1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2008-2015 Nathan Whitehorn
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30/*
31 * Manages physical address maps.
32 *
33 * Since the information managed by this module is also stored by the
34 * logical address mapping module, this module may throw away valid virtual
35 * to physical mappings at almost any time.  However, invalidations of
36 * mappings must be done as requested.
37 *
38 * In order to cope with hardware architectures which make virtual to
39 * physical map invalidates expensive, this module may delay invalidate
40 * reduced protection operations until such time as they are actually
41 * necessary.  This module is given full information as to which processors
42 * are currently using which maps, and to when physical maps must be made
43 * correct.
44 */
45
46#include "opt_kstack_pages.h"
47
48#include <sys/param.h>
49#include <sys/kernel.h>
50#include <sys/conf.h>
51#include <sys/queue.h>
52#include <sys/cpuset.h>
53#include <sys/kerneldump.h>
54#include <sys/ktr.h>
55#include <sys/lock.h>
56#include <sys/msgbuf.h>
57#include <sys/malloc.h>
58#include <sys/mman.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/rwlock.h>
62#include <sys/sched.h>
63#include <sys/sysctl.h>
64#include <sys/systm.h>
65#include <sys/vmmeter.h>
66#include <sys/smp.h>
67#include <sys/reboot.h>
68
69#include <sys/kdb.h>
70
71#include <dev/ofw/openfirm.h>
72
73#include <vm/vm.h>
74#include <vm/pmap.h>
75#include <vm/vm_param.h>
76#include <vm/vm_kern.h>
77#include <vm/vm_page.h>
78#include <vm/vm_phys.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_extern.h>
82#include <vm/vm_pageout.h>
83#include <vm/vm_dumpset.h>
84#include <vm/vm_reserv.h>
85#include <vm/uma.h>
86
87#include <machine/_inttypes.h>
88#include <machine/cpu.h>
89#include <machine/ifunc.h>
90#include <machine/platform.h>
91#include <machine/frame.h>
92#include <machine/md_var.h>
93#include <machine/psl.h>
94#include <machine/bat.h>
95#include <machine/hid.h>
96#include <machine/pte.h>
97#include <machine/sr.h>
98#include <machine/trap.h>
99#include <machine/mmuvar.h>
100
101#include "mmu_oea64.h"
102
103void moea64_release_vsid(uint64_t vsid);
104uintptr_t moea64_get_unique_vsid(void);
105
106#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
107#define ENABLE_TRANS(msr)	mtmsr(msr)
108
109#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
110#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
111#define	VSID_HASH_MASK		0x0000007fffffffffULL
112
113/*
114 * Locking semantics:
115 *
116 * There are two locks of interest: the page locks and the pmap locks, which
117 * protect their individual PVO lists and are locked in that order. The contents
118 * of all PVO entries are protected by the locks of their respective pmaps.
119 * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
120 * into any list.
121 *
122 */
123
124#define PV_LOCK_COUNT	PA_LOCK_COUNT
125static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
126
127/*
128 * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
129 * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
130 * index at (N << 45).
131 */
132#ifdef __powerpc64__
133#define PV_LOCK_IDX(pa)	((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT)
134#else
135#define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
136#endif
137#define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
138#define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
139#define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
140#define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
141#define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
142#define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
143#define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
144
145/* Superpage PV lock */
146
147#define	PV_LOCK_SIZE		(1<<PDRSHIFT)
148
149static __always_inline void
150moea64_sp_pv_lock(vm_paddr_t pa)
151{
152	vm_paddr_t pa_end;
153
154	/* Note: breaking when pa_end is reached to avoid overflows */
155	pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE);
156	for (;;) {
157		mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
158		if (pa == pa_end)
159			break;
160		pa += PV_LOCK_SIZE;
161	}
162}
163
164static __always_inline void
165moea64_sp_pv_unlock(vm_paddr_t pa)
166{
167	vm_paddr_t pa_end;
168
169	/* Note: breaking when pa_end is reached to avoid overflows */
170	pa_end = pa;
171	pa += HPT_SP_SIZE - PV_LOCK_SIZE;
172	for (;;) {
173		mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
174		if (pa == pa_end)
175			break;
176		pa -= PV_LOCK_SIZE;
177	}
178}
179
180#define	SP_PV_LOCK_ALIGNED(pa)		moea64_sp_pv_lock(pa)
181#define	SP_PV_UNLOCK_ALIGNED(pa)	moea64_sp_pv_unlock(pa)
182#define	SP_PV_LOCK(pa)			moea64_sp_pv_lock((pa) & ~HPT_SP_MASK)
183#define	SP_PV_UNLOCK(pa)		moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK)
184#define	SP_PV_PAGE_LOCK(m)		SP_PV_LOCK(VM_PAGE_TO_PHYS(m))
185#define	SP_PV_PAGE_UNLOCK(m)		SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m))
186
187struct ofw_map {
188	cell_t	om_va;
189	cell_t	om_len;
190	uint64_t om_pa;
191	cell_t	om_mode;
192};
193
194extern unsigned char _etext[];
195extern unsigned char _end[];
196
197extern void *slbtrap, *slbtrapend;
198
199/*
200 * Map of physical memory regions.
201 */
202static struct	mem_region *regions;
203static struct	mem_region *pregions;
204static struct	numa_mem_region *numa_pregions;
205static u_int	phys_avail_count;
206static int	regions_sz, pregions_sz, numapregions_sz;
207
208extern void bs_remap_earlyboot(void);
209
210/*
211 * Lock for the SLB tables.
212 */
213struct mtx	moea64_slb_mutex;
214
215/*
216 * PTEG data.
217 */
218u_long		moea64_pteg_count;
219u_long		moea64_pteg_mask;
220
221/*
222 * PVO data.
223 */
224
225uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
226
227static struct	pvo_entry *moea64_bpvo_pool;
228static int	moea64_bpvo_pool_index = 0;
229static int	moea64_bpvo_pool_size = 0;
230SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
231    &moea64_bpvo_pool_index, 0, "");
232
233#define	BPVO_POOL_SIZE	327680 /* Sensible historical default value */
234#define	BPVO_POOL_EXPANSION_FACTOR	3
235#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
236#ifdef __powerpc64__
237#define	NVSIDS		(NPMAPS * 16)
238#define VSID_HASHMASK	0xffffffffUL
239#else
240#define NVSIDS		NPMAPS
241#define VSID_HASHMASK	0xfffffUL
242#endif
243static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
244
245static bool	moea64_initialized = false;
246
247#ifdef MOEA64_STATS
248/*
249 * Statistics.
250 */
251u_int	moea64_pte_valid = 0;
252u_int	moea64_pte_overflow = 0;
253u_int	moea64_pvo_entries = 0;
254u_int	moea64_pvo_enter_calls = 0;
255u_int	moea64_pvo_remove_calls = 0;
256SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
257    &moea64_pte_valid, 0, "");
258SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
259    &moea64_pte_overflow, 0, "");
260SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
261    &moea64_pvo_entries, 0, "");
262SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
263    &moea64_pvo_enter_calls, 0, "");
264SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
265    &moea64_pvo_remove_calls, 0, "");
266#endif
267
268vm_offset_t	moea64_scratchpage_va[2];
269struct pvo_entry *moea64_scratchpage_pvo[2];
270struct	mtx	moea64_scratchpage_mtx;
271
272uint64_t 	moea64_large_page_mask = 0;
273uint64_t	moea64_large_page_size = 0;
274int		moea64_large_page_shift = 0;
275bool		moea64_has_lp_4k_16m = false;
276
277/*
278 * PVO calls.
279 */
280static int	moea64_pvo_enter(struct pvo_entry *pvo,
281		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
282static void	moea64_pvo_remove_from_pmap(struct pvo_entry *pvo);
283static void	moea64_pvo_remove_from_page(struct pvo_entry *pvo);
284static void	moea64_pvo_remove_from_page_locked(
285		    struct pvo_entry *pvo, vm_page_t m);
286static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
287
288/*
289 * Utility routines.
290 */
291static bool		moea64_query_bit(vm_page_t, uint64_t);
292static u_int		moea64_clear_bit(vm_page_t, uint64_t);
293static void		moea64_kremove(vm_offset_t);
294static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
295			    vm_paddr_t pa, vm_size_t sz);
296static void		moea64_pmap_init_qpages(void);
297static void		moea64_remove_locked(pmap_t, vm_offset_t,
298			    vm_offset_t, struct pvo_dlist *);
299
300/*
301 * Superpages data and routines.
302 */
303
304/*
305 * PVO flags (in vaddr) that must match for promotion to succeed.
306 * Note that protection bits are checked separately, as they reside in
307 * another field.
308 */
309#define	PVO_FLAGS_PROMOTE	(PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID)
310
311#define	PVO_IS_SP(pvo)		(((pvo)->pvo_vaddr & PVO_LARGE) && \
312				 (pvo)->pvo_pmap != kernel_pmap)
313
314/* Get physical address from PVO. */
315#define	PVO_PADDR(pvo)		moea64_pvo_paddr(pvo)
316
317/* MD page flag indicating that the page is a superpage. */
318#define	MDPG_ATTR_SP		0x40000000
319
320SYSCTL_DECL(_vm_pmap);
321
322static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0,
323    "SP page mapping counters");
324
325static u_long sp_demotions;
326SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD,
327    &sp_demotions, 0, "SP page demotions");
328
329static u_long sp_mappings;
330SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD,
331    &sp_mappings, 0, "SP page mappings");
332
333static u_long sp_p_failures;
334SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD,
335    &sp_p_failures, 0, "SP page promotion failures");
336
337static u_long sp_p_fail_pa;
338SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD,
339    &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match");
340
341static u_long sp_p_fail_flags;
342SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD,
343    &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match");
344
345static u_long sp_p_fail_prot;
346SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD,
347    &sp_p_fail_prot, 0,
348    "SP page promotion failure: page protections don't match");
349
350static u_long sp_p_fail_wimg;
351SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD,
352    &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match");
353
354static u_long sp_promotions;
355SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD,
356    &sp_promotions, 0, "SP page promotions");
357
358static bool moea64_ps_enabled(pmap_t);
359static void moea64_align_superpage(vm_object_t, vm_ooffset_t,
360    vm_offset_t *, vm_size_t);
361
362static int moea64_sp_enter(pmap_t pmap, vm_offset_t va,
363    vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind);
364static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp,
365    struct pvo_dlist *tofree);
366
367static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m);
368static void moea64_sp_demote_aligned(struct pvo_entry *sp);
369static void moea64_sp_demote(struct pvo_entry *pvo);
370
371static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp);
372static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp,
373    vm_prot_t prot);
374
375static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit);
376static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m,
377    uint64_t ptebit);
378
379static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo,
380    vm_offset_t sva, vm_offset_t eva);
381
382/*
383 * Kernel MMU interface
384 */
385void moea64_clear_modify(vm_page_t);
386void moea64_copy_page(vm_page_t, vm_page_t);
387void moea64_copy_page_dmap(vm_page_t, vm_page_t);
388void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
389    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
390void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
391    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
392int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
393    u_int flags, int8_t psind);
394void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
395    vm_prot_t);
396void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
397vm_paddr_t moea64_extract(pmap_t, vm_offset_t);
398vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
399void moea64_init(void);
400bool moea64_is_modified(vm_page_t);
401bool moea64_is_prefaultable(pmap_t, vm_offset_t);
402bool moea64_is_referenced(vm_page_t);
403int moea64_ts_referenced(vm_page_t);
404vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
405bool moea64_page_exists_quick(pmap_t, vm_page_t);
406void moea64_page_init(vm_page_t);
407int moea64_page_wired_mappings(vm_page_t);
408int moea64_pinit(pmap_t);
409void moea64_pinit0(pmap_t);
410void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
411void moea64_qenter(vm_offset_t, vm_page_t *, int);
412void moea64_qremove(vm_offset_t, int);
413void moea64_release(pmap_t);
414void moea64_remove(pmap_t, vm_offset_t, vm_offset_t);
415void moea64_remove_pages(pmap_t);
416void moea64_remove_all(vm_page_t);
417void moea64_remove_write(vm_page_t);
418void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t);
419void moea64_zero_page(vm_page_t);
420void moea64_zero_page_dmap(vm_page_t);
421void moea64_zero_page_area(vm_page_t, int, int);
422void moea64_activate(struct thread *);
423void moea64_deactivate(struct thread *);
424void *moea64_mapdev(vm_paddr_t, vm_size_t);
425void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
426void moea64_unmapdev(void *, vm_size_t);
427vm_paddr_t moea64_kextract(vm_offset_t);
428void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma);
429void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
430void moea64_kenter(vm_offset_t, vm_paddr_t);
431int moea64_dev_direct_mapped(vm_paddr_t, vm_size_t);
432static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t);
433void moea64_dumpsys_map(vm_paddr_t pa, size_t sz,
434    void **va);
435void moea64_scan_init(void);
436vm_offset_t moea64_quick_enter_page(vm_page_t m);
437vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m);
438void moea64_quick_remove_page(vm_offset_t addr);
439bool moea64_page_is_mapped(vm_page_t m);
440static int moea64_map_user_ptr(pmap_t pm,
441    volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
442static int moea64_decode_kernel_ptr(vm_offset_t addr,
443    int *is_user, vm_offset_t *decoded_addr);
444static size_t moea64_scan_pmap(struct bitset *dump_bitset);
445static void *moea64_dump_pmap_init(unsigned blkpgs);
446#ifdef __powerpc64__
447static void moea64_page_array_startup(long);
448#endif
449static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
450
451static struct pmap_funcs moea64_methods = {
452	.clear_modify = moea64_clear_modify,
453	.copy_page = moea64_copy_page,
454	.copy_pages = moea64_copy_pages,
455	.enter = moea64_enter,
456	.enter_object = moea64_enter_object,
457	.enter_quick = moea64_enter_quick,
458	.extract = moea64_extract,
459	.extract_and_hold = moea64_extract_and_hold,
460	.init = moea64_init,
461	.is_modified = moea64_is_modified,
462	.is_prefaultable = moea64_is_prefaultable,
463	.is_referenced = moea64_is_referenced,
464	.ts_referenced = moea64_ts_referenced,
465	.map =      		moea64_map,
466	.mincore = moea64_mincore,
467	.page_exists_quick = moea64_page_exists_quick,
468	.page_init = moea64_page_init,
469	.page_wired_mappings = moea64_page_wired_mappings,
470	.pinit = moea64_pinit,
471	.pinit0 = moea64_pinit0,
472	.protect = moea64_protect,
473	.qenter = moea64_qenter,
474	.qremove = moea64_qremove,
475	.release = moea64_release,
476	.remove = moea64_remove,
477	.remove_pages = moea64_remove_pages,
478	.remove_all =       	moea64_remove_all,
479	.remove_write = moea64_remove_write,
480	.sync_icache = moea64_sync_icache,
481	.unwire = moea64_unwire,
482	.zero_page =        	moea64_zero_page,
483	.zero_page_area = moea64_zero_page_area,
484	.activate = moea64_activate,
485	.deactivate =       	moea64_deactivate,
486	.page_set_memattr = moea64_page_set_memattr,
487	.quick_enter_page =  moea64_quick_enter_page,
488	.quick_remove_page =  moea64_quick_remove_page,
489	.page_is_mapped = moea64_page_is_mapped,
490#ifdef __powerpc64__
491	.page_array_startup = moea64_page_array_startup,
492#endif
493	.ps_enabled = moea64_ps_enabled,
494	.align_superpage = moea64_align_superpage,
495
496	/* Internal interfaces */
497	.mapdev = moea64_mapdev,
498	.mapdev_attr = moea64_mapdev_attr,
499	.unmapdev = moea64_unmapdev,
500	.kextract = moea64_kextract,
501	.kenter = moea64_kenter,
502	.kenter_attr = moea64_kenter_attr,
503	.dev_direct_mapped = moea64_dev_direct_mapped,
504	.dumpsys_pa_init = moea64_scan_init,
505	.dumpsys_scan_pmap = moea64_scan_pmap,
506	.dumpsys_dump_pmap_init =    moea64_dump_pmap_init,
507	.dumpsys_map_chunk = moea64_dumpsys_map,
508	.map_user_ptr = moea64_map_user_ptr,
509	.decode_kernel_ptr =  moea64_decode_kernel_ptr,
510};
511
512MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods);
513
514/*
515 * Get physical address from PVO.
