1/* Support for HPPA 64-bit ELF
2   Copyright (C) 1999-2017 Free Software Foundation, Inc.
3
4   This file is part of BFD, the Binary File Descriptor library.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19   MA 02110-1301, USA.  */
20
21#include "sysdep.h"
22#include "alloca-conf.h"
23#include "bfd.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/hppa.h"
27#include "libhppa.h"
28#include "elf64-hppa.h"
29#include "libiberty.h"
30
31#define ARCH_SIZE	       64
32
33#define PLT_ENTRY_SIZE 0x10
34#define DLT_ENTRY_SIZE 0x8
35#define OPD_ENTRY_SIZE 0x20
36
37#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39/* The stub is supposed to load the target address and target's DP
40   value out of the PLT, then do an external branch to the target
41   address.
42
43   LDD PLTOFF(%r27),%r1
44   BVE (%r1)
45   LDD PLTOFF+8(%r27),%r27
46
47   Note that we must use the LDD with a 14 bit displacement, not the one
48   with a 5 bit displacement.  */
49static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50			  0x53, 0x7b, 0x00, 0x00 };
51
52struct elf64_hppa_link_hash_entry
53{
54  struct elf_link_hash_entry eh;
55
56  /* Offsets for this symbol in various linker sections.  */
57  bfd_vma dlt_offset;
58  bfd_vma plt_offset;
59  bfd_vma opd_offset;
60  bfd_vma stub_offset;
61
62  /* The index of the (possibly local) symbol in the input bfd and its
63     associated BFD.  Needed so that we can have relocs against local
64     symbols in shared libraries.  */
65  long sym_indx;
66  bfd *owner;
67
68  /* Dynamic symbols may need to have two different values.  One for
69     the dynamic symbol table, one for the normal symbol table.
70
71     In such cases we store the symbol's real value and section
72     index here so we can restore the real value before we write
73     the normal symbol table.  */
74  bfd_vma st_value;
75  int st_shndx;
76
77  /* Used to count non-got, non-plt relocations for delayed sizing
78     of relocation sections.  */
79  struct elf64_hppa_dyn_reloc_entry
80  {
81    /* Next relocation in the chain.  */
82    struct elf64_hppa_dyn_reloc_entry *next;
83
84    /* The type of the relocation.  */
85    int type;
86
87    /* The input section of the relocation.  */
88    asection *sec;
89
90    /* Number of relocs copied in this section.  */
91    bfd_size_type count;
92
93    /* The index of the section symbol for the input section of
94       the relocation.  Only needed when building shared libraries.  */
95    int sec_symndx;
96
97    /* The offset within the input section of the relocation.  */
98    bfd_vma offset;
99
100    /* The addend for the relocation.  */
101    bfd_vma addend;
102
103  } *reloc_entries;
104
105  /* Nonzero if this symbol needs an entry in one of the linker
106     sections.  */
107  unsigned want_dlt;
108  unsigned want_plt;
109  unsigned want_opd;
110  unsigned want_stub;
111};
112
113struct elf64_hppa_link_hash_table
114{
115  struct elf_link_hash_table root;
116
117  /* Shortcuts to get to the various linker defined sections.  */
118  asection *dlt_sec;
119  asection *dlt_rel_sec;
120  asection *plt_sec;
121  asection *plt_rel_sec;
122  asection *opd_sec;
123  asection *opd_rel_sec;
124  asection *other_rel_sec;
125
126  /* Offset of __gp within .plt section.  When the PLT gets large we want
127     to slide __gp into the PLT section so that we can continue to use
128     single DP relative instructions to load values out of the PLT.  */
129  bfd_vma gp_offset;
130
131  /* Note this is not strictly correct.  We should create a stub section for
132     each input section with calls.  The stub section should be placed before
133     the section with the call.  */
134  asection *stub_sec;
135
136  bfd_vma text_segment_base;
137  bfd_vma data_segment_base;
138
139  /* We build tables to map from an input section back to its
140     symbol index.  This is the BFD for which we currently have
141     a map.  */
142  bfd *section_syms_bfd;
143
144  /* Array of symbol numbers for each input section attached to the
145     current BFD.  */
146  int *section_syms;
147};
148
149#define hppa_link_hash_table(p) \
150  (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151  == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152
153#define hppa_elf_hash_entry(ent) \
154  ((struct elf64_hppa_link_hash_entry *)(ent))
155
156#define eh_name(eh) \
157  (eh ? eh->root.root.string : "<undef>")
158
159typedef struct bfd_hash_entry *(*new_hash_entry_func)
160  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161
162static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163  (bfd *abfd);
164
165/* This must follow the definitions of the various derived linker
166   hash tables and shared functions.  */
167#include "elf-hppa.h"
168
169static bfd_boolean elf64_hppa_object_p
170  (bfd *);
171
172static void elf64_hppa_post_process_headers
173  (bfd *, struct bfd_link_info *);
174
175static bfd_boolean elf64_hppa_create_dynamic_sections
176  (bfd *, struct bfd_link_info *);
177
178static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179  (struct bfd_link_info *, struct elf_link_hash_entry *);
180
181static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182  (struct elf_link_hash_entry *, void *);
183
184static bfd_boolean elf64_hppa_size_dynamic_sections
185  (bfd *, struct bfd_link_info *);
186
187static int elf64_hppa_link_output_symbol_hook
188  (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189   asection *, struct elf_link_hash_entry *);
190
191static bfd_boolean elf64_hppa_finish_dynamic_symbol
192  (bfd *, struct bfd_link_info *,
193   struct elf_link_hash_entry *, Elf_Internal_Sym *);
194
195static bfd_boolean elf64_hppa_finish_dynamic_sections
196  (bfd *, struct bfd_link_info *);
197
198static bfd_boolean elf64_hppa_check_relocs
199  (bfd *, struct bfd_link_info *,
200   asection *, const Elf_Internal_Rela *);
201
202static bfd_boolean elf64_hppa_dynamic_symbol_p
203  (struct elf_link_hash_entry *, struct bfd_link_info *);
204
205static bfd_boolean elf64_hppa_mark_exported_functions
206  (struct elf_link_hash_entry *, void *);
207
208static bfd_boolean elf64_hppa_finalize_opd
209  (struct elf_link_hash_entry *, void *);
210
211static bfd_boolean elf64_hppa_finalize_dlt
212  (struct elf_link_hash_entry *, void *);
213
214static bfd_boolean allocate_global_data_dlt
215  (struct elf_link_hash_entry *, void *);
216
217static bfd_boolean allocate_global_data_plt
218  (struct elf_link_hash_entry *, void *);
219
220static bfd_boolean allocate_global_data_stub
221  (struct elf_link_hash_entry *, void *);
222
223static bfd_boolean allocate_global_data_opd
224  (struct elf_link_hash_entry *, void *);
225
226static bfd_boolean get_reloc_section
227  (bfd *, struct elf64_hppa_link_hash_table *, asection *);
228
229static bfd_boolean count_dyn_reloc
230  (bfd *, struct elf64_hppa_link_hash_entry *,
231   int, asection *, int, bfd_vma, bfd_vma);
232
233static bfd_boolean allocate_dynrel_entries
234  (struct elf_link_hash_entry *, void *);
235
236static bfd_boolean elf64_hppa_finalize_dynreloc
237  (struct elf_link_hash_entry *, void *);
238
239static bfd_boolean get_opd
240  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241
242static bfd_boolean get_plt
243  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244
245static bfd_boolean get_dlt
246  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247
248static bfd_boolean get_stub
249  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250
251static int elf64_hppa_elf_get_symbol_type
252  (Elf_Internal_Sym *, int);
253
254/* Initialize an entry in the link hash table.  */
255
256static struct bfd_hash_entry *
257hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258			  struct bfd_hash_table *table,
259			  const char *string)
260{
261  /* Allocate the structure if it has not already been allocated by a
262     subclass.  */
263  if (entry == NULL)
264    {
265      entry = bfd_hash_allocate (table,
266				 sizeof (struct elf64_hppa_link_hash_entry));
267      if (entry == NULL)
268        return entry;
269    }
270
271  /* Call the allocation method of the superclass.  */
272  entry = _bfd_elf_link_hash_newfunc (entry, table, string);
273  if (entry != NULL)
274    {
275      struct elf64_hppa_link_hash_entry *hh;
276
277      /* Initialize our local data.  All zeros.  */
278      hh = hppa_elf_hash_entry (entry);
279      memset (&hh->dlt_offset, 0,
280	      (sizeof (struct elf64_hppa_link_hash_entry)
281	       - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
282    }
283
284  return entry;
285}
286
287/* Create the derived linker hash table.  The PA64 ELF port uses this
288   derived hash table to keep information specific to the PA ElF
289   linker (without using static variables).  */
290
291static struct bfd_link_hash_table*
292elf64_hppa_hash_table_create (bfd *abfd)
293{
294  struct elf64_hppa_link_hash_table *htab;
295  bfd_size_type amt = sizeof (*htab);
296
297  htab = bfd_zmalloc (amt);
298  if (htab == NULL)
299    return NULL;
300
301  if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302				      hppa64_link_hash_newfunc,
303				      sizeof (struct elf64_hppa_link_hash_entry),
304				      HPPA64_ELF_DATA))
305    {
306      free (htab);
307      return NULL;
308    }
309
310  htab->text_segment_base = (bfd_vma) -1;
311  htab->data_segment_base = (bfd_vma) -1;
312
313  return &htab->root.root;
314}
315
316/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
317
318   Additionally we set the default architecture and machine.  */
319static bfd_boolean
320elf64_hppa_object_p (bfd *abfd)
321{
322  Elf_Internal_Ehdr * i_ehdrp;
323  unsigned int flags;
324
325  i_ehdrp = elf_elfheader (abfd);
326  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
327    {
328      /* GCC on hppa-linux produces binaries with OSABI=GNU,
329	 but the kernel produces corefiles with OSABI=SysV.  */
330      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
331	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
332	return FALSE;
333    }
334  else
335    {
336      /* HPUX produces binaries with OSABI=HPUX,
337	 but the kernel produces corefiles with OSABI=SysV.  */
338      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
339	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
340	return FALSE;
341    }
342
343  flags = i_ehdrp->e_flags;
344  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
345    {
346    case EFA_PARISC_1_0:
347      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
348    case EFA_PARISC_1_1:
349      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
350    case EFA_PARISC_2_0:
351      if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
352        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
353      else
354        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
355    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
356      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357    }
358  /* Don't be fussy.  */
359  return TRUE;
360}
361
362/* Given section type (hdr->sh_type), return a boolean indicating
363   whether or not the section is an elf64-hppa specific section.  */
364static bfd_boolean
365elf64_hppa_section_from_shdr (bfd *abfd,
366			      Elf_Internal_Shdr *hdr,
367			      const char *name,
368			      int shindex)
369{
370  switch (hdr->sh_type)
371    {
372    case SHT_PARISC_EXT:
373      if (strcmp (name, ".PARISC.archext") != 0)
374	return FALSE;
375      break;
376    case SHT_PARISC_UNWIND:
377      if (strcmp (name, ".PARISC.unwind") != 0)
378	return FALSE;
379      break;
380    case SHT_PARISC_DOC:
381    case SHT_PARISC_ANNOT:
382    default:
383      return FALSE;
384    }
385
386  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
387    return FALSE;
388
389  return TRUE;
390}
391
392/* SEC is a section containing relocs for an input BFD when linking; return
393   a suitable section for holding relocs in the output BFD for a link.  */
394
395static bfd_boolean
396get_reloc_section (bfd *abfd,
397		   struct elf64_hppa_link_hash_table *hppa_info,
398		   asection *sec)
399{
400  const char *srel_name;
401  asection *srel;
402  bfd *dynobj;
403
404  srel_name = (bfd_elf_string_from_elf_section
405	       (abfd, elf_elfheader(abfd)->e_shstrndx,
406		_bfd_elf_single_rel_hdr(sec)->sh_name));
407  if (srel_name == NULL)
408    return FALSE;
409
410  dynobj = hppa_info->root.dynobj;
411  if (!dynobj)
412    hppa_info->root.dynobj = dynobj = abfd;
413
414  srel = bfd_get_linker_section (dynobj, srel_name);
415  if (srel == NULL)
416    {
417      srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
418						 (SEC_ALLOC
419						  | SEC_LOAD
420						  | SEC_HAS_CONTENTS
421						  | SEC_IN_MEMORY
422						  | SEC_LINKER_CREATED
423						  | SEC_READONLY));
424      if (srel == NULL
425	  || !bfd_set_section_alignment (dynobj, srel, 3))
426	return FALSE;
427    }
428
429  hppa_info->other_rel_sec = srel;
430  return TRUE;
431}
432
433/* Add a new entry to the list of dynamic relocations against DYN_H.
434
435   We use this to keep a record of all the FPTR relocations against a
436   particular symbol so that we can create FPTR relocations in the
437   output file.  */
438
439static bfd_boolean
440count_dyn_reloc (bfd *abfd,
441		 struct elf64_hppa_link_hash_entry *hh,
442		 int type,
443		 asection *sec,
444	         int sec_symndx,
445	         bfd_vma offset,
446		 bfd_vma addend)
447{
448  struct elf64_hppa_dyn_reloc_entry *rent;
449
450  rent = (struct elf64_hppa_dyn_reloc_entry *)
451  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
452  if (!rent)
453    return FALSE;
454
455  rent->next = hh->reloc_entries;
456  rent->type = type;
457  rent->sec = sec;
458  rent->sec_symndx = sec_symndx;
459  rent->offset = offset;
460  rent->addend = addend;
461  hh->reloc_entries = rent;
462
463  return TRUE;
464}
465
466/* Return a pointer to the local DLT, PLT and OPD reference counts
467   for ABFD.  Returns NULL if the storage allocation fails.  */
468
469static bfd_signed_vma *
470hppa64_elf_local_refcounts (bfd *abfd)
471{
472  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
473  bfd_signed_vma *local_refcounts;
474
475  local_refcounts = elf_local_got_refcounts (abfd);
476  if (local_refcounts == NULL)
477    {
478      bfd_size_type size;
479
480      /* Allocate space for local DLT, PLT and OPD reference
481	 counts.  Done this way to save polluting elf_obj_tdata
482	 with another target specific pointer.  */
483      size = symtab_hdr->sh_info;
484      size *= 3 * sizeof (bfd_signed_vma);
485      local_refcounts = bfd_zalloc (abfd, size);
486      elf_local_got_refcounts (abfd) = local_refcounts;
487    }
488  return local_refcounts;
489}
490
491/* Scan the RELOCS and record the type of dynamic entries that each
492   referenced symbol needs.  */
493
494static bfd_boolean
495elf64_hppa_check_relocs (bfd *abfd,
496			 struct bfd_link_info *info,
497			 asection *sec,
498			 const Elf_Internal_Rela *relocs)
499{
500  struct elf64_hppa_link_hash_table *hppa_info;
501  const Elf_Internal_Rela *relend;
502  Elf_Internal_Shdr *symtab_hdr;
503  const Elf_Internal_Rela *rel;
504  unsigned int sec_symndx;
505
506  if (bfd_link_relocatable (info))
507    return TRUE;
508
509  /* If this is the first dynamic object found in the link, create
510     the special sections required for dynamic linking.  */
511  if (! elf_hash_table (info)->dynamic_sections_created)
512    {
513      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
514	return FALSE;
515    }
516
517  hppa_info = hppa_link_hash_table (info);
518  if (hppa_info == NULL)
519    return FALSE;
520  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
521
522  /* If necessary, build a new table holding section symbols indices
523     for this BFD.  */
524
525  if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
526    {
527      unsigned long i;
528      unsigned int highest_shndx;
529      Elf_Internal_Sym *local_syms = NULL;
530      Elf_Internal_Sym *isym, *isymend;
531      bfd_size_type amt;
532
533      /* We're done with the old cache of section index to section symbol
534	 index information.  Free it.
