1/*-
2 * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause)
3 *
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1982, 1986, 1989, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61
62#include <sys/cdefs.h>
63#include "opt_quota.h"
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/bio.h>
68#include <sys/buf.h>
69#include <sys/capsicum.h>
70#include <sys/conf.h>
71#include <sys/fcntl.h>
72#include <sys/file.h>
73#include <sys/filedesc.h>
74#include <sys/gsb_crc32.h>
75#include <sys/kernel.h>
76#include <sys/mount.h>
77#include <sys/priv.h>
78#include <sys/proc.h>
79#include <sys/stat.h>
80#include <sys/syscallsubr.h>
81#include <sys/sysctl.h>
82#include <sys/syslog.h>
83#include <sys/taskqueue.h>
84#include <sys/vnode.h>
85
86#include <security/audit/audit.h>
87
88#include <geom/geom.h>
89#include <geom/geom_vfs.h>
90
91#include <ufs/ufs/dir.h>
92#include <ufs/ufs/extattr.h>
93#include <ufs/ufs/quota.h>
94#include <ufs/ufs/inode.h>
95#include <ufs/ufs/ufs_extern.h>
96#include <ufs/ufs/ufsmount.h>
97
98#include <ufs/ffs/fs.h>
99#include <ufs/ffs/ffs_extern.h>
100#include <ufs/ffs/softdep.h>
101
102typedef ufs2_daddr_t allocfcn_t(struct inode *ip, uint64_t cg,
103				  ufs2_daddr_t bpref, int size, int rsize);
104
105static ufs2_daddr_t ffs_alloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
106				  int);
107static ufs2_daddr_t
108	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
109static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
110		    struct vnode *, ufs2_daddr_t, long, ino_t,
111		    struct workhead *);
112#ifdef INVARIANTS
113static int	ffs_checkfreeblk(struct inode *, ufs2_daddr_t, long);
114#endif
115static void	ffs_checkcgintegrity(struct fs *, uint64_t, int);
116static ufs2_daddr_t ffs_clusteralloc(struct inode *, uint64_t, ufs2_daddr_t,
117				  int);
118static ino_t	ffs_dirpref(struct inode *);
119static ufs2_daddr_t ffs_fragextend(struct inode *, uint64_t, ufs2_daddr_t,
120		    int, int);
121static ufs2_daddr_t	ffs_hashalloc(struct inode *, uint64_t, ufs2_daddr_t,
122		    int, int, allocfcn_t *);
123static ufs2_daddr_t ffs_nodealloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
124		    int);
125static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
126static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
127static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
128static void	ffs_ckhash_cg(struct buf *);
129
130/*
131 * Allocate a block in the filesystem.
132 *
133 * The size of the requested block is given, which must be some
134 * multiple of fs_fsize and <= fs_bsize.
135 * A preference may be optionally specified. If a preference is given
136 * the following hierarchy is used to allocate a block:
137 *   1) allocate the requested block.
138 *   2) allocate a rotationally optimal block in the same cylinder.
139 *   3) allocate a block in the same cylinder group.
140 *   4) quadratically rehash into other cylinder groups, until an
141 *      available block is located.
142 * If no block preference is given the following hierarchy is used
143 * to allocate a block:
144 *   1) allocate a block in the cylinder group that contains the
145 *      inode for the file.
146 *   2) quadratically rehash into other cylinder groups, until an
147 *      available block is located.
148 */
149int
150ffs_alloc(struct inode *ip,
151	ufs2_daddr_t lbn,
152	ufs2_daddr_t bpref,
153	int size,
154	int flags,
155	struct ucred *cred,
156	ufs2_daddr_t *bnp)
157{
158	struct fs *fs;
159	struct ufsmount *ump;
160	ufs2_daddr_t bno;
161	uint64_t cg, reclaimed;
162	int64_t delta;
163#ifdef QUOTA
164	int error;
165#endif
166
167	*bnp = 0;
168	ump = ITOUMP(ip);
169	fs = ump->um_fs;
170	mtx_assert(UFS_MTX(ump), MA_OWNED);
171#ifdef INVARIANTS
172	if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
173		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
174		    devtoname(ump->um_dev), (long)fs->fs_bsize, size,
175		    fs->fs_fsmnt);
176		panic("ffs_alloc: bad size");
177	}
178	if (cred == NOCRED)
179		panic("ffs_alloc: missing credential");
180#endif /* INVARIANTS */
181	reclaimed = 0;
182retry:
183#ifdef QUOTA
184	UFS_UNLOCK(ump);
185	error = chkdq(ip, btodb(size), cred, 0);
186	if (error)
187		return (error);
188	UFS_LOCK(ump);
189#endif
190	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
191		goto nospace;
192	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
193	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
194		goto nospace;
195	if (bpref >= fs->fs_size)
196		bpref = 0;
197	if (bpref == 0)
198		cg = ino_to_cg(fs, ip->i_number);
199	else
200		cg = dtog(fs, bpref);
201	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
202	if (bno > 0) {
203		delta = btodb(size);
204		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
205		if (flags & IO_EXT)
206			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
207		else
208			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
209		*bnp = bno;
210		return (0);
211	}
212nospace:
213#ifdef QUOTA
214	UFS_UNLOCK(ump);
215	/*
216	 * Restore user's disk quota because allocation failed.
217	 */
218	(void) chkdq(ip, -btodb(size), cred, FORCE);
219	UFS_LOCK(ump);
220#endif
221	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
222		reclaimed = 1;
223		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
224		goto retry;
225	}
226	if (ffs_fsfail_cleanup_locked(ump, 0)) {
227		UFS_UNLOCK(ump);
228		return (ENXIO);
229	}
230	if (reclaimed > 0 &&
231	    ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
232		UFS_UNLOCK(ump);
233		ffs_fserr(fs, ip->i_number, "filesystem full");
234		uprintf("\n%s: write failed, filesystem is full\n",
235		    fs->fs_fsmnt);
236	} else {
237		UFS_UNLOCK(ump);
238	}
239	return (ENOSPC);
240}
241
242/*
243 * Reallocate a fragment to a bigger size
244 *
245 * The number and size of the old block is given, and a preference
246 * and new size is also specified. The allocator attempts to extend
247 * the original block. Failing that, the regular block allocator is
248 * invoked to get an appropriate block.
249 */
250int
251ffs_realloccg(struct inode *ip,
252	ufs2_daddr_t lbprev,
253	ufs2_daddr_t bprev,
254	ufs2_daddr_t bpref,
255	int osize,
256	int nsize,
257	int flags,
258	struct ucred *cred,
259	struct buf **bpp)
260{
261	struct vnode *vp;
262	struct fs *fs;
263	struct buf *bp;
264	struct ufsmount *ump;
265	uint64_t cg, request, reclaimed;
266	int error, gbflags;
267	ufs2_daddr_t bno;
268	int64_t delta;
269
270	vp = ITOV(ip);
271	ump = ITOUMP(ip);
272	fs = ump->um_fs;
273	bp = NULL;
274	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
275#ifdef WITNESS
276	gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0;
277#endif
278
279	mtx_assert(UFS_MTX(ump), MA_OWNED);
280#ifdef INVARIANTS
281	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
282		panic("ffs_realloccg: allocation on suspended filesystem");
283	if ((uint64_t)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
284	    (uint64_t)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
285		printf(
286		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
287		    devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
288		    nsize, fs->fs_fsmnt);
289		panic("ffs_realloccg: bad size");
290	}
291	if (cred == NOCRED)
292		panic("ffs_realloccg: missing credential");
293#endif /* INVARIANTS */
294	reclaimed = 0;
295retry:
296	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
297	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
298		goto nospace;
299	}
300	if (bprev == 0) {
301		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
302		    devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
303		    fs->fs_fsmnt);
304		panic("ffs_realloccg: bad bprev");
305	}
306	UFS_UNLOCK(ump);
307	/*
308	 * Allocate the extra space in the buffer.
309	 */
310	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
311	if (error) {
312		return (error);
313	}
314
315	if (bp->b_blkno == bp->b_lblkno) {
316		if (lbprev >= UFS_NDADDR)
317			panic("ffs_realloccg: lbprev out of range");
318		bp->b_blkno = fsbtodb(fs, bprev);
319	}
320
321#ifdef QUOTA
322	error = chkdq(ip, btodb(nsize - osize), cred, 0);
323	if (error) {
324		brelse(bp);
325		return (error);
326	}
327#endif
328	/*
329	 * Check for extension in the existing location.
330	 */
331	*bpp = NULL;
332	cg = dtog(fs, bprev);
333	UFS_LOCK(ump);
334	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
335	if (bno) {
336		if (bp->b_blkno != fsbtodb(fs, bno))
337			panic("ffs_realloccg: bad blockno");
338		delta = btodb(nsize - osize);
339		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
340		if (flags & IO_EXT)
341			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
342		else
343			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
344		allocbuf(bp, nsize);
345		bp->b_flags |= B_DONE;
346		vfs_bio_bzero_buf(bp, osize, nsize - osize);
347		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
348			vfs_bio_set_valid(bp, osize, nsize - osize);
349		*bpp = bp;
350		return (0);
351	}
352	/*
353	 * Allocate a new disk location.
354	 */
355	if (bpref >= fs->fs_size)
356		bpref = 0;
357	switch ((int)fs->fs_optim) {
358	case FS_OPTSPACE:
359		/*
360		 * Allocate an exact sized fragment. Although this makes
361		 * best use of space, we will waste time relocating it if
362		 * the file continues to grow. If the fragmentation is
363		 * less than half of the minimum free reserve, we choose
364		 * to begin optimizing for time.
365		 */
366		request = nsize;
367		if (fs->fs_minfree <= 5 ||
368		    fs->fs_cstotal.cs_nffree >
369		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
370			break;
371		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
372			fs->fs_fsmnt);
373		fs->fs_optim = FS_OPTTIME;
374		break;
375	case FS_OPTTIME:
376		/*
377		 * At this point we have discovered a file that is trying to
378		 * grow a small fragment to a larger fragment. To save time,
379		 * we allocate a full sized block, then free the unused portion.
380		 * If the file continues to grow, the `ffs_fragextend' call
381		 * above will be able to grow it in place without further
382		 * copying. If aberrant programs cause disk fragmentation to
383		 * grow within 2% of the free reserve, we choose to begin
384		 * optimizing for space.
385		 */
386		request = fs->fs_bsize;
387		if (fs->fs_cstotal.cs_nffree <
388		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
389			break;
390		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
391			fs->fs_fsmnt);
392		fs->fs_optim = FS_OPTSPACE;
393		break;
394	default:
395		printf("dev = %s, optim = %ld, fs = %s\n",
396		    devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
397		panic("ffs_realloccg: bad optim");
398		/* NOTREACHED */
399	}
400	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
401	if (bno > 0) {
402		bp->b_blkno = fsbtodb(fs, bno);
403		if (!DOINGSOFTDEP(vp))
404			/*
405			 * The usual case is that a smaller fragment that
406			 * was just allocated has been replaced with a bigger
407			 * fragment or a full-size block. If it is marked as
408			 * B_DELWRI, the current contents have not been written
409			 * to disk. It is possible that the block was written
410			 * earlier, but very uncommon. If the block has never
411			 * been written, there is no need to send a BIO_DELETE
412			 * for it when it is freed. The gain from avoiding the
413			 * TRIMs for the common case of unwritten blocks far
414			 * exceeds the cost of the write amplification for the
415			 * uncommon case of failing to send a TRIM for a block
416			 * that had been written.
417			 */
418			ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
419			    ip->i_number, vp->v_type, NULL,
420			    (bp->b_flags & B_DELWRI) != 0 ?
421			    NOTRIM_KEY : SINGLETON_KEY);
422		delta = btodb(nsize - osize);
423		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
424		if (flags & IO_EXT)
425			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
426		else
427			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
428		allocbuf(bp, nsize);
429		bp->b_flags |= B_DONE;
430		vfs_bio_bzero_buf(bp, osize, nsize - osize);
431		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
432			vfs_bio_set_valid(bp, osize, nsize - osize);
433		*bpp = bp;
434		return (0);
435	}
436#ifdef QUOTA
437	UFS_UNLOCK(ump);
438	/*
439	 * Restore user's disk quota because allocation failed.
440	 */
441	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
442	UFS_LOCK(ump);
443#endif
444nospace:
445	/*
446	 * no space available
447	 */
448	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
449		reclaimed = 1;
450		UFS_UNLOCK(ump);
451		if (bp) {
452			brelse(bp);
453			bp = NULL;
454		}
455		UFS_LOCK(ump);
456		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
457		goto retry;
458	}
459	if (bp)
460		brelse(bp);
461	if (ffs_fsfail_cleanup_locked(ump, 0)) {
462		UFS_UNLOCK(ump);
463		return (ENXIO);
464	}
465	if (reclaimed > 0 &&
466	    ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
467		UFS_UNLOCK(ump);
468		ffs_fserr(fs, ip->i_number, "filesystem full");
469		uprintf("\n%s: write failed, filesystem is full\n",
470		    fs->fs_fsmnt);
471	} else {
472		UFS_UNLOCK(ump);
473	}
474	return (ENOSPC);
475}
476
477/*
478 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
479 *
480 * The vnode and an array of buffer pointers for a range of sequential
481 * logical blocks to be made contiguous is given. The allocator attempts
482 * to find a range of sequential blocks starting as close as possible
483 * from the end of the allocation for the logical block immediately
484 * preceding the current range. If successful, the physical block numbers
485 * in the buffer pointers and in the inode are changed to reflect the new
486 * allocation. If unsuccessful, the allocation is left unchanged. The
487 * success in doing the reallocation is returned. Note that the error
488 * return is not reflected back to the user. Rather the previous block
489 * allocation will be used.
490 */
491
492SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
493    "FFS filesystem");
494
495static int doasyncfree = 1;
496SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
497"do not force synchronous writes when blocks are reallocated");
498
499static int doreallocblks = 1;
500SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
501"enable block reallocation");
502
503static int dotrimcons = 1;
504SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
505"enable BIO_DELETE / TRIM consolidation");
506
507static int maxclustersearch = 10;
508SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
5090, "max number of cylinder group to search for contigous blocks");
510
511#ifdef DIAGNOSTIC
512static int prtrealloc = 0;
513SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0,
514	"print out FFS filesystem block reallocation operations");
515#endif
516
517int
518ffs_reallocblks(
519	struct vop_reallocblks_args /* {
520		struct vnode *a_vp;
521		struct cluster_save *a_buflist;
522	} */ *ap)
523{
524	struct ufsmount *ump;
525	int error;
526
527	/*
528	 * We used to skip reallocating the blocks of a file into a
529	 * contiguous sequence if the underlying flash device requested
530	 * BIO_DELETE notifications, because devices that benefit from
531	 * BIO_DELETE also benefit from not moving the data. However,
532	 * the destination for the data is usually moved before the data
533	 * is written to the initially allocated location, so we rarely
534	 * suffer the penalty of extra writes. With the addition of the
535	 * consolidation of contiguous blocks into single BIO_DELETE
536	 * operations, having fewer but larger contiguous blocks reduces
537	 * the number of (slow and expensive) BIO_DELETE operations. So
538	 * when doing BIO_DELETE consolidation, we do block reallocation.