516 *
517 * For superpages, the lower bits are not stored on pvo_pte.pa and must be
518 * obtained from VA.
519 */
520static __always_inline vm_paddr_t
521moea64_pvo_paddr(struct pvo_entry *pvo)
522{
523	vm_paddr_t pa;
524
525	pa = (pvo)->pvo_pte.pa & LPTE_RPGN;
526
527	if (PVO_IS_SP(pvo)) {
528		pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */
529		pa |= PVO_VADDR(pvo) & HPT_SP_MASK;
530	}
531	return (pa);
532}
533
534static struct pvo_head *
535vm_page_to_pvoh(vm_page_t m)
536{
537
538	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
539	return (&m->md.mdpg_pvoh);
540}
541
542static struct pvo_entry *
543alloc_pvo_entry(int bootstrap)
544{
545	struct pvo_entry *pvo;
546
547	if (!moea64_initialized || bootstrap) {
548		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
549			panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
550			    "Try setting machdep.moea64_bpvo_pool_size tunable",
551			    __func__, moea64_bpvo_pool_index,
552			    moea64_bpvo_pool_size,
553			    moea64_bpvo_pool_size * sizeof(struct pvo_entry));
554		}
555		pvo = &moea64_bpvo_pool[
556		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
557		bzero(pvo, sizeof(*pvo));
558		pvo->pvo_vaddr = PVO_BOOTSTRAP;
559	} else
560		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
561
562	return (pvo);
563}
564
565static void
566init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
567{
568	uint64_t vsid;
569	uint64_t hash;
570	int shift;
571
572	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
573
574	pvo->pvo_pmap = pmap;
575	va &= ~ADDR_POFF;
576	pvo->pvo_vaddr |= va;
577	vsid = va_to_vsid(pmap, va);
578	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
579	    | (vsid << 16);
580
581	if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0)
582		shift = moea64_large_page_shift;
583	else
584		shift = ADDR_PIDX_SHFT;
585	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
586	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
587}
588
589static void
590free_pvo_entry(struct pvo_entry *pvo)
591{
592
593	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
594		uma_zfree(moea64_pvo_zone, pvo);
595}
596
597void
598moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
599{
600
601	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
602	lpte->pte_hi |= LPTE_VALID;
603
604	if (pvo->pvo_vaddr & PVO_LARGE)
605		lpte->pte_hi |= LPTE_BIG;
606	if (pvo->pvo_vaddr & PVO_WIRED)
607		lpte->pte_hi |= LPTE_WIRED;
608	if (pvo->pvo_vaddr & PVO_HID)
609		lpte->pte_hi |= LPTE_HID;
610
611	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
612	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
613		lpte->pte_lo |= LPTE_BW;
614	else
615		lpte->pte_lo |= LPTE_BR;
616
617	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
618		lpte->pte_lo |= LPTE_NOEXEC;
619}
620
621static __inline uint64_t
622moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
623{
624	uint64_t pte_lo;
625	int i;
626
627	if (ma != VM_MEMATTR_DEFAULT) {
628		switch (ma) {
629		case VM_MEMATTR_UNCACHEABLE:
630			return (LPTE_I | LPTE_G);
631		case VM_MEMATTR_CACHEABLE:
632			return (LPTE_M);
633		case VM_MEMATTR_WRITE_COMBINING:
634		case VM_MEMATTR_WRITE_BACK:
635		case VM_MEMATTR_PREFETCHABLE:
636			return (LPTE_I);
637		case VM_MEMATTR_WRITE_THROUGH:
638			return (LPTE_W | LPTE_M);
639		}
640	}
641
642	/*
643	 * Assume the page is cache inhibited and access is guarded unless
644	 * it's in our available memory array.
645	 */
646	pte_lo = LPTE_I | LPTE_G;
647	for (i = 0; i < pregions_sz; i++) {
648		if ((pa >= pregions[i].mr_start) &&
649		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
650			pte_lo &= ~(LPTE_I | LPTE_G);
651			pte_lo |= LPTE_M;
652			break;
653		}
654	}
655
656	return pte_lo;
657}
658
659/*
660 * Quick sort callout for comparing memory regions.
661 */
662static int	om_cmp(const void *a, const void *b);
663
664static int
665om_cmp(const void *a, const void *b)
666{
667	const struct	ofw_map *mapa;
668	const struct	ofw_map *mapb;
669
670	mapa = a;
671	mapb = b;
672	if (mapa->om_pa < mapb->om_pa)
673		return (-1);
674	else if (mapa->om_pa > mapb->om_pa)
675		return (1);
676	else
677		return (0);
678}
679
680static void
681moea64_add_ofw_mappings(phandle_t mmu, size_t sz)
682{
683	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
684	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
685	struct pvo_entry *pvo;
686	register_t	msr;
687	vm_offset_t	off;
688	vm_paddr_t	pa_base;
689	int		i, j;
690
691	bzero(translations, sz);
692	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
693	    sizeof(acells));
694	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
695		panic("moea64_bootstrap: can't get ofw translations");
696
697	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
698	sz /= sizeof(cell_t);
699	for (i = 0, j = 0; i < sz; j++) {
700		translations[j].om_va = trans_cells[i++];
701		translations[j].om_len = trans_cells[i++];
702		translations[j].om_pa = trans_cells[i++];
703		if (acells == 2) {
704			translations[j].om_pa <<= 32;
705			translations[j].om_pa |= trans_cells[i++];
706		}
707		translations[j].om_mode = trans_cells[i++];
708	}
709	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
710	    i, sz));
711
712	sz = j;
713	qsort(translations, sz, sizeof (*translations), om_cmp);
714
715	for (i = 0; i < sz; i++) {
716		pa_base = translations[i].om_pa;
717	      #ifndef __powerpc64__
718		if ((translations[i].om_pa >> 32) != 0)
719			panic("OFW translations above 32-bit boundary!");
720	      #endif
721
722		if (pa_base % PAGE_SIZE)
723			panic("OFW translation not page-aligned (phys)!");
724		if (translations[i].om_va % PAGE_SIZE)
725			panic("OFW translation not page-aligned (virt)!");
726
727		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
728		    pa_base, translations[i].om_va, translations[i].om_len);
729
730		/* Now enter the pages for this mapping */
731
732		DISABLE_TRANS(msr);
733		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
734			/* If this address is direct-mapped, skip remapping */
735			if (hw_direct_map &&
736			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
737			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
738 			    == LPTE_M)
739				continue;
740
741			PMAP_LOCK(kernel_pmap);
742			pvo = moea64_pvo_find_va(kernel_pmap,
743			    translations[i].om_va + off);
744			PMAP_UNLOCK(kernel_pmap);
745			if (pvo != NULL)
746				continue;
747
748			moea64_kenter(translations[i].om_va + off,
749			    pa_base + off);
750		}
751		ENABLE_TRANS(msr);
752	}
753}
754
755#ifdef __powerpc64__
756static void
757moea64_probe_large_page(void)
758{
759	uint16_t pvr = mfpvr() >> 16;
760
761	switch (pvr) {
762	case IBM970:
763	case IBM970FX:
764	case IBM970MP:
765		powerpc_sync(); isync();
766		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
767		powerpc_sync(); isync();
768
769		/* FALLTHROUGH */
770	default:
771		if (moea64_large_page_size == 0) {
772			moea64_large_page_size = 0x1000000; /* 16 MB */
773			moea64_large_page_shift = 24;
774		}
775	}
776
777	moea64_large_page_mask = moea64_large_page_size - 1;
778}
779
780static void
781moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
782{
783	struct slb *cache;
784	struct slb entry;
785	uint64_t esid, slbe;
786	uint64_t i;
787
788	cache = PCPU_GET(aim.slb);
789	esid = va >> ADDR_SR_SHFT;
790	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
791
792	for (i = 0; i < 64; i++) {
793		if (cache[i].slbe == (slbe | i))
794			return;
795	}
796
797	entry.slbe = slbe;
798	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
799	if (large)
800		entry.slbv |= SLBV_L;
801
802	slb_insert_kernel(entry.slbe, entry.slbv);
803}
804#endif
805
806static int
807moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
808{
809	struct pvo_entry *pvo;
810	uint64_t pte_lo;
811	int error;
812
813	pte_lo = LPTE_M;
814	pte_lo |= attr;
815
816	pvo = alloc_pvo_entry(bootstrap);
817	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
818	init_pvo_entry(pvo, kernel_pmap, va);
819
820	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
821	    VM_PROT_EXECUTE;
822	pvo->pvo_pte.pa = pa | pte_lo;
823	error = moea64_pvo_enter(pvo, NULL, NULL);
824	if (error != 0)
825		panic("Error %d inserting large page\n", error);
826	return (0);
827}
828
829static void
830moea64_setup_direct_map(vm_offset_t kernelstart,
831    vm_offset_t kernelend)
832{
833	register_t msr;
834	vm_paddr_t pa, pkernelstart, pkernelend;
835	vm_offset_t size, off;
836	uint64_t pte_lo;
837	int i;
838
839	if (moea64_large_page_size == 0)
840		hw_direct_map = 0;
841
842	DISABLE_TRANS(msr);
843	if (hw_direct_map) {
844		PMAP_LOCK(kernel_pmap);
845		for (i = 0; i < pregions_sz; i++) {
846		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
847		     pregions[i].mr_size; pa += moea64_large_page_size) {
848			pte_lo = LPTE_M;
849			if (pa & moea64_large_page_mask) {
850				pa &= moea64_large_page_mask;
851				pte_lo |= LPTE_G;
852			}
853			if (pa + moea64_large_page_size >
854			    pregions[i].mr_start + pregions[i].mr_size)
855				pte_lo |= LPTE_G;
856
857			moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1);
858		  }
859		}
860		PMAP_UNLOCK(kernel_pmap);
861	}
862
863	/*
864	 * Make sure the kernel and BPVO pool stay mapped on systems either
865	 * without a direct map or on which the kernel is not already executing
866	 * out of the direct-mapped region.
867	 */
868	if (kernelstart < DMAP_BASE_ADDRESS) {
869		/*
870		 * For pre-dmap execution, we need to use identity mapping
871		 * because we will be operating with the mmu on but in the
872		 * wrong address configuration until we __restartkernel().
873		 */
874		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
875		    pa += PAGE_SIZE)
876			moea64_kenter(pa, pa);
877	} else if (!hw_direct_map) {
878		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
879		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
880		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
881		    pa += PAGE_SIZE)
882			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
883	}
884
885	if (!hw_direct_map) {
886		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
887		off = (vm_offset_t)(moea64_bpvo_pool);
888		for (pa = off; pa < off + size; pa += PAGE_SIZE)
889			moea64_kenter(pa, pa);
890
891		/* Map exception vectors */
892		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
893			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
894	}
895	ENABLE_TRANS(msr);
896
897	/*
898	 * Allow user to override unmapped_buf_allowed for testing.
899	 * XXXKIB Only direct map implementation was tested.
900	 */
901	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
902	    &unmapped_buf_allowed))
903		unmapped_buf_allowed = hw_direct_map;
904}
905
906/* Quick sort callout for comparing physical addresses. */
907static int
908pa_cmp(const void *a, const void *b)
909{
910	const vm_paddr_t *pa = a, *pb = b;
911
912	if (*pa < *pb)
913		return (-1);
914	else if (*pa > *pb)
915		return (1);
916	else
917		return (0);
918}
919
920void
921moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
922{
923	int		i, j;
924	vm_size_t	physsz, hwphyssz;
925	vm_paddr_t	kernelphysstart, kernelphysend;
926	int		rm_pavail;
927
928	/* Level 0 reservations consist of 4096 pages (16MB superpage). */
929	vm_level_0_order = 12;
930
931#ifndef __powerpc64__
932	/* We don't have a direct map since there is no BAT */
933	hw_direct_map = 0;
934
935	/* Make sure battable is zero, since we have no BAT */
936	for (i = 0; i < 16; i++) {
937		battable[i].batu = 0;
938		battable[i].batl = 0;
939	}
940#else
941	/* Install trap handlers for SLBs */
942	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
943	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
944	__syncicache((void *)EXC_DSE, 0x80);
945	__syncicache((void *)EXC_ISE, 0x80);
946#endif
947
948	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
949	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
950
951	/* Get physical memory regions from firmware */
952	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
953	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
954
955	if (PHYS_AVAIL_ENTRIES < regions_sz)
956		panic("moea64_bootstrap: phys_avail too small");
957
958	phys_avail_count = 0;
959	physsz = 0;
960	hwphyssz = 0;
961	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
962	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
963		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
964		    regions[i].mr_start, regions[i].mr_start +
965		    regions[i].mr_size, regions[i].mr_size);
966		if (hwphyssz != 0 &&
967		    (physsz + regions[i].mr_size) >= hwphyssz) {
968			if (physsz < hwphyssz) {
969				phys_avail[j] = regions[i].mr_start;
970				phys_avail[j + 1] = regions[i].mr_start +
971				    hwphyssz - physsz;
972				physsz = hwphyssz;
973				phys_avail_count++;
974				dump_avail[j] = phys_avail[j];
975				dump_avail[j + 1] = phys_avail[j + 1];
976			}
977			break;
978		}
979		phys_avail[j] = regions[i].mr_start;
980		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
981		phys_avail_count++;
982		physsz += regions[i].mr_size;
983		dump_avail[j] = phys_avail[j];
984		dump_avail[j + 1] = phys_avail[j + 1];
985	}
986
987	/* Check for overlap with the kernel and exception vectors */
988	rm_pavail = 0;
989	for (j = 0; j < 2*phys_avail_count; j+=2) {
990		if (phys_avail[j] < EXC_LAST)
991			phys_avail[j] += EXC_LAST;
992
993		if (phys_avail[j] >= kernelphysstart &&
994		    phys_avail[j+1] <= kernelphysend) {
995			phys_avail[j] = phys_avail[j+1] = ~0;
996			rm_pavail++;
997			continue;
998		}
999
1000		if (kernelphysstart >= phys_avail[j] &&
1001		    kernelphysstart < phys_avail[j+1]) {
1002			if (kernelphysend < phys_avail[j+1]) {
1003				phys_avail[2*phys_avail_count] =
1004				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
1005				phys_avail[2*phys_avail_count + 1] =
1006				    phys_avail[j+1];
1007				phys_avail_count++;
1008			}
1009
1010			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
1011		}
1012
1013		if (kernelphysend >= phys_avail[j] &&
1014		    kernelphysend < phys_avail[j+1]) {
1015			if (kernelphysstart > phys_avail[j]) {
1016				phys_avail[2*phys_avail_count] = phys_avail[j];
1017				phys_avail[2*phys_avail_count + 1] =
1018				    kernelphysstart & ~PAGE_MASK;
1019				phys_avail_count++;
1020			}
1021
1022			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
1023			    PAGE_SIZE;
1024		}
1025	}
1026
1027	/* Remove physical available regions marked for removal (~0) */
1028	if (rm_pavail) {
1029		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
1030			pa_cmp);
1031		phys_avail_count -= rm_pavail;
1032		for (i = 2*phys_avail_count;
1033		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1034			phys_avail[i] = phys_avail[i+1] = 0;
1035	}
1036
1037	physmem = btoc(physsz);
1038
1039#ifdef PTEGCOUNT
1040	moea64_pteg_count = PTEGCOUNT;
1041#else
1042	moea64_pteg_count = 0x1000;
1043
1044	while (moea64_pteg_count < physmem)
1045		moea64_pteg_count <<= 1;
1046
1047	moea64_pteg_count >>= 1;
1048#endif /* PTEGCOUNT */
1049}
1050
1051void
1052moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1053{
1054	int		i;
1055
1056	/*
1057	 * Set PTEG mask
1058	 */
1059	moea64_pteg_mask = moea64_pteg_count - 1;
1060
1061	/*
1062	 * Initialize SLB table lock and page locks
1063	 */
1064	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1065	for (i = 0; i < PV_LOCK_COUNT; i++)
1066		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
1067
1068	/*
1069	 * Initialise the bootstrap pvo pool.
