1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5 * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29 */
30
31#include <sys/cdefs.h>
32#include "opt_inet.h"
33#include "opt_inet6.h"
34#include "opt_pf.h"
35
36#include <sys/param.h>
37#include <sys/kernel.h>
38#include <sys/lock.h>
39#include <sys/mbuf.h>
40#include <sys/mutex.h>
41#include <sys/refcount.h>
42#include <sys/socket.h>
43
44#include <net/if.h>
45#include <net/vnet.h>
46#include <net/pfvar.h>
47#include <net/if_pflog.h>
48
49#include <netinet/in.h>
50#include <netinet/ip.h>
51#include <netinet/ip_var.h>
52#include <netinet6/ip6_var.h>
53#include <netinet6/scope6_var.h>
54#include <netinet/tcp.h>
55#include <netinet/tcp_fsm.h>
56#include <netinet/tcp_seq.h>
57#include <netinet/sctp_constants.h>
58#include <netinet/sctp_header.h>
59
60#ifdef INET6
61#include <netinet/ip6.h>
62#endif /* INET6 */
63
64struct pf_frent {
65	TAILQ_ENTRY(pf_frent)	fr_next;
66	struct mbuf	*fe_m;
67	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
68					   ipv6, extension, fragment header */
69	uint16_t	fe_extoff;	/* last extension header offset or 0 */
70	uint16_t	fe_len;		/* fragment length */
71	uint16_t	fe_off;		/* fragment offset */
72	uint16_t	fe_mff;		/* more fragment flag */
73};
74
75struct pf_fragment_cmp {
76	struct pf_addr	frc_src;
77	struct pf_addr	frc_dst;
78	uint32_t	frc_id;
79	sa_family_t	frc_af;
80	uint8_t		frc_proto;
81};
82
83struct pf_fragment {
84	struct pf_fragment_cmp	fr_key;
85#define fr_src	fr_key.frc_src
86#define fr_dst	fr_key.frc_dst
87#define fr_id	fr_key.frc_id
88#define fr_af	fr_key.frc_af
89#define fr_proto	fr_key.frc_proto
90
91	/* pointers to queue element */
92	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
93	/* count entries between pointers */
94	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
95	RB_ENTRY(pf_fragment) fr_entry;
96	TAILQ_ENTRY(pf_fragment) frag_next;
97	uint32_t	fr_timeout;
98	uint16_t	fr_maxlen;	/* maximum length of single fragment */
99	u_int16_t	fr_holes;	/* number of holes in the queue */
100	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
101};
102
103struct pf_fragment_tag {
104	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
105	uint16_t	ft_extoff;	/* last extension header offset or 0 */
106	uint16_t	ft_maxlen;	/* maximum fragment payload length */
107	uint32_t	ft_id;		/* fragment id */
108};
109
110VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
111#define V_pf_frag_mtx		VNET(pf_frag_mtx)
112#define PF_FRAG_LOCK()		mtx_lock(&V_pf_frag_mtx)
113#define PF_FRAG_UNLOCK()	mtx_unlock(&V_pf_frag_mtx)
114#define PF_FRAG_ASSERT()	mtx_assert(&V_pf_frag_mtx, MA_OWNED)
115
116VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
117
118VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
119#define	V_pf_frent_z	VNET(pf_frent_z)
120VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
121#define	V_pf_frag_z	VNET(pf_frag_z)
122
123TAILQ_HEAD(pf_fragqueue, pf_fragment);
124TAILQ_HEAD(pf_cachequeue, pf_fragment);
125VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
126#define	V_pf_fragqueue			VNET(pf_fragqueue)
127RB_HEAD(pf_frag_tree, pf_fragment);
128VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
129#define	V_pf_frag_tree			VNET(pf_frag_tree)
130static int		 pf_frag_compare(struct pf_fragment *,
131			    struct pf_fragment *);
132static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
133static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
134
135static void	pf_flush_fragments(void);
136static void	pf_free_fragment(struct pf_fragment *);
137static void	pf_remove_fragment(struct pf_fragment *);
138
139static struct pf_frent *pf_create_fragment(u_short *);
140static int	pf_frent_holes(struct pf_frent *frent);
141static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
142		    struct pf_frag_tree *tree);
143static inline int	pf_frent_index(struct pf_frent *);
144static int	pf_frent_insert(struct pf_fragment *,
145			    struct pf_frent *, struct pf_frent *);
146void			pf_frent_remove(struct pf_fragment *,
147			    struct pf_frent *);
148struct pf_frent		*pf_frent_previous(struct pf_fragment *,
149			    struct pf_frent *);
150static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
151		    struct pf_frent *, u_short *);
152static struct mbuf *pf_join_fragment(struct pf_fragment *);
153#ifdef INET
154static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
155#endif	/* INET */
156#ifdef INET6
157static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
158		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
159#endif	/* INET6 */
160
161#define	DPFPRINTF(x) do {				\
162	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
163		printf("%s: ", __func__);		\
164		printf x ;				\
165	}						\
166} while(0)
167
168#ifdef INET
169static void
170pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
171{
172
173	key->frc_src.v4 = ip->ip_src;
174	key->frc_dst.v4 = ip->ip_dst;
175	key->frc_af = AF_INET;
176	key->frc_proto = ip->ip_p;
177	key->frc_id = ip->ip_id;
178}
179#endif	/* INET */
180
181void
182pf_normalize_init(void)
183{
184
185	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
186	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
187	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
188	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
189	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
190	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
191	    UMA_ALIGN_PTR, 0);
192
193	mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
194
195	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
196	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
197	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
198	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
199
200	TAILQ_INIT(&V_pf_fragqueue);
201}
202
203void
204pf_normalize_cleanup(void)
205{
206
207	uma_zdestroy(V_pf_state_scrub_z);
208	uma_zdestroy(V_pf_frent_z);
209	uma_zdestroy(V_pf_frag_z);
210
211	mtx_destroy(&V_pf_frag_mtx);
212}
213
214static int
215pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
216{
217	int	diff;
218
219	if ((diff = a->fr_id - b->fr_id) != 0)
220		return (diff);
221	if ((diff = a->fr_proto - b->fr_proto) != 0)
222		return (diff);
223	if ((diff = a->fr_af - b->fr_af) != 0)
224		return (diff);
225	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
226		return (diff);
227	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
228		return (diff);
229	return (0);
230}
231
232void
233pf_purge_expired_fragments(void)
234{
235	u_int32_t	expire = time_uptime -
236			    V_pf_default_rule.timeout[PFTM_FRAG];
237
238	pf_purge_fragments(expire);
239}
240
241void
242pf_purge_fragments(uint32_t expire)
243{
244	struct pf_fragment	*frag;
245
246	PF_FRAG_LOCK();
247	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
248		if (frag->fr_timeout > expire)
249			break;
250
251		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