539	 *
540	 * Skip if reallocblks has been disabled globally.
541	 */
542	ump = ap->a_vp->v_mount->mnt_data;
543	if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
544	    doreallocblks == 0)
545		return (ENOSPC);
546
547	/*
548	 * We can't wait in softdep prealloc as it may fsync and recurse
549	 * here.  Instead we simply fail to reallocate blocks if this
550	 * rare condition arises.
551	 */
552	if (DOINGSUJ(ap->a_vp))
553		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
554			return (ENOSPC);
555	vn_seqc_write_begin(ap->a_vp);
556	error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) :
557	    ffs_reallocblks_ufs2(ap);
558	vn_seqc_write_end(ap->a_vp);
559	return (error);
560}
561
562static int
563ffs_reallocblks_ufs1(
564	struct vop_reallocblks_args /* {
565		struct vnode *a_vp;
566		struct cluster_save *a_buflist;
567	} */ *ap)
568{
569	struct fs *fs;
570	struct inode *ip;
571	struct vnode *vp;
572	struct buf *sbp, *ebp, *bp;
573	ufs1_daddr_t *bap, *sbap, *ebap;
574	struct cluster_save *buflist;
575	struct ufsmount *ump;
576	ufs_lbn_t start_lbn, end_lbn;
577	ufs1_daddr_t soff, newblk, blkno;
578	ufs2_daddr_t pref;
579	struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
580	int i, cg, len, start_lvl, end_lvl, ssize;
581
582	vp = ap->a_vp;
583	ip = VTOI(vp);
584	ump = ITOUMP(ip);
585	fs = ump->um_fs;
586	/*
587	 * If we are not tracking block clusters or if we have less than 4%
588	 * free blocks left, then do not attempt to cluster. Running with
589	 * less than 5% free block reserve is not recommended and those that
590	 * choose to do so do not expect to have good file layout.
591	 */
592	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
593		return (ENOSPC);
594	buflist = ap->a_buflist;
595	len = buflist->bs_nchildren;
596	start_lbn = buflist->bs_children[0]->b_lblkno;
597	end_lbn = start_lbn + len - 1;
598#ifdef INVARIANTS
599	for (i = 0; i < len; i++)
600		if (!ffs_checkfreeblk(ip,
601		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
602			panic("ffs_reallocblks: unallocated block 1");
603	for (i = 1; i < len; i++)
604		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
605			panic("ffs_reallocblks: non-logical cluster");
606	blkno = buflist->bs_children[0]->b_blkno;
607	ssize = fsbtodb(fs, fs->fs_frag);
608	for (i = 1; i < len - 1; i++)
609		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
610			panic("ffs_reallocblks: non-physical cluster %d", i);
611#endif
612	/*
613	 * If the cluster crosses the boundary for the first indirect
614	 * block, leave space for the indirect block. Indirect blocks
615	 * are initially laid out in a position after the last direct
616	 * block. Block reallocation would usually destroy locality by
617	 * moving the indirect block out of the way to make room for
618	 * data blocks if we didn't compensate here. We should also do
619	 * this for other indirect block boundaries, but it is only
620	 * important for the first one.
621	 */
622	if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
623		return (ENOSPC);
624	/*
625	 * If the latest allocation is in a new cylinder group, assume that
626	 * the filesystem has decided to move and do not force it back to
627	 * the previous cylinder group.
628	 */
629	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
630	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
631		return (ENOSPC);
632	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
633	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
634		return (ENOSPC);
635	/*
636	 * Get the starting offset and block map for the first block.
637	 */
638	if (start_lvl == 0) {
639		sbap = &ip->i_din1->di_db[0];
640		soff = start_lbn;
641	} else {
642		idp = &start_ap[start_lvl - 1];
643		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
644			brelse(sbp);
645			return (ENOSPC);
646		}
647		sbap = (ufs1_daddr_t *)sbp->b_data;
648		soff = idp->in_off;
649	}
650	/*
651	 * If the block range spans two block maps, get the second map.
652	 */
653	ebap = NULL;
654	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
655		ssize = len;
656	} else {
657#ifdef INVARIANTS
658		if (start_lvl > 0 &&
659		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
660			panic("ffs_reallocblk: start == end");
661#endif
662		ssize = len - (idp->in_off + 1);
663		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
664			goto fail;
665		ebap = (ufs1_daddr_t *)ebp->b_data;
666	}
667	/*
668	 * Find the preferred location for the cluster. If we have not
669	 * previously failed at this endeavor, then follow our standard
670	 * preference calculation. If we have failed at it, then pick up
671	 * where we last ended our search.
672	 */
673	UFS_LOCK(ump);
674	if (ip->i_nextclustercg == -1)
675		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
676	else
677		pref = cgdata(fs, ip->i_nextclustercg);
678	/*
679	 * Search the block map looking for an allocation of the desired size.
680	 * To avoid wasting too much time, we limit the number of cylinder
681	 * groups that we will search.
682	 */
683	cg = dtog(fs, pref);
684	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
685		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
686			break;
687		cg += 1;
688		if (cg >= fs->fs_ncg)
689			cg = 0;
690	}
691	/*
692	 * If we have failed in our search, record where we gave up for
693	 * next time. Otherwise, fall back to our usual search citerion.
694	 */
695	if (newblk == 0) {
696		ip->i_nextclustercg = cg;
697		UFS_UNLOCK(ump);
698		goto fail;
699	}
700	ip->i_nextclustercg = -1;
701	/*
702	 * We have found a new contiguous block.
703	 *
704	 * First we have to replace the old block pointers with the new
705	 * block pointers in the inode and indirect blocks associated
706	 * with the file.
707	 */
708#ifdef DIAGNOSTIC
709	if (prtrealloc)
710		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
711		    (uintmax_t)ip->i_number,
712		    (intmax_t)start_lbn, (intmax_t)end_lbn);
713#endif
714	blkno = newblk;
715	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
716		if (i == ssize) {
717			bap = ebap;
718			soff = -i;
719		}
720#ifdef INVARIANTS
721		if (!ffs_checkfreeblk(ip,
722		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
723			panic("ffs_reallocblks: unallocated block 2");
724		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
725			panic("ffs_reallocblks: alloc mismatch");
726#endif
727#ifdef DIAGNOSTIC
728		if (prtrealloc)
729			printf(" %d,", *bap);
730#endif
731		if (DOINGSOFTDEP(vp)) {
732			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
733				softdep_setup_allocdirect(ip, start_lbn + i,
734				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
735				    buflist->bs_children[i]);
736			else
737				softdep_setup_allocindir_page(ip, start_lbn + i,
738				    i < ssize ? sbp : ebp, soff + i, blkno,
739				    *bap, buflist->bs_children[i]);
740		}
741		*bap++ = blkno;
742	}
743	/*
744	 * Next we must write out the modified inode and indirect blocks.
745	 * For strict correctness, the writes should be synchronous since
746	 * the old block values may have been written to disk. In practise
747	 * they are almost never written, but if we are concerned about
748	 * strict correctness, the `doasyncfree' flag should be set to zero.
749	 *
750	 * The test on `doasyncfree' should be changed to test a flag
751	 * that shows whether the associated buffers and inodes have
752	 * been written. The flag should be set when the cluster is
753	 * started and cleared whenever the buffer or inode is flushed.
754	 * We can then check below to see if it is set, and do the
755	 * synchronous write only when it has been cleared.
756	 */
757	if (sbap != &ip->i_din1->di_db[0]) {
758		if (doasyncfree)
759			bdwrite(sbp);
760		else
761			bwrite(sbp);
762	} else {
763		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
764		if (!doasyncfree)
765			ffs_update(vp, 1);
766	}
767	if (ssize < len) {
768		if (doasyncfree)
769			bdwrite(ebp);
770		else
771			bwrite(ebp);
772	}
773	/*
774	 * Last, free the old blocks and assign the new blocks to the buffers.
775	 */
776#ifdef DIAGNOSTIC
777	if (prtrealloc)
778		printf("\n\tnew:");
779#endif
780	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
781		bp = buflist->bs_children[i];
782		if (!DOINGSOFTDEP(vp))
783			/*
784			 * The usual case is that a set of N-contiguous blocks
785			 * that was just allocated has been replaced with a
786			 * set of N+1-contiguous blocks. If they are marked as
787			 * B_DELWRI, the current contents have not been written
788			 * to disk. It is possible that the blocks were written
789			 * earlier, but very uncommon. If the blocks have never
790			 * been written, there is no need to send a BIO_DELETE
791			 * for them when they are freed. The gain from avoiding
792			 * the TRIMs for the common case of unwritten blocks
793			 * far exceeds the cost of the write amplification for
794			 * the uncommon case of failing to send a TRIM for the
795			 * blocks that had been written.
796			 */
797			ffs_blkfree(ump, fs, ump->um_devvp,
798			    dbtofsb(fs, bp->b_blkno),
799			    fs->fs_bsize, ip->i_number, vp->v_type, NULL,
800			    (bp->b_flags & B_DELWRI) != 0 ?
801			    NOTRIM_KEY : SINGLETON_KEY);
802		bp->b_blkno = fsbtodb(fs, blkno);
803#ifdef INVARIANTS
804		if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
805		    fs->fs_bsize))
806			panic("ffs_reallocblks: unallocated block 3");
807#endif
808#ifdef DIAGNOSTIC
809		if (prtrealloc)
810			printf(" %d,", blkno);
811#endif
812	}
813#ifdef DIAGNOSTIC
814	if (prtrealloc) {
815		prtrealloc--;
816		printf("\n");
817	}
818#endif
819	return (0);
820
821fail:
822	if (ssize < len)
823		brelse(ebp);
824	if (sbap != &ip->i_din1->di_db[0])
825		brelse(sbp);
826	return (ENOSPC);
827}
828
829static int
830ffs_reallocblks_ufs2(
831	struct vop_reallocblks_args /* {
832		struct vnode *a_vp;
833		struct cluster_save *a_buflist;
834	} */ *ap)
835{
836	struct fs *fs;
837	struct inode *ip;
838	struct vnode *vp;
839	struct buf *sbp, *ebp, *bp;
840	ufs2_daddr_t *bap, *sbap, *ebap;
841	struct cluster_save *buflist;
842	struct ufsmount *ump;
843	ufs_lbn_t start_lbn, end_lbn;
844	ufs2_daddr_t soff, newblk, blkno, pref;
845	struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
846	int i, cg, len, start_lvl, end_lvl, ssize;
847
848	vp = ap->a_vp;
849	ip = VTOI(vp);
850	ump = ITOUMP(ip);
851	fs = ump->um_fs;
852	/*
853	 * If we are not tracking block clusters or if we have less than 4%
854	 * free blocks left, then do not attempt to cluster. Running with
855	 * less than 5% free block reserve is not recommended and those that
856	 * choose to do so do not expect to have good file layout.
857	 */
858	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
859		return (ENOSPC);
860	buflist = ap->a_buflist;
861	len = buflist->bs_nchildren;
862	start_lbn = buflist->bs_children[0]->b_lblkno;
863	end_lbn = start_lbn + len - 1;
864#ifdef INVARIANTS
865	for (i = 0; i < len; i++)
866		if (!ffs_checkfreeblk(ip,
867		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
868			panic("ffs_reallocblks: unallocated block 1");
869	for (i = 1; i < len; i++)
870		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
871			panic("ffs_reallocblks: non-logical cluster");
872	blkno = buflist->bs_children[0]->b_blkno;
873	ssize = fsbtodb(fs, fs->fs_frag);
874	for (i = 1; i < len - 1; i++)
875		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
876			panic("ffs_reallocblks: non-physical cluster %d", i);
877#endif
878	/*
879	 * If the cluster crosses the boundary for the first indirect
880	 * block, do not move anything in it. Indirect blocks are
881	 * usually initially laid out in a position between the data
882	 * blocks. Block reallocation would usually destroy locality by
883	 * moving the indirect block out of the way to make room for
884	 * data blocks if we didn't compensate here. We should also do
885	 * this for other indirect block boundaries, but it is only
886	 * important for the first one.
887	 */
888	if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
889		return (ENOSPC);
890	/*
891	 * If the latest allocation is in a new cylinder group, assume that
892	 * the filesystem has decided to move and do not force it back to
893	 * the previous cylinder group.
894	 */
895	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
896	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
897		return (ENOSPC);
898	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
899	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
900		return (ENOSPC);
901	/*
902	 * Get the starting offset and block map for the first block.
903	 */
904	if (start_lvl == 0) {
905		sbap = &ip->i_din2->di_db[0];
906		soff = start_lbn;
907	} else {
908		idp = &start_ap[start_lvl - 1];
909		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
910			brelse(sbp);
911			return (ENOSPC);
912		}
913		sbap = (ufs2_daddr_t *)sbp->b_data;
914		soff = idp->in_off;
915	}
916	/*
917	 * If the block range spans two block maps, get the second map.
918	 */
919	ebap = NULL;
920	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
921		ssize = len;
922	} else {
923#ifdef INVARIANTS
924		if (start_lvl > 0 &&
925		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
926			panic("ffs_reallocblk: start == end");
927#endif
928		ssize = len - (idp->in_off + 1);
929		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
930			goto fail;
931		ebap = (ufs2_daddr_t *)ebp->b_data;
932	}
933	/*
934	 * Find the preferred location for the cluster. If we have not
935	 * previously failed at this endeavor, then follow our standard
936	 * preference calculation. If we have failed at it, then pick up
937	 * where we last ended our search.
938	 */
939	UFS_LOCK(ump);
940	if (ip->i_nextclustercg == -1)
941		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
942	else
943		pref = cgdata(fs, ip->i_nextclustercg);
944	/*
945	 * Search the block map looking for an allocation of the desired size.
946	 * To avoid wasting too much time, we limit the number of cylinder
947	 * groups that we will search.
948	 */
949	cg = dtog(fs, pref);
950	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
951		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
952			break;
953		cg += 1;
954		if (cg >= fs->fs_ncg)
955			cg = 0;
956	}
957	/*
958	 * If we have failed in our search, record where we gave up for
959	 * next time. Otherwise, fall back to our usual search citerion.
960	 */
961	if (newblk == 0) {
962		ip->i_nextclustercg = cg;
963		UFS_UNLOCK(ump);
964		goto fail;
965	}
966	ip->i_nextclustercg = -1;
967	/*
968	 * We have found a new contiguous block.
969	 *
970	 * First we have to replace the old block pointers with the new
971	 * block pointers in the inode and indirect blocks associated
972	 * with the file.
