;
8407}
8408#endif
8409
8410/* When performing a relocatable link, the input relocations are
8411   preserved.  But, if they reference global symbols, the indices
8412   referenced must be updated.  Update all the relocations found in
8413   RELDATA.  */
8414
8415static bfd_boolean
8416elf_link_adjust_relocs (bfd *abfd,
8417			asection *sec,
8418			struct bfd_elf_section_reloc_data *reldata,
8419			bfd_boolean sort)
8420{
8421  unsigned int i;
8422  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8423  bfd_byte *erela;
8424  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8425  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8426  bfd_vma r_type_mask;
8427  int r_sym_shift;
8428  unsigned int count = reldata->count;
8429  struct elf_link_hash_entry **rel_hash = reldata->hashes;
8430
8431  if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8432    {
8433      swap_in = bed->s->swap_reloc_in;
8434      swap_out = bed->s->swap_reloc_out;
8435    }
8436  else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8437    {
8438      swap_in = bed->s->swap_reloca_in;
8439      swap_out = bed->s->swap_reloca_out;
8440    }
8441  else
8442    abort ();
8443
8444  if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8445    abort ();
8446
8447  if (bed->s->arch_size == 32)
8448    {
8449      r_type_mask = 0xff;
8450      r_sym_shift = 8;
8451    }
8452  else
8453    {
8454      r_type_mask = 0xffffffff;
8455      r_sym_shift = 32;
8456    }
8457
8458  erela = reldata->hdr->contents;
8459  for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8460    {
8461      Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8462      unsigned int j;
8463
8464      if (*rel_hash == NULL)
8465	continue;
8466
8467      BFD_ASSERT ((*rel_hash)->indx >= 0);
8468
8469      (*swap_in) (abfd, erela, irela);
8470      for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8471	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8472			   | (irela[j].r_info & r_type_mask));
8473      (*swap_out) (abfd, irela, erela);
8474    }
8475
8476  if (bed->elf_backend_update_relocs)
8477    (*bed->elf_backend_update_relocs) (sec, reldata);
8478
8479  if (sort && count != 0)
8480    {
8481      bfd_vma (*ext_r_off) (const void *);
8482      bfd_vma r_off;
8483      size_t elt_size;
8484      bfd_byte *base, *end, *p, *loc;
8485      bfd_byte *buf = NULL;
8486
8487      if (bed->s->arch_size == 32)
8488	{
8489	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8490	    ext_r_off = ext32l_r_offset;
8491	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8492	    ext_r_off = ext32b_r_offset;
8493	  else
8494	    abort ();
8495	}
8496      else
8497	{
8498#ifdef BFD_HOST_64_BIT
8499	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8500	    ext_r_off = ext64l_r_offset;
8501	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8502	    ext_r_off = ext64b_r_offset;
8503	  else
8504#endif
8505	    abort ();
8506	}
8507
8508      /*  Must use a stable sort here.  A modified insertion sort,
8509	  since the relocs are mostly sorted already.  */
8510      elt_size = reldata->hdr->sh_entsize;
8511      base = reldata->hdr->contents;
8512      end = base + count * elt_size;
8513      if (elt_size > sizeof (Elf64_External_Rela))
8514	abort ();
8515
8516      /* Ensure the first element is lowest.  This acts as a sentinel,
8517	 speeding the main loop below.  */
8518      r_off = (*ext_r_off) (base);
8519      for (p = loc = base; (p += elt_size) < end; )
8520	{
8521	  bfd_vma r_off2 = (*ext_r_off) (p);
8522	  if (r_off > r_off2)
8523	    {
8524	      r_off = r_off2;
8525	      loc = p;
8526	    }
8527	}
8528      if (loc != base)
8529	{
8530	  /* Don't just swap *base and *loc as that changes the order
8531	     of the original base[0] and base[1] if they happen to
8532	     have the same r_offset.  */
8533	  bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8534	  memcpy (onebuf, loc, elt_size);
8535	  memmove (base + elt_size, base, loc - base);
8536	  memcpy (base, onebuf, elt_size);
8537	}
8538
8539      for (p = base + elt_size; (p += elt_size) < end; )
8540	{
8541	  /* base to p is sorted, *p is next to insert.  */
8542	  r_off = (*ext_r_off) (p);
8543	  /* Search the sorted region for location to insert.  */
8544	  loc = p - elt_size;
8545	  while (r_off < (*ext_r_off) (loc))
8546	    loc -= elt_size;
8547	  loc += elt_size;
8548	  if (loc != p)
8549	    {
8550	      /* Chances are there is a run of relocs to insert here,
8551		 from one of more input files.  Files are not always
8552		 linked in order due to the way elf_link_input_bfd is
8553		 called.  See pr17666.  */
8554	      size_t sortlen = p - loc;
8555	      bfd_vma r_off2 = (*ext_r_off) (loc);
8556	      size_t runlen = elt_size;
8557	      size_t buf_size = 96 * 1024;
8558	      while (p + runlen < end
8559		     && (sortlen <= buf_size
8560			 || runlen + elt_size <= buf_size)
8561		     && r_off2 > (*ext_r_off) (p + runlen))
8562		runlen += elt_size;
8563	      if (buf == NULL)
8564		{
8565		  buf = bfd_malloc (buf_size);
8566		  if (buf == NULL)
8567		    return FALSE;
8568		}
8569	      if (runlen < sortlen)
8570		{
8571		  memcpy (buf, p, runlen);
8572		  memmove (loc + runlen, loc, sortlen);
8573		  memcpy (loc, buf, runlen);
8574		}
8575	      else
8576		{
8577		  memcpy (buf, loc, sortlen);
8578		  memmove (loc, p, runlen);
8579		  memcpy (loc + runlen, buf, sortlen);
8580		}
8581	      p += runlen - elt_size;
8582	    }
8583	}
8584      /* Hashes are no longer valid.  */
8585      free (reldata->hashes);
8586      reldata->hashes = NULL;
8587      free (buf);
8588    }
8589  return TRUE;
8590}
8591
8592struct elf_link_sort_rela
8593{
8594  union {
8595    bfd_vma offset;
8596    bfd_vma sym_mask;
8597  } u;
8598  enum elf_reloc_type_class type;
8599  /* We use this as an array of size int_rels_per_ext_rel.  */
8600  Elf_Internal_Rela rela[1];
8601};
8602
8603static int
8604elf_link_sort_cmp1 (const void *A, const void *B)
8605{
8606  const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8607  const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8608  int relativea, relativeb;
8609
8610  relativea = a->type == reloc_class_relative;
8611  relativeb = b->type == reloc_class_relative;
8612
8613  if (relativea < relativeb)
8614    return 1;
8615  if (relativea > relativeb)
8616    return -1;
8617  if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8618    return -1;
8619  if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8620    return 1;
8621  if (a->rela->r_offset < b->rela->r_offset)
8622    return -1;
8623  if (a->rela->r_offset > b->rela->r_offset)
8624    return 1;
8625  return 0;
8626}
8627
8628static int
8629elf_link_sort_cmp2 (const void *A, const void *B)
8630{
8631  const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8632  const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8633
8634  if (a->type < b->type)
8635    return -1;
8636  if (a->type > b->type)
8637    return 1;
8638  if (a->u.offset < b->u.offset)
8639    return -1;
8640  if (a->u.offset > b->u.offset)
8641    return 1;
8642  if (a->rela->r_offset < b->rela->r_offset)
8643    return -1;
8644  if (a->rela->r_offset > b->rela->r_offset)
8645    return 1;
8646  return 0;
8647}
8648
8649static size_t
8650elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8651{
8652  asection *dynamic_relocs;
8653  asection *rela_dyn;
8654  asection *rel_dyn;
8655  bfd_size_type count, size;
8656  size_t i, ret, sort_elt, ext_size;
8657  bfd_byte *sort, *s_non_relative, *p;
8658  struct elf_link_sort_rela *sq;
8659  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8660  int i2e = bed->s->int_rels_per_ext_rel;
8661  unsigned int opb = bfd_octets_per_byte (abfd);
8662  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8663  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8664  struct bfd_link_order *lo;
8665  bfd_vma r_sym_mask;
8666  bfd_boolean use_rela;
8667
8668  /* Find a dynamic reloc section.  */
8669  rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8670  rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
8671  if (rela_dyn != NULL && rela_dyn->size > 0
8672      && rel_dyn != NULL && rel_dyn->size > 0)
8673    {
8674      bfd_boolean use_rela_initialised = FALSE;
8675
8676      /* This is just here to stop gcc from complaining.
8677	 Its initialization checking code is not perfect.  */
8678      use_rela = TRUE;
8679
8680      /* Both sections are present.  Examine the sizes
8681	 of the indirect sections to help us choose.  */
8682      for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8683	if (lo->type == bfd_indirect_link_order)
8684	  {
8685	    asection *o = lo->u.indirect.section;
8686
8687	    if ((o->size % bed->s->sizeof_rela) == 0)
8688	      {
8689		if ((o->size % bed->s->sizeof_rel) == 0)
8690		  /* Section size is divisible by both rel and rela sizes.
8691		     It is of no help to us.  */
8692		  ;
8693		else
8694		  {
8695		    /* Section size is only divisible by rela.  */
8696		    if (use_rela_initialised && (use_rela == FALSE))
8697		      {
8698			_bfd_error_handler (_("%B: Unable to sort relocs - "
8699					      "they are in more than one size"),
8700					    abfd);
8701			bfd_set_error (bfd_error_invalid_operation);
8702			return 0;
8703		      }
8704		    else
8705		      {
8706			use_rela = TRUE;
8707			use_rela_initialised = TRUE;
8708		      }
8709		  }
8710	      }
8711	    else if ((o->size % bed->s->sizeof_rel) == 0)
8712	      {
8713		/* Section size is only divisible by rel.  */
8714		if (use_rela_initialised && (use_rela == TRUE))
8715		  {
8716		    _bfd_error_handler (_("%B: Unable to sort relocs - "
8717					  "they are in more than one size"),
8718					abfd);
8719		    bfd_set_error (bfd_error_invalid_operation);
8720		    return 0;
8721		  }
8722		else
8723		  {
8724		    use_rela = FALSE;
8725		    use_rela_initialised = TRUE;
8726		  }
8727	      }
8728	    else
8729	      {
8730		/* The section size is not divisible by either -
8731		   something is wrong.  */
8732		_bfd_error_handler (_("%B: Unable to sort relocs - "
8733				      "they are of an unknown size"), abfd);
8734		bfd_set_error (bfd_error_invalid_operation);
8735		return 0;
8736	      }
8737	  }
8738
8739      for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8740	if (lo->type == bfd_indirect_link_order)
8741	  {
8742	    asection *o = lo->u.indirect.section;
8743
8744	    if ((o->size % bed->s->sizeof_rela) == 0)
8745	      {
8746		if ((o->size % bed->s->sizeof_rel) == 0)
8747		  /* Section size is divisible by both rel and rela sizes.
8748		     It is of no help to us.  */
8749		  ;
8750		else
8751		  {
8752		    /* Section size is only divisible by rela.  */
8753		    if (use_rela_initialised && (use_rela == FALSE))
8754		      {
8755			_bfd_error_handler (_("%B: Unable to sort relocs - "
8756					      "they are in more than one size"),
8757					    abfd);
8758			bfd_set_error (bfd_error_invalid_operation);
8759			return 0;
8760		      }
8761		    else
8762		      {
8763			use_rela = TRUE;
8764			use_rela_initialised = TRUE;
8765		      }
8766		  }
8767	      }
8768	    else if ((o->size % bed->s->sizeof_rel) == 0)
8769	      {
8770		/* Section size is only divisible by rel.  */
8771		if (use_rela_initialised && (use_rela == TRUE))
8772		  {
8773		    _bfd_error_handler (_("%B: Unable to sort relocs - "
8774					  "they are in more than one size"),
8775					abfd);
8776		    bfd_set_error (bfd_error_invalid_operation);
8777		    return 0;
8778		  }
8779		else
8780		  {
8781		    use_rela = FALSE;
8782		    use_rela_initialised = TRUE;
8783		  }
8784	      }
8785	    else
8786	      {
8787		/* The section size is not divisible by either -
8788		   something is wrong.  */
8789		_bfd_error_handler (_("%B: Unable to sort relocs - "
8790				      "they are of an unknown size"), abfd);
8791		bfd_set_error (bfd_error_invalid_operation);
8792		return 0;
8793	      }
8794	  }
8795
8796      if (! use_rela_initialised)
8797	/* Make a guess.  */
8798	use_rela = TRUE;
8799    }
8800  else if (rela_dyn != NULL && rela_dyn->size > 0)
8801    use_rela = TRUE;
8802  else if (rel_dyn != NULL && rel_dyn->size > 0)
8803    use_rela = FALSE;
8804  else
8805    return 0;
8806
8807  if (use_rela)
8808    {
8809      dynamic_relocs = rela_dyn;
8810      ext_size = bed->s->sizeof_rela;
8811      swap_in = bed->s->swap_reloca_in;
8812      swap_out = bed->s->swap_reloca_out;
8813    }
8814  else
8815    {
8816      dynamic_relocs = rel_dyn;
8817      ext_size = bed->s->sizeof_rel;
8818      swap_in = bed->s->swap_reloc_in;
8819      swap_out = bed->s->swap_reloc_out;
8820    }
8821
8822  size = 0;
8823  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8824    if (lo->type == bfd_indirect_link_order)
8825      size += lo->u.indirect.section->size;
8826
8827  if (size != dynamic_relocs->size)
8828    return 0;
8829
8830  sort_elt = (sizeof (struct elf_link_sort_rela)
8831	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
8832
8833  count = dynamic_relocs->size / ext_size;
8834  if (count == 0)
8835    return 0;
8836  sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8837
8838  if (sort == NULL)
8839    {
8840      (*info->callbacks->warning)
8841	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8842      return 0;
8843    }
8844
8845  if (bed->s->arch_size == 32)
8846    r_sym_mask = ~(bfd_vma) 0xff;
8847  else
8848    r_sym_mask = ~(bfd_vma) 0xffffffff;
8849
8850  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8851    if (lo->type == bfd_indirect_link_order)
8852      {
8853	bfd_byte *erel, *erelend;
8854	asection *o = lo->u.indirect.section;
8855
8856	if (o->contents == NULL && o->size != 0)
8857	  {
8858	    /* This is a reloc section that is being handled as a normal
8859	       section.  See bfd_section_from_shdr.  We can't combine
8860	       relocs in this case.  */
8861	    free (sort);
8862	    return 0;
8863	  }
8864	erel = o->contents;
8865	erelend = o->contents + o->size;
8866	p = sort + o->output_offset * opb / ext_size * sort_elt;
8867
8868	while (erel < erelend)
8869	  {
8870	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8871
8872	    (*swap_in) (abfd, erel, s->rela);
8873	    s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8874	    s->u.sym_mask = r_sym_mask;
8875	    p += sort_elt;
8876	    erel += ext_size;
8877	  }
8878      }
8879
8880  qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8881
8882  for (i = 0, p = sort; i < count; i++, p += sort_elt)
8883    {
8884      struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8885      if (s->type != reloc_class_relative)
8886	break;
8887    }
8888  ret = i;
8889  s_non_relative = p;
8890
8891  sq = (struct elf_link_sort_rela *) s_non_relative;
8892  for (; i < count; i++, p += sort_elt)
8893    {
8894      struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8895      if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8896	sq = sp;
8897      sp->u.offset = sq->rela->r_offset;
8898    }
8899
8900  qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8901
8902  struct elf_link_hash_table *htab = elf_hash_table (info);
8903  if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8904    {
8905      /* We have plt relocs in .rela.dyn.  */
8906      sq = (struct elf_link_sort_rela *) sort;
8907      for (i = 0; i < count; i++)
8908	if (sq[count - i - 1].type != reloc_class_plt)
8909	  break;
8910      if (i != 0 && htab->srelplt->size == i * ext_size)
8911	{
8912	  struct bfd_link_order **plo;
8913	  /* Put srelplt link_order last.  This is so the output_offset
8914	     set in the next loop is correct for DT_JMPREL.  */
8915	  for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8916	    if ((*plo)->type == bfd_indirect_link_order
8917		&& (*plo)->u.indirect.section == htab->srelplt)
8918	      {
8919		lo = *plo;
8920		*plo = lo->next;
8921	      }
8922	    else
8923	      plo = &(*plo)->next;
8924	  *plo = lo;
8925	  lo->next = NULL;
8926	  dynamic_relocs->map_tail.link_order = lo;
8927	}
8928    }
8929
8930  p = sort;
8931  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8932    if (lo->type == bfd_indirect_link_order)
8933      {
8934	bfd_byte *erel, *erelend;
8935	asection *o = lo->u.indirect.section;
8936
8937	erel = o->contents;
8938	erelend = o->contents + o->size;
8939	o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8940	while (erel < erelend)
8941	  {
8942	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8943	    (*swap_out) (abfd, s->rela, erel);
8944	    p += sort_elt;
8945	    erel += ext_size;
8946	  }
8947      }
8948
8949  free (sort);
8950  *psec = dynamic_relocs;
8951  return ret;
8952}
8953
8954/* Add a symbol to the output symbol string table.  */
8955
8956static int
8957elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8958			   const char *name,
8959			   Elf_Internal_Sym *elfsym,
8960			   asection *input_sec,
8961			   struct elf_link_hash_entry *h)
8962{
8963  int (*output_symbol_hook)
8964    (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8965     struct elf_link_hash_entry *);
8966  struct elf_link_hash_table *hash_table;
8967  const struct elf_backend_data *bed;
8968  bfd_size_type strtabsize;
8969
8970  BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8971
8972  bed = get_elf_backend_data (flinfo->output_bfd);
8973  output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8974  if (output_symbol_hook != NULL)
8975    {
8976      int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8977      if (ret != 1)
8978	return ret;
8979    }
8980
8981  if (name == NULL
8982      || *name == '\0'
8983      || (input_sec->flags & SEC_EXCLUDE))
8984    elfsym->st_name = (unsigned long) -1;
8985  else
8986    {
8987      /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8988	 to get the final offset for st_name.  */
8989      elfsym->st_name
8990	= (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8991					       name, FALSE);
8992      if (elfsym->st_name == (unsigned long) -1)
8993	return 0;
8994    }
8995
8996  hash_table = elf_hash_table (flinfo->info);
8997  strtabsize = hash_table->strtabsize;
8998  if (strtabsize <= hash_table->strtabcount)
8999    {
9000      strtabsize += strtabsize;
9001      hash_table->strtabsize = strtabsize;
9002      strtabsize *= sizeof (*hash_table->strtab);
9003      hash_table->strtab
9004	= (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9005						 strtabsize);
9006      if (hash_table->strtab == NULL)
9007	return 0;
9008    }
9009  hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9010  hash_table->strtab[hash_table->strtabcount].dest_index
9011    = hash_table->strtabcount;
9012  hash_table->strtab[hash_table->strtabcount].destshndx_index
9013    = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9014
9015  bfd_get_symcount (flinfo->output_bfd) += 1;
9016  hash_table->strtabcount += 1;
9017
9018  return 1;
9019}
9020
9021/* Swap symbols out to the symbol table and flush the output symbols to
9022   the file.  */
9023
9024static bfd_boolean
9025elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9026{
9027  struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9028  bfd_size_type amt;
9029  size_t i;
9030  const struct elf_backend_data *bed;
9031  bfd_byte *symbuf;
9032  Elf_Internal_Shdr *hdr;
9033  file_ptr pos;
9034  bfd_boolean ret;
9035
9036  if (!hash_table->strtabcount)
9037    return TRUE;
9038
9039  BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9040
9041  bed = get_elf_backend_data (flinfo->output_bfd);
9042
9043  amt = bed->s->sizeof_sym * hash_table->strtabcount;
9044  symbuf = (bfd_byte *) bfd_malloc (amt);
9045  if (symbuf == NULL)
9046    return FALSE;
9047
9048  if (flinfo->symshndxbuf)
9049    {
9050      amt = sizeof (Elf_External_Sym_Shndx);
9051      amt *= bfd_get_symcount (flinfo->output_bfd);
9052      flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9053      if (flinfo->symshndxbuf == NULL)
9054	{
9055	  free (symbuf);
9056	  return FALSE;
9057	}
9058    }
9059
9060  for (i = 0; i < hash_table->strtabcount; i++)
9061    {
9062      struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9063      if (elfsym->sym.st_name == (unsigned long) -1)
9064	elfsym->sym.st_name = 0;
9065      else
9066	elfsym->sym.st_name
9067	  = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9068						    elfsym->sym.st_name);
9069      bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9070			       ((bfd_byte *) symbuf
9071				+ (elfsym->dest_index
9072				   * bed->s->sizeof_sym)),
9073			       (flinfo->symshndxbuf
9074				+ elfsym->destshndx_index));
9075    }
9076
9077  hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9078  pos = hdr->sh_offset + hdr->sh_size;
9079  amt = hash_table->strtabcount * bed->s->sizeof_sym;
9080  if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9081      && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9082    {
9083      hdr->sh_size += amt;
9084      ret = TRUE;
9085    }
9086  else
9087    ret = FALSE;
9088
9089  free (symbuf);
9090
9091  free (hash_table->strtab);
9092  hash_table->strtab = NULL;
9093
9094  return ret;
9095}
9096
9097/* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
9098
9099static bfd_boolean
9100check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9101{
9102  if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9103      && sym->st_shndx < SHN_LORESERVE)
9104    {
9105      /* The gABI doesn't support dynamic symbols in output sections
9106	 beyond 64k.  */
9107      _bfd_error_handler
9108	/* xgettext:c-format */
9109	(_("%B: Too many sections: %d (>= %d)"),
9110	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9111      bfd_set_error (bfd_error_nonrepresentable_section);
9112      return FALSE;
9113    }
9114  return TRUE;
9115}
9116
9117/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9118   allowing an unsatisfied unversioned symbol in the DSO to match a
9119   versioned symbol that would normally require an explicit version.
