1/* BFD back-end for ALPHA Extended-Coff files.
2   Copyright (C) 1993-2017 Free Software Foundation, Inc.
3   Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4   Ian Lance Taylor <ian@cygnus.com>.
5
6   This file is part of BFD, the Binary File Descriptor library.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21   MA 02110-1301, USA.  */
22
23#include "sysdep.h"
24#include "bfd.h"
25#include "bfdlink.h"
26#include "libbfd.h"
27#include "coff/internal.h"
28#include "coff/sym.h"
29#include "coff/symconst.h"
30#include "coff/ecoff.h"
31#include "coff/alpha.h"
32#include "aout/ar.h"
33#include "libcoff.h"
34#include "libecoff.h"
35
36/* Prototypes for static functions.  */
37
38
39
40/* ECOFF has COFF sections, but the debugging information is stored in
41   a completely different format.  ECOFF targets use some of the
42   swapping routines from coffswap.h, and some of the generic COFF
43   routines in coffgen.c, but, unlike the real COFF targets, do not
44   use coffcode.h itself.
45
46   Get the generic COFF swapping routines, except for the reloc,
47   symbol, and lineno ones.  Give them ecoff names.  Define some
48   accessor macros for the large sizes used for Alpha ECOFF.  */
49
50#define GET_FILEHDR_SYMPTR H_GET_64
51#define PUT_FILEHDR_SYMPTR H_PUT_64
52#define GET_AOUTHDR_TSIZE H_GET_64
53#define PUT_AOUTHDR_TSIZE H_PUT_64
54#define GET_AOUTHDR_DSIZE H_GET_64
55#define PUT_AOUTHDR_DSIZE H_PUT_64
56#define GET_AOUTHDR_BSIZE H_GET_64
57#define PUT_AOUTHDR_BSIZE H_PUT_64
58#define GET_AOUTHDR_ENTRY H_GET_64
59#define PUT_AOUTHDR_ENTRY H_PUT_64
60#define GET_AOUTHDR_TEXT_START H_GET_64
61#define PUT_AOUTHDR_TEXT_START H_PUT_64
62#define GET_AOUTHDR_DATA_START H_GET_64
63#define PUT_AOUTHDR_DATA_START H_PUT_64
64#define GET_SCNHDR_PADDR H_GET_64
65#define PUT_SCNHDR_PADDR H_PUT_64
66#define GET_SCNHDR_VADDR H_GET_64
67#define PUT_SCNHDR_VADDR H_PUT_64
68#define GET_SCNHDR_SIZE H_GET_64
69#define PUT_SCNHDR_SIZE H_PUT_64
70#define GET_SCNHDR_SCNPTR H_GET_64
71#define PUT_SCNHDR_SCNPTR H_PUT_64
72#define GET_SCNHDR_RELPTR H_GET_64
73#define PUT_SCNHDR_RELPTR H_PUT_64
74#define GET_SCNHDR_LNNOPTR H_GET_64
75#define PUT_SCNHDR_LNNOPTR H_PUT_64
76
77#define ALPHAECOFF
78
79#define NO_COFF_RELOCS
80#define NO_COFF_SYMBOLS
81#define NO_COFF_LINENOS
82#define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
83#define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
84#define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
85#define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
86#define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
87#define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
88#include "coffswap.h"
89
90/* Get the ECOFF swapping routines.  */
91#define ECOFF_64
92#include "ecoffswap.h"
93
94/* How to process the various reloc types.  */
95
96static bfd_reloc_status_type
97reloc_nil (bfd *abfd ATTRIBUTE_UNUSED,
98	   arelent *reloc ATTRIBUTE_UNUSED,
99	   asymbol *sym ATTRIBUTE_UNUSED,
100	   void * data ATTRIBUTE_UNUSED,
101	   asection *sec ATTRIBUTE_UNUSED,
102	   bfd *output_bfd ATTRIBUTE_UNUSED,
103	   char **error_message ATTRIBUTE_UNUSED)
104{
105  return bfd_reloc_ok;
106}
107
108/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
109   from smaller values.  Start with zero, widen, *then* decrement.  */
110#define MINUS_ONE	(((bfd_vma)0) - 1)
111
112static reloc_howto_type alpha_howto_table[] =
113{
114  /* Reloc type 0 is ignored by itself.  However, it appears after a
115     GPDISP reloc to identify the location where the low order 16 bits
116     of the gp register are loaded.  */
117  HOWTO (ALPHA_R_IGNORE,	/* type */
118	 0,			/* rightshift */
119	 0,			/* size (0 = byte, 1 = short, 2 = long) */
120	 8,			/* bitsize */
121	 TRUE,			/* pc_relative */
122	 0,			/* bitpos */
123	 complain_overflow_dont, /* complain_on_overflow */
124	 reloc_nil,		/* special_function */
125	 "IGNORE",		/* name */
126	 TRUE,			/* partial_inplace */
127	 0,			/* src_mask */
128	 0,			/* dst_mask */
129	 TRUE),			/* pcrel_offset */
130
131  /* A 32 bit reference to a symbol.  */
132  HOWTO (ALPHA_R_REFLONG,	/* type */
133	 0,			/* rightshift */
134	 2,			/* size (0 = byte, 1 = short, 2 = long) */
135	 32,			/* bitsize */
136	 FALSE,			/* pc_relative */
137	 0,			/* bitpos */
138	 complain_overflow_bitfield, /* complain_on_overflow */
139	 0,			/* special_function */
140	 "REFLONG",		/* name */
141	 TRUE,			/* partial_inplace */
142	 0xffffffff,		/* src_mask */
143	 0xffffffff,		/* dst_mask */
144	 FALSE),		/* pcrel_offset */
145
146  /* A 64 bit reference to a symbol.  */
147  HOWTO (ALPHA_R_REFQUAD,	/* type */
148	 0,			/* rightshift */
149	 4,			/* size (0 = byte, 1 = short, 2 = long) */
150	 64,			/* bitsize */
151	 FALSE,			/* pc_relative */
152	 0,			/* bitpos */
153	 complain_overflow_bitfield, /* complain_on_overflow */
154	 0,			/* special_function */
155	 "REFQUAD",		/* name */
156	 TRUE,			/* partial_inplace */
157	 MINUS_ONE,		/* src_mask */
158	 MINUS_ONE,		/* dst_mask */
159	 FALSE),		/* pcrel_offset */
160
161  /* A 32 bit GP relative offset.  This is just like REFLONG except
162     that when the value is used the value of the gp register will be
163     added in.  */
164  HOWTO (ALPHA_R_GPREL32,	/* type */
165	 0,			/* rightshift */
166	 2,			/* size (0 = byte, 1 = short, 2 = long) */
167	 32,			/* bitsize */
168	 FALSE,			/* pc_relative */
169	 0,			/* bitpos */
170	 complain_overflow_bitfield, /* complain_on_overflow */
171	 0,			/* special_function */
172	 "GPREL32",		/* name */
173	 TRUE,			/* partial_inplace */
174	 0xffffffff,		/* src_mask */
175	 0xffffffff,		/* dst_mask */
176	 FALSE),		/* pcrel_offset */
177
178  /* Used for an instruction that refers to memory off the GP
179     register.  The offset is 16 bits of the 32 bit instruction.  This
180     reloc always seems to be against the .lita section.  */
181  HOWTO (ALPHA_R_LITERAL,	/* type */
182	 0,			/* rightshift */
183	 2,			/* size (0 = byte, 1 = short, 2 = long) */
184	 16,			/* bitsize */
185	 FALSE,			/* pc_relative */
186	 0,			/* bitpos */
187	 complain_overflow_signed, /* complain_on_overflow */
188	 0,			/* special_function */
189	 "LITERAL",		/* name */
190	 TRUE,			/* partial_inplace */
191	 0xffff,		/* src_mask */
192	 0xffff,		/* dst_mask */
193	 FALSE),		/* pcrel_offset */
194
195  /* This reloc only appears immediately following a LITERAL reloc.