973	 */
974#ifdef DIAGNOSTIC
975	if (prtrealloc)
976		printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
977		    (intmax_t)start_lbn, (intmax_t)end_lbn);
978#endif
979	blkno = newblk;
980	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
981		if (i == ssize) {
982			bap = ebap;
983			soff = -i;
984		}
985#ifdef INVARIANTS
986		if (!ffs_checkfreeblk(ip,
987		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
988			panic("ffs_reallocblks: unallocated block 2");
989		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
990			panic("ffs_reallocblks: alloc mismatch");
991#endif
992#ifdef DIAGNOSTIC
993		if (prtrealloc)
994			printf(" %jd,", (intmax_t)*bap);
995#endif
996		if (DOINGSOFTDEP(vp)) {
997			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
998				softdep_setup_allocdirect(ip, start_lbn + i,
999				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
1000				    buflist->bs_children[i]);
1001			else
1002				softdep_setup_allocindir_page(ip, start_lbn + i,
1003				    i < ssize ? sbp : ebp, soff + i, blkno,
1004				    *bap, buflist->bs_children[i]);
1005		}
1006		*bap++ = blkno;
1007	}
1008	/*
1009	 * Next we must write out the modified inode and indirect blocks.
1010	 * For strict correctness, the writes should be synchronous since
1011	 * the old block values may have been written to disk. In practise
1012	 * they are almost never written, but if we are concerned about
1013	 * strict correctness, the `doasyncfree' flag should be set to zero.
1014	 *
1015	 * The test on `doasyncfree' should be changed to test a flag
1016	 * that shows whether the associated buffers and inodes have
1017	 * been written. The flag should be set when the cluster is
1018	 * started and cleared whenever the buffer or inode is flushed.
1019	 * We can then check below to see if it is set, and do the
1020	 * synchronous write only when it has been cleared.
1021	 */
1022	if (sbap != &ip->i_din2->di_db[0]) {
1023		if (doasyncfree)
1024			bdwrite(sbp);
1025		else
1026			bwrite(sbp);
1027	} else {
1028		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
1029		if (!doasyncfree)
1030			ffs_update(vp, 1);
1031	}
1032	if (ssize < len) {
1033		if (doasyncfree)
1034			bdwrite(ebp);
1035		else
1036			bwrite(ebp);
1037	}
1038	/*
1039	 * Last, free the old blocks and assign the new blocks to the buffers.
1040	 */
1041#ifdef DIAGNOSTIC
1042	if (prtrealloc)
1043		printf("\n\tnew:");
1044#endif
1045	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1046		bp = buflist->bs_children[i];
1047		if (!DOINGSOFTDEP(vp))
1048			/*
1049			 * The usual case is that a set of N-contiguous blocks
1050			 * that was just allocated has been replaced with a
1051			 * set of N+1-contiguous blocks. If they are marked as
1052			 * B_DELWRI, the current contents have not been written
1053			 * to disk. It is possible that the blocks were written
1054			 * earlier, but very uncommon. If the blocks have never
1055			 * been written, there is no need to send a BIO_DELETE
1056			 * for them when they are freed. The gain from avoiding
1057			 * the TRIMs for the common case of unwritten blocks
1058			 * far exceeds the cost of the write amplification for
1059			 * the uncommon case of failing to send a TRIM for the
1060			 * blocks that had been written.
1061			 */
1062			ffs_blkfree(ump, fs, ump->um_devvp,
1063			    dbtofsb(fs, bp->b_blkno),
1064			    fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1065			    (bp->b_flags & B_DELWRI) != 0 ?
1066			    NOTRIM_KEY : SINGLETON_KEY);
1067		bp->b_blkno = fsbtodb(fs, blkno);
1068#ifdef INVARIANTS
1069		if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
1070		    fs->fs_bsize))
1071			panic("ffs_reallocblks: unallocated block 3");
1072#endif
1073#ifdef DIAGNOSTIC
1074		if (prtrealloc)
1075			printf(" %jd,", (intmax_t)blkno);
1076#endif
1077	}
1078#ifdef DIAGNOSTIC
1079	if (prtrealloc) {
1080		prtrealloc--;
1081		printf("\n");
1082	}
1083#endif
1084	return (0);
1085
1086fail:
1087	if (ssize < len)
1088		brelse(ebp);
1089	if (sbap != &ip->i_din2->di_db[0])
1090		brelse(sbp);
1091	return (ENOSPC);
1092}
1093
1094/*
1095 * Allocate an inode in the filesystem.
1096 *
1097 * If allocating a directory, use ffs_dirpref to select the inode.
1098 * If allocating in a directory, the following hierarchy is followed:
1099 *   1) allocate the preferred inode.
1100 *   2) allocate an inode in the same cylinder group.
1101 *   3) quadratically rehash into other cylinder groups, until an
1102 *      available inode is located.
1103 * If no inode preference is given the following hierarchy is used
1104 * to allocate an inode:
1105 *   1) allocate an inode in cylinder group 0.
1106 *   2) quadratically rehash into other cylinder groups, until an
1107 *      available inode is located.
1108 */
1109int
1110ffs_valloc(struct vnode *pvp,
1111	int mode,
1112	struct ucred *cred,
1113	struct vnode **vpp)
1114{
1115	struct inode *pip;
1116	struct fs *fs;
1117	struct inode *ip;
1118	struct timespec ts;
1119	struct ufsmount *ump;
1120	ino_t ino, ipref;
1121	uint64_t cg;
1122	int error, reclaimed;
1123
1124	*vpp = NULL;
1125	pip = VTOI(pvp);
1126	ump = ITOUMP(pip);
1127	fs = ump->um_fs;
1128
1129	UFS_LOCK(ump);
1130	reclaimed = 0;
1131retry:
1132	if (fs->fs_cstotal.cs_nifree == 0)
1133		goto noinodes;
1134
1135	if ((mode & IFMT) == IFDIR)
1136		ipref = ffs_dirpref(pip);
1137	else
1138		ipref = pip->i_number;
1139	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1140		ipref = 0;
1141	cg = ino_to_cg(fs, ipref);
1142	/*
1143	 * Track number of dirs created one after another
1144	 * in a same cg without intervening by files.
1145	 */
1146	if ((mode & IFMT) == IFDIR) {
1147		if (fs->fs_contigdirs[cg] < 255)
1148			fs->fs_contigdirs[cg]++;
1149	} else {
1150		if (fs->fs_contigdirs[cg] > 0)
1151			fs->fs_contigdirs[cg]--;
1152	}
1153	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1154					(allocfcn_t *)ffs_nodealloccg);
1155	if (ino == 0)
1156		goto noinodes;
1157	/*
1158	 * Get rid of the cached old vnode, force allocation of a new vnode
1159	 * for this inode. If this fails, release the allocated ino and
1160	 * return the error.
1161	 */
1162	if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1163	    FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) {
1164		ffs_vfree(pvp, ino, mode);
1165		return (error);
1166	}
1167	/*
1168	 * We got an inode, so check mode and panic if it is already allocated.
1169	 */
1170	ip = VTOI(*vpp);
1171	if (ip->i_mode) {
1172		printf("mode = 0%o, inum = %ju, fs = %s\n",
1173		    ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1174		panic("ffs_valloc: dup alloc");
1175	}
1176	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1177		printf("free inode %s/%ju had %ld blocks\n",
1178		    fs->fs_fsmnt, (intmax_t)ino, (long)DIP(ip, i_blocks));
1179		DIP_SET(ip, i_blocks, 0);
1180	}
1181	ip->i_flags = 0;
1182	DIP_SET(ip, i_flags, 0);
1183	if ((mode & IFMT) == IFDIR)
1184		DIP_SET(ip, i_dirdepth, DIP(pip, i_dirdepth) + 1);
1185	/*
1186	 * Set up a new generation number for this inode.
1187	 */
1188	while (ip->i_gen == 0 || ++ip->i_gen == 0)
1189		ip->i_gen = arc4random();
1190	DIP_SET(ip, i_gen, ip->i_gen);
1191	if (fs->fs_magic == FS_UFS2_MAGIC) {
1192		vfs_timestamp(&ts);
1193		ip->i_din2->di_birthtime = ts.tv_sec;
1194		ip->i_din2->di_birthnsec = ts.tv_nsec;
1195	}
1196	ip->i_flag = 0;
1197	(*vpp)->v_vflag = 0;
1198	(*vpp)->v_type = VNON;
1199	if (fs->fs_magic == FS_UFS2_MAGIC) {
1200		(*vpp)->v_op = &ffs_vnodeops2;
1201		UFS_INODE_SET_FLAG(ip, IN_UFS2);
1202	} else {
1203		(*vpp)->v_op = &ffs_vnodeops1;
1204	}
1205	return (0);
1206noinodes:
1207	if (reclaimed == 0) {
1208		reclaimed = 1;
1209		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1210		goto retry;
1211	}
1212	if (ffs_fsfail_cleanup_locked(ump, 0)) {
1213		UFS_UNLOCK(ump);
1214		return (ENXIO);
1215	}
1216	if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1217		UFS_UNLOCK(ump);
1218		ffs_fserr(fs, pip->i_number, "out of inodes");
1219		uprintf("\n%s: create/symlink failed, no inodes free\n",
1220		    fs->fs_fsmnt);
1221	} else {
1222		UFS_UNLOCK(ump);
1223	}
1224	return (ENOSPC);
1225}
1226
1227/*
1228 * Find a cylinder group to place a directory.
1229 *
1230 * The policy implemented by this algorithm is to allocate a
1231 * directory inode in the same cylinder group as its parent
1232 * directory, but also to reserve space for its files inodes
1233 * and data. Restrict the number of directories which may be
1234 * allocated one after another in the same cylinder group
1235 * without intervening allocation of files.
1236 *
1237 * If we allocate a first level directory then force allocation
1238 * in another cylinder group.
1239 */
1240static ino_t
1241ffs_dirpref(struct inode *pip)
1242{
1243	struct fs *fs;
1244	int cg, prefcg, curcg, dirsize, cgsize;
1245	int depth, range, start, end, numdirs, power, numerator, denominator;
1246	uint64_t avgifree, avgbfree, avgndir, curdirsize;
1247	uint64_t minifree, minbfree, maxndir;
1248	uint64_t maxcontigdirs;
1249
1250	mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1251	fs = ITOFS(pip);
1252
1253	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1254	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1255	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1256
1257	/*
1258	 * Select a preferred cylinder group to place a new directory.
1259	 * If we are near the root of the filesystem we aim to spread
1260	 * them out as much as possible. As we descend deeper from the
1261	 * root we cluster them closer together around their parent as
1262	 * we expect them to be more closely interactive. Higher-level
1263	 * directories like usr/src/sys and usr/src/bin should be
1264	 * separated while the directories in these areas are more
1265	 * likely to be accessed together so should be closer.
1266	 *
1267	 * We pick a range of cylinder groups around the cylinder group
1268	 * of the directory in which we are being created. The size of
1269	 * the range for our search is based on our depth from the root
1270	 * of our filesystem. We then probe that range based on how many
1271	 * directories are already present. The first new directory is at
1272	 * 1/2 (middle) of the range; the second is in the first 1/4 of the
1273	 * range, then at 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, etc.
1274	 */
1275	depth = DIP(pip, i_dirdepth);
1276	range = fs->fs_ncg / (1 << depth);
1277	curcg = ino_to_cg(fs, pip->i_number);
1278	start = curcg - (range / 2);
1279	if (start < 0)
1280		start += fs->fs_ncg;
1281	end = curcg + (range / 2);
1282	if (end >= fs->fs_ncg)
1283		end -= fs->fs_ncg;
1284	numdirs = pip->i_effnlink - 1;
1285	power = fls(numdirs);
1286	numerator = (numdirs & ~(1 << (power - 1))) * 2 + 1;
1287	denominator = 1 << power;
1288	prefcg = (curcg - (range / 2) + (range * numerator / denominator));
1289	if (prefcg < 0)
1290		prefcg += fs->fs_ncg;
1291	if (prefcg >= fs->fs_ncg)
1292		prefcg -= fs->fs_ncg;
1293	/*
1294	 * If this filesystem is not tracking directory depths,
1295	 * revert to the old algorithm.
1296	 */
1297	if (depth == 0 && pip->i_number != UFS_ROOTINO)
1298		prefcg = curcg;
1299
1300	/*
1301	 * Count various limits which used for
1302	 * optimal allocation of a directory inode.
1303	 */
1304	maxndir = min(avgndir + (1 << depth), fs->fs_ipg);
1305	minifree = avgifree - avgifree / 4;
1306	if (minifree < 1)
1307		minifree = 1;
1308	minbfree = avgbfree - avgbfree / 4;
1309	if (minbfree < 1)
1310		minbfree = 1;
1311	cgsize = fs->fs_fsize * fs->fs_fpg;
1312	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1313	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1314	if (dirsize < curdirsize)
1315		dirsize = curdirsize;
1316	if (dirsize <= 0)
1317		maxcontigdirs = 0;		/* dirsize overflowed */
1318	else
1319		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1320	if (fs->fs_avgfpdir > 0)
1321		maxcontigdirs = min(maxcontigdirs,
1322				    fs->fs_ipg / fs->fs_avgfpdir);
1323	if (maxcontigdirs == 0)
1324		maxcontigdirs = 1;
1325
1326	/*
1327	 * Limit number of dirs in one cg and reserve space for
1328	 * regular files, but only if we have no deficit in
1329	 * inodes or space.
1330	 *
1331	 * We are trying to find a suitable cylinder group nearby
1332	 * our preferred cylinder group to place a new directory.
1333	 * We scan from our preferred cylinder group forward looking
1334	 * for a cylinder group that meets our criterion. If we get
1335	 * to the final cylinder group and do not find anything,
1336	 * we start scanning forwards from the beginning of the
1337	 * filesystem. While it might seem sensible to start scanning
1338	 * backwards or even to alternate looking forward and backward,
1339	 * this approach fails badly when the filesystem is nearly full.
1340	 * Specifically, we first search all the areas that have no space
1341	 * and finally try the one preceding that. We repeat this on
1342	 * every request and in the case of the final block end up
1343	 * searching the entire filesystem. By jumping to the front
1344	 * of the filesystem, our future forward searches always look
1345	 * in new cylinder groups so finds every possible block after
1346	 * one pass over the filesystem.
1347	 */
1348	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1349		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1350		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1351		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1352			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1353				return ((ino_t)(fs->fs_ipg * cg));
1354		}
1355	for (cg = 0; cg < prefcg; cg++)
1356		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1357		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1358		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1359			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1360				return ((ino_t)(fs->fs_ipg * cg));
1361		}
1362	/*
1363	 * This is a backstop when we have deficit in space.
1364	 */
1365	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1366		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1367			return ((ino_t)(fs->fs_ipg * cg));
1368	for (cg = 0; cg < prefcg; cg++)
1369		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1370			break;
1371	return ((ino_t)(fs->fs_ipg * cg));
1372}
1373
1374/*
1375 * Select the desired position for the next block in a file.  The file is
1376 * logically divided into sections. The first section is composed of the
1377 * direct blocks and the next fs_maxbpg blocks. Each additional section
1378 * contains fs_maxbpg blocks.
1379 *
1380 * If no blocks have been allocated in the first section, the policy is to
1381 * request a block in the same cylinder group as the inode that describes
1382 * the file. The first indirect is allocated immediately following the last
1383 * direct block and the data blocks for the first indirect immediately
1384 * follow it.