535
536	 ?!? Note we leak the last section_syms array.  Presumably we
537	 could free it in one of the later routines in this file.  */
538      if (hppa_info->section_syms)
539	free (hppa_info->section_syms);
540
541      /* Read this BFD's local symbols.  */
542      if (symtab_hdr->sh_info != 0)
543	{
544	  local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
545	  if (local_syms == NULL)
546	    local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
547					       symtab_hdr->sh_info, 0,
548					       NULL, NULL, NULL);
549	  if (local_syms == NULL)
550	    return FALSE;
551	}
552
553      /* Record the highest section index referenced by the local symbols.  */
554      highest_shndx = 0;
555      isymend = local_syms + symtab_hdr->sh_info;
556      for (isym = local_syms; isym < isymend; isym++)
557	{
558	  if (isym->st_shndx > highest_shndx
559	      && isym->st_shndx < SHN_LORESERVE)
560	    highest_shndx = isym->st_shndx;
561	}
562
563      /* Allocate an array to hold the section index to section symbol index
564	 mapping.  Bump by one since we start counting at zero.  */
565      highest_shndx++;
566      amt = highest_shndx;
567      amt *= sizeof (int);
568      hppa_info->section_syms = (int *) bfd_malloc (amt);
569
570      /* Now walk the local symbols again.  If we find a section symbol,
571	 record the index of the symbol into the section_syms array.  */
572      for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
573	{
574	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
575	    hppa_info->section_syms[isym->st_shndx] = i;
576	}
577
578      /* We are finished with the local symbols.  */
579      if (local_syms != NULL
580	  && symtab_hdr->contents != (unsigned char *) local_syms)
581	{
582	  if (! info->keep_memory)
583	    free (local_syms);
584	  else
585	    {
586	      /* Cache the symbols for elf_link_input_bfd.  */
587	      symtab_hdr->contents = (unsigned char *) local_syms;
588	    }
589	}
590
591      /* Record which BFD we built the section_syms mapping for.  */
592      hppa_info->section_syms_bfd = abfd;
593    }
594
595  /* Record the symbol index for this input section.  We may need it for
596     relocations when building shared libraries.  When not building shared
597     libraries this value is never really used, but assign it to zero to
598     prevent out of bounds memory accesses in other routines.  */
599  if (bfd_link_pic (info))
600    {
601      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
602
603      /* If we did not find a section symbol for this section, then
604	 something went terribly wrong above.  */
605      if (sec_symndx == SHN_BAD)
606	return FALSE;
607
608      if (sec_symndx < SHN_LORESERVE)
609	sec_symndx = hppa_info->section_syms[sec_symndx];
610      else
611	sec_symndx = 0;
612    }
613  else
614    sec_symndx = 0;
615
616  relend = relocs + sec->reloc_count;
617  for (rel = relocs; rel < relend; ++rel)
618    {
619      enum
620	{
621	  NEED_DLT = 1,
622	  NEED_PLT = 2,
623	  NEED_STUB = 4,
624	  NEED_OPD = 8,
625	  NEED_DYNREL = 16,
626	};
627
628      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
629      struct elf64_hppa_link_hash_entry *hh;
630      int need_entry;
631      bfd_boolean maybe_dynamic;
632      int dynrel_type = R_PARISC_NONE;
633      static reloc_howto_type *howto;
634
635      if (r_symndx >= symtab_hdr->sh_info)
636	{
637	  /* We're dealing with a global symbol -- find its hash entry
638	     and mark it as being referenced.  */
639	  long indx = r_symndx - symtab_hdr->sh_info;
640	  hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
641	  while (hh->eh.root.type == bfd_link_hash_indirect
642		 || hh->eh.root.type == bfd_link_hash_warning)
643	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
644
645	  /* PR15323, ref flags aren't set for references in the same
646	     object.  */
647	  hh->eh.root.non_ir_ref = 1;
648	  hh->eh.ref_regular = 1;
649	}
650      else
651	hh = NULL;
652
653      /* We can only get preliminary data on whether a symbol is
654	 locally or externally defined, as not all of the input files
655	 have yet been processed.  Do something with what we know, as
656	 this may help reduce memory usage and processing time later.  */
657      maybe_dynamic = FALSE;
658      if (hh && ((bfd_link_pic (info)
659		 && (!info->symbolic
660		     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
661		|| !hh->eh.def_regular
662		|| hh->eh.root.type == bfd_link_hash_defweak))
663	maybe_dynamic = TRUE;
664
665      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
666      need_entry = 0;
667      switch (howto->type)
668	{
669	/* These are simple indirect references to symbols through the
670	   DLT.  We need to create a DLT entry for any symbols which
671	   appears in a DLTIND relocation.  */
672	case R_PARISC_DLTIND21L:
673	case R_PARISC_DLTIND14R:
674	case R_PARISC_DLTIND14F:
675	case R_PARISC_DLTIND14WR:
676	case R_PARISC_DLTIND14DR:
677	  need_entry = NEED_DLT;
678	  break;
679
680	/* ?!?  These need a DLT entry.  But I have no idea what to do with
681	   the "link time TP value.  */
682	case R_PARISC_LTOFF_TP21L:
683	case R_PARISC_LTOFF_TP14R:
684	case R_PARISC_LTOFF_TP14F:
685	case R_PARISC_LTOFF_TP64:
686	case R_PARISC_LTOFF_TP14WR:
687	case R_PARISC_LTOFF_TP14DR:
688	case R_PARISC_LTOFF_TP16F:
689	case R_PARISC_LTOFF_TP16WF:
690	case R_PARISC_LTOFF_TP16DF:
691	  need_entry = NEED_DLT;
692	  break;
693
694	/* These are function calls.  Depending on their precise target we
695	   may need to make a stub for them.  The stub uses the PLT, so we
696	   need to create PLT entries for these symbols too.  */
697	case R_PARISC_PCREL12F:
698	case R_PARISC_PCREL17F:
699	case R_PARISC_PCREL22F:
700	case R_PARISC_PCREL32:
701	case R_PARISC_PCREL64:
702	case R_PARISC_PCREL21L:
703	case R_PARISC_PCREL17R:
704	case R_PARISC_PCREL17C:
705	case R_PARISC_PCREL14R:
706	case R_PARISC_PCREL14F:
707	case R_PARISC_PCREL22C:
708	case R_PARISC_PCREL14WR:
709	case R_PARISC_PCREL14DR:
710	case R_PARISC_PCREL16F:
711	case R_PARISC_PCREL16WF:
712	case R_PARISC_PCREL16DF:
713	  /* Function calls might need to go through the .plt, and
714	     might need a long branch stub.  */
715	  if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
716	    need_entry = (NEED_PLT | NEED_STUB);
717	  else
718	    need_entry = 0;
719	  break;
720
721	case R_PARISC_PLTOFF21L:
722	case R_PARISC_PLTOFF14R:
723	case R_PARISC_PLTOFF14F:
724	case R_PARISC_PLTOFF14WR:
725	case R_PARISC_PLTOFF14DR:
726	case R_PARISC_PLTOFF16F:
727	case R_PARISC_PLTOFF16WF:
728	case R_PARISC_PLTOFF16DF:
729	  need_entry = (NEED_PLT);
730	  break;
731
732	case R_PARISC_DIR64:
733	  if (bfd_link_pic (info) || maybe_dynamic)
734	    need_entry = (NEED_DYNREL);
735	  dynrel_type = R_PARISC_DIR64;
736	  break;
737
738	/* This is an indirect reference through the DLT to get the address
739	   of a OPD descriptor.  Thus we need to make a DLT entry that points
740	   to an OPD entry.  */
741	case R_PARISC_LTOFF_FPTR21L:
742	case R_PARISC_LTOFF_FPTR14R:
743	case R_PARISC_LTOFF_FPTR14WR:
744	case R_PARISC_LTOFF_FPTR14DR:
745	case R_PARISC_LTOFF_FPTR32:
746	case R_PARISC_LTOFF_FPTR64:
747	case R_PARISC_LTOFF_FPTR16F:
748	case R_PARISC_LTOFF_FPTR16WF:
749	case R_PARISC_LTOFF_FPTR16DF:
750	  if (bfd_link_pic (info) || maybe_dynamic)
751	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
752	  else
753	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754	  dynrel_type = R_PARISC_FPTR64;
755	  break;
756
757	/* This is a simple OPD entry.  */
758	case R_PARISC_FPTR64:
759	  if (bfd_link_pic (info) || maybe_dynamic)
760	    need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
761	  else
762	    need_entry = (NEED_OPD | NEED_PLT);
763	  dynrel_type = R_PARISC_FPTR64;
764	  break;
765
766	/* Add more cases as needed.  */
767	}
768
769      if (!need_entry)
770	continue;
771
772      if (hh)
773	{
774	  /* Stash away enough information to be able to find this symbol
775	     regardless of whether or not it is local or global.  */
776	  hh->owner = abfd;
777	  hh->sym_indx = r_symndx;
778	}
779
780      /* Create what's needed.  */
781      if (need_entry & NEED_DLT)
782	{
783	  /* Allocate space for a DLT entry, as well as a dynamic
784	     relocation for this entry.  */
785	  if (! hppa_info->dlt_sec
786	      && ! get_dlt (abfd, info, hppa_info))
787	    goto err_out;
788
789	  if (hh != NULL)
790	    {
791	      hh->want_dlt = 1;
792	      hh->eh.got.refcount += 1;
793	    }
794	  else
795	    {
796	      bfd_signed_vma *local_dlt_refcounts;
797
798	      /* This is a DLT entry for a local symbol.  */
799	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
800	      if (local_dlt_refcounts == NULL)
801		return FALSE;
802	      local_dlt_refcounts[r_symndx] += 1;
803	    }
804	}
805
806      if (need_entry & NEED_PLT)
807	{
808	  if (! hppa_info->plt_sec
809	      && ! get_plt (abfd, info, hppa_info))
810	    goto err_out;
811
812	  if (hh != NULL)
813	    {
814	      hh->want_plt = 1;
815	      hh->eh.needs_plt = 1;
816	      hh->eh.plt.refcount += 1;
817	    }
818	  else
819	    {
820	      bfd_signed_vma *local_dlt_refcounts;
821	      bfd_signed_vma *local_plt_refcounts;
822
823	      /* This is a PLT entry for a local symbol.  */
824	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
825	      if (local_dlt_refcounts == NULL)
826		return FALSE;
827	      local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
828	      local_plt_refcounts[r_symndx] += 1;
829	    }
830	}
831
832      if (need_entry & NEED_STUB)
833	{
834	  if (! hppa_info->stub_sec
835	      && ! get_stub (abfd, info, hppa_info))
836	    goto err_out;
837	  if (hh)
838	    hh->want_stub = 1;
839	}
840
841      if (need_entry & NEED_OPD)
842	{
843	  if (! hppa_info->opd_sec
844	      && ! get_opd (abfd, info, hppa_info))
845	    goto err_out;
846
847	  /* FPTRs are not allocated by the dynamic linker for PA64,
848	     though it is possible that will change in the future.  */
849
850	  if (hh != NULL)
851	    hh->want_opd = 1;
852	  else
853	    {
854	      bfd_signed_vma *local_dlt_refcounts;
855	      bfd_signed_vma *local_opd_refcounts;
856
857	      /* This is a OPD for a local symbol.  */
858	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
859	      if (local_dlt_refcounts == NULL)
860		return FALSE;
861	      local_opd_refcounts = (local_dlt_refcounts
862				     + 2 * symtab_hdr->sh_info);
863	      local_opd_refcounts[r_symndx] += 1;
864	    }
865	}
866
867      /* Add a new dynamic relocation to the chain of dynamic
868	 relocations for this symbol.  */
869      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
870	{
871	  if (! hppa_info->other_rel_sec
872	      && ! get_reloc_section (abfd, hppa_info, sec))
873	    goto err_out;
874
875	  /* Count dynamic relocations against global symbols.  */
876	  if (hh != NULL
877	      && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
878				   sec_symndx, rel->r_offset, rel->r_addend))
879	    goto err_out;
880
881	  /* If we are building a shared library and we just recorded
882	     a dynamic R_PARISC_FPTR64 relocation, then make sure the
883	     section symbol for this section ends up in the dynamic
884	     symbol table.  */
885	  if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
886	      && ! (bfd_elf_link_record_local_dynamic_symbol
887		    (info, abfd, sec_symndx)))
888	    return FALSE;
889	}
890    }
891
892  return TRUE;
893
894 err_out:
895  return FALSE;
896}
897
898struct elf64_hppa_allocate_data
899{
900  struct bfd_link_info *info;
901  bfd_size_type ofs;
902};
903
904/* Should we do dynamic things to this symbol?  */
905
906static bfd_boolean
907elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
908			     struct bfd_link_info *info)
909{
910  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
911     and relocations that retrieve a function descriptor?  Assume the
912     worst for now.  */
913  if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
914    {
915      /* ??? Why is this here and not elsewhere is_local_label_name.  */
916      if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
917	return FALSE;
918
919      return TRUE;
920    }
921  else
922    return FALSE;
923}
924
925/* Mark all functions exported by this file so that we can later allocate
926   entries in .opd for them.  */
927
928static bfd_boolean
929elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
930{
931  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
932  struct bfd_link_info *info = (struct bfd_link_info *)data;
933  struct elf64_hppa_link_hash_table *hppa_info;
934
935  hppa_info = hppa_link_hash_table (info);
936  if (hppa_info == NULL)
937    return FALSE;
938
939  if (eh
940      && (eh->root.type == bfd_link_hash_defined
941	  || eh->root.type == bfd_link_hash_defweak)
942      && eh->root.u.def.section->output_section != NULL
943      && eh->type == STT_FUNC)
944    {
945      if (! hppa_info->opd_sec
946	  && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
947	return FALSE;
948
949      hh->want_opd = 1;
950
951      /* Put a flag here for output_symbol_hook.  */
952      hh->st_shndx = -1;
953      eh->needs_plt = 1;
954    }
955
956  return TRUE;
957}
958
959/* Allocate space for a DLT entry.  */
960
961static bfd_boolean
962allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
963{
964  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
965  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
966
967  if (hh->want_dlt)
968    {
969      if (bfd_link_pic (x->info))
970	{
971	  /* Possibly add the symbol to the local dynamic symbol
972	     table since we might need to create a dynamic relocation
973	     against it.  */
974	  if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
975	    {
976	      bfd *owner = eh->root.u.def.section->owner;
977
978	      if (! (bfd_elf_link_record_local_dynamic_symbol
979		     (x->info, owner, hh->sym_indx)))
980		return FALSE;
981	    }
982	}
983
984      hh->dlt_offset = x->ofs;
985      x->ofs += DLT_ENTRY_SIZE;
986    }
987  return TRUE;
988}
989
990/* Allocate space for a DLT.PLT entry.  */
991
992static bfd_boolean
993allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
994{
995  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
996  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
997
998  if (hh->want_plt
999      && elf64_hppa_dynamic_symbol_p (eh, x->info)
1000      && !((eh->root.type == bfd_link_hash_defined
1001	    || eh->root.type == bfd_link_hash_defweak)
1002	   && eh->root.u.def.section->output_section != NULL))
1003    {
1004      hh->plt_offset = x->ofs;
1005      x->ofs += PLT_ENTRY_SIZE;
1006      if (hh->plt_offset < 0x2000)
1007	{
1008	  struct elf64_hppa_link_hash_table *hppa_info;
1009
1010	  hppa_info = hppa_link_hash_table (x->info);
1011	  if (hppa_info == NULL)
1012	    return FALSE;
1013
1014	  hppa_info->gp_offset = hh->plt_offset;
1015	}
1016    }
1017  else
1018    hh->want_plt = 0;
1019
1020  return TRUE;
1021}
1022
1023/* Allocate space for a STUB entry.  */
1024
1025static bfd_boolean
1026allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1027{
1028  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1029  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1030
1031  if (hh->want_stub
1032      && elf64_hppa_dynamic_symbol_p (eh, x->info)
1033      && !((eh->root.type == bfd_link_hash_defined
1034	    || eh->root.type == bfd_link_hash_defweak)
1035	   && eh->root.u.def.section->output_section != NULL))
1036    {
1037      hh->stub_offset = x->ofs;
1038      x->ofs += sizeof (plt_stub);
1039    }
1040  else
1041    hh->want_stub = 0;
1042  return TRUE;
1043}
1044
1045/* Allocate space for a FPTR entry.  */
1046
1047static bfd_boolean
1048allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1049{
1050  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1051  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1052
1053  if (hh && hh->want_opd)
1054    {
1055      /* We never need an opd entry for a symbol which is not
1056	 defined by this output file.  */
1057      if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1058		 || hh->eh.root.type == bfd_link_hash_undefweak
1059		 || hh->eh.root.u.def.section->output_section == NULL))
1060	hh->want_opd = 0;
1061
1062      /* If we are creating a shared library, took the address of a local
1063	 function or might export this function from this object file, then
1064	 we have to create an opd descriptor.  */
1065      else if (bfd_link_pic (x->info)
1066	       || hh == NULL
1067	       || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1068	       || (hh->eh.root.type == bfd_link_hash_defined
1069		   || hh->eh.root.type == bfd_link_hash_defweak))
1070	{
1071	  /* If we are creating a shared library, then we will have to
1072	     create a runtime relocation for the symbol to properly
1073	     initialize the .opd entry.  Make sure the symbol gets
1074	     added to the dynamic symbol table.  */
1075	  if (bfd_link_pic (x->info)
1076	      && (hh == NULL || (hh->eh.dynindx == -1)))
1077	    {
1078	      bfd *owner;
1079	      /* PR 6511: Default to using the dynamic symbol table.  */
1080	      owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1081
1082	      if (!bfd_elf_link_record_local_dynamic_symbol
1083		    (x->info, owner, hh->sym_indx))
1084		return FALSE;
1085	    }
1086
1087	  /* This may not be necessary or desirable anymore now that
1088	     we have some support for dealing with section symbols
1089	     in dynamic relocs.  But name munging does make the result
1090	     much easier to debug.  ie, the EPLT reloc will reference
1091	     a symbol like .foobar, instead of .text + offset.  */
1092	  if (bfd_link_pic (x->info) && eh)
1093	    {
1094	      char *new_name;
1095	      struct elf_link_hash_entry *nh;
1096
1097	      new_name = concat (".", eh->root.root.string, NULL);
1098
1099	      nh = elf_link_hash_lookup (elf_hash_table (x->info),
1100					 new_name, TRUE, TRUE, TRUE);
1101
1102	      free (new_name);
1103	      nh->root.type = eh->root.type;
1104	      nh->root.u.def.value = eh->root.u.def.value;
1105	      nh->root.u.def.section = eh->root.u.def.section;
1106
1107	      if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1108		return FALSE;
1109	     }
1110	  hh->opd_offset = x->ofs;
1111	  x->ofs += OPD_ENTRY_SIZE;
1112	}
1113
1114      /* Otherwise we do not need an opd entry.  */
1115      else
1116	hh->want_opd = 0;
1117    }
1118  return TRUE;
1119}
1120
1121/* HP requires the EI_OSABI field to be filled in.  The assignment to
1122   EI_ABIVERSION may not be strictly necessary.  */
1123
1124static void
1125elf64_hppa_post_process_headers (bfd *abfd,
1126			 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1127{
1128  Elf_Internal_Ehdr * i_ehdrp;
1129
1130  i_ehdrp = elf_elfheader (abfd);
1131
1132  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1133  i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1134}
1135
1136/* Create function descriptor section (.opd).  This section is called .opd
1137   because it contains "official procedure descriptors".  The "official"
1138   refers to the fact that these descriptors are used when taking the address
1139   of a procedure, thus ensuring a unique address for each procedure.  */
1140
1141static bfd_boolean
1142get_opd (bfd *abfd,
1143	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1144	 struct elf64_hppa_link_hash_table *hppa_info)
1145{
1146  asection *opd;
1147  bfd *dynobj;
1148
1149  opd = hppa_info->opd_sec;
1150  if (!opd)
1151    {
1152      dynobj = hppa_info->root.dynobj;
1153      if (!dynobj)
1154	hppa_info->root.dynobj = dynobj = abfd;
1155
1156      opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1157						(SEC_ALLOC
1158						 | SEC_LOAD
1159						 | SEC_HAS_CONTENTS
1160						 | SEC_IN_MEMORY
1161						 | SEC_LINKER_CREATED));
1162      if (!opd
1163	  || !bfd_set_section_alignment (abfd, opd, 3))
1164	{
1165	  BFD_ASSERT (0);
1166	  return FALSE;
1167	}
1168
1169      hppa_info->opd_sec = opd;
1170    }
1171
1172  return TRUE;
1173}
1174
1175/* Create the PLT section.  */
1176
1177static bfd_boolean
1178get_plt (bfd *abfd,
1179	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1180	 struct elf64_hppa_link_hash_table *hppa_info)
1181{
1182  asection *plt;
1183  bfd *dynobj;
1184
1185  plt = hppa_info->plt_sec;
1186  if (!plt)
1187    {
1188      dynobj = hppa_info->root.dynobj;
1189      if (!dynobj)
1190	hppa_info->root.dynobj = dynobj = abfd;
1191
1192      plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1193						(SEC_ALLOC
1194						 | SEC_LOAD
1195						 | SEC_HAS_CONTENTS
1196						 | SEC_IN_MEMORY
1197						 | SEC_LINKER_CREATED));
1198      if (!plt
1199	  || !bfd_set_section_alignment (abfd, plt, 3))
1200	{
1201	  BFD_ASSERT (0);
1202	  return FALSE;
1203	}
1204
1205      hppa_info->plt_sec = plt;
1206    }
1207
1208  return TRUE;
1209}
1210
1211/* Create the DLT section.  */
1212
1213static bfd_boolean
1214get_dlt (bfd *abfd,
1215	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1216	 struct elf64_hppa_link_hash_table *hppa_info)
1217{
1218  asection *dlt;
1219  bfd *dynobj;
1220
1221  dlt = hppa_info->dlt_sec;
1222  if (!dlt)
1223    {
1224      dynobj = hppa_info->root.dynobj;
1225      if (!dynobj)
1226	hppa_info->root.dynobj = dynobj = abfd;
1227
1228      dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1229						(SEC_ALLOC
1230						 | SEC_LOAD
1231						 | SEC_HAS_CONTENTS
1232						 | SEC_IN_MEMORY
1233						 | SEC_LINKER_CREATED));
1234      if (!dlt
1235	  || !bfd_set_section_alignment (abfd, dlt, 3))
1236	{
1237	  BFD_ASSERT (0);
1238	  return FALSE;
1239	}
1240
1241      hppa_info->dlt_sec = dlt;
1242    }
1243
1244  return TRUE;
1245}
1246
1247/* Create the stubs section.  */
1248
1249static bfd_boolean
1250get_stub (bfd *abfd,
1251	  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1252	  struct elf64_hppa_link_hash_table *hppa_info)
1253{
1254  asection *stub;
1255  bfd *dynobj;
1256
1257  stub = hppa_info->stub_sec;
1258  if (!stub)
1259    {
1260      dynobj = hppa_info->root.dynobj;
1261      if (!dynobj)
1262	hppa_info->root.dynobj = dynobj = abfd;
1263
1264      stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1265						 (SEC_ALLOC | SEC_LOAD
1266						  | SEC_HAS_CONTENTS
1267						  | SEC_IN_MEMORY
1268						  | SEC_READONLY
1269						  | SEC_LINKER_CREATED));
1270      if (!stub
1271	  || !bfd_set_section_alignment (abfd, stub, 3))
1272	{
1273	  BFD_ASSERT (0);
1274	  return FALSE;
1275	}
1276
1277      hppa_info->stub_sec = stub;
1278    }
1279
1280  return TRUE;
1281}
1282
1283/* Create sections necessary for dynamic linking.  This is only a rough
1284   cut and will likely change as we learn more about the somewhat
1285   unusual dynamic linking scheme HP uses.