1070	 */
1071	TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
1072	if (moea64_bpvo_pool_size == 0) {
1073		if (!hw_direct_map)
1074			moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) /
1075			    (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR;
1076		else
1077			moea64_bpvo_pool_size = BPVO_POOL_SIZE;
1078	}
1079
1080	if (boothowto & RB_VERBOSE) {
1081		printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n",
1082		    moea64_bpvo_pool_size,
1083		    moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576);
1084	}
1085
1086	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1087		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
1088	moea64_bpvo_pool_index = 0;
1089
1090	/* Place at address usable through the direct map */
1091	if (hw_direct_map)
1092		moea64_bpvo_pool = (struct pvo_entry *)
1093		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
1094
1095	/*
1096	 * Make sure kernel vsid is allocated as well as VSID 0.
1097	 */
1098	#ifndef __powerpc64__
1099	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1100		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1101	moea64_vsid_bitmap[0] |= 1;
1102	#endif
1103
1104	/*
1105	 * Initialize the kernel pmap (which is statically allocated).
1106	 */
1107	#ifdef __powerpc64__
1108	for (i = 0; i < 64; i++) {
1109		pcpup->pc_aim.slb[i].slbv = 0;
1110		pcpup->pc_aim.slb[i].slbe = 0;
1111	}
1112	#else
1113	for (i = 0; i < 16; i++)
1114		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1115	#endif
1116
1117	kernel_pmap->pmap_phys = kernel_pmap;
1118	CPU_FILL(&kernel_pmap->pm_active);
1119	RB_INIT(&kernel_pmap->pmap_pvo);
1120
1121	PMAP_LOCK_INIT(kernel_pmap);
1122
1123	/*
1124	 * Now map in all the other buffers we allocated earlier
1125	 */
1126
1127	moea64_setup_direct_map(kernelstart, kernelend);
1128}
1129
1130void
1131moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1132{
1133	ihandle_t	mmui;
1134	phandle_t	chosen;
1135	phandle_t	mmu;
1136	ssize_t		sz;
1137	int		i;
1138	vm_offset_t	pa, va;
1139	void		*dpcpu;
1140
1141	/*
1142	 * Set up the Open Firmware pmap and add its mappings if not in real
1143	 * mode.
1144	 */
1145
1146	chosen = OF_finddevice("/chosen");
1147	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
1148		mmu = OF_instance_to_package(mmui);
1149		if (mmu == -1 ||
1150		    (sz = OF_getproplen(mmu, "translations")) == -1)
1151			sz = 0;
1152		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1153			panic("moea64_bootstrap: too many ofw translations");
1154
1155		if (sz > 0)
1156			moea64_add_ofw_mappings(mmu, sz);
1157	}
1158
1159	/*
1160	 * Calculate the last available physical address.
1161	 */
1162	Maxmem = 0;
1163	for (i = 0; phys_avail[i + 1] != 0; i += 2)
1164		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
1165
1166	/*
1167	 * Initialize MMU.
1168	 */
1169	pmap_cpu_bootstrap(0);
1170	mtmsr(mfmsr() | PSL_DR | PSL_IR);
1171	pmap_bootstrapped++;
1172
1173	/*
1174	 * Set the start and end of kva.
1175	 */
1176	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1177	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1178
1179	/*
1180	 * Map the entire KVA range into the SLB. We must not fault there.
1181	 */
1182	#ifdef __powerpc64__
1183	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1184		moea64_bootstrap_slb_prefault(va, 0);
1185	#endif
1186
1187	/*
1188	 * Remap any early IO mappings (console framebuffer, etc.)
1189	 */
1190	bs_remap_earlyboot();
1191
1192	/*
1193	 * Figure out how far we can extend virtual_end into segment 16
1194	 * without running into existing mappings. Segment 16 is guaranteed
1195	 * to contain neither RAM nor devices (at least on Apple hardware),
1196	 * but will generally contain some OFW mappings we should not
1197	 * step on.
1198	 */
1199
1200	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1201	PMAP_LOCK(kernel_pmap);
1202	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1203	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1204		virtual_end += PAGE_SIZE;
1205	PMAP_UNLOCK(kernel_pmap);
1206	#endif
1207
1208	/*
1209	 * Allocate a kernel stack with a guard page for thread0 and map it
1210	 * into the kernel page map.
1211	 */
1212	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1213	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1214	virtual_avail = va + kstack_pages * PAGE_SIZE;
1215	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1216	thread0.td_kstack = va;
1217	thread0.td_kstack_pages = kstack_pages;
1218	for (i = 0; i < kstack_pages; i++) {
1219		moea64_kenter(va, pa);
1220		pa += PAGE_SIZE;
1221		va += PAGE_SIZE;
1222	}
1223
1224	/*
1225	 * Allocate virtual address space for the message buffer.
1226	 */
1227	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1228	msgbufp = (struct msgbuf *)virtual_avail;
1229	va = virtual_avail;
1230	virtual_avail += round_page(msgbufsize);
1231	while (va < virtual_avail) {
1232		moea64_kenter(va, pa);
1233		pa += PAGE_SIZE;
1234		va += PAGE_SIZE;
1235	}
1236
1237	/*
1238	 * Allocate virtual address space for the dynamic percpu area.
1239	 */
1240	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1241	dpcpu = (void *)virtual_avail;
1242	va = virtual_avail;
1243	virtual_avail += DPCPU_SIZE;
1244	while (va < virtual_avail) {
1245		moea64_kenter(va, pa);
1246		pa += PAGE_SIZE;
1247		va += PAGE_SIZE;
1248	}
1249	dpcpu_init(dpcpu, curcpu);
1250
1251	crashdumpmap = (caddr_t)virtual_avail;
1252	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1253
1254	/*
1255	 * Allocate some things for page zeroing. We put this directly
1256	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1257	 * of the PVO book-keeping or other parts of the VM system
1258	 * from even knowing that this hack exists.
1259	 */
1260
1261	if (!hw_direct_map) {
1262		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1263		    MTX_DEF);
1264		for (i = 0; i < 2; i++) {
1265			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1266			virtual_end -= PAGE_SIZE;
1267
1268			moea64_kenter(moea64_scratchpage_va[i], 0);
1269
1270			PMAP_LOCK(kernel_pmap);
1271			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1272			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1273			PMAP_UNLOCK(kernel_pmap);
1274		}
1275	}
1276
1277	numa_mem_regions(&numa_pregions, &numapregions_sz);
1278}
1279
1280static void
1281moea64_pmap_init_qpages(void)
1282{
1283	struct pcpu *pc;
1284	int i;
1285
1286	if (hw_direct_map)
1287		return;
1288
1289	CPU_FOREACH(i) {
1290		pc = pcpu_find(i);
1291		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1292		if (pc->pc_qmap_addr == 0)
1293			panic("pmap_init_qpages: unable to allocate KVA");
1294		PMAP_LOCK(kernel_pmap);
1295		pc->pc_aim.qmap_pvo =
1296		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1297		PMAP_UNLOCK(kernel_pmap);
1298		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1299	}
1300}
1301
1302SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1303
1304/*
1305 * Activate a user pmap.  This mostly involves setting some non-CPU
1306 * state.
1307 */
1308void
1309moea64_activate(struct thread *td)
1310{
1311	pmap_t	pm;
1312
1313	pm = &td->td_proc->p_vmspace->vm_pmap;
1314	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1315
1316	#ifdef __powerpc64__
1317	PCPU_SET(aim.userslb, pm->pm_slb);
1318	__asm __volatile("slbmte %0, %1; isync" ::
1319	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1320	#else
1321	PCPU_SET(curpmap, pm->pmap_phys);
1322	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1323	#endif
1324}
1325
1326void
1327moea64_deactivate(struct thread *td)
1328{
1329	pmap_t	pm;
1330
1331	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1332
1333	pm = &td->td_proc->p_vmspace->vm_pmap;
1334	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1335	#ifdef __powerpc64__
1336	PCPU_SET(aim.userslb, NULL);
1337	#else
1338	PCPU_SET(curpmap, NULL);
1339	#endif
1340}
1341
1342void
1343moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1344{
1345	struct	pvo_entry key, *pvo;
1346	vm_page_t m;
1347	int64_t	refchg;
1348
1349	key.pvo_vaddr = sva;
1350	PMAP_LOCK(pm);
1351	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1352	    pvo != NULL && PVO_VADDR(pvo) < eva;
1353	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1354		if (PVO_IS_SP(pvo)) {
1355			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
1356				pvo = moea64_sp_unwire(pvo);
1357				continue;
1358			} else {
1359				CTR1(KTR_PMAP, "%s: demote before unwire",
1360				    __func__);
1361				moea64_sp_demote(pvo);
1362			}
1363		}
1364
1365		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1366			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1367			    pvo);
1368		pvo->pvo_vaddr &= ~PVO_WIRED;
1369		refchg = moea64_pte_replace(pvo, 0 /* No invalidation */);
1370		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1371		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1372			if (refchg < 0)
1373				refchg = LPTE_CHG;
1374			m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1375
1376			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1377			if (refchg & LPTE_CHG)
1378				vm_page_dirty(m);
1379			if (refchg & LPTE_REF)
1380				vm_page_aflag_set(m, PGA_REFERENCED);
1381		}
1382		pm->pm_stats.wired_count--;
1383	}
1384	PMAP_UNLOCK(pm);
1385}
1386
1387static int
1388moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
1389{
1390	struct pvo_entry *pvo;
1391	vm_paddr_t pa;
1392	vm_page_t m;
1393	int val;
1394	bool managed;
1395
1396	PMAP_LOCK(pmap);
1397
1398	pvo = moea64_pvo_find_va(pmap, addr);
1399	if (pvo != NULL) {
1400		pa = PVO_PADDR(pvo);
1401		m = PHYS_TO_VM_PAGE(pa);
1402		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1403		if (PVO_IS_SP(pvo))
1404			val = MINCORE_INCORE | MINCORE_PSIND(1);
1405		else
1406			val = MINCORE_INCORE;
1407	} else {
1408		PMAP_UNLOCK(pmap);
1409		return (0);
1410	}
1411
1412	PMAP_UNLOCK(pmap);
1413
1414	if (m == NULL)
1415		return (0);
1416
1417	if (managed) {
1418		if (moea64_is_modified(m))
1419			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1420
1421		if (moea64_is_referenced(m))
1422			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1423	}
1424
1425	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1426	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1427	    managed) {
1428		*pap = pa;
1429	}
1430
1431	return (val);
1432}
1433
1434/*
1435 * This goes through and sets the physical address of our
1436 * special scratch PTE to the PA we want to zero or copy. Because
1437 * of locking issues (this can get called in pvo_enter() by
1438 * the UMA allocator), we can't use most other utility functions here
1439 */
1440
1441static __inline
1442void moea64_set_scratchpage_pa(int which, vm_paddr_t pa)
1443{
1444	struct pvo_entry *pvo;
1445
1446	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1447	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1448
1449	pvo = moea64_scratchpage_pvo[which];
1450	PMAP_LOCK(pvo->pvo_pmap);
1451	pvo->pvo_pte.pa =
1452	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1453	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1454	PMAP_UNLOCK(pvo->pvo_pmap);
1455	isync();
1456}
1457
1458void
1459moea64_copy_page(vm_page_t msrc, vm_page_t mdst)
1460{
1461	mtx_lock(&moea64_scratchpage_mtx);
1462
1463	moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc));
1464	moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst));
1465
1466	bcopy((void *)moea64_scratchpage_va[0],
1467	    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1468
1469	mtx_unlock(&moea64_scratchpage_mtx);
1470}
1471
1472void
1473moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst)
1474{
1475	vm_offset_t	dst;
1476	vm_offset_t	src;
1477
1478	dst = VM_PAGE_TO_PHYS(mdst);
1479	src = VM_PAGE_TO_PHYS(msrc);
1480
1481	bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1482	    PAGE_SIZE);
1483}
1484
1485inline void
1486moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
1487    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1488{
1489	void *a_cp, *b_cp;
1490	vm_offset_t a_pg_offset, b_pg_offset;
1491	int cnt;
1492
1493	while (xfersize > 0) {
1494		a_pg_offset = a_offset & PAGE_MASK;
1495		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1496		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1497		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1498		    a_pg_offset;
1499		b_pg_offset = b_offset & PAGE_MASK;
1500		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1501		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1502		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1503		    b_pg_offset;
1504		bcopy(a_cp, b_cp, cnt);
1505		a_offset += cnt;
1506		b_offset += cnt;
1507		xfersize -= cnt;
1508	}
1509}
1510
1511void
1512moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1513    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1514{
1515	void *a_cp, *b_cp;
1516	vm_offset_t a_pg_offset, b_pg_offset;
1517	int cnt;
1518
1519	mtx_lock(&moea64_scratchpage_mtx);
1520	while (xfersize > 0) {
1521		a_pg_offset = a_offset & PAGE_MASK;
1522		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1523		moea64_set_scratchpage_pa(0,
1524		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1525		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1526		b_pg_offset = b_offset & PAGE_MASK;
1527		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1528		moea64_set_scratchpage_pa(1,
1529		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1530		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1531		bcopy(a_cp, b_cp, cnt);
1532		a_offset += cnt;
1533		b_offset += cnt;
1534		xfersize -= cnt;
1535	}
1536	mtx_unlock(&moea64_scratchpage_mtx);
1537}
1538
1539void
1540moea64_zero_page_area(vm_page_t m, int off, int size)
1541{
1542	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1543
1544	if (size + off > PAGE_SIZE)
1545		panic("moea64_zero_page: size + off > PAGE_SIZE");
1546
1547	if (hw_direct_map) {
1548		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1549	} else {
1550		mtx_lock(&moea64_scratchpage_mtx);
1551		moea64_set_scratchpage_pa(0, pa);
1552		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1553		mtx_unlock(&moea64_scratchpage_mtx);
1554	}
1555}
1556
1557/*
1558 * Zero a page of physical memory by temporarily mapping it
1559 */
1560void
1561moea64_zero_page(vm_page_t m)
1562{
1563	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1564	vm_offset_t va, off;
1565
1566	mtx_lock(&moea64_scratchpage_mtx);
1567
1568	moea64_set_scratchpage_pa(0, pa);
1569	va = moea64_scratchpage_va[0];
1570
1571	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1572		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1573
1574	mtx_unlock(&moea64_scratchpage_mtx);
1575}
1576
1577void
1578moea64_zero_page_dmap(vm_page_t m)
1579{
1580	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1581	vm_offset_t va, off;
1582
1583	va = PHYS_TO_DMAP(pa);
1584	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1585		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1586}
1587
1588vm_offset_t
1589moea64_quick_enter_page(vm_page_t m)
1590{
1591	struct pvo_entry *pvo;
1592	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1593
1594	/*
1595 	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1596	 * a critical section and access the PCPU data like on i386.
1597	 * Instead, pin the thread and grab the PCPU lock to prevent
1598	 * a preempting thread from using the same PCPU data.
1599	 */
1600	sched_pin();
1601
1602	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1603	pvo = PCPU_GET(aim.qmap_pvo);
1604
1605	mtx_lock(PCPU_PTR(aim.qmap_lock));
1606	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1607	    (uint64_t)pa;
1608	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1609	isync();
1610
1611	return (PCPU_GET(qmap_addr));
1612}
1613
1614vm_offset_t
1615moea64_quick_enter_page_dmap(vm_page_t m)
1616{
1617
1618	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
1619}
1620
1621void
1622moea64_quick_remove_page(vm_offset_t addr)
1623{
1624
1625	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1626	KASSERT(PCPU_GET(qmap_addr) == addr,
1627	    ("moea64_quick_remove_page: invalid address"));
1628	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1629	sched_unpin();
1630}
1631
1632bool
1633moea64_page_is_mapped(vm_page_t m)
1634{
1635	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1636}
1637
1638/*
1639 * Map the given physical page at the specified virtual address in the
1640 * target pmap with the protection requested.  If specified the page
1641 * will be wired down.