196     It identifies a use of the literal.  It seems that the linker can
197     use this to eliminate a portion of the .lita section.  The symbol
198     index is special: 1 means the literal address is in the base
199     register of a memory format instruction; 2 means the literal
200     address is in the byte offset register of a byte-manipulation
201     instruction; 3 means the literal address is in the target
202     register of a jsr instruction.  This does not actually do any
203     relocation.  */
204  HOWTO (ALPHA_R_LITUSE,	/* type */
205	 0,			/* rightshift */
206	 2,			/* size (0 = byte, 1 = short, 2 = long) */
207	 32,			/* bitsize */
208	 FALSE,			/* pc_relative */
209	 0,			/* bitpos */
210	 complain_overflow_dont, /* complain_on_overflow */
211	 reloc_nil,		/* special_function */
212	 "LITUSE",		/* name */
213	 FALSE,			/* partial_inplace */
214	 0,			/* src_mask */
215	 0,			/* dst_mask */
216	 FALSE),		/* pcrel_offset */
217
218  /* Load the gp register.  This is always used for a ldah instruction
219     which loads the upper 16 bits of the gp register.  The next reloc
220     will be an IGNORE reloc which identifies the location of the lda
221     instruction which loads the lower 16 bits.  The symbol index of
222     the GPDISP instruction appears to actually be the number of bytes
223     between the ldah and lda instructions.  This gives two different
224     ways to determine where the lda instruction is; I don't know why
225     both are used.  The value to use for the relocation is the
226     difference between the GP value and the current location; the
227     load will always be done against a register holding the current
228     address.  */
229  HOWTO (ALPHA_R_GPDISP,	/* type */
230	 16,			/* rightshift */
231	 2,			/* size (0 = byte, 1 = short, 2 = long) */
232	 16,			/* bitsize */
233	 TRUE,			/* pc_relative */
234	 0,			/* bitpos */
235	 complain_overflow_dont, /* complain_on_overflow */
236	 reloc_nil,		/* special_function */
237	 "GPDISP",		/* name */
238	 TRUE,			/* partial_inplace */
239	 0xffff,		/* src_mask */
240	 0xffff,		/* dst_mask */
241	 TRUE),			/* pcrel_offset */
242
243  /* A 21 bit branch.  The native assembler generates these for
244     branches within the text segment, and also fills in the PC
245     relative offset in the instruction.  */
246  HOWTO (ALPHA_R_BRADDR,	/* type */
247	 2,			/* rightshift */
248	 2,			/* size (0 = byte, 1 = short, 2 = long) */
249	 21,			/* bitsize */
250	 TRUE,			/* pc_relative */
251	 0,			/* bitpos */
252	 complain_overflow_signed, /* complain_on_overflow */
253	 0,			/* special_function */
254	 "BRADDR",		/* name */
255	 TRUE,			/* partial_inplace */
256	 0x1fffff,		/* src_mask */
257	 0x1fffff,		/* dst_mask */
258	 FALSE),		/* pcrel_offset */
259
260  /* A hint for a jump to a register.  */
261  HOWTO (ALPHA_R_HINT,		/* type */
262	 2,			/* rightshift */
263	 2,			/* size (0 = byte, 1 = short, 2 = long) */
264	 14,			/* bitsize */
265	 TRUE,			/* pc_relative */
266	 0,			/* bitpos */
267	 complain_overflow_dont, /* complain_on_overflow */
268	 0,			/* special_function */
269	 "HINT",		/* name */
270	 TRUE,			/* partial_inplace */
271	 0x3fff,		/* src_mask */
272	 0x3fff,		/* dst_mask */
273	 FALSE),		/* pcrel_offset */
274
275  /* 16 bit PC relative offset.  */
276  HOWTO (ALPHA_R_SREL16,	/* type */
277	 0,			/* rightshift */
278	 1,			/* size (0 = byte, 1 = short, 2 = long) */
279	 16,			/* bitsize */
280	 TRUE,			/* pc_relative */
281	 0,			/* bitpos */
282	 complain_overflow_signed, /* complain_on_overflow */
283	 0,			/* special_function */
284	 "SREL16",		/* name */
285	 TRUE,			/* partial_inplace */
286	 0xffff,		/* src_mask */
287	 0xffff,		/* dst_mask */
288	 FALSE),		/* pcrel_offset */
289
290  /* 32 bit PC relative offset.  */
291  HOWTO (ALPHA_R_SREL32,	/* type */
292	 0,			/* rightshift */
293	 2,			/* size (0 = byte, 1 = short, 2 = long) */
294	 32,			/* bitsize */
295	 TRUE,			/* pc_relative */
296	 0,			/* bitpos */
297	 complain_overflow_signed, /* complain_on_overflow */
298	 0,			/* special_function */
299	 "SREL32",		/* name */
300	 TRUE,			/* partial_inplace */
301	 0xffffffff,		/* src_mask */
302	 0xffffffff,		/* dst_mask */
303	 FALSE),		/* pcrel_offset */
304
305  /* A 64 bit PC relative offset.  */
306  HOWTO (ALPHA_R_SREL64,	/* type */
307	 0,			/* rightshift */
308	 4,			/* size (0 = byte, 1 = short, 2 = long) */
309	 64,			/* bitsize */
310	 TRUE,			/* pc_relative */
311	 0,			/* bitpos */
312	 complain_overflow_signed, /* complain_on_overflow */
313	 0,			/* special_function */
314	 "SREL64",		/* name */
315	 TRUE,			/* partial_inplace */
316	 MINUS_ONE,		/* src_mask */
317	 MINUS_ONE,		/* dst_mask */
318	 FALSE),		/* pcrel_offset */
319
320  /* Push a value on the reloc evaluation stack.  */
321  HOWTO (ALPHA_R_OP_PUSH,	/* type */
322	 0,			/* rightshift */
323	 0,			/* size (0 = byte, 1 = short, 2 = long) */
324	 0,			/* bitsize */
325	 FALSE,			/* pc_relative */
326	 0,			/* bitpos */
327	 complain_overflow_dont, /* complain_on_overflow */
328	 0,			/* special_function */
329	 "OP_PUSH",		/* name */
330	 FALSE,			/* partial_inplace */
331	 0,			/* src_mask */
332	 0,			/* dst_mask */
333	 FALSE),		/* pcrel_offset */
334
335  /* Store the value from the stack at the given address.  Store it in
336     a bitfield of size r_size starting at bit position r_offset.  */
337  HOWTO (ALPHA_R_OP_STORE,	/* type */
338	 0,			/* rightshift */
339	 4,			/* size (0 = byte, 1 = short, 2 = long) */
340	 64,			/* bitsize */
341	 FALSE,			/* pc_relative */
342	 0,			/* bitpos */
343	 complain_overflow_dont, /* complain_on_overflow */
344	 0,			/* special_function */
345	 "OP_STORE",		/* name */
346	 FALSE,			/* partial_inplace */
347	 0,			/* src_mask */
348	 MINUS_ONE,		/* dst_mask */
349	 FALSE),		/* pcrel_offset */
350
351  /* Subtract the reloc address from the value on the top of the
352     relocation stack.  */
353  HOWTO (ALPHA_R_OP_PSUB,	/* type */
354	 0,			/* rightshift */
355	 0,			/* size (0 = byte, 1 = short, 2 = long) */
356	 0,			/* bitsize */
357	 FALSE,			/* pc_relative */
358	 0,			/* bitpos */
359	 complain_overflow_dont, /* complain_on_overflow */
360	 0,			/* special_function */
361	 "OP_PSUB",		/* name */
362	 FALSE,			/* partial_inplace */
363	 0,			/* src_mask */
364	 0,			/* dst_mask */
365	 FALSE),		/* pcrel_offset */
366
367  /* Shift the value on the top of the relocation stack right by the
368     given value.  */
369  HOWTO (ALPHA_R_OP_PRSHIFT,	/* type */
370	 0,			/* rightshift */
371	 0,			/* size (0 = byte, 1 = short, 2 = long) */
372	 0,			/* bitsize */
373	 FALSE,			/* pc_relative */
374	 0,			/* bitpos */
375	 complain_overflow_dont, /* complain_on_overflow */
376	 0,			/* special_function */
377	 "OP_PRSHIFT",		/* name */
378	 FALSE,			/* partial_inplace */
379	 0,			/* src_mask */
380	 0,			/* dst_mask */
381	 FALSE),		/* pcrel_offset */
382
383  /* Adjust the GP value for a new range in the object file.  */
384  HOWTO (ALPHA_R_GPVALUE,	/* type */
385	 0,			/* rightshift */
386	 0,			/* size (0 = byte, 1 = short, 2 = long) */
387	 0,			/* bitsize */
388	 FALSE,			/* pc_relative */
389	 0,			/* bitpos */
390	 complain_overflow_dont, /* complain_on_overflow */
391	 0,			/* special_function */
392	 "GPVALUE",		/* name */
393	 FALSE,			/* partial_inplace */
394	 0,			/* src_mask */
395	 0,			/* dst_mask */
396	 FALSE)			/* pcrel_offset */
397};
398
399/* Recognize an Alpha ECOFF file.  */
400
401static const bfd_target *
402alpha_ecoff_object_p (bfd *abfd)
403{
404  static const bfd_target *ret;
405
406  ret = coff_object_p (abfd);
407
408  if (ret != NULL)
409    {
410      asection *sec;
411
412      /* Alpha ECOFF has a .pdata section.  The lnnoptr field of the
413	 .pdata section is the number of entries it contains.  Each
414	 entry takes up 8 bytes.  The number of entries is required
415	 since the section is aligned to a 16 byte boundary.  When we
416	 link .pdata sections together, we do not want to include the
417	 alignment bytes.  We handle this on input by faking the size
418	 of the .pdata section to remove the unwanted alignment bytes.
419	 On output we will set the lnnoptr field and force the
420	 alignment.  */
421      sec = bfd_get_section_by_name (abfd, _PDATA);
422      if (sec != (asection *) NULL)
423	{
424	  bfd_size_type size;
425
426	  size = sec->line_filepos * 8;
427	  BFD_ASSERT (size == sec->size
428		      || size + 8 == sec->size);
429	  if (! bfd_set_section_size (abfd, sec, size))
430	    return NULL;
431	}
432    }
433
434  return ret;
435}
436
437/* See whether the magic number matches.  */
438
439static bfd_boolean
440alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED,
441			     void * filehdr)
442{
443  struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
444
445  if (! ALPHA_ECOFF_BADMAG (*internal_f))
446    return TRUE;
447
448  if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f))
449    _bfd_error_handler
450      (_("%B: Cannot handle compressed Alpha binaries.\n"
451	 "   Use compiler flags, or objZ, to generate uncompressed binaries."),
452       abfd);
453
454  return FALSE;
455}
456
457/* This is a hook called by coff_real_object_p to create any backend
458   specific information.  */
459
460static void *
461alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr)
462{
463  void * ecoff;
464
465  ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
466
467  if (ecoff != NULL)
468    {
469      struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
470
471      /* Set additional BFD flags according to the object type from the
472	 machine specific file header flags.  */
473      switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
474	{
475	case F_ALPHA_SHARABLE:
476	  abfd->flags |= DYNAMIC;
477	  break;
478	case F_ALPHA_CALL_SHARED:
479	  /* Always executable if using shared libraries as the run time
480	     loader might resolve undefined references.  */
481	  abfd->flags |= (DYNAMIC | EXEC_P);
482	  break;
483	}
484    }
485  return ecoff;
486}
487
488/* Reloc handling.  */
489
490/* Swap a reloc in.  */
491
492static void
493alpha_ecoff_swap_reloc_in (bfd *abfd,
494			   void * ext_ptr,
495			   struct internal_reloc *intern)
496{
497  const RELOC *ext = (RELOC *) ext_ptr;
498
499  intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
500  intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
501
502  BFD_ASSERT (bfd_header_little_endian (abfd));
503
504  intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
505		    >> RELOC_BITS0_TYPE_SH_LITTLE);
506  intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
507  intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
508		      >> RELOC_BITS1_OFFSET_SH_LITTLE);
509  /* Ignored the reserved bits.  */
510  intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
511		    >> RELOC_BITS3_SIZE_SH_LITTLE);
512
513  if (intern->r_type == ALPHA_R_LITUSE
514      || intern->r_type == ALPHA_R_GPDISP)
515    {
516      /* Handle the LITUSE and GPDISP relocs specially.  Its symndx
517	 value is not actually a symbol index, but is instead a
518	 special code.  We put the code in the r_size field, and
519	 clobber the symndx.  */
520      if (intern->r_size != 0)
521	abort ();
522      intern->r_size = intern->r_symndx;
523      intern->r_symndx = RELOC_SECTION_NONE;
524    }
525  else if (intern->r_type == ALPHA_R_IGNORE)
526    {
527      /* The IGNORE reloc generally follows a GPDISP reloc, and is
528	 against the .lita section.  The section is irrelevant.  */
529      if (! intern->r_extern &&
530	  intern->r_symndx == RELOC_SECTION_ABS)
531	abort ();
532      if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
533	intern->r_symndx = RELOC_SECTION_ABS;
534    }
535}
536
537/* Swap a reloc out.  */
538
539static void
540alpha_ecoff_swap_reloc_out (bfd *abfd,
541			    const struct internal_reloc *intern,
542			    void * dst)
543{
544  RELOC *ext = (RELOC *) dst;
545  long symndx;
546  unsigned char size;
547
548  /* Undo the hackery done in swap_reloc_in.  */
549  if (intern->r_type == ALPHA_R_LITUSE
550      || intern->r_type == ALPHA_R_GPDISP)
551    {
552      symndx = intern->r_size;
553      size = 0;
554    }
555  else if (intern->r_type == ALPHA_R_IGNORE
556	   && ! intern->r_extern
557	   && intern->r_symndx == RELOC_SECTION_ABS)
558    {
559      symndx = RELOC_SECTION_LITA;
560      size = intern->r_size;
561    }
562  else
563    {
564      symndx = intern->r_symndx;
565      size = intern->r_size;
566    }
567
568  /* XXX FIXME:  The maximum symndx value used to be 14 but this
569     fails with object files produced by DEC's C++ compiler.