252		pf_free_fragment(frag);
253	}
254
255	PF_FRAG_UNLOCK();
256}
257
258/*
259 * Try to flush old fragments to make space for new ones
260 */
261static void
262pf_flush_fragments(void)
263{
264	struct pf_fragment	*frag;
265	int			 goal;
266
267	PF_FRAG_ASSERT();
268
269	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
270	DPFPRINTF(("trying to free %d frag entriess\n", goal));
271	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
272		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
273		if (frag)
274			pf_free_fragment(frag);
275		else
276			break;
277	}
278}
279
280/* Frees the fragments and all associated entries */
281static void
282pf_free_fragment(struct pf_fragment *frag)
283{
284	struct pf_frent		*frent;
285
286	PF_FRAG_ASSERT();
287
288	/* Free all fragments */
289	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
290	    frent = TAILQ_FIRST(&frag->fr_queue)) {
291		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
292
293		m_freem(frent->fe_m);
294		uma_zfree(V_pf_frent_z, frent);
295	}
296
297	pf_remove_fragment(frag);
298}
299
300static struct pf_fragment *
301pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
302{
303	struct pf_fragment	*frag;
304
305	PF_FRAG_ASSERT();
306
307	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
308	if (frag != NULL) {
309		/* XXX Are we sure we want to update the timeout? */
310		frag->fr_timeout = time_uptime;
311		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
312		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
313	}
314
315	return (frag);
316}
317
318/* Removes a fragment from the fragment queue and frees the fragment */
319static void
320pf_remove_fragment(struct pf_fragment *frag)
321{
322
323	PF_FRAG_ASSERT();
324	KASSERT(frag, ("frag != NULL"));
325
326	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
327	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
328	uma_zfree(V_pf_frag_z, frag);
329}
330
331static struct pf_frent *
332pf_create_fragment(u_short *reason)
333{
334	struct pf_frent *frent;
335
336	PF_FRAG_ASSERT();
337
338	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
339	if (frent == NULL) {
340		pf_flush_fragments();
341		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
342		if (frent == NULL) {
343			REASON_SET(reason, PFRES_MEMORY);
344			return (NULL);
345		}
346	}
347
348	return (frent);
349}
350
351/*
352 * Calculate the additional holes that were created in the fragment
353 * queue by inserting this fragment.  A fragment in the middle
354 * creates one more hole by splitting.  For each connected side,
355 * it loses one hole.
356 * Fragment entry must be in the queue when calling this function.
357 */
358static int
359pf_frent_holes(struct pf_frent *frent)
360{
361	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
362	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
363	int holes = 1;
364
365	if (prev == NULL) {
366		if (frent->fe_off == 0)
367			holes--;
368	} else {
369		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
370		if (frent->fe_off == prev->fe_off + prev->fe_len)
371			holes--;
372	}
373	if (next == NULL) {
374		if (!frent->fe_mff)
375			holes--;
376	} else {
377		KASSERT(frent->fe_mff, ("frent->fe_mff"));
378		if (next->fe_off == frent->fe_off + frent->fe_len)
379			holes--;
380	}
381	return holes;
382}
383
384static inline int
385pf_frent_index(struct pf_frent *frent)
386{
387	/*
388	 * We have an array of 16 entry points to the queue.  A full size
389	 * 65535 octet IP packet can have 8192 fragments.  So the queue
390	 * traversal length is at most 512 and at most 16 entry points are
391	 * checked.  We need 128 additional bytes on a 64 bit architecture.
392	 */
393	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
394	    16 - 1);
395	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
396
397	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
398}
399
400static int
401pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
402    struct pf_frent *prev)
403{
404	int index;
405
406	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
407
408	/*
409	 * A packet has at most 65536 octets.  With 16 entry points, each one
410	 * spawns 4096 octets.  We limit these to 64 fragments each, which
411	 * means on average every fragment must have at least 64 octets.
412	 */
413	index = pf_frent_index(frent);
414	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
415		return ENOBUFS;
416	frag->fr_entries[index]++;
417
418	if (prev == NULL) {
419		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
420	} else {
421		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
422		    ("overlapping fragment"));
423		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
424	}
425
426	if (frag->fr_firstoff[index] == NULL) {
427		KASSERT(prev == NULL || pf_frent_index(prev) < index,
428		    ("prev == NULL || pf_frent_index(pref) < index"));
429		frag->fr_firstoff[index] = frent;
430	} else {
431		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
432			KASSERT(prev == NULL || pf_frent_index(prev) < index,
433			    ("prev == NULL || pf_frent_index(pref) < index"));
434			frag->fr_firstoff[index] = frent;
435		} else {
436			KASSERT(prev != NULL, ("prev != NULL"));
437			KASSERT(pf_frent_index(prev) == index,
438			    ("pf_frent_index(prev) == index"));
439		}
440	}
441
442	frag->fr_holes += pf_frent_holes(frent);
443
444	return 0;
445}
446
447void
448pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
449{
450#ifdef INVARIANTS
451	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
452#endif
453	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
454	int index;
455
456	frag->fr_holes -= pf_frent_holes(frent);
457
458	index = pf_frent_index(frent);
459	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
460	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
461		if (next == NULL) {
462			frag->fr_firstoff[index] = NULL;
463		} else {
464			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
465			    ("overlapping fragment"));
466			if (pf_frent_index(next) == index) {
467				frag->fr_firstoff[index] = next;
468			} else {
469				frag->fr_firstoff[index] = NULL;
470			}
471		}
472	} else {
473		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
474		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
475		KASSERT(prev != NULL, ("prev != NULL"));
476		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
477		    ("overlapping fragment"));
478		KASSERT(pf_frent_index(prev) == index,
479		    ("pf_frent_index(prev) == index"));
480	}
481
482	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
483
484	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
485	frag->fr_entries[index]--;
486}
487
488struct pf_frent *
489pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
490{
491	struct pf_frent *prev, *next;
492	int index;
493
494	/*
495	 * If there are no fragments after frag, take the final one.  Assume
496	 * that the global queue is not empty.