1642 */
1643
1644int
1645moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1646    vm_prot_t prot, u_int flags, int8_t psind)
1647{
1648	struct		pvo_entry *pvo, *oldpvo, *tpvo;
1649	struct		pvo_head *pvo_head;
1650	uint64_t	pte_lo;
1651	int		error;
1652	vm_paddr_t	pa;
1653
1654	if ((m->oflags & VPO_UNMANAGED) == 0) {
1655		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1656			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1657		else
1658			VM_OBJECT_ASSERT_LOCKED(m->object);
1659	}
1660
1661	if (psind > 0)
1662		return (moea64_sp_enter(pmap, va, m, prot, flags, psind));
1663
1664	pvo = alloc_pvo_entry(0);
1665	if (pvo == NULL)
1666		return (KERN_RESOURCE_SHORTAGE);
1667	pvo->pvo_pmap = NULL; /* to be filled in later */
1668	pvo->pvo_pte.prot = prot;
1669
1670	pa = VM_PAGE_TO_PHYS(m);
1671	pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m));
1672	pvo->pvo_pte.pa = pa | pte_lo;
1673
1674	if ((flags & PMAP_ENTER_WIRED) != 0)
1675		pvo->pvo_vaddr |= PVO_WIRED;
1676
1677	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1678		pvo_head = NULL;
1679	} else {
1680		pvo_head = &m->md.mdpg_pvoh;
1681		pvo->pvo_vaddr |= PVO_MANAGED;
1682	}
1683
1684	PV_LOCK(pa);
1685	PMAP_LOCK(pmap);
1686	if (pvo->pvo_pmap == NULL)
1687		init_pvo_entry(pvo, pmap, va);
1688
1689	if (moea64_ps_enabled(pmap) &&
1690	    (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL &&
1691	    PVO_IS_SP(tpvo)) {
1692		/* Demote SP before entering a regular page */
1693		CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx",
1694		    __func__, (uintmax_t)va);
1695		moea64_sp_demote_aligned(tpvo);
1696	}
1697
1698	if (prot & VM_PROT_WRITE)
1699		if (pmap_bootstrapped &&
1700		    (m->oflags & VPO_UNMANAGED) == 0)
1701			vm_page_aflag_set(m, PGA_WRITEABLE);
1702
1703	error = moea64_pvo_enter(pvo, pvo_head, &oldpvo);
1704	if (error == EEXIST) {
1705		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1706		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1707		    oldpvo->pvo_pte.prot == prot) {
1708			/* Identical mapping already exists */
1709			error = 0;
1710
1711			/* If not in page table, reinsert it */
1712			if (moea64_pte_synch(oldpvo) < 0) {
1713				STAT_MOEA64(moea64_pte_overflow--);
1714				moea64_pte_insert(oldpvo);
1715			}
1716
1717			/* Then just clean up and go home */
1718			PMAP_UNLOCK(pmap);
1719			PV_UNLOCK(pa);
1720			free_pvo_entry(pvo);
1721			pvo = NULL;
1722			goto out;
1723		} else {
1724			/* Otherwise, need to kill it first */
1725			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1726			    "mapping does not match new mapping"));
1727			moea64_pvo_remove_from_pmap(oldpvo);
1728			moea64_pvo_enter(pvo, pvo_head, NULL);
1729		}
1730	}
1731	PMAP_UNLOCK(pmap);
1732	PV_UNLOCK(pa);
1733
1734	/* Free any dead pages */
1735	if (error == EEXIST) {
1736		moea64_pvo_remove_from_page(oldpvo);
1737		free_pvo_entry(oldpvo);
1738	}
1739
1740out:
1741	/*
1742	 * Flush the page from the instruction cache if this page is
1743	 * mapped executable and cacheable.
1744	 */
1745	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1746	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1747		vm_page_aflag_set(m, PGA_EXECUTABLE);
1748		moea64_syncicache(pmap, va, pa, PAGE_SIZE);
1749	}
1750
1751#if VM_NRESERVLEVEL > 0
1752	/*
1753	 * Try to promote pages.
1754	 *
1755	 * If the VA of the entered page is not aligned with its PA,
1756	 * don't try page promotion as it is not possible.
1757	 * This reduces the number of promotion failures dramatically.
1758	 */
1759	if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL &&
1760	    (pvo->pvo_vaddr & PVO_MANAGED) != 0 &&
1761	    (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) &&
1762	    (m->flags & PG_FICTITIOUS) == 0 &&
1763	    vm_reserv_level_iffullpop(m) == 0)
1764		moea64_sp_promote(pmap, va, m);
1765#endif
1766
1767	return (KERN_SUCCESS);
1768}
1769
1770static void
1771moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1772    vm_size_t sz)
1773{
1774
1775	/*
1776	 * This is much trickier than on older systems because
1777	 * we can't sync the icache on physical addresses directly
1778	 * without a direct map. Instead we check a couple of cases
1779	 * where the memory is already mapped in and, failing that,
1780	 * use the same trick we use for page zeroing to create
1781	 * a temporary mapping for this physical address.
1782	 */
1783
1784	if (!pmap_bootstrapped) {
1785		/*
1786		 * If PMAP is not bootstrapped, we are likely to be
1787		 * in real mode.
1788		 */
1789		__syncicache((void *)(uintptr_t)pa, sz);
1790	} else if (pmap == kernel_pmap) {
1791		__syncicache((void *)va, sz);
1792	} else if (hw_direct_map) {
1793		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1794	} else {
1795		/* Use the scratch page to set up a temp mapping */
1796
1797		mtx_lock(&moea64_scratchpage_mtx);
1798
1799		moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF);
1800		__syncicache((void *)(moea64_scratchpage_va[1] +
1801		    (va & ADDR_POFF)), sz);
1802
1803		mtx_unlock(&moea64_scratchpage_mtx);
1804	}
1805}
1806
1807/*
1808 * Maps a sequence of resident pages belonging to the same object.
1809 * The sequence begins with the given page m_start.  This page is
1810 * mapped at the given virtual address start.  Each subsequent page is
1811 * mapped at a virtual address that is offset from start by the same
1812 * amount as the page is offset from m_start within the object.  The
1813 * last page in the sequence is the page with the largest offset from
1814 * m_start that can be mapped at a virtual address less than the given
1815 * virtual address end.  Not every virtual page between start and end
1816 * is mapped; only those for which a resident page exists with the
1817 * corresponding offset from m_start are mapped.
1818 */
1819void
1820moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1821    vm_page_t m_start, vm_prot_t prot)
1822{
1823	vm_page_t m;
1824	vm_pindex_t diff, psize;
1825	vm_offset_t va;
1826	int8_t psind;
1827
1828	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1829
1830	psize = atop(end - start);
1831	m = m_start;
1832	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1833		va = start + ptoa(diff);
1834		if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end &&
1835		    m->psind == 1 && moea64_ps_enabled(pm))
1836			psind = 1;
1837		else
1838			psind = 0;
1839		moea64_enter(pm, va, m, prot &
1840		    (VM_PROT_READ | VM_PROT_EXECUTE),
1841		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind);
1842		if (psind == 1)
1843			m = &m[HPT_SP_SIZE / PAGE_SIZE - 1];
1844		m = TAILQ_NEXT(m, listq);
1845	}
1846}
1847
1848void
1849moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1850    vm_prot_t prot)
1851{
1852
1853	moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1854	    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1855}
1856
1857vm_paddr_t
1858moea64_extract(pmap_t pm, vm_offset_t va)
1859{
1860	struct	pvo_entry *pvo;
1861	vm_paddr_t pa;
1862
1863	PMAP_LOCK(pm);
1864	pvo = moea64_pvo_find_va(pm, va);
1865	if (pvo == NULL)
1866		pa = 0;
1867	else
1868		pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
1869	PMAP_UNLOCK(pm);
1870
1871	return (pa);
1872}
1873
1874/*
1875 * Atomically extract and hold the physical page with the given
1876 * pmap and virtual address pair if that mapping permits the given
1877 * protection.
1878 */
1879vm_page_t
1880moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1881{
1882	struct	pvo_entry *pvo;
1883	vm_page_t m;
1884
1885	m = NULL;
1886	PMAP_LOCK(pmap);
1887	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1888	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1889		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1890		if (!vm_page_wire_mapped(m))
1891			m = NULL;
1892	}
1893	PMAP_UNLOCK(pmap);
1894	return (m);
1895}
1896
1897static void *
1898moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1899    uint8_t *flags, int wait)
1900{
1901	struct pvo_entry *pvo;
1902        vm_offset_t va;
1903        vm_page_t m;
1904        int needed_lock;
1905
1906	/*
1907	 * This entire routine is a horrible hack to avoid bothering kmem
1908	 * for new KVA addresses. Because this can get called from inside
1909	 * kmem allocation routines, calling kmem for a new address here
1910	 * can lead to multiply locking non-recursive mutexes.
1911	 */
1912
1913	*flags = UMA_SLAB_PRIV;
1914	needed_lock = !PMAP_LOCKED(kernel_pmap);
1915
1916	m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) |
1917	    VM_ALLOC_WIRED);
1918	if (m == NULL)
1919		return (NULL);
1920
1921	va = VM_PAGE_TO_PHYS(m);
1922
1923	pvo = alloc_pvo_entry(1 /* bootstrap */);
1924
1925	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1926	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1927
1928	if (needed_lock)
1929		PMAP_LOCK(kernel_pmap);
1930
1931	init_pvo_entry(pvo, kernel_pmap, va);
1932	pvo->pvo_vaddr |= PVO_WIRED;
1933
1934	moea64_pvo_enter(pvo, NULL, NULL);
1935
1936	if (needed_lock)
1937		PMAP_UNLOCK(kernel_pmap);
1938
1939	return (void *)va;
1940}
1941
1942extern int elf32_nxstack;
1943
1944void
1945moea64_init(void)
1946{
1947
1948	CTR0(KTR_PMAP, "moea64_init");
1949
1950	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1951	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1952	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1953
1954	/*
1955	 * Are large page mappings enabled?
1956	 *
1957	 * While HPT superpages are not better tested, leave it disabled by
1958	 * default.
1959	 */
1960	superpages_enabled = 0;
1961	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1962	if (superpages_enabled) {
1963		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1964		    ("moea64_init: can't assign to pagesizes[1]"));
1965
1966		if (moea64_large_page_size == 0) {
1967			printf("mmu_oea64: HW does not support large pages. "
1968					"Disabling superpages...\n");
1969			superpages_enabled = 0;
1970		} else if (!moea64_has_lp_4k_16m) {
1971			printf("mmu_oea64: "
1972			    "HW does not support mixed 4KB/16MB page sizes. "
1973			    "Disabling superpages...\n");
1974			superpages_enabled = 0;
1975		} else
1976			pagesizes[1] = HPT_SP_SIZE;
1977	}
1978
1979	if (!hw_direct_map) {
1980		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1981	}
1982
1983#ifdef COMPAT_FREEBSD32
1984	elf32_nxstack = 1;
1985#endif
1986
1987	moea64_initialized = true;
1988}
1989
1990bool
1991moea64_is_referenced(vm_page_t m)
1992{
1993
1994	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1995	    ("moea64_is_referenced: page %p is not managed", m));
1996
1997	return (moea64_query_bit(m, LPTE_REF));
1998}
1999
2000bool
2001moea64_is_modified(vm_page_t m)
2002{
2003
2004	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2005	    ("moea64_is_modified: page %p is not managed", m));
2006
2007	/*
2008	 * If the page is not busied then this check is racy.
2009	 */
2010	if (!pmap_page_is_write_mapped(m))
2011		return (false);
2012
2013	return (moea64_query_bit(m, LPTE_CHG));
2014}
2015
2016bool
2017moea64_is_prefaultable(pmap_t pmap, vm_offset_t va)
2018{
2019	struct pvo_entry *pvo;
2020	bool rv = true;
2021
2022	PMAP_LOCK(pmap);
2023	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
2024	if (pvo != NULL)
2025		rv = false;
2026	PMAP_UNLOCK(pmap);
2027	return (rv);
2028}
2029
2030void
2031moea64_clear_modify(vm_page_t m)
2032{
2033
2034	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2035	    ("moea64_clear_modify: page %p is not managed", m));
2036	vm_page_assert_busied(m);
2037
2038	if (!pmap_page_is_write_mapped(m))
2039		return;
2040	moea64_clear_bit(m, LPTE_CHG);
2041}
2042
2043/*
2044 * Clear the write and modified bits in each of the given page's mappings.
2045 */
2046void
2047moea64_remove_write(vm_page_t m)
2048{
2049	struct	pvo_entry *pvo;
2050	int64_t	refchg, ret;
2051	pmap_t	pmap;
2052
2053	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2054	    ("moea64_remove_write: page %p is not managed", m));
2055	vm_page_assert_busied(m);
2056
2057	if (!pmap_page_is_write_mapped(m))
2058		return;
2059
2060	powerpc_sync();
2061	PV_PAGE_LOCK(m);
2062	refchg = 0;
2063	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2064		pmap = pvo->pvo_pmap;
2065		PMAP_LOCK(pmap);
2066		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
2067		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2068			if (PVO_IS_SP(pvo)) {
2069				CTR1(KTR_PMAP, "%s: demote before remwr",
2070				    __func__);
2071				moea64_sp_demote(pvo);
2072			}
2073			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
2074			ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2075			if (ret < 0)
2076				ret = LPTE_CHG;
2077			refchg |= ret;
2078			if (pvo->pvo_pmap == kernel_pmap)
2079				isync();
2080		}
2081		PMAP_UNLOCK(pmap);
2082	}
2083	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
2084		vm_page_dirty(m);
2085	vm_page_aflag_clear(m, PGA_WRITEABLE);
2086	PV_PAGE_UNLOCK(m);
2087}
2088
2089/*
2090 *	moea64_ts_referenced:
2091 *
2092 *	Return a count of reference bits for a page, clearing those bits.
2093 *	It is not necessary for every reference bit to be cleared, but it
2094 *	is necessary that 0 only be returned when there are truly no
2095 *	reference bits set.
2096 *
2097 *	XXX: The exact number of bits to check and clear is a matter that
2098 *	should be tested and standardized at some point in the future for
2099 *	optimal aging of shared pages.
2100 */
2101int
2102moea64_ts_referenced(vm_page_t m)
2103{
2104
2105	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2106	    ("moea64_ts_referenced: page %p is not managed", m));
2107	return (moea64_clear_bit(m, LPTE_REF));
2108}
2109
2110/*
2111 * Modify the WIMG settings of all mappings for a page.
2112 */
2113void
2114moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma)
2115{
2116	struct	pvo_entry *pvo;
2117	int64_t	refchg;
2118	pmap_t	pmap;
2119	uint64_t lo;
2120
2121	CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x",
2122	    __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma);
2123
2124	if ((m->oflags & VPO_UNMANAGED) != 0) {
2125		m->md.mdpg_cache_attrs = ma;
2126		return;
2127	}
2128
2129	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
2130
2131	PV_PAGE_LOCK(m);
2132	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2133		pmap = pvo->pvo_pmap;
2134		PMAP_LOCK(pmap);
2135		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
2136			if (PVO_IS_SP(pvo)) {
2137				CTR1(KTR_PMAP,
2138				    "%s: demote before set_memattr", __func__);
2139				moea64_sp_demote(pvo);
2140			}
2141			pvo->pvo_pte.pa &= ~LPTE_WIMG;
2142			pvo->pvo_pte.pa |= lo;
2143			refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
2144			if (refchg < 0)
2145				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
2146				    LPTE_CHG : 0;
2147			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2148			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2149				refchg |=
2150				    atomic_readandclear_32(&m->md.mdpg_attrs);
2151				if (refchg & LPTE_CHG)
2152					vm_page_dirty(m);
2153				if (refchg & LPTE_REF)
2154					vm_page_aflag_set(m, PGA_REFERENCED);
2155			}
2156			if (pvo->pvo_pmap == kernel_pmap)
2157				isync();
2158		}
2159		PMAP_UNLOCK(pmap);
2160	}
2161	m->md.mdpg_cache_attrs = ma;
2162	PV_PAGE_UNLOCK(m);
2163}
2164
2165/*
2166 * Map a wired page into kernel virtual address space.