570     Where does the value 14 (or 15) come from anyway ?  */
571  BFD_ASSERT (intern->r_extern
572	      || (intern->r_symndx >= 0 && intern->r_symndx <= 15));
573
574  H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
575  H_PUT_32 (abfd, symndx, ext->r_symndx);
576
577  BFD_ASSERT (bfd_header_little_endian (abfd));
578
579  ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
580		    & RELOC_BITS0_TYPE_LITTLE);
581  ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
582		    | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
583		       & RELOC_BITS1_OFFSET_LITTLE));
584  ext->r_bits[2] = 0;
585  ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
586		    & RELOC_BITS3_SIZE_LITTLE);
587}
588
589/* Finish canonicalizing a reloc.  Part of this is generic to all
590   ECOFF targets, and that part is in ecoff.c.  The rest is done in
591   this backend routine.  It must fill in the howto field.  */
592
593static void
594alpha_adjust_reloc_in (bfd *abfd,
595		       const struct internal_reloc *intern,
596		       arelent *rptr)
597{
598  if (intern->r_type > ALPHA_R_GPVALUE)
599    {
600      /* xgettext:c-format */
601      _bfd_error_handler
602	(_("%B: unknown/unsupported relocation type %d"),
603	 abfd, intern->r_type);
604      bfd_set_error (bfd_error_bad_value);
605      rptr->addend = 0;
606      rptr->howto  = NULL;
607      return;
608    }
609
610  switch (intern->r_type)
611    {
612    case ALPHA_R_BRADDR:
613    case ALPHA_R_SREL16:
614    case ALPHA_R_SREL32:
615    case ALPHA_R_SREL64:
616      /* This relocs appear to be fully resolved when they are against
617         internal symbols.  Against external symbols, BRADDR at least
618         appears to be resolved against the next instruction.  */
619      if (! intern->r_extern)
620	rptr->addend = 0;
621      else
622	rptr->addend = - (intern->r_vaddr + 4);
623      break;
624
625    case ALPHA_R_GPREL32:
626    case ALPHA_R_LITERAL:
627      /* Copy the gp value for this object file into the addend, to
628	 ensure that we are not confused by the linker.  */
629      if (! intern->r_extern)
630	rptr->addend += ecoff_data (abfd)->gp;
631      break;
632
633    case ALPHA_R_LITUSE:
634    case ALPHA_R_GPDISP:
635      /* The LITUSE and GPDISP relocs do not use a symbol, or an
636	 addend, but they do use a special code.  Put this code in the
637	 addend field.  */
638      rptr->addend = intern->r_size;
639      break;
640
641    case ALPHA_R_OP_STORE:
642      /* The STORE reloc needs the size and offset fields.  We store
643	 them in the addend.  */
644      BFD_ASSERT (intern->r_offset <= 256);
645      rptr->addend = (intern->r_offset << 8) + intern->r_size;
646      break;
647
648    case ALPHA_R_OP_PUSH:
649    case ALPHA_R_OP_PSUB:
650    case ALPHA_R_OP_PRSHIFT:
651      /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
652	 address.  I believe that the address supplied is really an
653	 addend.  */
654      rptr->addend = intern->r_vaddr;
655      break;
656
657    case ALPHA_R_GPVALUE:
658      /* Set the addend field to the new GP value.  */
659      rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
660      break;
661
662    case ALPHA_R_IGNORE:
663      /* If the type is ALPHA_R_IGNORE, make sure this is a reference
664	 to the absolute section so that the reloc is ignored.  For
665	 some reason the address of this reloc type is not adjusted by
666	 the section vma.  We record the gp value for this object file
667	 here, for convenience when doing the GPDISP relocation.  */
668      rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
669      rptr->address = intern->r_vaddr;
670      rptr->addend = ecoff_data (abfd)->gp;
671      break;
672
673    default:
674      break;
675    }
676
677  rptr->howto = &alpha_howto_table[intern->r_type];
678}
679
680/* When writing out a reloc we need to pull some values back out of
681   the addend field into the reloc.  This is roughly the reverse of
682   alpha_adjust_reloc_in, except that there are several changes we do
683   not need to undo.  */
684
685static void
686alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
687			const arelent *rel,
688			struct internal_reloc *intern)
689{
690  switch (intern->r_type)
691    {
692    case ALPHA_R_LITUSE:
693    case ALPHA_R_GPDISP:
694      intern->r_size = rel->addend;
695      break;
696
697    case ALPHA_R_OP_STORE:
698      intern->r_size = rel->addend & 0xff;
699      intern->r_offset = (rel->addend >> 8) & 0xff;
700      break;
701
702    case ALPHA_R_OP_PUSH:
703    case ALPHA_R_OP_PSUB:
704    case ALPHA_R_OP_PRSHIFT:
705      intern->r_vaddr = rel->addend;
706      break;
707
708    case ALPHA_R_IGNORE:
709      intern->r_vaddr = rel->address;
710      break;
711
712    default:
713      break;
714    }
715}
716
717/* The size of the stack for the relocation evaluator.  */
718#define RELOC_STACKSIZE (10)
719
720/* Alpha ECOFF relocs have a built in expression evaluator as well as
721   other interdependencies.  Rather than use a bunch of special
722   functions and global variables, we use a single routine to do all
723   the relocation for a section.  I haven't yet worked out how the
724   assembler is going to handle this.  */
725
726static bfd_byte *
727alpha_ecoff_get_relocated_section_contents (bfd *abfd,
728					    struct bfd_link_info *link_info,
729					    struct bfd_link_order *link_order,
730					    bfd_byte *data,
731					    bfd_boolean relocatable,
732					    asymbol **symbols)
733{
734  bfd *input_bfd = link_order->u.indirect.section->owner;
735  asection *input_section = link_order->u.indirect.section;
736  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
737  arelent **reloc_vector = NULL;
738  long reloc_count;
739  bfd *output_bfd = relocatable ? abfd : (bfd *) NULL;
740  bfd_vma gp;
741  bfd_size_type sz;
742  bfd_boolean gp_undefined;
743  bfd_vma stack[RELOC_STACKSIZE];
744  int tos = 0;
745
746  if (reloc_size < 0)
747    goto error_return;
748  reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
749  if (reloc_vector == NULL && reloc_size != 0)
750    goto error_return;
751
752  sz = input_section->rawsize ? input_section->rawsize : input_section->size;
753  if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
754    goto error_return;
755
756  reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
757					reloc_vector, symbols);
758  if (reloc_count < 0)
759    goto error_return;
760  if (reloc_count == 0)
761    goto successful_return;
762
763  /* Get the GP value for the output BFD.  */
764  gp_undefined = FALSE;
765  gp = _bfd_get_gp_value (abfd);
766  if (gp == 0)
767    {
768      if (relocatable)
769	{
770	  asection *sec;
771	  bfd_vma lo;
772
773	  /* Make up a value.  */
774	  lo = (bfd_vma) -1;
775	  for (sec = abfd->sections; sec != NULL; sec = sec->next)
776	    {
777	      if (sec->vma < lo
778		  && (strcmp (sec->name, ".sbss") == 0
779		      || strcmp (sec->name, ".sdata") == 0
780		      || strcmp (sec->name, ".lit4") == 0
781		      || strcmp (sec->name, ".lit8") == 0
782		      || strcmp (sec->name, ".lita") == 0))
783		lo = sec->vma;
784	    }
785	  gp = lo + 0x8000;
786	  _bfd_set_gp_value (abfd, gp);
787	}
788      else
789	{
790	  struct bfd_link_hash_entry *h;
791
792	  h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE,
793				    TRUE);
794	  if (h == (struct bfd_link_hash_entry *) NULL
795	      || h->type != bfd_link_hash_defined)
796	    gp_undefined = TRUE;
797	  else
798	    {
799	      gp = (h->u.def.value
800		    + h->u.def.section->output_section->vma
801		    + h->u.def.section->output_offset);
802	      _bfd_set_gp_value (abfd, gp);
803	    }
804	}
805    }
806
807  for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
808    {
809      arelent *rel;
810      bfd_reloc_status_type r;
811      char *err;
812
813      rel = *reloc_vector;
814      r = bfd_reloc_ok;
815      switch (rel->howto->type)
816	{
817	case ALPHA_R_IGNORE:
818	  rel->address += input_section->output_offset;
819	  break;
820
821	case ALPHA_R_REFLONG:
822	case ALPHA_R_REFQUAD:
823	case ALPHA_R_BRADDR:
824	case ALPHA_R_HINT:
825	case ALPHA_R_SREL16:
826	case ALPHA_R_SREL32:
827	case ALPHA_R_SREL64:
828	  if (relocatable
829	      && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
830	    {
831	      rel->address += input_section->output_offset;
832	      break;
833	    }
834	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
835				      output_bfd, &err);
836	  break;
837
838	case ALPHA_R_GPREL32:
839	  /* This relocation is used in a switch table.  It is a 32
840	     bit offset from the current GP value.  We must adjust it
841	     by the different between the original GP value and the
842	     current GP value.  The original GP value is stored in the
843	     addend.  We adjust the addend and let
844	     bfd_perform_relocation finish the job.  */
845	  rel->addend -= gp;
846	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
847				      output_bfd, &err);
848	  if (r == bfd_reloc_ok && gp_undefined)
849	    {
850	      r = bfd_reloc_dangerous;
851	      err = (char *) _("GP relative relocation used when GP not defined");
852	    }
853	  break;
854
855	case ALPHA_R_LITERAL:
856	  /* This is a reference to a literal value, generally
857	     (always?) in the .lita section.  This is a 16 bit GP
858	     relative relocation.  Sometimes the subsequent reloc is a
859	     LITUSE reloc, which indicates how this reloc is used.
860	     This sometimes permits rewriting the two instructions
861	     referred to by the LITERAL and the LITUSE into different
862	     instructions which do not refer to .lita.  This can save
863	     a memory reference, and permits removing a value from
864	     .lita thus saving GP relative space.