1286
1287   .stub:
1288	Contains code to implement cross-space calls.  The first time one
1289	of the stubs is used it will call into the dynamic linker, later
1290	calls will go straight to the target.
1291
1292	The only stub we support right now looks like
1293
1294	ldd OFFSET(%dp),%r1
1295	bve %r0(%r1)
1296	ldd OFFSET+8(%dp),%dp
1297
1298	Other stubs may be needed in the future.  We may want the remove
1299	the break/nop instruction.  It is only used right now to keep the
1300	offset of a .plt entry and a .stub entry in sync.
1301
1302   .dlt:
1303	This is what most people call the .got.  HP used a different name.
1304	Losers.
1305
1306   .rela.dlt:
1307	Relocations for the DLT.
1308
1309   .plt:
1310	Function pointers as address,gp pairs.
1311
1312   .rela.plt:
1313	Should contain dynamic IPLT (and EPLT?) relocations.
1314
1315   .opd:
1316	FPTRS
1317
1318   .rela.opd:
1319	EPLT relocations for symbols exported from shared libraries.  */
1320
1321static bfd_boolean
1322elf64_hppa_create_dynamic_sections (bfd *abfd,
1323				    struct bfd_link_info *info)
1324{
1325  asection *s;
1326  struct elf64_hppa_link_hash_table *hppa_info;
1327
1328  hppa_info = hppa_link_hash_table (info);
1329  if (hppa_info == NULL)
1330    return FALSE;
1331
1332  if (! get_stub (abfd, info, hppa_info))
1333    return FALSE;
1334
1335  if (! get_dlt (abfd, info, hppa_info))
1336    return FALSE;
1337
1338  if (! get_plt (abfd, info, hppa_info))
1339    return FALSE;
1340
1341  if (! get_opd (abfd, info, hppa_info))
1342    return FALSE;
1343
1344  s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1345					  (SEC_ALLOC | SEC_LOAD
1346					   | SEC_HAS_CONTENTS
1347					   | SEC_IN_MEMORY
1348					   | SEC_READONLY
1349					   | SEC_LINKER_CREATED));
1350  if (s == NULL
1351      || !bfd_set_section_alignment (abfd, s, 3))
1352    return FALSE;
1353  hppa_info->dlt_rel_sec = s;
1354
1355  s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1356					  (SEC_ALLOC | SEC_LOAD
1357					   | SEC_HAS_CONTENTS
1358					   | SEC_IN_MEMORY
1359					   | SEC_READONLY
1360					   | SEC_LINKER_CREATED));
1361  if (s == NULL
1362      || !bfd_set_section_alignment (abfd, s, 3))
1363    return FALSE;
1364  hppa_info->plt_rel_sec = s;
1365
1366  s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1367					  (SEC_ALLOC | SEC_LOAD
1368					   | SEC_HAS_CONTENTS
1369					   | SEC_IN_MEMORY
1370					   | SEC_READONLY
1371					   | SEC_LINKER_CREATED));
1372  if (s == NULL
1373      || !bfd_set_section_alignment (abfd, s, 3))
1374    return FALSE;
1375  hppa_info->other_rel_sec = s;
1376
1377  s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1378					  (SEC_ALLOC | SEC_LOAD
1379					   | SEC_HAS_CONTENTS
1380					   | SEC_IN_MEMORY
1381					   | SEC_READONLY
1382					   | SEC_LINKER_CREATED));
1383  if (s == NULL
1384      || !bfd_set_section_alignment (abfd, s, 3))
1385    return FALSE;
1386  hppa_info->opd_rel_sec = s;
1387
1388  return TRUE;
1389}
1390
1391/* Allocate dynamic relocations for those symbols that turned out
1392   to be dynamic.  */
1393
1394static bfd_boolean
1395allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1396{
1397  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1398  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1399  struct elf64_hppa_link_hash_table *hppa_info;
1400  struct elf64_hppa_dyn_reloc_entry *rent;
1401  bfd_boolean dynamic_symbol, shared;
1402
1403  hppa_info = hppa_link_hash_table (x->info);
1404  if (hppa_info == NULL)
1405    return FALSE;
1406
1407  dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1408  shared = bfd_link_pic (x->info);
1409
1410  /* We may need to allocate relocations for a non-dynamic symbol
1411     when creating a shared library.  */
1412  if (!dynamic_symbol && !shared)
1413    return TRUE;
1414
1415  /* Take care of the normal data relocations.  */
1416
1417  for (rent = hh->reloc_entries; rent; rent = rent->next)
1418    {
1419      /* Allocate one iff we are building a shared library, the relocation
1420	 isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1421      if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1422	continue;
1423
1424      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1425
1426      /* Make sure this symbol gets into the dynamic symbol table if it is
1427	 not already recorded.  ?!? This should not be in the loop since
1428	 the symbol need only be added once.  */
1429      if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1430	if (!bfd_elf_link_record_local_dynamic_symbol
1431	    (x->info, rent->sec->owner, hh->sym_indx))
1432	  return FALSE;
1433    }
1434
1435  /* Take care of the GOT and PLT relocations.  */
1436
1437  if ((dynamic_symbol || shared) && hh->want_dlt)
1438    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1439
1440  /* If we are building a shared library, then every symbol that has an
1441     opd entry will need an EPLT relocation to relocate the symbol's address
1442     and __gp value based on the runtime load address.  */
1443  if (shared && hh->want_opd)
1444    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1445
1446  if (hh->want_plt && dynamic_symbol)
1447    {
1448      bfd_size_type t = 0;
1449
1450      /* Dynamic symbols get one IPLT relocation.  Local symbols in
1451	 shared libraries get two REL relocations.  Local symbols in
1452	 main applications get nothing.  */
1453      if (dynamic_symbol)
1454	t = sizeof (Elf64_External_Rela);
1455      else if (shared)
1456	t = 2 * sizeof (Elf64_External_Rela);
1457
1458      hppa_info->plt_rel_sec->size += t;
1459    }
1460
1461  return TRUE;
1462}
1463
1464/* Adjust a symbol defined by a dynamic object and referenced by a
1465   regular object.  */
1466
1467static bfd_boolean
1468elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1469				  struct elf_link_hash_entry *eh)
1470{
1471  /* ??? Undefined symbols with PLT entries should be re-defined
1472     to be the PLT entry.  */
1473
1474  /* If this is a weak symbol, and there is a real definition, the
1475     processor independent code will have arranged for us to see the
1476     real definition first, and we can just use the same value.  */
1477  if (eh->u.weakdef != NULL)
1478    {
1479      BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1480		  || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1481      eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1482      eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1483      return TRUE;
1484    }
1485
1486  /* If this is a reference to a symbol defined by a dynamic object which
1487     is not a function, we might allocate the symbol in our .dynbss section
1488     and allocate a COPY dynamic relocation.
1489
1490     But PA64 code is canonically PIC, so as a rule we can avoid this sort
1491     of hackery.  */
1492
1493  return TRUE;
1494}
1495
1496/* This function is called via elf_link_hash_traverse to mark millicode
1497   symbols with a dynindx of -1 and to remove the string table reference
1498   from the dynamic symbol table.  If the symbol is not a millicode symbol,
1499   elf64_hppa_mark_exported_functions is called.  */
1500
1501static bfd_boolean
1502elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1503					      void *data)
1504{
1505  struct bfd_link_info *info = (struct bfd_link_info *) data;
1506
1507  if (eh->type == STT_PARISC_MILLI)
1508    {
1509      if (eh->dynindx != -1)
1510	{
1511	  eh->dynindx = -1;
1512	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1513				  eh->dynstr_index);
1514	}
1515      return TRUE;
1516    }
1517
1518  return elf64_hppa_mark_exported_functions (eh, data);
1519}
1520
1521/* Set the final sizes of the dynamic sections and allocate memory for
1522   the contents of our special sections.  */
1523
1524static bfd_boolean
1525elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1526{
1527  struct elf64_hppa_link_hash_table *hppa_info;
1528  struct elf64_hppa_allocate_data data;
1529  bfd *dynobj;
1530  bfd *ibfd;
1531  asection *sec;
1532  bfd_boolean plt;
1533  bfd_boolean relocs;
1534  bfd_boolean reltext;
1535
1536  hppa_info = hppa_link_hash_table (info);
1537  if (hppa_info == NULL)
1538    return FALSE;
1539
1540  dynobj = hppa_info->root.dynobj;
1541  BFD_ASSERT (dynobj != NULL);
1542
1543  /* Mark each function this program exports so that we will allocate
1544     space in the .opd section for each function's FPTR.  If we are
1545     creating dynamic sections, change the dynamic index of millicode
1546     symbols to -1 and remove them from the string table for .dynstr.
1547
1548     We have to traverse the main linker hash table since we have to
1549     find functions which may not have been mentioned in any relocs.  */
1550  elf_link_hash_traverse (&hppa_info->root,
1551			  (hppa_info->root.dynamic_sections_created
1552			   ? elf64_hppa_mark_milli_and_exported_functions
1553			   : elf64_hppa_mark_exported_functions),
1554			  info);
1555
1556  if (hppa_info->root.dynamic_sections_created)
1557    {
1558      /* Set the contents of the .interp section to the interpreter.  */
1559      if (bfd_link_executable (info) && !info->nointerp)
1560	{
1561	  sec = bfd_get_linker_section (dynobj, ".interp");
1562	  BFD_ASSERT (sec != NULL);
1563	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1564	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1565	}
1566    }
1567  else
1568    {
1569      /* We may have created entries in the .rela.got section.