1385 *
1386 * If no blocks have been allocated in any other section, the indirect
1387 * block(s) are allocated in the same cylinder group as its inode in an
1388 * area reserved immediately following the inode blocks. The policy for
1389 * the data blocks is to place them in a cylinder group with a greater than
1390 * average number of free blocks. An appropriate cylinder group is found
1391 * by using a rotor that sweeps the cylinder groups. When a new group of
1392 * blocks is needed, the sweep begins in the cylinder group following the
1393 * cylinder group from which the previous allocation was made. The sweep
1394 * continues until a cylinder group with greater than the average number
1395 * of free blocks is found. If the allocation is for the first block in an
1396 * indirect block or the previous block is a hole, then the information on
1397 * the previous allocation is unavailable; here a best guess is made based
1398 * on the logical block number being allocated.
1399 *
1400 * If a section is already partially allocated, the policy is to
1401 * allocate blocks contiguously within the section if possible.
1402 */
1403ufs2_daddr_t
1404ffs_blkpref_ufs1(struct inode *ip,
1405	ufs_lbn_t lbn,
1406	int indx,
1407	ufs1_daddr_t *bap)
1408{
1409	struct fs *fs;
1410	uint64_t cg, inocg;
1411	uint64_t avgbfree, startcg;
1412	ufs2_daddr_t pref, prevbn;
1413
1414	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1415	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1416	fs = ITOFS(ip);
1417	/*
1418	 * Allocation of indirect blocks is indicated by passing negative
1419	 * values in indx: -1 for single indirect, -2 for double indirect,
1420	 * -3 for triple indirect. As noted below, we attempt to allocate
1421	 * the first indirect inline with the file data. For all later
1422	 * indirect blocks, the data is often allocated in other cylinder
1423	 * groups. However to speed random file access and to speed up
1424	 * fsck, the filesystem reserves the first fs_metaspace blocks
1425	 * (typically half of fs_minfree) of the data area of each cylinder
1426	 * group to hold these later indirect blocks.
1427	 */
1428	inocg = ino_to_cg(fs, ip->i_number);
1429	if (indx < 0) {
1430		/*
1431		 * Our preference for indirect blocks is the zone at the
1432		 * beginning of the inode's cylinder group data area that
1433		 * we try to reserve for indirect blocks.
1434		 */
1435		pref = cgmeta(fs, inocg);
1436		/*
1437		 * If we are allocating the first indirect block, try to
1438		 * place it immediately following the last direct block.
1439		 */
1440		if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1441		    ip->i_din1->di_db[UFS_NDADDR - 1] != 0)
1442			pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1443		return (pref);
1444	}
1445	/*
1446	 * If we are allocating the first data block in the first indirect
1447	 * block and the indirect has been allocated in the data block area,
1448	 * try to place it immediately following the indirect block.
1449	 */
1450	if (lbn == UFS_NDADDR) {
1451		pref = ip->i_din1->di_ib[0];
1452		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1453		    pref < cgbase(fs, inocg + 1))
1454			return (pref + fs->fs_frag);
1455	}
1456	/*
1457	 * If we are at the beginning of a file, or we have already allocated
1458	 * the maximum number of blocks per cylinder group, or we do not
1459	 * have a block allocated immediately preceding us, then we need
1460	 * to decide where to start allocating new blocks.
1461	 */
1462	if (indx ==  0) {
1463		prevbn = 0;
1464	} else {
1465		prevbn = bap[indx - 1];
1466		if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1467		    fs->fs_bsize) != 0)
1468			prevbn = 0;
1469	}
1470	if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1471		/*
1472		 * If we are allocating a directory data block, we want
1473		 * to place it in the metadata area.
1474		 */
1475		if ((ip->i_mode & IFMT) == IFDIR)
1476			return (cgmeta(fs, inocg));
1477		/*
1478		 * Until we fill all the direct and all the first indirect's
1479		 * blocks, we try to allocate in the data area of the inode's
1480		 * cylinder group.
1481		 */
1482		if (lbn < UFS_NDADDR + NINDIR(fs))
1483			return (cgdata(fs, inocg));
1484		/*
1485		 * Find a cylinder with greater than average number of
1486		 * unused data blocks.
1487		 */
1488		if (indx == 0 || prevbn == 0)
1489			startcg = inocg + lbn / fs->fs_maxbpg;
1490		else
1491			startcg = dtog(fs, prevbn) + 1;
1492		startcg %= fs->fs_ncg;
1493		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1494		for (cg = startcg; cg < fs->fs_ncg; cg++)
1495			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1496				fs->fs_cgrotor = cg;
1497				return (cgdata(fs, cg));
1498			}
1499		for (cg = 0; cg <= startcg; cg++)
1500			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1501				fs->fs_cgrotor = cg;
1502				return (cgdata(fs, cg));
1503			}
1504		return (0);
1505	}
1506	/*
1507	 * Otherwise, we just always try to lay things out contiguously.
1508	 */
1509	return (prevbn + fs->fs_frag);
1510}
1511
1512/*
1513 * Same as above, but for UFS2
1514 */
1515ufs2_daddr_t
1516ffs_blkpref_ufs2(struct inode *ip,
1517	ufs_lbn_t lbn,
1518	int indx,
1519	ufs2_daddr_t *bap)
1520{
1521	struct fs *fs;
1522	uint64_t cg, inocg;
1523	uint64_t avgbfree, startcg;
1524	ufs2_daddr_t pref, prevbn;
1525
1526	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1527	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1528	fs = ITOFS(ip);
1529	/*
1530	 * Allocation of indirect blocks is indicated by passing negative
1531	 * values in indx: -1 for single indirect, -2 for double indirect,
1532	 * -3 for triple indirect. As noted below, we attempt to allocate
1533	 * the first indirect inline with the file data. For all later
1534	 * indirect blocks, the data is often allocated in other cylinder
1535	 * groups. However to speed random file access and to speed up
1536	 * fsck, the filesystem reserves the first fs_metaspace blocks
1537	 * (typically half of fs_minfree) of the data area of each cylinder
1538	 * group to hold these later indirect blocks.
1539	 */
1540	inocg = ino_to_cg(fs, ip->i_number);
1541	if (indx < 0) {
1542		/*
1543		 * Our preference for indirect blocks is the zone at the
1544		 * beginning of the inode's cylinder group data area that
1545		 * we try to reserve for indirect blocks.
1546		 */
1547		pref = cgmeta(fs, inocg);
1548		/*
1549		 * If we are allocating the first indirect block, try to
1550		 * place it immediately following the last direct block.
1551		 */
1552		if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1553		    ip->i_din2->di_db[UFS_NDADDR - 1] != 0)
1554			pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1555		return (pref);
1556	}
1557	/*
1558	 * If we are allocating the first data block in the first indirect
1559	 * block and the indirect has been allocated in the data block area,
1560	 * try to place it immediately following the indirect block.
1561	 */
1562	if (lbn == UFS_NDADDR) {
1563		pref = ip->i_din2->di_ib[0];
1564		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1565		    pref < cgbase(fs, inocg + 1))
1566			return (pref + fs->fs_frag);
1567	}
1568	/*
1569	 * If we are at the beginning of a file, or we have already allocated
1570	 * the maximum number of blocks per cylinder group, or we do not
1571	 * have a block allocated immediately preceding us, then we need
1572	 * to decide where to start allocating new blocks.
1573	 */
1574	if (indx ==  0) {
1575		prevbn = 0;
1576	} else {
1577		prevbn = bap[indx - 1];
1578		if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1579		    fs->fs_bsize) != 0)
1580			prevbn = 0;
1581	}
1582	if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1583		/*
1584		 * If we are allocating a directory data block, we want
1585		 * to place it in the metadata area.
1586		 */
1587		if ((ip->i_mode & IFMT) == IFDIR)
1588			return (cgmeta(fs, inocg));
1589		/*
1590		 * Until we fill all the direct and all the first indirect's
1591		 * blocks, we try to allocate in the data area of the inode's
1592		 * cylinder group.
1593		 */
1594		if (lbn < UFS_NDADDR + NINDIR(fs))
1595			return (cgdata(fs, inocg));
1596		/*
1597		 * Find a cylinder with greater than average number of
1598		 * unused data blocks.
1599		 */
1600		if (indx == 0 || prevbn == 0)
1601			startcg = inocg + lbn / fs->fs_maxbpg;
1602		else
1603			startcg = dtog(fs, prevbn) + 1;
1604		startcg %= fs->fs_ncg;
1605		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1606		for (cg = startcg; cg < fs->fs_ncg; cg++)
1607			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1608				fs->fs_cgrotor = cg;
1609				return (cgdata(fs, cg));
1610			}
1611		for (cg = 0; cg <= startcg; cg++)
1612			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1613				fs->fs_cgrotor = cg;
1614				return (cgdata(fs, cg));
1615			}
1616		return (0);
1617	}
1618	/*
1619	 * Otherwise, we just always try to lay things out contiguously.
1620	 */
1621	return (prevbn + fs->fs_frag);
1622}
1623
1624/*
1625 * Implement the cylinder overflow algorithm.
1626 *
1627 * The policy implemented by this algorithm is:
1628 *   1) allocate the block in its requested cylinder group.
1629 *   2) quadratically rehash on the cylinder group number.
1630 *   3) brute force search for a free block.
1631 *
1632 * Must be called with the UFS lock held.  Will release the lock on success
1633 * and return with it held on failure.
1634 */
1635/*VARARGS5*/
1636static ufs2_daddr_t
1637ffs_hashalloc(struct inode *ip,
1638	uint64_t cg,
1639	ufs2_daddr_t pref,
1640	int size,	/* Search size for data blocks, mode for inodes */
1641	int rsize,	/* Real allocated size. */
1642	allocfcn_t *allocator)
1643{
1644	struct fs *fs;
1645	ufs2_daddr_t result;
1646	uint64_t i, icg = cg;
1647
1648	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1649#ifdef INVARIANTS
1650	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1651		panic("ffs_hashalloc: allocation on suspended filesystem");
1652#endif
1653	fs = ITOFS(ip);
1654	/*
1655	 * 1: preferred cylinder group
1656	 */
1657	result = (*allocator)(ip, cg, pref, size, rsize);
1658	if (result)
1659		return (result);
1660	/*
1661	 * 2: quadratic rehash
1662	 */
1663	for (i = 1; i < fs->fs_ncg; i *= 2) {
1664		cg += i;
1665		if (cg >= fs->fs_ncg)
1666			cg -= fs->fs_ncg;
1667		result = (*allocator)(ip, cg, 0, size, rsize);
1668		if (result)
1669			return (result);
1670	}
1671	/*
1672	 * 3: brute force search
1673	 * Note that we start at i == 2, since 0 was checked initially,
1674	 * and 1 is always checked in the quadratic rehash.
1675	 */
1676	cg = (icg + 2) % fs->fs_ncg;
1677	for (i = 2; i < fs->fs_ncg; i++) {
1678		result = (*allocator)(ip, cg, 0, size, rsize);
1679		if (result)
1680			return (result);
1681		cg++;
1682		if (cg == fs->fs_ncg)
1683			cg = 0;
1684	}
1685	return (0);
1686}
1687
1688/*
1689 * Determine whether a fragment can be extended.
1690 *
1691 * Check to see if the necessary fragments are available, and
1692 * if they are, allocate them.
1693 */
1694static ufs2_daddr_t
1695ffs_fragextend(struct inode *ip,
1696	uint64_t cg,
1697	ufs2_daddr_t bprev,
1698	int osize,
1699	int nsize)
1700{
1701	struct fs *fs;
1702	struct cg *cgp;
1703	struct buf *bp;
1704	struct ufsmount *ump;
1705	int nffree;
1706	long bno;
1707	int frags, bbase;
1708	int i, error;
1709	uint8_t *blksfree;
1710
1711	ump = ITOUMP(ip);
1712	fs = ump->um_fs;
1713	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1714		return (0);
1715	frags = numfrags(fs, nsize);
1716	bbase = fragnum(fs, bprev);
1717	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1718		/* cannot extend across a block boundary */
1719		return (0);
1720	}
1721	UFS_UNLOCK(ump);
1722	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1723		ffs_checkcgintegrity(fs, cg, error);
1724		goto fail;
1725	}
1726	bno = dtogd(fs, bprev);
1727	blksfree = cg_blksfree(cgp);
1728	for (i = numfrags(fs, osize); i < frags; i++)
1729		if (isclr(blksfree, bno + i))
1730			goto fail;
1731	/*
1732	 * the current fragment can be extended
1733	 * deduct the count on fragment being extended into
1734	 * increase the count on the remaining fragment (if any)
1735	 * allocate the extended piece
1736	 */
1737	for (i = frags; i < fs->fs_frag - bbase; i++)
1738		if (isclr(blksfree, bno + i))
1739			break;
1740	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1741	if (i != frags)
1742		cgp->cg_frsum[i - frags]++;
1743	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1744		clrbit(blksfree, bno + i);
1745		cgp->cg_cs.cs_nffree--;
1746		nffree++;
1747	}
1748	UFS_LOCK(ump);
1749	fs->fs_cstotal.cs_nffree -= nffree;
1750	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1751	fs->fs_fmod = 1;
1752	ACTIVECLEAR(fs, cg);
1753	UFS_UNLOCK(ump);
1754	if (DOINGSOFTDEP(ITOV(ip)))
1755		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1756		    frags, numfrags(fs, osize));
1757	bdwrite(bp);
1758	return (bprev);
1759
1760fail:
1761	brelse(bp);
1762	UFS_LOCK(ump);
1763	return (0);
1764
1765}
1766
1767/*
1768 * Determine whether a block can be allocated.
1769 *
1770 * Check to see if a block of the appropriate size is available,
1771 * and if it is, allocate it.
1772 */
1773static ufs2_daddr_t
1774ffs_alloccg(struct inode *ip,
1775	uint64_t cg,
1776	ufs2_daddr_t bpref,
1777	int size,
1778	int rsize)
1779{
1780	struct fs *fs;
1781	struct cg *cgp;
1782	struct buf *bp;
1783	struct ufsmount *ump;
1784	ufs1_daddr_t bno;
1785	ufs2_daddr_t blkno;
1786	int i, allocsiz, error, frags;
1787	uint8_t *blksfree;
1788
1789	ump = ITOUMP(ip);
1790	fs = ump->um_fs;
1791	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1792		return (0);
1793	UFS_UNLOCK(ump);
1794	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 ||
1795	   (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1796		ffs_checkcgintegrity(fs, cg, error);
1797		goto fail;
1798	}
1799	if (size == fs->fs_bsize) {
1800		UFS_LOCK(ump);
1801		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1802		ACTIVECLEAR(fs, cg);
1803		UFS_UNLOCK(ump);
1804		bdwrite(bp);
1805		return (blkno);
1806	}
1807	/*
1808	 * check to see if any fragments are already available
1809	 * allocsiz is the size which will be allocated, hacking
1810	 * it down to a smaller size if necessary
1811	 */
1812	blksfree = cg_blksfree(cgp);
1813	frags = numfrags(fs, size);
1814	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1815		if (cgp->cg_frsum[allocsiz] != 0)
1816			break;
1817	if (allocsiz == fs->fs_frag) {
1818		/*
1819		 * no fragments were available, so a block will be
1820		 * allocated, and hacked up
1821		 */
1822		if (cgp->cg_cs.cs_nbfree == 0)
1823			goto fail;
1824		UFS_LOCK(ump);
1825		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1826		ACTIVECLEAR(fs, cg);
1827		UFS_UNLOCK(ump);
1828		bdwrite(bp);
1829		return (blkno);
1830	}
1831	KASSERT(size == rsize,
1832	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1833	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1834	if (bno < 0)
1835		goto fail;
1836	for (i = 0; i < frags; i++)
1837		clrbit(blksfree, bno + i);
1838	cgp->cg_cs.cs_nffree -= frags;
1839	cgp->cg_frsum[allocsiz]--;
1840	if (frags != allocsiz)
1841		cgp->cg_frsum[allocsiz - frags]++;
1842	UFS_LOCK(ump);
1843	fs->fs_cstotal.cs_nffree -= frags;
1844	fs->fs_cs(fs, cg).cs_nffree -= frags;
1845	fs->fs_fmod = 1;
1846	blkno = cgbase(fs, cg) + bno;
1847	ACTIVECLEAR(fs, cg);
1848	UFS_UNLOCK(ump);
1849	if (DOINGSOFTDEP(ITOV(ip)))
1850		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1851	bdwrite(bp);
1852	return (blkno);
1853
1854fail:
1855	brelse(bp);
1856	UFS_LOCK(ump);
1857	return (0);
1858}
1859
1860/*
1861 * Allocate a block in a cylinder group.