865
866	     We do not these optimizations.  To do them we would need
867	     to arrange to link the .lita section first, so that by
868	     the time we got here we would know the final values to
869	     use.  This would not be particularly difficult, but it is
870	     not currently implemented.  */
871
872	  {
873	    unsigned long insn;
874
875	    /* I believe that the LITERAL reloc will only apply to a
876	       ldq or ldl instruction, so check my assumption.  */
877	    insn = bfd_get_32 (input_bfd, data + rel->address);
878	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
879			|| ((insn >> 26) & 0x3f) == 0x28);
880
881	    rel->addend -= gp;
882	    r = bfd_perform_relocation (input_bfd, rel, data, input_section,
883					output_bfd, &err);
884	    if (r == bfd_reloc_ok && gp_undefined)
885	      {
886		r = bfd_reloc_dangerous;
887		err =
888		  (char *) _("GP relative relocation used when GP not defined");
889	      }
890	  }
891	  break;
892
893	case ALPHA_R_LITUSE:
894	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
895	     does not cause anything to happen, itself.  */
896	  rel->address += input_section->output_offset;
897	  break;
898
899	case ALPHA_R_GPDISP:
900	  /* This marks the ldah of an ldah/lda pair which loads the
901	     gp register with the difference of the gp value and the
902	     current location.  The second of the pair is r_size bytes
903	     ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
904	     but that no longer happens in OSF/1 3.2.  */
905	  {
906	    unsigned long insn1, insn2;
907	    bfd_vma addend;
908
909	    /* Get the two instructions.  */
910	    insn1 = bfd_get_32 (input_bfd, data + rel->address);
911	    insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
912
913	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
914	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
915
916	    /* Get the existing addend.  We must account for the sign
917	       extension done by lda and ldah.  */
918	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
919	    if (insn1 & 0x8000)
920	      {
921		addend -= 0x80000000;
922		addend -= 0x80000000;
923	      }
924	    if (insn2 & 0x8000)
925	      addend -= 0x10000;
926
927	    /* The existing addend includes the different between the
928	       gp of the input BFD and the address in the input BFD.
929	       Subtract this out.  */
930	    addend -= (ecoff_data (input_bfd)->gp
931		       - (input_section->vma + rel->address));
932
933	    /* Now add in the final gp value, and subtract out the
934	       final address.  */
935	    addend += (gp
936		       - (input_section->output_section->vma
937			  + input_section->output_offset
938			  + rel->address));
939
940	    /* Change the instructions, accounting for the sign
941	       extension, and write them out.  */
942	    if (addend & 0x8000)
943	      addend += 0x10000;
944	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
945	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
946
947	    bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
948	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
949			data + rel->address + rel->addend);
950
951	    rel->address += input_section->output_offset;
952	  }
953	  break;
954
955	case ALPHA_R_OP_PUSH:
956	  /* Push a value on the reloc evaluation stack.  */
957	  {
958	    asymbol *symbol;
959	    bfd_vma relocation;
960
961	    if (relocatable)
962	      {
963		rel->address += input_section->output_offset;
964		break;
965	      }
966
967	    /* Figure out the relocation of this symbol.  */
968	    symbol = *rel->sym_ptr_ptr;
969
970	    if (bfd_is_und_section (symbol->section))
971	      r = bfd_reloc_undefined;
972
973	    if (bfd_is_com_section (symbol->section))
974	      relocation = 0;
975	    else
976	      relocation = symbol->value;
977	    relocation += symbol->section->output_section->vma;
978	    relocation += symbol->section->output_offset;
979	    relocation += rel->addend;
980
981	    if (tos >= RELOC_STACKSIZE)
982	      abort ();
983
984	    stack[tos++] = relocation;
985	  }
986	  break;
987
988	case ALPHA_R_OP_STORE:
989	  /* Store a value from the reloc stack into a bitfield.  */
990	  {
991	    bfd_vma val;
992	    int offset, size;
993
994	    if (relocatable)
995	      {
996		rel->address += input_section->output_offset;
997		break;
998	      }
999
1000	    if (tos == 0)
1001	      abort ();
1002
1003	    /* The offset and size for this reloc are encoded into the
1004	       addend field by alpha_adjust_reloc_in.  */
1005	    offset = (rel->addend >> 8) & 0xff;
1006	    size = rel->addend & 0xff;
1007
1008	    val = bfd_get_64 (abfd, data + rel->address);
1009	    val &=~ (((1 << size) - 1) << offset);
1010	    val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1011	    bfd_put_64 (abfd, val, data + rel->address);
1012	  }
1013	  break;
1014
1015	case ALPHA_R_OP_PSUB:
1016	  /* Subtract a value from the top of the stack.  */
1017	  {
1018	    asymbol *symbol;
1019	    bfd_vma relocation;
1020
1021	    if (relocatable)
1022	      {
1023		rel->address += input_section->output_offset;
1024		break;
1025	      }
1026
1027	    /* Figure out the relocation of this symbol.  */
1028	    symbol = *rel->sym_ptr_ptr;
1029
1030	    if (bfd_is_und_section (symbol->section))
1031	      r = bfd_reloc_undefined;
1032
1033	    if (bfd_is_com_section (symbol->section))
1034	      relocation = 0;
1035	    else
1036	      relocation = symbol->value;
1037	    relocation += symbol->section->output_section->vma;
1038	    relocation += symbol->section->output_offset;
1039	    relocation += rel->addend;
1040
1041	    if (tos == 0)
1042	      abort ();
1043
1044	    stack[tos - 1] -= relocation;
1045	  }
1046	  break;
1047
1048	case ALPHA_R_OP_PRSHIFT:
1049	  /* Shift the value on the top of the stack.  */
1050	  {
1051	    asymbol *symbol;
1052	    bfd_vma relocation;
1053
1054	    if (relocatable)
1055	      {
1056		rel->address += input_section->output_offset;
1057		break;
1058	      }
1059
1060	    /* Figure out the relocation of this symbol.  */
1061	    symbol = *rel->sym_ptr_ptr;
1062
1063	    if (bfd_is_und_section (symbol->section))
1064	      r = bfd_reloc_undefined;
1065
1066	    if (bfd_is_com_section (symbol->section))
1067	      relocation = 0;
1068	    else
1069	      relocation = symbol->value;
1070	    relocation += symbol->section->output_section->vma;
1071	    relocation += symbol->section->output_offset;
1072	    relocation += rel->addend;
1073
1074	    if (tos == 0)
1075	      abort ();
1076
1077	    stack[tos - 1] >>= relocation;
1078	  }
1079	  break;
1080
1081	case ALPHA_R_GPVALUE:
1082	  /* I really don't know if this does the right thing.  */
1083	  gp = rel->addend;
1084	  gp_undefined = FALSE;
1085	  break;
1086
1087	default:
1088	  abort ();
1089	}
1090
1091      if (relocatable)
1092	{
1093	  asection *os = input_section->output_section;
1094
1095	  /* A partial link, so keep the relocs.  */
1096	  os->orelocation[os->reloc_count] = rel;
1097	  os->reloc_count++;
1098	}
1099
1100      if (r != bfd_reloc_ok)
1101	{
1102	  switch (r)
1103	    {
1104	    case bfd_reloc_undefined:
1105	      (*link_info->callbacks->undefined_symbol)
1106		(link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1107		 input_bfd, input_section, rel->address, TRUE);
1108	      break;
1109	    case bfd_reloc_dangerous:
1110	      (*link_info->callbacks->reloc_dangerous)
1111		(link_info, err, input_bfd, input_section, rel->address);
1112	      break;
1113	    case bfd_reloc_overflow:
1114	      (*link_info->callbacks->reloc_overflow)
1115		(link_info, NULL, bfd_asymbol_name (*rel->sym_ptr_ptr),
1116		 rel->howto->name, rel->addend, input_bfd,
1117		 input_section, rel->address);
1118	      break;
1119	    case bfd_reloc_outofrange:
1120	    default:
1121	      abort ();
1122	      break;
1123	    }
1124	}
1125    }
1126
1127  if (tos != 0)
1128    abort ();
1129
1130 successful_return:
1131  if (reloc_vector != NULL)
1132    free (reloc_vector);
1133  return data;
1134
1135 error_return:
1136  if (reloc_vector != NULL)
1137    free (reloc_vector);
1138  return NULL;
1139}
1140
1141/* Get the howto structure for a generic reloc type.  */
1142
1143static reloc_howto_type *
1144alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1145			     bfd_reloc_code_real_type code)
1146{
1147  int alpha_type;
1148
1149  switch (code)
1150    {
1151    case BFD_RELOC_32:
1152      alpha_type = ALPHA_R_REFLONG;
1153      break;
1154    case BFD_RELOC_64:
1155    case BFD_RELOC_CTOR:
1156      alpha_type = ALPHA_R_REFQUAD;
1157      break;
1158    case BFD_RELOC_GPREL32:
1159      alpha_type = ALPHA_R_GPREL32;
1160      break;
1161    case BFD_RELOC_ALPHA_LITERAL:
1162      alpha_type = ALPHA_R_LITERAL;
1163      break;
1164    case BFD_RELOC_ALPHA_LITUSE:
1165      alpha_type = ALPHA_R_LITUSE;
1166      break;
1167    case BFD_RELOC_ALPHA_GPDISP_HI16:
1168      alpha_type = ALPHA_R_GPDISP;
1169      break;
1170    case BFD_RELOC_ALPHA_GPDISP_LO16:
1171      alpha_type = ALPHA_R_IGNORE;
1172      break;
1173    case BFD_RELOC_23_PCREL_S2:
1174      alpha_type = ALPHA_R_BRADDR;
1175      break;
1176    case BFD_RELOC_ALPHA_HINT:
1177      alpha_type = ALPHA_R_HINT;
1178      break;
1179    case BFD_RELOC_16_PCREL:
1180      alpha_type = ALPHA_R_SREL16;
1181      break;
1182    case BFD_RELOC_32_PCREL:
1183      alpha_type = ALPHA_R_SREL32;
1184      break;
1185    case BFD_RELOC_64_PCREL:
1186      alpha_type = ALPHA_R_SREL64;
1187      break;
1188    default:
1189      return (reloc_howto_type *) NULL;
1190    }
1191
1192  return &alpha_howto_table[alpha_type];