1570	 However, if we are not creating the dynamic sections, we will
1571	 not actually use these entries.  Reset the size of .rela.dlt,
1572	 which will cause it to get stripped from the output file
1573	 below.  */
1574      sec = hppa_info->dlt_rel_sec;
1575      if (sec != NULL)
1576	sec->size = 0;
1577    }
1578
1579  /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1580     dynamic relocs.  */
1581  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1582    {
1583      bfd_signed_vma *local_dlt;
1584      bfd_signed_vma *end_local_dlt;
1585      bfd_signed_vma *local_plt;
1586      bfd_signed_vma *end_local_plt;
1587      bfd_signed_vma *local_opd;
1588      bfd_signed_vma *end_local_opd;
1589      bfd_size_type locsymcount;
1590      Elf_Internal_Shdr *symtab_hdr;
1591      asection *srel;
1592
1593      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1594	continue;
1595
1596      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1597	{
1598	  struct elf64_hppa_dyn_reloc_entry *hdh_p;
1599
1600	  for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1601		    elf_section_data (sec)->local_dynrel);
1602	       hdh_p != NULL;
1603	       hdh_p = hdh_p->next)
1604	    {
1605	      if (!bfd_is_abs_section (hdh_p->sec)
1606		  && bfd_is_abs_section (hdh_p->sec->output_section))
1607		{
1608		  /* Input section has been discarded, either because
1609		     it is a copy of a linkonce section or due to
1610		     linker script /DISCARD/, so we'll be discarding
1611		     the relocs too.  */
1612		}
1613	      else if (hdh_p->count != 0)
1614		{
1615		  srel = elf_section_data (hdh_p->sec)->sreloc;
1616		  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1617		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1618		    info->flags |= DF_TEXTREL;
1619		}
1620	    }
1621	}
1622
1623      local_dlt = elf_local_got_refcounts (ibfd);
1624      if (!local_dlt)
1625	continue;
1626
1627      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1628      locsymcount = symtab_hdr->sh_info;
1629      end_local_dlt = local_dlt + locsymcount;
1630      sec = hppa_info->dlt_sec;
1631      srel = hppa_info->dlt_rel_sec;
1632      for (; local_dlt < end_local_dlt; ++local_dlt)
1633	{
1634	  if (*local_dlt > 0)
1635	    {
1636	      *local_dlt = sec->size;
1637	      sec->size += DLT_ENTRY_SIZE;
1638	      if (bfd_link_pic (info))
1639	        {
1640		  srel->size += sizeof (Elf64_External_Rela);
1641	        }
1642	    }
1643	  else
1644	    *local_dlt = (bfd_vma) -1;
1645	}
1646
1647      local_plt = end_local_dlt;
1648      end_local_plt = local_plt + locsymcount;
1649      if (! hppa_info->root.dynamic_sections_created)
1650	{
1651	  /* Won't be used, but be safe.  */
1652	  for (; local_plt < end_local_plt; ++local_plt)
1653	    *local_plt = (bfd_vma) -1;
1654	}
1655      else
1656	{
1657	  sec = hppa_info->plt_sec;
1658	  srel = hppa_info->plt_rel_sec;
1659	  for (; local_plt < end_local_plt; ++local_plt)
1660	    {
1661	      if (*local_plt > 0)
1662		{
1663		  *local_plt = sec->size;
1664		  sec->size += PLT_ENTRY_SIZE;
1665		  if (bfd_link_pic (info))
1666		    srel->size += sizeof (Elf64_External_Rela);
1667		}
1668	      else
1669		*local_plt = (bfd_vma) -1;
1670	    }
1671	}
1672
1673      local_opd = end_local_plt;
1674      end_local_opd = local_opd + locsymcount;
1675      if (! hppa_info->root.dynamic_sections_created)
1676	{
1677	  /* Won't be used, but be safe.  */
1678	  for (; local_opd < end_local_opd; ++local_opd)
1679	    *local_opd = (bfd_vma) -1;
1680	}
1681      else
1682	{
1683	  sec = hppa_info->opd_sec;
1684	  srel = hppa_info->opd_rel_sec;
1685	  for (; local_opd < end_local_opd; ++local_opd)
1686	    {
1687	      if (*local_opd > 0)
1688		{
1689		  *local_opd = sec->size;
1690		  sec->size += OPD_ENTRY_SIZE;
1691		  if (bfd_link_pic (info))
1692		    srel->size += sizeof (Elf64_External_Rela);
1693		}
1694	      else
1695		*local_opd = (bfd_vma) -1;
1696	    }
1697	}
1698    }
1699
1700  /* Allocate the GOT entries.  */
1701
1702  data.info = info;
1703  if (hppa_info->dlt_sec)
1704    {
1705      data.ofs = hppa_info->dlt_sec->size;
1706      elf_link_hash_traverse (&hppa_info->root,
1707			      allocate_global_data_dlt, &data);
1708      hppa_info->dlt_sec->size = data.ofs;
1709    }
1710
1711  if (hppa_info->plt_sec)
1712    {
1713      data.ofs = hppa_info->plt_sec->size;
1714      elf_link_hash_traverse (&hppa_info->root,
1715		              allocate_global_data_plt, &data);
1716      hppa_info->plt_sec->size = data.ofs;
1717    }
1718
1719  if (hppa_info->stub_sec)
1720    {
1721      data.ofs = 0x0;
1722      elf_link_hash_traverse (&hppa_info->root,
1723			      allocate_global_data_stub, &data);
1724      hppa_info->stub_sec->size = data.ofs;
1725    }
1726
1727  /* Allocate space for entries in the .opd section.  */
1728  if (hppa_info->opd_sec)
1729    {
1730      data.ofs = hppa_info->opd_sec->size;
1731      elf_link_hash_traverse (&hppa_info->root,
1732			      allocate_global_data_opd, &data);
1733      hppa_info->opd_sec->size = data.ofs;
1734    }
1735
1736  /* Now allocate space for dynamic relocations, if necessary.  */
1737  if (hppa_info->root.dynamic_sections_created)
1738    elf_link_hash_traverse (&hppa_info->root,
1739			    allocate_dynrel_entries, &data);
1740
1741  /* The sizes of all the sections are set.  Allocate memory for them.  */
1742  plt = FALSE;
1743  relocs = FALSE;
1744  reltext = FALSE;
1745  for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1746    {
1747      const char *name;
1748
1749      if ((sec->flags & SEC_LINKER_CREATED) == 0)
1750	continue;
1751
1752      /* It's OK to base decisions on the section name, because none
1753	 of the dynobj section names depend upon the input files.  */
1754      name = bfd_get_section_name (dynobj, sec);
1755
1756      if (strcmp (name, ".plt") == 0)
1757	{
1758	  /* Remember whether there is a PLT.  */
1759	  plt = sec->size != 0;
1760	}
1761      else if (strcmp (name, ".opd") == 0
1762	       || CONST_STRNEQ (name, ".dlt")
1763	       || strcmp (name, ".stub") == 0
1764	       || strcmp (name, ".got") == 0)
1765	{
1766	  /* Strip this section if we don't need it; see the comment below.  */
1767	}
1768      else if (CONST_STRNEQ (name, ".rela"))
1769	{
1770	  if (sec->size != 0)
1771	    {
1772	      asection *target;
1773
1774	      /* Remember whether there are any reloc sections other
1775		 than .rela.plt.  */
1776	      if (strcmp (name, ".rela.plt") != 0)
1777		{
1778		  const char *outname;
1779
1780		  relocs = TRUE;
1781
1782		  /* If this relocation section applies to a read only
1783		     section, then we probably need a DT_TEXTREL
1784		     entry.  The entries in the .rela.plt section
1785		     really apply to the .got section, which we
1786		     created ourselves and so know is not readonly.  */
1787		  outname = bfd_get_section_name (output_bfd,
1788						  sec->output_section);
1789		  target = bfd_get_section_by_name (output_bfd, outname + 4);
1790		  if (target != NULL
1791		      && (target->flags & SEC_READONLY) != 0
1792		      && (target->flags & SEC_ALLOC) != 0)
1793		    reltext = TRUE;
1794		}
1795
1796	      /* We use the reloc_count field as a counter if we need
1797		 to copy relocs into the output file.  */
1798	      sec->reloc_count = 0;
1799	    }
1800	}
1801      else
1802	{
1803	  /* It's not one of our sections, so don't allocate space.  */
1804	  continue;
1805	}
1806
1807      if (sec->size == 0)
1808	{
1809	  /* If we don't need this section, strip it from the
1810	     output file.  This is mostly to handle .rela.bss and
1811	     .rela.plt.  We must create both sections in
1812	     create_dynamic_sections, because they must be created
1813	     before the linker maps input sections to output
1814	     sections.  The linker does that before
1815	     adjust_dynamic_symbol is called, and it is that
1816	     function which decides whether anything needs to go
1817	     into these sections.  */
1818	  sec->flags |= SEC_EXCLUDE;
1819	  continue;
1820	}
1821
1822      if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1823	continue;
1824
1825      /* Allocate memory for the section contents if it has not
1826	 been allocated already.  We use bfd_zalloc here in case
1827	 unused entries are not reclaimed before the section's
1828	 contents are written out.  This should not happen, but this
1829	 way if it does, we get a R_PARISC_NONE reloc instead of
1830	 garbage.  */
1831      if (sec->contents == NULL)
1832	{
1833	  sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1834	  if (sec->contents == NULL)
1835	    return FALSE;
1836	}
1837    }
1838
1839  if (hppa_info->root.dynamic_sections_created)
1840    {
1841      /* Always create a DT_PLTGOT.  It actually has nothing to do with
1842	 the PLT, it is how we communicate the __gp value of a load
1843	 module to the dynamic linker.  */
1844#define add_dynamic_entry(TAG, VAL) \
1845  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1846
1847      if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1848	  || !add_dynamic_entry (DT_PLTGOT, 0))
1849	return FALSE;
1850
1851      /* Add some entries to the .dynamic section.  We fill in the
1852	 values later, in elf64_hppa_finish_dynamic_sections, but we
1853	 must add the entries now so that we get the correct size for
1854	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1855	 dynamic linker and used by the debugger.  */
1856      if (! bfd_link_pic (info))
1857	{
1858	  if (!add_dynamic_entry (DT_DEBUG, 0)
1859	      || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1860	      || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1861	    return FALSE;
1862	}
1863
1864      /* Force DT_FLAGS to always be set.
1865	 Required by HPUX 11.00 patch PHSS_26559.  */
1866      if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1867	return FALSE;
1868
1869      if (plt)
1870	{
1871	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1872	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1873	      || !add_dynamic_entry (DT_JMPREL, 0))
1874	    return FALSE;
1875	}
1876
1877      if (relocs)
1878	{
1879	  if (!add_dynamic_entry (DT_RELA, 0)
1880	      || !add_dynamic_entry (DT_RELASZ, 0)
1881	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1882	    return FALSE;
1883	}
1884
1885      if (reltext)
1886	{
1887	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1888	    return FALSE;
1889	  info->flags |= DF_TEXTREL;
1890	}
1891    }
1892#undef add_dynamic_entry
1893
1894  return TRUE;
1895}
1896
1897/* Called after we have output the symbol into the dynamic symbol
1898   table, but before we output the symbol into the normal symbol
1899   table.
1900
1901   For some symbols we had to change their address when outputting
1902   the dynamic symbol table.  We undo that change here so that
1903   the symbols have their expected value in the normal symbol
1904   table.  Ick.  */
1905
1906static int
1907elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1908				    const char *name,
1909				    Elf_Internal_Sym *sym,
1910				    asection *input_sec ATTRIBUTE_UNUSED,
1911				    struct elf_link_hash_entry *eh)
1912{
1913  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1914
1915  /* We may be called with the file symbol or section symbols.
1916     They never need munging, so it is safe to ignore them.  */
1917  if (!name || !eh)
1918    return 1;
1919
1920  /* Function symbols for which we created .opd entries *may* have been
1921     munged by finish_dynamic_symbol and have to be un-munged here.
1922
1923     Note that finish_dynamic_symbol sometimes turns dynamic symbols
1924     into non-dynamic ones, so we initialize st_shndx to -1 in
1925     mark_exported_functions and check to see if it was overwritten
1926     here instead of just checking eh->dynindx.  */
1927  if (hh->want_opd && hh->st_shndx != -1)
1928    {
1929      /* Restore the saved value and section index.  */
1930      sym->st_value = hh->st_value;
1931      sym->st_shndx = hh->st_shndx;
1932    }
1933
1934  return 1;
1935}
1936
1937/* Finish up dynamic symbol handling.  We set the contents of various
1938   dynamic sections here.  */
1939
1940static bfd_boolean
1941elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1942				  struct bfd_link_info *info,
1943				  struct elf_link_hash_entry *eh,
1944				  Elf_Internal_Sym *sym)
1945{
1946  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1947  asection *stub, *splt, *sopd, *spltrel;
1948  struct elf64_hppa_link_hash_table *hppa_info;
1949
1950  hppa_info = hppa_link_hash_table (info);
1951  if (hppa_info == NULL)
1952    return FALSE;
1953
1954  stub = hppa_info->stub_sec;
1955  splt = hppa_info->plt_sec;
1956  sopd = hppa_info->opd_sec;
1957  spltrel = hppa_info->plt_rel_sec;
1958
1959  /* Incredible.  It is actually necessary to NOT use the symbol's real
1960     value when building the dynamic symbol table for a shared library.
1961     At least for symbols that refer to functions.
1962
1963     We will store a new value and section index into the symbol long
1964     enough to output it into the dynamic symbol table, then we restore
1965     the original values (in elf64_hppa_link_output_symbol_hook).  */
1966  if (hh->want_opd)
1967    {
1968      BFD_ASSERT (sopd != NULL);
1969
1970      /* Save away the original value and section index so that we
1971	 can restore them later.  */
1972      hh->st_value = sym->st_value;
1973      hh->st_shndx = sym->st_shndx;
1974
1975      /* For the dynamic symbol table entry, we want the value to be
1976	 address of this symbol's entry within the .opd section.  */
1977      sym->st_value = (hh->opd_offset
1978		       + sopd->output_offset
1979		       + sopd->output_section->vma);
1980      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1981							 sopd->output_section);
1982    }
1983
1984  /* Initialize a .plt entry if requested.  */
1985  if (hh->want_plt
1986      && elf64_hppa_dynamic_symbol_p (eh, info))
1987    {
1988      bfd_vma value;
1989      Elf_Internal_Rela rel;
1990      bfd_byte *loc;
1991
1992      BFD_ASSERT (splt != NULL && spltrel != NULL);
1993
1994      /* We do not actually care about the value in the PLT entry
1995	 if we are creating a shared library and the symbol is
1996	 still undefined, we create a dynamic relocation to fill
1997	 in the correct value.  */
1998      if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1999	value = 0;
2000      else
2001	value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2002
2003      /* Fill in the entry in the procedure linkage table.
2004
2005	 The format of a plt entry is
2006	 <funcaddr> <__gp>.
2007
2008	 plt_offset is the offset within the PLT section at which to
2009	 install the PLT entry.
2010
2011	 We are modifying the in-memory PLT contents here, so we do not add
2012	 in the output_offset of the PLT section.  */
2013
2014      bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2015      value = _bfd_get_gp_value (splt->output_section->owner);
2016      bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2017
2018      /* Create a dynamic IPLT relocation for this entry.
2019
2020	 We are creating a relocation in the output file's PLT section,
2021	 which is included within the DLT secton.  So we do need to include
2022	 the PLT's output_offset in the computation of the relocation's
2023	 address.  */
2024      rel.r_offset = (hh->plt_offset + splt->output_offset
2025		      + splt->output_section->vma);
2026      rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2027      rel.r_addend = 0;
2028
2029      loc = spltrel->contents;
2030      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2031      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2032    }
2033
2034  /* Initialize an external call stub entry if requested.  */
2035  if (hh->want_stub
2036      && elf64_hppa_dynamic_symbol_p (eh, info))
2037    {
2038      bfd_vma value;
2039      int insn;
2040      unsigned int max_offset;
2041
2042      BFD_ASSERT (stub != NULL);
2043
2044      /* Install the generic stub template.
2045
2046	 We are modifying the contents of the stub section, so we do not
2047	 need to include the stub section's output_offset here.  */
2048      memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2049
2050      /* Fix up the first ldd instruction.
2051
2052	 We are modifying the contents of the STUB section in memory,
2053	 so we do not need to include its output offset in this computation.
2054
2055	 Note the plt_offset value is the value of the PLT entry relative to
2056	 the start of the PLT section.  These instructions will reference
2057	 data relative to the value of __gp, which may not necessarily have
2058	 the same address as the start of the PLT section.
2059
2060	 gp_offset contains the offset of __gp within the PLT section.  */
2061      value = hh->plt_offset - hppa_info->gp_offset;
2062
2063      insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2064      if (output_bfd->arch_info->mach >= 25)
2065	{
2066	  /* Wide mode allows 16 bit offsets.  */
2067	  max_offset = 32768;
2068	  insn &= ~ 0xfff1;
2069	  insn |= re_assemble_16 ((int) value);
2070	}
2071      else
2072	{
2073	  max_offset = 8192;
2074	  insn &= ~ 0x3ff1;
2075	  insn |= re_assemble_14 ((int) value);
2076	}
2077
2078      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2079	{
2080	  _bfd_error_handler
2081	    /* xgettext:c-format */
2082	    (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2083	     hh->eh.root.root.string, (long) value);
2084	  return FALSE;
2085	}
2086
2087      bfd_put_32 (stub->owner, (bfd_vma) insn,
2088		  stub->contents + hh->stub_offset);
2089
2090      /* Fix up the second ldd instruction.  */
2091      value += 8;
2092      insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2093      if (output_bfd->arch_info->mach >= 25)
2094	{
2095	  insn &= ~ 0xfff1;
2096	  insn |= re_assemble_16 ((int) value);
2097	}
2098      else
2099	{
2100	  insn &= ~ 0x3ff1;
2101	  insn |= re_assemble_14 ((int) value);
2102	}
2103      bfd_put_32 (stub->owner, (bfd_vma) insn,
2104		  stub->contents + hh->stub_offset + 8);
2105    }
2106
2107  return TRUE;
2108}
2109
2110/* The .opd section contains FPTRs for each function this file
2111   exports.  Initialize the FPTR entries.  */
2112
2113static bfd_boolean
2114elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2115{
2116  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2117  struct bfd_link_info *info = (struct bfd_link_info *)data;
2118  struct elf64_hppa_link_hash_table *hppa_info;
2119  asection *sopd;
2120  asection *sopdrel;
2121
2122  hppa_info = hppa_link_hash_table (info);
2123  if (hppa_info == NULL)
2124    return FALSE;
2125
2126  sopd = hppa_info->opd_sec;
2127  sopdrel = hppa_info->opd_rel_sec;
2128
2129  if (hh->want_opd)
2130    {
2131      bfd_vma value;
2132
2133      /* The first two words of an .opd entry are zero.
2134
2135	 We are modifying the contents of the OPD section in memory, so we
2136	 do not need to include its output offset in this computation.  */
2137      memset (sopd->contents + hh->opd_offset, 0, 16);
2138
2139      value = (eh->root.u.def.value
2140	       + eh->root.u.def.section->output_section->vma
2141	       + eh->root.u.def.section->output_offset);
2142
2143      /* The next word is the address of the function.  */
2144      bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2145
2146      /* The last word is our local __gp value.  */
2147      value = _bfd_get_gp_value (sopd->output_section->owner);
2148      bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2149    }
2150
2151  /* If we are generating a shared library, we must generate EPLT relocations
2152     for each entry in the .opd, even for static functions (they may have
2153     had their address taken).  */
2154  if (bfd_link_pic (info) && hh->want_opd)
2155    {
2156      Elf_Internal_Rela rel;
2157      bfd_byte *loc;
2158      int dynindx;
2159
2160      /* We may need to do a relocation against a local symbol, in
2161	 which case we have to look up it's dynamic symbol index off
2162	 the local symbol hash table.  */
2163      if (eh->dynindx != -1)
2164	dynindx = eh->dynindx;
2165      else
2166	dynindx
2167	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2168						hh->sym_indx);
2169
2170      /* The offset of this relocation is the absolute address of the
2171	 .opd entry for this symbol.  */
2172      rel.r_offset = (hh->opd_offset + sopd->output_offset
2173		      + sopd->output_section->vma);
2174
2175      /* If H is non-null, then we have an external symbol.