2167 */
2168void
2169moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2170{
2171	int		error;
2172	struct pvo_entry *pvo, *oldpvo;
2173
2174	do {
2175		pvo = alloc_pvo_entry(0);
2176		if (pvo == NULL)
2177			vm_wait(NULL);
2178	} while (pvo == NULL);
2179	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
2180	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
2181	pvo->pvo_vaddr |= PVO_WIRED;
2182
2183	PMAP_LOCK(kernel_pmap);
2184	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
2185	if (oldpvo != NULL)
2186		moea64_pvo_remove_from_pmap(oldpvo);
2187	init_pvo_entry(pvo, kernel_pmap, va);
2188	error = moea64_pvo_enter(pvo, NULL, NULL);
2189	PMAP_UNLOCK(kernel_pmap);
2190
2191	/* Free any dead pages */
2192	if (oldpvo != NULL) {
2193		moea64_pvo_remove_from_page(oldpvo);
2194		free_pvo_entry(oldpvo);
2195	}
2196
2197	if (error != 0)
2198		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
2199		    (uintmax_t)pa, error);
2200}
2201
2202void
2203moea64_kenter(vm_offset_t va, vm_paddr_t pa)
2204{
2205
2206	moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
2207}
2208
2209/*
2210 * Extract the physical page address associated with the given kernel virtual
2211 * address.
2212 */
2213vm_paddr_t
2214moea64_kextract(vm_offset_t va)
2215{
2216	struct		pvo_entry *pvo;
2217	vm_paddr_t pa;
2218
2219	/*
2220	 * Shortcut the direct-mapped case when applicable.  We never put
2221	 * anything but 1:1 (or 62-bit aliased) mappings below
2222	 * VM_MIN_KERNEL_ADDRESS.
2223	 */
2224	if (va < VM_MIN_KERNEL_ADDRESS)
2225		return (va & ~DMAP_BASE_ADDRESS);
2226
2227	PMAP_LOCK(kernel_pmap);
2228	pvo = moea64_pvo_find_va(kernel_pmap, va);
2229	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
2230	    va));
2231	pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
2232	PMAP_UNLOCK(kernel_pmap);
2233	return (pa);
2234}
2235
2236/*
2237 * Remove a wired page from kernel virtual address space.
2238 */
2239void
2240moea64_kremove(vm_offset_t va)
2241{
2242	moea64_remove(kernel_pmap, va, va + PAGE_SIZE);
2243}
2244
2245/*
2246 * Provide a kernel pointer corresponding to a given userland pointer.
2247 * The returned pointer is valid until the next time this function is
2248 * called in this thread. This is used internally in copyin/copyout.
2249 */
2250static int
2251moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr,
2252    void **kaddr, size_t ulen, size_t *klen)
2253{
2254	size_t l;
2255#ifdef __powerpc64__
2256	struct slb *slb;
2257#endif
2258	register_t slbv;
2259
2260	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
2261	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
2262	if (l > ulen)
2263		l = ulen;
2264	if (klen)
2265		*klen = l;
2266	else if (l != ulen)
2267		return (EFAULT);
2268
2269#ifdef __powerpc64__
2270	/* Try lockless look-up first */
2271	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
2272
2273	if (slb == NULL) {
2274		/* If it isn't there, we need to pre-fault the VSID */
2275		PMAP_LOCK(pm);
2276		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
2277		PMAP_UNLOCK(pm);
2278	} else {
2279		slbv = slb->slbv;
2280	}
2281
2282	/* Mark segment no-execute */
2283	slbv |= SLBV_N;
2284#else
2285	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
2286
2287	/* Mark segment no-execute */
2288	slbv |= SR_N;
2289#endif
2290
2291	/* If we have already set this VSID, we can just return */
2292	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
2293		return (0);
2294
2295	__asm __volatile("isync");
2296	curthread->td_pcb->pcb_cpu.aim.usr_segm =
2297	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
2298	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
2299#ifdef __powerpc64__
2300	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
2301	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
2302#else
2303	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
2304#endif
2305
2306	return (0);
2307}
2308
2309/*
2310 * Figure out where a given kernel pointer (usually in a fault) points
2311 * to from the VM's perspective, potentially remapping into userland's
2312 * address space.
2313 */
2314static int
2315moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user,
2316    vm_offset_t *decoded_addr)
2317{
2318	vm_offset_t user_sr;
2319
2320	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2321		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2322		addr &= ADDR_PIDX | ADDR_POFF;
2323		addr |= user_sr << ADDR_SR_SHFT;
2324		*decoded_addr = addr;
2325		*is_user = 1;
2326	} else {
2327		*decoded_addr = addr;
2328		*is_user = 0;
2329	}
2330
2331	return (0);
2332}
2333
2334/*
2335 * Map a range of physical addresses into kernel virtual address space.
2336 *
2337 * The value passed in *virt is a suggested virtual address for the mapping.
2338 * Architectures which can support a direct-mapped physical to virtual region
2339 * can return the appropriate address within that region, leaving '*virt'
2340 * unchanged.  Other architectures should map the pages starting at '*virt' and
2341 * update '*virt' with the first usable address after the mapped region.
2342 */
2343vm_offset_t
2344moea64_map(vm_offset_t *virt, vm_paddr_t pa_start,
2345    vm_paddr_t pa_end, int prot)
2346{
2347	vm_offset_t	sva, va;
2348
2349	if (hw_direct_map) {
2350		/*
2351		 * Check if every page in the region is covered by the direct
2352		 * map. The direct map covers all of physical memory. Use
2353		 * moea64_calc_wimg() as a shortcut to see if the page is in
2354		 * physical memory as a way to see if the direct map covers it.
2355		 */
2356		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2357			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2358				break;
2359		if (va == pa_end)
2360			return (PHYS_TO_DMAP(pa_start));
2361	}
2362	sva = *virt;
2363	va = sva;
2364	/* XXX respect prot argument */
2365	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2366		moea64_kenter(va, pa_start);
2367	*virt = va;
2368
2369	return (sva);
2370}
2371
2372/*
2373 * Returns true if the pmap's pv is one of the first
2374 * 16 pvs linked to from this page.  This count may
2375 * be changed upwards or downwards in the future; it
2376 * is only necessary that true be returned for a small
2377 * subset of pmaps for proper page aging.
2378 */
2379bool
2380moea64_page_exists_quick(pmap_t pmap, vm_page_t m)
2381{
2382        int loops;
2383	struct pvo_entry *pvo;
2384	bool rv;
2385
2386	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2387	    ("moea64_page_exists_quick: page %p is not managed", m));
2388	loops = 0;
2389	rv = false;
2390	PV_PAGE_LOCK(m);
2391	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2392		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2393			rv = true;
2394			break;
2395		}
2396		if (++loops >= 16)
2397			break;
2398	}
2399	PV_PAGE_UNLOCK(m);
2400	return (rv);
2401}
2402
2403void
2404moea64_page_init(vm_page_t m)
2405{
2406
2407	m->md.mdpg_attrs = 0;
2408	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2409	LIST_INIT(&m->md.mdpg_pvoh);
2410}
2411
2412/*
2413 * Return the number of managed mappings to the given physical page
2414 * that are wired.
2415 */
2416int
2417moea64_page_wired_mappings(vm_page_t m)
2418{
2419	struct pvo_entry *pvo;
2420	int count;
2421
2422	count = 0;
2423	if ((m->oflags & VPO_UNMANAGED) != 0)
2424		return (count);
2425	PV_PAGE_LOCK(m);
2426	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2427		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2428			count++;
2429	PV_PAGE_UNLOCK(m);
2430	return (count);
2431}
2432
2433static uintptr_t	moea64_vsidcontext;
2434
2435uintptr_t
2436moea64_get_unique_vsid(void) {
2437	u_int entropy;
2438	register_t hash;
2439	uint32_t mask;
2440	int i;
2441
2442	entropy = 0;
2443	__asm __volatile("mftb %0" : "=r"(entropy));
2444
2445	mtx_lock(&moea64_slb_mutex);
2446	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2447		u_int	n;
2448
2449		/*
2450		 * Create a new value by multiplying by a prime and adding in
2451		 * entropy from the timebase register.  This is to make the
2452		 * VSID more random so that the PT hash function collides
2453		 * less often.  (Note that the prime casues gcc to do shifts
2454		 * instead of a multiply.)
2455		 */
2456		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2457		hash = moea64_vsidcontext & (NVSIDS - 1);
2458		if (hash == 0)		/* 0 is special, avoid it */
2459			continue;
2460		n = hash >> 5;
2461		mask = 1 << (hash & (VSID_NBPW - 1));
2462		hash = (moea64_vsidcontext & VSID_HASHMASK);
2463		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2464			/* anything free in this bucket? */
2465			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2466				entropy = (moea64_vsidcontext >> 20);
2467				continue;
2468			}
2469			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2470			mask = 1 << i;
2471			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2472			hash |= i;
2473		}
2474		if (hash == VSID_VRMA)	/* also special, avoid this too */
2475			continue;
2476		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2477		    ("Allocating in-use VSID %#zx\n", hash));
2478		moea64_vsid_bitmap[n] |= mask;
2479		mtx_unlock(&moea64_slb_mutex);
2480		return (hash);
2481	}
2482
2483	mtx_unlock(&moea64_slb_mutex);
2484	panic("%s: out of segments",__func__);
2485}
2486
2487#ifdef __powerpc64__
2488int
2489moea64_pinit(pmap_t pmap)
2490{
2491
2492	RB_INIT(&pmap->pmap_pvo);
2493
2494	pmap->pm_slb_tree_root = slb_alloc_tree();
2495	pmap->pm_slb = slb_alloc_user_cache();
2496	pmap->pm_slb_len = 0;
2497
2498	return (1);
2499}
2500#else
2501int
2502moea64_pinit(pmap_t pmap)
2503{
2504	int	i;
2505	uint32_t hash;
2506
2507	RB_INIT(&pmap->pmap_pvo);
2508
2509	if (pmap_bootstrapped)
2510		pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap);
2511	else
2512		pmap->pmap_phys = pmap;
2513
2514	/*
2515	 * Allocate some segment registers for this pmap.
2516	 */
2517	hash = moea64_get_unique_vsid();
2518
2519	for (i = 0; i < 16; i++)
2520		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2521
2522	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2523
2524	return (1);
2525}
2526#endif
2527
2528/*
2529 * Initialize the pmap associated with process 0.
2530 */
2531void
2532moea64_pinit0(pmap_t pm)
2533{
2534
2535	PMAP_LOCK_INIT(pm);
2536	moea64_pinit(pm);
2537	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2538}
2539
2540/*
2541 * Set the physical protection on the specified range of this map as requested.
2542 */
2543static void
2544moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2545{
2546	struct vm_page *pg;
2547	vm_prot_t oldprot;
2548	int32_t refchg;
2549
2550	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2551
2552	/*
2553	 * Change the protection of the page.
2554	 */
2555	oldprot = pvo->pvo_pte.prot;
2556	pvo->pvo_pte.prot = prot;
2557	pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2558
2559	/*
2560	 * If the PVO is in the page table, update mapping
2561	 */
2562	refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2563	if (refchg < 0)
2564		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2565
2566	if (pm != kernel_pmap && pg != NULL &&
2567	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2568	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2569		if ((pg->oflags & VPO_UNMANAGED) == 0)
2570			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2571		moea64_syncicache(pm, PVO_VADDR(pvo),
2572		    PVO_PADDR(pvo), PAGE_SIZE);
2573	}
2574
2575	/*
2576	 * Update vm about the REF/CHG bits if the page is managed and we have
2577	 * removed write access.
2578	 */
2579	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2580	    (oldprot & VM_PROT_WRITE)) {
2581		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2582		if (refchg & LPTE_CHG)
2583			vm_page_dirty(pg);
2584		if (refchg & LPTE_REF)
2585			vm_page_aflag_set(pg, PGA_REFERENCED);
2586	}
2587}
2588
2589void
2590moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2591    vm_prot_t prot)
2592{
2593	struct	pvo_entry *pvo, key;
2594
2595	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2596	    sva, eva, prot);
2597
2598	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2599	    ("moea64_protect: non current pmap"));
2600
2601	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2602		moea64_remove(pm, sva, eva);
2603		return;
2604	}
2605
2606	PMAP_LOCK(pm);
2607	key.pvo_vaddr = sva;
2608	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2609	    pvo != NULL && PVO_VADDR(pvo) < eva;
2610	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
2611		if (PVO_IS_SP(pvo)) {
2612			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2613				pvo = moea64_sp_protect(pvo, prot);
2614				continue;
2615			} else {
2616				CTR1(KTR_PMAP, "%s: demote before protect",
2617				    __func__);
2618				moea64_sp_demote(pvo);
2619			}
2620		}
2621		moea64_pvo_protect(pm, pvo, prot);
2622	}
2623	PMAP_UNLOCK(pm);
2624}
2625
2626/*
2627 * Map a list of wired pages into kernel virtual address space.  This is
2628 * intended for temporary mappings which do not need page modification or
2629 * references recorded.  Existing mappings in the region are overwritten.
2630 */
2631void
2632moea64_qenter(vm_offset_t va, vm_page_t *m, int count)
2633{
2634	while (count-- > 0) {
2635		moea64_kenter(va, VM_PAGE_TO_PHYS(*m));
2636		va += PAGE_SIZE;
2637		m++;
2638	}
2639}
2640
2641/*
2642 * Remove page mappings from kernel virtual address space.  Intended for
2643 * temporary mappings entered by moea64_qenter.
2644 */
2645void
2646moea64_qremove(vm_offset_t va, int count)
2647{
2648	while (count-- > 0) {
2649		moea64_kremove(va);
2650		va += PAGE_SIZE;
2651	}
2652}
2653
2654void
2655moea64_release_vsid(uint64_t vsid)
2656{
2657	int idx, mask;
2658
2659	mtx_lock(&moea64_slb_mutex);
2660	idx = vsid & (NVSIDS-1);
2661	mask = 1 << (idx % VSID_NBPW);
2662	idx /= VSID_NBPW;
2663	KASSERT(moea64_vsid_bitmap[idx] & mask,
2664	    ("Freeing unallocated VSID %#jx", vsid));
2665	moea64_vsid_bitmap[idx] &= ~mask;
2666	mtx_unlock(&moea64_slb_mutex);
2667}
2668
2669void
2670moea64_release(pmap_t pmap)
2671{
2672
2673	/*
2674	 * Free segment registers' VSIDs
2675	 */
2676    #ifdef __powerpc64__
2677	slb_free_tree(pmap);
2678	slb_free_user_cache(pmap->pm_slb);
2679    #else
2680	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2681
2682	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2683    #endif
2684}
2685
2686/*
2687 * Remove all pages mapped by the specified pmap
2688 */
2689void
2690moea64_remove_pages(pmap_t pm)
2691{
2692	struct pvo_entry *pvo, *tpvo;
2693	struct pvo_dlist tofree;
2694
2695	SLIST_INIT(&tofree);
2696
2697	PMAP_LOCK(pm);
2698	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2699		if (pvo->pvo_vaddr & PVO_WIRED)
2700			continue;
2701
2702		/*
2703		 * For locking reasons, remove this from the page table and
2704		 * pmap, but save delinking from the vm_page for a second
2705		 * pass
2706		 */
2707		moea64_pvo_remove_from_pmap(pvo);
2708		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2709	}
2710	PMAP_UNLOCK(pm);
2711
2712	while (!SLIST_EMPTY(&tofree)) {
2713		pvo = SLIST_FIRST(&tofree);
2714		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2715		moea64_pvo_remove_from_page(pvo);
2716		free_pvo_entry(pvo);
2717	}
2718}
2719
2720static void
2721moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2722    struct pvo_dlist *tofree)
2723{
2724	struct pvo_entry *pvo, *tpvo, key;
2725
2726	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2727
2728	key.pvo_vaddr = sva;
2729	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2730	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2731		if (PVO_IS_SP(pvo)) {
2732			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2733				tpvo = moea64_sp_remove(pvo, tofree);
2734				continue;
2735			} else {
2736				CTR1(KTR_PMAP, "%s: demote before remove",
2737				    __func__);
2738				moea64_sp_demote(pvo);
2739			}
2740		}
2741		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2742
2743		/*
2744		 * For locking reasons, remove this from the page table and
2745		 * pmap, but save delinking from the vm_page for a second
2746		 * pass
2747		 */
2748		moea64_pvo_remove_from_pmap(pvo);
2749		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
2750	}
2751}
2752
2753/*
2754 * Remove the given range of addresses from the specified map.