497	 */
498	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
499	KASSERT(prev != NULL, ("prev != NULL"));
500	if (prev->fe_off <= frent->fe_off)
501		return prev;
502	/*
503	 * We want to find a fragment entry that is before frag, but still
504	 * close to it.  Find the first fragment entry that is in the same
505	 * entry point or in the first entry point after that.  As we have
506	 * already checked that there are entries behind frag, this will
507	 * succeed.
508	 */
509	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
510	    index++) {
511		prev = frag->fr_firstoff[index];
512		if (prev != NULL)
513			break;
514	}
515	KASSERT(prev != NULL, ("prev != NULL"));
516	/*
517	 * In prev we may have a fragment from the same entry point that is
518	 * before frent, or one that is just one position behind frent.
519	 * In the latter case, we go back one step and have the predecessor.
520	 * There may be none if the new fragment will be the first one.
521	 */
522	if (prev->fe_off > frent->fe_off) {
523		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
524		if (prev == NULL)
525			return NULL;
526		KASSERT(prev->fe_off <= frent->fe_off,
527		    ("prev->fe_off <= frent->fe_off"));
528		return prev;
529	}
530	/*
531	 * In prev is the first fragment of the entry point.  The offset
532	 * of frag is behind it.  Find the closest previous fragment.
533	 */
534	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
535	    next = TAILQ_NEXT(next, fr_next)) {
536		if (next->fe_off > frent->fe_off)
537			break;
538		prev = next;
539	}
540	return prev;
541}
542
543static struct pf_fragment *
544pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
545    u_short *reason)
546{
547	struct pf_frent		*after, *next, *prev;
548	struct pf_fragment	*frag;
549	uint16_t		total;
550	int			old_index, new_index;
551
552	PF_FRAG_ASSERT();
553
554	/* No empty fragments. */
555	if (frent->fe_len == 0) {
556		DPFPRINTF(("bad fragment: len 0\n"));
557		goto bad_fragment;
558	}
559
560	/* All fragments are 8 byte aligned. */
561	if (frent->fe_mff && (frent->fe_len & 0x7)) {
562		DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
563		goto bad_fragment;
564	}
565
566	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
567	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
568		DPFPRINTF(("bad fragment: max packet %d\n",
569		    frent->fe_off + frent->fe_len));
570		goto bad_fragment;
571	}
572
573	DPFPRINTF((key->frc_af == AF_INET ?
574	    "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
575	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
576
577	/* Fully buffer all of the fragments in this fragment queue. */
578	frag = pf_find_fragment(key, &V_pf_frag_tree);
579
580	/* Create a new reassembly queue for this packet. */
581	if (frag == NULL) {
582		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
583		if (frag == NULL) {
584			pf_flush_fragments();
585			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
586			if (frag == NULL) {
587				REASON_SET(reason, PFRES_MEMORY);
588				goto drop_fragment;
589			}
590		}
591
592		*(struct pf_fragment_cmp *)frag = *key;
593		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
594		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
595		frag->fr_timeout = time_uptime;
596		frag->fr_maxlen = frent->fe_len;
597		frag->fr_holes = 1;
598		TAILQ_INIT(&frag->fr_queue);
599
600		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
601		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
602
603		/* We do not have a previous fragment, cannot fail. */
604		pf_frent_insert(frag, frent, NULL);
605
606		return (frag);
607	}
608
609	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
610
611	/* Remember maximum fragment len for refragmentation. */
612	if (frent->fe_len > frag->fr_maxlen)
613		frag->fr_maxlen = frent->fe_len;
614
615	/* Maximum data we have seen already. */
616	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
617		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
618
619	/* Non terminal fragments must have more fragments flag. */
620	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
621		goto bad_fragment;
622
623	/* Check if we saw the last fragment already. */
624	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
625		if (frent->fe_off + frent->fe_len > total ||
626		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
627			goto bad_fragment;
628	} else {
629		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
630			goto bad_fragment;
631	}
632
633	/* Find neighbors for newly inserted fragment */
634	prev = pf_frent_previous(frag, frent);
635	if (prev == NULL) {
636		after = TAILQ_FIRST(&frag->fr_queue);
637		KASSERT(after != NULL, ("after != NULL"));
638	} else {
639		after = TAILQ_NEXT(prev, fr_next);
640	}
641
642	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
643		uint16_t precut;
644
645		precut = prev->fe_off + prev->fe_len - frent->fe_off;
646		if (precut >= frent->fe_len)
647			goto bad_fragment;
648		DPFPRINTF(("overlap -%d\n", precut));
649		m_adj(frent->fe_m, precut);
650		frent->fe_off += precut;
651		frent->fe_len -= precut;
652	}
653
654	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
655	    after = next) {
656		uint16_t aftercut;
657
658		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
659		DPFPRINTF(("adjust overlap %d\n", aftercut));
660		if (aftercut < after->fe_len) {
661			m_adj(after->fe_m, aftercut);
662			old_index = pf_frent_index(after);
663			after->fe_off += aftercut;
664			after->fe_len -= aftercut;
665			new_index = pf_frent_index(after);
666			if (old_index != new_index) {
667				DPFPRINTF(("frag index %d, new %d",
668				    old_index, new_index));