2176
2177	 It is imperative that we use a different dynamic symbol for the
2178	 EPLT relocation if the symbol has global scope.
2179
2180	 In the dynamic symbol table, the function symbol will have a value
2181	 which is address of the function's .opd entry.
2182
2183	 Thus, we can not use that dynamic symbol for the EPLT relocation
2184	 (if we did, the data in the .opd would reference itself rather
2185	 than the actual address of the function).  Instead we have to use
2186	 a new dynamic symbol which has the same value as the original global
2187	 function symbol.
2188
2189	 We prefix the original symbol with a "." and use the new symbol in
2190	 the EPLT relocation.  This new symbol has already been recorded in
2191	 the symbol table, we just have to look it up and use it.
2192
2193	 We do not have such problems with static functions because we do
2194	 not make their addresses in the dynamic symbol table point to
2195	 the .opd entry.  Ultimately this should be safe since a static
2196	 function can not be directly referenced outside of its shared
2197	 library.
2198
2199	 We do have to play similar games for FPTR relocations in shared
2200	 libraries, including those for static symbols.  See the FPTR
2201	 handling in elf64_hppa_finalize_dynreloc.  */
2202      if (eh)
2203	{
2204	  char *new_name;
2205	  struct elf_link_hash_entry *nh;
2206
2207	  new_name = concat (".", eh->root.root.string, NULL);
2208
2209	  nh = elf_link_hash_lookup (elf_hash_table (info),
2210				     new_name, TRUE, TRUE, FALSE);
2211
2212	  /* All we really want from the new symbol is its dynamic
2213	     symbol index.  */
2214	  if (nh)
2215	    dynindx = nh->dynindx;
2216	  free (new_name);
2217	}
2218
2219      rel.r_addend = 0;
2220      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2221
2222      loc = sopdrel->contents;
2223      loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2224      bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2225    }
2226  return TRUE;
2227}
2228
2229/* The .dlt section contains addresses for items referenced through the
2230   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2231   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2232
2233static bfd_boolean
2234elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2235{
2236  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2237  struct bfd_link_info *info = (struct bfd_link_info *)data;
2238  struct elf64_hppa_link_hash_table *hppa_info;
2239  asection *sdlt, *sdltrel;
2240
2241  hppa_info = hppa_link_hash_table (info);
2242  if (hppa_info == NULL)
2243    return FALSE;
2244
2245  sdlt = hppa_info->dlt_sec;
2246  sdltrel = hppa_info->dlt_rel_sec;
2247
2248  /* H/DYN_H may refer to a local variable and we know it's
2249     address, so there is no need to create a relocation.  Just install
2250     the proper value into the DLT, note this shortcut can not be
2251     skipped when building a shared library.  */
2252  if (! bfd_link_pic (info) && hh && hh->want_dlt)
2253    {
2254      bfd_vma value;
2255
2256      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2257	 to point to the FPTR entry in the .opd section.
2258
2259	 We include the OPD's output offset in this computation as
2260	 we are referring to an absolute address in the resulting
2261	 object file.  */
2262      if (hh->want_opd)
2263	{
2264	  value = (hh->opd_offset
2265		   + hppa_info->opd_sec->output_offset
2266		   + hppa_info->opd_sec->output_section->vma);
2267	}
2268      else if ((eh->root.type == bfd_link_hash_defined
2269		|| eh->root.type == bfd_link_hash_defweak)
2270	       && eh->root.u.def.section)
2271	{
2272	  value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2273	  if (eh->root.u.def.section->output_section)
2274	    value += eh->root.u.def.section->output_section->vma;
2275	  else
2276	    value += eh->root.u.def.section->vma;
2277	}
2278      else
2279	/* We have an undefined function reference.  */
2280	value = 0;
2281
2282      /* We do not need to include the output offset of the DLT section
2283	 here because we are modifying the in-memory contents.  */
2284      bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2285    }
2286
2287  /* Create a relocation for the DLT entry associated with this symbol.
2288     When building a shared library the symbol does not have to be dynamic.  */
2289  if (hh->want_dlt
2290      && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2291    {
2292      Elf_Internal_Rela rel;
2293      bfd_byte *loc;
2294      int dynindx;
2295
2296      /* We may need to do a relocation against a local symbol, in
2297	 which case we have to look up it's dynamic symbol index off
2298	 the local symbol hash table.  */
2299      if (eh && eh->dynindx != -1)
2300	dynindx = eh->dynindx;
2301      else
2302	dynindx
2303	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2304						hh->sym_indx);
2305
2306      /* Create a dynamic relocation for this entry.  Do include the output
2307	 offset of the DLT entry since we need an absolute address in the
2308	 resulting object file.  */
2309      rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2310		      + sdlt->output_section->vma);
2311      if (eh && eh->type == STT_FUNC)
2312	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2313      else
2314	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2315      rel.r_addend = 0;
2316
2317      loc = sdltrel->contents;
2318      loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2319      bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2320    }
2321  return TRUE;
2322}
2323
2324/* Finalize the dynamic relocations.  Specifically the FPTR relocations
2325   for dynamic functions used to initialize static data.  */
2326
2327static bfd_boolean
2328elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2329			      void *data)
2330{
2331  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2332  struct bfd_link_info *info = (struct bfd_link_info *)data;
2333  struct elf64_hppa_link_hash_table *hppa_info;
2334  int dynamic_symbol;
2335
2336  dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2337
2338  if (!dynamic_symbol && !bfd_link_pic (info))
2339    return TRUE;
2340
2341  if (hh->reloc_entries)
2342    {
2343      struct elf64_hppa_dyn_reloc_entry *rent;
2344      int dynindx;
2345
2346      hppa_info = hppa_link_hash_table (info);
2347      if (hppa_info == NULL)
2348	return FALSE;
2349
2350      /* We may need to do a relocation against a local symbol, in
2351	 which case we have to look up it's dynamic symbol index off
2352	 the local symbol hash table.  */
2353      if (eh->dynindx != -1)
2354	dynindx = eh->dynindx;
2355      else
2356	dynindx
2357	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2358						hh->sym_indx);
2359
2360      for (rent = hh->reloc_entries; rent; rent = rent->next)
2361	{
2362	  Elf_Internal_Rela rel;
2363	  bfd_byte *loc;
2364
2365	  /* Allocate one iff we are building a shared library, the relocation
2366	     isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2367	  if (!bfd_link_pic (info)
2368	      && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2369	    continue;
2370
2371	  /* Create a dynamic relocation for this entry.
2372
2373	     We need the output offset for the reloc's section because
2374	     we are creating an absolute address in the resulting object
2375	     file.  */
2376	  rel.r_offset = (rent->offset + rent->sec->output_offset
2377			  + rent->sec->output_section->vma);
2378
2379	  /* An FPTR64 relocation implies that we took the address of
2380	     a function and that the function has an entry in the .opd
2381	     section.  We want the FPTR64 relocation to reference the
2382	     entry in .opd.
2383
2384	     We could munge the symbol value in the dynamic symbol table
2385	     (in fact we already do for functions with global scope) to point
2386	     to the .opd entry.  Then we could use that dynamic symbol in
2387	     this relocation.
2388
2389	     Or we could do something sensible, not munge the symbol's
2390	     address and instead just use a different symbol to reference
2391	     the .opd entry.  At least that seems sensible until you
2392	     realize there's no local dynamic symbols we can use for that
2393	     purpose.  Thus the hair in the check_relocs routine.
2394
2395	     We use a section symbol recorded by check_relocs as the
2396	     base symbol for the relocation.  The addend is the difference
2397	     between the section symbol and the address of the .opd entry.  */
2398	  if (bfd_link_pic (info)
2399	      && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2400	    {
2401	      bfd_vma value, value2;
2402
2403	      /* First compute the address of the opd entry for this symbol.  */
2404	      value = (hh->opd_offset
2405		       + hppa_info->opd_sec->output_section->vma
2406		       + hppa_info->opd_sec->output_offset);
2407
2408	      /* Compute the value of the start of the section with
2409		 the relocation.  */
2410	      value2 = (rent->sec->output_section->vma
2411			+ rent->sec->output_offset);
2412
2413	      /* Compute the difference between the start of the section
2414		 with the relocation and the opd entry.  */
2415	      value -= value2;
2416
2417	      /* The result becomes the addend of the relocation.  */
2418	      rel.r_addend = value;
2419
2420	      /* The section symbol becomes the symbol for the dynamic
2421		 relocation.  */
2422	      dynindx
2423		= _bfd_elf_link_lookup_local_dynindx (info,
2424						      rent->sec->owner,
2425						      rent->sec_symndx);
2426	    }
2427	  else
2428	    rel.r_addend = rent->addend;
2429
2430	  rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2431
2432	  loc = hppa_info->other_rel_sec->contents;
2433	  loc += (hppa_info->other_rel_sec->reloc_count++
2434		  * sizeof (Elf64_External_Rela));
2435	  bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2436				     &rel, loc);
2437	}
2438    }
2439
2440  return TRUE;
2441}
2442
2443/* Used to decide how to sort relocs in an optimal manner for the
2444   dynamic linker, before writing them out.  */
2445
2446static enum elf_reloc_type_class
2447elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2448			     const asection *rel_sec ATTRIBUTE_UNUSED,
2449			     const Elf_Internal_Rela *rela)
2450{
2451  if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2452    return reloc_class_relative;
2453
2454  switch ((int) ELF64_R_TYPE (rela->r_info))
2455    {
2456    case R_PARISC_IPLT:
2457      return reloc_class_plt;
2458    case R_PARISC_COPY:
2459      return reloc_class_copy;
2460    default:
2461      return reloc_class_normal;
2462    }
2463}
2464
2465/* Finish up the dynamic sections.  */
2466
2467static bfd_boolean
2468elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2469				    struct bfd_link_info *info)
2470{
2471  bfd *dynobj;
2472  asection *sdyn;
2473  struct elf64_hppa_link_hash_table *hppa_info;
2474
2475  hppa_info = hppa_link_hash_table (info);
2476  if (hppa_info == NULL)
2477    return FALSE;
2478
2479  /* Finalize the contents of the .opd section.  */
2480  elf_link_hash_traverse (elf_hash_table (info),
2481			  elf64_hppa_finalize_opd,
2482			  info);
2483
2484  elf_link_hash_traverse (elf_hash_table (info),
2485			  elf64_hppa_finalize_dynreloc,
2486			  info);
2487
2488  /* Finalize the contents of the .dlt section.  */
2489  dynobj = elf_hash_table (info)->dynobj;
2490  /* Finalize the contents of the .dlt section.  */
2491  elf_link_hash_traverse (elf_hash_table (info),
2492			  elf64_hppa_finalize_dlt,
2493			  info);
2494
2495  sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2496
2497  if (elf_hash_table (info)->dynamic_sections_created)
2498    {
2499      Elf64_External_Dyn *dyncon, *dynconend;
2500
2501      BFD_ASSERT (sdyn != NULL);
2502
2503      dyncon = (Elf64_External_Dyn *) sdyn->contents;
2504      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2505      for (; dyncon < dynconend; dyncon++)
2506	{
2507	  Elf_Internal_Dyn dyn;
2508	  asection *s;
2509
2510	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2511
2512	  switch (dyn.d_tag)
2513	    {
2514	    default:
2515	      break;
2516
2517	    case DT_HP_LOAD_MAP:
2518	      /* Compute the absolute address of 16byte scratchpad area
2519		 for the dynamic linker.
2520
2521		 By convention the linker script will allocate the scratchpad
2522		 area at the start of the .data section.  So all we have to
2523		 to is find the start of the .data section.  */
2524	      s = bfd_get_section_by_name (output_bfd, ".data");
2525	      if (!s)
2526		return FALSE;
2527	      dyn.d_un.d_ptr = s->vma;
2528	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529	      break;
2530
2531	    case DT_PLTGOT:
2532	      /* HP's use PLTGOT to set the GOT register.  */
2533	      dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2534	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535	      break;
2536
2537	    case DT_JMPREL:
2538	      s = hppa_info->plt_rel_sec;
2539	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2540	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2541	      break;
2542
2543	    case DT_PLTRELSZ:
2544	      s = hppa_info->plt_rel_sec;
2545	      dyn.d_un.d_val = s->size;
2546	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2547	      break;
2548
2549	    case DT_RELA:
2550	      s = hppa_info->other_rel_sec;
2551	      if (! s || ! s->size)
2552		s = hppa_info->dlt_rel_sec;
2553	      if (! s || ! s->size)
2554		s = hppa_info->opd_rel_sec;
2555	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2556	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2557	      break;
2558
2559	    case DT_RELASZ:
2560	      s = hppa_info->other_rel_sec;
2561	      dyn.d_un.d_val = s->size;
2562	      s = hppa_info->dlt_rel_sec;
2563	      dyn.d_un.d_val += s->size;
2564	      s = hppa_info->opd_rel_sec;
2565	      dyn.d_un.d_val += s->size;
2566	      /* There is some question about whether or not the size of
2567		 the PLT relocs should be included here.  HP's tools do
2568		 it, so we'll emulate them.  */
2569	      s = hppa_info->plt_rel_sec;
2570	      dyn.d_un.d_val += s->size;
2571	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2572	      break;
2573
2574	    }
2575	}
2576    }
2577
2578  return TRUE;
2579}
2580
2581/* Support for core dump NOTE sections.  */
2582
2583static bfd_boolean
2584elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2585{
2586  int offset;
2587  size_t size;
2588
2589  switch (note->descsz)
2590    {
2591      default:
2592	return FALSE;
2593
2594      case 760:		/* Linux/hppa */
2595	/* pr_cursig */
2596	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2597
2598	/* pr_pid */
2599	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2600
2601	/* pr_reg */
2602	offset = 112;
2603	size = 640;
2604
2605	break;
2606    }
2607
2608  /* Make a ".reg/999" section.  */
2609  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2610					  size, note->descpos + offset);
2611}
2612
2613static bfd_boolean
2614elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2615{
2616  char * command;
2617  int n;
2618
2619  switch (note->descsz)
2620    {
2621    default:
2622      return FALSE;
2623
2624    case 136:		/* Linux/hppa elf_prpsinfo.  */
2625      elf_tdata (abfd)->core->program
2626	= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2627      elf_tdata (abfd)->core->command
2628	= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2629    }
2630
2631  /* Note that for some reason, a spurious space is tacked
2632     onto the end of the args in some (at least one anyway)
2633     implementations, so strip it off if it exists.  */
2634  command = elf_tdata (abfd)->core->command;
2635  n = strlen (command);
2636
2637  if (0 < n && command[n - 1] == ' ')
2638    command[n - 1] = '\0';
2639
2640  return TRUE;
2641}
2642
2643/* Return the number of additional phdrs we will need.
2644
2645   The generic ELF code only creates PT_PHDRs for executables.  The HP
2646   dynamic linker requires PT_PHDRs for dynamic libraries too.
2647
2648   This routine indicates that the backend needs one additional program
2649   header for that case.
2650
2651   Note we do not have access to the link info structure here, so we have
2652   to guess whether or not we are building a shared library based on the
2653   existence of a .interp section.  */
2654
2655static int
2656elf64_hppa_additional_program_headers (bfd *abfd,
2657				struct bfd_link_info *info ATTRIBUTE_UNUSED)
2658{
2659  asection *s;
2660
2661  /* If we are creating a shared library, then we have to create a
2662     PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2663  s = bfd_get_section_by_name (abfd, ".interp");
2664  if (! s)
2665    return 1;
2666  return 0;
2667}
2668
2669static bfd_boolean
2670elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2671				const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2672				unsigned int count ATTRIBUTE_UNUSED)
2673{
2674  return TRUE;
2675}
2676
2677/* Allocate and initialize any program headers required by this
2678   specific backend.
2679
2680   The generic ELF code only creates PT_PHDRs for executables.  The HP
2681   dynamic linker requires PT_PHDRs for dynamic libraries too.
2682
2683   This allocates the PT_PHDR and initializes it in a manner suitable
2684   for the HP linker.