1193}
1194
1195static reloc_howto_type *
1196alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1197			     const char *r_name)
1198{
1199  unsigned int i;
1200
1201  for (i = 0;
1202       i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]);
1203       i++)
1204    if (alpha_howto_table[i].name != NULL
1205	&& strcasecmp (alpha_howto_table[i].name, r_name) == 0)
1206      return &alpha_howto_table[i];
1207
1208  return NULL;
1209}
1210
1211/* A helper routine for alpha_relocate_section which converts an
1212   external reloc when generating relocatable output.  Returns the
1213   relocation amount.  */
1214
1215static bfd_vma
1216alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED,
1217			      struct bfd_link_info *info,
1218			      bfd *input_bfd,
1219			      struct external_reloc *ext_rel,
1220			      struct ecoff_link_hash_entry *h)
1221{
1222  unsigned long r_symndx;
1223  bfd_vma relocation;
1224
1225  BFD_ASSERT (bfd_link_relocatable (info));
1226
1227  if (h->root.type == bfd_link_hash_defined
1228      || h->root.type == bfd_link_hash_defweak)
1229    {
1230      asection *hsec;
1231      const char *name;
1232
1233      /* This symbol is defined in the output.  Convert the reloc from
1234	 being against the symbol to being against the section.  */
1235
1236      /* Clear the r_extern bit.  */
1237      ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1238
1239      /* Compute a new r_symndx value.  */
1240      hsec = h->root.u.def.section;
1241      name = bfd_get_section_name (output_bfd, hsec->output_section);
1242
1243      r_symndx = (unsigned long) -1;
1244      switch (name[1])
1245	{
1246	case 'A':
1247	  if (strcmp (name, "*ABS*") == 0)
1248	    r_symndx = RELOC_SECTION_ABS;
1249	  break;
1250	case 'b':
1251	  if (strcmp (name, ".bss") == 0)
1252	    r_symndx = RELOC_SECTION_BSS;
1253	  break;
1254	case 'd':
1255	  if (strcmp (name, ".data") == 0)
1256	    r_symndx = RELOC_SECTION_DATA;
1257	  break;
1258	case 'f':
1259	  if (strcmp (name, ".fini") == 0)
1260	    r_symndx = RELOC_SECTION_FINI;
1261	  break;
1262	case 'i':
1263	  if (strcmp (name, ".init") == 0)
1264	    r_symndx = RELOC_SECTION_INIT;
1265	  break;
1266	case 'l':
1267	  if (strcmp (name, ".lita") == 0)
1268	    r_symndx = RELOC_SECTION_LITA;
1269	  else if (strcmp (name, ".lit8") == 0)
1270	    r_symndx = RELOC_SECTION_LIT8;
1271	  else if (strcmp (name, ".lit4") == 0)
1272	    r_symndx = RELOC_SECTION_LIT4;
1273	  break;
1274	case 'p':
1275	  if (strcmp (name, ".pdata") == 0)
1276	    r_symndx = RELOC_SECTION_PDATA;
1277	  break;
1278	case 'r':
1279	  if (strcmp (name, ".rdata") == 0)
1280	    r_symndx = RELOC_SECTION_RDATA;
1281	  else if (strcmp (name, ".rconst") == 0)
1282	    r_symndx = RELOC_SECTION_RCONST;
1283	  break;
1284	case 's':
1285	  if (strcmp (name, ".sdata") == 0)
1286	    r_symndx = RELOC_SECTION_SDATA;
1287	  else if (strcmp (name, ".sbss") == 0)
1288	    r_symndx = RELOC_SECTION_SBSS;
1289	  break;
1290	case 't':
1291	  if (strcmp (name, ".text") == 0)
1292	    r_symndx = RELOC_SECTION_TEXT;
1293	  break;
1294	case 'x':
1295	  if (strcmp (name, ".xdata") == 0)
1296	    r_symndx = RELOC_SECTION_XDATA;
1297	  break;
1298	}
1299
1300      if (r_symndx == (unsigned long) -1)
1301	abort ();
1302
1303      /* Add the section VMA and the symbol value.  */
1304      relocation = (h->root.u.def.value
1305		    + hsec->output_section->vma
1306		    + hsec->output_offset);
1307    }
1308  else
1309    {
1310      /* Change the symndx value to the right one for
1311	 the output BFD.  */
1312      r_symndx = h->indx;
1313      if (r_symndx == (unsigned long) -1)
1314	{
1315	  /* Caller must give an error.  */
1316	  r_symndx = 0;
1317	}
1318      relocation = 0;
1319    }
1320
1321  /* Write out the new r_symndx value.  */
1322  H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1323
1324  return relocation;
1325}
1326
1327/* Relocate a section while linking an Alpha ECOFF file.  This is
1328   quite similar to get_relocated_section_contents.  Perhaps they
1329   could be combined somehow.  */
1330
1331static bfd_boolean
1332alpha_relocate_section (bfd *output_bfd,
1333			struct bfd_link_info *info,
1334			bfd *input_bfd,
1335			asection *input_section,
1336			bfd_byte *contents,
1337			void * external_relocs)
1338{
1339  asection **symndx_to_section, *lita_sec;
1340  struct ecoff_link_hash_entry **sym_hashes;
1341  bfd_vma gp;
1342  bfd_boolean gp_undefined;
1343  bfd_vma stack[RELOC_STACKSIZE];
1344  int tos = 0;
1345  struct external_reloc *ext_rel;
1346  struct external_reloc *ext_rel_end;
1347  bfd_size_type amt;
1348
1349  /* We keep a table mapping the symndx found in an internal reloc to
1350     the appropriate section.  This is faster than looking up the
1351     section by name each time.  */
1352  symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1353  if (symndx_to_section == (asection **) NULL)
1354    {
1355      amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1356      symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1357      if (!symndx_to_section)
1358	return FALSE;
1359
1360      symndx_to_section[RELOC_SECTION_NONE] = NULL;
1361      symndx_to_section[RELOC_SECTION_TEXT] =
1362	bfd_get_section_by_name (input_bfd, ".text");
1363      symndx_to_section[RELOC_SECTION_RDATA] =
1364	bfd_get_section_by_name (input_bfd, ".rdata");
1365      symndx_to_section[RELOC_SECTION_DATA] =
1366	bfd_get_section_by_name (input_bfd, ".data");
1367      symndx_to_section[RELOC_SECTION_SDATA] =
1368	bfd_get_section_by_name (input_bfd, ".sdata");
1369      symndx_to_section[RELOC_SECTION_SBSS] =
1370	bfd_get_section_by_name (input_bfd, ".sbss");
1371      symndx_to_section[RELOC_SECTION_BSS] =
1372	bfd_get_section_by_name (input_bfd, ".bss");
1373      symndx_to_section[RELOC_SECTION_INIT] =
1374	bfd_get_section_by_name (input_bfd, ".init");
1375      symndx_to_section[RELOC_SECTION_LIT8] =
1376	bfd_get_section_by_name (input_bfd, ".lit8");
1377      symndx_to_section[RELOC_SECTION_LIT4] =
1378	bfd_get_section_by_name (input_bfd, ".lit4");
1379      symndx_to_section[RELOC_SECTION_XDATA] =
1380	bfd_get_section_by_name (input_bfd, ".xdata");
1381      symndx_to_section[RELOC_SECTION_PDATA] =
1382	bfd_get_section_by_name (input_bfd, ".pdata");
1383      symndx_to_section[RELOC_SECTION_FINI] =
1384	bfd_get_section_by_name (input_bfd, ".fini");
1385      symndx_to_section[RELOC_SECTION_LITA] =
1386	bfd_get_section_by_name (input_bfd, ".lita");
1387      symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1388      symndx_to_section[RELOC_SECTION_RCONST] =
1389	bfd_get_section_by_name (input_bfd, ".rconst");
1390
1391      ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1392    }
1393
1394  sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1395
1396  /* On the Alpha, the .lita section must be addressable by the global
1397     pointer.  To support large programs, we need to allow multiple
1398     global pointers.  This works as long as each input .lita section
1399     is <64KB big.  This implies that when producing relocatable
1400     output, the .lita section is limited to 64KB. .  */
1401
1402  lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1403  gp = _bfd_get_gp_value (output_bfd);
1404  if (! bfd_link_relocatable (info) && lita_sec != NULL)
1405    {
1406      struct ecoff_section_tdata *lita_sec_data;
1407
1408      /* Make sure we have a section data structure to which we can
1409	 hang on to the gp value we pick for the section.  */
1410      lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1411      if (lita_sec_data == NULL)
1412	{
1413	  amt = sizeof (struct ecoff_section_tdata);
1414	  lita_sec_data = ((struct ecoff_section_tdata *)
1415			   bfd_zalloc (input_bfd, amt));
1416	  lita_sec->used_by_bfd = lita_sec_data;
1417	}
1418
1419      if (lita_sec_data->gp != 0)
1420	{
1421	  /* If we already assigned a gp to this section, we better
1422	     stick with that value.  */
1423	  gp = lita_sec_data->gp;
1424	}
1425      else
1426	{
1427	  bfd_vma lita_vma;
1428	  bfd_size_type lita_size;
1429
1430	  lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1431	  lita_size = lita_sec->size;
1432
1433	  if (gp == 0
1434	      || lita_vma <  gp - 0x8000
1435	      || lita_vma + lita_size >= gp + 0x8000)
1436	    {
1437	      /* Either gp hasn't been set at all or the current gp
1438		 cannot address this .lita section.  In both cases we
1439		 reset the gp to point into the "middle" of the
1440		 current input .lita section.  */
1441	      if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1442		{
1443		  (*info->callbacks->warning) (info,
1444					       _("using multiple gp values"),
1445					       (char *) NULL, output_bfd,
1446					       (asection *) NULL, (bfd_vma) 0);
1447		  ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE;
1448		}
1449	      if (lita_vma < gp - 0x8000)
1450		gp = lita_vma + lita_size - 0x8000;
1451	      else
1452		gp = lita_vma + 0x8000;
1453
1454	    }
1455
1456	  lita_sec_data->gp = gp;
1457	}
1458
1459      _bfd_set_gp_value (output_bfd, gp);
1460    }
1461
1462  gp_undefined = (gp == 0);
1463
1464  BFD_ASSERT (bfd_header_little_endian (output_bfd));
1465  BFD_ASSERT (bfd_header_little_endian (input_bfd));
1466
1467  ext_rel = (struct external_reloc *) external_relocs;
1468  ext_rel_end = ext_rel + input_section->reloc_count;
1469  for (; ext_rel < ext_rel_end; ext_rel++)
1470    {
1471      bfd_vma r_vaddr;
1472      unsigned long r_symndx;
1473      int r_type;
1474      int r_extern;
1475      int r_offset;
1476      int r_size;