2755 */
2756void
2757moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2758{
2759	struct pvo_entry *pvo;
2760	struct pvo_dlist tofree;
2761
2762	/*
2763	 * Perform an unsynchronized read.  This is, however, safe.
2764	 */
2765	if (pm->pm_stats.resident_count == 0)
2766		return;
2767
2768	SLIST_INIT(&tofree);
2769	PMAP_LOCK(pm);
2770	moea64_remove_locked(pm, sva, eva, &tofree);
2771	PMAP_UNLOCK(pm);
2772
2773	while (!SLIST_EMPTY(&tofree)) {
2774		pvo = SLIST_FIRST(&tofree);
2775		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2776		moea64_pvo_remove_from_page(pvo);
2777		free_pvo_entry(pvo);
2778	}
2779}
2780
2781/*
2782 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2783 * will reflect changes in pte's back to the vm_page.
2784 */
2785void
2786moea64_remove_all(vm_page_t m)
2787{
2788	struct	pvo_entry *pvo, *next_pvo;
2789	struct	pvo_head freequeue;
2790	int	wasdead;
2791	pmap_t	pmap;
2792
2793	LIST_INIT(&freequeue);
2794
2795	PV_PAGE_LOCK(m);
2796	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2797		pmap = pvo->pvo_pmap;
2798		PMAP_LOCK(pmap);
2799		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2800		if (!wasdead) {
2801			if (PVO_IS_SP(pvo)) {
2802				CTR1(KTR_PMAP, "%s: demote before remove_all",
2803				    __func__);
2804				moea64_sp_demote(pvo);
2805			}
2806			moea64_pvo_remove_from_pmap(pvo);
2807		}
2808		moea64_pvo_remove_from_page_locked(pvo, m);
2809		if (!wasdead)
2810			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2811		PMAP_UNLOCK(pmap);
2812
2813	}
2814	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2815	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2816	PV_PAGE_UNLOCK(m);
2817
2818	/* Clean up UMA allocations */
2819	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2820		free_pvo_entry(pvo);
2821}
2822
2823/*
2824 * Allocate a physical page of memory directly from the phys_avail map.
2825 * Can only be called from moea64_bootstrap before avail start and end are
2826 * calculated.
2827 */
2828vm_offset_t
2829moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2830{
2831	vm_offset_t	s, e;
2832	int		i, j;
2833
2834	size = round_page(size);
2835	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2836		if (align != 0)
2837			s = roundup2(phys_avail[i], align);
2838		else
2839			s = phys_avail[i];
2840		e = s + size;
2841
2842		if (s < phys_avail[i] || e > phys_avail[i + 1])
2843			continue;
2844
2845		if (s + size > platform_real_maxaddr())
2846			continue;
2847
2848		if (s == phys_avail[i]) {
2849			phys_avail[i] += size;
2850		} else if (e == phys_avail[i + 1]) {
2851			phys_avail[i + 1] -= size;
2852		} else {
2853			for (j = phys_avail_count * 2; j > i; j -= 2) {
2854				phys_avail[j] = phys_avail[j - 2];
2855				phys_avail[j + 1] = phys_avail[j - 1];
2856			}
2857
2858			phys_avail[i + 3] = phys_avail[i + 1];
2859			phys_avail[i + 1] = s;
2860			phys_avail[i + 2] = e;
2861			phys_avail_count++;
2862		}
2863
2864		return (s);
2865	}
2866	panic("moea64_bootstrap_alloc: could not allocate memory");
2867}
2868
2869static int
2870moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head,
2871    struct pvo_entry **oldpvop)
2872{
2873	struct pvo_entry *old_pvo;
2874	int err;
2875
2876	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2877
2878	STAT_MOEA64(moea64_pvo_enter_calls++);
2879
2880	/*
2881	 * Add to pmap list
2882	 */
2883	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2884
2885	if (old_pvo != NULL) {
2886		if (oldpvop != NULL)
2887			*oldpvop = old_pvo;
2888		return (EEXIST);
2889	}
2890
2891	if (pvo_head != NULL) {
2892		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2893	}
2894
2895	if (pvo->pvo_vaddr & PVO_WIRED)
2896		pvo->pvo_pmap->pm_stats.wired_count++;
2897	pvo->pvo_pmap->pm_stats.resident_count++;
2898
2899	/*
2900	 * Insert it into the hardware page table
2901	 */
2902	err = moea64_pte_insert(pvo);
2903	if (err != 0) {
2904		panic("moea64_pvo_enter: overflow");
2905	}
2906
2907	STAT_MOEA64(moea64_pvo_entries++);
2908
2909	if (pvo->pvo_pmap == kernel_pmap)
2910		isync();
2911
2912#ifdef __powerpc64__
2913	/*
2914	 * Make sure all our bootstrap mappings are in the SLB as soon
2915	 * as virtual memory is switched on.
2916	 */
2917	if (!pmap_bootstrapped)
2918		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2919		    pvo->pvo_vaddr & PVO_LARGE);
2920#endif
2921
2922	return (0);
2923}
2924
2925static void
2926moea64_pvo_remove_from_pmap(struct pvo_entry *pvo)
2927{
2928	struct	vm_page *pg;
2929	int32_t refchg;
2930
2931	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2932	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2933	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2934
2935	/*
2936	 * If there is an active pte entry, we need to deactivate it
2937	 */
2938	refchg = moea64_pte_unset(pvo);
2939	if (refchg < 0) {
2940		/*
2941		 * If it was evicted from the page table, be pessimistic and
2942		 * dirty the page.
2943		 */
2944		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2945			refchg = LPTE_CHG;
2946		else
2947			refchg = 0;
2948	}
2949
2950	/*
2951	 * Update our statistics.
2952	 */
2953	pvo->pvo_pmap->pm_stats.resident_count--;
2954	if (pvo->pvo_vaddr & PVO_WIRED)
2955		pvo->pvo_pmap->pm_stats.wired_count--;
2956
2957	/*
2958	 * Remove this PVO from the pmap list.
2959	 */
2960	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2961
2962	/*
2963	 * Mark this for the next sweep
2964	 */
2965	pvo->pvo_vaddr |= PVO_DEAD;
2966
2967	/* Send RC bits to VM */
2968	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2969	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2970		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2971		if (pg != NULL) {
2972			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2973			if (refchg & LPTE_CHG)
2974				vm_page_dirty(pg);
2975			if (refchg & LPTE_REF)
2976				vm_page_aflag_set(pg, PGA_REFERENCED);
2977		}
2978	}
2979}
2980
2981static inline void
2982moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo,
2983    vm_page_t m)
2984{
2985
2986	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2987
2988	/* Use NULL pmaps as a sentinel for races in page deletion */
2989	if (pvo->pvo_pmap == NULL)
2990		return;
2991	pvo->pvo_pmap = NULL;
2992
2993	/*
2994	 * Update vm about page writeability/executability if managed
2995	 */
2996	PV_LOCKASSERT(PVO_PADDR(pvo));
2997	if (pvo->pvo_vaddr & PVO_MANAGED) {
2998		if (m != NULL) {
2999			LIST_REMOVE(pvo, pvo_vlink);
3000			if (LIST_EMPTY(vm_page_to_pvoh(m)))
3001				vm_page_aflag_clear(m,
3002				    PGA_WRITEABLE | PGA_EXECUTABLE);
3003		}
3004	}
3005
3006	STAT_MOEA64(moea64_pvo_entries--);
3007	STAT_MOEA64(moea64_pvo_remove_calls++);
3008}
3009
3010static void
3011moea64_pvo_remove_from_page(struct pvo_entry *pvo)
3012{
3013	vm_page_t pg = NULL;
3014
3015	if (pvo->pvo_vaddr & PVO_MANAGED)
3016		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
3017
3018	PV_LOCK(PVO_PADDR(pvo));
3019	moea64_pvo_remove_from_page_locked(pvo, pg);
3020	PV_UNLOCK(PVO_PADDR(pvo));
3021}
3022
3023static struct pvo_entry *
3024moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
3025{
3026	struct pvo_entry key;
3027
3028	PMAP_LOCK_ASSERT(pm, MA_OWNED);
3029
3030	key.pvo_vaddr = va & ~ADDR_POFF;
3031	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
3032}
3033
3034static bool
3035moea64_query_bit(vm_page_t m, uint64_t ptebit)
3036{
3037	struct	pvo_entry *pvo;
3038	int64_t ret;
3039	bool rv;
3040	vm_page_t sp;
3041
3042	/*
3043	 * See if this bit is stored in the page already.
3044	 *
3045	 * For superpages, the bit is stored in the first vm page.
3046	 */
3047	if ((m->md.mdpg_attrs & ptebit) != 0 ||
3048	    ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL &&
3049	     (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) ==
3050	     (ptebit | MDPG_ATTR_SP)))
3051		return (true);
3052
3053	/*
3054	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
3055	 * flushed to the PTEs.
3056	 */
3057	rv = false;
3058	powerpc_sync();
3059	PV_PAGE_LOCK(m);
3060	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3061		if (PVO_IS_SP(pvo)) {
3062			ret = moea64_sp_query(pvo, ptebit);
3063			/*
3064			 * If SP was not demoted, check its REF/CHG bits here.
3065			 */
3066			if (ret != -1) {
3067				if ((ret & ptebit) != 0) {
3068					rv = true;
3069					break;
3070				}
3071				continue;
3072			}
3073			/* else, fallthrough */
3074		}
3075
3076		ret = 0;
3077
3078		/*
3079		 * See if this pvo has a valid PTE.  if so, fetch the
3080		 * REF/CHG bits from the valid PTE.  If the appropriate
3081		 * ptebit is set, return success.
3082		 */
3083		PMAP_LOCK(pvo->pvo_pmap);
3084		if (!(pvo->pvo_vaddr & PVO_DEAD))
3085			ret = moea64_pte_synch(pvo);
3086		PMAP_UNLOCK(pvo->pvo_pmap);
3087
3088		if (ret > 0) {
3089			atomic_set_32(&m->md.mdpg_attrs,
3090			    ret & (LPTE_CHG | LPTE_REF));
3091			if (ret & ptebit) {
3092				rv = true;
3093				break;
3094			}
3095		}
3096	}
3097	PV_PAGE_UNLOCK(m);
3098
3099	return (rv);
3100}
3101
3102static u_int
3103moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
3104{
3105	u_int	count;
3106	struct	pvo_entry *pvo;
3107	int64_t ret;
3108
3109	/*
3110	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
3111	 * we can reset the right ones).
3112	 */
3113	powerpc_sync();
3114
3115	/*
3116	 * For each pvo entry, clear the pte's ptebit.
3117	 */
3118	count = 0;
3119	PV_PAGE_LOCK(m);
3120	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3121		if (PVO_IS_SP(pvo)) {
3122			if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) {
3123				count += ret;
3124				continue;
3125			}
3126		}
3127		ret = 0;
3128
3129		PMAP_LOCK(pvo->pvo_pmap);
3130		if (!(pvo->pvo_vaddr & PVO_DEAD))
3131			ret = moea64_pte_clear(pvo, ptebit);
3132		PMAP_UNLOCK(pvo->pvo_pmap);
3133
3134		if (ret > 0 && (ret & ptebit))
3135			count++;
3136	}
3137	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
3138	PV_PAGE_UNLOCK(m);
3139
3140	return (count);
3141}
3142
3143int
3144moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
3145{
3146	struct pvo_entry *pvo, key;
3147	vm_offset_t ppa;
3148	int error = 0;
3149
3150	if (hw_direct_map && mem_valid(pa, size) == 0)
3151		return (0);
3152
3153	PMAP_LOCK(kernel_pmap);
3154	ppa = pa & ~ADDR_POFF;
3155	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
3156	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
3157	    ppa < pa + size; ppa += PAGE_SIZE,
3158	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
3159		if (pvo == NULL || PVO_PADDR(pvo) != ppa) {
3160			error = EFAULT;
3161			break;
3162		}
3163	}
3164	PMAP_UNLOCK(kernel_pmap);
3165
3166	return (error);
3167}
3168
3169/*
3170 * Map a set of physical memory pages into the kernel virtual
3171 * address space. Return a pointer to where it is mapped. This
3172 * routine is intended to be used for mapping device memory,
3173 * NOT real memory.