9120   We also handle the case that a DSO references a hidden symbol
9121   which may be satisfied by a versioned symbol in another DSO.  */
9122
9123static bfd_boolean
9124elf_link_check_versioned_symbol (struct bfd_link_info *info,
9125				 const struct elf_backend_data *bed,
9126				 struct elf_link_hash_entry *h)
9127{
9128  bfd *abfd;
9129  struct elf_link_loaded_list *loaded;
9130
9131  if (!is_elf_hash_table (info->hash))
9132    return FALSE;
9133
9134  /* Check indirect symbol.  */
9135  while (h->root.type == bfd_link_hash_indirect)
9136    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9137
9138  switch (h->root.type)
9139    {
9140    default:
9141      abfd = NULL;
9142      break;
9143
9144    case bfd_link_hash_undefined:
9145    case bfd_link_hash_undefweak:
9146      abfd = h->root.u.undef.abfd;
9147      if (abfd == NULL
9148	  || (abfd->flags & DYNAMIC) == 0
9149	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9150	return FALSE;
9151      break;
9152
9153    case bfd_link_hash_defined:
9154    case bfd_link_hash_defweak:
9155      abfd = h->root.u.def.section->owner;
9156      break;
9157
9158    case bfd_link_hash_common:
9159      abfd = h->root.u.c.p->section->owner;
9160      break;
9161    }
9162  BFD_ASSERT (abfd != NULL);
9163
9164  for (loaded = elf_hash_table (info)->loaded;
9165       loaded != NULL;
9166       loaded = loaded->next)
9167    {
9168      bfd *input;
9169      Elf_Internal_Shdr *hdr;
9170      size_t symcount;
9171      size_t extsymcount;
9172      size_t extsymoff;
9173      Elf_Internal_Shdr *versymhdr;
9174      Elf_Internal_Sym *isym;
9175      Elf_Internal_Sym *isymend;
9176      Elf_Internal_Sym *isymbuf;
9177      Elf_External_Versym *ever;
9178      Elf_External_Versym *extversym;
9179
9180      input = loaded->abfd;
9181
9182      /* We check each DSO for a possible hidden versioned definition.  */
9183      if (input == abfd
9184	  || (input->flags & DYNAMIC) == 0
9185	  || elf_dynversym (input) == 0)
9186	continue;
9187
9188      hdr = &elf_tdata (input)->dynsymtab_hdr;
9189
9190      symcount = hdr->sh_size / bed->s->sizeof_sym;
9191      if (elf_bad_symtab (input))
9192	{
9193	  extsymcount = symcount;
9194	  extsymoff = 0;
9195	}
9196      else
9197	{
9198	  extsymcount = symcount - hdr->sh_info;
9199	  extsymoff = hdr->sh_info;
9200	}
9201
9202      if (extsymcount == 0)
9203	continue;
9204
9205      isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9206				      NULL, NULL, NULL);
9207      if (isymbuf == NULL)
9208	return FALSE;
9209
9210      /* Read in any version definitions.  */
9211      versymhdr = &elf_tdata (input)->dynversym_hdr;
9212      extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9213      if (extversym == NULL)
9214	goto error_ret;
9215
9216      if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9217	  || (bfd_bread (extversym, versymhdr->sh_size, input)
9218	      != versymhdr->sh_size))
9219	{
9220	  free (extversym);
9221	error_ret:
9222	  free (isymbuf);
9223	  return FALSE;
9224	}
9225
9226      ever = extversym + extsymoff;
9227      isymend = isymbuf + extsymcount;
9228      for (isym = isymbuf; isym < isymend; isym++, ever++)
9229	{
9230	  const char *name;
9231	  Elf_Internal_Versym iver;
9232	  unsigned short version_index;
9233
9234	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9235	      || isym->st_shndx == SHN_UNDEF)
9236	    continue;
9237
9238	  name = bfd_elf_string_from_elf_section (input,
9239						  hdr->sh_link,
9240						  isym->st_name);
9241	  if (strcmp (name, h->root.root.string) != 0)
9242	    continue;
9243
9244	  _bfd_elf_swap_versym_in (input, ever, &iver);
9245
9246	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9247	      && !(h->def_regular
9248		   && h->forced_local))
9249	    {
9250	      /* If we have a non-hidden versioned sym, then it should
9251		 have provided a definition for the undefined sym unless
9252		 it is defined in a non-shared object and forced local.
9253	       */
9254	      abort ();
9255	    }
9256
9257	  version_index = iver.vs_vers & VERSYM_VERSION;
9258	  if (version_index == 1 || version_index == 2)
9259	    {
9260	      /* This is the base or first version.  We can use it.  */
9261	      free (extversym);
9262	      free (isymbuf);
9263	      return TRUE;
9264	    }
9265	}
9266
9267      free (extversym);
9268      free (isymbuf);
9269    }
9270
9271  return FALSE;
9272}
9273
9274/* Convert ELF common symbol TYPE.  */
9275
9276static int
9277elf_link_convert_common_type (struct bfd_link_info *info, int type)
9278{
9279  /* Commom symbol can only appear in relocatable link.  */
9280  if (!bfd_link_relocatable (info))
9281    abort ();
9282  switch (info->elf_stt_common)
9283    {
9284    case unchanged:
9285      break;
9286    case elf_stt_common:
9287      type = STT_COMMON;
9288      break;
9289    case no_elf_stt_common:
9290      type = STT_OBJECT;
9291      break;
9292    }
9293  return type;
9294}
9295
9296/* Add an external symbol to the symbol table.  This is called from
9297   the hash table traversal routine.  When generating a shared object,
9298   we go through the symbol table twice.  The first time we output
9299   anything that might have been forced to local scope in a version
9300   script.  The second time we output the symbols that are still
9301   global symbols.  */
9302
9303static bfd_boolean
9304elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9305{
9306  struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9307  struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9308  struct elf_final_link_info *flinfo = eoinfo->flinfo;
9309  bfd_boolean strip;
9310  Elf_Internal_Sym sym;
9311  asection *input_sec;
9312  const struct elf_backend_data *bed;
9313  long indx;
9314  int ret;
9315  unsigned int type;
9316
9317  if (h->root.type == bfd_link_hash_warning)
9318    {
9319      h = (struct elf_link_hash_entry *) h->root.u.i.link;
9320      if (h->root.type == bfd_link_hash_new)
9321	return TRUE;
9322    }
9323
9324  /* Decide whether to output this symbol in this pass.  */
9325  if (eoinfo->localsyms)
9326    {
9327      if (!h->forced_local)
9328	return TRUE;
9329    }
9330  else
9331    {
9332      if (h->forced_local)
9333	return TRUE;
9334    }
9335
9336  bed = get_elf_backend_data (flinfo->output_bfd);
9337
9338  if (h->root.type == bfd_link_hash_undefined)
9339    {
9340      /* If we have an undefined symbol reference here then it must have
9341	 come from a shared library that is being linked in.  (Undefined
9342	 references in regular files have already been handled unless
9343	 they are in unreferenced sections which are removed by garbage
9344	 collection).  */
9345      bfd_boolean ignore_undef = FALSE;
9346
9347      /* Some symbols may be special in that the fact that they're
9348	 undefined can be safely ignored - let backend determine that.  */
9349      if (bed->elf_backend_ignore_undef_symbol)
9350	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9351
9352      /* If we are reporting errors for this situation then do so now.  */
9353      if (!ignore_undef
9354	  && h->ref_dynamic
9355	  && (!h->ref_regular || flinfo->info->gc_sections)
9356	  && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9357	  && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9358	(*flinfo->info->callbacks->undefined_symbol)
9359	  (flinfo->info, h->root.root.string,
9360	   h->ref_regular ? NULL : h->root.u.undef.abfd,
9361	   NULL, 0,
9362	   flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9363
9364      /* Strip a global symbol defined in a discarded section.  */
9365      if (h->indx == -3)
9366	return TRUE;
9367    }
9368
9369  /* We should also warn if a forced local symbol is referenced from
9370     shared libraries.  */
9371  if (bfd_link_executable (flinfo->info)
9372      && h->forced_local
9373      && h->ref_dynamic
9374      && h->def_regular
9375      && !h->dynamic_def
9376      && h->ref_dynamic_nonweak
9377      && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9378    {
9379      bfd *def_bfd;
9380      const char *msg;
9381      struct elf_link_hash_entry *hi = h;
9382
9383      /* Check indirect symbol.  */
9384      while (hi->root.type == bfd_link_hash_indirect)
9385	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9386
9387      if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9388	/* xgettext:c-format */
9389	msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9390      else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9391	/* xgettext:c-format */
9392	msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9393      else
9394	/* xgettext:c-format */
9395	msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9396      def_bfd = flinfo->output_bfd;
9397      if (hi->root.u.def.section != bfd_abs_section_ptr)
9398	def_bfd = hi->root.u.def.section->owner;
9399      _bfd_error_handler (msg, flinfo->output_bfd, def_bfd,
9400			  h->root.root.string);
9401      bfd_set_error (bfd_error_bad_value);
9402      eoinfo->failed = TRUE;
9403      return FALSE;
9404    }
9405
9406  /* We don't want to output symbols that have never been mentioned by
9407     a regular file, or that we have been told to strip.  However, if
9408     h->indx is set to -2, the symbol is used by a reloc and we must
9409     output it.  */
9410  strip = FALSE;
9411  if (h->indx == -2)
9412    ;
9413  else if ((h->def_dynamic
9414	    || h->ref_dynamic
9415	    || h->root.type == bfd_link_hash_new)
9416	   && !h->def_regular
9417	   && !h->ref_regular)
9418    strip = TRUE;
9419  else if (flinfo->info->strip == strip_all)
9420    strip = TRUE;
9421  else if (flinfo->info->strip == strip_some
9422	   && bfd_hash_lookup (flinfo->info->keep_hash,
9423			       h->root.root.string, FALSE, FALSE) == NULL)
9424    strip = TRUE;
9425  else if ((h->root.type == bfd_link_hash_defined
9426	    || h->root.type == bfd_link_hash_defweak)
9427	   && ((flinfo->info->strip_discarded
9428		&& discarded_section (h->root.u.def.section))
9429	       || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9430		   && h->root.u.def.section->owner != NULL
9431		   && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9432    strip = TRUE;
9433  else if ((h->root.type == bfd_link_hash_undefined
9434	    || h->root.type == bfd_link_hash_undefweak)
9435	   && h->root.u.undef.abfd != NULL
9436	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9437    strip = TRUE;
9438
9439  type = h->type;
9440
9441  /* If we're stripping it, and it's not a dynamic symbol, there's
9442     nothing else to do.   However, if it is a forced local symbol or
9443     an ifunc symbol we need to give the backend finish_dynamic_symbol
9444     function a chance to make it dynamic.  */
9445  if (strip
9446      && h->dynindx == -1
9447      && type != STT_GNU_IFUNC
9448      && !h->forced_local)
9449    return TRUE;
9450
9451  sym.st_value = 0;
9452  sym.st_size = h->size;
9453  sym.st_other = h->other;
9454  switch (h->root.type)
9455    {
9456    default:
9457    case bfd_link_hash_new:
9458    case bfd_link_hash_warning:
9459      abort ();
9460      return FALSE;
9461
9462    case bfd_link_hash_undefined:
9463    case bfd_link_hash_undefweak:
9464      input_sec = bfd_und_section_ptr;
9465      sym.st_shndx = SHN_UNDEF;
9466      break;
9467
9468    case bfd_link_hash_defined:
9469    case bfd_link_hash_defweak:
9470      {
9471	input_sec = h->root.u.def.section;
9472	if (input_sec->output_section != NULL)
9473	  {
9474	    sym.st_shndx =
9475	      _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9476						 input_sec->output_section);
9477	    if (sym.st_shndx == SHN_BAD)
9478	      {
9479		_bfd_error_handler
9480		  /* xgettext:c-format */
9481		  (_("%B: could not find output section %A for input section %A"),
9482		   flinfo->output_bfd, input_sec->output_section, input_sec);
9483		bfd_set_error (bfd_error_nonrepresentable_section);
9484		eoinfo->failed = TRUE;
9485		return FALSE;
9486	      }
9487
9488	    /* ELF symbols in relocatable files are section relative,
9489	       but in nonrelocatable files they are virtual
9490	       addresses.  */
9491	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
9492	    if (!bfd_link_relocatable (flinfo->info))
9493	      {
9494		sym.st_value += input_sec->output_section->vma;
9495		if (h->type == STT_TLS)
9496		  {
9497		    asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9498		    if (tls_sec != NULL)
9499		      sym.st_value -= tls_sec->vma;
9500		  }
9501	      }
9502	  }
9503	else
9504	  {
9505	    BFD_ASSERT (input_sec->owner == NULL
9506			|| (input_sec->owner->flags & DYNAMIC) != 0);
9507	    sym.st_shndx = SHN_UNDEF;
9508	    input_sec = bfd_und_section_ptr;
9509	  }
9510      }
9511      break;
9512
9513    case bfd_link_hash_common:
9514      input_sec = h->root.u.c.p->section;
9515      sym.st_shndx = bed->common_section_index (input_sec);
9516      sym.st_value = 1 << h->root.u.c.p->alignment_power;
9517      break;
9518
9519    case bfd_link_hash_indirect:
9520      /* These symbols are created by symbol versioning.  They point
9521	 to the decorated version of the name.  For example, if the
9522	 symbol foo@@GNU_1.2 is the default, which should be used when
9523	 foo is used with no version, then we add an indirect symbol
9524	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
9525	 since the indirected symbol is already in the hash table.  */
9526      return TRUE;
9527    }
9528
9529  if (type == STT_COMMON || type == STT_OBJECT)
9530    switch (h->root.type)
9531      {
9532      case bfd_link_hash_common:
9533	type = elf_link_convert_common_type (flinfo->info, type);
9534	break;
9535      case bfd_link_hash_defined:
9536      case bfd_link_hash_defweak:
9537	if (bed->common_definition (&sym))
9538	  type = elf_link_convert_common_type (flinfo->info, type);
9539	else
9540	  type = STT_OBJECT;
9541	break;
9542      case bfd_link_hash_undefined:
9543      case bfd_link_hash_undefweak:
9544	break;
9545      default:
9546	abort ();
9547      }
9548
9549  if (h->forced_local)
9550    {
9551      sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9552      /* Turn off visibility on local symbol.  */
9553      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9554    }
9555  /* Set STB_GNU_UNIQUE only if symbol is defined in regular object.  */
9556  else if (h->unique_global && h->def_regular)
9557    sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9558  else if (h->root.type == bfd_link_hash_undefweak
9559	   || h->root.type == bfd_link_hash_defweak)
9560    sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9561  else
9562    sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9563  sym.st_target_internal = h->target_internal;
9564
9565  /* Give the processor backend a chance to tweak the symbol value,
9566     and also to finish up anything that needs to be done for this
9567     symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
9568     forced local syms when non-shared is due to a historical quirk.
9569     STT_GNU_IFUNC symbol must go through PLT.  */
9570  if ((h->type == STT_GNU_IFUNC
9571       && h->def_regular
9572       && !bfd_link_relocatable (flinfo->info))
9573      || ((h->dynindx != -1
9574	   || h->forced_local)
9575	  && ((bfd_link_pic (flinfo->info)
9576	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9577		   || h->root.type != bfd_link_hash_undefweak))
9578	      || !h->forced_local)
9579	  && elf_hash_table (flinfo->info)->dynamic_sections_created))
9580    {
9581      if (! ((*bed->elf_backend_finish_dynamic_symbol)
9582	     (flinfo->output_bfd, flinfo->info, h, &sym)))
9583	{
9584	  eoinfo->failed = TRUE;
9585	  return FALSE;
9586	}
9587    }
9588
9589  /* If we are marking the symbol as undefined, and there are no
9590     non-weak references to this symbol from a regular object, then
9591     mark the symbol as weak undefined; if there are non-weak
9592     references, mark the symbol as strong.  We can't do this earlier,
9593     because it might not be marked as undefined until the
9594     finish_dynamic_symbol routine gets through with it.  */
9595  if (sym.st_shndx == SHN_UNDEF
9596      && h->ref_regular
9597      && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9598	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9599    {
9600      int bindtype;
9601      type = ELF_ST_TYPE (sym.st_info);
9602
9603      /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9604      if (type == STT_GNU_IFUNC)
9605	type = STT_FUNC;
9606
9607      if (h->ref_regular_nonweak)
9608	bindtype = STB_GLOBAL;
9609      else
9610	bindtype = STB_WEAK;
9611      sym.st_info = ELF_ST_INFO (bindtype, type);
9612    }
9613
9614  /* If this is a symbol defined in a dynamic library, don't use the
9615     symbol size from the dynamic library.  Relinking an executable
9616     against a new library may introduce gratuitous changes in the
9617     executable's symbols if we keep the size.  */
9618  if (sym.st_shndx == SHN_UNDEF
9619      && !h->def_regular
9620      && h->def_dynamic)
9621    sym.st_size = 0;
9622
9623  /* If a non-weak symbol with non-default visibility is not defined
9624     locally, it is a fatal error.  */
9625  if (!bfd_link_relocatable (flinfo->info)
9626      && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9627      && ELF_ST_BIND (sym.st_info) != STB_WEAK
9628      && h->root.type == bfd_link_hash_undefined
9629      && !h->def_regular)
9630    {
9631      const char *msg;
9632
9633      if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9634	/* xgettext:c-format */
9635	msg = _("%B: protected symbol `%s' isn't defined");
9636      else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9637	/* xgettext:c-format */
9638	msg = _("%B: internal symbol `%s' isn't defined");
9639      else
9640	/* xgettext:c-format */
9641	msg = _("%B: hidden symbol `%s' isn't defined");
9642      _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9643      bfd_set_error (bfd_error_bad_value);
9644      eoinfo->failed = TRUE;
9645      return FALSE;
9646    }
9647
9648  /* If this symbol should be put in the .dynsym section, then put it
9649     there now.  We already know the symbol index.  We also fill in
9650     the entry in the .hash section.  */
9651  if (elf_hash_table (flinfo->info)->dynsym != NULL
9652      && h->dynindx != -1
9653      && elf_hash_table (flinfo->info)->dynamic_sections_created)
9654    {
9655      bfd_byte *esym;
9656
9657      /* Since there is no version information in the dynamic string,
9658	 if there is no version info in symbol version section, we will
9659	 have a run-time problem if not linking executable, referenced
9660	 by shared library, or not bound locally.  */
9661      if (h->verinfo.verdef == NULL
9662	  && (!bfd_link_executable (flinfo->info)
9663	      || h->ref_dynamic
9664	      || !h->def_regular))
9665	{
9666	  char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9667
9668	  if (p && p [1] != '\0')
9669	    {
9670	      _bfd_error_handler
9671		/* xgettext:c-format */
9672		(_("%B: No symbol version section for versioned symbol `%s'"),
9673		 flinfo->output_bfd, h->root.root.string);
9674	      eoinfo->failed = TRUE;
9675	      return FALSE;
9676	    }
9677	}
9678
9679      sym.st_name = h->dynstr_index;
9680      esym = (elf_hash_table (flinfo->info)->dynsym->contents
9681	      + h->dynindx * bed->s->sizeof_sym);
9682      if (!check_dynsym (flinfo->output_bfd, &sym))
9683	{
9684	  eoinfo->failed = TRUE;
9685	  return FALSE;
9686	}
9687      bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9688
9689      if (flinfo->hash_sec != NULL)
9690	{
9691	  size_t hash_entry_size;
9692	  bfd_byte *bucketpos;
9693	  bfd_vma chain;
9694	  size_t bucketcount;
9695	  size_t bucket;
9696
9697	  bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9698	  bucket = h->u.elf_hash_value % bucketcount;
9699
9700	  hash_entry_size
9701	    = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9702	  bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9703		       + (bucket + 2) * hash_entry_size);
9704	  chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9705	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9706		   bucketpos);
9707	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9708		   ((bfd_byte *) flinfo->hash_sec->contents
9709		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9710	}
9711
9712      if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9713	{
9714	  Elf_Internal_Versym iversym;
9715	  Elf_External_Versym *eversym;
9716
9717	  if (!h->def_regular)
9718	    {
9719	      if (h->verinfo.verdef == NULL
9720		  || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9721		      & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9722		iversym.vs_vers = 0;
9723	      else
9724		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9725	    }
9726	  else
9727	    {
9728	      if (h->verinfo.vertree == NULL)
9729		iversym.vs_vers = 1;
9730	      else
9731		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9732	      if (flinfo->info->create_default_symver)
9733		iversym.vs_vers++;
9734	    }
9735
9736	  /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9737	     defined locally.  */
9738	  if (h->versioned == versioned_hidden && h->def_regular)
9739	    iversym.vs_vers |= VERSYM_HIDDEN;
9740
9741	  eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9742	  eversym += h->dynindx;
9743	  _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9744	}
9745    }
9746
9747  /* If the symbol is undefined, and we didn't output it to .dynsym,
9748     strip it from .symtab too.  Obviously we can't do this for
9749     relocatable output or when needed for --emit-relocs.  */
9750  else if (input_sec == bfd_und_section_ptr
9751	   && h->indx != -2
9752	   && !bfd_link_relocatable (flinfo->info))
9753    return TRUE;
9754  /* Also strip others that we couldn't earlier due to dynamic symbol
9755     processing.  */
9756  if (strip)
9757    return TRUE;
9758  if ((input_sec->flags & SEC_EXCLUDE) != 0)
9759    return TRUE;
9760
9761  /* Output a FILE symbol so that following locals are not associated
9762     with the wrong input file.  We need one for forced local symbols
9763     if we've seen more than one FILE symbol or when we have exactly
9764     one FILE symbol but global symbols are present in a file other
9765     than the one with the FILE symbol.  We also need one if linker
9766     defined symbols are present.  In practice these conditions are
9767     always met, so just emit the FILE symbol unconditionally.  */
9768  if (eoinfo->localsyms
9769      && !eoinfo->file_sym_done
9770      && eoinfo->flinfo->filesym_count != 0)
9771    {
9772      Elf_Internal_Sym fsym;
9773
9774      memset (&fsym, 0, sizeof (fsym));
9775      fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9776      fsym.st_shndx = SHN_ABS;
9777      if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9778				      bfd_und_section_ptr, NULL))
9779	return FALSE;
9780
9781      eoinfo->file_sym_done = TRUE;
9782    }
9783
9784  indx = bfd_get_symcount (flinfo->output_bfd);
9785  ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9786				   input_sec, h);
9787  if (ret == 0)
9788    {
9789      eoinfo->failed = TRUE;
9790      return FALSE;
9791    }
9792  else if (ret == 1)
9793    h->indx = indx;
9794  else if (h->indx == -2)
9795    abort();
9796
9797  return TRUE;
9798}
9799
9800/* Return TRUE if special handling is done for relocs in SEC against
9801   symbols defined in discarded sections.  */
9802
9803static bfd_boolean
9804elf_section_ignore_discarded_relocs (asection *sec)
9805{
9806  const struct elf_backend_data *bed;
9807
9808  switch (sec->sec_info_type)
9809    {
9810    case SEC_INFO_TYPE_STABS:
9811    case SEC_INFO_TYPE_EH_FRAME:
9812    case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9813      return TRUE;
9814    default:
9815      break;
9816    }
9817
9818  bed = get_elf_backend_data (sec->owner);
9819  if (bed->elf_backend_ignore_discarded_relocs != NULL
9820      && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9821    return TRUE;
9822
9823  return FALSE;
9824}
9825
9826/* Return a mask saying how ld should treat relocations in SEC against
9827   symbols defined in discarded sections.  If this function returns
9828   COMPLAIN set, ld will issue a warning message.  If this function
9829   returns PRETEND set, and the discarded section was link-once and the
9830   same size as the kept link-once section, ld will pretend that the
9831   symbol was actually defined in the kept section.  Otherwise ld will
9832   zero the reloc (at least that is the intent, but some cooperation by
9833   the target dependent code is needed, particularly for REL targets).  */
9834
9835unsigned int
9836_bfd_elf_default_action_discarded (asection *sec)
9837{
9838  if (sec->flags & SEC_DEBUGGING)
9839    return PRETEND;
9840
9841  if (strcmp (".eh_frame", sec->name) == 0)
9842    return 0;
9843
9844  if (strcmp (".gcc_except_table", sec->name) == 0)
9845    return 0;
9846
9847  return COMPLAIN | PRETEND;
9848}
9849
9850/* Find a match between a section and a member of a section group.  */
9851
9852static asection *
9853match_group_member (asection *sec, asection *group,
9854		    struct bfd_link_info *info)
9855{
9856  asection *first = elf_next_in_group (group);
9857  asection *s = first;
9858
9859  while (s != NULL)
9860    {
9861      if (bfd_elf_match_symbols_in_sections (s, sec, info))
9862	return s;
9863
9864      s = elf_next_in_group (s);
9865      if (s == first)
9866	break;
9867    }
9868
9869  return NULL;
9870}
9871
9872/* Check if the kept section of a discarded section SEC can be used
9873   to replace it.  Return the replacement if it is OK.  Otherwise return
9874   NULL.  */
9875
9876asection *
9877_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9878{
9879  asection *kept;
9880
9881  kept = sec->kept_section;
9882  if (kept != NULL)
9883    {
9884      if ((kept->flags & SEC_GROUP) != 0)
9885	kept = match_group_member (sec, kept, info);
9886      if (kept != NULL
9887	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9888	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9889	kept = NULL;
9890      sec->kept_section = kept;
9891    }
9892  return kept;
9893}
9894
9895/* Link an input file into the linker output file.  This function
9896   handles all the sections and relocations of the input file at once.