2685
2686   Note we do not have access to the link info structure here, so we have
2687   to guess whether or not we are building a shared library based on the
2688   existence of a .interp section.  */
2689
2690static bfd_boolean
2691elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2692{
2693  struct elf_segment_map *m;
2694
2695  m = elf_seg_map (abfd);
2696  if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2697    {
2698      m = ((struct elf_segment_map *)
2699	   bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2700      if (m == NULL)
2701	return FALSE;
2702
2703      m->p_type = PT_PHDR;
2704      m->p_flags = PF_R | PF_X;
2705      m->p_flags_valid = 1;
2706      m->p_paddr_valid = 1;
2707      m->includes_phdrs = 1;
2708
2709      m->next = elf_seg_map (abfd);
2710      elf_seg_map (abfd) = m;
2711    }
2712
2713  for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2714    if (m->p_type == PT_LOAD)
2715      {
2716	unsigned int i;
2717
2718	for (i = 0; i < m->count; i++)
2719	  {
2720	    /* The code "hint" is not really a hint.  It is a requirement
2721	       for certain versions of the HP dynamic linker.  Worse yet,
2722	       it must be set even if the shared library does not have
2723	       any code in its "text" segment (thus the check for .hash
2724	       to catch this situation).  */
2725	    if (m->sections[i]->flags & SEC_CODE
2726		|| (strcmp (m->sections[i]->name, ".hash") == 0))
2727	      m->p_flags |= (PF_X | PF_HP_CODE);
2728	  }
2729      }
2730
2731  return TRUE;
2732}
2733
2734/* Called when writing out an object file to decide the type of a
2735   symbol.  */
2736static int
2737elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2738				int type)
2739{
2740  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2741    return STT_PARISC_MILLI;
2742  else
2743    return type;
2744}
2745
2746/* Support HP specific sections for core files.  */
2747
2748static bfd_boolean
2749elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2750			      const char *typename)
2751{
2752  if (hdr->p_type == PT_HP_CORE_KERNEL)
2753    {
2754      asection *sect;
2755
2756      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2757	return FALSE;
2758
2759      sect = bfd_make_section_anyway (abfd, ".kernel");
2760      if (sect == NULL)
2761	return FALSE;
2762      sect->size = hdr->p_filesz;
2763      sect->filepos = hdr->p_offset;
2764      sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2765      return TRUE;
2766    }
2767
2768  if (hdr->p_type == PT_HP_CORE_PROC)
2769    {
2770      int sig;
2771
2772      if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2773	return FALSE;
2774      if (bfd_bread (&sig, 4, abfd) != 4)
2775	return FALSE;
2776
2777      elf_tdata (abfd)->core->signal = sig;
2778
2779      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2780	return FALSE;
2781
2782      /* GDB uses the ".reg" section to read register contents.  */
2783      return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2784					      hdr->p_offset);
2785    }
2786
2787  if (hdr->p_type == PT_HP_CORE_LOADABLE
2788      || hdr->p_type == PT_HP_CORE_STACK
2789      || hdr->p_type == PT_HP_CORE_MMF)
2790    hdr->p_type = PT_LOAD;
2791
2792  return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2793}
2794
2795/* Hook called by the linker routine which adds symbols from an object
2796   file.  HP's libraries define symbols with HP specific section
2797   indices, which we have to handle.  */
2798
2799static bfd_boolean
2800elf_hppa_add_symbol_hook (bfd *abfd,
2801			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2802			  Elf_Internal_Sym *sym,
2803			  const char **namep ATTRIBUTE_UNUSED,
2804			  flagword *flagsp ATTRIBUTE_UNUSED,
2805			  asection **secp,
2806			  bfd_vma *valp)
2807{
2808  unsigned int sec_index = sym->st_shndx;
2809
2810  switch (sec_index)
2811    {
2812    case SHN_PARISC_ANSI_COMMON:
2813      *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2814      (*secp)->flags |= SEC_IS_COMMON;
2815      *valp = sym->st_size;
2816      break;
2817
2818    case SHN_PARISC_HUGE_COMMON:
2819      *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2820      (*secp)->flags |= SEC_IS_COMMON;
2821      *valp = sym->st_size;
2822      break;
2823    }
2824
2825  return TRUE;
2826}
2827
2828static bfd_boolean
2829elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2830					 void *data)
2831{
2832  struct bfd_link_info *info = data;
2833
2834  /* If we are not creating a shared library, and this symbol is
2835     referenced by a shared library but is not defined anywhere, then
2836     the generic code will warn that it is undefined.
2837
2838     This behavior is undesirable on HPs since the standard shared
2839     libraries contain references to undefined symbols.
2840
2841     So we twiddle the flags associated with such symbols so that they
2842     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2843
2844     Ultimately we should have better controls over the generic ELF BFD
2845     linker code.  */
2846  if (! bfd_link_relocatable (info)
2847      && info->unresolved_syms_in_shared_libs != RM_IGNORE
2848      && h->root.type == bfd_link_hash_undefined
2849      && h->ref_dynamic
2850      && !h->ref_regular)
2851    {
2852      h->ref_dynamic = 0;
2853      h->pointer_equality_needed = 1;
2854    }
2855
2856  return TRUE;
2857}
2858
2859static bfd_boolean
2860elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2861					 void *data)
2862{
2863  struct bfd_link_info *info = data;
2864
2865  /* If we are not creating a shared library, and this symbol is
2866     referenced by a shared library but is not defined anywhere, then
2867     the generic code will warn that it is undefined.
2868
2869     This behavior is undesirable on HPs since the standard shared
2870     libraries contain references to undefined symbols.
2871
2872     So we twiddle the flags associated with such symbols so that they
2873     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2874
2875     Ultimately we should have better controls over the generic ELF BFD
2876     linker code.  */
2877  if (! bfd_link_relocatable (info)
2878      && info->unresolved_syms_in_shared_libs != RM_IGNORE
2879      && h->root.type == bfd_link_hash_undefined
2880      && !h->ref_dynamic
2881      && !h->ref_regular
2882      && h->pointer_equality_needed)
2883    {
2884      h->ref_dynamic = 1;
2885      h->pointer_equality_needed = 0;
2886    }
2887
2888  return TRUE;
2889}
2890
2891static bfd_boolean
2892elf_hppa_is_dynamic_loader_symbol (const char *name)
2893{
2894  return (! strcmp (name, "__CPU_REVISION")
2895	  || ! strcmp (name, "__CPU_KEYBITS_1")
2896	  || ! strcmp (name, "__SYSTEM_ID_D")
2897	  || ! strcmp (name, "__FPU_MODEL")
2898	  || ! strcmp (name, "__FPU_REVISION")
2899	  || ! strcmp (name, "__ARGC")
2900	  || ! strcmp (name, "__ARGV")
2901	  || ! strcmp (name, "__ENVP")
2902	  || ! strcmp (name, "__TLS_SIZE_D")
2903	  || ! strcmp (name, "__LOAD_INFO")
2904	  || ! strcmp (name, "__systab"));
2905}
2906
2907/* Record the lowest address for the data and text segments.  */
2908static void
2909elf_hppa_record_segment_addrs (bfd *abfd,
2910			       asection *section,
2911			       void *data)
2912{
2913  struct elf64_hppa_link_hash_table *hppa_info = data;
2914
2915  if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2916    {
2917      bfd_vma value;
2918      Elf_Internal_Phdr *p;
2919
2920      p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2921      BFD_ASSERT (p != NULL);
2922      value = p->p_vaddr;
2923
2924      if (section->flags & SEC_READONLY)
2925	{
2926	  if (value < hppa_info->text_segment_base)
2927	    hppa_info->text_segment_base = value;
2928	}
2929      else
2930	{
2931	  if (value < hppa_info->data_segment_base)
2932	    hppa_info->data_segment_base = value;
2933	}
2934    }
2935}
2936
2937/* Called after we have seen all the input files/sections, but before
2938   final symbol resolution and section placement has been determined.
2939
2940   We use this hook to (possibly) provide a value for __gp, then we
2941   fall back to the generic ELF final link routine.  */
2942
2943static bfd_boolean
2944elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2945{
2946  struct stat buf;
2947  struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2948
2949  if (hppa_info == NULL)
2950    return FALSE;
2951
2952  if (! bfd_link_relocatable (info))
2953    {
2954      struct elf_link_hash_entry *gp;
2955      bfd_vma gp_val;
2956
2957      /* The linker script defines a value for __gp iff it was referenced
2958	 by one of the objects being linked.  First try to find the symbol
2959	 in the hash table.  If that fails, just compute the value __gp
2960	 should have had.  */
2961      gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2962				 FALSE, FALSE);
2963
2964      if (gp)
2965	{
2966
2967	  /* Adjust the value of __gp as we may want to slide it into the
2968	     .plt section so that the stubs can access PLT entries without
2969	     using an addil sequence.  */
2970	  gp->root.u.def.value += hppa_info->gp_offset;
2971
2972	  gp_val = (gp->root.u.def.section->output_section->vma
2973		    + gp->root.u.def.section->output_offset
2974		    + gp->root.u.def.value);
2975	}
2976      else
2977	{
2978	  asection *sec;
2979
2980	  /* First look for a .plt section.  If found, then __gp is the
2981	     address of the .plt + gp_offset.
2982
2983	     If no .plt is found, then look for .dlt, .opd and .data (in
2984	     that order) and set __gp to the base address of whichever
2985	     section is found first.  */
2986
2987	  sec = hppa_info->plt_sec;
2988	  if (sec && ! (sec->flags & SEC_EXCLUDE))
2989	    gp_val = (sec->output_offset
2990		      + sec->output_section->vma
2991		      + hppa_info->gp_offset);
2992	  else
2993	    {
2994	      sec = hppa_info->dlt_sec;
2995	      if (!sec || (sec->flags & SEC_EXCLUDE))
2996		sec = hppa_info->opd_sec;
2997	      if (!sec || (sec->flags & SEC_EXCLUDE))
2998		sec = bfd_get_section_by_name (abfd, ".data");
2999	      if (!sec || (sec->flags & SEC_EXCLUDE))
3000		gp_val = 0;
3001	      else
3002		gp_val = sec->output_offset + sec->output_section->vma;
3003	    }
3004	}
3005
3006      /* Install whatever value we found/computed for __gp.  */
3007      _bfd_set_gp_value (abfd, gp_val);
3008    }
3009
3010  /* We need to know the base of the text and data segments so that we
3011     can perform SEGREL relocations.  We will record the base addresses
3012     when we encounter the first SEGREL relocation.  */
3013  hppa_info->text_segment_base = (bfd_vma)-1;
3014  hppa_info->data_segment_base = (bfd_vma)-1;
3015
3016  /* HP's shared libraries have references to symbols that are not
3017     defined anywhere.  The generic ELF BFD linker code will complain
3018     about such symbols.
3019
3020     So we detect the losing case and arrange for the flags on the symbol
3021     to indicate that it was never referenced.  This keeps the generic
3022     ELF BFD link code happy and appears to not create any secondary
3023     problems.  Ultimately we need a way to control the behavior of the
3024     generic ELF BFD link code better.  */
3025  elf_link_hash_traverse (elf_hash_table (info),
3026			  elf_hppa_unmark_useless_dynamic_symbols,
3027			  info);
3028
3029  /* Invoke the regular ELF backend linker to do all the work.  */
3030  if (!bfd_elf_final_link (abfd, info))
3031    return FALSE;
3032
3033  elf_link_hash_traverse (elf_hash_table (info),
3034			  elf_hppa_remark_useless_dynamic_symbols,
3035			  info);
3036
3037  /* If we're producing a final executable, sort the contents of the
3038     unwind section. */
3039  if (bfd_link_relocatable (info))
3040    return TRUE;
3041
3042  /* Do not attempt to sort non-regular files.  This is here
3043     especially for configure scripts and kernel builds which run
3044     tests with "ld [...] -o /dev/null".  */
3045  if (stat (abfd->filename, &buf) != 0
3046      || !S_ISREG(buf.st_mode))
3047    return TRUE;
3048
3049  return elf_hppa_sort_unwind (abfd);
3050}
3051
3052/* Relocate the given INSN.  VALUE should be the actual value we want
3053   to insert into the instruction, ie by this point we should not be
3054   concerned with computing an offset relative to the DLT, PC, etc.
3055   Instead this routine is meant to handle the bit manipulations needed
3056   to insert the relocation into the given instruction.  */
3057
3058static int
3059elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3060{
3061  switch (r_type)
3062    {
3063    /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
3064       the "B" instruction.  */
3065    case R_PARISC_PCREL22F:
3066    case R_PARISC_PCREL22C:
3067      return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3068
3069      /* This is any 12 bit branch.  */
3070    case R_PARISC_PCREL12F:
3071      return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3072
3073    /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
3074       to the "B" instruction as well as BE.  */
3075    case R_PARISC_PCREL17F:
3076    case R_PARISC_DIR17F:
3077    case R_PARISC_DIR17R:
3078    case R_PARISC_PCREL17C:
3079    case R_PARISC_PCREL17R:
3080      return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3081
3082    /* ADDIL or LDIL instructions.  */
3083    case R_PARISC_DLTREL21L:
3084    case R_PARISC_DLTIND21L:
3085    case R_PARISC_LTOFF_FPTR21L:
3086    case R_PARISC_PCREL21L:
3087    case R_PARISC_LTOFF_TP21L:
3088    case R_PARISC_DPREL21L:
3089    case R_PARISC_PLTOFF21L:
3090    case R_PARISC_DIR21L:
3091      return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3092
3093    /* LDO and integer loads/stores with 14 bit displacements.  */
3094    case R_PARISC_DLTREL14R:
3095    case R_PARISC_DLTREL14F:
3096    case R_PARISC_DLTIND14R:
3097    case R_PARISC_DLTIND14F:
3098    case R_PARISC_LTOFF_FPTR14R:
3099    case R_PARISC_PCREL14R:
3100    case R_PARISC_PCREL14F:
3101    case R_PARISC_LTOFF_TP14R:
3102    case R_PARISC_LTOFF_TP14F:
3103    case R_PARISC_DPREL14R:
3104    case R_PARISC_DPREL14F:
3105    case R_PARISC_PLTOFF14R:
3106    case R_PARISC_PLTOFF14F:
3107    case R_PARISC_DIR14R:
3108    case R_PARISC_DIR14F:
3109      return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3110
3111    /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
3112    case R_PARISC_LTOFF_FPTR16F:
3113    case R_PARISC_PCREL16F:
3114    case R_PARISC_LTOFF_TP16F:
3115    case R_PARISC_GPREL16F:
3116    case R_PARISC_PLTOFF16F:
3117    case R_PARISC_DIR16F:
3118    case R_PARISC_LTOFF16F:
3119      return (insn & ~0xffff) | re_assemble_16 (sym_value);
3120
3121    /* Doubleword loads and stores with a 14 bit displacement.  */
3122    case R_PARISC_DLTREL14DR:
3123    case R_PARISC_DLTIND14DR:
3124    case R_PARISC_LTOFF_FPTR14DR:
3125    case R_PARISC_LTOFF_FPTR16DF:
3126    case R_PARISC_PCREL14DR:
3127    case R_PARISC_PCREL16DF:
3128    case R_PARISC_LTOFF_TP14DR:
3129    case R_PARISC_LTOFF_TP16DF:
3130    case R_PARISC_DPREL14DR:
3131    case R_PARISC_GPREL16DF:
3132    case R_PARISC_PLTOFF14DR:
3133    case R_PARISC_PLTOFF16DF:
3134    case R_PARISC_DIR14DR:
3135    case R_PARISC_DIR16DF:
3136    case R_PARISC_LTOFF16DF:
3137      return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3138				 | ((sym_value & 0x1ff8) << 1));
3139
3140    /* Floating point single word load/store instructions.  */
3141    case R_PARISC_DLTREL14WR:
3142    case R_PARISC_DLTIND14WR:
3143    case R_PARISC_LTOFF_FPTR14WR:
3144    case R_PARISC_LTOFF_FPTR16WF:
3145    case R_PARISC_PCREL14WR:
3146    case R_PARISC_PCREL16WF:
3147    case R_PARISC_LTOFF_TP14WR:
3148    case R_PARISC_LTOFF_TP16WF:
3149    case R_PARISC_DPREL14WR:
3150    case R_PARISC_GPREL16WF:
3151    case R_PARISC_PLTOFF14WR:
3152    case R_PARISC_PLTOFF16WF:
3153    case R_PARISC_DIR16WF:
3154    case R_PARISC_DIR14WR:
3155    case R_PARISC_LTOFF16WF:
3156      return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3157				 | ((sym_value & 0x1ffc) << 1));
3158
3159    default:
3160      return insn;
3161    }
3162}
3163
3164/* Compute the value for a relocation (REL) during a final link stage,
3165   then insert the value into the proper location in CONTENTS.
3166
3167   VALUE is a tentative value for the relocation and may be overridden
3168   and modified here based on the specific relocation to be performed.
3169
3170   For example we do conversions for PC-relative branches in this routine
3171   or redirection of calls to external routines to stubs.
3172
3173   The work of actually applying the relocation is left to a helper
3174   routine in an attempt to reduce the complexity and size of this
3175   function.  */
3176
3177static bfd_reloc_status_type
3178elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3179			      bfd *input_bfd,
3180			      bfd *output_bfd,
3181			      asection *input_section,
3182			      bfd_byte *contents,
3183			      bfd_vma value,
3184			      struct bfd_link_info *info,
3185			      asection *sym_sec,
3186			      struct elf_link_hash_entry *eh)
3187{
3188  struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3189  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3190  bfd_vma *local_offsets;
3191  Elf_Internal_Shdr *symtab_hdr;
3192  int insn;
3193  bfd_vma max_branch_offset = 0;
3194  bfd_vma offset = rel->r_offset;
3195  bfd_signed_vma addend = rel->r_addend;
3196  reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3197  unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3198  unsigned int r_type = howto->type;
3199  bfd_byte *hit_data = contents + offset;
3200
3201  if (hppa_info == NULL)
3202    return bfd_reloc_notsupported;
3203
3204  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3205  local_offsets = elf_local_got_offsets (input_bfd);
3206  insn = bfd_get_32 (input_bfd, hit_data);
3207
3208  switch (r_type)
3209    {
3210    case R_PARISC_NONE:
3211      break;
3212
3213    /* Basic function call support.