3174 */
3175void *
3176moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3177{
3178	vm_offset_t va, tmpva, ppa, offset;
3179
3180	ppa = trunc_page(pa);
3181	offset = pa & PAGE_MASK;
3182	size = roundup2(offset + size, PAGE_SIZE);
3183
3184	va = kva_alloc(size);
3185
3186	if (!va)
3187		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
3188
3189	for (tmpva = va; size > 0;) {
3190		moea64_kenter_attr(tmpva, ppa, ma);
3191		size -= PAGE_SIZE;
3192		tmpva += PAGE_SIZE;
3193		ppa += PAGE_SIZE;
3194	}
3195
3196	return ((void *)(va + offset));
3197}
3198
3199void *
3200moea64_mapdev(vm_paddr_t pa, vm_size_t size)
3201{
3202
3203	return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT);
3204}
3205
3206void
3207moea64_unmapdev(void *p, vm_size_t size)
3208{
3209	vm_offset_t base, offset, va;
3210
3211	va = (vm_offset_t)p;
3212	base = trunc_page(va);
3213	offset = va & PAGE_MASK;
3214	size = roundup2(offset + size, PAGE_SIZE);
3215
3216	moea64_qremove(base, atop(size));
3217	kva_free(base, size);
3218}
3219
3220void
3221moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3222{
3223	struct pvo_entry *pvo;
3224	vm_offset_t lim;
3225	vm_paddr_t pa;
3226	vm_size_t len;
3227
3228	if (__predict_false(pm == NULL))
3229		pm = &curthread->td_proc->p_vmspace->vm_pmap;
3230
3231	PMAP_LOCK(pm);
3232	while (sz > 0) {
3233		lim = round_page(va+1);
3234		len = MIN(lim - va, sz);
3235		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3236		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
3237			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
3238			moea64_syncicache(pm, va, pa, len);
3239		}
3240		va += len;
3241		sz -= len;
3242	}
3243	PMAP_UNLOCK(pm);
3244}
3245
3246void
3247moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
3248{
3249
3250	*va = (void *)(uintptr_t)pa;
3251}
3252
3253extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3254
3255void
3256moea64_scan_init(void)
3257{
3258	struct pvo_entry *pvo;
3259	vm_offset_t va;
3260	int i;
3261
3262	if (!do_minidump) {
3263		/* Initialize phys. segments for dumpsys(). */
3264		memset(&dump_map, 0, sizeof(dump_map));
3265		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
3266		for (i = 0; i < pregions_sz; i++) {
3267			dump_map[i].pa_start = pregions[i].mr_start;
3268			dump_map[i].pa_size = pregions[i].mr_size;
3269		}
3270		return;
3271	}
3272
3273	/* Virtual segments for minidumps: */
3274	memset(&dump_map, 0, sizeof(dump_map));
3275
3276	/* 1st: kernel .data and .bss. */
3277	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3278	dump_map[0].pa_size = round_page((uintptr_t)_end) -
3279	    dump_map[0].pa_start;
3280
3281	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3282	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
3283	dump_map[1].pa_size = round_page(msgbufp->msg_size);
3284
3285	/* 3rd: kernel VM. */
3286	va = dump_map[1].pa_start + dump_map[1].pa_size;
3287	/* Find start of next chunk (from va). */
3288	while (va < virtual_end) {
3289		/* Don't dump the buffer cache. */
3290		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3291			va = kmi.buffer_eva;
3292			continue;
3293		}
3294		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3295		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
3296			break;
3297		va += PAGE_SIZE;
3298	}
3299	if (va < virtual_end) {
3300		dump_map[2].pa_start = va;
3301		va += PAGE_SIZE;
3302		/* Find last page in chunk. */
3303		while (va < virtual_end) {
3304			/* Don't run into the buffer cache. */
3305			if (va == kmi.buffer_sva)
3306				break;
3307			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3308			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
3309				break;
3310			va += PAGE_SIZE;
3311		}
3312		dump_map[2].pa_size = va - dump_map[2].pa_start;
3313	}
3314}
3315
3316#ifdef __powerpc64__
3317
3318static size_t
3319moea64_scan_pmap(struct bitset *dump_bitset)
3320{
3321	struct pvo_entry *pvo;
3322	vm_paddr_t pa, pa_end;
3323	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
3324	uint64_t lpsize;
3325
3326	lpsize = moea64_large_page_size;
3327	kstart = trunc_page((vm_offset_t)_etext);
3328	kend = round_page((vm_offset_t)_end);
3329	kstart_lp = kstart & ~moea64_large_page_mask;
3330	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
3331
3332	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
3333	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
3334	    kstart, kend, kstart_lp, kend_lp);
3335
3336	PMAP_LOCK(kernel_pmap);
3337	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
3338		va = pvo->pvo_vaddr;
3339
3340		if (va & PVO_DEAD)
3341			continue;
3342
3343		/* Skip DMAP (except kernel area) */
3344		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
3345			if (va & PVO_LARGE) {
3346				pgva = va & ~moea64_large_page_mask;
3347				if (pgva < kstart_lp || pgva >= kend_lp)
3348					continue;
3349			} else {
3350				pgva = trunc_page(va);
3351				if (pgva < kstart || pgva >= kend)
3352					continue;
3353			}
3354		}
3355
3356		pa = PVO_PADDR(pvo);
3357
3358		if (va & PVO_LARGE) {
3359			pa_end = pa + lpsize;
3360			for (; pa < pa_end; pa += PAGE_SIZE) {
3361				if (vm_phys_is_dumpable(pa))
3362					vm_page_dump_add(dump_bitset, pa);
3363			}
3364		} else {
3365			if (vm_phys_is_dumpable(pa))
3366				vm_page_dump_add(dump_bitset, pa);
3367		}
3368	}
3369	PMAP_UNLOCK(kernel_pmap);
3370
3371	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3372}
3373
3374static struct dump_context dump_ctx;
3375
3376static void *
3377moea64_dump_pmap_init(unsigned blkpgs)
3378{
3379	dump_ctx.ptex = 0;
3380	dump_ctx.ptex_end = moea64_pteg_count * 8;
3381	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3382	return (&dump_ctx);
3383}
3384
3385#else
3386
3387static size_t
3388moea64_scan_pmap(struct bitset *dump_bitset __unused)
3389{
3390	return (0);
3391}
3392
3393static void *
3394moea64_dump_pmap_init(unsigned blkpgs)
3395{
3396	return (NULL);
3397}
3398
3399#endif
3400
3401#ifdef __powerpc64__
3402static void
3403moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3404{
3405
3406	for (; npages > 0; --npages) {
3407		if (moea64_large_page_size != 0 &&
3408		    (pa & moea64_large_page_mask) == 0 &&
3409		    (va & moea64_large_page_mask) == 0 &&
3410		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3411			PMAP_LOCK(kernel_pmap);
3412			moea64_kenter_large(va, pa, 0, 0);
3413			PMAP_UNLOCK(kernel_pmap);
3414			pa += moea64_large_page_size;
3415			va += moea64_large_page_size;
3416			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3417		} else {
3418			moea64_kenter(va, pa);
3419			pa += PAGE_SIZE;
3420			va += PAGE_SIZE;
3421		}
3422	}
3423}
3424
3425static void
3426moea64_page_array_startup(long pages)
3427{
3428	long dom_pages[MAXMEMDOM];
3429	vm_paddr_t pa;
3430	vm_offset_t va, vm_page_base;
3431	vm_size_t needed, size;
3432	int domain;
3433	int i;
3434
3435	vm_page_base = 0xd000000000000000ULL;
3436
3437	/* Short-circuit single-domain systems. */
3438	if (vm_ndomains == 1) {
3439		size = round_page(pages * sizeof(struct vm_page));
3440		pa = vm_phys_early_alloc(0, size);
3441		vm_page_base = moea64_map(&vm_page_base,
3442		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3443		vm_page_array_size = pages;
3444		vm_page_array = (vm_page_t)vm_page_base;
3445		return;
3446	}
3447
3448	for (i = 0; i < MAXMEMDOM; i++)
3449		dom_pages[i] = 0;
3450
3451	/* Now get the number of pages required per domain. */
3452	for (i = 0; i < vm_phys_nsegs; i++) {
3453		domain = vm_phys_segs[i].domain;
3454		KASSERT(domain < MAXMEMDOM,
3455		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3456		/* Get size of vm_page_array needed for this segment. */
3457		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3458		dom_pages[domain] += size;
3459	}
3460
3461	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3462		domain = vm_phys_domain(phys_avail[i]);
3463		KASSERT(domain < MAXMEMDOM,
3464		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3465		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3466		dom_pages[domain] += size;
3467	}
3468
3469	/*
3470	 * Map in chunks that can get us all 16MB pages.  There will be some
3471	 * overlap between domains, but that's acceptable for now.
3472	 */
3473	vm_page_array_size = 0;
3474	va = vm_page_base;
3475	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3476		if (dom_pages[i] == 0)
3477			continue;
3478		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3479		size = round_page(size * sizeof(struct vm_page));
3480		needed = size;
3481		size = roundup2(size, moea64_large_page_size);
3482		pa = vm_phys_early_alloc(i, size);
3483		vm_page_array_size += size / sizeof(struct vm_page);
3484		moea64_map_range(va, pa, size >> PAGE_SHIFT);
3485		/* Scoot up domain 0, to reduce the domain page overlap. */
3486		if (i == 0)
3487			vm_page_base += size - needed;
3488		va += size;
3489	}
3490	vm_page_array = (vm_page_t)vm_page_base;
3491	vm_page_array_size = pages;
3492}
3493#endif
3494
3495static int64_t
3496moea64_null_method(void)
3497{
3498	return (0);
3499}
3500
3501static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags)
3502{
3503	int64_t refchg;
3504
3505	refchg = moea64_pte_unset(pvo);
3506	moea64_pte_insert(pvo);
3507
3508	return (refchg);
3509}
3510
3511struct moea64_funcs *moea64_ops;
3512
3513#define DEFINE_OEA64_IFUNC(ret, func, args, def)		\
3514	DEFINE_IFUNC(, ret, moea64_##func, args) {		\
3515		moea64_##func##_t f;				\
3516		if (moea64_ops == NULL)				\
3517			return ((moea64_##func##_t)def);	\
3518		f = moea64_ops->func;				\
3519		return (f != NULL ? f : (moea64_##func##_t)def);\
3520	}
3521
3522void
3523moea64_install(void)
3524{
3525#ifdef __powerpc64__
3526	if (hw_direct_map == -1) {
3527		moea64_probe_large_page();
3528
3529		/* Use a direct map if we have large page support */
3530		if (moea64_large_page_size > 0)
3531			hw_direct_map = 1;
3532		else
3533			hw_direct_map = 0;
3534	}
3535#endif
3536
3537	/*
3538	 * Default to non-DMAP, and switch over to DMAP functions once we know
3539	 * we have DMAP.
3540	 */
3541	if (hw_direct_map) {
3542		moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap;
3543		moea64_methods.quick_remove_page = NULL;
3544		moea64_methods.copy_page = moea64_copy_page_dmap;
3545		moea64_methods.zero_page = moea64_zero_page_dmap;
3546		moea64_methods.copy_pages = moea64_copy_pages_dmap;
3547	}
3548}
3549
3550DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int),
3551    moea64_pte_replace_default)
3552DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method)
3553DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method)
3554DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t),
3555    moea64_null_method)
3556DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method)
3557DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method)
3558DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method)
3559DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method)
3560
3561/* Superpage functions */
3562
3563/* MMU interface */
3564
3565static bool
3566moea64_ps_enabled(pmap_t pmap)
3567{
3568	return (superpages_enabled);
3569}
3570
3571static void
3572moea64_align_superpage(vm_object_t object, vm_ooffset_t offset,
3573    vm_offset_t *addr, vm_size_t size)
3574{
3575	vm_offset_t sp_offset;
3576
3577	if (size < HPT_SP_SIZE)
3578		return;
3579
3580	CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx",
3581	    __func__, (uintmax_t)offset, addr, (uintmax_t)size);
3582
3583	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3584		offset += ptoa(object->pg_color);
3585	sp_offset = offset & HPT_SP_MASK;
3586	if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE ||
3587	    (*addr & HPT_SP_MASK) == sp_offset)
3588		return;
3589	if ((*addr & HPT_SP_MASK) < sp_offset)
3590		*addr = (*addr & ~HPT_SP_MASK) + sp_offset;
3591	else
3592		*addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset;
3593}
3594
3595/* Helpers */
3596
3597static __inline void
3598moea64_pvo_cleanup(struct pvo_dlist *tofree)
3599{
3600	struct pvo_entry *pvo;
3601
3602	/* clean up */
3603	while (!SLIST_EMPTY(tofree)) {
3604		pvo = SLIST_FIRST(tofree);
3605		SLIST_REMOVE_HEAD(tofree, pvo_dlink);
3606		if (pvo->pvo_vaddr & PVO_DEAD)
3607			moea64_pvo_remove_from_page(pvo);
3608		free_pvo_entry(pvo);
3609	}
3610}
3611
3612static __inline uint16_t
3613pvo_to_vmpage_flags(struct pvo_entry *pvo)
3614{
3615	uint16_t flags;
3616
3617	flags = 0;
3618	if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0)
3619		flags |= PGA_WRITEABLE;
3620	if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0)
3621		flags |= PGA_EXECUTABLE;
3622
3623	return (flags);
3624}
3625
3626/*
3627 * Check if the given pvo and its superpage are in sva-eva range.
3628 */
3629static __inline bool
3630moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva)
3631{
3632	vm_offset_t spva;
3633
3634	spva = PVO_VADDR(pvo) & ~HPT_SP_MASK;
3635	if (spva >= sva && spva + HPT_SP_SIZE <= eva) {
3636		/*
3637		 * Because this function is intended to be called from loops
3638		 * that iterate over ordered pvo entries, if the condition
3639		 * above is true then the pvo must be the first of its
3640		 * superpage.
3641		 */
3642		KASSERT(PVO_VADDR(pvo) == spva,
3643		    ("%s: unexpected unaligned superpage pvo", __func__));
3644		return (true);
3645	}
3646	return (false);
3647}
3648
3649/*
3650 * Update vm about the REF/CHG bits if the superpage is managed and
3651 * has (or had) write access.
3652 */
3653static void
3654moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m,
3655    int64_t sp_refchg, vm_prot_t prot)
3656{
3657	vm_page_t m_end;
3658	int64_t refchg;
3659
3660	if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) {
3661		for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) {
3662			refchg = sp_refchg |
3663			    atomic_readandclear_32(&m->md.mdpg_attrs);
3664			if (refchg & LPTE_CHG)
3665				vm_page_dirty(m);
3666			if (refchg & LPTE_REF)
3667				vm_page_aflag_set(m, PGA_REFERENCED);
3668		}
3669	}
3670}
3671
3672/* Superpage ops */
3673
3674static int
3675moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
3676    vm_prot_t prot, u_int flags, int8_t psind)
3677{
3678	struct pvo_entry *pvo, **pvos;
3679	struct pvo_head *pvo_head;
3680	vm_offset_t sva;
3681	vm_page_t sm;
3682	vm_paddr_t pa, spa;
3683	bool sync;
3684	struct pvo_dlist tofree;
3685	int error __diagused, i;
3686	uint16_t aflags;
3687
3688	KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned",
3689	    __func__, (uintmax_t)va));
3690	KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind));
3691	KASSERT(m->psind == 1, ("%s: invalid m->psind: %d",
3692	    __func__, m->psind));
3693	KASSERT(pmap != kernel_pmap,
3694	    ("%s: function called with kernel pmap", __func__));
3695
3696	CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1",
3697	    __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m),
3698	    prot, flags);
3699
3700	SLIST_INIT(&tofree);
3701
3702	sva = va;
3703	sm = m;
3704	spa = pa = VM_PAGE_TO_PHYS(sm);
3705
3706	/* Try to allocate all PVOs first, to make failure handling easier. */
3707	pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP,
3708	    M_NOWAIT);
3709	if (pvos == NULL) {
3710		CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__);
3711		return (KERN_RESOURCE_SHORTAGE);
3712	}
3713
3714	for (i = 0; i < HPT_SP_PAGES; i++) {
3715		pvos[i] = alloc_pvo_entry(0);
3716		if (pvos[i] == NULL) {
3717			CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__);
3718			for (i = i - 1; i >= 0; i--)
3719				free_pvo_entry(pvos[i]);
3720			free(pvos, M_TEMP);
3721			return (KERN_RESOURCE_SHORTAGE);
3722		}
3723	}
3724
3725	SP_PV_LOCK_ALIGNED(spa);
3726	PMAP_LOCK(pmap);
3727
3728	/* Note: moea64_remove_locked() also clears cached REF/CHG bits. */
3729	moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree);
3730
3731	/* Enter pages */
3732	for (i = 0; i < HPT_SP_PAGES;
3733	    i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) {
3734		pvo = pvos[i];
3735
3736		pvo->pvo_pte.prot = prot;
3737		pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M |
3738		    moea64_calc_wimg(pa, pmap_page_get_memattr(m));
3739
3740		if ((flags & PMAP_ENTER_WIRED) != 0)
3741			pvo->pvo_vaddr |= PVO_WIRED;
3742		pvo->pvo_vaddr |= PVO_LARGE;
3743
3744		if ((m->oflags & VPO_UNMANAGED) != 0)
3745			pvo_head = NULL;
3746		else {
3747			pvo_head = &m->md.mdpg_pvoh;
3748			pvo->pvo_vaddr |= PVO_MANAGED;
3749		}
3750
3751		init_pvo_entry(pvo, pmap, va);
3752
3753		error = moea64_pvo_enter(pvo, pvo_head, NULL);
3754		/*
3755		 * All superpage PVOs were previously removed, so no errors
3756		 * should occur while inserting the new ones.
3757		 */
3758		KASSERT(error == 0, ("%s: unexpected error "
3759			    "when inserting superpage PVO: %d",
3760			    __func__, error));
3761	}
3762
3763	PMAP_UNLOCK(pmap);
3764	SP_PV_UNLOCK_ALIGNED(spa);
3765
3766	sync = (sm->a.flags & PGA_EXECUTABLE) == 0;
3767	/* Note: moea64_pvo_cleanup() also clears page prot. flags. */
3768	moea64_pvo_cleanup(&tofree);
3769	pvo = pvos[0];
3770
3771	/* Set vm page flags */
3772	aflags = pvo_to_vmpage_flags(pvo);
3773	if (aflags != 0)
3774		for (m = sm; m < &sm[HPT_SP_PAGES]; m++)
3775			vm_page_aflag_set(m, aflags);
3776
3777	/*
3778	 * Flush the page from the instruction cache if this page is
3779	 * mapped executable and cacheable.