669				/* Fragment switched queue as fe_off changed */
670				after->fe_off -= aftercut;
671				after->fe_len += aftercut;
672				/* Remove restored fragment from old queue */
673				pf_frent_remove(frag, after);
674				after->fe_off += aftercut;
675				after->fe_len -= aftercut;
676				/* Insert into correct queue */
677				if (pf_frent_insert(frag, after, prev)) {
678					DPFPRINTF(
679					    ("fragment requeue limit exceeded"));
680					m_freem(after->fe_m);
681					uma_zfree(V_pf_frent_z, after);
682					/* There is not way to recover */
683					goto bad_fragment;
684				}
685			}
686			break;
687		}
688
689		/* This fragment is completely overlapped, lose it. */
690		next = TAILQ_NEXT(after, fr_next);
691		pf_frent_remove(frag, after);
692		m_freem(after->fe_m);
693		uma_zfree(V_pf_frent_z, after);
694	}
695
696	/* If part of the queue gets too long, there is not way to recover. */
697	if (pf_frent_insert(frag, frent, prev)) {
698		DPFPRINTF(("fragment queue limit exceeded\n"));
699		goto bad_fragment;
700	}
701
702	return (frag);
703
704bad_fragment:
705	REASON_SET(reason, PFRES_FRAG);
706drop_fragment:
707	uma_zfree(V_pf_frent_z, frent);
708	return (NULL);
709}
710
711static struct mbuf *
712pf_join_fragment(struct pf_fragment *frag)
713{
714	struct mbuf *m, *m2;
715	struct pf_frent	*frent, *next;
716
717	frent = TAILQ_FIRST(&frag->fr_queue);
718	next = TAILQ_NEXT(frent, fr_next);
719
720	m = frent->fe_m;
721	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
722	uma_zfree(V_pf_frent_z, frent);
723	for (frent = next; frent != NULL; frent = next) {
724		next = TAILQ_NEXT(frent, fr_next);
725
726		m2 = frent->fe_m;
727		/* Strip off ip header. */
728		m_adj(m2, frent->fe_hdrlen);
729		/* Strip off any trailing bytes. */
730		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
731
732		uma_zfree(V_pf_frent_z, frent);
733		m_cat(m, m2);
734	}
735
736	/* Remove from fragment queue. */
737	pf_remove_fragment(frag);
738
739	return (m);
740}
741
742#ifdef INET
743static int
744pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
745{
746	struct mbuf		*m = *m0;
747	struct pf_frent		*frent;
748	struct pf_fragment	*frag;
749	struct pf_fragment_cmp	key;
750	uint16_t		total, hdrlen;
751
752	/* Get an entry for the fragment queue */
753	if ((frent = pf_create_fragment(reason)) == NULL)
754		return (PF_DROP);
755
756	frent->fe_m = m;
757	frent->fe_hdrlen = ip->ip_hl << 2;
758	frent->fe_extoff = 0;
759	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
760	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
761	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
762
763	pf_ip2key(ip, dir, &key);
764
765	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
766		return (PF_DROP);
767
768	/* The mbuf is part of the fragment entry, no direct free or access */
769	m = *m0 = NULL;
770
771	if (frag->fr_holes) {
772		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
773		return (PF_PASS);  /* drop because *m0 is NULL, no error */
774	}
775
776	/* We have all the data */
777	frent = TAILQ_FIRST(&frag->fr_queue);
778	KASSERT(frent != NULL, ("frent != NULL"));
779	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
780		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
781	hdrlen = frent->fe_hdrlen;
782
783	m = *m0 = pf_join_fragment(frag);
784	frag = NULL;
785
786	if (m->m_flags & M_PKTHDR) {
787		int plen = 0;
788		for (m = *m0; m; m = m->m_next)
789			plen += m->m_len;
790		m = *m0;
791		m->m_pkthdr.len = plen;
792	}
793
794	ip = mtod(m, struct ip *);
795	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
796	    htons(hdrlen + total), 0);
797	ip->ip_len = htons(hdrlen + total);
798	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
799	    ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
800	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
801
802	if (hdrlen + total > IP_MAXPACKET) {
803		DPFPRINTF(("drop: too big: %d\n", total));
804		ip->ip_len = 0;
805		REASON_SET(reason, PFRES_SHORT);
806		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
807		return (PF_DROP);
808	}
809
810	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
811	return (PF_PASS);
812}
813#endif	/* INET */
814
815#ifdef INET6
816static int
817pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
818    uint16_t hdrlen, uint16_t extoff, u_short *reason)
819{
820	struct mbuf		*m = *m0;
821	struct pf_frent		*frent;
822	struct pf_fragment	*frag;
823	struct pf_fragment_cmp	 key;
824	struct m_tag		*mtag;
825	struct pf_fragment_tag	*ftag;
826	int			 off;
827	uint32_t		 frag_id;
828	uint16_t		 total, maxlen;
829	uint8_t			 proto;
830
831	PF_FRAG_LOCK();
832
833	/* Get an entry for the fragment queue. */
834	if ((frent = pf_create_fragment(reason)) == NULL) {
835		PF_FRAG_UNLOCK();
836		return (PF_DROP);
837	}
838
839	frent->fe_m = m;
840	frent->fe_hdrlen = hdrlen;
841	frent->fe_extoff = extoff;
842	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
843	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
844	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
845
846	key.frc_src.v6 = ip6->ip6_src;
847	key.frc_dst.v6 = ip6->ip6_dst;
848	key.frc_af = AF_INET6;
849	/* Only the first fragment's protocol is relevant. */
850	key.frc_proto = 0;
851	key.frc_id = fraghdr->ip6f_ident;
852
853	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
854		PF_FRAG_UNLOCK();
855		return (PF_DROP);
856	}
857
858	/* The mbuf is part of the fragment entry, no direct free or access. */
859	m = *m0 = NULL;
860
861	if (frag->fr_holes) {
862		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
863		    frag->fr_holes));
864		PF_FRAG_UNLOCK();
865		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
866	}
867