9897   This is so that we only have to read the local symbols once, and
9898   don't have to keep them in memory.  */
9899
9900static bfd_boolean
9901elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9902{
9903  int (*relocate_section)
9904    (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9905     Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9906  bfd *output_bfd;
9907  Elf_Internal_Shdr *symtab_hdr;
9908  size_t locsymcount;
9909  size_t extsymoff;
9910  Elf_Internal_Sym *isymbuf;
9911  Elf_Internal_Sym *isym;
9912  Elf_Internal_Sym *isymend;
9913  long *pindex;
9914  asection **ppsection;
9915  asection *o;
9916  const struct elf_backend_data *bed;
9917  struct elf_link_hash_entry **sym_hashes;
9918  bfd_size_type address_size;
9919  bfd_vma r_type_mask;
9920  int r_sym_shift;
9921  bfd_boolean have_file_sym = FALSE;
9922
9923  output_bfd = flinfo->output_bfd;
9924  bed = get_elf_backend_data (output_bfd);
9925  relocate_section = bed->elf_backend_relocate_section;
9926
9927  /* If this is a dynamic object, we don't want to do anything here:
9928     we don't want the local symbols, and we don't want the section
9929     contents.  */
9930  if ((input_bfd->flags & DYNAMIC) != 0)
9931    return TRUE;
9932
9933  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9934  if (elf_bad_symtab (input_bfd))
9935    {
9936      locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9937      extsymoff = 0;
9938    }
9939  else
9940    {
9941      locsymcount = symtab_hdr->sh_info;
9942      extsymoff = symtab_hdr->sh_info;
9943    }
9944
9945  /* Read the local symbols.  */
9946  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9947  if (isymbuf == NULL && locsymcount != 0)
9948    {
9949      isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9950				      flinfo->internal_syms,
9951				      flinfo->external_syms,
9952				      flinfo->locsym_shndx);
9953      if (isymbuf == NULL)
9954	return FALSE;
9955    }
9956
9957  /* Find local symbol sections and adjust values of symbols in
9958     SEC_MERGE sections.  Write out those local symbols we know are
9959     going into the output file.  */
9960  isymend = isymbuf + locsymcount;
9961  for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9962       isym < isymend;
9963       isym++, pindex++, ppsection++)
9964    {
9965      asection *isec;
9966      const char *name;
9967      Elf_Internal_Sym osym;
9968      long indx;
9969      int ret;
9970
9971      *pindex = -1;
9972
9973      if (elf_bad_symtab (input_bfd))
9974	{
9975	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9976	    {
9977	      *ppsection = NULL;
9978	      continue;
9979	    }
9980	}
9981
9982      if (isym->st_shndx == SHN_UNDEF)
9983	isec = bfd_und_section_ptr;
9984      else if (isym->st_shndx == SHN_ABS)
9985	isec = bfd_abs_section_ptr;
9986      else if (isym->st_shndx == SHN_COMMON)
9987	isec = bfd_com_section_ptr;
9988      else
9989	{
9990	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9991	  if (isec == NULL)
9992	    {
9993	      /* Don't attempt to output symbols with st_shnx in the
9994		 reserved range other than SHN_ABS and SHN_COMMON.  */
9995	      *ppsection = NULL;
9996	      continue;
9997	    }
9998	  else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9999		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10000	    isym->st_value =
10001	      _bfd_merged_section_offset (output_bfd, &isec,
10002					  elf_section_data (isec)->sec_info,
10003					  isym->st_value);
10004	}
10005
10006      *ppsection = isec;
10007
10008      /* Don't output the first, undefined, symbol.  In fact, don't
10009	 output any undefined local symbol.  */
10010      if (isec == bfd_und_section_ptr)
10011	continue;
10012
10013      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10014	{
10015	  /* We never output section symbols.  Instead, we use the
10016	     section symbol of the corresponding section in the output
10017	     file.  */
10018	  continue;
10019	}
10020
10021      /* If we are stripping all symbols, we don't want to output this
10022	 one.  */
10023      if (flinfo->info->strip == strip_all)
10024	continue;
10025
10026      /* If we are discarding all local symbols, we don't want to
10027	 output this one.  If we are generating a relocatable output
10028	 file, then some of the local symbols may be required by
10029	 relocs; we output them below as we discover that they are
10030	 needed.  */
10031      if (flinfo->info->discard == discard_all)
10032	continue;
10033
10034      /* If this symbol is defined in a section which we are
10035	 discarding, we don't need to keep it.  */
10036      if (isym->st_shndx != SHN_UNDEF
10037	  && isym->st_shndx < SHN_LORESERVE
10038	  && bfd_section_removed_from_list (output_bfd,
10039					    isec->output_section))
10040	continue;
10041
10042      /* Get the name of the symbol.  */
10043      name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10044					      isym->st_name);
10045      if (name == NULL)
10046	return FALSE;
10047
10048      /* See if we are discarding symbols with this name.  */
10049      if ((flinfo->info->strip == strip_some
10050	   && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10051	       == NULL))
10052	  || (((flinfo->info->discard == discard_sec_merge
10053		&& (isec->flags & SEC_MERGE)
10054		&& !bfd_link_relocatable (flinfo->info))
10055	       || flinfo->info->discard == discard_l)
10056	      && bfd_is_local_label_name (input_bfd, name)))
10057	continue;
10058
10059      if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10060	{
10061	  if (input_bfd->lto_output)
10062	    /* -flto puts a temp file name here.  This means builds
10063	       are not reproducible.  Discard the symbol.  */
10064	    continue;
10065	  have_file_sym = TRUE;
10066	  flinfo->filesym_count += 1;
10067	}
10068      if (!have_file_sym)
10069	{
10070	  /* In the absence of debug info, bfd_find_nearest_line uses
10071	     FILE symbols to determine the source file for local
10072	     function symbols.  Provide a FILE symbol here if input
10073	     files lack such, so that their symbols won't be
10074	     associated with a previous input file.  It's not the
10075	     source file, but the best we can do.  */
10076	  have_file_sym = TRUE;
10077	  flinfo->filesym_count += 1;
10078	  memset (&osym, 0, sizeof (osym));
10079	  osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10080	  osym.st_shndx = SHN_ABS;
10081	  if (!elf_link_output_symstrtab (flinfo,
10082					  (input_bfd->lto_output ? NULL
10083					   : input_bfd->filename),
10084					  &osym, bfd_abs_section_ptr,
10085					  NULL))
10086	    return FALSE;
10087	}
10088
10089      osym = *isym;
10090
10091      /* Adjust the section index for the output file.  */
10092      osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10093							 isec->output_section);
10094      if (osym.st_shndx == SHN_BAD)
10095	return FALSE;
10096
10097      /* ELF symbols in relocatable files are section relative, but
10098	 in executable files they are virtual addresses.  Note that
10099	 this code assumes that all ELF sections have an associated
10100	 BFD section with a reasonable value for output_offset; below
10101	 we assume that they also have a reasonable value for
10102	 output_section.  Any special sections must be set up to meet
10103	 these requirements.  */
10104      osym.st_value += isec->output_offset;
10105      if (!bfd_link_relocatable (flinfo->info))
10106	{
10107	  osym.st_value += isec->output_section->vma;
10108	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10109	    {
10110	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
10111	      BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10112	      osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10113	    }
10114	}
10115
10116      indx = bfd_get_symcount (output_bfd);
10117      ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10118      if (ret == 0)
10119	return FALSE;
10120      else if (ret == 1)
10121	*pindex = indx;
10122    }
10123
10124  if (bed->s->arch_size == 32)
10125    {
10126      r_type_mask = 0xff;
10127      r_sym_shift = 8;
10128      address_size = 4;
10129    }
10130  else
10131    {
10132      r_type_mask = 0xffffffff;
10133      r_sym_shift = 32;
10134      address_size = 8;
10135    }
10136
10137  /* Relocate the contents of each section.  */
10138  sym_hashes = elf_sym_hashes (input_bfd);
10139  for (o = input_bfd->sections; o != NULL; o = o->next)
10140    {
10141      bfd_byte *contents;
10142
10143      if (! o->linker_mark)
10144	{
10145	  /* This section was omitted from the link.  */
10146	  continue;
10147	}
10148
10149      if (bfd_link_relocatable (flinfo->info)
10150	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10151	{
10152	  /* Deal with the group signature symbol.  */
10153	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
10154	  unsigned long symndx = sec_data->this_hdr.sh_info;
10155	  asection *osec = o->output_section;
10156
10157	  if (symndx >= locsymcount
10158	      || (elf_bad_symtab (input_bfd)
10159		  && flinfo->sections[symndx] == NULL))
10160	    {
10161	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10162	      while (h->root.type == bfd_link_hash_indirect
10163		     || h->root.type == bfd_link_hash_warning)
10164		h = (struct elf_link_hash_entry *) h->root.u.i.link;
10165	      /* Arrange for symbol to be output.  */
10166	      h->indx = -2;
10167	      elf_section_data (osec)->this_hdr.sh_info = -2;
10168	    }
10169	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10170	    {
10171	      /* We'll use the output section target_index.  */
10172	      asection *sec = flinfo->sections[symndx]->output_section;
10173	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10174	    }
10175	  else
10176	    {
10177	      if (flinfo->indices[symndx] == -1)
10178		{
10179		  /* Otherwise output the local symbol now.  */
10180		  Elf_Internal_Sym sym = isymbuf[symndx];
10181		  asection *sec = flinfo->sections[symndx]->output_section;
10182		  const char *name;
10183		  long indx;
10184		  int ret;
10185
10186		  name = bfd_elf_string_from_elf_section (input_bfd,
10187							  symtab_hdr->sh_link,
10188							  sym.st_name);
10189		  if (name == NULL)
10190		    return FALSE;
10191
10192		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10193								    sec);
10194		  if (sym.st_shndx == SHN_BAD)
10195		    return FALSE;
10196
10197		  sym.st_value += o->output_offset;
10198
10199		  indx = bfd_get_symcount (output_bfd);
10200		  ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10201						   NULL);
10202		  if (ret == 0)
10203		    return FALSE;
10204		  else if (ret == 1)
10205		    flinfo->indices[symndx] = indx;
10206		  else
10207		    abort ();
10208		}
10209	      elf_section_data (osec)->this_hdr.sh_info
10210		= flinfo->indices[symndx];
10211	    }
10212	}
10213
10214      if ((o->flags & SEC_HAS_CONTENTS) == 0
10215	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10216	continue;
10217
10218      if ((o->flags & SEC_LINKER_CREATED) != 0)
10219	{
10220	  /* Section was created by _bfd_elf_link_create_dynamic_sections
10221	     or somesuch.  */
10222	  continue;
10223	}
10224
10225      /* Get the contents of the section.  They have been cached by a
10226	 relaxation routine.  Note that o is a section in an input
10227	 file, so the contents field will not have been set by any of
10228	 the routines which work on output files.  */
10229      if (elf_section_data (o)->this_hdr.contents != NULL)
10230	{
10231	  contents = elf_section_data (o)->this_hdr.contents;
10232	  if (bed->caches_rawsize
10233	      && o->rawsize != 0
10234	      && o->rawsize < o->size)
10235	    {
10236	      memcpy (flinfo->contents, contents, o->rawsize);
10237	      contents = flinfo->contents;
10238	    }
10239	}
10240      else
10241	{
10242	  contents = flinfo->contents;
10243	  if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10244	    return FALSE;
10245	}
10246
10247      if ((o->flags & SEC_RELOC) != 0)
10248	{
10249	  Elf_Internal_Rela *internal_relocs;
10250	  Elf_Internal_Rela *rel, *relend;
10251	  int action_discarded;
10252	  int ret;
10253
10254	  /* Get the swapped relocs.  */
10255	  internal_relocs
10256	    = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10257					 flinfo->internal_relocs, FALSE);
10258	  if (internal_relocs == NULL
10259	      && o->reloc_count > 0)
10260	    return FALSE;
10261
10262	  /* We need to reverse-copy input .ctors/.dtors sections if
10263	     they are placed in .init_array/.finit_array for output.  */
10264	  if (o->size > address_size
10265	      && ((strncmp (o->name, ".ctors", 6) == 0
10266		   && strcmp (o->output_section->name,
10267			      ".init_array") == 0)
10268		  || (strncmp (o->name, ".dtors", 6) == 0
10269		      && strcmp (o->output_section->name,
10270				 ".fini_array") == 0))
10271	      && (o->name[6] == 0 || o->name[6] == '.'))
10272	    {
10273	      if (o->size != o->reloc_count * address_size)
10274		{
10275		  _bfd_error_handler
10276		    /* xgettext:c-format */
10277		    (_("error: %B: size of section %A is not "
10278		       "multiple of address size"),
10279		     input_bfd, o);
10280		  bfd_set_error (bfd_error_on_input);
10281		  return FALSE;
10282		}
10283	      o->flags |= SEC_ELF_REVERSE_COPY;
10284	    }
10285
10286	  action_discarded = -1;
10287	  if (!elf_section_ignore_discarded_relocs (o))
10288	    action_discarded = (*bed->action_discarded) (o);
10289
10290	  /* Run through the relocs evaluating complex reloc symbols and
10291	     looking for relocs against symbols from discarded sections
10292	     or section symbols from removed link-once sections.
10293	     Complain about relocs against discarded sections.  Zero
10294	     relocs against removed link-once sections.  */
10295
10296	  rel = internal_relocs;
10297	  relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10298	  for ( ; rel < relend; rel++)
10299	    {
10300	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
10301	      unsigned int s_type;
10302	      asection **ps, *sec;
10303	      struct elf_link_hash_entry *h = NULL;
10304	      const char *sym_name;
10305
10306	      if (r_symndx == STN_UNDEF)
10307		continue;
10308
10309	      if (r_symndx >= locsymcount
10310		  || (elf_bad_symtab (input_bfd)
10311		      && flinfo->sections[r_symndx] == NULL))
10312		{
10313		  h = sym_hashes[r_symndx - extsymoff];
10314
10315		  /* Badly formatted input files can contain relocs that
10316		     reference non-existant symbols.  Check here so that
10317		     we do not seg fault.  */
10318		  if (h == NULL)
10319		    {
10320		      char buffer [32];
10321
10322		      sprintf_vma (buffer, rel->r_info);
10323		      _bfd_error_handler
10324			/* xgettext:c-format */
10325			(_("error: %B contains a reloc (0x%s) for section %A "
10326			   "that references a non-existent global symbol"),
10327			 input_bfd, o, buffer);
10328		      bfd_set_error (bfd_error_bad_value);
10329		      return FALSE;
10330		    }
10331
10332		  while (h->root.type == bfd_link_hash_indirect
10333			 || h->root.type == bfd_link_hash_warning)
10334		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10335
10336		  s_type = h->type;
10337
10338		  /* If a plugin symbol is referenced from a non-IR file,
10339		     mark the symbol as undefined.  Note that the
10340		     linker may attach linker created dynamic sections
10341		     to the plugin bfd.  Symbols defined in linker
10342		     created sections are not plugin symbols.  */
10343		  if (h->root.non_ir_ref
10344		      && (h->root.type == bfd_link_hash_defined
10345			  || h->root.type == bfd_link_hash_defweak)
10346		      && (h->root.u.def.section->flags
10347			  & SEC_LINKER_CREATED) == 0
10348		      && h->root.u.def.section->owner != NULL
10349		      && (h->root.u.def.section->owner->flags
10350			  & BFD_PLUGIN) != 0)
10351		    {
10352		      h->root.type = bfd_link_hash_undefined;
10353		      h->root.u.undef.abfd = h->root.u.def.section->owner;
10354		    }
10355
10356		  ps = NULL;
10357		  if (h->root.type == bfd_link_hash_defined
10358		      || h->root.type == bfd_link_hash_defweak)
10359		    ps = &h->root.u.def.section;
10360
10361		  sym_name = h->root.root.string;
10362		}
10363	      else
10364		{
10365		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
10366
10367		  s_type = ELF_ST_TYPE (sym->st_info);
10368		  ps = &flinfo->sections[r_symndx];
10369		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10370					       sym, *ps);
10371		}
10372
10373	      if ((s_type == STT_RELC || s_type == STT_SRELC)
10374		  && !bfd_link_relocatable (flinfo->info))
10375		{
10376		  bfd_vma val;
10377		  bfd_vma dot = (rel->r_offset
10378				 + o->output_offset + o->output_section->vma);
10379#ifdef DEBUG
10380		  printf ("Encountered a complex symbol!");
10381		  printf (" (input_bfd %s, section %s, reloc %ld\n",
10382			  input_bfd->filename, o->name,
10383			  (long) (rel - internal_relocs));
10384		  printf (" symbol: idx  %8.8lx, name %s\n",
10385			  r_symndx, sym_name);
10386		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
10387			  (unsigned long) rel->r_info,
10388			  (unsigned long) rel->r_offset);
10389#endif
10390		  if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10391				    isymbuf, locsymcount, s_type == STT_SRELC))
10392		    return FALSE;
10393
10394		  /* Symbol evaluated OK.  Update to absolute value.  */
10395		  set_symbol_value (input_bfd, isymbuf, locsymcount,
10396				    r_symndx, val);
10397		  continue;
10398		}
10399
10400	      if (action_discarded != -1 && ps != NULL)
10401		{
10402		  /* Complain if the definition comes from a
10403		     discarded section.  */
10404		  if ((sec = *ps) != NULL && discarded_section (sec))
10405		    {
10406		      BFD_ASSERT (r_symndx != STN_UNDEF);
10407		      if (action_discarded & COMPLAIN)
10408			(*flinfo->info->callbacks->einfo)
10409			  /* xgettext:c-format */
10410			  (_("%X`%s' referenced in section `%A' of %B: "
10411			     "defined in discarded section `%A' of %B\n"),
10412			   sym_name, o, input_bfd, sec, sec->owner);
10413
10414		      /* Try to do the best we can to support buggy old
10415			 versions of gcc.  Pretend that the symbol is
10416			 really defined in the kept linkonce section.
10417			 FIXME: This is quite broken.  Modifying the
10418			 symbol here means we will be changing all later
10419			 uses of the symbol, not just in this section.  */
10420		      if (action_discarded & PRETEND)
10421			{
10422			  asection *kept;
10423
10424			  kept = _bfd_elf_check_kept_section (sec,
10425							      flinfo->info);
10426			  if (kept != NULL)
10427			    {
10428			      *ps = kept;
10429			      continue;
10430			    }
10431			}
10432		    }
10433		}
10434	    }
10435
10436	  /* Relocate the section by invoking a back end routine.
10437
10438	     The back end routine is responsible for adjusting the
10439	     section contents as necessary, and (if using Rela relocs
10440	     and generating a relocatable output file) adjusting the
10441	     reloc addend as necessary.
10442
10443	     The back end routine does not have to worry about setting
10444	     the reloc address or the reloc symbol index.
10445
10446	     The back end routine is given a pointer to the swapped in
10447	     internal symbols, and can access the hash table entries
10448	     for the external symbols via elf_sym_hashes (input_bfd).