1477      bfd_boolean relocatep;
1478      bfd_boolean adjust_addrp;
1479      bfd_boolean gp_usedp;
1480      bfd_vma addend;
1481
1482      r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1483      r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1484
1485      r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1486		>> RELOC_BITS0_TYPE_SH_LITTLE);
1487      r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1488      r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1489		  >> RELOC_BITS1_OFFSET_SH_LITTLE);
1490      /* Ignored the reserved bits.  */
1491      r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1492		>> RELOC_BITS3_SIZE_SH_LITTLE);
1493
1494      relocatep = FALSE;
1495      adjust_addrp = TRUE;
1496      gp_usedp = FALSE;
1497      addend = 0;
1498
1499      switch (r_type)
1500	{
1501	case ALPHA_R_GPRELHIGH:
1502	  _bfd_error_handler
1503	    (_("%B: unsupported relocation: ALPHA_R_GPRELHIGH"),
1504	     input_bfd);
1505	  bfd_set_error (bfd_error_bad_value);
1506	  continue;
1507
1508	case ALPHA_R_GPRELLOW:
1509	  _bfd_error_handler
1510	    (_("%B: unsupported relocation: ALPHA_R_GPRELLOW"),
1511	     input_bfd);
1512	  bfd_set_error (bfd_error_bad_value);
1513	  continue;
1514
1515	default:
1516	  _bfd_error_handler
1517	    /* xgettext:c-format */
1518	    (_("%B: unknown relocation type %d"),
1519	     input_bfd, (int) r_type);
1520	  bfd_set_error (bfd_error_bad_value);
1521	  continue;
1522
1523	case ALPHA_R_IGNORE:
1524	  /* This reloc appears after a GPDISP reloc.  On earlier
1525	     versions of OSF/1, It marked the position of the second
1526	     instruction to be altered by the GPDISP reloc, but it is
1527	     not otherwise used for anything.  For some reason, the
1528	     address of the relocation does not appear to include the
1529	     section VMA, unlike the other relocation types.  */
1530	  if (bfd_link_relocatable (info))
1531	    H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1532		      ext_rel->r_vaddr);
1533	  adjust_addrp = FALSE;
1534	  break;
1535
1536	case ALPHA_R_REFLONG:
1537	case ALPHA_R_REFQUAD:
1538	case ALPHA_R_HINT:
1539	  relocatep = TRUE;
1540	  break;
1541
1542	case ALPHA_R_BRADDR:
1543	case ALPHA_R_SREL16:
1544	case ALPHA_R_SREL32:
1545	case ALPHA_R_SREL64:
1546	  if (r_extern)
1547	    addend += - (r_vaddr + 4);
1548	  relocatep = TRUE;
1549	  break;
1550
1551	case ALPHA_R_GPREL32:
1552	  /* This relocation is used in a switch table.  It is a 32
1553	     bit offset from the current GP value.  We must adjust it
1554	     by the different between the original GP value and the
1555	     current GP value.  */
1556	  relocatep = TRUE;
1557	  addend = ecoff_data (input_bfd)->gp - gp;
1558	  gp_usedp = TRUE;
1559	  break;
1560
1561	case ALPHA_R_LITERAL:
1562	  /* This is a reference to a literal value, generally
1563	     (always?) in the .lita section.  This is a 16 bit GP
1564	     relative relocation.  Sometimes the subsequent reloc is a
1565	     LITUSE reloc, which indicates how this reloc is used.
1566	     This sometimes permits rewriting the two instructions
1567	     referred to by the LITERAL and the LITUSE into different
1568	     instructions which do not refer to .lita.  This can save
1569	     a memory reference, and permits removing a value from
1570	     .lita thus saving GP relative space.
1571
1572	     We do not these optimizations.  To do them we would need
1573	     to arrange to link the .lita section first, so that by
1574	     the time we got here we would know the final values to
1575	     use.  This would not be particularly difficult, but it is
1576	     not currently implemented.  */
1577
1578	  /* I believe that the LITERAL reloc will only apply to a ldq
1579	     or ldl instruction, so check my assumption.  */
1580	  {
1581	    unsigned long insn;
1582
1583	    insn = bfd_get_32 (input_bfd,
1584			       contents + r_vaddr - input_section->vma);
1585	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1586			|| ((insn >> 26) & 0x3f) == 0x28);
1587	  }
1588
1589	  relocatep = TRUE;
1590	  addend = ecoff_data (input_bfd)->gp - gp;
1591	  gp_usedp = TRUE;
1592	  break;
1593
1594	case ALPHA_R_LITUSE:
1595	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
1596	     does not cause anything to happen, itself.  */
1597	  break;
1598
1599	case ALPHA_R_GPDISP:
1600	  /* This marks the ldah of an ldah/lda pair which loads the
1601	     gp register with the difference of the gp value and the
1602	     current location.  The second of the pair is r_symndx
1603	     bytes ahead.  It used to be marked with an ALPHA_R_IGNORE
1604	     reloc, but OSF/1 3.2 no longer does that.  */
1605	  {
1606	    unsigned long insn1, insn2;
1607
1608	    /* Get the two instructions.  */
1609	    insn1 = bfd_get_32 (input_bfd,
1610				contents + r_vaddr - input_section->vma);
1611	    insn2 = bfd_get_32 (input_bfd,
1612				(contents
1613				 + r_vaddr
1614				 - input_section->vma
1615				 + r_symndx));
1616
1617	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1618	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1619
1620	    /* Get the existing addend.  We must account for the sign
1621	       extension done by lda and ldah.  */
1622	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1623	    if (insn1 & 0x8000)
1624	      {
1625		/* This is addend -= 0x100000000 without causing an
1626		   integer overflow on a 32 bit host.  */
1627		addend -= 0x80000000;
1628		addend -= 0x80000000;
1629	      }
1630	    if (insn2 & 0x8000)
1631	      addend -= 0x10000;
1632
1633	    /* The existing addend includes the difference between the
1634	       gp of the input BFD and the address in the input BFD.
1635	       We want to change this to the difference between the
1636	       final GP and the final address.  */
1637	    addend += (gp
1638		       - ecoff_data (input_bfd)->gp
1639		       + input_section->vma
1640		       - (input_section->output_section->vma
1641			  + input_section->output_offset));
1642
1643	    /* Change the instructions, accounting for the sign
1644	       extension, and write them out.  */
1645	    if (addend & 0x8000)
1646	      addend += 0x10000;
1647	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1648	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1649
1650	    bfd_put_32 (input_bfd, (bfd_vma) insn1,
1651			contents + r_vaddr - input_section->vma);
1652	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
1653			contents + r_vaddr - input_section->vma + r_symndx);
1654
1655	    gp_usedp = TRUE;
1656	  }
1657	  break;
1658
1659	case ALPHA_R_OP_PUSH:
1660	case ALPHA_R_OP_PSUB:
1661	case ALPHA_R_OP_PRSHIFT:
1662	  /* Manipulate values on the reloc evaluation stack.  The
1663	     r_vaddr field is not an address in input_section, it is
1664	     the current value (including any addend) of the object
1665	     being used.  */
1666	  if (! r_extern)
1667	    {
1668	      asection *s;
1669
1670	      s = symndx_to_section[r_symndx];
1671	      if (s == (asection *) NULL)
1672		abort ();
1673	      addend = s->output_section->vma + s->output_offset - s->vma;
1674	    }
1675	  else
1676	    {
1677	      struct ecoff_link_hash_entry *h;
1678
1679	      h = sym_hashes[r_symndx];
1680	      if (h == (struct ecoff_link_hash_entry *) NULL)
1681		abort ();
1682
1683	      if (! bfd_link_relocatable (info))
1684		{
1685		  if (h->root.type == bfd_link_hash_defined
1686		      || h->root.type == bfd_link_hash_defweak)
1687		    addend = (h->root.u.def.value
1688			      + h->root.u.def.section->output_section->vma
1689			      + h->root.u.def.section->output_offset);
1690		  else
1691		    {
1692		      /* Note that we pass the address as 0, since we
1693			 do not have a meaningful number for the
1694			 location within the section that is being
1695			 relocated.  */
1696		      (*info->callbacks->undefined_symbol)
1697			(info, h->root.root.string, input_bfd,
1698			 input_section, (bfd_vma) 0, TRUE);
1699		      addend = 0;
1700		    }
1701		}
1702	      else
1703		{
1704		  if (h->root.type != bfd_link_hash_defined
1705		      && h->root.type != bfd_link_hash_defweak
1706		      && h->indx == -1)
1707		    {
1708		      /* This symbol is not being written out.  Pass
1709			 the address as 0, as with undefined_symbol,
1710			 above.  */
1711		      (*info->callbacks->unattached_reloc)
1712			(info, h->root.root.string,
1713			 input_bfd, input_section, (bfd_vma) 0);
1714		    }
1715
1716		  addend = alpha_convert_external_reloc (output_bfd, info,
1717							 input_bfd,
1718							 ext_rel, h);
1719		}
1720	    }
1721
1722	  addend += r_vaddr;
1723
1724	  if (bfd_link_relocatable (info))
1725	    {
1726	      /* Adjust r_vaddr by the addend.  */
1727	      H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1728	    }
1729	  else
1730	    {
1731	      switch (r_type)
1732		{
1733		case ALPHA_R_OP_PUSH:
1734		  if (tos >= RELOC_STACKSIZE)
1735		    abort ();
1736		  stack[tos++] = addend;
1737		  break;
1738
1739		case ALPHA_R_OP_PSUB:
1740		  if (tos == 0)
1741		    abort ();
1742		  stack[tos - 1] -= addend;
1743		  break;
1744
1745		case ALPHA_R_OP_PRSHIFT:
1746		  if (tos == 0)
1747		    abort ();
1748		  stack[tos - 1] >>= addend;
1749		  break;
1750		}
1751	    }
1752
1753	  adjust_addrp = FALSE;
1754	  break;
1755
1756	case ALPHA_R_OP_STORE:
1757	  /* Store a value from the reloc stack into a bitfield.  If
1758	     we are generating relocatable output, all we do is
1759	     adjust the address of the reloc.  */
1760	  if (! bfd_link_relocatable (info))
1761	    {
1762	      bfd_vma mask;
1763	      bfd_vma val;
1764
1765	      if (tos == 0)
1766		abort ();