868	/* We have all the data. */
869	frent = TAILQ_FIRST(&frag->fr_queue);
870	KASSERT(frent != NULL, ("frent != NULL"));
871	extoff = frent->fe_extoff;
872	maxlen = frag->fr_maxlen;
873	frag_id = frag->fr_id;
874	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
875		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
876	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
877
878	m = *m0 = pf_join_fragment(frag);
879	frag = NULL;
880
881	PF_FRAG_UNLOCK();
882
883	/* Take protocol from first fragment header. */
884	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
885	KASSERT(m, ("%s: short mbuf chain", __func__));
886	proto = *(mtod(m, uint8_t *) + off);
887	m = *m0;
888
889	/* Delete frag6 header */
890	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
891		goto fail;
892
893	if (m->m_flags & M_PKTHDR) {
894		int plen = 0;
895		for (m = *m0; m; m = m->m_next)
896			plen += m->m_len;
897		m = *m0;
898		m->m_pkthdr.len = plen;
899	}
900
901	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
902	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL)
903		goto fail;
904	ftag = (struct pf_fragment_tag *)(mtag + 1);
905	ftag->ft_hdrlen = hdrlen;
906	ftag->ft_extoff = extoff;
907	ftag->ft_maxlen = maxlen;
908	ftag->ft_id = frag_id;
909	m_tag_prepend(m, mtag);
910
911	ip6 = mtod(m, struct ip6_hdr *);
912	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
913	if (extoff) {
914		/* Write protocol into next field of last extension header. */
915		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
916		    &off);
917		KASSERT(m, ("%s: short mbuf chain", __func__));
918		*(mtod(m, char *) + off) = proto;
919		m = *m0;
920	} else
921		ip6->ip6_nxt = proto;
922
923	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
924		DPFPRINTF(("drop: too big: %d\n", total));
925		ip6->ip6_plen = 0;
926		REASON_SET(reason, PFRES_SHORT);
927		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
928		return (PF_DROP);
929	}
930
931	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
932	return (PF_PASS);
933
934fail:
935	REASON_SET(reason, PFRES_MEMORY);
936	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
937	return (PF_DROP);
938}
939#endif	/* INET6 */
940
941#ifdef INET6
942int
943pf_max_frag_size(struct mbuf *m)
944{
945	struct m_tag *tag;
946	struct pf_fragment_tag *ftag;
947
948	tag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL);
949	if (tag == NULL)
950		return (m->m_pkthdr.len);
951
952	ftag = (struct pf_fragment_tag *)(tag + 1);
953
954	return (ftag->ft_maxlen);
955}
956
957int
958pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag,
959    bool forward)
960{
961	struct mbuf		*m = *m0, *t;
962	struct ip6_hdr		*hdr;
963	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
964	struct pf_pdesc		 pd;
965	uint32_t		 frag_id;
966	uint16_t		 hdrlen, extoff, maxlen;
967	uint8_t			 proto;
968	int			 error, action;
969
970	hdrlen = ftag->ft_hdrlen;
971	extoff = ftag->ft_extoff;
972	maxlen = ftag->ft_maxlen;
973	frag_id = ftag->ft_id;
974	m_tag_delete(m, mtag);
975	mtag = NULL;
976	ftag = NULL;
977
978	if (extoff) {
979		int off;
980
981		/* Use protocol from next field of last extension header */
982		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
983		    &off);
984		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
985		proto = *(mtod(m, uint8_t *) + off);
986		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
987		m = *m0;
988	} else {
989		hdr = mtod(m, struct ip6_hdr *);
990		proto = hdr->ip6_nxt;
991		hdr->ip6_nxt = IPPROTO_FRAGMENT;
992	}
993
994	/* In case of link-local traffic we'll need a scope set. */
995	hdr = mtod(m, struct ip6_hdr *);
996
997	in6_setscope(&hdr->ip6_src, ifp, NULL);
998	in6_setscope(&hdr->ip6_dst, ifp, NULL);
999
1000	/* The MTU must be a multiple of 8 bytes, or we risk doing the
1001	 * fragmentation wrong. */
1002	maxlen = maxlen & ~7;
1003
1004	/*
1005	 * Maxlen may be less than 8 if there was only a single
1006	 * fragment.  As it was fragmented before, add a fragment
1007	 * header also for a single fragment.  If total or maxlen
1008	 * is less than 8, ip6_fragment() will return EMSGSIZE and
1009	 * we drop the packet.
1010	 */
1011	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
1012	m = (*m0)->m_nextpkt;
1013	(*m0)->m_nextpkt = NULL;
1014	if (error == 0) {
1015		/* The first mbuf contains the unfragmented packet. */
1016		m_freem(*m0);
1017		*m0 = NULL;
1018		action = PF_PASS;
1019	} else {
1020		/* Drop expects an mbuf to free. */
1021		DPFPRINTF(("refragment error %d\n", error));
1022		action = PF_DROP;
1023	}
1024	for (; m; m = t) {
1025		t = m->m_nextpkt;
1026		m->m_nextpkt = NULL;
1027		m->m_flags |= M_SKIP_FIREWALL;
1028		memset(&pd, 0, sizeof(pd));
1029		pd.pf_mtag = pf_find_mtag(m);
1030		if (error == 0)
1031			if (forward) {
1032				MPASS(m->m_pkthdr.rcvif != NULL);
1033				ip6_forward(m, 0);
1034			} else {
1035				(void)ip6_output(m, NULL, NULL, 0, NULL, NULL,
1036				    NULL);
1037			}
1038		else
1039			m_freem(m);
1040	}
1041
1042	return (action);
1043}
1044#endif /* INET6 */
1045
1046#ifdef INET
1047int
1048pf_normalize_ip(struct mbuf **m0, struct pfi_kkif *kif, u_short *reason,
1049    struct pf_pdesc *pd)
1050{
1051	struct mbuf		*m = *m0;
1052	struct pf_krule		*r;
1053	struct ip		*h = mtod(m, struct ip *);
1054	int			 mff = (ntohs(h->ip_off) & IP_MF);
1055	int			 hlen = h->ip_hl << 2;
1056	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1057	u_int16_t		 max;
1058	int			 ip_len;
1059	int			 tag = -1;
1060	int			 verdict;
1061	bool			 scrub_compat;
1062
1063	PF_RULES_RASSERT();
1064
1065	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1066	/*
1067	 * Check if there are any scrub rules, matching or not.