10449
10450	     When generating relocatable output, the back end routine
10451	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
10452	     output symbol is going to be a section symbol
10453	     corresponding to the output section, which will require
10454	     the addend to be adjusted.  */
10455
10456	  ret = (*relocate_section) (output_bfd, flinfo->info,
10457				     input_bfd, o, contents,
10458				     internal_relocs,
10459				     isymbuf,
10460				     flinfo->sections);
10461	  if (!ret)
10462	    return FALSE;
10463
10464	  if (ret == 2
10465	      || bfd_link_relocatable (flinfo->info)
10466	      || flinfo->info->emitrelocations)
10467	    {
10468	      Elf_Internal_Rela *irela;
10469	      Elf_Internal_Rela *irelaend, *irelamid;
10470	      bfd_vma last_offset;
10471	      struct elf_link_hash_entry **rel_hash;
10472	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10473	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10474	      unsigned int next_erel;
10475	      bfd_boolean rela_normal;
10476	      struct bfd_elf_section_data *esdi, *esdo;
10477
10478	      esdi = elf_section_data (o);
10479	      esdo = elf_section_data (o->output_section);
10480	      rela_normal = FALSE;
10481
10482	      /* Adjust the reloc addresses and symbol indices.  */
10483
10484	      irela = internal_relocs;
10485	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10486	      rel_hash = esdo->rel.hashes + esdo->rel.count;
10487	      /* We start processing the REL relocs, if any.  When we reach
10488		 IRELAMID in the loop, we switch to the RELA relocs.  */
10489	      irelamid = irela;
10490	      if (esdi->rel.hdr != NULL)
10491		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10492			     * bed->s->int_rels_per_ext_rel);
10493	      rel_hash_list = rel_hash;
10494	      rela_hash_list = NULL;
10495	      last_offset = o->output_offset;
10496	      if (!bfd_link_relocatable (flinfo->info))
10497		last_offset += o->output_section->vma;
10498	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10499		{
10500		  unsigned long r_symndx;
10501		  asection *sec;
10502		  Elf_Internal_Sym sym;
10503
10504		  if (next_erel == bed->s->int_rels_per_ext_rel)
10505		    {
10506		      rel_hash++;
10507		      next_erel = 0;
10508		    }
10509
10510		  if (irela == irelamid)
10511		    {
10512		      rel_hash = esdo->rela.hashes + esdo->rela.count;
10513		      rela_hash_list = rel_hash;
10514		      rela_normal = bed->rela_normal;
10515		    }
10516
10517		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
10518							     flinfo->info, o,
10519							     irela->r_offset);
10520		  if (irela->r_offset >= (bfd_vma) -2)
10521		    {
10522		      /* This is a reloc for a deleted entry or somesuch.
10523			 Turn it into an R_*_NONE reloc, at the same
10524			 offset as the last reloc.  elf_eh_frame.c and
10525			 bfd_elf_discard_info rely on reloc offsets
10526			 being ordered.  */
10527		      irela->r_offset = last_offset;
10528		      irela->r_info = 0;
10529		      irela->r_addend = 0;
10530		      continue;
10531		    }
10532
10533		  irela->r_offset += o->output_offset;
10534
10535		  /* Relocs in an executable have to be virtual addresses.  */
10536		  if (!bfd_link_relocatable (flinfo->info))
10537		    irela->r_offset += o->output_section->vma;
10538
10539		  last_offset = irela->r_offset;
10540
10541		  r_symndx = irela->r_info >> r_sym_shift;
10542		  if (r_symndx == STN_UNDEF)
10543		    continue;
10544
10545		  if (r_symndx >= locsymcount
10546		      || (elf_bad_symtab (input_bfd)
10547			  && flinfo->sections[r_symndx] == NULL))
10548		    {
10549		      struct elf_link_hash_entry *rh;
10550		      unsigned long indx;
10551
10552		      /* This is a reloc against a global symbol.  We
10553			 have not yet output all the local symbols, so
10554			 we do not know the symbol index of any global
10555			 symbol.  We set the rel_hash entry for this
10556			 reloc to point to the global hash table entry
10557			 for this symbol.  The symbol index is then
10558			 set at the end of bfd_elf_final_link.  */
10559		      indx = r_symndx - extsymoff;
10560		      rh = elf_sym_hashes (input_bfd)[indx];
10561		      while (rh->root.type == bfd_link_hash_indirect
10562			     || rh->root.type == bfd_link_hash_warning)
10563			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10564
10565		      /* Setting the index to -2 tells
10566			 elf_link_output_extsym that this symbol is
10567			 used by a reloc.  */
10568		      BFD_ASSERT (rh->indx < 0);
10569		      rh->indx = -2;
10570
10571		      *rel_hash = rh;
10572
10573		      continue;
10574		    }
10575
10576		  /* This is a reloc against a local symbol.  */
10577
10578		  *rel_hash = NULL;
10579		  sym = isymbuf[r_symndx];
10580		  sec = flinfo->sections[r_symndx];
10581		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10582		    {
10583		      /* I suppose the backend ought to fill in the
10584			 section of any STT_SECTION symbol against a
10585			 processor specific section.  */
10586		      r_symndx = STN_UNDEF;
10587		      if (bfd_is_abs_section (sec))
10588			;
10589		      else if (sec == NULL || sec->owner == NULL)
10590			{
10591			  bfd_set_error (bfd_error_bad_value);
10592			  return FALSE;
10593			}
10594		      else
10595			{
10596			  asection *osec = sec->output_section;
10597
10598			  /* If we have discarded a section, the output
10599			     section will be the absolute section.  In
10600			     case of discarded SEC_MERGE sections, use
10601			     the kept section.  relocate_section should
10602			     have already handled discarded linkonce
10603			     sections.  */
10604			  if (bfd_is_abs_section (osec)
10605			      && sec->kept_section != NULL
10606			      && sec->kept_section->output_section != NULL)
10607			    {
10608			      osec = sec->kept_section->output_section;
10609			      irela->r_addend -= osec->vma;
10610			    }
10611
10612			  if (!bfd_is_abs_section (osec))
10613			    {
10614			      r_symndx = osec->target_index;
10615			      if (r_symndx == STN_UNDEF)
10616				{
10617				  irela->r_addend += osec->vma;
10618				  osec = _bfd_nearby_section (output_bfd, osec,
10619							      osec->vma);
10620				  irela->r_addend -= osec->vma;
10621				  r_symndx = osec->target_index;
10622				}
10623			    }
10624			}
10625
10626		      /* Adjust the addend according to where the
10627			 section winds up in the output section.  */
10628		      if (rela_normal)
10629			irela->r_addend += sec->output_offset;
10630		    }
10631		  else
10632		    {
10633		      if (flinfo->indices[r_symndx] == -1)
10634			{
10635			  unsigned long shlink;
10636			  const char *name;
10637			  asection *osec;
10638			  long indx;
10639
10640			  if (flinfo->info->strip == strip_all)
10641			    {
10642			      /* You can't do ld -r -s.  */
10643			      bfd_set_error (bfd_error_invalid_operation);
10644			      return FALSE;
10645			    }
10646
10647			  /* This symbol was skipped earlier, but
10648			     since it is needed by a reloc, we
10649			     must output it now.  */
10650			  shlink = symtab_hdr->sh_link;
10651			  name = (bfd_elf_string_from_elf_section
10652				  (input_bfd, shlink, sym.st_name));
10653			  if (name == NULL)
10654			    return FALSE;
10655
10656			  osec = sec->output_section;
10657			  sym.st_shndx =
10658			    _bfd_elf_section_from_bfd_section (output_bfd,
10659							       osec);
10660			  if (sym.st_shndx == SHN_BAD)
10661			    return FALSE;
10662
10663			  sym.st_value += sec->output_offset;
10664			  if (!bfd_link_relocatable (flinfo->info))
10665			    {
10666			      sym.st_value += osec->vma;
10667			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10668				{
10669				  /* STT_TLS symbols are relative to PT_TLS
10670				     segment base.  */
10671				  BFD_ASSERT (elf_hash_table (flinfo->info)
10672					      ->tls_sec != NULL);
10673				  sym.st_value -= (elf_hash_table (flinfo->info)
10674						   ->tls_sec->vma);
10675				}
10676			    }
10677
10678			  indx = bfd_get_symcount (output_bfd);
10679			  ret = elf_link_output_symstrtab (flinfo, name,
10680							   &sym, sec,
10681							   NULL);
10682			  if (ret == 0)
10683			    return FALSE;
10684			  else if (ret == 1)
10685			    flinfo->indices[r_symndx] = indx;
10686			  else
10687			    abort ();
10688			}
10689
10690		      r_symndx = flinfo->indices[r_symndx];
10691		    }
10692
10693		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10694				   | (irela->r_info & r_type_mask));
10695		}
10696
10697	      /* Swap out the relocs.  */
10698	      input_rel_hdr = esdi->rel.hdr;
10699	      if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10700		{
10701		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
10702						     input_rel_hdr,
10703						     internal_relocs,
10704						     rel_hash_list))
10705		    return FALSE;
10706		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10707				      * bed->s->int_rels_per_ext_rel);
10708		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10709		}
10710
10711	      input_rela_hdr = esdi->rela.hdr;
10712	      if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10713		{
10714		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
10715						     input_rela_hdr,
10716						     internal_relocs,
10717						     rela_hash_list))
10718		    return FALSE;
10719		}
10720	    }
10721	}
10722
10723      /* Write out the modified section contents.  */
10724      if (bed->elf_backend_write_section
10725	  && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10726						contents))
10727	{
10728	  /* Section written out.  */
10729	}
10730      else switch (o->sec_info_type)
10731	{
10732	case SEC_INFO_TYPE_STABS:
10733	  if (! (_bfd_write_section_stabs
10734		 (output_bfd,
10735		  &elf_hash_table (flinfo->info)->stab_info,
10736		  o, &elf_section_data (o)->sec_info, contents)))
10737	    return FALSE;
10738	  break;
10739	case SEC_INFO_TYPE_MERGE:
10740	  if (! _bfd_write_merged_section (output_bfd, o,
10741					   elf_section_data (o)->sec_info))
10742	    return FALSE;
10743	  break;
10744	case SEC_INFO_TYPE_EH_FRAME:
10745	  {
10746	    if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10747						   o, contents))
10748	      return FALSE;
10749	  }
10750	  break;
10751	case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10752	  {
10753	    if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10754							 flinfo->info,
10755							 o, contents))
10756	      return FALSE;
10757	  }
10758	  break;
10759	default:
10760	  {
10761	    if (! (o->flags & SEC_EXCLUDE))
10762	      {
10763		file_ptr offset = (file_ptr) o->output_offset;
10764		bfd_size_type todo = o->size;
10765
10766		offset *= bfd_octets_per_byte (output_bfd);
10767
10768		if ((o->flags & SEC_ELF_REVERSE_COPY))
10769		  {
10770		    /* Reverse-copy input section to output.  */
10771		    do
10772		      {
10773			todo -= address_size;
10774			if (! bfd_set_section_contents (output_bfd,
10775							o->output_section,
10776							contents + todo,
10777							offset,
10778							address_size))
10779			  return FALSE;
10780			if (todo == 0)
10781			  break;
10782			offset += address_size;
10783		      }
10784		    while (1);
10785		  }
10786		else if (! bfd_set_section_contents (output_bfd,
10787						     o->output_section,
10788						     contents,
10789						     offset, todo))
10790		  return FALSE;
10791	      }
10792	  }
10793	  break;
10794	}
10795    }
10796
10797  return TRUE;
10798}
10799
10800/* Generate a reloc when linking an ELF file.  This is a reloc
10801   requested by the linker, and does not come from any input file.  This
10802   is used to build constructor and destructor tables when linking
10803   with -Ur.  */
10804
10805static bfd_boolean
10806elf_reloc_link_order (bfd *output_bfd,
10807		      struct bfd_link_info *info,
10808		      asection *output_section,
10809		      struct bfd_link_order *link_order)
10810{
10811  reloc_howto_type *howto;
10812  long indx;
10813  bfd_vma offset;
10814  bfd_vma addend;
10815  struct bfd_elf_section_reloc_data *reldata;
10816  struct elf_link_hash_entry **rel_hash_ptr;
10817  Elf_Internal_Shdr *rel_hdr;
10818  const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10819  Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10820  bfd_byte *erel;
10821  unsigned int i;
10822  struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10823
10824  howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10825  if (howto == NULL)
10826    {
10827      bfd_set_error (bfd_error_bad_value);
10828      return FALSE;
10829    }
10830
10831  addend = link_order->u.reloc.p->addend;
10832
10833  if (esdo->rel.hdr)
10834    reldata = &esdo->rel;
10835  else if (esdo->rela.hdr)
10836    reldata = &esdo->rela;
10837  else
10838    {
10839      reldata = NULL;
10840      BFD_ASSERT (0);
10841    }
10842
10843  /* Figure out the symbol index.  */
10844  rel_hash_ptr = reldata->hashes + reldata->count;
10845  if (link_order->type == bfd_section_reloc_link_order)
10846    {
10847      indx = link_order->u.reloc.p->u.section->target_index;
10848      BFD_ASSERT (indx != 0);
10849      *rel_hash_ptr = NULL;
10850    }
10851  else
10852    {
10853      struct elf_link_hash_entry *h;
10854
10855      /* Treat a reloc against a defined symbol as though it were
10856	 actually against the section.  */
10857      h = ((struct elf_link_hash_entry *)
10858	   bfd_wrapped_link_hash_lookup (output_bfd, info,
10859					 link_order->u.reloc.p->u.name,
10860					 FALSE, FALSE, TRUE));
10861      if (h != NULL
10862	  && (h->root.type == bfd_link_hash_defined
10863	      || h->root.type == bfd_link_hash_defweak))
10864	{
10865	  asection *section;
10866
10867	  section = h->root.u.def.section;
10868	  indx = section->output_section->target_index;
10869	  *rel_hash_ptr = NULL;
10870	  /* It seems that we ought to add the symbol value to the
10871	     addend here, but in practice it has already been added
10872	     because it was passed to constructor_callback.  */
10873	  addend += section->output_section->vma + section->output_offset;
10874	}
10875      else if (h != NULL)
10876	{
10877	  /* Setting the index to -2 tells elf_link_output_extsym that
10878	     this symbol is used by a reloc.  */
10879	  h->indx = -2;
10880	  *rel_hash_ptr = h;
10881	  indx = 0;
10882	}
10883      else
10884	{
10885	  (*info->callbacks->unattached_reloc)
10886	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10887	  indx = 0;
10888	}
10889    }
10890
10891  /* If this is an inplace reloc, we must write the addend into the
10892     object file.  */
10893  if (howto->partial_inplace && addend != 0)
10894    {
10895      bfd_size_type size;
10896      bfd_reloc_status_type rstat;
10897      bfd_byte *buf;
10898      bfd_boolean ok;
10899      const char *sym_name;
10900
10901      size = (bfd_size_type) bfd_get_reloc_size (howto);
10902      buf = (bfd_byte *) bfd_zmalloc (size);
10903      if (buf == NULL && size != 0)
10904	return FALSE;
10905      rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10906      switch (rstat)
10907	{
10908	case bfd_reloc_ok:
10909	  break;
10910
10911	default:
10912	case bfd_reloc_outofrange:
10913	  abort ();
10914
10915	case bfd_reloc_overflow:
10916	  if (link_order->type == bfd_section_reloc_link_order)
10917	    sym_name = bfd_section_name (output_bfd,
10918					 link_order->u.reloc.p->u.section);
10919	  else
10920	    sym_name = link_order->u.reloc.p->u.name;
10921	  (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10922					      howto->name, addend, NULL, NULL,
10923					      (bfd_vma) 0);
10924	  break;
10925	}
10926
10927      ok = bfd_set_section_contents (output_bfd, output_section, buf,
10928				     link_order->offset
10929				     * bfd_octets_per_byte (output_bfd),
10930				     size);
10931      free (buf);
10932      if (! ok)
10933	return FALSE;
10934    }
10935
10936  /* The address of a reloc is relative to the section in a
10937     relocatable file, and is a virtual address in an executable
10938     file.  */
10939  offset = link_order->offset;
10940  if (! bfd_link_relocatable (info))
10941    offset += output_section->vma;
10942
10943  for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10944    {
10945      irel[i].r_offset = offset;
10946      irel[i].r_info = 0;
10947      irel[i].r_addend = 0;
10948    }
10949  if (bed->s->arch_size == 32)
10950    irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10951  else
10952    irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10953
10954  rel_hdr = reldata->hdr;
10955  erel = rel_hdr->contents;
10956  if (rel_hdr->sh_type == SHT_REL)
10957    {
10958      erel += reldata->count * bed->s->sizeof_rel;
10959      (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10960    }
10961  else
10962    {
10963      irel[0].r_addend = addend;
10964      erel += reldata->count * bed->s->sizeof_rela;
10965      (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10966    }
10967
10968  ++reldata->count;
10969
10970  return TRUE;
10971}
10972
10973
10974/* Get the output vma of the section pointed to by the sh_link field.  */
10975
10976static bfd_vma
10977elf_get_linked_section_vma (struct bfd_link_order *p)
10978{
10979  Elf_Internal_Shdr **elf_shdrp;
10980  asection *s;
10981  int elfsec;
10982
10983  s = p->u.indirect.section;
10984  elf_shdrp = elf_elfsections (s->owner);
10985  elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10986  elfsec = elf_shdrp[elfsec]->sh_link;
10987  /* PR 290:
10988     The Intel C compiler generates SHT_IA_64_UNWIND with
10989     SHF_LINK_ORDER.  But it doesn't set the sh_link or
10990     sh_info fields.  Hence we could get the situation
10991     where elfsec is 0.  */
10992  if (elfsec == 0)
10993    {
10994      const struct elf_backend_data *bed
10995	= get_elf_backend_data (s->owner);
10996      if (bed->link_order_error_handler)
10997	bed->link_order_error_handler
10998	  /* xgettext:c-format */
10999	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11000      return 0;
11001    }
11002  else
11003    {
11004      s = elf_shdrp[elfsec]->bfd_section;
11005      return s->output_section->vma + s->output_offset;
11006    }
11007}
11008
11009
11010/* Compare two sections based on the locations of the sections they are
11011   linked to.  Used by elf_fixup_link_order.  */
11012
11013static int
11014compare_link_order (const void * a, const void * b)
11015{
11016  bfd_vma apos;
11017  bfd_vma bpos;
11018
11019  apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11020  bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11021  if (apos < bpos)
11022    return -1;
11023  return apos > bpos;
11024}
11025
11026
11027/* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
11028   order as their linked sections.  Returns false if this could not be done
11029   because an output section includes both ordered and unordered
11030   sections.  Ideally we'd do this in the linker proper.  */
11031
11032static bfd_boolean
11033elf_fixup_link_order (bfd *abfd, asection *o)
11034{
11035  int seen_linkorder;
11036  int seen_other;
11037  int n;
11038  struct bfd_link_order *p;
11039  bfd *sub;
11040  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11041  unsigned elfsec;
11042  struct bfd_link_order **sections;
11043  asection *s, *other_sec, *linkorder_sec;
11044  bfd_vma offset;
11045
11046  other_sec = NULL;
11047  linkorder_sec = NULL;
11048  seen_other = 0;
11049  seen_linkorder = 0;
11050  for (p = o->map_head.link_order; p != NULL; p = p->next)
11051    {
11052      if (p->type == bfd_indirect_link_order)
11053	{
11054	  s = p->u.indirect.section;
11055	  sub = s->owner;
11056	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11057	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11058	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11059	      && elfsec < elf_numsections (sub)
11060	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11061	      && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11062	    {
11063	      seen_linkorder++;
11064	      linkorder_sec = s;
11065	    }
11066	  else
11067	    {
11068	      seen_other++;
11069	      other_sec = s;
11070	    }
11071	}
11072      else
11073	seen_other++;
11074
11075      if (seen_other && seen_linkorder)
11076	{
11077	  if (other_sec && linkorder_sec)
11078	    _bfd_error_handler
11079	      /* xgettext:c-format */
11080	      (_("%A has both ordered [`%A' in %B] "
11081		 "and unordered [`%A' in %B] sections"),
11082	       o, linkorder_sec,
11083	       linkorder_sec->owner, other_sec,
11084	       other_sec->owner);
11085	  else
11086	    _bfd_error_handler
11087	      (_("%A has both ordered and unordered sections"), o);
11088	  bfd_set_error (bfd_error_bad_value);
11089	  return FALSE;
11090	}
11091    }
11092
11093  if (!seen_linkorder)
11094    return TRUE;
11095
11096  sections = (struct bfd_link_order **)
11097    bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11098  if (sections == NULL)
11099    return FALSE;
11100  seen_linkorder = 0;
11101
11102  for (p = o->map_head.link_order; p != NULL; p = p->next)
11103    {
11104      sections[seen_linkorder++] = p;
11105    }
11106  /* Sort the input sections in the order of their linked section.  */
11107  qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11108	 compare_link_order);
11109
11110  /* Change the offsets of the sections.  */
11111  offset = 0;
11112  for (n = 0; n < seen_linkorder; n++)
11113    {
11114      s = sections[n]->u.indirect.section;
11115      offset &= ~(bfd_vma) 0 << s->alignment_power;
11116      s->output_offset = offset / bfd_octets_per_byte (abfd);
11117      sections[n]->offset = offset;
11118      offset += sections[n]->size;
11119    }
11120
11121  free (sections);
11122  return TRUE;
11123}
11124
11125/* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11126   Returns TRUE upon success, FALSE otherwise.  */
11127
11128static bfd_boolean
11129elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11130{
11131  bfd_boolean ret = FALSE;
11132  bfd *implib_bfd;
11133  const struct elf_backend_data *bed;
11134  flagword flags;
11135  enum bfd_architecture arch;
11136  unsigned int mach;
11137  asymbol **sympp = NULL;
11138  long symsize;
11139  long symcount;
11140  long src_count;
11141  elf_symbol_type *osymbuf;
11142
11143  implib_bfd = info->out_implib_bfd;
11144  bed = get_elf_backend_data (abfd);
11145
11146  if (!bfd_set_format (implib_bfd, bfd_object))
11147    return FALSE;
11148
11149  /* Use flag from executable but make it a relocatable object.  */
11150  flags = bfd_get_file_flags (abfd);
11151  flags &= ~HAS_RELOC;
11152  if (!bfd_set_start_address (implib_bfd, 0)
11153      || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11154    return FALSE;
11155
11156  /* Copy architecture of output file to import library file.  */
11157  arch = bfd_get_arch (abfd);
11158  mach = bfd_get_mach (abfd);
11159  if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11160      && (abfd->target_defaulted
11161	  || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11162    return FALSE;
11163
11164  /* Get symbol table size.  */
11165  symsize = bfd_get_symtab_upper_bound (abfd);
11166  if (symsize < 0)
11167    return FALSE;
11168
11169  /* Read in the symbol table.  */
11170  sympp = (asymbol **) xmalloc (symsize);
11171  symcount = bfd_canonicalize_symtab (abfd, sympp);
11172  if (symcount < 0)
11173    goto free_sym_buf;
11174
11175  /* Allow the BFD backend to copy any private header data it
11176     understands from the output BFD to the import library BFD.  */
11177  if (! bfd_copy_private_header_data (abfd, implib_bfd))