1767
1768	      /* Get the relocation mask.  The separate steps and the
1769		 casts to bfd_vma are attempts to avoid a bug in the
1770		 Alpha OSF 1.3 C compiler.  See reloc.c for more
1771		 details.  */
1772	      mask = 1;
1773	      mask <<= (bfd_vma) r_size;
1774	      mask -= 1;
1775
1776	      /* FIXME: I don't know what kind of overflow checking,
1777		 if any, should be done here.  */
1778	      val = bfd_get_64 (input_bfd,
1779				contents + r_vaddr - input_section->vma);
1780	      val &=~ mask << (bfd_vma) r_offset;
1781	      val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1782	      bfd_put_64 (input_bfd, val,
1783			  contents + r_vaddr - input_section->vma);
1784	    }
1785	  break;
1786
1787	case ALPHA_R_GPVALUE:
1788	  /* I really don't know if this does the right thing.  */
1789	  gp = ecoff_data (input_bfd)->gp + r_symndx;
1790	  gp_undefined = FALSE;
1791	  break;
1792	}
1793
1794      if (relocatep)
1795	{
1796	  reloc_howto_type *howto;
1797	  struct ecoff_link_hash_entry *h = NULL;
1798	  asection *s = NULL;
1799	  bfd_vma relocation;
1800	  bfd_reloc_status_type r;
1801
1802	  /* Perform a relocation.  */
1803
1804	  howto = &alpha_howto_table[r_type];
1805
1806	  if (r_extern)
1807	    {
1808	      h = sym_hashes[r_symndx];
1809	      /* If h is NULL, that means that there is a reloc
1810		 against an external symbol which we thought was just
1811		 a debugging symbol.  This should not happen.  */
1812	      if (h == (struct ecoff_link_hash_entry *) NULL)
1813		abort ();
1814	    }
1815	  else
1816	    {
1817	      if (r_symndx >= NUM_RELOC_SECTIONS)
1818		s = NULL;
1819	      else
1820		s = symndx_to_section[r_symndx];
1821
1822	      if (s == (asection *) NULL)
1823		abort ();
1824	    }
1825
1826	  if (bfd_link_relocatable (info))
1827	    {
1828	      /* We are generating relocatable output, and must
1829		 convert the existing reloc.  */
1830	      if (r_extern)
1831		{
1832		  if (h->root.type != bfd_link_hash_defined
1833		      && h->root.type != bfd_link_hash_defweak
1834		      && h->indx == -1)
1835		    {
1836		      /* This symbol is not being written out.  */
1837		      (*info->callbacks->unattached_reloc)
1838			(info, h->root.root.string, input_bfd,
1839			 input_section, r_vaddr - input_section->vma);
1840		    }
1841
1842		  relocation = alpha_convert_external_reloc (output_bfd,
1843							     info,
1844							     input_bfd,
1845							     ext_rel,
1846							     h);
1847		}
1848	      else
1849		{
1850		  /* This is a relocation against a section.  Adjust
1851		     the value by the amount the section moved.  */
1852		  relocation = (s->output_section->vma
1853				+ s->output_offset
1854				- s->vma);
1855		}
1856
1857	      /* If this is PC relative, the existing object file
1858		 appears to already have the reloc worked out.  We
1859		 must subtract out the old value and add in the new
1860		 one.  */
1861	      if (howto->pc_relative)
1862		relocation -= (input_section->output_section->vma
1863			       + input_section->output_offset
1864			       - input_section->vma);
1865
1866	      /* Put in any addend.  */
1867	      relocation += addend;
1868
1869	      /* Adjust the contents.  */
1870	      r = _bfd_relocate_contents (howto, input_bfd, relocation,
1871					  (contents
1872					   + r_vaddr
1873					   - input_section->vma));
1874	    }
1875	  else
1876	    {
1877	      /* We are producing a final executable.  */
1878	      if (r_extern)
1879		{
1880		  /* This is a reloc against a symbol.  */
1881		  if (h->root.type == bfd_link_hash_defined
1882		      || h->root.type == bfd_link_hash_defweak)
1883		    {
1884		      asection *hsec;
1885
1886		      hsec = h->root.u.def.section;
1887		      relocation = (h->root.u.def.value
1888				    + hsec->output_section->vma
1889				    + hsec->output_offset);
1890		    }
1891		  else
1892		    {
1893		      (*info->callbacks->undefined_symbol)
1894			(info, h->root.root.string, input_bfd, input_section,
1895			 r_vaddr - input_section->vma, TRUE);
1896		      relocation = 0;
1897		    }
1898		}
1899	      else
1900		{
1901		  /* This is a reloc against a section.  */
1902		  relocation = (s->output_section->vma
1903				+ s->output_offset
1904				- s->vma);
1905
1906		  /* Adjust a PC relative relocation by removing the
1907		     reference to the original source section.  */
1908		  if (howto->pc_relative)
1909		    relocation += input_section->vma;
1910		}
1911
1912	      r = _bfd_final_link_relocate (howto,
1913					    input_bfd,
1914					    input_section,
1915					    contents,
1916					    r_vaddr - input_section->vma,
1917					    relocation,
1918					    addend);
1919	    }
1920
1921	  if (r != bfd_reloc_ok)
1922	    {
1923	      switch (r)
1924		{
1925		default:
1926		case bfd_reloc_outofrange:
1927		  abort ();
1928		case bfd_reloc_overflow:
1929		  {
1930		    const char *name;
1931
1932		    if (r_extern)
1933		      name = sym_hashes[r_symndx]->root.root.string;
1934		    else
1935		      name = bfd_section_name (input_bfd,
1936					       symndx_to_section[r_symndx]);
1937		    (*info->callbacks->reloc_overflow)
1938		      (info, NULL, name, alpha_howto_table[r_type].name,
1939		       (bfd_vma) 0, input_bfd, input_section,
1940		       r_vaddr - input_section->vma);
1941		  }
1942		  break;
1943		}
1944	    }
1945	}
1946
1947      if (bfd_link_relocatable (info) && adjust_addrp)
1948	{
1949	  /* Change the address of the relocation.  */
1950	  H_PUT_64 (input_bfd,
1951		    (input_section->output_section->vma
1952		     + input_section->output_offset
1953		     - input_section->vma
1954		     + r_vaddr),
1955		    ext_rel->r_vaddr);
1956	}
1957
1958      if (gp_usedp && gp_undefined)
1959	{
1960	  (*info->callbacks->reloc_dangerous)
1961	    (info, _("GP relative relocation used when GP not defined"),
1962	     input_bfd, input_section, r_vaddr - input_section->vma);
1963	  /* Only give the error once per link.  */
1964	  gp = 4;
1965	  _bfd_set_gp_value (output_bfd, gp);
1966	  gp_undefined = FALSE;
1967	}
1968    }
1969
1970  if (tos != 0)
1971    abort ();
1972
1973  return TRUE;
1974}
1975
1976/* Do final adjustments to the filehdr and the aouthdr.  This routine
1977   sets the dynamic bits in the file header.  */
1978
1979static bfd_boolean
1980alpha_adjust_headers (bfd *abfd,
1981		      struct internal_filehdr *fhdr,
1982		      struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED)
1983{
1984  if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
1985    fhdr->f_flags |= F_ALPHA_CALL_SHARED;
1986  else if ((abfd->flags & DYNAMIC) != 0)
1987    fhdr->f_flags |= F_ALPHA_SHARABLE;
1988  return TRUE;
1989}
1990
1991/* Archive handling.  In OSF/1 (or Digital Unix) v3.2, Digital
1992   introduced archive packing, in which the elements in an archive are
1993   optionally compressed using a simple dictionary scheme.  We know
1994   how to read such archives, but we don't write them.  */
1995
1996#define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
1997#define alpha_ecoff_slurp_extended_name_table \
1998  _bfd_ecoff_slurp_extended_name_table
1999#define alpha_ecoff_construct_extended_name_table \
2000  _bfd_ecoff_construct_extended_name_table
2001#define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
2002#define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2003#define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr
2004#define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2005#define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2006
2007/* A compressed file uses this instead of ARFMAG.  */
2008
2009#define ARFZMAG "Z\012"
2010
2011/* Read an archive header.  This is like the standard routine, but it
2012   also accepts ARFZMAG.  */
2013
2014static void *
2015alpha_ecoff_read_ar_hdr (bfd *abfd)
2016{
2017  struct areltdata *ret;
2018  struct ar_hdr *h;
2019
2020  ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2021  if (ret == NULL)
2022    return NULL;
2023
2024  h = (struct ar_hdr *) ret->arch_header;
2025  if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2026    {
2027      bfd_byte ab[8];
2028
2029      /* This is a compressed file.  We must set the size correctly.
2030         The size is the eight bytes after the dummy file header.  */
2031      if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2032	  || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2033	  || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2034	return NULL;
2035
2036      ret->parsed_size = H_GET_64 (abfd, ab);
2037    }
2038
2039  return ret;
2040}
2041
2042/* Get an archive element at a specified file position.  This is where
2043   we uncompress the archive element if necessary.  */
2044
2045static bfd *
2046alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos)
2047{
2048  bfd *nbfd = NULL;
2049  struct areltdata *tdata;
2050  struct ar_hdr *hdr;
2051  bfd_byte ab[8];
2052  bfd_size_type size;
2053  bfd_byte *buf, *p;
2054  struct bfd_in_memory *bim;
2055
2056  buf = NULL;
2057  nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2058  if (nbfd == NULL)
2059    goto error_return;
2060
2061  if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2062    {
2063      /* We have already expanded this BFD.  */
2064      return nbfd;
2065    }
2066
2067  tdata = (struct areltdata *) nbfd->arelt_data;
2068  hdr = (struct ar_hdr *) tdata->arch_header;
2069  if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2070    return nbfd;
2071
2072  /* We must uncompress this element.  We do this by copying it into a
2073     memory buffer, and making bfd_bread and bfd_seek use that buffer.