1068	 * Lack of scrub rules means:
1069	 *  - enforced packet normalization operation just like in OpenBSD
1070	 *  - fragment reassembly depends on V_pf_status.reass
1071	 * With scrub rules:
1072	 *  - packet normalization is performed if there is a matching scrub rule
1073	 *  - fragment reassembly is performed if the matching rule has no
1074	 *    PFRULE_FRAGMENT_NOREASS flag
1075	 */
1076	scrub_compat = (r != NULL);
1077	while (r != NULL) {
1078		pf_counter_u64_add(&r->evaluations, 1);
1079		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1080			r = r->skip[PF_SKIP_IFP].ptr;
1081		else if (r->direction && r->direction != pd->dir)
1082			r = r->skip[PF_SKIP_DIR].ptr;
1083		else if (r->af && r->af != AF_INET)
1084			r = r->skip[PF_SKIP_AF].ptr;
1085		else if (r->proto && r->proto != h->ip_p)
1086			r = r->skip[PF_SKIP_PROTO].ptr;
1087		else if (PF_MISMATCHAW(&r->src.addr,
1088		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1089		    r->src.neg, kif, M_GETFIB(m)))
1090			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1091		else if (PF_MISMATCHAW(&r->dst.addr,
1092		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1093		    r->dst.neg, NULL, M_GETFIB(m)))
1094			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1095		else if (r->match_tag && !pf_match_tag(m, r, &tag,
1096		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1097			r = TAILQ_NEXT(r, entries);
1098		else
1099			break;
1100	}
1101
1102	if (scrub_compat) {
1103		/* With scrub rules present IPv4 normalization happens only
1104		 * if one of rules has matched and it's not a "no scrub" rule */
1105		if (r == NULL || r->action == PF_NOSCRUB)
1106			return (PF_PASS);
1107
1108		pf_counter_u64_critical_enter();
1109		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1110		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1111		pf_counter_u64_critical_exit();
1112		pf_rule_to_actions(r, &pd->act);
1113	}
1114
1115	/* Check for illegal packets */
1116	if (hlen < (int)sizeof(struct ip)) {
1117		REASON_SET(reason, PFRES_NORM);
1118		goto drop;
1119	}
1120
1121	if (hlen > ntohs(h->ip_len)) {
1122		REASON_SET(reason, PFRES_NORM);
1123		goto drop;
1124	}
1125
1126	/* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */
1127	if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) ||
1128	    (r != NULL && r->rule_flag & PFRULE_NODF)) &&
1129	    (h->ip_off & htons(IP_DF))
1130	) {
1131		u_int16_t ip_off = h->ip_off;
1132
1133		h->ip_off &= htons(~IP_DF);
1134		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1135	}
1136
1137	/* We will need other tests here */
1138	if (!fragoff && !mff)
1139		goto no_fragment;
1140
1141	/* We're dealing with a fragment now. Don't allow fragments
1142	 * with IP_DF to enter the cache. If the flag was cleared by
1143	 * no-df above, fine. Otherwise drop it.
1144	 */
1145	if (h->ip_off & htons(IP_DF)) {
1146		DPFPRINTF(("IP_DF\n"));
1147		goto bad;
1148	}
1149
1150	ip_len = ntohs(h->ip_len) - hlen;
1151
1152	/* All fragments are 8 byte aligned */
1153	if (mff && (ip_len & 0x7)) {
1154		DPFPRINTF(("mff and %d\n", ip_len));
1155		goto bad;
1156	}
1157
1158	/* Respect maximum length */
1159	if (fragoff + ip_len > IP_MAXPACKET) {
1160		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1161		goto bad;
1162	}
1163
1164	if ((!scrub_compat && V_pf_status.reass) ||
1165	    (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS))
1166	) {
1167		max = fragoff + ip_len;
1168
1169		/* Fully buffer all of the fragments
1170		 * Might return a completely reassembled mbuf, or NULL */
1171		PF_FRAG_LOCK();
1172		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1173		verdict = pf_reassemble(m0, h, pd->dir, reason);
1174		PF_FRAG_UNLOCK();
1175
1176		if (verdict != PF_PASS)
1177			return (PF_DROP);
1178
1179		m = *m0;
1180		if (m == NULL)
1181			return (PF_DROP);
1182
1183		h = mtod(m, struct ip *);
1184
1185 no_fragment:
1186		/* At this point, only IP_DF is allowed in ip_off */
1187		if (h->ip_off & ~htons(IP_DF)) {
1188			u_int16_t ip_off = h->ip_off;
1189
1190			h->ip_off &= htons(IP_DF);
1191			h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1192		}
1193	}
1194
1195	return (PF_PASS);
1196
1197 bad:
1198	DPFPRINTF(("dropping bad fragment\n"));
1199	REASON_SET(reason, PFRES_FRAG);
1200 drop:
1201	if (r != NULL && r->log)
1202		PFLOG_PACKET(kif, m, AF_INET, PF_DROP, *reason, r, NULL, NULL, pd, 1);
1203
1204	return (PF_DROP);
1205}
1206#endif
1207
1208#ifdef INET6
1209int
1210pf_normalize_ip6(struct mbuf **m0, struct pfi_kkif *kif,
1211    u_short *reason, struct pf_pdesc *pd)
1212{
1213	struct mbuf		*m = *m0;
1214	struct pf_krule		*r;
1215	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1216	int			 extoff;
1217	int			 off;
1218	struct ip6_ext		 ext;
1219	struct ip6_opt		 opt;
1220	struct ip6_frag		 frag;
1221	u_int32_t		 plen;
1222	int			 optend;
1223	int			 ooff;
1224	u_int8_t		 proto;
1225	int			 terminal;
1226	bool			 scrub_compat;
1227
1228	PF_RULES_RASSERT();
1229
1230	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1231	/*
1232	 * Check if there are any scrub rules, matching or not.
1233	 * Lack of scrub rules means:
1234	 *  - enforced packet normalization operation just like in OpenBSD
1235	 * With scrub rules:
1236	 *  - packet normalization is performed if there is a matching scrub rule
1237	 * XXX: Fragment reassembly always performed for IPv6!