11178    goto free_sym_buf;
11179
11180  /* Filter symbols to appear in the import library.  */
11181  if (bed->elf_backend_filter_implib_symbols)
11182    symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11183						       symcount);
11184  else
11185    symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11186  if (symcount == 0)
11187    {
11188      bfd_set_error (bfd_error_no_symbols);
11189      _bfd_error_handler (_("%B: no symbol found for import library"),
11190			  implib_bfd);
11191      goto free_sym_buf;
11192    }
11193
11194
11195  /* Make symbols absolute.  */
11196  osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11197					    sizeof (*osymbuf));
11198  for (src_count = 0; src_count < symcount; src_count++)
11199    {
11200      memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11201	      sizeof (*osymbuf));
11202      osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11203      osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11204      osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11205      osymbuf[src_count].internal_elf_sym.st_value =
11206	osymbuf[src_count].symbol.value;
11207      sympp[src_count] = &osymbuf[src_count].symbol;
11208    }
11209
11210  bfd_set_symtab (implib_bfd, sympp, symcount);
11211
11212  /* Allow the BFD backend to copy any private data it understands
11213     from the output BFD to the import library BFD.  This is done last
11214     to permit the routine to look at the filtered symbol table.  */
11215  if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11216    goto free_sym_buf;
11217
11218  if (!bfd_close (implib_bfd))
11219    goto free_sym_buf;
11220
11221  ret = TRUE;
11222
11223free_sym_buf:
11224  free (sympp);
11225  return ret;
11226}
11227
11228static void
11229elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11230{
11231  asection *o;
11232
11233  if (flinfo->symstrtab != NULL)
11234    _bfd_elf_strtab_free (flinfo->symstrtab);
11235  if (flinfo->contents != NULL)
11236    free (flinfo->contents);
11237  if (flinfo->external_relocs != NULL)
11238    free (flinfo->external_relocs);
11239  if (flinfo->internal_relocs != NULL)
11240    free (flinfo->internal_relocs);
11241  if (flinfo->external_syms != NULL)
11242    free (flinfo->external_syms);
11243  if (flinfo->locsym_shndx != NULL)
11244    free (flinfo->locsym_shndx);
11245  if (flinfo->internal_syms != NULL)
11246    free (flinfo->internal_syms);
11247  if (flinfo->indices != NULL)
11248    free (flinfo->indices);
11249  if (flinfo->sections != NULL)
11250    free (flinfo->sections);
11251  if (flinfo->symshndxbuf != NULL)
11252    free (flinfo->symshndxbuf);
11253  for (o = obfd->sections; o != NULL; o = o->next)
11254    {
11255      struct bfd_elf_section_data *esdo = elf_section_data (o);
11256      if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11257	free (esdo->rel.hashes);
11258      if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11259	free (esdo->rela.hashes);
11260    }
11261}
11262
11263/* Do the final step of an ELF link.  */
11264
11265bfd_boolean
11266bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11267{
11268  bfd_boolean dynamic;
11269  bfd_boolean emit_relocs;
11270  bfd *dynobj;
11271  struct elf_final_link_info flinfo;
11272  asection *o;
11273  struct bfd_link_order *p;
11274  bfd *sub;
11275  bfd_size_type max_contents_size;
11276  bfd_size_type max_external_reloc_size;
11277  bfd_size_type max_internal_reloc_count;
11278  bfd_size_type max_sym_count;
11279  bfd_size_type max_sym_shndx_count;
11280  Elf_Internal_Sym elfsym;
11281  unsigned int i;
11282  Elf_Internal_Shdr *symtab_hdr;
11283  Elf_Internal_Shdr *symtab_shndx_hdr;
11284  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11285  struct elf_outext_info eoinfo;
11286  bfd_boolean merged;
11287  size_t relativecount = 0;
11288  asection *reldyn = 0;
11289  bfd_size_type amt;
11290  asection *attr_section = NULL;
11291  bfd_vma attr_size = 0;
11292  const char *std_attrs_section;
11293  struct elf_link_hash_table *htab = elf_hash_table (info);
11294
11295  if (!is_elf_hash_table (htab))
11296    return FALSE;
11297
11298  if (bfd_link_pic (info))
11299    abfd->flags |= DYNAMIC;
11300
11301  dynamic = htab->dynamic_sections_created;
11302  dynobj = htab->dynobj;
11303
11304  emit_relocs = (bfd_link_relocatable (info)
11305		 || info->emitrelocations);
11306
11307  flinfo.info = info;
11308  flinfo.output_bfd = abfd;
11309  flinfo.symstrtab = _bfd_elf_strtab_init ();
11310  if (flinfo.symstrtab == NULL)
11311    return FALSE;
11312
11313  if (! dynamic)
11314    {
11315      flinfo.hash_sec = NULL;
11316      flinfo.symver_sec = NULL;
11317    }
11318  else
11319    {
11320      flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11321      /* Note that dynsym_sec can be NULL (on VMS).  */
11322      flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11323      /* Note that it is OK if symver_sec is NULL.  */
11324    }
11325
11326  flinfo.contents = NULL;
11327  flinfo.external_relocs = NULL;
11328  flinfo.internal_relocs = NULL;
11329  flinfo.external_syms = NULL;
11330  flinfo.locsym_shndx = NULL;
11331  flinfo.internal_syms = NULL;
11332  flinfo.indices = NULL;
11333  flinfo.sections = NULL;
11334  flinfo.symshndxbuf = NULL;
11335  flinfo.filesym_count = 0;
11336
11337  /* The object attributes have been merged.  Remove the input
11338     sections from the link, and set the contents of the output
11339     secton.  */
11340  std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11341  for (o = abfd->sections; o != NULL; o = o->next)
11342    {
11343      if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11344	  || strcmp (o->name, ".gnu.attributes") == 0)
11345	{
11346	  for (p = o->map_head.link_order; p != NULL; p = p->next)
11347	    {
11348	      asection *input_section;
11349
11350	      if (p->type != bfd_indirect_link_order)
11351		continue;
11352	      input_section = p->u.indirect.section;
11353	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
11354		 elf_link_input_bfd ignores this section.  */
11355	      input_section->flags &= ~SEC_HAS_CONTENTS;
11356	    }
11357
11358	  attr_size = bfd_elf_obj_attr_size (abfd);
11359	  if (attr_size)
11360	    {
11361	      bfd_set_section_size (abfd, o, attr_size);
11362	      attr_section = o;
11363	      /* Skip this section later on.  */
11364	      o->map_head.link_order = NULL;
11365	    }
11366	  else
11367	    o->flags |= SEC_EXCLUDE;
11368	}
11369    }
11370
11371  /* Count up the number of relocations we will output for each output
11372     section, so that we know the sizes of the reloc sections.  We
11373     also figure out some maximum sizes.  */
11374  max_contents_size = 0;
11375  max_external_reloc_size = 0;
11376  max_internal_reloc_count = 0;
11377  max_sym_count = 0;
11378  max_sym_shndx_count = 0;
11379  merged = FALSE;
11380  for (o = abfd->sections; o != NULL; o = o->next)
11381    {
11382      struct bfd_elf_section_data *esdo = elf_section_data (o);
11383      o->reloc_count = 0;
11384
11385      for (p = o->map_head.link_order; p != NULL; p = p->next)
11386	{
11387	  unsigned int reloc_count = 0;
11388	  unsigned int additional_reloc_count = 0;
11389	  struct bfd_elf_section_data *esdi = NULL;
11390
11391	  if (p->type == bfd_section_reloc_link_order
11392	      || p->type == bfd_symbol_reloc_link_order)
11393	    reloc_count = 1;
11394	  else if (p->type == bfd_indirect_link_order)
11395	    {
11396	      asection *sec;
11397
11398	      sec = p->u.indirect.section;
11399
11400	      /* Mark all sections which are to be included in the
11401		 link.  This will normally be every section.  We need
11402		 to do this so that we can identify any sections which
11403		 the linker has decided to not include.  */
11404	      sec->linker_mark = TRUE;
11405
11406	      if (sec->flags & SEC_MERGE)
11407		merged = TRUE;
11408
11409	      if (sec->rawsize > max_contents_size)
11410		max_contents_size = sec->rawsize;
11411	      if (sec->size > max_contents_size)
11412		max_contents_size = sec->size;
11413
11414	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11415		  && (sec->owner->flags & DYNAMIC) == 0)
11416		{
11417		  size_t sym_count;
11418
11419		  /* We are interested in just local symbols, not all
11420		     symbols.  */
11421		  if (elf_bad_symtab (sec->owner))
11422		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11423				 / bed->s->sizeof_sym);
11424		  else
11425		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11426
11427		  if (sym_count > max_sym_count)
11428		    max_sym_count = sym_count;
11429
11430		  if (sym_count > max_sym_shndx_count
11431		      && elf_symtab_shndx_list (sec->owner) != NULL)
11432		    max_sym_shndx_count = sym_count;
11433
11434		  if (esdo->this_hdr.sh_type == SHT_REL
11435		      || esdo->this_hdr.sh_type == SHT_RELA)
11436		    /* Some backends use reloc_count in relocation sections
11437		       to count particular types of relocs.  Of course,
11438		       reloc sections themselves can't have relocations.  */
11439		    ;
11440		  else if (emit_relocs)
11441		    {
11442		      reloc_count = sec->reloc_count;
11443		      if (bed->elf_backend_count_additional_relocs)
11444			{
11445			  int c;
11446			  c = (*bed->elf_backend_count_additional_relocs) (sec);
11447			  additional_reloc_count += c;
11448			}
11449		    }
11450		  else if (bed->elf_backend_count_relocs)
11451		    reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11452
11453		  esdi = elf_section_data (sec);
11454
11455		  if ((sec->flags & SEC_RELOC) != 0)
11456		    {
11457		      size_t ext_size = 0;
11458
11459		      if (esdi->rel.hdr != NULL)
11460			ext_size = esdi->rel.hdr->sh_size;
11461		      if (esdi->rela.hdr != NULL)
11462			ext_size += esdi->rela.hdr->sh_size;
11463
11464		      if (ext_size > max_external_reloc_size)
11465			max_external_reloc_size = ext_size;
11466		      if (sec->reloc_count > max_internal_reloc_count)
11467			max_internal_reloc_count = sec->reloc_count;
11468		    }
11469		}
11470	    }
11471
11472	  if (reloc_count == 0)
11473	    continue;
11474
11475	  reloc_count += additional_reloc_count;
11476	  o->reloc_count += reloc_count;
11477
11478	  if (p->type == bfd_indirect_link_order && emit_relocs)
11479	    {
11480	      if (esdi->rel.hdr)
11481		{
11482		  esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11483		  esdo->rel.count += additional_reloc_count;
11484		}
11485	      if (esdi->rela.hdr)
11486		{
11487		  esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11488		  esdo->rela.count += additional_reloc_count;
11489		}
11490	    }
11491	  else
11492	    {
11493	      if (o->use_rela_p)
11494		esdo->rela.count += reloc_count;
11495	      else
11496		esdo->rel.count += reloc_count;
11497	    }
11498	}
11499
11500      if (o->reloc_count > 0)
11501	o->flags |= SEC_RELOC;
11502      else
11503	{
11504	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
11505	     set it (this is probably a bug) and if it is set
11506	     assign_section_numbers will create a reloc section.  */
11507	  o->flags &=~ SEC_RELOC;
11508	}
11509
11510      /* If the SEC_ALLOC flag is not set, force the section VMA to
11511	 zero.  This is done in elf_fake_sections as well, but forcing
11512	 the VMA to 0 here will ensure that relocs against these
11513	 sections are handled correctly.  */
11514      if ((o->flags & SEC_ALLOC) == 0
11515	  && ! o->user_set_vma)
11516	o->vma = 0;
11517    }
11518
11519  if (! bfd_link_relocatable (info) && merged)
11520    elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11521
11522  /* Figure out the file positions for everything but the symbol table
11523     and the relocs.  We set symcount to force assign_section_numbers
11524     to create a symbol table.  */
11525  bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11526  BFD_ASSERT (! abfd->output_has_begun);
11527  if (! _bfd_elf_compute_section_file_positions (abfd, info))
11528    goto error_return;
11529
11530  /* Set sizes, and assign file positions for reloc sections.  */
11531  for (o = abfd->sections; o != NULL; o = o->next)
11532    {
11533      struct bfd_elf_section_data *esdo = elf_section_data (o);
11534      if ((o->flags & SEC_RELOC) != 0)
11535	{
11536	  if (esdo->rel.hdr
11537	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11538	    goto error_return;
11539
11540	  if (esdo->rela.hdr
11541	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11542	    goto error_return;
11543	}
11544
11545      /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11546	 to count upwards while actually outputting the relocations.  */
11547      esdo->rel.count = 0;
11548      esdo->rela.count = 0;
11549
11550      if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11551	{
11552	  /* Cache the section contents so that they can be compressed
11553	     later.  Use bfd_malloc since it will be freed by
11554	     bfd_compress_section_contents.  */
11555	  unsigned char *contents = esdo->this_hdr.contents;
11556	  if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11557	    abort ();
11558	  contents
11559	    = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11560	  if (contents == NULL)
11561	    goto error_return;
11562	  esdo->this_hdr.contents = contents;
11563	}
11564    }
11565
11566  /* We have now assigned file positions for all the sections except
11567     .symtab, .strtab, and non-loaded reloc sections.  We start the
11568     .symtab section at the current file position, and write directly
11569     to it.  We build the .strtab section in memory.  */
11570  bfd_get_symcount (abfd) = 0;
11571  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11572  /* sh_name is set in prep_headers.  */
11573  symtab_hdr->sh_type = SHT_SYMTAB;
11574  /* sh_flags, sh_addr and sh_size all start off zero.  */
11575  symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11576  /* sh_link is set in assign_section_numbers.  */
11577  /* sh_info is set below.  */
11578  /* sh_offset is set just below.  */
11579  symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11580
11581  if (max_sym_count < 20)
11582    max_sym_count = 20;
11583  htab->strtabsize = max_sym_count;
11584  amt = max_sym_count * sizeof (struct elf_sym_strtab);
11585  htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11586  if (htab->strtab == NULL)
11587    goto error_return;
11588  /* The real buffer will be allocated in elf_link_swap_symbols_out.  */
11589  flinfo.symshndxbuf
11590    = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11591       ? (Elf_External_Sym_Shndx *) -1 : NULL);
11592
11593  if (info->strip != strip_all || emit_relocs)
11594    {
11595      file_ptr off = elf_next_file_pos (abfd);
11596
11597      _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11598
11599      /* Note that at this point elf_next_file_pos (abfd) is
11600	 incorrect.  We do not yet know the size of the .symtab section.
11601	 We correct next_file_pos below, after we do know the size.  */
11602
11603      /* Start writing out the symbol table.  The first symbol is always a
11604	 dummy symbol.  */
11605      elfsym.st_value = 0;
11606      elfsym.st_size = 0;
11607      elfsym.st_info = 0;
11608      elfsym.st_other = 0;
11609      elfsym.st_shndx = SHN_UNDEF;
11610      elfsym.st_target_internal = 0;
11611      if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11612				     bfd_und_section_ptr, NULL) != 1)
11613	goto error_return;
11614
11615      /* Output a symbol for each section.  We output these even if we are
11616	 discarding local symbols, since they are used for relocs.  These
11617	 symbols have no names.  We store the index of each one in the
11618	 index field of the section, so that we can find it again when
11619	 outputting relocs.  */
11620
11621      elfsym.st_size = 0;
11622      elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11623      elfsym.st_other = 0;
11624      elfsym.st_value = 0;
11625      elfsym.st_target_internal = 0;
11626      for (i = 1; i < elf_numsections (abfd); i++)
11627	{
11628	  o = bfd_section_from_elf_index (abfd, i);
11629	  if (o != NULL)
11630	    {
11631	      o->target_index = bfd_get_symcount (abfd);
11632	      elfsym.st_shndx = i;
11633	      if (!bfd_link_relocatable (info))
11634		elfsym.st_value = o->vma;
11635	      if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11636					     NULL) != 1)
11637		goto error_return;
11638	    }
11639	}
11640    }
11641
11642  /* Allocate some memory to hold information read in from the input
11643     files.  */
11644  if (max_contents_size != 0)
11645    {
11646      flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11647      if (flinfo.contents == NULL)
11648	goto error_return;
11649    }
11650
11651  if (max_external_reloc_size != 0)
11652    {
11653      flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11654      if (flinfo.external_relocs == NULL)
11655	goto error_return;
11656    }
11657
11658  if (max_internal_reloc_count != 0)
11659    {
11660      amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11661      amt *= sizeof (Elf_Internal_Rela);
11662      flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11663      if (flinfo.internal_relocs == NULL)
11664	goto error_return;
11665    }
11666
11667  if (max_sym_count != 0)
11668    {
11669      amt = max_sym_count * bed->s->sizeof_sym;
11670      flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11671      if (flinfo.external_syms == NULL)
11672	goto error_return;
11673
11674      amt = max_sym_count * sizeof (Elf_Internal_Sym);
11675      flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11676      if (flinfo.internal_syms == NULL)
11677	goto error_return;
11678
11679      amt = max_sym_count * sizeof (long);
11680      flinfo.indices = (long int *) bfd_malloc (amt);
11681      if (flinfo.indices == NULL)
11682	goto error_return;
11683
11684      amt = max_sym_count * sizeof (asection *);
11685      flinfo.sections = (asection **) bfd_malloc (amt);
11686      if (flinfo.sections == NULL)
11687	goto error_return;
11688    }
11689
11690  if (max_sym_shndx_count != 0)
11691    {
11692      amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11693      flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11694      if (flinfo.locsym_shndx == NULL)
11695	goto error_return;
11696    }
11697
11698  if (htab->tls_sec)
11699    {
11700      bfd_vma base, end = 0;
11701      asection *sec;
11702
11703      for (sec = htab->tls_sec;
11704	   sec && (sec->flags & SEC_THREAD_LOCAL);
11705	   sec = sec->next)
11706	{
11707	  bfd_size_type size = sec->size;
11708
11709	  if (size == 0
11710	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
11711	    {
11712	      struct bfd_link_order *ord = sec->map_tail.link_order;
11713
11714	      if (ord != NULL)
11715		size = ord->offset + ord->size;
11716	    }
11717	  end = sec->vma + size;
11718	}
11719      base = htab->tls_sec->vma;
11720      /* Only align end of TLS section if static TLS doesn't have special
11721	 alignment requirements.  */
11722      if (bed->static_tls_alignment == 1)
11723	end = align_power (end, htab->tls_sec->alignment_power);
11724      htab->tls_size = end - base;
11725    }
11726
11727  /* Reorder SHF_LINK_ORDER sections.  */
11728  for (o = abfd->sections; o != NULL; o = o->next)
11729    {
11730      if (!elf_fixup_link_order (abfd, o))
11731	return FALSE;
11732    }
11733
11734  if (!_bfd_elf_fixup_eh_frame_hdr (info))
11735    return FALSE;
11736
11737  /* Since ELF permits relocations to be against local symbols, we
11738     must have the local symbols available when we do the relocations.
11739     Since we would rather only read the local symbols once, and we
11740     would rather not keep them in memory, we handle all the
11741     relocations for a single input file at the same time.
11742
11743     Unfortunately, there is no way to know the total number of local
11744     symbols until we have seen all of them, and the local symbol
11745     indices precede the global symbol indices.  This means that when
11746     we are generating relocatable output, and we see a reloc against
11747     a global symbol, we can not know the symbol index until we have
11748     finished examining all the local symbols to see which ones we are
11749     going to output.  To deal with this, we keep the relocations in
11750     memory, and don't output them until the end of the link.  This is
11751     an unfortunate waste of memory, but I don't see a good way around
11752     it.  Fortunately, it only happens when performing a relocatable
11753     link, which is not the common case.  FIXME: If keep_memory is set
11754     we could write the relocs out and then read them again; I don't
11755     know how bad the memory loss will be.  */
11756
11757  for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11758    sub->output_has_begun = FALSE;
11759  for (o = abfd->sections; o != NULL; o = o->next)
11760    {
11761      for (p = o->map_head.link_order; p != NULL; p = p->next)
11762	{
11763	  if (p->type == bfd_indirect_link_order
11764	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11765		  == bfd_target_elf_flavour)
11766	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11767	    {
11768	      if (! sub->output_has_begun)
11769		{
11770		  if (! elf_link_input_bfd (&flinfo, sub))
11771		    goto error_return;
11772		  sub->output_has_begun = TRUE;
11773		}
11774	    }
11775	  else if (p->type == bfd_section_reloc_link_order
11776		   || p->type == bfd_symbol_reloc_link_order)
11777	    {
11778	      if (! elf_reloc_link_order (abfd, info, o, p))
11779		goto error_return;
11780	    }
11781	  else
11782	    {
11783	      if (! _bfd_default_link_order (abfd, info, o, p))
11784		{
11785		  if (p->type == bfd_indirect_link_order
11786		      && (bfd_get_flavour (sub)
11787			  == bfd_target_elf_flavour)
11788		      && (elf_elfheader (sub)->e_ident[EI_CLASS]
11789			  != bed->s->elfclass))
11790		    {
11791		      const char *iclass, *oclass;
11792
11793		      switch (bed->s->elfclass)
11794			{
11795			case ELFCLASS64: oclass = "ELFCLASS64"; break;
11796			case ELFCLASS32: oclass = "ELFCLASS32"; break;
11797			case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11798			default: abort ();
11799			}
11800
11801		      switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11802			{
11803			case ELFCLASS64: iclass = "ELFCLASS64"; break;
11804			case ELFCLASS32: iclass = "ELFCLASS32"; break;
11805			case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11806			default: abort ();
11807			}
11808
11809		      bfd_set_error (bfd_error_wrong_format);
11810		      _bfd_error_handler
11811			/* xgettext:c-format */
11812			(_("%B: file class %s incompatible with %s"),
11813			 sub, iclass, oclass);
11814		    }
11815
11816		  goto error_return;
11817		}
11818	    }
11819	}
11820    }
11821
11822  /* Free symbol buffer if needed.  */
11823  if (!info->reduce_memory_overheads)
11824    {
11825      for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11826	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11827	    && elf_tdata (sub)->symbuf)
11828	  {
11829	    free (elf_tdata (sub)->symbuf);
11830	    elf_tdata (sub)->symbuf = NULL;
11831	  }
11832    }
11833
11834  /* Output any global symbols that got converted to local in a
11835     version script or due to symbol visibility.  We do this in a
11836     separate step since ELF requires all local symbols to appear
11837     prior to any global symbols.  FIXME: We should only do this if
11838     some global symbols were, in fact, converted to become local.