3214
3215       Note for a call to a function defined in another dynamic library
3216       we want to redirect the call to a stub.  */
3217
3218    /* PC relative relocs without an implicit offset.  */
3219    case R_PARISC_PCREL21L:
3220    case R_PARISC_PCREL14R:
3221    case R_PARISC_PCREL14F:
3222    case R_PARISC_PCREL14WR:
3223    case R_PARISC_PCREL14DR:
3224    case R_PARISC_PCREL16F:
3225    case R_PARISC_PCREL16WF:
3226    case R_PARISC_PCREL16DF:
3227      {
3228	/* If this is a call to a function defined in another dynamic
3229	   library, then redirect the call to the local stub for this
3230	   function.  */
3231	if (sym_sec == NULL || sym_sec->output_section == NULL)
3232	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3233		   + hppa_info->stub_sec->output_section->vma);
3234
3235	/* Turn VALUE into a proper PC relative address.  */
3236	value -= (offset + input_section->output_offset
3237		  + input_section->output_section->vma);
3238
3239	/* Adjust for any field selectors.  */
3240	if (r_type == R_PARISC_PCREL21L)
3241	  value = hppa_field_adjust (value, -8 + addend, e_lsel);
3242	else if (r_type == R_PARISC_PCREL14F
3243		 || r_type == R_PARISC_PCREL16F
3244		 || r_type == R_PARISC_PCREL16WF
3245		 || r_type == R_PARISC_PCREL16DF)
3246	  value = hppa_field_adjust (value, -8 + addend, e_fsel);
3247	else
3248	  value = hppa_field_adjust (value, -8 + addend, e_rsel);
3249
3250	/* Apply the relocation to the given instruction.  */
3251	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3252	break;
3253      }
3254
3255    case R_PARISC_PCREL12F:
3256    case R_PARISC_PCREL22F:
3257    case R_PARISC_PCREL17F:
3258    case R_PARISC_PCREL22C:
3259    case R_PARISC_PCREL17C:
3260    case R_PARISC_PCREL17R:
3261      {
3262	/* If this is a call to a function defined in another dynamic
3263	   library, then redirect the call to the local stub for this
3264	   function.  */
3265	if (sym_sec == NULL || sym_sec->output_section == NULL)
3266	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3267		   + hppa_info->stub_sec->output_section->vma);
3268
3269	/* Turn VALUE into a proper PC relative address.  */
3270	value -= (offset + input_section->output_offset
3271		  + input_section->output_section->vma);
3272	addend -= 8;
3273
3274	if (r_type == (unsigned int) R_PARISC_PCREL22F)
3275	  max_branch_offset = (1 << (22-1)) << 2;
3276	else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3277	  max_branch_offset = (1 << (17-1)) << 2;
3278	else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3279	  max_branch_offset = (1 << (12-1)) << 2;
3280
3281	/* Make sure we can reach the branch target.  */
3282	if (max_branch_offset != 0
3283	    && value + addend + max_branch_offset >= 2*max_branch_offset)
3284	  {
3285	    _bfd_error_handler
3286	      /* xgettext:c-format */
3287	      (_("%B(%A+0x%" BFD_VMA_FMT "x): cannot reach %s"),
3288	      input_bfd,
3289	      input_section,
3290	      offset,
3291	      eh ? eh->root.root.string : "unknown");
3292	    bfd_set_error (bfd_error_bad_value);
3293	    return bfd_reloc_overflow;
3294	  }
3295
3296	/* Adjust for any field selectors.  */
3297	if (r_type == R_PARISC_PCREL17R)
3298	  value = hppa_field_adjust (value, addend, e_rsel);
3299	else
3300	  value = hppa_field_adjust (value, addend, e_fsel);
3301
3302	/* All branches are implicitly shifted by 2 places.  */
3303	value >>= 2;
3304
3305	/* Apply the relocation to the given instruction.  */
3306	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3307	break;
3308      }
3309
3310    /* Indirect references to data through the DLT.  */
3311    case R_PARISC_DLTIND14R:
3312    case R_PARISC_DLTIND14F:
3313    case R_PARISC_DLTIND14DR:
3314    case R_PARISC_DLTIND14WR:
3315    case R_PARISC_DLTIND21L:
3316    case R_PARISC_LTOFF_FPTR14R:
3317    case R_PARISC_LTOFF_FPTR14DR:
3318    case R_PARISC_LTOFF_FPTR14WR:
3319    case R_PARISC_LTOFF_FPTR21L:
3320    case R_PARISC_LTOFF_FPTR16F:
3321    case R_PARISC_LTOFF_FPTR16WF:
3322    case R_PARISC_LTOFF_FPTR16DF:
3323    case R_PARISC_LTOFF_TP21L:
3324    case R_PARISC_LTOFF_TP14R:
3325    case R_PARISC_LTOFF_TP14F:
3326    case R_PARISC_LTOFF_TP14WR:
3327    case R_PARISC_LTOFF_TP14DR:
3328    case R_PARISC_LTOFF_TP16F:
3329    case R_PARISC_LTOFF_TP16WF:
3330    case R_PARISC_LTOFF_TP16DF:
3331    case R_PARISC_LTOFF16F:
3332    case R_PARISC_LTOFF16WF:
3333    case R_PARISC_LTOFF16DF:
3334      {
3335	bfd_vma off;
3336
3337	/* If this relocation was against a local symbol, then we still
3338	   have not set up the DLT entry (it's not convenient to do so
3339	   in the "finalize_dlt" routine because it is difficult to get
3340	   to the local symbol's value).
3341
3342	   So, if this is a local symbol (h == NULL), then we need to
3343	   fill in its DLT entry.
3344
3345	   Similarly we may still need to set up an entry in .opd for
3346	   a local function which had its address taken.  */
3347	if (hh == NULL)
3348	  {
3349	    bfd_vma *local_opd_offsets, *local_dlt_offsets;
3350
3351            if (local_offsets == NULL)
3352              abort ();
3353
3354	    /* Now do .opd creation if needed.  */
3355	    if (r_type == R_PARISC_LTOFF_FPTR14R
3356		|| r_type == R_PARISC_LTOFF_FPTR14DR
3357		|| r_type == R_PARISC_LTOFF_FPTR14WR
3358		|| r_type == R_PARISC_LTOFF_FPTR21L
3359		|| r_type == R_PARISC_LTOFF_FPTR16F
3360		|| r_type == R_PARISC_LTOFF_FPTR16WF
3361		|| r_type == R_PARISC_LTOFF_FPTR16DF)
3362	      {
3363		local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3364		off = local_opd_offsets[r_symndx];
3365
3366		/* The last bit records whether we've already initialised
3367		   this local .opd entry.  */
3368		if ((off & 1) != 0)
3369		  {
3370		    BFD_ASSERT (off != (bfd_vma) -1);
3371		    off &= ~1;
3372		  }
3373		else
3374		  {
3375		    local_opd_offsets[r_symndx] |= 1;
3376
3377		    /* The first two words of an .opd entry are zero.  */
3378		    memset (hppa_info->opd_sec->contents + off, 0, 16);
3379
3380		    /* The next word is the address of the function.  */
3381		    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3382				(hppa_info->opd_sec->contents + off + 16));
3383
3384		    /* The last word is our local __gp value.  */
3385		    value = _bfd_get_gp_value
3386			      (hppa_info->opd_sec->output_section->owner);
3387		    bfd_put_64 (hppa_info->opd_sec->owner, value,
3388				(hppa_info->opd_sec->contents + off + 24));
3389		  }
3390
3391		/* The DLT value is the address of the .opd entry.  */
3392		value = (off
3393			 + hppa_info->opd_sec->output_offset
3394			 + hppa_info->opd_sec->output_section->vma);
3395		addend = 0;
3396	      }
3397
3398	    local_dlt_offsets = local_offsets;
3399	    off = local_dlt_offsets[r_symndx];
3400
3401	    if ((off & 1) != 0)
3402	      {
3403		BFD_ASSERT (off != (bfd_vma) -1);
3404		off &= ~1;
3405	      }
3406	    else
3407	      {
3408		local_dlt_offsets[r_symndx] |= 1;
3409		bfd_put_64 (hppa_info->dlt_sec->owner,
3410			    value + addend,
3411			    hppa_info->dlt_sec->contents + off);
3412	      }
3413	  }
3414	else
3415	  off = hh->dlt_offset;
3416
3417	/* We want the value of the DLT offset for this symbol, not
3418	   the symbol's actual address.  Note that __gp may not point
3419	   to the start of the DLT, so we have to compute the absolute
3420	   address, then subtract out the value of __gp.  */
3421	value = (off
3422		 + hppa_info->dlt_sec->output_offset
3423		 + hppa_info->dlt_sec->output_section->vma);
3424	value -= _bfd_get_gp_value (output_bfd);
3425
3426	/* All DLTIND relocations are basically the same at this point,
3427	   except that we need different field selectors for the 21bit
3428	   version vs the 14bit versions.  */
3429	if (r_type == R_PARISC_DLTIND21L
3430	    || r_type == R_PARISC_LTOFF_FPTR21L
3431	    || r_type == R_PARISC_LTOFF_TP21L)
3432	  value = hppa_field_adjust (value, 0, e_lsel);
3433	else if (r_type == R_PARISC_DLTIND14F
3434		 || r_type == R_PARISC_LTOFF_FPTR16F
3435		 || r_type == R_PARISC_LTOFF_FPTR16WF
3436		 || r_type == R_PARISC_LTOFF_FPTR16DF
3437		 || r_type == R_PARISC_LTOFF16F
3438		 || r_type == R_PARISC_LTOFF16DF
3439		 || r_type == R_PARISC_LTOFF16WF
3440		 || r_type == R_PARISC_LTOFF_TP16F
3441		 || r_type == R_PARISC_LTOFF_TP16WF
3442		 || r_type == R_PARISC_LTOFF_TP16DF)
3443	  value = hppa_field_adjust (value, 0, e_fsel);
3444	else
3445	  value = hppa_field_adjust (value, 0, e_rsel);
3446
3447	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3448	break;
3449      }
3450
3451    case R_PARISC_DLTREL14R:
3452    case R_PARISC_DLTREL14F:
3453    case R_PARISC_DLTREL14DR:
3454    case R_PARISC_DLTREL14WR:
3455    case R_PARISC_DLTREL21L:
3456    case R_PARISC_DPREL21L:
3457    case R_PARISC_DPREL14WR:
3458    case R_PARISC_DPREL14DR:
3459    case R_PARISC_DPREL14R:
3460    case R_PARISC_DPREL14F:
3461    case R_PARISC_GPREL16F:
3462    case R_PARISC_GPREL16WF:
3463    case R_PARISC_GPREL16DF:
3464      {
3465	/* Subtract out the global pointer value to make value a DLT
3466	   relative address.  */
3467	value -= _bfd_get_gp_value (output_bfd);
3468
3469	/* All DLTREL relocations are basically the same at this point,
3470	   except that we need different field selectors for the 21bit
3471	   version vs the 14bit versions.  */
3472	if (r_type == R_PARISC_DLTREL21L
3473	    || r_type == R_PARISC_DPREL21L)
3474	  value = hppa_field_adjust (value, addend, e_lrsel);
3475	else if (r_type == R_PARISC_DLTREL14F
3476		 || r_type == R_PARISC_DPREL14F
3477		 || r_type == R_PARISC_GPREL16F
3478		 || r_type == R_PARISC_GPREL16WF
3479		 || r_type == R_PARISC_GPREL16DF)
3480	  value = hppa_field_adjust (value, addend, e_fsel);
3481	else
3482	  value = hppa_field_adjust (value, addend, e_rrsel);
3483
3484	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3485	break;
3486      }
3487
3488    case R_PARISC_DIR21L:
3489    case R_PARISC_DIR17R:
3490    case R_PARISC_DIR17F:
3491    case R_PARISC_DIR14R:
3492    case R_PARISC_DIR14F:
3493    case R_PARISC_DIR14WR:
3494    case R_PARISC_DIR14DR:
3495    case R_PARISC_DIR16F:
3496    case R_PARISC_DIR16WF:
3497    case R_PARISC_DIR16DF:
3498      {
3499	/* All DIR relocations are basically the same at this point,
3500	   except that branch offsets need to be divided by four, and
3501	   we need different field selectors.  Note that we don't
3502	   redirect absolute calls to local stubs.  */
3503
3504	if (r_type == R_PARISC_DIR21L)
3505	  value = hppa_field_adjust (value, addend, e_lrsel);
3506	else if (r_type == R_PARISC_DIR17F
3507		 || r_type == R_PARISC_DIR16F
3508		 || r_type == R_PARISC_DIR16WF
3509		 || r_type == R_PARISC_DIR16DF
3510		 || r_type == R_PARISC_DIR14F)
3511	  value = hppa_field_adjust (value, addend, e_fsel);
3512	else
3513	  value = hppa_field_adjust (value, addend, e_rrsel);
3514
3515	if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3516	  /* All branches are implicitly shifted by 2 places.  */
3517	  value >>= 2;
3518
3519	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3520	break;
3521      }
3522
3523    case R_PARISC_PLTOFF21L:
3524    case R_PARISC_PLTOFF14R:
3525    case R_PARISC_PLTOFF14F:
3526    case R_PARISC_PLTOFF14WR:
3527    case R_PARISC_PLTOFF14DR:
3528    case R_PARISC_PLTOFF16F:
3529    case R_PARISC_PLTOFF16WF:
3530    case R_PARISC_PLTOFF16DF:
3531      {
3532	/* We want the value of the PLT offset for this symbol, not
3533	   the symbol's actual address.  Note that __gp may not point
3534	   to the start of the DLT, so we have to compute the absolute
3535	   address, then subtract out the value of __gp.  */
3536	value = (hh->plt_offset
3537		 + hppa_info->plt_sec->output_offset
3538		 + hppa_info->plt_sec->output_section->vma);
3539	value -= _bfd_get_gp_value (output_bfd);
3540
3541	/* All PLTOFF relocations are basically the same at this point,
3542	   except that we need different field selectors for the 21bit
3543	   version vs the 14bit versions.  */
3544	if (r_type == R_PARISC_PLTOFF21L)
3545	  value = hppa_field_adjust (value, addend, e_lrsel);
3546	else if (r_type == R_PARISC_PLTOFF14F
3547		 || r_type == R_PARISC_PLTOFF16F
3548		 || r_type == R_PARISC_PLTOFF16WF
3549		 || r_type == R_PARISC_PLTOFF16DF)
3550	  value = hppa_field_adjust (value, addend, e_fsel);
3551	else
3552	  value = hppa_field_adjust (value, addend, e_rrsel);
3553
3554	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3555	break;
3556      }
3557
3558    case R_PARISC_LTOFF_FPTR32:
3559      {
3560	/* We may still need to create the FPTR itself if it was for
3561	   a local symbol.  */
3562	if (hh == NULL)
3563	  {
3564	    /* The first two words of an .opd entry are zero.  */
3565	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3566
3567	    /* The next word is the address of the function.  */
3568	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3569			(hppa_info->opd_sec->contents
3570			 + hh->opd_offset + 16));
3571
3572	    /* The last word is our local __gp value.  */
3573	    value = _bfd_get_gp_value
3574		      (hppa_info->opd_sec->output_section->owner);
3575	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3576			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3577
3578	    /* The DLT value is the address of the .opd entry.  */
3579	    value = (hh->opd_offset
3580		     + hppa_info->opd_sec->output_offset
3581		     + hppa_info->opd_sec->output_section->vma);
3582
3583	    bfd_put_64 (hppa_info->dlt_sec->owner,
3584			value,
3585			hppa_info->dlt_sec->contents + hh->dlt_offset);
3586	  }
3587
3588	/* We want the value of the DLT offset for this symbol, not
3589	   the symbol's actual address.  Note that __gp may not point
3590	   to the start of the DLT, so we have to compute the absolute
3591	   address, then subtract out the value of __gp.  */
3592	value = (hh->dlt_offset
3593		 + hppa_info->dlt_sec->output_offset
3594		 + hppa_info->dlt_sec->output_section->vma);
3595	value -= _bfd_get_gp_value (output_bfd);
3596	bfd_put_32 (input_bfd, value, hit_data);
3597	return bfd_reloc_ok;
3598      }
3599
3600    case R_PARISC_LTOFF_FPTR64:
3601    case R_PARISC_LTOFF_TP64:
3602      {
3603	/* We may still need to create the FPTR itself if it was for
3604	   a local symbol.  */
3605	if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3606	  {
3607	    /* The first two words of an .opd entry are zero.  */
3608	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3609
3610	    /* The next word is the address of the function.  */
3611	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3612			(hppa_info->opd_sec->contents
3613			 + hh->opd_offset + 16));
3614
3615	    /* The last word is our local __gp value.  */
3616	    value = _bfd_get_gp_value
3617		      (hppa_info->opd_sec->output_section->owner);
3618	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3619			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3620
3621	    /* The DLT value is the address of the .opd entry.  */
3622	    value = (hh->opd_offset
3623		     + hppa_info->opd_sec->output_offset
3624		     + hppa_info->opd_sec->output_section->vma);
3625
3626	    bfd_put_64 (hppa_info->dlt_sec->owner,
3627			value,
3628			hppa_info->dlt_sec->contents + hh->dlt_offset);
3629	  }
3630
3631	/* We want the value of the DLT offset for this symbol, not
3632	   the symbol's actual address.  Note that __gp may not point
3633	   to the start of the DLT, so we have to compute the absolute
3634	   address, then subtract out the value of __gp.  */
3635	value = (hh->dlt_offset
3636		 + hppa_info->dlt_sec->output_offset
3637		 + hppa_info->dlt_sec->output_section->vma);
3638	value -= _bfd_get_gp_value (output_bfd);
3639	bfd_put_64 (input_bfd, value, hit_data);
3640	return bfd_reloc_ok;
3641      }
3642
3643    case R_PARISC_DIR32:
3644      bfd_put_32 (input_bfd, value + addend, hit_data);
3645      return bfd_reloc_ok;
3646
3647    case R_PARISC_DIR64:
3648      bfd_put_64 (input_bfd, value + addend, hit_data);
3649      return bfd_reloc_ok;
3650
3651    case R_PARISC_GPREL64:
3652      /* Subtract out the global pointer value to make value a DLT
3653	 relative address.  */
3654      value -= _bfd_get_gp_value (output_bfd);
3655
3656      bfd_put_64 (input_bfd, value + addend, hit_data);
3657      return bfd_reloc_ok;
3658
3659    case R_PARISC_LTOFF64:
3660	/* We want the value of the DLT offset for this symbol, not
3661	   the symbol's actual address.  Note that __gp may not point
3662	   to the start of the DLT, so we have to compute the absolute
3663	   address, then subtract out the value of __gp.  */
3664      value = (hh->dlt_offset
3665	       + hppa_info->dlt_sec->output_offset
3666	       + hppa_info->dlt_sec->output_section->vma);
3667      value -= _bfd_get_gp_value (output_bfd);
3668
3669      bfd_put_64 (input_bfd, value + addend, hit_data);
3670      return bfd_reloc_ok;
3671
3672    case R_PARISC_PCREL32:
3673      {
3674	/* If this is a call to a function defined in another dynamic
3675	   library, then redirect the call to the local stub for this
3676	   function.  */
3677	if (sym_sec == NULL || sym_sec->output_section == NULL)
3678	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3679		   + hppa_info->stub_sec->output_section->vma);
3680
3681	/* Turn VALUE into a proper PC relative address.  */
3682	value -= (offset + input_section->output_offset
3683		  + input_section->output_section->vma);
3684
3685	value += addend;
3686	value -= 8;
3687	bfd_put_32 (input_bfd, value, hit_data);
3688	return bfd_reloc_ok;
3689      }
3690
3691    case R_PARISC_PCREL64:
3692      {
3693	/* If this is a call to a function defined in another dynamic
3694	   library, then redirect the call to the local stub for this
3695	   function.  */
3696	if (sym_sec == NULL || sym_sec->output_section == NULL)
3697	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3698		   + hppa_info->stub_sec->output_section->vma);
3699
3700	/* Turn VALUE into a proper PC relative address.  */
3701	value -= (offset + input_section->output_offset
3702		  + input_section->output_section->vma);
3703
3704	value += addend;
3705	value -= 8;
3706	bfd_put_64 (input_bfd, value, hit_data);
3707	return bfd_reloc_ok;
3708      }
3709
3710    case R_PARISC_FPTR64:
3711      {
3712	bfd_vma off;
3713
3714	/* We may still need to create the FPTR itself if it was for
3715	   a local symbol.  */
3716	if (hh == NULL)
3717	  {
3718	    bfd_vma *local_opd_offsets;
3719
3720            if (local_offsets == NULL)
3721              abort ();
3722
3723	    local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3724	    off = local_opd_offsets[r_symndx];
3725
3726	    /* The last bit records whether we've already initialised
3727	       this local .opd entry.  */
3728	    if ((off & 1) != 0)
3729	      {
3730		BFD_ASSERT (off != (bfd_vma) -1);
3731	        off &= ~1;
3732	      }
3733	    else
3734	      {
3735		/* The first two words of an .opd entry are zero.  */
3736		memset (hppa_info->opd_sec->contents + off, 0, 16);
3737
3738		/* The next word is the address of the function.  */
3739		bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3740			    (hppa_info->opd_sec->contents + off + 16));
3741
3742		/* The last word is our local __gp value.  */
3743		value = _bfd_get_gp_value
3744			  (hppa_info->opd_sec->output_section->owner);
3745		bfd_put_64 (hppa_info->opd_sec->owner, value,
3746			    hppa_info->opd_sec->contents + off + 24);
3747	      }
3748	  }
3749	else
3750	  off = hh->opd_offset;
3751
3752	if (hh == NULL || hh->want_opd)
3753	  /* We want the value of the OPD offset for this symbol.  */
3754	  value = (off
3755		   + hppa_info->opd_sec->output_offset
3756		   + hppa_info->opd_sec->output_section->vma);
3757	else
3758	  /* We want the address of the symbol.  */
3759	  value += addend;
3760
3761	bfd_put_64 (input_bfd, value, hit_data);
3762	return bfd_reloc_ok;
3763      }
3764
3765    case R_PARISC_SECREL32:
3766      if (sym_sec)
3767	value -= sym_sec->output_section->vma;
3768      bfd_put_32 (input_bfd, value + addend, hit_data);
3769      return bfd_reloc_ok;
3770
3771    case R_PARISC_SEGREL32:
3772    case R_PARISC_SEGREL64:
3773      {
3774	/* If this is the first SEGREL relocation, then initialize
3775	   the segment base values.  */
3776	if (hppa_info->text_segment_base == (bfd_vma) -1)
3777	  bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3778				 hppa_info);
3779
3780	/* VALUE holds the absolute address.  We want to include the
3781	   addend, then turn it into a segment relative address.
3782
3783	   The segment is derived from SYM_SEC.  We assume that there are
3784	   only two segments of note in the resulting executable/shlib.
3785	   A readonly segment (.text) and a readwrite segment (.data).  */
3786	value += addend;
3787
3788	if (sym_sec->flags & SEC_CODE)
3789	  value -= hppa_info->text_segment_base;
3790	else
3791	  value -= hppa_info->data_segment_base;
3792
3793	if (r_type == R_PARISC_SEGREL32)
3794	  bfd_put_32 (input_bfd, value, hit_data);
3795	else
3796	  bfd_put_64 (input_bfd, value, hit_data);
3797	return bfd_reloc_ok;
3798      }
3799
3800    /* Something we don't know how to handle.  */
3801    default:
3802      return bfd_reloc_notsupported;
3803    }
3804
3805  /* Update the instruction word.  */
3806  bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3807  return bfd_reloc_ok;
3808}
3809
3810/* Relocate an HPPA ELF section.  */
3811
3812static bfd_boolean
3813elf64_hppa_relocate_section (bfd *output_bfd,
3814			   struct bfd_link_info *info,
3815			   bfd *input_bfd,
3816			   asection *input_section,
3817			   bfd_byte *contents,
3818			   Elf_Internal_Rela *relocs,
3819			   Elf_Internal_Sym *local_syms,
3820			   asection **local_sections)
3821{
3822  Elf_Internal_Shdr *symtab_hdr;
3823  Elf_Internal_Rela *rel;
3824  Elf_Internal_Rela *relend;
3825  struct elf64_hppa_link_hash_table *hppa_info;
3826
3827  hppa_info = hppa_link_hash_table (info);
3828  if (hppa_info == NULL)
3829    return FALSE;
3830
3831  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3832
3833  rel = relocs;
3834  relend = relocs + input_section->reloc_count;
3835  for (; rel < relend; rel++)
3836    {
3837      int r_type;
3838      reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3839      unsigned long r_symndx;
3840      struct elf_link_hash_entry *eh;
3841      Elf_Internal_Sym *sym;
3842      asection *sym_sec;
3843      bfd_vma relocation;
3844      bfd_reloc_status_type r;
3845
3846      r_type = ELF_R_TYPE (rel->r_info);
3847      if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3848	{
3849	  bfd_set_error (bfd_error_bad_value);
3850	  return FALSE;
3851	}
3852      if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3853	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3854	continue;
3855
3856      /* This is a final link.  */
3857      r_symndx = ELF_R_SYM (rel->r_info);
3858      eh = NULL;
3859      sym = NULL;
3860      sym_sec = NULL;
3861      if (r_symndx < symtab_hdr->sh_info)
3862	{
3863	  /* This is a local symbol, hh defaults to NULL.  */
3864	  sym = local_syms + r_symndx;
3865	  sym_sec = local_sections[r_symndx];
3866	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3867	}
3868      else
3869	{
3870	  /* This is not a local symbol.  */
3871	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3872
3873	  /* It seems this can happen with erroneous or unsupported
3874	     input (mixing a.out and elf in an archive, for example.)  */
3875	  if (sym_hashes == NULL)
3876	    return FALSE;
3877
3878	  eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3879
3880	  if (info->wrap_hash != NULL
3881	      && (input_section->flags & SEC_DEBUGGING) != 0)
3882	    eh = ((struct elf_link_hash_entry *)
3883		  unwrap_hash_lookup (info, input_bfd, &eh->root));
3884
3885	  while (eh->root.type == bfd_link_hash_indirect
3886		 || eh->root.type == bfd_link_hash_warning)
3887	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3888
3889	  relocation = 0;
3890	  if (eh->root.type == bfd_link_hash_defined
3891	      || eh->root.type == bfd_link_hash_defweak)
3892	    {
3893	      sym_sec = eh->root.u.def.section;
3894	      if (sym_sec != NULL
3895		  && sym_sec->output_section != NULL)
3896		relocation = (eh->root.u.def.value
3897			      + sym_sec->output_section->vma
3898			      + sym_sec->output_offset);
3899	    }
3900	  else if (eh->root.type == bfd_link_hash_undefweak)
3901	    ;
3902	  else if (info->unresolved_syms_in_objects == RM_IGNORE
3903		   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3904	    ;
3905	  else if (!bfd_link_relocatable (info)
3906		   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3907	    continue;
3908	  else if (!bfd_link_relocatable (info))
3909	    {
3910	      bfd_boolean err;
3911	      err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3912		     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3913	      (*info->callbacks->undefined_symbol) (info,
3914						    eh->root.root.string,
3915						    input_bfd,
3916						    input_section,
3917						    rel->r_offset, err);
3918	    }
3919
3920          if (!bfd_link_relocatable (info)
3921              && relocation == 0
3922              && eh->root.type != bfd_link_hash_defined
3923              && eh->root.type != bfd_link_hash_defweak
3924              && eh->root.type != bfd_link_hash_undefweak)
3925            {
3926              if (info->unresolved_syms_in_objects == RM_IGNORE
3927                  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3928                  && eh->type == STT_PARISC_MILLI)
3929		(*info->callbacks->undefined_symbol)
3930		  (info, eh_name (eh), input_bfd,
3931		   input_section, rel->r_offset, FALSE);
3932            }
3933	}
3934
3935      if (sym_sec != NULL && discarded_section (sym_sec))
3936	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3937					 rel, 1, relend, howto, 0, contents);
3938
3939      if (bfd_link_relocatable (info))
3940	continue;
3941
3942      r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3943					input_section, contents,
3944					relocation, info, sym_sec,
3945					eh);
3946
3947      if (r != bfd_reloc_ok)
3948	{
3949	  switch (r)
3950	    {
3951	    default:
3952	      abort ();
3953	    case bfd_reloc_overflow:
3954	      {
3955		const char *sym_name;
3956
3957		if (eh != NULL)
3958		  sym_name = NULL;
3959		else
3960		  {
3961		    sym_name = bfd_elf_string_from_elf_section (input_bfd,
3962								symtab_hdr->sh_link,
3963								sym->st_name);
3964		    if (sym_name == NULL)
3965		      return FALSE;
3966		    if (*sym_name == '\0')
3967		      sym_name = bfd_section_name (input_bfd, sym_sec);
3968		  }
3969
3970		(*info->callbacks->reloc_overflow)
3971		  (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3972		   (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3973	      }
3974	      break;
3975	    }
3976	}
3977    }
3978  return TRUE;
3979}
3980
3981static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3982{
3983  { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3984  { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3985  { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3986  { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3987  { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3988  { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3989  { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3990  { NULL,                    0,  0, 0,            0 }
3991};
3992
3993/* The hash bucket size is the standard one, namely 4.  */
3994
3995const struct elf_size_info hppa64_elf_size_info =
3996{
3997  sizeof (Elf64_External_Ehdr),
3998  sizeof (Elf64_External_Phdr),
3999  sizeof (Elf64_External_Shdr),
4000  sizeof (Elf64_External_Rel),
4001  sizeof (Elf64_External_Rela),
4002  sizeof (Elf64_External_Sym),
4003  sizeof (Elf64_External_Dyn),
4004  sizeof (Elf_External_Note),
4005  4,
4006  1,
4007  64, 3,
4008  ELFCLASS64, EV_CURRENT,
4009  bfd_elf64_write_out_phdrs,
4010  bfd_elf64_write_shdrs_and_ehdr,
4011  bfd_elf64_checksum_contents,
4012  bfd_elf64_write_relocs,
4013  bfd_elf64_swap_symbol_in,
4014  bfd_elf64_swap_symbol_out,
4015  bfd_elf64_slurp_reloc_table,
4016  bfd_elf64_slurp_symbol_table,
4017  bfd_elf64_swap_dyn_in,
4018  bfd_elf64_swap_dyn_out,
4019  bfd_elf64_swap_reloc_in,
4020  bfd_elf64_swap_reloc_out,
4021  bfd_elf64_swap_reloca_in,
4022  bfd_elf64_swap_reloca_out
4023};
4024
4025#define TARGET_BIG_SYM			hppa_elf64_vec
4026#define TARGET_BIG_NAME			"elf64-hppa"
4027#define ELF_ARCH			bfd_arch_hppa
4028#define ELF_TARGET_ID			HPPA64_ELF_DATA
4029#define ELF_MACHINE_CODE		EM_PARISC
4030/* This is not strictly correct.  The maximum page size for PA2.0 is
4031   64M.  But everything still uses 4k.  */
4032#define ELF_MAXPAGESIZE			0x1000
4033#define ELF_OSABI			ELFOSABI_HPUX
4034
4035#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4036#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4037#define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
4038#define elf_info_to_howto		elf_hppa_info_to_howto
4039#define elf_info_to_howto_rel		elf_hppa_info_to_howto_rel
4040
4041#define elf_backend_section_from_shdr	elf64_hppa_section_from_shdr
4042#define elf_backend_object_p		elf64_hppa_object_p
4043#define elf_backend_final_write_processing \
4044					elf_hppa_final_write_processing
4045#define elf_backend_fake_sections	elf_hppa_fake_sections
4046#define elf_backend_add_symbol_hook	elf_hppa_add_symbol_hook
4047
4048#define elf_backend_relocate_section	elf_hppa_relocate_section
4049
4050#define bfd_elf64_bfd_final_link	elf_hppa_final_link
4051
4052#define elf_backend_create_dynamic_sections \
4053					elf64_hppa_create_dynamic_sections
4054#define elf_backend_post_process_headers	elf64_hppa_post_process_headers
4055
4056#define elf_backend_omit_section_dynsym \
4057  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4058#define elf_backend_adjust_dynamic_symbol \
4059					elf64_hppa_adjust_dynamic_symbol
4060
4061#define elf_backend_size_dynamic_sections \
4062					elf64_hppa_size_dynamic_sections
4063
4064#define elf_backend_finish_dynamic_symbol \
4065					elf64_hppa_finish_dynamic_symbol
4066#define elf_backend_finish_dynamic_sections \
4067					elf64_hppa_finish_dynamic_sections
4068#define elf_backend_grok_prstatus	elf64_hppa_grok_prstatus
4069#define elf_backend_grok_psinfo		elf64_hppa_grok_psinfo
4070
4071/* Stuff for the BFD linker: */
4072#define bfd_elf64_bfd_link_hash_table_create \
4073	elf64_hppa_hash_table_create
4074
4075#define elf_backend_check_relocs \
4076	elf64_hppa_check_relocs
4077
4078#define elf_backend_size_info \
4079  hppa64_elf_size_info
4080
4081#define elf_backend_additional_program_headers \
4082	elf64_hppa_additional_program_headers
4083
4084#define elf_backend_modify_segment_map \
4085	elf64_hppa_modify_segment_map
4086
4087#define elf_backend_allow_non_load_phdr \
4088	elf64_hppa_allow_non_load_phdr
4089
4090#define elf_backend_link_output_symbol_hook \
4091	elf64_hppa_link_output_symbol_hook
4092
4093#define elf_backend_want_got_plt	0
4094#define elf_backend_plt_readonly	0
4095#define elf_backend_want_plt_sym	0
4096#define elf_backend_got_header_size     0
4097#define elf_backend_type_change_ok	TRUE
4098#define elf_backend_get_symbol_type	elf64_hppa_elf_get_symbol_type
4099#define elf_backend_reloc_type_class	elf64_hppa_reloc_type_class
4100#define elf_backend_rela_normal		1
4101#define elf_backend_special_sections	elf64_hppa_special_sections
4102#define elf_backend_action_discarded	elf_hppa_action_discarded
4103#define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
4104
4105#define elf64_bed			elf64_hppa_hpux_bed
4106
4107#include "elf64-target.h"
4108
4109#undef TARGET_BIG_SYM
4110#define TARGET_BIG_SYM			hppa_elf64_linux_vec
4111#undef TARGET_BIG_NAME
4112#define TARGET_BIG_NAME			"elf64-hppa-linux"
4113#undef ELF_OSABI
4114#define ELF_OSABI			ELFOSABI_GNU
4115#undef elf64_bed
4116#define elf64_bed			elf64_hppa_linux_bed
4117
4118#include "elf64-target.h"
4119