2074     This can use a lot of memory, but it's simpler than getting a
2075     temporary file, making that work with the file descriptor caching
2076     code, and making sure that it is deleted at all appropriate
2077     times.  It can be changed if it ever becomes important.  */
2078
2079  /* The compressed file starts with a dummy ECOFF file header.  */
2080  if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2081    goto error_return;
2082
2083  /* The next eight bytes are the real file size.  */
2084  if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2085    goto error_return;
2086  size = H_GET_64 (nbfd, ab);
2087
2088  if (size != 0)
2089    {
2090      bfd_size_type left;
2091      bfd_byte dict[4096];
2092      unsigned int h;
2093      bfd_byte b;
2094
2095      buf = (bfd_byte *) bfd_malloc (size);
2096      if (buf == NULL)
2097	goto error_return;
2098      p = buf;
2099
2100      left = size;
2101
2102      /* I don't know what the next eight bytes are for.  */
2103      if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2104	goto error_return;
2105
2106      /* This is the uncompression algorithm.  It's a simple
2107	 dictionary based scheme in which each character is predicted
2108	 by a hash of the previous three characters.  A control byte
2109	 indicates whether the character is predicted or whether it
2110	 appears in the input stream; each control byte manages the
2111	 next eight bytes in the output stream.  */
2112      memset (dict, 0, sizeof dict);
2113      h = 0;
2114      while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2115	{
2116	  unsigned int i;
2117
2118	  for (i = 0; i < 8; i++, b >>= 1)
2119	    {
2120	      bfd_byte n;
2121
2122	      if ((b & 1) == 0)
2123		n = dict[h];
2124	      else
2125		{
2126		  if (! bfd_bread (&n, (bfd_size_type) 1, nbfd))
2127		    goto error_return;
2128		  dict[h] = n;
2129		}
2130
2131	      *p++ = n;
2132
2133	      --left;
2134	      if (left == 0)
2135		break;
2136
2137	      h <<= 4;
2138	      h ^= n;
2139	      h &= sizeof dict - 1;
2140	    }
2141
2142	  if (left == 0)
2143	    break;
2144	}
2145    }
2146
2147  /* Now the uncompressed file contents are in buf.  */
2148  bim = ((struct bfd_in_memory *)
2149	 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory)));
2150  if (bim == NULL)
2151    goto error_return;
2152  bim->size = size;
2153  bim->buffer = buf;
2154
2155  nbfd->mtime_set = TRUE;
2156  nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2157
2158  nbfd->flags |= BFD_IN_MEMORY;
2159  nbfd->iostream = bim;
2160  nbfd->iovec = &_bfd_memory_iovec;
2161  nbfd->origin = 0;
2162  BFD_ASSERT (! nbfd->cacheable);
2163
2164  return nbfd;
2165
2166 error_return:
2167  if (buf != NULL)
2168    free (buf);
2169  if (nbfd != NULL)
2170    bfd_close (nbfd);
2171  return NULL;
2172}
2173
2174/* Open the next archived file.  */
2175
2176static bfd *
2177alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file)
2178{
2179  ufile_ptr filestart;
2180
2181  if (last_file == NULL)
2182    filestart = bfd_ardata (archive)->first_file_filepos;
2183  else
2184    {
2185      struct areltdata *t;
2186      struct ar_hdr *h;
2187      bfd_size_type size;
2188
2189      /* We can't use arelt_size here, because that uses parsed_size,
2190         which is the uncompressed size.  We need the compressed size.  */
2191      t = (struct areltdata *) last_file->arelt_data;
2192      h = (struct ar_hdr *) t->arch_header;
2193      size = strtol (h->ar_size, (char **) NULL, 10);
2194
2195      /* Pad to an even boundary...
2196	 Note that last_file->origin can be odd in the case of
2197	 BSD-4.4-style element with a long odd size.  */
2198      filestart = last_file->proxy_origin + size;
2199      filestart += filestart % 2;
2200      if (filestart < last_file->proxy_origin)
2201	{
2202	  /* Prevent looping.  See PR19256.  */
2203	  bfd_set_error (bfd_error_malformed_archive);
2204	  return NULL;
2205	}
2206    }
2207
2208  return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2209}
2210
2211/* Open the archive file given an index into the armap.  */
2212
2213static bfd *
2214alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index)
2215{
2216  carsym *entry;
2217
2218  entry = bfd_ardata (abfd)->symdefs + sym_index;
2219  return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2220}
2221
2222/* This is the ECOFF backend structure.  The backend field of the
2223   target vector points to this.  */
2224
2225static const struct ecoff_backend_data alpha_ecoff_backend_data =
2226{
2227  /* COFF backend structure.  */
2228  {
2229    (void (*) (bfd *,void *,int,int,int,int,void *)) bfd_void, /* aux_in */
2230    (void (*) (bfd *,void *,void *)) bfd_void, /* sym_in */
2231    (void (*) (bfd *,void *,void *)) bfd_void, /* lineno_in */
2232    (unsigned (*) (bfd *,void *,int,int,int,int,void *)) bfd_void,/*aux_out*/
2233    (unsigned (*) (bfd *,void *,void *)) bfd_void, /* sym_out */
2234    (unsigned (*) (bfd *,void *,void *)) bfd_void, /* lineno_out */
2235    (unsigned (*) (bfd *,void *,void *)) bfd_void, /* reloc_out */
2236    alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2237    alpha_ecoff_swap_scnhdr_out,
2238    FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE,
2239    ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2, 32768,
2240    alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2241    alpha_ecoff_swap_scnhdr_in, NULL,
2242    alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2243    alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2244    _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2245    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2246    NULL, NULL, NULL, NULL
2247  },
2248  /* Supported architecture.  */
2249  bfd_arch_alpha,
2250  /* Initial portion of armap string.  */
2251  "________64",
2252  /* The page boundary used to align sections in a demand-paged
2253     executable file.  E.g., 0x1000.  */
2254  0x2000,
2255  /* TRUE if the .rdata section is part of the text segment, as on the
2256     Alpha.  FALSE if .rdata is part of the data segment, as on the
2257     MIPS.  */
2258  TRUE,
2259  /* Bitsize of constructor entries.  */
2260  64,
2261  /* Reloc to use for constructor entries.  */
2262  &alpha_howto_table[ALPHA_R_REFQUAD],
2263  {
2264    /* Symbol table magic number.  */
2265    magicSym2,
2266    /* Alignment of debugging information.  E.g., 4.  */
2267    8,
2268    /* Sizes of external symbolic information.  */
2269    sizeof (struct hdr_ext),
2270    sizeof (struct dnr_ext),
2271    sizeof (struct pdr_ext),
2272    sizeof (struct sym_ext),
2273    sizeof (struct opt_ext),
2274    sizeof (struct fdr_ext),
2275    sizeof (struct rfd_ext),
2276    sizeof (struct ext_ext),
2277    /* Functions to swap in external symbolic data.  */
2278    ecoff_swap_hdr_in,
2279    ecoff_swap_dnr_in,
2280    ecoff_swap_pdr_in,
2281    ecoff_swap_sym_in,
2282    ecoff_swap_opt_in,
2283    ecoff_swap_fdr_in,
2284    ecoff_swap_rfd_in,
2285    ecoff_swap_ext_in,
2286    _bfd_ecoff_swap_tir_in,
2287    _bfd_ecoff_swap_rndx_in,
2288    /* Functions to swap out external symbolic data.  */
2289    ecoff_swap_hdr_out,
2290    ecoff_swap_dnr_out,
2291    ecoff_swap_pdr_out,
2292    ecoff_swap_sym_out,
2293    ecoff_swap_opt_out,
2294    ecoff_swap_fdr_out,
2295    ecoff_swap_rfd_out,
2296    ecoff_swap_ext_out,
2297    _bfd_ecoff_swap_tir_out,
2298    _bfd_ecoff_swap_rndx_out,
2299    /* Function to read in symbolic data.  */
2300    _bfd_ecoff_slurp_symbolic_info
2301  },
2302  /* External reloc size.  */
2303  RELSZ,
2304  /* Reloc swapping functions.  */
2305  alpha_ecoff_swap_reloc_in,
2306  alpha_ecoff_swap_reloc_out,
2307  /* Backend reloc tweaking.  */
2308  alpha_adjust_reloc_in,
2309  alpha_adjust_reloc_out,
2310  /* Relocate section contents while linking.  */
2311  alpha_relocate_section,
2312  /* Do final adjustments to filehdr and aouthdr.  */
2313  alpha_adjust_headers,
2314  /* Read an element from an archive at a given file position.  */
2315  alpha_ecoff_get_elt_at_filepos
2316};
2317
2318/* Looking up a reloc type is Alpha specific.  */
2319#define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2320#define _bfd_ecoff_bfd_reloc_name_lookup \
2321  alpha_bfd_reloc_name_lookup
2322
2323/* So is getting relocated section contents.  */
2324#define _bfd_ecoff_bfd_get_relocated_section_contents \
2325  alpha_ecoff_get_relocated_section_contents
2326
2327/* Handling file windows is generic.  */
2328#define _bfd_ecoff_get_section_contents_in_window \
2329  _bfd_generic_get_section_contents_in_window
2330
2331/* Input section flag lookup is generic.  */
2332#define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags
2333
2334/* Relaxing sections is generic.  */
2335#define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2336#define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2337#define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2338#define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section
2339#define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2340#define _bfd_ecoff_section_already_linked \
2341  _bfd_coff_section_already_linked
2342#define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol
2343#define _bfd_ecoff_bfd_link_check_relocs    _bfd_generic_link_check_relocs
2344
2345const bfd_target alpha_ecoff_le_vec =
2346{
2347  "ecoff-littlealpha",		/* name */
2348  bfd_target_ecoff_flavour,
2349  BFD_ENDIAN_LITTLE,		/* data byte order is little */
2350  BFD_ENDIAN_LITTLE,		/* header byte order is little */
2351
2352  (HAS_RELOC | EXEC_P |		/* object flags */
2353   HAS_LINENO | HAS_DEBUG |
2354   HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2355
2356  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2357  0,				/* leading underscore */
2358  ' ',				/* ar_pad_char */
2359  15,				/* ar_max_namelen */
2360  0,				/* match priority.  */
2361  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2362     bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2363     bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2364  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2365     bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2366     bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2367
2368  {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */
2369     bfd_generic_archive_p, _bfd_dummy_target},
2370  {bfd_false, _bfd_ecoff_mkobject,  /* bfd_set_format */
2371     _bfd_generic_mkarchive, bfd_false},
2372  {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2373     _bfd_write_archive_contents, bfd_false},
2374
2375     BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2376     BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2377     BFD_JUMP_TABLE_CORE (_bfd_nocore),
2378     BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2379     BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2380     BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2381     BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2382     BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2383     BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2384
2385  NULL,
2386
2387  & alpha_ecoff_backend_data
2388};
2389