1238	 */
1239	scrub_compat = (r != NULL);
1240	while (r != NULL) {
1241		pf_counter_u64_add(&r->evaluations, 1);
1242		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1243			r = r->skip[PF_SKIP_IFP].ptr;
1244		else if (r->direction && r->direction != pd->dir)
1245			r = r->skip[PF_SKIP_DIR].ptr;
1246		else if (r->af && r->af != AF_INET6)
1247			r = r->skip[PF_SKIP_AF].ptr;
1248#if 0 /* header chain! */
1249		else if (r->proto && r->proto != h->ip6_nxt)
1250			r = r->skip[PF_SKIP_PROTO].ptr;
1251#endif
1252		else if (PF_MISMATCHAW(&r->src.addr,
1253		    (struct pf_addr *)&h->ip6_src, AF_INET6,
1254		    r->src.neg, kif, M_GETFIB(m)))
1255			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1256		else if (PF_MISMATCHAW(&r->dst.addr,
1257		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1258		    r->dst.neg, NULL, M_GETFIB(m)))
1259			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1260		else
1261			break;
1262	}
1263
1264	if (scrub_compat) {
1265		/* With scrub rules present IPv6 normalization happens only
1266		 * if one of rules has matched and it's not a "no scrub" rule */
1267		if (r == NULL || r->action == PF_NOSCRUB)
1268			return (PF_PASS);
1269
1270		pf_counter_u64_critical_enter();
1271		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1272		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1273		pf_counter_u64_critical_exit();
1274		pf_rule_to_actions(r, &pd->act);
1275	}
1276
1277	/* Check for illegal packets */
1278	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1279		goto drop;
1280
1281again:
1282	h = mtod(m, struct ip6_hdr *);
1283	plen = ntohs(h->ip6_plen);
1284	/* jumbo payload option not supported */
1285	if (plen == 0)
1286		goto drop;
1287
1288	extoff = 0;
1289	off = sizeof(struct ip6_hdr);
1290	proto = h->ip6_nxt;
1291	terminal = 0;
1292	do {
1293		switch (proto) {
1294		case IPPROTO_FRAGMENT:
1295			goto fragment;
1296			break;
1297		case IPPROTO_AH:
1298		case IPPROTO_ROUTING:
1299		case IPPROTO_DSTOPTS:
1300			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1301			    NULL, AF_INET6))
1302				goto shortpkt;
1303			extoff = off;
1304			if (proto == IPPROTO_AH)
1305				off += (ext.ip6e_len + 2) * 4;
1306			else
1307				off += (ext.ip6e_len + 1) * 8;
1308			proto = ext.ip6e_nxt;
1309			break;
1310		case IPPROTO_HOPOPTS:
1311			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1312			    NULL, AF_INET6))
1313				goto shortpkt;
1314			extoff = off;
1315			optend = off + (ext.ip6e_len + 1) * 8;
1316			ooff = off + sizeof(ext);
1317			do {
1318				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1319				    sizeof(opt.ip6o_type), NULL, NULL,
1320				    AF_INET6))
1321					goto shortpkt;
1322				if (opt.ip6o_type == IP6OPT_PAD1) {
1323					ooff++;
1324					continue;
1325				}
1326				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1327				    NULL, NULL, AF_INET6))
1328					goto shortpkt;
1329				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1330					goto drop;
1331				if (opt.ip6o_type == IP6OPT_JUMBO)
1332					goto drop;
1333				ooff += sizeof(opt) + opt.ip6o_len;
1334			} while (ooff < optend);
1335
1336			off = optend;
1337			proto = ext.ip6e_nxt;
1338			break;
1339		default:
1340			terminal = 1;
1341			break;
1342		}
1343	} while (!terminal);
1344
1345	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1346		goto shortpkt;
1347
1348	return (PF_PASS);
1349
1350 fragment:
1351	if (pd->flags & PFDESC_IP_REAS)
1352		return (PF_DROP);
1353	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1354		goto shortpkt;
1355
1356	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1357		goto shortpkt;
1358
1359	/* Offset now points to data portion. */
1360	off += sizeof(frag);
1361
1362	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1363	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1364		return (PF_DROP);
1365	m = *m0;
1366	if (m == NULL)
1367		return (PF_DROP);
1368
1369	pd->flags |= PFDESC_IP_REAS;
1370	goto again;
1371
1372 shortpkt:
1373	REASON_SET(reason, PFRES_SHORT);
1374	if (r != NULL && r->log)
1375		PFLOG_PACKET(kif, m, AF_INET6, PF_DROP, *reason, r, NULL, NULL, pd, 1);
1376	return (PF_DROP);
1377
1378 drop:
1379	REASON_SET(reason, PFRES_NORM);
1380	if (r != NULL && r->log)
1381		PFLOG_PACKET(kif, m, AF_INET6, PF_DROP, *reason, r, NULL, NULL, pd, 1);
1382	return (PF_DROP);
1383}
1384#endif /* INET6 */
1385
1386int
1387pf_normalize_tcp(struct pfi_kkif *kif, struct mbuf *m, int ipoff,
1388    int off, void *h, struct pf_pdesc *pd)
1389{
1390	struct pf_krule	*r, *rm = NULL;
1391	struct tcphdr	*th = &pd->hdr.tcp;
1392	int		 rewrite = 0;
1393	u_short		 reason;
1394	u_int16_t	 flags;
1395	sa_family_t	 af = pd->af;
1396	int		 srs;
1397
1398	PF_RULES_RASSERT();
1399
1400	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1401	/* Check if there any scrub rules. Lack of scrub rules means enforced
1402	 * packet normalization operation just like in OpenBSD. */
1403	srs = (r != NULL);
1404	while (r != NULL) {
1405		pf_counter_u64_add(&r->evaluations, 1);
1406		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1407			r = r->skip[PF_SKIP_IFP].ptr;
1408		else if (r->direction && r->direction != pd->dir)
1409			r = r->skip[PF_SKIP_DIR].ptr;
1410		else if (r->af && r->af != af)
1411			r = r->skip[PF_SKIP_AF].ptr;
1412		else if (r->proto && r->proto != pd->proto)
1413			r = r->skip[PF_SKIP_PROTO].ptr;
1414		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1415		    r->src.neg, kif, M_GETFIB(m)))
1416			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1417		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1418			    r->src.port[0], r->src.port[1], th->th_sport))
1419			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1420		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1421		    r->dst.neg, NULL, M_GETFIB(m)))