3780	 */
3781	if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
3782		moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE);
3783
3784	atomic_add_long(&sp_mappings, 1);
3785	CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p",
3786	    __func__, (uintmax_t)sva, pmap);
3787
3788	free(pvos, M_TEMP);
3789	return (KERN_SUCCESS);
3790}
3791
3792static void
3793moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m)
3794{
3795	struct pvo_entry *first, *pvo;
3796	vm_paddr_t pa, pa_end;
3797	vm_offset_t sva, va_end;
3798	int64_t sp_refchg;
3799
3800	/* This CTR may generate a lot of output. */
3801	/* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */
3802
3803	va &= ~HPT_SP_MASK;
3804	sva = va;
3805	/* Get superpage */
3806	pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK;
3807	m = PHYS_TO_VM_PAGE(pa);
3808
3809	PMAP_LOCK(pmap);
3810
3811	/*
3812	 * Check if all pages meet promotion criteria.
3813	 *
3814	 * XXX In some cases the loop below may be executed for each or most
3815	 * of the entered pages of a superpage, which can be expensive
3816	 * (although it was not profiled) and need some optimization.
3817	 *
3818	 * Some cases where this seems to happen are:
3819	 * - When a superpage is first entered read-only and later becomes
3820	 *   read-write.
3821	 * - When some of the superpage's virtual addresses map to previously
3822	 *   wired/cached pages while others map to pages allocated from a
3823	 *   different physical address range. A common scenario where this
3824	 *   happens is when mmap'ing a file that is already present in FS
3825	 *   block cache and doesn't fill a superpage.
3826	 */
3827	first = pvo = moea64_pvo_find_va(pmap, sva);
3828	for (pa_end = pa + HPT_SP_SIZE;
3829	    pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) {
3830		if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
3831			CTR3(KTR_PMAP,
3832			    "%s: NULL or dead PVO: pmap=%p, va=%#jx",
3833			    __func__, pmap, (uintmax_t)va);
3834			goto error;
3835		}
3836		if (PVO_PADDR(pvo) != pa) {
3837			CTR5(KTR_PMAP, "%s: PAs don't match: "
3838			    "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx",
3839			    __func__, pmap, (uintmax_t)va,
3840			    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa);
3841			atomic_add_long(&sp_p_fail_pa, 1);
3842			goto error;
3843		}
3844		if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) !=
3845		    (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) {
3846			CTR5(KTR_PMAP, "%s: PVO flags don't match: "
3847			    "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx",
3848			    __func__, pmap, (uintmax_t)va,
3849			    (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE),
3850			    (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE));
3851			atomic_add_long(&sp_p_fail_flags, 1);
3852			goto error;
3853		}
3854		if (first->pvo_pte.prot != pvo->pvo_pte.prot) {
3855			CTR5(KTR_PMAP, "%s: PVO protections don't match: "
3856			    "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x",
3857			    __func__, pmap, (uintmax_t)va,
3858			    pvo->pvo_pte.prot, first->pvo_pte.prot);
3859			atomic_add_long(&sp_p_fail_prot, 1);
3860			goto error;
3861		}
3862		if ((first->pvo_pte.pa & LPTE_WIMG) !=
3863		    (pvo->pvo_pte.pa & LPTE_WIMG)) {
3864			CTR5(KTR_PMAP, "%s: WIMG bits don't match: "
3865			    "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx",
3866			    __func__, pmap, (uintmax_t)va,
3867			    (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG),
3868			    (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG));
3869			atomic_add_long(&sp_p_fail_wimg, 1);
3870			goto error;
3871		}
3872
3873		pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo);
3874	}
3875
3876	/* All OK, promote. */
3877
3878	/*
3879	 * Handle superpage REF/CHG bits. If REF or CHG is set in
3880	 * any page, then it must be set in the superpage.
3881	 *
3882	 * Instead of querying each page, we take advantage of two facts:
3883	 * 1- If a page is being promoted, it was referenced.
3884	 * 2- If promoted pages are writable, they were modified.
3885	 */
3886	sp_refchg = LPTE_REF |
3887	    ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0);
3888
3889	/* Promote pages */
3890
3891	for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE;
3892	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3893	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
3894		pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK;
3895		pvo->pvo_pte.pa |= LPTE_LP_4K_16M;
3896		pvo->pvo_vaddr |= PVO_LARGE;
3897	}
3898	moea64_pte_replace_sp(first);
3899
3900	/* Send REF/CHG bits to VM */
3901	moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot);
3902
3903	/* Use first page to cache REF/CHG bits */
3904	atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP);
3905
3906	PMAP_UNLOCK(pmap);
3907
3908	atomic_add_long(&sp_mappings, 1);
3909	atomic_add_long(&sp_promotions, 1);
3910	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3911	    __func__, (uintmax_t)sva, pmap);
3912	return;
3913
3914error:
3915	atomic_add_long(&sp_p_failures, 1);
3916	PMAP_UNLOCK(pmap);
3917}
3918
3919static void
3920moea64_sp_demote_aligned(struct pvo_entry *sp)
3921{
3922	struct pvo_entry *pvo;
3923	vm_offset_t va, va_end;
3924	vm_paddr_t pa;
3925	vm_page_t m;
3926	pmap_t pmap __diagused;
3927	int64_t refchg;
3928
3929	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
3930
3931	pmap = sp->pvo_pmap;
3932	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3933
3934	pvo = sp;
3935
3936	/* Demote pages */
3937
3938	va = PVO_VADDR(pvo);
3939	pa = PVO_PADDR(pvo);
3940	m = PHYS_TO_VM_PAGE(pa);
3941
3942	for (pvo = sp, va_end = va + HPT_SP_SIZE;
3943	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3944	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo),
3945	    va += PAGE_SIZE, pa += PAGE_SIZE) {
3946		KASSERT(pvo && PVO_VADDR(pvo) == va,
3947		    ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va));
3948
3949		pvo->pvo_vaddr &= ~PVO_LARGE;
3950		pvo->pvo_pte.pa &= ~LPTE_RPGN;
3951		pvo->pvo_pte.pa |= pa;
3952
3953	}
3954	refchg = moea64_pte_replace_sp(sp);
3955
3956	/*
3957	 * Clear SP flag
3958	 *
3959	 * XXX It is possible that another pmap has this page mapped as
3960	 *     part of a superpage, but as the SP flag is used only for
3961	 *     caching SP REF/CHG bits, that will be queried if not set
3962	 *     in cache, it should be ok to clear it here.
3963	 */
3964	atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP);
3965
3966	/*
3967	 * Handle superpage REF/CHG bits. A bit set in the superpage
3968	 * means all pages should consider it set.
3969	 */
3970	moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot);
3971
3972	atomic_add_long(&sp_demotions, 1);
3973	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3974	    __func__, (uintmax_t)PVO_VADDR(sp), pmap);
3975}
3976
3977static void
3978moea64_sp_demote(struct pvo_entry *pvo)
3979{
3980	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
3981
3982	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
3983		pvo = moea64_pvo_find_va(pvo->pvo_pmap,
3984		    PVO_VADDR(pvo) & ~HPT_SP_MASK);
3985		KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx",
3986		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
3987	}
3988	moea64_sp_demote_aligned(pvo);
3989}
3990
3991static struct pvo_entry *
3992moea64_sp_unwire(struct pvo_entry *sp)
3993{
3994	struct pvo_entry *pvo, *prev;
3995	vm_offset_t eva;
3996	pmap_t pm;
3997	int64_t ret, refchg;
3998
3999	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4000
4001	pm = sp->pvo_pmap;
4002	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4003
4004	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4005	refchg = 0;
4006	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4007	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4008		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4009			panic("%s: pvo %p is missing PVO_WIRED",
4010			    __func__, pvo);
4011		pvo->pvo_vaddr &= ~PVO_WIRED;
4012
4013		ret = moea64_pte_replace(pvo, 0 /* No invalidation */);
4014		if (ret < 0)
4015			refchg |= LPTE_CHG;
4016		else
4017			refchg |= ret;
4018
4019		pm->pm_stats.wired_count--;
4020	}
4021
4022	/* Send REF/CHG bits to VM */
4023	moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)),
4024	    refchg, sp->pvo_pte.prot);
4025
4026	return (prev);
4027}
4028
4029static struct pvo_entry *
4030moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot)
4031{
4032	struct pvo_entry *pvo, *prev;
4033	vm_offset_t eva;
4034	pmap_t pm;
4035	vm_page_t m, m_end;
4036	int64_t ret, refchg;
4037	vm_prot_t oldprot;
4038
4039	CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x",
4040	    __func__, (uintmax_t)PVO_VADDR(sp), prot);
4041
4042	pm = sp->pvo_pmap;
4043	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4044
4045	oldprot = sp->pvo_pte.prot;
4046	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4047	KASSERT(m != NULL, ("%s: missing vm page for pa %#jx",
4048	    __func__, (uintmax_t)PVO_PADDR(sp)));
4049	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4050	refchg = 0;
4051
4052	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4053	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4054		pvo->pvo_pte.prot = prot;
4055		/*
4056		 * If the PVO is in the page table, update mapping
4057		 */
4058		ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
4059		if (ret < 0)
4060			refchg |= LPTE_CHG;
4061		else
4062			refchg |= ret;
4063	}
4064
4065	/* Send REF/CHG bits to VM */
4066	moea64_sp_refchg_process(sp, m, refchg, oldprot);
4067
4068	/* Handle pages that became executable */
4069	if ((m->a.flags & PGA_EXECUTABLE) == 0 &&
4070	    (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
4071		if ((m->oflags & VPO_UNMANAGED) == 0)
4072			for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++)
4073				vm_page_aflag_set(m, PGA_EXECUTABLE);
4074		moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp),
4075		    HPT_SP_SIZE);
4076	}
4077
4078	return (prev);
4079}
4080
4081static struct pvo_entry *
4082moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree)
4083{
4084	struct pvo_entry *pvo, *tpvo;
4085	vm_offset_t eva;
4086	pmap_t pm __diagused;
4087
4088	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4089
4090	pm = sp->pvo_pmap;
4091	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4092
4093	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4094	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
4095		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
4096
4097		/*
4098		 * For locking reasons, remove this from the page table and
4099		 * pmap, but save delinking from the vm_page for a second
4100		 * pass
4101		 */
4102		moea64_pvo_remove_from_pmap(pvo);
4103		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
4104	}
4105
4106	/*
4107	 * Clear SP bit
4108	 *
4109	 * XXX See comment in moea64_sp_demote_aligned() for why it's
4110	 *     ok to always clear the SP bit on remove/demote.
4111	 */
4112	atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs,
4113	    MDPG_ATTR_SP);
4114
4115	return (tpvo);
4116}
4117
4118static int64_t
4119moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit)
4120{
4121	int64_t refchg, ret;
4122	vm_offset_t eva;
4123	vm_page_t m;
4124	pmap_t pmap;
4125	struct pvo_entry *sp;
4126
4127	pmap = pvo->pvo_pmap;
4128	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4129
4130	/* Get first SP PVO */
4131	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4132		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4133		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4134		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4135	} else
4136		sp = pvo;
4137	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4138
4139	refchg = 0;
4140	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4141	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4142		ret = moea64_pte_synch(pvo);
4143		if (ret > 0) {
4144			refchg |= ret & (LPTE_CHG | LPTE_REF);
4145			if ((refchg & ptebit) != 0)
4146				break;
4147		}
4148	}
4149
4150	/* Save results */
4151	if (refchg != 0) {
4152		m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4153		atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP);
4154	}
4155
4156	return (refchg);
4157}
4158
4159static int64_t
4160moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit)
4161{
4162	int64_t refchg;
4163	pmap_t pmap;
4164
4165	pmap = pvo->pvo_pmap;
4166	PMAP_LOCK(pmap);
4167
4168	/*
4169	 * Check if SP was demoted/removed before pmap lock was acquired.
4170	 */
4171	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4172		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4173		    __func__, (uintmax_t)PVO_PADDR(pvo));
4174		PMAP_UNLOCK(pmap);
4175		return (-1);
4176	}
4177
4178	refchg = moea64_sp_query_locked(pvo, ptebit);
4179	PMAP_UNLOCK(pmap);
4180
4181	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4182	    __func__, (uintmax_t)PVO_VADDR(pvo),
4183	    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg);
4184
4185	return (refchg);
4186}
4187
4188static int64_t
4189moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit)
4190{
4191	int64_t refchg, ret;
4192	pmap_t pmap;
4193	struct pvo_entry *sp;
4194	vm_offset_t eva;
4195	vm_page_t m;
4196
4197	pmap = pvo->pvo_pmap;
4198	PMAP_LOCK(pmap);
4199
4200	/*
4201	 * Check if SP was demoted/removed before pmap lock was acquired.
4202	 */
4203	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4204		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4205		    __func__, (uintmax_t)PVO_PADDR(pvo));
4206		PMAP_UNLOCK(pmap);
4207		return (-1);
4208	}
4209
4210	/* Get first SP PVO */
4211	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4212		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4213		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4214		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4215	} else
4216		sp = pvo;
4217	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4218
4219	refchg = 0;
4220	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4221	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4222		ret = moea64_pte_clear(pvo, ptebit);
4223		if (ret > 0)
4224			refchg |= ret & (LPTE_CHG | LPTE_REF);
4225	}
4226
4227	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4228	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
4229	PMAP_UNLOCK(pmap);
4230
4231	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4232	    __func__, (uintmax_t)PVO_VADDR(sp),
4233	    (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg);
4234
4235	return (refchg);
4236}
4237
4238static int64_t
4239moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit)
4240{
4241	int64_t count, ret;
4242	pmap_t pmap;
4243
4244	count = 0;
4245	pmap = pvo->pvo_pmap;
4246
4247	/*
4248	 * Since this reference bit is shared by 4096 4KB pages, it
4249	 * should not be cleared every time it is tested. Apply a
4250	 * simple "hash" function on the physical page number, the
4251	 * virtual superpage number, and the pmap address to select
4252	 * one 4KB page out of the 4096 on which testing the
4253	 * reference bit will result in clearing that reference bit.
4254	 * This function is designed to avoid the selection of the
4255	 * same 4KB page for every 16MB page mapping.
4256	 *
4257	 * Always leave the reference bit of a wired mapping set, as
4258	 * the current state of its reference bit won't affect page
4259	 * replacement.
4260	 */
4261	if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^
4262	    (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) &
4263	    (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) {
4264		if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1)
4265			return (-1);
4266
4267		if ((ret & ptebit) != 0)
4268			count++;
4269
4270	/*
4271	 * If this page was not selected by the hash function, then assume
4272	 * its REF bit was set.
4273	 */
4274	} else if (ptebit == LPTE_REF) {
4275		count++;
4276
4277	/*
4278	 * To clear the CHG bit of a single SP page, first it must be demoted.
4279	 * But if no CHG bit is set, no bit clear and thus no SP demotion is
4280	 * needed.
4281	 */
4282	} else {
4283		CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx",
4284		    __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo),
4285		    (uintmax_t)PVO_PADDR(pvo));
4286
4287		PMAP_LOCK(pmap);
4288
4289		/*
4290		 * Make sure SP wasn't demoted/removed before pmap lock
4291		 * was acquired.
4292		 */
4293		if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4294			CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4295			    __func__, (uintmax_t)PVO_PADDR(pvo));
4296			PMAP_UNLOCK(pmap);
4297			return (-1);
4298		}
4299
4300		ret = moea64_sp_query_locked(pvo, ptebit);
4301		if ((ret & ptebit) != 0)
4302			count++;
4303		else {
4304			PMAP_UNLOCK(pmap);
4305			return (0);
4306		}
4307
4308		moea64_sp_demote(pvo);
4309		moea64_pte_clear(pvo, ptebit);
4310
4311		/*
4312		 * Write protect the mapping to a single page so that a
4313		 * subsequent write access may repromote.
4314		 */
4315		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4316			moea64_pvo_protect(pmap, pvo,
4317			    pvo->pvo_pte.prot & ~VM_PROT_WRITE);
4318
4319		PMAP_UNLOCK(pmap);
4320	}
4321
4322	return (count);
4323}
4324