1862 *
1863 * This algorithm implements the following policy:
1864 *   1) allocate the requested block.
1865 *   2) allocate a rotationally optimal block in the same cylinder.
1866 *   3) allocate the next available block on the block rotor for the
1867 *      specified cylinder group.
1868 * Note that this routine only allocates fs_bsize blocks; these
1869 * blocks may be fragmented by the routine that allocates them.
1870 */
1871static ufs2_daddr_t
1872ffs_alloccgblk(struct inode *ip,
1873	struct buf *bp,
1874	ufs2_daddr_t bpref,
1875	int size)
1876{
1877	struct fs *fs;
1878	struct cg *cgp;
1879	struct ufsmount *ump;
1880	ufs1_daddr_t bno;
1881	ufs2_daddr_t blkno;
1882	uint8_t *blksfree;
1883	int i, cgbpref;
1884
1885	ump = ITOUMP(ip);
1886	fs = ump->um_fs;
1887	mtx_assert(UFS_MTX(ump), MA_OWNED);
1888	cgp = (struct cg *)bp->b_data;
1889	blksfree = cg_blksfree(cgp);
1890	if (bpref == 0) {
1891		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1892	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1893		/* map bpref to correct zone in this cg */
1894		if (bpref < cgdata(fs, cgbpref))
1895			bpref = cgmeta(fs, cgp->cg_cgx);
1896		else
1897			bpref = cgdata(fs, cgp->cg_cgx);
1898	}
1899	/*
1900	 * if the requested block is available, use it
1901	 */
1902	bno = dtogd(fs, blknum(fs, bpref));
1903	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1904		goto gotit;
1905	/*
1906	 * Take the next available block in this cylinder group.
1907	 */
1908	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1909	if (bno < 0)
1910		return (0);
1911	/* Update cg_rotor only if allocated from the data zone */
1912	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1913		cgp->cg_rotor = bno;
1914gotit:
1915	blkno = fragstoblks(fs, bno);
1916	ffs_clrblock(fs, blksfree, (long)blkno);
1917	ffs_clusteracct(fs, cgp, blkno, -1);
1918	cgp->cg_cs.cs_nbfree--;
1919	fs->fs_cstotal.cs_nbfree--;
1920	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1921	fs->fs_fmod = 1;
1922	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1923	/*
1924	 * If the caller didn't want the whole block free the frags here.
1925	 */
1926	size = numfrags(fs, size);
1927	if (size != fs->fs_frag) {
1928		bno = dtogd(fs, blkno);
1929		for (i = size; i < fs->fs_frag; i++)
1930			setbit(blksfree, bno + i);
1931		i = fs->fs_frag - size;
1932		cgp->cg_cs.cs_nffree += i;
1933		fs->fs_cstotal.cs_nffree += i;
1934		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1935		fs->fs_fmod = 1;
1936		cgp->cg_frsum[i]++;
1937	}
1938	/* XXX Fixme. */
1939	UFS_UNLOCK(ump);
1940	if (DOINGSOFTDEP(ITOV(ip)))
1941		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1942	UFS_LOCK(ump);
1943	return (blkno);
1944}
1945
1946/*
1947 * Determine whether a cluster can be allocated.
1948 *
1949 * We do not currently check for optimal rotational layout if there
1950 * are multiple choices in the same cylinder group. Instead we just
1951 * take the first one that we find following bpref.
1952 */
1953static ufs2_daddr_t
1954ffs_clusteralloc(struct inode *ip,
1955	uint64_t cg,
1956	ufs2_daddr_t bpref,
1957	int len)
1958{
1959	struct fs *fs;
1960	struct cg *cgp;
1961	struct buf *bp;
1962	struct ufsmount *ump;
1963	int i, run, bit, map, got, error;
1964	ufs2_daddr_t bno;
1965	uint8_t *mapp;
1966	int32_t *lp;
1967	uint8_t *blksfree;
1968
1969	ump = ITOUMP(ip);
1970	fs = ump->um_fs;
1971	if (fs->fs_maxcluster[cg] < len)
1972		return (0);
1973	UFS_UNLOCK(ump);
1974	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1975		ffs_checkcgintegrity(fs, cg, error);
1976		UFS_LOCK(ump);
1977		return (0);
1978	}
1979	/*
1980	 * Check to see if a cluster of the needed size (or bigger) is
1981	 * available in this cylinder group.
1982	 */
1983	lp = &cg_clustersum(cgp)[len];
1984	for (i = len; i <= fs->fs_contigsumsize; i++)
1985		if (*lp++ > 0)
1986			break;
1987	if (i > fs->fs_contigsumsize) {
1988		/*
1989		 * This is the first time looking for a cluster in this
1990		 * cylinder group. Update the cluster summary information
1991		 * to reflect the true maximum sized cluster so that
1992		 * future cluster allocation requests can avoid reading
1993		 * the cylinder group map only to find no clusters.
1994		 */
1995		lp = &cg_clustersum(cgp)[len - 1];
1996		for (i = len - 1; i > 0; i--)
1997			if (*lp-- > 0)
1998				break;
1999		UFS_LOCK(ump);
2000		fs->fs_maxcluster[cg] = i;
2001		brelse(bp);
2002		return (0);
2003	}
2004	/*
2005	 * Search the cluster map to find a big enough cluster.
2006	 * We take the first one that we find, even if it is larger
2007	 * than we need as we prefer to get one close to the previous
2008	 * block allocation. We do not search before the current
2009	 * preference point as we do not want to allocate a block
2010	 * that is allocated before the previous one (as we will
2011	 * then have to wait for another pass of the elevator
2012	 * algorithm before it will be read). We prefer to fail and
2013	 * be recalled to try an allocation in the next cylinder group.
2014	 */
2015	if (dtog(fs, bpref) != cg)
2016		bpref = cgdata(fs, cg);
2017	else
2018		bpref = blknum(fs, bpref);
2019	bpref = fragstoblks(fs, dtogd(fs, bpref));
2020	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
2021	map = *mapp++;
2022	bit = 1 << (bpref % NBBY);
2023	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
2024		if ((map & bit) == 0) {
2025			run = 0;
2026		} else {
2027			run++;
2028			if (run == len)
2029				break;
2030		}
2031		if ((got & (NBBY - 1)) != (NBBY - 1)) {
2032			bit <<= 1;
2033		} else {
2034			map = *mapp++;
2035			bit = 1;
2036		}
2037	}
2038	if (got >= cgp->cg_nclusterblks) {
2039		UFS_LOCK(ump);
2040		brelse(bp);
2041		return (0);
2042	}
2043	/*
2044	 * Allocate the cluster that we have found.
2045	 */
2046	blksfree = cg_blksfree(cgp);
2047	for (i = 1; i <= len; i++)
2048		if (!ffs_isblock(fs, blksfree, got - run + i))
2049			panic("ffs_clusteralloc: map mismatch");
2050	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2051	if (dtog(fs, bno) != cg)
2052		panic("ffs_clusteralloc: allocated out of group");
2053	len = blkstofrags(fs, len);
2054	UFS_LOCK(ump);
2055	for (i = 0; i < len; i += fs->fs_frag)
2056		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2057			panic("ffs_clusteralloc: lost block");
2058	ACTIVECLEAR(fs, cg);
2059	UFS_UNLOCK(ump);
2060	bdwrite(bp);
2061	return (bno);
2062}
2063
2064static inline struct buf *
2065getinobuf(struct inode *ip,
2066	uint64_t cg,
2067	uint32_t cginoblk,
2068	int gbflags)
2069{
2070	struct fs *fs;
2071
2072	fs = ITOFS(ip);
2073	return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2074	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2075	    gbflags));
2076}
2077
2078/*
2079 * Synchronous inode initialization is needed only when barrier writes do not
2080 * work as advertised, and will impose a heavy cost on file creation in a newly
2081 * created filesystem.
2082 */
2083static int doasyncinodeinit = 1;
2084SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2085    &doasyncinodeinit, 0,
2086    "Perform inode block initialization using asynchronous writes");
2087
2088/*
2089 * Determine whether an inode can be allocated.
2090 *
2091 * Check to see if an inode is available, and if it is,
2092 * allocate it using the following policy:
2093 *   1) allocate the requested inode.
2094 *   2) allocate the next available inode after the requested
2095 *      inode in the specified cylinder group.
2096 */
2097static ufs2_daddr_t
2098ffs_nodealloccg(struct inode *ip,
2099	uint64_t cg,
2100	ufs2_daddr_t ipref,
2101	int mode,
2102	int unused)
2103{
2104	struct fs *fs;
2105	struct cg *cgp;
2106	struct buf *bp, *ibp;
2107	struct ufsmount *ump;
2108	uint8_t *inosused, *loc;
2109	struct ufs2_dinode *dp2;
2110	int error, start, len, i;
2111	uint32_t old_initediblk;
2112
2113	ump = ITOUMP(ip);
2114	fs = ump->um_fs;
2115check_nifree:
2116	if (fs->fs_cs(fs, cg).cs_nifree == 0)
2117		return (0);
2118	UFS_UNLOCK(ump);
2119	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
2120		ffs_checkcgintegrity(fs, cg, error);
2121		UFS_LOCK(ump);
2122		return (0);
2123	}
2124restart:
2125	if (cgp->cg_cs.cs_nifree == 0) {
2126		brelse(bp);
2127		UFS_LOCK(ump);
2128		return (0);
2129	}
2130	inosused = cg_inosused(cgp);
2131	if (ipref) {
2132		ipref %= fs->fs_ipg;
2133		if (isclr(inosused, ipref))
2134			goto gotit;
2135	}
2136	start = cgp->cg_irotor / NBBY;
2137	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2138	loc = memcchr(&inosused[start], 0xff, len);
2139	if (loc == NULL) {
2140		len = start + 1;
2141		start = 0;
2142		loc = memcchr(&inosused[start], 0xff, len);
2143		if (loc == NULL) {
2144			printf("cg = %ju, irotor = %ld, fs = %s\n",
2145			    (intmax_t)cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2146			panic("ffs_nodealloccg: map corrupted");
2147			/* NOTREACHED */
2148		}
2149	}
2150	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2151gotit:
2152	/*
2153	 * Check to see if we need to initialize more inodes.
2154	 */
2155	if (fs->fs_magic == FS_UFS2_MAGIC &&
2156	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2157	    cgp->cg_initediblk < cgp->cg_niblk) {
2158		old_initediblk = cgp->cg_initediblk;
2159
2160		/*
2161		 * Free the cylinder group lock before writing the
2162		 * initialized inode block.  Entering the
2163		 * babarrierwrite() with the cylinder group lock
2164		 * causes lock order violation between the lock and
2165		 * snaplk.
2166		 *
2167		 * Another thread can decide to initialize the same
2168		 * inode block, but whichever thread first gets the
2169		 * cylinder group lock after writing the newly
2170		 * allocated inode block will update it and the other
2171		 * will realize that it has lost and leave the
2172		 * cylinder group unchanged.
2173		 */
2174		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2175		brelse(bp);
2176		if (ibp == NULL) {
2177			/*
2178			 * The inode block buffer is already owned by
2179			 * another thread, which must initialize it.
2180			 * Wait on the buffer to allow another thread
2181			 * to finish the updates, with dropped cg
2182			 * buffer lock, then retry.
2183			 */
2184			ibp = getinobuf(ip, cg, old_initediblk, 0);
2185			brelse(ibp);
2186			UFS_LOCK(ump);
2187			goto check_nifree;
2188		}
2189		bzero(ibp->b_data, (int)fs->fs_bsize);
2190		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2191		for (i = 0; i < INOPB(fs); i++) {
2192			while (dp2->di_gen == 0)
2193				dp2->di_gen = arc4random();
2194			dp2++;
2195		}
2196
2197		/*
2198		 * Rather than adding a soft updates dependency to ensure
2199		 * that the new inode block is written before it is claimed
2200		 * by the cylinder group map, we just do a barrier write
2201		 * here. The barrier write will ensure that the inode block
2202		 * gets written before the updated cylinder group map can be
2203		 * written. The barrier write should only slow down bulk
2204		 * loading of newly created filesystems.
2205		 */
2206		if (doasyncinodeinit)
2207			babarrierwrite(ibp);
2208		else
2209			bwrite(ibp);
2210
2211		/*
2212		 * After the inode block is written, try to update the
2213		 * cg initediblk pointer.  If another thread beat us
2214		 * to it, then leave it unchanged as the other thread
2215		 * has already set it correctly.
2216		 */
2217		error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
2218		UFS_LOCK(ump);
2219		ACTIVECLEAR(fs, cg);
2220		UFS_UNLOCK(ump);
2221		if (error != 0)
2222			return (error);
2223		if (cgp->cg_initediblk == old_initediblk)
2224			cgp->cg_initediblk += INOPB(fs);
2225		goto restart;
2226	}
2227	cgp->cg_irotor = ipref;
2228	UFS_LOCK(ump);
2229	ACTIVECLEAR(fs, cg);
2230	setbit(inosused, ipref);
2231	cgp->cg_cs.cs_nifree--;
2232	fs->fs_cstotal.cs_nifree--;
2233	fs->fs_cs(fs, cg).cs_nifree--;
2234	fs->fs_fmod = 1;
2235	if ((mode & IFMT) == IFDIR) {
2236		cgp->cg_cs.cs_ndir++;
2237		fs->fs_cstotal.cs_ndir++;
2238		fs->fs_cs(fs, cg).cs_ndir++;
2239	}
2240	UFS_UNLOCK(ump);
2241	if (DOINGSOFTDEP(ITOV(ip)))
2242		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2243	bdwrite(bp);
2244	return ((ino_t)(cg * fs->fs_ipg + ipref));
2245}
2246
2247/*
2248 * Free a block or fragment.