11839     FIXME: Will this work correctly with the Irix 5 linker?  */
11840  eoinfo.failed = FALSE;
11841  eoinfo.flinfo = &flinfo;
11842  eoinfo.localsyms = TRUE;
11843  eoinfo.file_sym_done = FALSE;
11844  bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11845  if (eoinfo.failed)
11846    return FALSE;
11847
11848  /* If backend needs to output some local symbols not present in the hash
11849     table, do it now.  */
11850  if (bed->elf_backend_output_arch_local_syms
11851      && (info->strip != strip_all || emit_relocs))
11852    {
11853      typedef int (*out_sym_func)
11854	(void *, const char *, Elf_Internal_Sym *, asection *,
11855	 struct elf_link_hash_entry *);
11856
11857      if (! ((*bed->elf_backend_output_arch_local_syms)
11858	     (abfd, info, &flinfo,
11859	      (out_sym_func) elf_link_output_symstrtab)))
11860	return FALSE;
11861    }
11862
11863  /* That wrote out all the local symbols.  Finish up the symbol table
11864     with the global symbols. Even if we want to strip everything we
11865     can, we still need to deal with those global symbols that got
11866     converted to local in a version script.  */
11867
11868  /* The sh_info field records the index of the first non local symbol.  */
11869  symtab_hdr->sh_info = bfd_get_symcount (abfd);
11870
11871  if (dynamic
11872      && htab->dynsym != NULL
11873      && htab->dynsym->output_section != bfd_abs_section_ptr)
11874    {
11875      Elf_Internal_Sym sym;
11876      bfd_byte *dynsym = htab->dynsym->contents;
11877
11878      o = htab->dynsym->output_section;
11879      elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11880
11881      /* Write out the section symbols for the output sections.  */
11882      if (bfd_link_pic (info)
11883	  || htab->is_relocatable_executable)
11884	{
11885	  asection *s;
11886
11887	  sym.st_size = 0;
11888	  sym.st_name = 0;
11889	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11890	  sym.st_other = 0;
11891	  sym.st_target_internal = 0;
11892
11893	  for (s = abfd->sections; s != NULL; s = s->next)
11894	    {
11895	      int indx;
11896	      bfd_byte *dest;
11897	      long dynindx;
11898
11899	      dynindx = elf_section_data (s)->dynindx;
11900	      if (dynindx <= 0)
11901		continue;
11902	      indx = elf_section_data (s)->this_idx;
11903	      BFD_ASSERT (indx > 0);
11904	      sym.st_shndx = indx;
11905	      if (! check_dynsym (abfd, &sym))
11906		return FALSE;
11907	      sym.st_value = s->vma;
11908	      dest = dynsym + dynindx * bed->s->sizeof_sym;
11909	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11910	    }
11911	}
11912
11913      /* Write out the local dynsyms.  */
11914      if (htab->dynlocal)
11915	{
11916	  struct elf_link_local_dynamic_entry *e;
11917	  for (e = htab->dynlocal; e ; e = e->next)
11918	    {
11919	      asection *s;
11920	      bfd_byte *dest;
11921
11922	      /* Copy the internal symbol and turn off visibility.
11923		 Note that we saved a word of storage and overwrote
11924		 the original st_name with the dynstr_index.  */
11925	      sym = e->isym;
11926	      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11927
11928	      s = bfd_section_from_elf_index (e->input_bfd,
11929					      e->isym.st_shndx);
11930	      if (s != NULL)
11931		{
11932		  sym.st_shndx =
11933		    elf_section_data (s->output_section)->this_idx;
11934		  if (! check_dynsym (abfd, &sym))
11935		    return FALSE;
11936		  sym.st_value = (s->output_section->vma
11937				  + s->output_offset
11938				  + e->isym.st_value);
11939		}
11940
11941	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11942	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11943	    }
11944	}
11945    }
11946
11947  /* We get the global symbols from the hash table.  */
11948  eoinfo.failed = FALSE;
11949  eoinfo.localsyms = FALSE;
11950  eoinfo.flinfo = &flinfo;
11951  bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11952  if (eoinfo.failed)
11953    return FALSE;
11954
11955  /* If backend needs to output some symbols not present in the hash
11956     table, do it now.  */
11957  if (bed->elf_backend_output_arch_syms
11958      && (info->strip != strip_all || emit_relocs))
11959    {
11960      typedef int (*out_sym_func)
11961	(void *, const char *, Elf_Internal_Sym *, asection *,
11962	 struct elf_link_hash_entry *);
11963
11964      if (! ((*bed->elf_backend_output_arch_syms)
11965	     (abfd, info, &flinfo,
11966	      (out_sym_func) elf_link_output_symstrtab)))
11967	return FALSE;
11968    }
11969
11970  /* Finalize the .strtab section.  */
11971  _bfd_elf_strtab_finalize (flinfo.symstrtab);
11972
11973  /* Swap out the .strtab section. */
11974  if (!elf_link_swap_symbols_out (&flinfo))
11975    return FALSE;
11976
11977  /* Now we know the size of the symtab section.  */
11978  if (bfd_get_symcount (abfd) > 0)
11979    {
11980      /* Finish up and write out the symbol string table (.strtab)
11981	 section.  */
11982      Elf_Internal_Shdr *symstrtab_hdr;
11983      file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11984
11985      symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11986      if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11987	{
11988	  symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11989	  symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11990	  symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11991	  amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11992	  symtab_shndx_hdr->sh_size = amt;
11993
11994	  off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11995							   off, TRUE);
11996
11997	  if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11998	      || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11999	    return FALSE;
12000	}
12001
12002      symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12003      /* sh_name was set in prep_headers.  */
12004      symstrtab_hdr->sh_type = SHT_STRTAB;
12005      symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12006      symstrtab_hdr->sh_addr = 0;
12007      symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12008      symstrtab_hdr->sh_entsize = 0;
12009      symstrtab_hdr->sh_link = 0;
12010      symstrtab_hdr->sh_info = 0;
12011      /* sh_offset is set just below.  */
12012      symstrtab_hdr->sh_addralign = 1;
12013
12014      off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12015						       off, TRUE);
12016      elf_next_file_pos (abfd) = off;
12017
12018      if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12019	  || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12020	return FALSE;
12021    }
12022
12023  if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12024    {
12025      _bfd_error_handler (_("%B: failed to generate import library"),
12026			  info->out_implib_bfd);
12027      return FALSE;
12028    }
12029
12030  /* Adjust the relocs to have the correct symbol indices.  */
12031  for (o = abfd->sections; o != NULL; o = o->next)
12032    {
12033      struct bfd_elf_section_data *esdo = elf_section_data (o);
12034      bfd_boolean sort;
12035      if ((o->flags & SEC_RELOC) == 0)
12036	continue;
12037
12038      sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12039      if (esdo->rel.hdr != NULL
12040	  && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12041	return FALSE;
12042      if (esdo->rela.hdr != NULL
12043	  && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12044	return FALSE;
12045
12046      /* Set the reloc_count field to 0 to prevent write_relocs from
12047	 trying to swap the relocs out itself.  */
12048      o->reloc_count = 0;
12049    }
12050
12051  if (dynamic && info->combreloc && dynobj != NULL)
12052    relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12053
12054  /* If we are linking against a dynamic object, or generating a
12055     shared library, finish up the dynamic linking information.  */
12056  if (dynamic)
12057    {
12058      bfd_byte *dyncon, *dynconend;
12059
12060      /* Fix up .dynamic entries.  */
12061      o = bfd_get_linker_section (dynobj, ".dynamic");
12062      BFD_ASSERT (o != NULL);
12063
12064      dyncon = o->contents;
12065      dynconend = o->contents + o->size;
12066      for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12067	{
12068	  Elf_Internal_Dyn dyn;
12069	  const char *name;
12070	  unsigned int type;
12071	  bfd_size_type sh_size;
12072	  bfd_vma sh_addr;
12073
12074	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12075
12076	  switch (dyn.d_tag)
12077	    {
12078	    default:
12079	      continue;
12080	    case DT_NULL:
12081	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12082		{
12083		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
12084		    {
12085		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12086		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12087		    default: continue;
12088		    }
12089		  dyn.d_un.d_val = relativecount;
12090		  relativecount = 0;
12091		  break;
12092		}
12093	      continue;
12094
12095	    case DT_INIT:
12096	      name = info->init_function;
12097	      goto get_sym;
12098	    case DT_FINI:
12099	      name = info->fini_function;
12100	    get_sym:
12101	      {
12102		struct elf_link_hash_entry *h;
12103
12104		h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12105		if (h != NULL
12106		    && (h->root.type == bfd_link_hash_defined
12107			|| h->root.type == bfd_link_hash_defweak))
12108		  {
12109		    dyn.d_un.d_ptr = h->root.u.def.value;
12110		    o = h->root.u.def.section;
12111		    if (o->output_section != NULL)
12112		      dyn.d_un.d_ptr += (o->output_section->vma
12113					 + o->output_offset);
12114		    else
12115		      {
12116			/* The symbol is imported from another shared
12117			   library and does not apply to this one.  */
12118			dyn.d_un.d_ptr = 0;
12119		      }
12120		    break;
12121		  }
12122	      }
12123	      continue;
12124
12125	    case DT_PREINIT_ARRAYSZ:
12126	      name = ".preinit_array";
12127	      goto get_out_size;
12128	    case DT_INIT_ARRAYSZ:
12129	      name = ".init_array";
12130	      goto get_out_size;
12131	    case DT_FINI_ARRAYSZ:
12132	      name = ".fini_array";
12133	    get_out_size:
12134	      o = bfd_get_section_by_name (abfd, name);
12135	      if (o == NULL)
12136		{
12137		  _bfd_error_handler
12138		    (_("could not find section %s"), name);
12139		  goto error_return;
12140		}
12141	      if (o->size == 0)
12142		_bfd_error_handler
12143		  (_("warning: %s section has zero size"), name);
12144	      dyn.d_un.d_val = o->size;
12145	      break;
12146
12147	    case DT_PREINIT_ARRAY:
12148	      name = ".preinit_array";
12149	      goto get_out_vma;
12150	    case DT_INIT_ARRAY:
12151	      name = ".init_array";
12152	      goto get_out_vma;
12153	    case DT_FINI_ARRAY:
12154	      name = ".fini_array";
12155	    get_out_vma:
12156	      o = bfd_get_section_by_name (abfd, name);
12157	      goto do_vma;
12158
12159	    case DT_HASH:
12160	      name = ".hash";
12161	      goto get_vma;
12162	    case DT_GNU_HASH:
12163	      name = ".gnu.hash";
12164	      goto get_vma;
12165	    case DT_STRTAB:
12166	      name = ".dynstr";
12167	      goto get_vma;
12168	    case DT_SYMTAB:
12169	      name = ".dynsym";
12170	      goto get_vma;
12171	    case DT_VERDEF:
12172	      name = ".gnu.version_d";
12173	      goto get_vma;
12174	    case DT_VERNEED:
12175	      name = ".gnu.version_r";
12176	      goto get_vma;
12177	    case DT_VERSYM:
12178	      name = ".gnu.version";
12179	    get_vma:
12180	      o = bfd_get_linker_section (dynobj, name);
12181	    do_vma:
12182	      if (o == NULL)
12183		{
12184		  _bfd_error_handler
12185		    (_("could not find section %s"), name);
12186		  goto error_return;
12187		}
12188	      if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12189		{
12190		  _bfd_error_handler
12191		    (_("warning: section '%s' is being made into a note"), name);
12192		  bfd_set_error (bfd_error_nonrepresentable_section);
12193		  goto error_return;
12194		}
12195	      dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12196	      break;
12197
12198	    case DT_REL:
12199	    case DT_RELA:
12200	    case DT_RELSZ:
12201	    case DT_RELASZ:
12202	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12203		type = SHT_REL;
12204	      else
12205		type = SHT_RELA;
12206	      sh_size = 0;
12207	      sh_addr = 0;
12208	      for (i = 1; i < elf_numsections (abfd); i++)
12209		{
12210		  Elf_Internal_Shdr *hdr;
12211
12212		  hdr = elf_elfsections (abfd)[i];
12213		  if (hdr->sh_type == type
12214		      && (hdr->sh_flags & SHF_ALLOC) != 0)
12215		    {
12216		      sh_size += hdr->sh_size;
12217		      if (sh_addr == 0
12218			  || sh_addr > hdr->sh_addr)
12219			sh_addr = hdr->sh_addr;
12220		    }
12221		}
12222
12223	      if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12224		{
12225		  /* Don't count procedure linkage table relocs in the
12226		     overall reloc count.  */
12227		  sh_size -= htab->srelplt->size;
12228		  if (sh_size == 0)
12229		    /* If the size is zero, make the address zero too.
12230		       This is to avoid a glibc bug.  If the backend
12231		       emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12232		       zero, then we'll put DT_RELA at the end of
12233		       DT_JMPREL.  glibc will interpret the end of
12234		       DT_RELA matching the end of DT_JMPREL as the
12235		       case where DT_RELA includes DT_JMPREL, and for
12236		       LD_BIND_NOW will decide that processing DT_RELA
12237		       will process the PLT relocs too.  Net result:
12238		       No PLT relocs applied.  */
12239		    sh_addr = 0;
12240
12241		  /* If .rela.plt is the first .rela section, exclude
12242		     it from DT_RELA.  */
12243		  else if (sh_addr == (htab->srelplt->output_section->vma
12244				       + htab->srelplt->output_offset))
12245		    sh_addr += htab->srelplt->size;
12246		}
12247
12248	      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12249		dyn.d_un.d_val = sh_size;
12250	      else
12251		dyn.d_un.d_ptr = sh_addr;
12252	      break;
12253	    }
12254	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12255	}
12256    }
12257
12258  /* If we have created any dynamic sections, then output them.  */
12259  if (dynobj != NULL)
12260    {
12261      if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12262	goto error_return;
12263
12264      /* Check for DT_TEXTREL (late, in case the backend removes it).  */
12265      if (((info->warn_shared_textrel && bfd_link_pic (info))
12266	   || info->error_textrel)
12267	  && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12268	{
12269	  bfd_byte *dyncon, *dynconend;
12270
12271	  dyncon = o->contents;
12272	  dynconend = o->contents + o->size;
12273	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12274	    {
12275	      Elf_Internal_Dyn dyn;
12276
12277	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12278
12279	      if (dyn.d_tag == DT_TEXTREL)
12280		{
12281		  if (info->error_textrel)
12282		    info->callbacks->einfo
12283		      (_("%P%X: read-only segment has dynamic relocations.\n"));
12284		  else
12285		    info->callbacks->einfo
12286		      (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12287		  break;
12288		}
12289	    }
12290	}
12291
12292      for (o = dynobj->sections; o != NULL; o = o->next)
12293	{
12294	  if ((o->flags & SEC_HAS_CONTENTS) == 0
12295	      || o->size == 0
12296	      || o->output_section == bfd_abs_section_ptr)
12297	    continue;
12298	  if ((o->flags & SEC_LINKER_CREATED) == 0)
12299	    {
12300	      /* At this point, we are only interested in sections
12301		 created by _bfd_elf_link_create_dynamic_sections.  */
12302	      continue;
12303	    }
12304	  if (htab->stab_info.stabstr == o)
12305	    continue;
12306	  if (htab->eh_info.hdr_sec == o)
12307	    continue;
12308	  if (strcmp (o->name, ".dynstr") != 0)
12309	    {
12310	      if (! bfd_set_section_contents (abfd, o->output_section,
12311					      o->contents,
12312					      (file_ptr) o->output_offset
12313					      * bfd_octets_per_byte (abfd),
12314					      o->size))
12315		goto error_return;
12316	    }
12317	  else
12318	    {
12319	      /* The contents of the .dynstr section are actually in a
12320		 stringtab.  */
12321	      file_ptr off;
12322
12323	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12324	      if (bfd_seek (abfd, off, SEEK_SET) != 0
12325		  || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12326		goto error_return;
12327	    }
12328	}
12329    }
12330
12331  if (bfd_link_relocatable (info))
12332    {
12333      bfd_boolean failed = FALSE;
12334
12335      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12336      if (failed)
12337	goto error_return;
12338    }
12339
12340  /* If we have optimized stabs strings, output them.  */
12341  if (htab->stab_info.stabstr != NULL)
12342    {
12343      if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12344	goto error_return;
12345    }
12346
12347  if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12348    goto error_return;
12349
12350  elf_final_link_free (abfd, &flinfo);
12351
12352  elf_linker (abfd) = TRUE;
12353
12354  if (attr_section)
12355    {
12356      bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12357      if (contents == NULL)
12358	return FALSE;	/* Bail out and fail.  */
12359      bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12360      bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12361      free (contents);
12362    }
12363
12364  return TRUE;
12365
12366 error_return:
12367  elf_final_link_free (abfd, &flinfo);
12368  return FALSE;
12369}
12370
12371/* Initialize COOKIE for input bfd ABFD.  */
12372
12373static bfd_boolean
12374init_reloc_cookie (struct elf_reloc_cookie *cookie,
12375		   struct bfd_link_info *info, bfd *abfd)
12376{
12377  Elf_Internal_Shdr *symtab_hdr;
12378  const struct elf_backend_data *bed;
12379
12380  bed = get_elf_backend_data (abfd);
12381  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12382
12383  cookie->abfd = abfd;
12384  cookie->sym_hashes = elf_sym_hashes (abfd);
12385  cookie->bad_symtab = elf_bad_symtab (abfd);
12386  if (cookie->bad_symtab)
12387    {
12388      cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12389      cookie->extsymoff = 0;
12390    }
12391  else
12392    {
12393      cookie->locsymcount = symtab_hdr->sh_info;
12394      cookie->extsymoff = symtab_hdr->sh_info;
12395    }
12396
12397  if (bed->s->arch_size == 32)
12398    cookie->r_sym_shift = 8;
12399  else
12400    cookie->r_sym_shift = 32;
12401
12402  cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12403  if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12404    {
12405      cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12406					      cookie->locsymcount, 0,
12407					      NULL, NULL, NULL);
12408      if (cookie->locsyms == NULL)
12409	{
12410	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12411	  return FALSE;
12412	}
12413      if (info->keep_memory)
12414	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12415    }
12416  return TRUE;
12417}
12418
12419/* Free the memory allocated by init_reloc_cookie, if appropriate.  */
12420
12421static void
12422fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12423{
12424  Elf_Internal_Shdr *symtab_hdr;
12425
12426  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12427  if (cookie->locsyms != NULL
12428      && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12429    free (cookie->locsyms);
12430}
12431
12432/* Initialize the relocation information in COOKIE for input section SEC
12433   of input bfd ABFD.  */
12434
12435static bfd_boolean
12436init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12437			struct bfd_link_info *info, bfd *abfd,
12438			asection *sec)
12439{
12440  const struct elf_backend_data *bed;
12441
12442  if (sec->reloc_count == 0)
12443    {
12444      cookie->rels = NULL;
12445      cookie->relend = NULL;
12446    }
12447  else
12448    {
12449      bed = get_elf_backend_data (abfd);
12450
12451      cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12452						info->keep_memory);
12453      if (cookie->rels == NULL)
12454	return FALSE;
12455      cookie->rel = cookie->rels;
12456      cookie->relend = (cookie->rels
12457			+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
12458    }
12459  cookie->rel = cookie->rels;
12460  return TRUE;
12461}
12462
12463/* Free the memory allocated by init_reloc_cookie_rels,
12464   if appropriate.  */
12465
12466static void
12467fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12468			asection *sec)
12469{
12470  if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12471    free (cookie->rels);
12472}
12473
12474/* Initialize the whole of COOKIE for input section SEC.  */
12475
12476static bfd_boolean
12477init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12478			       struct bfd_link_info *info,
12479			       asection *sec)
12480{
12481  if (!init_reloc_cookie (cookie, info, sec->owner))
12482    goto error1;
12483  if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12484    goto error2;
12485  return TRUE;
12486
12487 error2:
12488  fini_reloc_cookie (cookie, sec->owner);
12489 error1:
12490  return FALSE;
12491}
12492
12493/* Free the memory allocated by init_reloc_cookie_for_section,
12494   if appropriate.  */
12495
12496static void
12497fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12498			       asection *sec)
12499{
12500  fini_reloc_cookie_rels (cookie, sec);
12501  fini_reloc_cookie (cookie, sec->owner);
12502}
12503
12504/* Garbage collect unused sections.  */
12505
12506/* Default gc_mark_hook.  */
12507
12508asection *
12509_bfd_elf_gc_mark_hook (asection *sec,
12510		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
12511		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12512		       struct elf_link_hash_entry *h,
12513		       Elf_Internal_Sym *sym)
12514{
12515  if (h != NULL)
12516    {
12517      switch (h->root.type)
12518	{
12519	case bfd_link_hash_defined:
12520	case bfd_link_hash_defweak:
12521	  return h->root.u.def.section;
12522
12523	case bfd_link_hash_common:
12524	  return h->root.u.c.p->section;
12525
12526	default:
12527	  break;
12528	}
12529    }
12530  else
12531    return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12532
12533  return NULL;
12534}
12535
12536/* For undefined __start_<name> and __stop_<name> symbols, return the
12537   first input section matching <name>.  Return NULL otherwise.  */
12538
12539asection *
12540_bfd_elf_is_start_stop (const struct bfd_link_info *info,
12541			struct elf_link_hash_entry *h)
12542{
12543  asection *s;
12544  const char *sec_name;
12545
12546  if (h->root.type != bfd_link_hash_undefined
12547      && h->root.type != bfd_link_hash_undefweak)
12548    return NULL;
12549
12550  s = h->root.u.undef.section;
12551  if (s != NULL)
12552    {
12553      if (s == (asection *) 0 - 1)
12554	return NULL;
12555      return s;
12556    }
12557
12558  sec_name = NULL;
12559  if (strncmp (h->root.root.string, "__start_", 8) == 0)
12560    sec_name = h->root.root.string + 8;
12561  else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12562    sec_name = h->root.root.string + 7;
12563
12564  if (sec_name != NULL && *sec_name != '\0')
12565    {
12566      bfd *i;
12567
12568      for (i = info->input_bfds; i != NULL; i = i->link.next)
12569	{
12570	  s = bfd_get_section_by_name (i, sec_name);
12571	  if (s != NULL)
12572	    {
12573	      h->root.u.undef.section = s;
12574	      break;
12575	    }
12576	}
12577    }
12578
12579  if (s == NULL)
12580    h->root.u.undef.section = (asection *) 0 - 1;
12581
12582  return s;
12583}
12584
12585/* COOKIE->rel describes a relocation against section SEC, which is
12586   a section we've decided to keep.  Return the section that contains
12587   the relocation symbol, or NULL if no section contains it.  */
12588
12589asection *
12590_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12591		       elf_gc_mark_hook_fn gc_mark_hook,
12592		       struct elf_reloc_cookie *cookie,
12593		       bfd_boolean *start_stop)
12594{
12595  unsigned long r_symndx;
12596  struct elf_link_hash_entry *h;
12597
12598  r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12599  if (r_symndx == STN_UNDEF)
12600    return NULL;
12601
12602  if (r_symndx >= cookie->locsymcount
12603      || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12604    {
12605      h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12606      if (h == NULL)
12607	{
12608	  info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12609				  sec->owner);
12610	  return NULL;
12611	}
12612      while (h->root.type == bfd_link_hash_indirect
12613	     || h->root.type == bfd_link_hash_warning)
12614	h = (struct elf_link_hash_entry *) h->root.u.i.link;
12615      h->mark = 1;
12616      /* If this symbol is weak and there is a non-weak definition, we
12617	 keep the non-weak definition because many backends put
12618	 dynamic reloc info on the non-weak definition for code
12619	 handling copy relocs.  */
12620      if (h->u.weakdef != NULL)
12621	h->u.weakdef->mark = 1;
12622
12623      if (start_stop != NULL)
12624	{
12625	  /* To work around a glibc bug, mark all XXX input sections
12626	     when there is an as yet undefined reference to __start_XXX
12627	     or __stop_XXX symbols.  The linker will later define such
12628	     symbols for orphan input sections that have a name
12629	     representable as a C identifier.  */
12630	  asection *s = _bfd_elf_is_start_stop (info, h);
12631
12632	  if (s != NULL)
12633	    {
12634	      *start_stop = !s->gc_mark;
12635	      return s;
12636	    }
12637	}
12638
12639      return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12640    }
12641
12642  return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12643			  &cookie->locsyms[r_symndx]);
12644}
12645
12646/* COOKIE->rel describes a relocation against section SEC, which is
12647   a section we've decided to keep.  Mark the section that contains
12648   the relocation symbol.  */
12649
12650bfd_boolean
12651_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12652			asection *sec,
12653			elf_gc_mark_hook_fn gc_mark_hook,
12654			struct elf_reloc_cookie *cookie)
12655{
12656  asection *rsec;
12657  bfd_boolean start_stop = FALSE;
12658
12659  rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12660  while (rsec != NULL)
12661    {
12662      if (!rsec->gc_mark)
12663	{
12664	  if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12665	      || (rsec->owner->flags & DYNAMIC) != 0)
12666	    rsec->gc_mark = 1;
12667	  else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12668	    return FALSE;
12669	}
12670      if (!start_stop)
12671	break;
12672      rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12673    }
12674  return TRUE;
12675}
12676
12677/* The mark phase of garbage collection.  For a given section, mark
12678   it and any sections in this section's group, and all the sections
12679   which define symbols to which it refers.  */
12680
12681bfd_boolean
12682_bfd_elf_gc_mark (struct bfd_link_info *info,
12683		  asection *sec,
12684		  elf_gc_mark_hook_fn gc_mark_hook)
12685{
12686  bfd_boolean ret;
12687  asection *group_sec, *eh_frame;
12688
12689  sec->gc_mark = 1;
12690
12691  /* Mark all the sections in the group.  */
12692  group_sec = elf_section_data (sec)->next_in_group;
12693  if (group_sec && !group_sec->gc_mark)
12694    if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12695      return FALSE;
12696
12697  /* Look through the section relocs.  */
12698  ret = TRUE;
12699  eh_frame = elf_eh_frame_section (sec->owner);
12700  if ((sec->flags & SEC_RELOC) != 0
12701      && sec->reloc_count > 0
12702      && sec != eh_frame)
12703    {
12704      struct elf_reloc_cookie cookie;
12705
12706      if (!init_reloc_cookie_for_section (&cookie, info, sec))
12707	ret = FALSE;
12708      else
12709	{
12710	  for (; cookie.rel < cookie.relend; cookie.rel++)
12711	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12712	      {
12713		ret = FALSE;
12714		break;
12715	      }
12716	  fini_reloc_cookie_for_section (&cookie, sec);
12717	}
12718    }
12719
12720  if (ret && eh_frame && elf_fde_list (sec))
12721    {
12722      struct elf_reloc_cookie cookie;
12723
12724      if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12725	ret = FALSE;
12726      else
12727	{
12728	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12729				      gc_mark_hook, &cookie))
12730	    ret = FALSE;
12731	  fini_reloc_cookie_for_section (&cookie, eh_frame);
12732	}
12733    }
12734
12735  eh_frame = elf_section_eh_frame_entry (sec);
12736  if (ret && eh_frame && !eh_frame->gc_mark)
12737    if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12738      ret = FALSE;
12739
12740  return ret;
12741}
12742
12743/* Scan and mark sections in a special or debug section group.  */
12744
12745static void
12746_bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12747{
12748  /* Point to first section of section group.  */
12749  asection *ssec;
12750  /* Used to iterate the section group.  */
12751  asection *msec;
12752
12753  bfd_boolean is_special_grp = TRUE;
12754  bfd_boolean is_debug_grp = TRUE;
12755
12756  /* First scan to see if group contains any section other than debug
12757     and special section.  */
12758  ssec = msec = elf_next_in_group (grp);
12759  do
12760    {
12761      if ((msec->flags & SEC_DEBUGGING) == 0)
12762	is_debug_grp = FALSE;
12763
12764      if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12765	is_special_grp = FALSE;
12766
12767      msec = elf_next_in_group (msec);
12768    }
12769  while (msec != ssec);
12770
12771  /* If this is a pure debug section group or pure special section group,
12772     keep all sections in this group.  */
12773  if (is_debug_grp || is_special_grp)
12774    {
12775      do
12776	{
12777	  msec->gc_mark = 1;
12778	  msec = elf_next_in_group (msec);
12779	}
12780      while (msec != ssec);
12781    }
12782}
12783
12784/* Keep debug and special sections.  */
12785
12786bfd_boolean
12787_bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12788				 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12789{
12790  bfd *ibfd;
12791
12792  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12793    {
12794      asection *isec;
12795      bfd_boolean some_kept;
12796      bfd_boolean debug_frag_seen;
12797
12798      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12799	continue;
12800
12801      /* Ensure all linker created sections are kept,
12802	 see if any other section is already marked,
12803	 and note if we have any fragmented debug sections.  */
12804      debug_frag_seen = some_kept = FALSE;
12805      for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12806	{
12807	  if ((isec->flags & SEC_LINKER_CREATED) != 0)
12808	    isec->gc_mark = 1;
12809	  else if (isec->gc_mark)
12810	    some_kept = TRUE;
12811
12812	  if (debug_frag_seen == FALSE
12813	      && (isec->flags & SEC_DEBUGGING)
12814	      && CONST_STRNEQ (isec->name, ".debug_line."))