2249 *
2250 * The specified block or fragment is placed back in the
2251 * free map. If a fragment is deallocated, a possible
2252 * block reassembly is checked.
2253 */
2254static void
2255ffs_blkfree_cg(struct ufsmount *ump,
2256	struct fs *fs,
2257	struct vnode *devvp,
2258	ufs2_daddr_t bno,
2259	long size,
2260	ino_t inum,
2261	struct workhead *dephd)
2262{
2263	struct mount *mp;
2264	struct cg *cgp;
2265	struct buf *bp;
2266	daddr_t dbn;
2267	ufs1_daddr_t fragno, cgbno;
2268	int i, blk, frags, bbase, error;
2269	uint64_t cg;
2270	uint8_t *blksfree;
2271	struct cdev *dev;
2272
2273	cg = dtog(fs, bno);
2274	if (devvp->v_type == VREG) {
2275		/* devvp is a snapshot */
2276		MPASS(devvp->v_mount->mnt_data == ump);
2277		dev = ump->um_devvp->v_rdev;
2278	} else if (devvp->v_type == VCHR) {
2279		/*
2280		 * devvp is a normal disk device
2281		 * XXXKIB: devvp is not locked there, v_rdev access depends on
2282		 * busy mount, which prevents mntfs devvp from reclamation.
2283		 */
2284		dev = devvp->v_rdev;
2285	} else
2286		return;
2287#ifdef INVARIANTS
2288	if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2289	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2290		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2291		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2292		    size, fs->fs_fsmnt);
2293		panic("ffs_blkfree_cg: invalid size");
2294	}
2295#endif
2296	if ((uint64_t)bno >= fs->fs_size) {
2297		printf("bad block %jd, ino %ju\n", (intmax_t)bno,
2298		    (intmax_t)inum);
2299		ffs_fserr(fs, inum, "bad block");
2300		return;
2301	}
2302	if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2303		if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2304			return;
2305		/*
2306		 * Would like to just downgrade to read-only. Until that
2307		 * capability is available, just toss the cylinder group
2308		 * update and mark the filesystem as needing to run fsck.
2309		 */
2310		fs->fs_flags |= FS_NEEDSFSCK;
2311		if (devvp->v_type == VREG)
2312			dbn = fragstoblks(fs, cgtod(fs, cg));
2313		else
2314			dbn = fsbtodb(fs, cgtod(fs, cg));
2315		error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2316		KASSERT(error == 0, ("getblkx failed"));
2317		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2318		    numfrags(fs, size), dephd, true);
2319		bp->b_flags |= B_RELBUF | B_NOCACHE;
2320		bp->b_flags &= ~B_CACHE;
2321		bawrite(bp);
2322		return;
2323	}
2324	cgbno = dtogd(fs, bno);
2325	blksfree = cg_blksfree(cgp);
2326	UFS_LOCK(ump);
2327	if (size == fs->fs_bsize) {
2328		fragno = fragstoblks(fs, cgbno);
2329		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2330			if (devvp->v_type == VREG) {
2331				UFS_UNLOCK(ump);
2332				/* devvp is a snapshot */
2333				brelse(bp);
2334				return;
2335			}
2336			printf("dev = %s, block = %jd, fs = %s\n",
2337			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2338			panic("ffs_blkfree_cg: freeing free block");
2339		}
2340		ffs_setblock(fs, blksfree, fragno);
2341		ffs_clusteracct(fs, cgp, fragno, 1);
2342		cgp->cg_cs.cs_nbfree++;
2343		fs->fs_cstotal.cs_nbfree++;
2344		fs->fs_cs(fs, cg).cs_nbfree++;
2345	} else {
2346		bbase = cgbno - fragnum(fs, cgbno);
2347		/*
2348		 * decrement the counts associated with the old frags
2349		 */
2350		blk = blkmap(fs, blksfree, bbase);
2351		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2352		/*
2353		 * deallocate the fragment
2354		 */
2355		frags = numfrags(fs, size);
2356		for (i = 0; i < frags; i++) {
2357			if (isset(blksfree, cgbno + i)) {
2358				printf("dev = %s, block = %jd, fs = %s\n",
2359				    devtoname(dev), (intmax_t)(bno + i),
2360				    fs->fs_fsmnt);
2361				panic("ffs_blkfree_cg: freeing free frag");
2362			}
2363			setbit(blksfree, cgbno + i);
2364		}
2365		cgp->cg_cs.cs_nffree += i;
2366		fs->fs_cstotal.cs_nffree += i;
2367		fs->fs_cs(fs, cg).cs_nffree += i;
2368		/*
2369		 * add back in counts associated with the new frags
2370		 */
2371		blk = blkmap(fs, blksfree, bbase);
2372		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2373		/*
2374		 * if a complete block has been reassembled, account for it
2375		 */
2376		fragno = fragstoblks(fs, bbase);
2377		if (ffs_isblock(fs, blksfree, fragno)) {
2378			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2379			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2380			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2381			ffs_clusteracct(fs, cgp, fragno, 1);
2382			cgp->cg_cs.cs_nbfree++;
2383			fs->fs_cstotal.cs_nbfree++;
2384			fs->fs_cs(fs, cg).cs_nbfree++;
2385		}
2386	}
2387	fs->fs_fmod = 1;
2388	ACTIVECLEAR(fs, cg);
2389	UFS_UNLOCK(ump);
2390	mp = UFSTOVFS(ump);
2391	if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2392		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2393		    numfrags(fs, size), dephd, false);
2394	bdwrite(bp);
2395}
2396
2397/*
2398 * Structures and routines associated with trim management.
2399 *
2400 * The following requests are passed to trim_lookup to indicate
2401 * the actions that should be taken.
2402 */
2403#define	NEW	1	/* if found, error else allocate and hash it */
2404#define	OLD	2	/* if not found, error, else return it */
2405#define	REPLACE	3	/* if not found, error else unhash and reallocate it */
2406#define	DONE	4	/* if not found, error else unhash and return it */
2407#define	SINGLE	5	/* don't look up, just allocate it and don't hash it */
2408
2409MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2410
2411#define	TRIMLIST_HASH(ump, key) \
2412	(&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2413
2414/*
2415 * These structures describe each of the block free requests aggregated
2416 * together to make up a trim request.
2417 */
2418struct trim_blkreq {
2419	TAILQ_ENTRY(trim_blkreq) blkreqlist;
2420	ufs2_daddr_t bno;
2421	long size;
2422	struct workhead *pdephd;
2423	struct workhead dephd;
2424};
2425
2426/*
2427 * Description of a trim request.
2428 */
2429struct ffs_blkfree_trim_params {
2430	TAILQ_HEAD(, trim_blkreq) blklist;
2431	LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2432	struct task task;
2433	struct ufsmount *ump;
2434	struct vnode *devvp;
2435	ino_t inum;
2436	ufs2_daddr_t bno;
2437	long size;
2438	long key;
2439};
2440
2441static void	ffs_blkfree_trim_completed(struct buf *);
2442static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
2443static struct	ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2444		    struct vnode *, ufs2_daddr_t, long, ino_t, uint64_t, int);
2445static void	ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2446
2447/*
2448 * Called on trim completion to start a task to free the associated block(s).
2449 */
2450static void
2451ffs_blkfree_trim_completed(struct buf *bp)
2452{
2453	struct ffs_blkfree_trim_params *tp;
2454
2455	tp = bp->b_fsprivate1;
2456	free(bp, M_TRIM);
2457	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2458	taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2459}
2460
2461/*
2462 * Trim completion task that free associated block(s).
2463 */
2464static void
2465ffs_blkfree_trim_task(void *ctx, int pending)
2466{
2467	struct ffs_blkfree_trim_params *tp;
2468	struct trim_blkreq *blkelm;
2469	struct ufsmount *ump;
2470
2471	tp = ctx;
2472	ump = tp->ump;
2473	while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2474		ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2475		    blkelm->size, tp->inum, blkelm->pdephd);
2476		TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2477		free(blkelm, M_TRIM);
2478	}
2479	vn_finished_secondary_write(UFSTOVFS(ump));
2480	UFS_LOCK(ump);
2481	ump->um_trim_inflight -= 1;
2482	ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2483	UFS_UNLOCK(ump);
2484	free(tp, M_TRIM);
2485}
2486
2487/*
2488 * Lookup a trim request by inode number.
2489 * Allocate if requested (NEW, REPLACE, SINGLE).
2490 */
2491static struct ffs_blkfree_trim_params *
2492trim_lookup(struct ufsmount *ump,
2493	struct vnode *devvp,
2494	ufs2_daddr_t bno,
2495	long size,
2496	ino_t inum,
2497	uint64_t key,
2498	int alloctype)
2499{
2500	struct trimlist_hashhead *tphashhead;
2501	struct ffs_blkfree_trim_params *tp, *ntp;
2502
2503	ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2504	if (alloctype != SINGLE) {
2505		KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2506		UFS_LOCK(ump);
2507		tphashhead = TRIMLIST_HASH(ump, key);
2508		LIST_FOREACH(tp, tphashhead, hashlist)
2509			if (key == tp->key)
2510				break;
2511	}
2512	switch (alloctype) {
2513	case NEW:
2514		KASSERT(tp == NULL, ("trim_lookup: found trim"));
2515		break;
2516	case OLD:
2517		KASSERT(tp != NULL,
2518		    ("trim_lookup: missing call to ffs_blkrelease_start()"));
2519		UFS_UNLOCK(ump);
2520		free(ntp, M_TRIM);
2521		return (tp);
2522	case REPLACE:
2523		KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2524		LIST_REMOVE(tp, hashlist);
2525		/* tp will be freed by caller */
2526		break;
2527	case DONE:
2528		KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2529		LIST_REMOVE(tp, hashlist);
2530		UFS_UNLOCK(ump);
2531		free(ntp, M_TRIM);
2532		return (tp);
2533	}
2534	TAILQ_INIT(&ntp->blklist);
2535	ntp->ump = ump;
2536	ntp->devvp = devvp;
2537	ntp->bno = bno;
2538	ntp->size = size;
2539	ntp->inum = inum;
2540	ntp->key = key;
2541	if (alloctype != SINGLE) {
2542		LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2543		UFS_UNLOCK(ump);
2544	}
2545	return (ntp);
2546}
2547
2548/*
2549 * Dispatch a trim request.
2550 */
2551static void
2552ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp)
2553{
2554	struct ufsmount *ump;
2555	struct mount *mp;
2556	struct buf *bp;
2557
2558	/*
2559	 * Postpone the set of the free bit in the cg bitmap until the
2560	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2561	 * reordering, TRIM might be issued after we reuse the block
2562	 * and write some new data into it.
2563	 */
2564	ump = tp->ump;
2565	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2566	bp->b_iocmd = BIO_DELETE;
2567	bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2568	bp->b_iodone = ffs_blkfree_trim_completed;
2569	bp->b_bcount = tp->size;
2570	bp->b_fsprivate1 = tp;
2571	UFS_LOCK(ump);
2572	ump->um_trim_total += 1;
2573	ump->um_trim_inflight += 1;
2574	ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2575	ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2576	UFS_UNLOCK(ump);
2577
2578	mp = UFSTOVFS(ump);
2579	vn_start_secondary_write(NULL, &mp, 0);
2580	g_vfs_strategy(ump->um_bo, bp);
2581}
2582
2583/*
2584 * Allocate a new key to use to identify a range of blocks.
2585 */
2586uint64_t
2587ffs_blkrelease_start(struct ufsmount *ump,
2588	struct vnode *devvp,
2589	ino_t inum)
2590{
2591	static u_long masterkey;
2592	uint64_t key;
2593
2594	if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2595		return (SINGLETON_KEY);
2596	do {
2597		key = atomic_fetchadd_long(&masterkey, 1);
2598	} while (key < FIRST_VALID_KEY);
2599	(void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2600	return (key);
2601}
2602
2603/*
2604 * Deallocate a key that has been used to identify a range of blocks.
2605 */
2606void
2607ffs_blkrelease_finish(struct ufsmount *ump, uint64_t key)
2608{
2609	struct ffs_blkfree_trim_params *tp;
2610
2611	if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2612		return;
2613	/*
2614	 * If the vfs.ffs.dotrimcons sysctl option is enabled while
2615	 * a file deletion is active, specifically after a call
2616	 * to ffs_blkrelease_start() but before the call to
2617	 * ffs_blkrelease_finish(), ffs_blkrelease_start() will
2618	 * have handed out SINGLETON_KEY rather than starting a
2619	 * collection sequence. Thus if we get a SINGLETON_KEY
2620	 * passed to ffs_blkrelease_finish(), we just return rather
2621	 * than trying to finish the nonexistent sequence.
2622	 */
2623	if (key == SINGLETON_KEY) {
2624#ifdef INVARIANTS
2625		printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n",
2626		    ump->um_mountp->mnt_stat.f_mntonname);
2627#endif
2628		return;
2629	}
2630	/*
2631	 * We are done with sending blocks using this key. Look up the key
2632	 * using the DONE alloctype (in tp) to request that it be unhashed
2633	 * as we will not be adding to it. If the key has never been used,
2634	 * tp->size will be zero, so we can just free tp. Otherwise the call
2635	 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2636	 * tp to be issued (and then tp to be freed).
2637	 */
2638	tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2639	if (tp->size == 0)
2640		free(tp, M_TRIM);
2641	else
2642		ffs_blkfree_sendtrim(tp);
2643}
2644
2645/*
2646 * Setup to free a block or fragment.
2647 *
2648 * Check for snapshots that might want to claim the block.
2649 * If trims are requested, prepare a trim request. Attempt to
2650 * aggregate consecutive blocks into a single trim request.
2651 */
2652void
2653ffs_blkfree(struct ufsmount *ump,
2654	struct fs *fs,
2655	struct vnode *devvp,
2656	ufs2_daddr_t bno,
2657	long size,
2658	ino_t inum,
2659	__enum_uint8(vtype) vtype,
2660	struct workhead *dephd,
2661	uint64_t key)
2662{
2663	struct ffs_blkfree_trim_params *tp, *ntp;
2664	struct trim_blkreq *blkelm;
2665
2666	/*
2667	 * Check to see if a snapshot wants to claim the block.
2668	 * Check that devvp is a normal disk device, not a snapshot,
2669	 * it has a snapshot(s) associated with it, and one of the
2670	 * snapshots wants to claim the block.
2671	 */
2672	if (devvp->v_type == VCHR &&
2673	    (devvp->v_vflag & VV_COPYONWRITE) &&
2674	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2675		return;
2676	}
2677	/*
2678	 * Nothing to delay if TRIM is not required for this block or TRIM
2679	 * is disabled or the operation is performed on a snapshot.
2680	 */
2681	if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2682	    devvp->v_type == VREG) {
2683		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2684		return;
2685	}
2686	blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2687	blkelm->bno = bno;
2688	blkelm->size = size;
2689	if (dephd == NULL) {
2690		blkelm->pdephd = NULL;
2691	} else {
2692		LIST_INIT(&blkelm->dephd);
2693		LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2694		blkelm->pdephd = &blkelm->dephd;
2695	}
2696	if (key == SINGLETON_KEY) {
2697		/*
2698		 * Just a single non-contiguous piece. Use the SINGLE
2699		 * alloctype to return a trim request that will not be
2700		 * hashed for future lookup.
2701		 */
2702		tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2703		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2704		ffs_blkfree_sendtrim(tp);
2705		return;
2706	}
2707	/*
2708	 * The callers of this function are not tracking whether or not
2709	 * the blocks are contiguous. They are just saying that they
2710	 * are freeing a set of blocks. It is this code that determines
2711	 * the pieces of that range that are actually contiguous.
2712	 *
2713	 * Calling ffs_blkrelease_start() will have created an entry
2714	 * that we will use.
2715	 */
2716	tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2717	if (tp->size == 0) {
2718		/*
2719		 * First block of a potential range, set block and size
2720		 * for the trim block.
2721		 */
2722		tp->bno = bno;
2723		tp->size = size;
2724		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2725		return;
2726	}
2727	/*
2728	 * If this block is a continuation of the range (either
2729	 * follows at the end or preceeds in the front) then we
2730	 * add it to the front or back of the list and return.
2731	 *
2732	 * If it is not a continuation of the trim that we were
2733	 * building, using the REPLACE alloctype, we request that
2734	 * the old trim request (still in tp) be unhashed and a
2735	 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2736	 * call causes the block range described by tp to be issued
2737	 * (and then tp to be freed).
2738	 */
2739	if (bno + numfrags(fs, size) == tp->bno) {
2740		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2741		tp->bno = bno;
2742		tp->size += size;
2743		return;
2744	} else if (bno == tp->bno + numfrags(fs, tp->size)) {
2745		TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2746		tp->size += size;
2747		return;
2748	}
2749	ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2750	TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2751	ffs_blkfree_sendtrim(tp);
2752}
2753
2754#ifdef INVARIANTS
2755/*
2756 * Verify allocation of a block or fragment.
2757 * Return 1 if block or fragment is free.
2758 */
2759static int
2760ffs_checkfreeblk(struct inode *ip,
2761	ufs2_daddr_t bno,
2762	long size)
2763{
2764	struct fs *fs;
2765	struct cg *cgp;
2766	struct buf *bp;
2767	ufs1_daddr_t cgbno;
2768	int i, frags, blkalloced;
2769	uint8_t *blksfree;
2770
2771	fs = ITOFS(ip);
2772	if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2773		printf("bsize = %ld, size = %ld, fs = %s\n",
2774		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2775		panic("ffs_checkfreeblk: bad size");
2776	}
2777	if ((uint64_t)bno >= fs->fs_size)
2778		panic("ffs_checkfreeblk: too big block %jd", (intmax_t)bno);
2779	if (ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp) != 0)
2780		return (0);
2781	blksfree = cg_blksfree(cgp);
2782	cgbno = dtogd(fs, bno);
2783	if (size == fs->fs_bsize) {
2784		blkalloced = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2785	} else {
2786		frags = numfrags(fs, size);
2787		for (blkalloced = 0, i = 0; i < frags; i++)
2788			if (isset(blksfree, cgbno + i))
2789				blkalloced++;
2790		if (blkalloced != 0 && blkalloced != frags)
2791			panic("ffs_checkfreeblk: partially free fragment");
2792	}
2793	brelse(bp);
2794	return (blkalloced == 0);
2795}
2796#endif /* INVARIANTS */
2797
2798/*
2799 * Free an inode.
2800 */
2801int
2802ffs_vfree(struct vnode *pvp,
2803	ino_t ino,
2804	int mode)
2805{
2806	struct ufsmount *ump;
2807
2808	if (DOINGSOFTDEP(pvp)) {
2809		softdep_freefile(pvp, ino, mode);
2810		return (0);
2811	}
2812	ump = VFSTOUFS(pvp->v_mount);
2813	return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2814}
2815
2816/*
2817 * Do the actual free operation.
2818 * The specified inode is placed back in the free map.
2819 */
2820int
2821ffs_freefile(struct ufsmount *ump,
2822	struct fs *fs,
2823	struct vnode *devvp,
2824	ino_t ino,
2825	int mode,
2826	struct workhead *wkhd)
2827{
2828	struct cg *cgp;
2829	struct buf *bp;
2830	daddr_t dbn;
2831	int error;
2832	uint64_t cg;
2833	uint8_t *inosused;
2834	struct cdev *dev;
2835	ino_t cgino;
2836
2837	cg = ino_to_cg(fs, ino);
2838	if (devvp->v_type == VREG) {
2839		/* devvp is a snapshot */
2840		MPASS(devvp->v_mount->mnt_data == ump);
2841		dev = ump->um_devvp->v_rdev;
2842	} else if (devvp->v_type == VCHR) {
2843		/* devvp is a normal disk device */
2844		dev = devvp->v_rdev;
2845	} else {
2846		bp = NULL;
2847		return (0);
2848	}
2849	if (ino >= fs->fs_ipg * fs->fs_ncg)
2850		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2851		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2852	if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2853		if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2854			return (error);
2855		/*
2856		 * Would like to just downgrade to read-only. Until that
2857		 * capability is available, just toss the cylinder group
2858		 * update and mark the filesystem as needing to run fsck.
2859		 */
2860		fs->fs_flags |= FS_NEEDSFSCK;
2861		if (devvp->v_type == VREG)
2862			dbn = fragstoblks(fs, cgtod(fs, cg));
2863		else
2864			dbn = fsbtodb(fs, cgtod(fs, cg));
2865		error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2866		KASSERT(error == 0, ("getblkx failed"));
2867		softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, true);
2868		bp->b_flags |= B_RELBUF | B_NOCACHE;
2869		bp->b_flags &= ~B_CACHE;
2870		bawrite(bp);
2871		return (error);
2872	}
2873	inosused = cg_inosused(cgp);
2874	cgino = ino % fs->fs_ipg;
2875	if (isclr(inosused, cgino)) {
2876		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2877		    (uintmax_t)ino, fs->fs_fsmnt);
2878		if (fs->fs_ronly == 0)
2879			panic("ffs_freefile: freeing free inode");
2880	}
2881	clrbit(inosused, cgino);
2882	if (cgino < cgp->cg_irotor)
2883		cgp->cg_irotor = cgino;
2884	cgp->cg_cs.cs_nifree++;
2885	UFS_LOCK(ump);
2886	fs->fs_cstotal.cs_nifree++;
2887	fs->fs_cs(fs, cg).cs_nifree++;
2888	if ((mode & IFMT) == IFDIR) {
2889		cgp->cg_cs.cs_ndir--;
2890		fs->fs_cstotal.cs_ndir--;
2891		fs->fs_cs(fs, cg).cs_ndir--;
2892	}
2893	fs->fs_fmod = 1;
2894	ACTIVECLEAR(fs, cg);
2895	UFS_UNLOCK(ump);
2896	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2897		softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, false);
2898	bdwrite(bp);
2899	return (0);
2900}
2901
2902/*
2903 * Check to see if a file is free.
2904 * Used to check for allocated files in snapshots.
2905 * Return 1 if file is free.
2906 */
2907int
2908ffs_checkfreefile(struct fs *fs,
2909	struct vnode *devvp,
2910	ino_t ino)
2911{
2912	struct cg *cgp;
2913	struct buf *bp;
2914	int ret, error;
2915	uint64_t cg;
2916	uint8_t *inosused;
2917
2918	cg = ino_to_cg(fs, ino);
2919	if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2920		return (1);
2921	if (ino >= fs->fs_ipg * fs->fs_ncg)
2922		return (1);
2923	if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0)
2924		return (1);
2925	inosused = cg_inosused(cgp);
2926	ino %= fs->fs_ipg;
2927	ret = isclr(inosused, ino);
2928	brelse(bp);
2929	return (ret);
2930}
2931
2932/*
2933 * Find a block of the specified size in the specified cylinder group.
2934 *
2935 * It is a panic if a request is made to find a block if none are
2936 * available.
2937 */
2938static ufs1_daddr_t
2939ffs_mapsearch(struct fs *fs,
2940	struct cg *cgp,
2941	ufs2_daddr_t bpref,
2942	int allocsiz)
2943{
2944	ufs1_daddr_t bno;
2945	int start, len, loc, i;
2946	int blk, field, subfield, pos;
2947	uint8_t *blksfree;
2948
2949	/*
2950	 * find the fragment by searching through the free block
2951	 * map for an appropriate bit pattern
2952	 */
2953	if (bpref)
2954		start = dtogd(fs, bpref) / NBBY;
2955	else
2956		start = cgp->cg_frotor / NBBY;
2957	blksfree = cg_blksfree(cgp);
2958	len = howmany(fs->fs_fpg, NBBY) - start;
2959	loc = scanc((uint64_t)len, (uint8_t *)&blksfree[start],
2960		fragtbl[fs->fs_frag],
2961		(uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2962	if (loc == 0) {
2963		len = start + 1;
2964		start = 0;
2965		loc = scanc((uint64_t)len, (uint8_t *)&blksfree[0],
2966			fragtbl[fs->fs_frag],
2967			(uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2968		if (loc == 0) {
2969			printf("start = %d, len = %d, fs = %s\n",
2970			    start, len, fs->fs_fsmnt);
2971			panic("ffs_alloccg: map corrupted");
2972			/* NOTREACHED */
2973		}
2974	}
2975	bno = (start + len - loc) * NBBY;
2976	cgp->cg_frotor = bno;
2977	/*
2978	 * found the byte in the map
2979	 * sift through the bits to find the selected frag
2980	 */
2981	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2982		blk = blkmap(fs, blksfree, bno);
2983		blk <<= 1;
2984		field = around[allocsiz];
2985		subfield = inside[allocsiz];
2986		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2987			if ((blk & field) == subfield)
2988				return (bno + pos);
2989			field <<= 1;
2990			subfield <<= 1;
2991		}
2992	}
2993	printf("bno = %ju, fs = %s\n", (intmax_t)bno, fs->fs_fsmnt);
2994	panic("ffs_alloccg: block not in map");
2995	return (-1);
2996}
2997
2998/*
2999 * Fetch and verify a cylinder group.
3000 */
3001int
3002ffs_getcg(struct fs *fs,
3003	struct vnode *devvp,
3004	uint64_t cg,
3005	int flags,
3006	struct buf **bpp,
3007	struct cg **cgpp)
3008{
3009	struct buf *bp;
3010	struct cg *cgp;
3011	struct mount *mp;
3012	const struct statfs *sfs;
3013	daddr_t blkno;
3014	int error;
3015
3016	*bpp = NULL;
3017	*cgpp = NULL;
3018	if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3019		flags |= GB_CKHASH;
3020	if (devvp->v_type == VCHR) {
3021		blkno = fsbtodb(fs, cgtod(fs, cg));
3022		mp = devvp->v_rdev->si_mountpt;
3023	} else {
3024		blkno = fragstoblks(fs, cgtod(fs, cg));
3025		mp = devvp->v_mount;
3026	}
3027	error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL,
3028	    NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp);
3029	if (error != 0)
3030		return (error);
3031	cgp = (struct cg *)bp->b_data;
3032	if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
3033	    (bp->b_flags & B_CKHASH) != 0 &&
3034	    cgp->cg_ckhash != bp->b_ckhash) {
3035		if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3036		    &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3037			sfs = &mp->mnt_stat;
3038			printf("UFS %s%s (%s) cylinder checkhash failed: "
3039			    "cg %ju, cgp: 0x%x != bp: 0x%jx\n",
3040			    devvp->v_type == VCHR ? "" : "snapshot of ",
3041			    sfs->f_mntfromname, sfs->f_mntonname, (intmax_t)cg,
3042			    cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
3043		}
3044		bp->b_flags &= ~B_CKHASH;
3045		bp->b_flags |= B_INVAL | B_NOCACHE;
3046		brelse(bp);
3047		return (EINTEGRITY);
3048	}
3049	if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
3050		if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3051		    &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3052			sfs = &mp->mnt_stat;
3053			printf("UFS %s%s (%s)",
3054			    devvp->v_type == VCHR ? "" : "snapshot of ",
3055			    sfs->f_mntfromname, sfs->f_mntonname);
3056			if (!cg_chkmagic(cgp))
3057				printf(" cg %ju: bad magic number 0x%x should "
3058				    "be 0x%x\n", (intmax_t)cg, cgp->cg_magic,
3059				    CG_MAGIC);
3060			else
3061				printf(": wrong cylinder group cg %ju != "
3062				    "cgx %u\n", (intmax_t)cg, cgp->cg_cgx);
3063		}
3064		bp->b_flags &= ~B_CKHASH;
3065		bp->b_flags |= B_INVAL | B_NOCACHE;
3066		brelse(bp);
3067		return (EINTEGRITY);
3068	}
3069	bp->b_flags &= ~B_CKHASH;
3070	bp->b_xflags |= BX_BKGRDWRITE;
3071	/*
3072	 * If we are using check hashes on the cylinder group then we want
3073	 * to limit changing the cylinder group time to when we are actually
3074	 * going to write it to disk so that its check hash remains correct
3075	 * in memory. If the CK_CYLGRP flag is set the time is updated in
3076	 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
3077	 * update the time here as we have done historically.
3078	 */
3079	if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3080		bp->b_xflags |= BX_CYLGRP;
3081	else
3082		cgp->cg_old_time = cgp->cg_time = time_second;
3083	*bpp = bp;
3084	*cgpp = cgp;
3085	return (0);
3086}
3087
3088static void
3089ffs_ckhash_cg(struct buf *bp)
3090{
3091	uint32_t ckhash;
3092	struct cg *cgp;
3093
3094	cgp = (struct cg *)bp->b_data;
3095	ckhash = cgp->cg_ckhash;
3096	cgp->cg_ckhash = 0;
3097	bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3098	cgp->cg_ckhash = ckhash;
3099}
3100
3101/*
3102 * Called when a cylinder group read has failed. If an integrity check
3103 * is the cause of failure then the cylinder group will not be usable
3104 * until the filesystem has been unmounted and fsck has been run to
3105 * repair it. To avoid future attempts to allocate resources from the
3106 * cylinder group, its available resources are set to zero in the
3107 * superblock summary information. Since it will appear to have no
3108 * resources available, no further calls will be made to allocate
3109 * resources from it. When resources are freed to the cylinder group
3110 * the resource free routines will find the cylinder group unusable so
3111 * the resource will simply be discarded and thus will not show up in
3112 * the superblock summary information until they are recovered by fsck.
3113 */
3114static void
3115ffs_checkcgintegrity(struct fs *fs,
3116	uint64_t cg,
3117	int error)
3118{
3119
3120	if (error != EINTEGRITY)
3121		return;
3122	fs->fs_cstotal.cs_nffree -= fs->fs_cs(fs, cg).cs_nffree;
3123	fs->fs_cs(fs, cg).cs_nffree = 0;
3124	fs->fs_cstotal.cs_nbfree -= fs->fs_cs(fs, cg).cs_nbfree;
3125	fs->fs_cs(fs, cg).cs_nbfree = 0;
3126	fs->fs_cstotal.cs_nifree -= fs->fs_cs(fs, cg).cs_nifree;
3127	fs->fs_cs(fs, cg).cs_nifree = 0;
3128	fs->fs_maxcluster[cg] = 0;
3129	fs->fs_flags |= FS_NEEDSFSCK;
3130	fs->fs_fmod = 1;
3131}
3132
3133/*
3134 * Fserr prints the name of a filesystem with an error diagnostic.