12815	    debug_frag_seen = TRUE;
12816	}
12817
12818      /* If no section in this file will be kept, then we can
12819	 toss out the debug and special sections.  */
12820      if (!some_kept)
12821	continue;
12822
12823      /* Keep debug and special sections like .comment when they are
12824	 not part of a group.  Also keep section groups that contain
12825	 just debug sections or special sections.  */
12826      for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12827	{
12828	  if ((isec->flags & SEC_GROUP) != 0)
12829	    _bfd_elf_gc_mark_debug_special_section_group (isec);
12830	  else if (((isec->flags & SEC_DEBUGGING) != 0
12831		    || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12832		   && elf_next_in_group (isec) == NULL)
12833	    isec->gc_mark = 1;
12834	}
12835
12836      if (! debug_frag_seen)
12837	continue;
12838
12839      /* Look for CODE sections which are going to be discarded,
12840	 and find and discard any fragmented debug sections which
12841	 are associated with that code section.  */
12842      for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12843	if ((isec->flags & SEC_CODE) != 0
12844	    && isec->gc_mark == 0)
12845	  {
12846	    unsigned int ilen;
12847	    asection *dsec;
12848
12849	    ilen = strlen (isec->name);
12850
12851	    /* Association is determined by the name of the debug section
12852	       containing the name of the code section as a suffix.  For
12853	       example .debug_line.text.foo is a debug section associated
12854	       with .text.foo.  */
12855	    for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12856	      {
12857		unsigned int dlen;
12858
12859		if (dsec->gc_mark == 0
12860		    || (dsec->flags & SEC_DEBUGGING) == 0)
12861		  continue;
12862
12863		dlen = strlen (dsec->name);
12864
12865		if (dlen > ilen
12866		    && strncmp (dsec->name + (dlen - ilen),
12867				isec->name, ilen) == 0)
12868		  {
12869		    dsec->gc_mark = 0;
12870		  }
12871	      }
12872	  }
12873    }
12874  return TRUE;
12875}
12876
12877/* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
12878
12879struct elf_gc_sweep_symbol_info
12880{
12881  struct bfd_link_info *info;
12882  void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12883		       bfd_boolean);
12884};
12885
12886static bfd_boolean
12887elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12888{
12889  if (!h->mark
12890      && (((h->root.type == bfd_link_hash_defined
12891	    || h->root.type == bfd_link_hash_defweak)
12892	   && !((h->def_regular || ELF_COMMON_DEF_P (h))
12893		&& h->root.u.def.section->gc_mark))
12894	  || h->root.type == bfd_link_hash_undefined
12895	  || h->root.type == bfd_link_hash_undefweak))
12896    {
12897      struct elf_gc_sweep_symbol_info *inf;
12898
12899      inf = (struct elf_gc_sweep_symbol_info *) data;
12900      (*inf->hide_symbol) (inf->info, h, TRUE);
12901      h->def_regular = 0;
12902      h->ref_regular = 0;
12903      h->ref_regular_nonweak = 0;
12904    }
12905
12906  return TRUE;
12907}
12908
12909/* The sweep phase of garbage collection.  Remove all garbage sections.  */
12910
12911typedef bfd_boolean (*gc_sweep_hook_fn)
12912  (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12913
12914static bfd_boolean
12915elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12916{
12917  bfd *sub;
12918  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12919  gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12920  unsigned long section_sym_count;
12921  struct elf_gc_sweep_symbol_info sweep_info;
12922
12923  for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12924    {
12925      asection *o;
12926
12927      if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12928	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12929	continue;
12930
12931      for (o = sub->sections; o != NULL; o = o->next)
12932	{
12933	  /* When any section in a section group is kept, we keep all
12934	     sections in the section group.  If the first member of
12935	     the section group is excluded, we will also exclude the
12936	     group section.  */
12937	  if (o->flags & SEC_GROUP)
12938	    {
12939	      asection *first = elf_next_in_group (o);
12940	      o->gc_mark = first->gc_mark;
12941	    }
12942
12943	  if (o->gc_mark)
12944	    continue;
12945
12946	  /* Skip sweeping sections already excluded.  */
12947	  if (o->flags & SEC_EXCLUDE)
12948	    continue;
12949
12950	  /* Since this is early in the link process, it is simple
12951	     to remove a section from the output.  */
12952	  o->flags |= SEC_EXCLUDE;
12953
12954	  if (info->print_gc_sections && o->size != 0)
12955	    /* xgettext:c-format */
12956	    _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12957
12958	  /* But we also have to update some of the relocation
12959	     info we collected before.  */
12960	  if (gc_sweep_hook
12961	      && (o->flags & SEC_RELOC) != 0
12962	      && o->reloc_count != 0
12963	      && !((info->strip == strip_all || info->strip == strip_debugger)
12964		   && (o->flags & SEC_DEBUGGING) != 0)
12965	      && !bfd_is_abs_section (o->output_section))
12966	    {
12967	      Elf_Internal_Rela *internal_relocs;
12968	      bfd_boolean r;
12969
12970	      internal_relocs
12971		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12972					     info->keep_memory);
12973	      if (internal_relocs == NULL)
12974		return FALSE;
12975
12976	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12977
12978	      if (elf_section_data (o)->relocs != internal_relocs)
12979		free (internal_relocs);
12980
12981	      if (!r)
12982		return FALSE;
12983	    }
12984	}
12985    }
12986
12987  /* Remove the symbols that were in the swept sections from the dynamic
12988     symbol table.  GCFIXME: Anyone know how to get them out of the
12989     static symbol table as well?  */
12990  sweep_info.info = info;
12991  sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12992  elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12993			  &sweep_info);
12994
12995  /* We need to reassign dynsym indices now that symbols may have
12996     been removed.  See the call in `bfd_elf_size_dynsym_hash_dynstr'
12997     for the details of the conditions used here.  */
12998  if (elf_hash_table (info)->dynamic_sections_created
12999      || bed->always_renumber_dynsyms)
13000    _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
13001  return TRUE;
13002}
13003
13004/* Propagate collected vtable information.  This is called through
13005   elf_link_hash_traverse.  */
13006
13007static bfd_boolean
13008elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13009{
13010  /* Those that are not vtables.  */
13011  if (h->vtable == NULL || h->vtable->parent == NULL)
13012    return TRUE;
13013
13014  /* Those vtables that do not have parents, we cannot merge.  */
13015  if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13016    return TRUE;
13017
13018  /* If we've already been done, exit.  */
13019  if (h->vtable->used && h->vtable->used[-1])
13020    return TRUE;
13021
13022  /* Make sure the parent's table is up to date.  */
13023  elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13024
13025  if (h->vtable->used == NULL)
13026    {
13027      /* None of this table's entries were referenced.  Re-use the
13028	 parent's table.  */
13029      h->vtable->used = h->vtable->parent->vtable->used;
13030      h->vtable->size = h->vtable->parent->vtable->size;
13031    }
13032  else
13033    {
13034      size_t n;
13035      bfd_boolean *cu, *pu;
13036
13037      /* Or the parent's entries into ours.  */
13038      cu = h->vtable->used;
13039      cu[-1] = TRUE;
13040      pu = h->vtable->parent->vtable->used;
13041      if (pu != NULL)
13042	{
13043	  const struct elf_backend_data *bed;
13044	  unsigned int log_file_align;
13045
13046	  bed = get_elf_backend_data (h->root.u.def.section->owner);
13047	  log_file_align = bed->s->log_file_align;
13048	  n = h->vtable->parent->vtable->size >> log_file_align;
13049	  while (n--)
13050	    {
13051	      if (*pu)
13052		*cu = TRUE;
13053	      pu++;
13054	      cu++;
13055	    }
13056	}
13057    }
13058
13059  return TRUE;
13060}
13061
13062static bfd_boolean
13063elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13064{
13065  asection *sec;
13066  bfd_vma hstart, hend;
13067  Elf_Internal_Rela *relstart, *relend, *rel;
13068  const struct elf_backend_data *bed;
13069  unsigned int log_file_align;
13070
13071  /* Take care of both those symbols that do not describe vtables as
13072     well as those that are not loaded.  */
13073  if (h->vtable == NULL || h->vtable->parent == NULL)
13074    return TRUE;
13075
13076  BFD_ASSERT (h->root.type == bfd_link_hash_defined
13077	      || h->root.type == bfd_link_hash_defweak);
13078
13079  sec = h->root.u.def.section;
13080  hstart = h->root.u.def.value;
13081  hend = hstart + h->size;
13082
13083  relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13084  if (!relstart)
13085    return *(bfd_boolean *) okp = FALSE;
13086  bed = get_elf_backend_data (sec->owner);
13087  log_file_align = bed->s->log_file_align;
13088
13089  relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13090
13091  for (rel = relstart; rel < relend; ++rel)
13092    if (rel->r_offset >= hstart && rel->r_offset < hend)
13093      {
13094	/* If the entry is in use, do nothing.  */
13095	if (h->vtable->used
13096	    && (rel->r_offset - hstart) < h->vtable->size)
13097	  {
13098	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13099	    if (h->vtable->used[entry])
13100	      continue;
13101	  }
13102	/* Otherwise, kill it.  */
13103	rel->r_offset = rel->r_info = rel->r_addend = 0;
13104      }
13105
13106  return TRUE;
13107}
13108
13109/* Mark sections containing dynamically referenced symbols.  When
13110   building shared libraries, we must assume that any visible symbol is
13111   referenced.  */
13112
13113bfd_boolean
13114bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13115{
13116  struct bfd_link_info *info = (struct bfd_link_info *) inf;
13117  struct bfd_elf_dynamic_list *d = info->dynamic_list;
13118
13119  if ((h->root.type == bfd_link_hash_defined
13120       || h->root.type == bfd_link_hash_defweak)
13121      && (h->ref_dynamic
13122	  || ((h->def_regular || ELF_COMMON_DEF_P (h))
13123	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13124	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13125	      && (!bfd_link_executable (info)
13126		  || info->gc_keep_exported
13127		  || info->export_dynamic
13128		  || (h->dynamic
13129		      && d != NULL
13130		      && (*d->match) (&d->head, NULL, h->root.root.string)))
13131	      && (h->versioned >= versioned
13132		  || !bfd_hide_sym_by_version (info->version_info,
13133					       h->root.root.string)))))
13134    h->root.u.def.section->flags |= SEC_KEEP;
13135
13136  return TRUE;
13137}
13138
13139/* Keep all sections containing symbols undefined on the command-line,
13140   and the section containing the entry symbol.  */
13141
13142void
13143_bfd_elf_gc_keep (struct bfd_link_info *info)
13144{
13145  struct bfd_sym_chain *sym;
13146
13147  for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13148    {
13149      struct elf_link_hash_entry *h;
13150
13151      h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13152				FALSE, FALSE, FALSE);
13153
13154      if (h != NULL
13155	  && (h->root.type == bfd_link_hash_defined
13156	      || h->root.type == bfd_link_hash_defweak)
13157	  && !bfd_is_abs_section (h->root.u.def.section)
13158	  && !bfd_is_und_section (h->root.u.def.section))
13159	h->root.u.def.section->flags |= SEC_KEEP;
13160    }
13161}
13162
13163bfd_boolean
13164bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13165				struct bfd_link_info *info)
13166{
13167  bfd *ibfd = info->input_bfds;
13168
13169  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13170    {
13171      asection *sec;
13172      struct elf_reloc_cookie cookie;
13173
13174      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13175	continue;
13176
13177      if (!init_reloc_cookie (&cookie, info, ibfd))
13178	return FALSE;
13179
13180      for (sec = ibfd->sections; sec; sec = sec->next)
13181	{
13182	  if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13183	      && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13184	    {
13185	      _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13186	      fini_reloc_cookie_rels (&cookie, sec);
13187	    }
13188	}
13189    }
13190  return TRUE;
13191}
13192
13193/* Do mark and sweep of unused sections.  */
13194
13195bfd_boolean
13196bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13197{
13198  bfd_boolean ok = TRUE;
13199  bfd *sub;
13200  elf_gc_mark_hook_fn gc_mark_hook;
13201  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13202  struct elf_link_hash_table *htab;
13203
13204  if (!bed->can_gc_sections
13205      || !is_elf_hash_table (info->hash))
13206    {
13207      _bfd_error_handler(_("Warning: gc-sections option ignored"));
13208      return TRUE;
13209    }
13210
13211  bed->gc_keep (info);
13212  htab = elf_hash_table (info);
13213
13214  /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
13215     at the .eh_frame section if we can mark the FDEs individually.  */
13216  for (sub = info->input_bfds;
13217       info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13218       sub = sub->link.next)
13219    {
13220      asection *sec;
13221      struct elf_reloc_cookie cookie;
13222
13223      sec = bfd_get_section_by_name (sub, ".eh_frame");
13224      while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13225	{
13226	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13227	  if (elf_section_data (sec)->sec_info
13228	      && (sec->flags & SEC_LINKER_CREATED) == 0)
13229	    elf_eh_frame_section (sub) = sec;
13230	  fini_reloc_cookie_for_section (&cookie, sec);
13231	  sec = bfd_get_next_section_by_name (NULL, sec);
13232	}
13233    }
13234
13235  /* Apply transitive closure to the vtable entry usage info.  */
13236  elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13237  if (!ok)
13238    return FALSE;
13239
13240  /* Kill the vtable relocations that were not used.  */
13241  elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13242  if (!ok)
13243    return FALSE;
13244
13245  /* Mark dynamically referenced symbols.  */
13246  if (htab->dynamic_sections_created || info->gc_keep_exported)
13247    elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13248
13249  /* Grovel through relocs to find out who stays ...  */
13250  gc_mark_hook = bed->gc_mark_hook;
13251  for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13252    {
13253      asection *o;
13254
13255      if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13256	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13257	continue;
13258
13259      /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13260	 Also treat note sections as a root, if the section is not part
13261	 of a group.  */
13262      for (o = sub->sections; o != NULL; o = o->next)
13263	if (!o->gc_mark
13264	    && (o->flags & SEC_EXCLUDE) == 0
13265	    && ((o->flags & SEC_KEEP) != 0
13266		|| (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13267		    && elf_next_in_group (o) == NULL )))
13268	  {
13269	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13270	      return FALSE;
13271	  }
13272    }
13273
13274  /* Allow the backend to mark additional target specific sections.  */
13275  bed->gc_mark_extra_sections (info, gc_mark_hook);
13276
13277  /* ... and mark SEC_EXCLUDE for those that go.  */
13278  return elf_gc_sweep (abfd, info);
13279}
13280
13281/* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
13282
13283bfd_boolean
13284bfd_elf_gc_record_vtinherit (bfd *abfd,
13285			     asection *sec,
13286			     struct elf_link_hash_entry *h,
13287			     bfd_vma offset)
13288{
13289  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13290  struct elf_link_hash_entry **search, *child;
13291  size_t extsymcount;
13292  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13293
13294  /* The sh_info field of the symtab header tells us where the
13295     external symbols start.  We don't care about the local symbols at
13296     this point.  */
13297  extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13298  if (!elf_bad_symtab (abfd))
13299    extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13300
13301  sym_hashes = elf_sym_hashes (abfd);
13302  sym_hashes_end = sym_hashes + extsymcount;
13303
13304  /* Hunt down the child symbol, which is in this section at the same
13305     offset as the relocation.  */
13306  for (search = sym_hashes; search != sym_hashes_end; ++search)
13307    {
13308      if ((child = *search) != NULL
13309	  && (child->root.type == bfd_link_hash_defined
13310	      || child->root.type == bfd_link_hash_defweak)
13311	  && child->root.u.def.section == sec
13312	  && child->root.u.def.value == offset)
13313	goto win;
13314    }
13315
13316  /* xgettext:c-format */
13317  _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13318		      abfd, sec, (unsigned long) offset);
13319  bfd_set_error (bfd_error_invalid_operation);
13320  return FALSE;
13321
13322 win:
13323  if (!child->vtable)
13324    {
13325      child->vtable = ((struct elf_link_virtual_table_entry *)
13326		       bfd_zalloc (abfd, sizeof (*child->vtable)));
13327      if (!child->vtable)
13328	return FALSE;
13329    }
13330  if (!h)
13331    {
13332      /* This *should* only be the absolute section.  It could potentially
13333	 be that someone has defined a non-global vtable though, which
13334	 would be bad.  It isn't worth paging in the local symbols to be
13335	 sure though; that case should simply be handled by the assembler.  */
13336
13337      child->vtable->parent = (struct elf_link_hash_entry *) -1;
13338    }
13339  else
13340    child->vtable->parent = h;
13341
13342  return TRUE;
13343}
13344
13345/* Called from check_relocs to record the existence of a VTENTRY reloc.  */
13346
13347bfd_boolean
13348bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13349			   asection *sec ATTRIBUTE_UNUSED,
13350			   struct elf_link_hash_entry *h,
13351			   bfd_vma addend)
13352{
13353  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13354  unsigned int log_file_align = bed->s->log_file_align;
13355
13356  if (!h->vtable)
13357    {
13358      h->vtable = ((struct elf_link_virtual_table_entry *)
13359		   bfd_zalloc (abfd, sizeof (*h->vtable)));
13360      if (!h->vtable)
13361	return FALSE;
13362    }
13363
13364  if (addend >= h->vtable->size)
13365    {
13366      size_t size, bytes, file_align;
13367      bfd_boolean *ptr = h->vtable->used;
13368
13369      /* While the symbol is undefined, we have to be prepared to handle
13370	 a zero size.  */
13371      file_align = 1 << log_file_align;
13372      if (h->root.type == bfd_link_hash_undefined)
13373	size = addend + file_align;
13374      else
13375	{
13376	  size = h->size;
13377	  if (addend >= size)
13378	    {
13379	      /* Oops!  We've got a reference past the defined end of
13380		 the table.  This is probably a bug -- shall we warn?  */
13381	      size = addend + file_align;
13382	    }
13383	}
13384      size = (size + file_align - 1) & -file_align;
13385
13386      /* Allocate one extra entry for use as a "done" flag for the
13387	 consolidation pass.  */
13388      bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13389
13390      if (ptr)
13391	{
13392	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13393
13394	  if (ptr != NULL)
13395	    {
13396	      size_t oldbytes;
13397
13398	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
13399			  * sizeof (bfd_boolean));
13400	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13401	    }
13402	}
13403      else
13404	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13405
13406      if (ptr == NULL)
13407	return FALSE;
13408
13409      /* And arrange for that done flag to be at index -1.  */
13410      h->vtable->used = ptr + 1;
13411      h->vtable->size = size;
13412    }
13413
13414  h->vtable->used[addend >> log_file_align] = TRUE;
13415
13416  return TRUE;
13417}
13418
13419/* Map an ELF section header flag to its corresponding string.  */
13420typedef struct
13421{
13422  char *flag_name;
13423  flagword flag_value;
13424} elf_flags_to_name_table;
13425
13426static elf_flags_to_name_table elf_flags_to_names [] =
13427{
13428  { "SHF_WRITE", SHF_WRITE },
13429  { "SHF_ALLOC", SHF_ALLOC },
13430  { "SHF_EXECINSTR", SHF_EXECINSTR },
13431  { "SHF_MERGE", SHF_MERGE },
13432  { "SHF_STRINGS", SHF_STRINGS },
13433  { "SHF_INFO_LINK", SHF_INFO_LINK},
13434  { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13435  { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13436  { "SHF_GROUP", SHF_GROUP },
13437  { "SHF_TLS", SHF_TLS },
13438  { "SHF_MASKOS", SHF_MASKOS },
13439  { "SHF_EXCLUDE", SHF_EXCLUDE },
13440};
13441
13442/* Returns TRUE if the section is to be included, otherwise FALSE.  */
13443bfd_boolean
13444bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13445			      struct flag_info *flaginfo,
13446			      asection *section)
13447{
13448  const bfd_vma sh_flags = elf_section_flags (section);
13449
13450  if (!flaginfo->flags_initialized)
13451    {
13452      bfd *obfd = info->output_bfd;
13453      const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13454      struct flag_info_list *tf = flaginfo->flag_list;
13455      int with_hex = 0;
13456      int without_hex = 0;
13457
13458      for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13459	{
13460	  unsigned i;
13461	  flagword (*lookup) (char *);
13462
13463	  lookup = bed->elf_backend_lookup_section_flags_hook;
13464	  if (lookup != NULL)
13465	    {
13466	      flagword hexval = (*lookup) ((char *) tf->name);
13467
13468	      if (hexval != 0)
13469		{
13470		  if (tf->with == with_flags)
13471		    with_hex |= hexval;
13472		  else if (tf->with == without_flags)
13473		    without_hex |= hexval;
13474		  tf->valid = TRUE;
13475		  continue;
13476		}
13477	    }
13478	  for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13479	    {
13480	      if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13481		{
13482		  if (tf->with == with_flags)
13483		    with_hex |= elf_flags_to_names[i].flag_value;
13484		  else if (tf->with == without_flags)
13485		    without_hex |= elf_flags_to_names[i].flag_value;
13486		  tf->valid = TRUE;
13487		  break;
13488		}
13489	    }
13490	  if (!tf->valid)
13491	    {
13492	      info->callbacks->einfo
13493		(_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13494	      return FALSE;
13495	    }
13496	}
13497      flaginfo->flags_initialized = TRUE;
13498      flaginfo->only_with_flags |= with_hex;
13499      flaginfo->not_with_flags |= without_hex;
13500    }
13501
13502  if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13503    return FALSE;
13504
13505  if ((flaginfo->not_with_flags & sh_flags) != 0)
13506    return FALSE;
13507
13508  return TRUE;
13509}
13510
13511struct alloc_got_off_arg {
13512  bfd_vma gotoff;
13513  struct bfd_link_info *info;
13514};
13515
13516/* We need a special top-level link routine to convert got reference counts
13517   to real got offsets.  */
13518
13519static bfd_boolean
13520elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13521{
13522  struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13523  bfd *obfd = gofarg->info->output_bfd;
13524  const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13525
13526  if (h->got.refcount > 0)
13527    {
13528      h->got.offset = gofarg->gotoff;
13529      gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13530    }
13531  else
13532    h->got.offset = (bfd_vma) -1;
13533
13534  return TRUE;
13535}
13536
13537/* And an accompanying bit to work out final got entry offsets once
13538   we're done.  Should be called from final_link.  */
13539
13540bfd_boolean
13541bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13542					struct bfd_link_info *info)
13543{
13544  bfd *i;
13545  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13546  bfd_vma gotoff;
13547  struct alloc_got_off_arg gofarg;
13548
13549  BFD_ASSERT (abfd == info->output_bfd);
13550
13551  if (! is_elf_hash_table (info->hash))
13552    return FALSE;
13553
13554  /* The GOT offset is relative to the .got section, but the GOT header is
13555     put into the .got.plt section, if the backend uses it.  */
13556  if (bed->want_got_plt)
13557    gotoff = 0;
13558  else
13559    gotoff = bed->got_header_size;
13560
13561  /* Do the local .got entries first.  */
13562  for (i = info->input_bfds; i; i = i->link.next)
13563    {
13564      bfd_signed_vma *local_got;
13565      size_t j, locsymcount;
13566      Elf_Internal_Shdr *symtab_hdr;
13567
13568      if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13569	continue;
13570
13571      local_got = elf_local_got_refcounts (i);
13572      if (!local_got)
13573	continue;
13574
13575      symtab_hdr = &elf_tdata (i)->symtab_hdr;
13576      if (elf_bad_symtab (i))
13577	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13578      else
13579	locsymcount = symtab_hdr->sh_info;
13580
13581      for (j = 0; j < locsymcount; ++j)
13582	{
13583	  if (local_got[j] > 0)
13584	    {
13585	      local_got[j] = gotoff;
13586	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13587	    }
13588	  else
13589	    local_got[j] = (bfd_vma) -1;
13590	}
13591    }
13592
13593  /* Then the global .got entries.  .plt refcounts are handled by
13594     adjust_dynamic_symbol  */
13595  gofarg.gotoff = gotoff;
13596  gofarg.info = info;
13597  elf_link_hash_traverse (elf_hash_table (info),
13598			  elf_gc_allocate_got_offsets,
13599			  &gofarg);
13600  return TRUE;
13601}
13602
13603/* Many folk need no more in the way of final link than this, once
13604   got entry reference counting is enabled.  */
13605
13606bfd_boolean
13607bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13608{
13609  if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13610    return FALSE;
13611
13612  /* Invoke the regular ELF backend linker to do all the work.  */
13613  return bfd_elf_final_link (abfd, info);
13614}
13615
13616bfd_boolean
13617bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13618{
13619  struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13620
13621  if (rcookie->bad_symtab)
13622    rcookie->rel = rcookie->rels;
13623
13624  for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13625    {
13626      unsigned long r_symndx;
13627
13628      if (! rcookie->bad_symtab)
13629	if (rcookie->rel->r_offset > offset)
13630	  return FALSE;
13631      if (rcookie->rel->r_offset != offset)
13632	continue;
13633
13634      r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13635      if (r_symndx == STN_UNDEF)
13636	return TRUE;
13637
13638      if (r_symndx >= rcookie->locsymcount
13639	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13640	{
13641	  struct elf_link_hash_entry *h;
13642
13643	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13644
13645	  while (h->root.type == bfd_link_hash_indirect
13646		 || h->root.type == bfd_link_hash_warning)
13647	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
13648
13649	  if ((h->root.type == bfd_link_hash_defined
13650	       || h->root.type == bfd_link_hash_defweak)
13651	      && (h->root.u.def.section->owner != rcookie->abfd
13652		  || h->root.u.def.section->kept_section != NULL
13653		  || discarded_section (h->root.u.def.section)))
13654	    return TRUE;
13655	}
13656      else
13657	{
13658	  /* It's not a relocation against a global symbol,
13659	     but it could be a relocation against a local
13660	     symbol for a discarded section.  */
13661	  asection *isec;
13662	  Elf_Internal_Sym *isym;
13663
13664	  /* Need to: get the symbol; get the section.  */
13665	  isym = &rcookie->locsyms[r_symndx];
13666	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13667	  if (isec != NULL
13668	      && (isec->kept_section != NULL
13669		  || discarded_section (isec)))
13670	    return TRUE;
13671	}
13672      return FALSE;
13673    }
13674  return FALSE;
13675}
13676
13677/* Discard unneeded references to discarded sections.
13678   Returns -1 on error, 1 if any section's size was changed, 0 if
13679   nothing changed.  This function assumes that the relocations are in
13680   sorted order, which is true for all known assemblers.  */
13681
13682int
13683bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13684{
13685  struct elf_reloc_cookie cookie;
13686  asection *o;
13687  bfd *abfd;
13688  int changed = 0;
13689
13690  if (info->traditional_format
13691      || !is_elf_hash_table (info->hash))
13692    return 0;
13693
13694  o = bfd_get_section_by_name (output_bfd, ".stab");
13695  if (o != NULL)
13696    {
13697      asection *i;
13698
13699      for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13700	{
13701	  if (i->size == 0
13702	      || i->reloc_count == 0
13703	      || i->sec_info_type != SEC_INFO_TYPE_STABS)
13704	    continue;
13705
13706	  abfd = i->owner;
13707	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13708	    continue;
13709
13710	  if (!init_reloc_cookie_for_section (&cookie, info, i))
13711	    return -1;
13712
13713	  if (_bfd_discard_section_stabs (abfd, i,
13714					  elf_section_data (i)->sec_info,
13715					  bfd_elf_reloc_symbol_deleted_p,
13716					  &cookie))
13717	    changed = 1;
13718
13719	  fini_reloc_cookie_for_section (&cookie, i);
13720	}
13721    }
13722
13723  o = NULL;
13724  if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13725    o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13726  if (o != NULL)
13727    {
13728      asection *i;
13729
13730      for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13731	{
13732	  if (i->size == 0)
13733	    continue;
13734
13735	  abfd = i->owner;
13736	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13737	    continue;
13738
13739	  if (!init_reloc_cookie_for_section (&cookie, info, i))
13740	    return -1;
13741
13742	  _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13743	  if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13744						 bfd_elf_reloc_symbol_deleted_p,
13745						 &cookie))
13746	    changed = 1;
13747
13748	  fini_reloc_cookie_for_section (&cookie, i);
13749	}
13750    }
13751
13752  for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13753    {
13754      const struct elf_backend_data *bed;
13755
13756      if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13757	continue;
13758
13759      bed = get_elf_backend_data (abfd);
13760
13761      if (bed->elf_backend_discard_info != NULL)
13762	{
13763	  if (!init_reloc_cookie (&cookie, info, abfd))
13764	    return -1;
13765
13766	  if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13767	    changed = 1;
13768
13769	  fini_reloc_cookie (&cookie, abfd);
13770	}
13771    }
13772
13773  if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13774    _bfd_elf_end_eh_frame_parsing (info);
13775
13776  if (info->eh_frame_hdr_type
13777      && !bfd_link_relocatable (info)
13778      && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13779    changed = 1;
13780
13781  return changed;
13782}
13783
13784bfd_boolean
13785_bfd_elf_section_already_linked (bfd *abfd,
13786				 asection *sec,
13787				 struct bfd_link_info *info)
13788{
13789  flagword flags;
13790  const char *name, *key;
13791  struct bfd_section_already_linked *l;
13792  struct bfd_section_already_linked_hash_entry *already_linked_list;
13793
13794  if (sec->output_section == bfd_abs_section_ptr)
13795    return FALSE;
13796
13797  flags = sec->flags;
13798
13799  /* Return if it isn't a linkonce section.  A comdat group section
13800     also has SEC_LINK_ONCE set.  */
13801  if ((flags & SEC_LINK_ONCE) == 0)
13802    return FALSE;
13803
13804  /* Don't put group member sections on our list of already linked
13805     sections.  They are handled as a group via their group section.  */
13806  if (elf_sec_group (sec) != NULL)
13807    return FALSE;
13808
13809  /* For a SHT_GROUP section, use the group signature as the key.  */
13810  name = sec->name;
13811  if ((flags & SEC_GROUP) != 0
13812      && elf_next_in_group (sec) != NULL
13813      && elf_group_name (elf_next_in_group (sec)) != NULL)
13814    key = elf_group_name (elf_next_in_group (sec));
13815  else
13816    {
13817      /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */
13818      if (CONST_STRNEQ (name, ".gnu.linkonce.")
13819	  && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13820	key++;
13821      else
13822	/* Must be a user linkonce section that doesn't follow gcc's
13823	   naming convention.  In this case we won't be matching
13824	   single member groups.  */
13825	key = name;
13826    }
13827
13828  already_linked_list = bfd_section_already_linked_table_lookup (key);
13829
13830  for (l = already_linked_list->entry; l != NULL; l = l->next)
13831    {
13832      /* We may have 2 different types of sections on the list: group
13833	 sections with a signature of <key> (<key> is some string),
13834	 and linkonce sections named .gnu.linkonce.<type>.<key>.
13835	 Match like sections.  LTO plugin sections are an exception.
13836	 They are always named .gnu.linkonce.t.<key> and match either
13837	 type of section.  */
13838      if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13839	   && ((flags & SEC_GROUP) != 0
13840	       || strcmp (name, l->sec->name) == 0))
13841	  || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13842	{
13843	  /* The section has already been linked.  See if we should
13844	     issue a warning.  */
13845	  if (!_bfd_handle_already_linked (sec, l, info))
13846	    return FALSE;
13847
13848	  if (flags & SEC_GROUP)
13849	    {
13850	      asection *first = elf_next_in_group (sec);
13851	      asection *s = first;
13852
13853	      while (s != NULL)
13854		{
13855		  s->output_section = bfd_abs_section_ptr;
13856		  /* Record which group discards it.  */
13857		  s->kept_section = l->sec;
13858		  s = elf_next_in_group (s);
13859		  /* These lists are circular.  */
13860		  if (s == first)
13861		    break;
13862		}
13863	    }
13864
13865	  return TRUE;
13866	}
13867    }
13868
13869  /* A single member comdat group section may be discarded by a
13870     linkonce section and vice versa.  */
13871  if ((flags & SEC_GROUP) != 0)
13872    {
13873      asection *first = elf_next_in_group (sec);
13874
13875      if (first != NULL && elf_next_in_group (first) == first)
13876	/* Check this single member group against linkonce sections.  */
13877	for (l = already_linked_list->entry; l != NULL; l = l->next)
13878	  if ((l->sec->flags & SEC_GROUP) == 0
13879	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13880	    {
13881	      first->output_section = bfd_abs_section_ptr;
13882	      first->kept_section = l->sec;
13883	      sec->output_section = bfd_abs_section_ptr;
13884	      break;
13885	    }
13886    }
13887  else
13888    /* Check this linkonce section against single member groups.  */
13889    for (l = already_linked_list->entry; l != NULL; l = l->next)
13890      if (l->sec->flags & SEC_GROUP)
13891	{
13892	  asection *first = elf_next_in_group (l->sec);
13893
13894	  if (first != NULL
13895	      && elf_next_in_group (first) == first
13896	      && bfd_elf_match_symbols_in_sections (first, sec, info))
13897	    {
13898	      sec->output_section = bfd_abs_section_ptr;
13899	      sec->kept_section = first;
13900	      break;
13901	    }
13902	}
13903
13904  /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13905     referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13906     specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13907     prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
13908     matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
13909     but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13910     `.gnu.linkonce.t.F' section from a different bfd not requiring any
13911     `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
13912     The reverse order cannot happen as there is never a bfd with only the
13913     `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
13914     matter as here were are looking only for cross-bfd sections.  */
13915
13916  if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13917    for (l = already_linked_list->entry; l != NULL; l = l->next)
13918      if ((l->sec->flags & SEC_GROUP) == 0
13919	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13920	{
13921	  if (abfd != l->sec->owner)
13922	    sec->output_section = bfd_abs_section_ptr;
13923	  break;
13924	}
13925
13926  /* This is the first section with this name.  Record it.  */
13927  if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13928    info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13929  return sec->output_section == bfd_abs_section_ptr;
13930}
13931
13932bfd_boolean
13933_bfd_elf_common_definition (Elf_Internal_Sym *sym)
13934{
13935  return sym->st_shndx == SHN_COMMON;
13936}
13937
13938unsigned int
13939_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13940{
13941  return SHN_COMMON;
13942}
13943
13944asection *
13945_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13946{
13947  return bfd_com_section_ptr;
13948}
13949
13950bfd_vma
13951_bfd_elf_default_got_elt_size (bfd *abfd,
13952			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
13953			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13954			       bfd *ibfd ATTRIBUTE_UNUSED,
13955			       unsigned long symndx ATTRIBUTE_UNUSED)
13956{
13957  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13958  return bed->s->arch_size / 8;
13959}
13960
13961/* Routines to support the creation of dynamic relocs.  */
13962
13963/* Returns the name of the dynamic reloc section associated with SEC.  */
13964
13965static const char *
13966get_dynamic_reloc_section_name (bfd *       abfd,
13967				asection *  sec,
13968				bfd_boolean is_rela)
13969{
13970  char *name;
13971  const char *old_name = bfd_get_section_name (NULL, sec);
13972  const char *prefix = is_rela ? ".rela" : ".rel";
13973
13974  if (old_name == NULL)
13975    return NULL;
13976
13977  name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13978  sprintf (name, "%s%s", prefix, old_name);
13979
13980  return name;
13981}
13982
13983/* Returns the dynamic reloc section associated with SEC.
13984   If necessary compute the name of the dynamic reloc section based
13985   on SEC's name (looked up in ABFD's string table) and the setting
13986   of IS_RELA.  */
13987
13988asection *
13989_bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
13990				    asection *  sec,
13991				    bfd_boolean is_rela)
13992{
13993  asection * reloc_sec = elf_section_data (sec)->sreloc;
13994
13995  if (reloc_sec == NULL)
13996    {
13997      const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13998
13999      if (name != NULL)
14000	{
14001	  reloc_sec = bfd_get_linker_section (abfd, name);
14002
14003	  if (reloc_sec != NULL)
14004	    elf_section_data (sec)->sreloc = reloc_sec;
14005	}
14006    }
14007
14008  return reloc_sec;
14009}
14010
14011/* Returns the dynamic reloc section associated with SEC.  If the
14012   section does not exist it is created and attached to the DYNOBJ
14013   bfd and stored in the SRELOC field of SEC's elf_section_data
14014   structure.
14015
14016   ALIGNMENT is the alignment for the newly created section and
14017   IS_RELA defines whether the name should be .rela.<SEC's name>
14018   or .rel.<SEC's name>.  The section name is looked up in the
14019   string table associated with ABFD.  */
14020
14021asection *
14022_bfd_elf_make_dynamic_reloc_section (asection *sec,
14023				     bfd *dynobj,
14024				     unsigned int alignment,
14025				     bfd *abfd,
14026				     bfd_boolean is_rela)
14027{
14028  asection * reloc_sec = elf_section_data (sec)->sreloc;
14029
14030  if (reloc_sec == NULL)
14031    {
14032      const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14033
14034      if (name == NULL)
14035	return NULL;
14036
14037      reloc_sec = bfd_get_linker_section (dynobj, name);
14038
14039      if (reloc_sec == NULL)
14040	{
14041	  flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14042			    | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14043	  if ((sec->flags & SEC_ALLOC) != 0)
14044	    flags |= SEC_ALLOC | SEC_LOAD;
14045
14046	  reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14047	  if (reloc_sec != NULL)
14048	    {
14049	      /* _bfd_elf_get_sec_type_attr chooses a section type by
14050		 name.  Override as it may be wrong, eg. for a user
14051		 section named "auto" we'll get ".relauto" which is
14052		 seen to be a .rela section.  */
14053	      elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14054	      if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14055		reloc_sec = NULL;
14056	    }
14057	}
14058
14059      elf_section_data (sec)->sreloc = reloc_sec;
14060    }
14061
14062  return reloc_sec;
14063}
14064
14065/* Copy the ELF symbol type and other attributes for a linker script
14066   assignment from HSRC to HDEST.  Generally this should be treated as
14067   if we found a strong non-dynamic definition for HDEST (except that
14068   ld ignores multiple definition errors).  */
14069void
14070_bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14071				     struct bfd_link_hash_entry *hdest,
14072				     struct bfd_link_hash_entry *hsrc)
14073{
14074  struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14075  struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14076  Elf_Internal_Sym isym;
14077
14078  ehdest->type = ehsrc->type;
14079  ehdest->target_internal = ehsrc->target_internal;
14080
14081  isym.st_other = ehsrc->other;
14082  elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14083}
14084
14085/* Append a RELA relocation REL to section S in BFD.  */
14086
14087void
14088elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14089{
14090  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14091  bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14092  BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14093  bed->s->swap_reloca_out (abfd, rel, loc);
14094}
14095
14096/* Append a REL relocation REL to section S in BFD.  */
14097
14098void
14099elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14100{
14101  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14102  bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14103  BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14104  bed->s->swap_reloc_out (abfd, rel, loc);
14105}
14106