3135 *
3136 * The form of the error message is:
3137 *	fs: error message
3138 */
3139void
3140ffs_fserr(struct fs *fs,
3141	ino_t inum,
3142	char *cp)
3143{
3144	struct thread *td = curthread;	/* XXX */
3145	struct proc *p = td->td_proc;
3146
3147	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3148	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3149	    fs->fs_fsmnt, cp);
3150}
3151
3152/*
3153 * This function provides the capability for the fsck program to
3154 * update an active filesystem. Sixteen operations are provided:
3155 *
3156 * adjrefcnt(inode, amt) - adjusts the reference count on the
3157 *	specified inode by the specified amount. Under normal
3158 *	operation the count should always go down. Decrementing
3159 *	the count to zero will cause the inode to be freed.
3160 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3161 *	inode by the specified amount.
3162 * adjdepth(inode, amt) - adjust the depth of the specified directory
3163 *	inode by the specified amount.
3164 * setsize(inode, size) - set the size of the inode to the
3165 *	specified size.
3166 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3167 *	adjust the superblock summary.
3168 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3169 *	are marked as free. Inodes should never have to be marked
3170 *	as in use.
3171 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3172 *	are marked as free. Inodes should never have to be marked
3173 *	as in use.
3174 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3175 *	are marked as free. Blocks should never have to be marked
3176 *	as in use.
3177 * setflags(flags, set/clear) - the fs_flags field has the specified
3178 *	flags set (second parameter +1) or cleared (second parameter -1).
3179 * setcwd(dirinode) - set the current directory to dirinode in the
3180 *	filesystem associated with the snapshot.
3181 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3182 *	in the current directory is oldvalue then change it to newvalue.
3183 * unlink(nameptr, oldvalue) - Verify that the inode number associated
3184 *	with nameptr in the current directory is oldvalue then unlink it.
3185 */
3186
3187static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3188
3189SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt,
3190    CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT,
3191    0, 0, sysctl_ffs_fsck, "S,fsck",
3192    "Adjust Inode Reference Count");
3193
3194static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt,
3195    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3196    "Adjust Inode Used Blocks Count");
3197
3198static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_DEPTH, adjdepth,
3199    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3200    "Adjust Directory Inode Depth");
3201
3202static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize,
3203    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3204    "Set the inode size");
3205
3206static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir,
3207    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3208    "Adjust number of directories");
3209
3210static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree,
3211    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3212    "Adjust number of free blocks");
3213
3214static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree,
3215    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3216    "Adjust number of free inodes");
3217
3218static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree,
3219    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3220    "Adjust number of free frags");
3221
3222static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters,
3223    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3224    "Adjust number of free clusters");
3225
3226static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs,
3227    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3228    "Free Range of Directory Inodes");
3229
3230static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles,
3231    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3232    "Free Range of File Inodes");
3233
3234static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks,
3235    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3236    "Free Range of Blocks");
3237
3238static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags,
3239    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3240    "Change Filesystem Flags");
3241
3242static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd,
3243    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3244    "Set Current Working Directory");
3245
3246static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot,
3247    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3248    "Change Value of .. Entry");
3249
3250static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink,
3251    CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3252    "Unlink a Duplicate Name");
3253
3254#ifdef DIAGNOSTIC
3255static int fsckcmds = 0;
3256SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0,
3257	"print out fsck_ffs-based filesystem update commands");
3258#endif /* DIAGNOSTIC */
3259
3260static int
3261sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3262{
3263	struct thread *td = curthread;
3264	struct fsck_cmd cmd;
3265	struct ufsmount *ump;
3266	struct vnode *vp, *dvp, *fdvp;
3267	struct inode *ip, *dp;
3268	struct mount *mp;
3269	struct fs *fs;
3270	struct pwd *pwd;
3271	ufs2_daddr_t blkno;
3272	long blkcnt, blksize;
3273	uint64_t key;
3274	struct file *fp;
3275	cap_rights_t rights;
3276	int filetype, error;
3277
3278	if (req->newptr == NULL || req->newlen > sizeof(cmd))
3279		return (EBADRPC);
3280	if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0)
3281		return (error);
3282	if (cmd.version != FFS_CMD_VERSION)
3283		return (ERPCMISMATCH);
3284	if ((error = getvnode(td, cmd.handle,
3285	    cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0)
3286		return (error);
3287	vp = fp->f_vnode;
3288	if (vp->v_type != VREG && vp->v_type != VDIR) {
3289		fdrop(fp, td);
3290		return (EINVAL);
3291	}
3292	vn_start_write(vp, &mp, V_WAIT);
3293	if (mp == NULL ||
3294	    strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3295		vn_finished_write(mp);
3296		fdrop(fp, td);
3297		return (EINVAL);
3298	}
3299	ump = VFSTOUFS(mp);
3300	if (mp->mnt_flag & MNT_RDONLY) {
3301		vn_finished_write(mp);
3302		fdrop(fp, td);
3303		return (EROFS);
3304	}
3305	fs = ump->um_fs;
3306	filetype = IFREG;
3307
3308	switch (oidp->oid_number) {
3309	case FFS_SET_FLAGS:
3310#ifdef DIAGNOSTIC
3311		if (fsckcmds)
3312			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3313			    cmd.size > 0 ? "set" : "clear");
3314#endif /* DIAGNOSTIC */
3315		if (cmd.size > 0)
3316			fs->fs_flags |= (long)cmd.value;
3317		else
3318			fs->fs_flags &= ~(long)cmd.value;
3319		break;
3320
3321	case FFS_ADJ_REFCNT:
3322#ifdef DIAGNOSTIC
3323		if (fsckcmds) {
3324			printf("%s: adjust inode %jd link count by %jd\n",
3325			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3326			    (intmax_t)cmd.size);
3327		}
3328#endif /* DIAGNOSTIC */
3329		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3330			break;
3331		ip = VTOI(vp);
3332		ip->i_nlink += cmd.size;
3333		DIP_SET_NLINK(ip, ip->i_nlink);
3334		ip->i_effnlink += cmd.size;
3335		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3336		error = ffs_update(vp, 1);
3337		if (DOINGSOFTDEP(vp))
3338			softdep_change_linkcnt(ip);
3339		vput(vp);
3340		break;
3341
3342	case FFS_ADJ_BLKCNT:
3343#ifdef DIAGNOSTIC
3344		if (fsckcmds) {
3345			printf("%s: adjust inode %jd block count by %jd\n",
3346			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3347			    (intmax_t)cmd.size);
3348		}
3349#endif /* DIAGNOSTIC */
3350		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3351			break;
3352		ip = VTOI(vp);
3353		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3354		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3355		error = ffs_update(vp, 1);
3356		vput(vp);
3357		break;
3358
3359	case FFS_ADJ_DEPTH:
3360#ifdef DIAGNOSTIC
3361		if (fsckcmds) {
3362			printf("%s: adjust directory inode %jd depth by %jd\n",
3363			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3364			    (intmax_t)cmd.size);
3365		}
3366#endif /* DIAGNOSTIC */
3367		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3368			break;
3369		if (vp->v_type != VDIR) {
3370			vput(vp);
3371			error = ENOTDIR;
3372			break;
3373		}
3374		ip = VTOI(vp);
3375		DIP_SET(ip, i_dirdepth, DIP(ip, i_dirdepth) + cmd.size);
3376		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3377		error = ffs_update(vp, 1);
3378		vput(vp);
3379		break;
3380
3381	case FFS_SET_SIZE:
3382#ifdef DIAGNOSTIC
3383		if (fsckcmds) {
3384			printf("%s: set inode %jd size to %jd\n",
3385			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3386			    (intmax_t)cmd.size);
3387		}
3388#endif /* DIAGNOSTIC */
3389		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3390			break;
3391		ip = VTOI(vp);
3392		DIP_SET(ip, i_size, cmd.size);
3393		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED);
3394		error = ffs_update(vp, 1);
3395		vput(vp);
3396		break;
3397
3398	case FFS_DIR_FREE:
3399		filetype = IFDIR;
3400		/* fall through */
3401
3402	case FFS_FILE_FREE:
3403#ifdef DIAGNOSTIC
3404		if (fsckcmds) {
3405			if (cmd.size == 1)
3406				printf("%s: free %s inode %ju\n",
3407				    mp->mnt_stat.f_mntonname,
3408				    filetype == IFDIR ? "directory" : "file",
3409				    (uintmax_t)cmd.value);
3410			else
3411				printf("%s: free %s inodes %ju-%ju\n",
3412				    mp->mnt_stat.f_mntonname,
3413				    filetype == IFDIR ? "directory" : "file",
3414				    (uintmax_t)cmd.value,
3415				    (uintmax_t)(cmd.value + cmd.size - 1));
3416		}
3417#endif /* DIAGNOSTIC */
3418		while (cmd.size > 0) {
3419			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3420			    cmd.value, filetype, NULL)))
3421				break;
3422			cmd.size -= 1;
3423			cmd.value += 1;
3424		}
3425		break;
3426
3427	case FFS_BLK_FREE:
3428#ifdef DIAGNOSTIC
3429		if (fsckcmds) {
3430			if (cmd.size == 1)
3431				printf("%s: free block %jd\n",
3432				    mp->mnt_stat.f_mntonname,
3433				    (intmax_t)cmd.value);
3434			else
3435				printf("%s: free blocks %jd-%jd\n",
3436				    mp->mnt_stat.f_mntonname,
3437				    (intmax_t)cmd.value,
3438				    (intmax_t)cmd.value + cmd.size - 1);
3439		}
3440#endif /* DIAGNOSTIC */
3441		blkno = cmd.value;
3442		blkcnt = cmd.size;
3443		blksize = fs->fs_frag - (blkno % fs->fs_frag);
3444		key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3445		while (blkcnt > 0) {
3446			if (blkcnt < blksize)
3447				blksize = blkcnt;
3448			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3449			    blksize * fs->fs_fsize, UFS_ROOTINO,
3450			    VDIR, NULL, key);
3451			blkno += blksize;
3452			blkcnt -= blksize;
3453			blksize = fs->fs_frag;
3454		}
3455		ffs_blkrelease_finish(ump, key);
3456		break;
3457
3458	/*
3459	 * Adjust superblock summaries.  fsck(8) is expected to
3460	 * submit deltas when necessary.
3461	 */
3462	case FFS_ADJ_NDIR:
3463#ifdef DIAGNOSTIC
3464		if (fsckcmds) {
3465			printf("%s: adjust number of directories by %jd\n",
3466			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3467		}
3468#endif /* DIAGNOSTIC */
3469		fs->fs_cstotal.cs_ndir += cmd.value;
3470		break;
3471
3472	case FFS_ADJ_NBFREE:
3473#ifdef DIAGNOSTIC
3474		if (fsckcmds) {
3475			printf("%s: adjust number of free blocks by %+jd\n",
3476			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3477		}
3478#endif /* DIAGNOSTIC */
3479		fs->fs_cstotal.cs_nbfree += cmd.value;
3480		break;
3481
3482	case FFS_ADJ_NIFREE:
3483#ifdef DIAGNOSTIC
3484		if (fsckcmds) {
3485			printf("%s: adjust number of free inodes by %+jd\n",
3486			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3487		}
3488#endif /* DIAGNOSTIC */
3489		fs->fs_cstotal.cs_nifree += cmd.value;
3490		break;
3491
3492	case FFS_ADJ_NFFREE:
3493#ifdef DIAGNOSTIC
3494		if (fsckcmds) {
3495			printf("%s: adjust number of free frags by %+jd\n",
3496			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3497		}
3498#endif /* DIAGNOSTIC */
3499		fs->fs_cstotal.cs_nffree += cmd.value;
3500		break;
3501
3502	case FFS_ADJ_NUMCLUSTERS:
3503#ifdef DIAGNOSTIC
3504		if (fsckcmds) {
3505			printf("%s: adjust number of free clusters by %+jd\n",
3506			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3507		}
3508#endif /* DIAGNOSTIC */
3509		fs->fs_cstotal.cs_numclusters += cmd.value;
3510		break;
3511
3512	case FFS_SET_CWD:
3513#ifdef DIAGNOSTIC
3514		if (fsckcmds) {
3515			printf("%s: set current directory to inode %jd\n",
3516			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3517		}
3518#endif /* DIAGNOSTIC */
3519		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3520			break;
3521		AUDIT_ARG_VNODE1(vp);
3522		if ((error = change_dir(vp, td)) != 0) {
3523			vput(vp);
3524			break;
3525		}
3526		VOP_UNLOCK(vp);
3527		pwd_chdir(td, vp);
3528		break;
3529
3530	case FFS_SET_DOTDOT:
3531#ifdef DIAGNOSTIC
3532		if (fsckcmds) {
3533			printf("%s: change .. in cwd from %jd to %jd\n",
3534			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3535			    (intmax_t)cmd.size);
3536		}
3537#endif /* DIAGNOSTIC */
3538		/*
3539		 * First we have to get and lock the parent directory
3540		 * to which ".." points.
3541		 */
3542		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3543		if (error)
3544			break;
3545		/*
3546		 * Now we get and lock the child directory containing "..".
3547		 */
3548		pwd = pwd_hold(td);
3549		dvp = pwd->pwd_cdir;
3550		if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) {
3551			vput(fdvp);
3552			pwd_drop(pwd);
3553			break;
3554		}
3555		dp = VTOI(dvp);
3556		SET_I_OFFSET(dp, 12);	/* XXX mastertemplate.dot_reclen */
3557		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3558		    DT_DIR, 0);
3559		cache_purge(fdvp);
3560		cache_purge(dvp);
3561		vput(dvp);
3562		vput(fdvp);
3563		pwd_drop(pwd);
3564		break;
3565
3566	case FFS_UNLINK:
3567#ifdef DIAGNOSTIC
3568		if (fsckcmds) {
3569			char buf[32];
3570
3571			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3572				strncpy(buf, "Name_too_long", 32);
3573			printf("%s: unlink %s (inode %jd)\n",
3574			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3575		}
3576#endif /* DIAGNOSTIC */
3577		/*
3578		 * kern_funlinkat will do its own start/finish writes and
3579		 * they do not nest, so drop ours here. Setting mp == NULL
3580		 * indicates that vn_finished_write is not needed down below.
3581		 */
3582		vn_finished_write(mp);
3583		mp = NULL;
3584		error = kern_funlinkat(td, AT_FDCWD,
3585		    (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE,
3586		    0, (ino_t)cmd.size);
3587		break;
3588
3589	default:
3590#ifdef DIAGNOSTIC
3591		if (fsckcmds) {
3592			printf("Invalid request %d from fsck\n",
3593			    oidp->oid_number);
3594		}
3595#endif /* DIAGNOSTIC */
3596		error = EINVAL;
3597		break;
3598	}
3599	fdrop(fp, td);
3600	vn_finished_write(mp);
3601	return (error);
3602}
3603