1422			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1423		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1424			    r->dst.port[0], r->dst.port[1], th->th_dport))
1425			r = r->skip[PF_SKIP_DST_PORT].ptr;
1426		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1427			    pf_osfp_fingerprint(pd, m, off, th),
1428			    r->os_fingerprint))
1429			r = TAILQ_NEXT(r, entries);
1430		else {
1431			rm = r;
1432			break;
1433		}
1434	}
1435
1436	if (srs) {
1437		/* With scrub rules present TCP normalization happens only
1438		 * if one of rules has matched and it's not a "no scrub" rule */
1439		if (rm == NULL || rm->action == PF_NOSCRUB)
1440			return (PF_PASS);
1441
1442		pf_counter_u64_critical_enter();
1443		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1444		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1445		pf_counter_u64_critical_exit();
1446		pf_rule_to_actions(rm, &pd->act);
1447	}
1448
1449	if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1450		pd->flags |= PFDESC_TCP_NORM;
1451
1452	flags = tcp_get_flags(th);
1453	if (flags & TH_SYN) {
1454		/* Illegal packet */
1455		if (flags & TH_RST)
1456			goto tcp_drop;
1457
1458		if (flags & TH_FIN)
1459			goto tcp_drop;
1460	} else {
1461		/* Illegal packet */
1462		if (!(flags & (TH_ACK|TH_RST)))
1463			goto tcp_drop;
1464	}
1465
1466	if (!(flags & TH_ACK)) {
1467		/* These flags are only valid if ACK is set */
1468		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1469			goto tcp_drop;
1470	}
1471
1472	/* Check for illegal header length */
1473	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1474		goto tcp_drop;
1475
1476	/* If flags changed, or reserved data set, then adjust */
1477	if (flags != tcp_get_flags(th) ||
1478	    (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) {
1479		u_int16_t	ov, nv;
1480
1481		ov = *(u_int16_t *)(&th->th_ack + 1);
1482		flags &= ~(TH_RES1 | TH_RES2 | TH_RES3);
1483		tcp_set_flags(th, flags);
1484		nv = *(u_int16_t *)(&th->th_ack + 1);
1485
1486		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1487		rewrite = 1;
1488	}
1489
1490	/* Remove urgent pointer, if TH_URG is not set */
1491	if (!(flags & TH_URG) && th->th_urp) {
1492		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1493		    0, 0);
1494		th->th_urp = 0;
1495		rewrite = 1;
1496	}
1497
1498	/* copy back packet headers if we sanitized */
1499	if (rewrite)
1500		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1501
1502	return (PF_PASS);
1503
1504 tcp_drop:
1505	REASON_SET(&reason, PFRES_NORM);
1506	if (rm != NULL && r->log)
1507		PFLOG_PACKET(kif, m, AF_INET, PF_DROP, reason, r, NULL, NULL, pd, 1);
1508	return (PF_DROP);
1509}
1510
1511int
1512pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1513    struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1514{
1515	u_int32_t tsval, tsecr;
1516	u_int8_t hdr[60];
1517	u_int8_t *opt;
1518
1519	KASSERT((src->scrub == NULL),
1520	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1521
1522	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1523	if (src->scrub == NULL)
1524		return (1);
1525
1526	switch (pd->af) {
1527#ifdef INET
1528	case AF_INET: {
1529		struct ip *h = mtod(m, struct ip *);
1530		src->scrub->pfss_ttl = h->ip_ttl;
1531		break;
1532	}
1533#endif /* INET */
1534#ifdef INET6
1535	case AF_INET6: {
1536		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1537		src->scrub->pfss_ttl = h->ip6_hlim;
1538		break;
1539	}
1540#endif /* INET6 */
1541	}
1542
1543	/*
1544	 * All normalizations below are only begun if we see the start of
1545	 * the connections.  They must all set an enabled bit in pfss_flags
1546	 */
1547	if ((th->th_flags & TH_SYN) == 0)
1548		return (0);
1549
1550	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1551	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1552		/* Diddle with TCP options */
1553		int hlen;
1554		opt = hdr + sizeof(struct tcphdr);
1555		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1556		while (hlen >= TCPOLEN_TIMESTAMP) {
1557			switch (*opt) {
1558			case TCPOPT_EOL:	/* FALLTHROUGH */
1559			case TCPOPT_NOP:
1560				opt++;
1561				hlen--;
1562				break;
1563			case TCPOPT_TIMESTAMP:
1564				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1565					src->scrub->pfss_flags |=
1566					    PFSS_TIMESTAMP;
1567					src->scrub->pfss_ts_mod =
1568					    htonl(arc4random());
1569
1570					/* note PFSS_PAWS not set yet */
1571					memcpy(&tsval, &opt[2],
1572					    sizeof(u_int32_t));
1573					memcpy(&tsecr, &opt[6],
1574					    sizeof(u_int32_t));
1575					src->scrub->pfss_tsval0 = ntohl(tsval);
1576					src->scrub->pfss_tsval = ntohl(tsval);
1577					src->scrub->pfss_tsecr = ntohl(tsecr);
1578					getmicrouptime(&src->scrub->pfss_last);
1579				}
1580				/* FALLTHROUGH */
1581			default:
1582				hlen -= MAX(opt[1], 2);
1583				opt += MAX(opt[1], 2);
1584				break;
1585			}
1586		}
1587	}
1588
1589	return (0);
1590}
1591
1592void
1593pf_normalize_tcp_cleanup(struct pf_kstate *state)
1594{
1595	/* XXX Note: this also cleans up SCTP. */
1596	uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1597	uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1598
1599	/* Someday... flush the TCP segment reassembly descriptors. */
1600}
1601int
1602pf_normalize_sctp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1603	    struct pf_state_peer *src, struct pf_state_peer *dst)
1604{
1605	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1606	if (src->scrub == NULL)
1607		return (1);
1608
1609	dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1610	if (dst->scrub == NULL) {
1611		uma_zfree(V_pf_state_scrub_z, src);
1612		return (1);
1613	}
1614
1615	dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
1616
1617	return (0);
1618}
1619
1620int
1621pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1622    u_short *reason, struct tcphdr *th, struct pf_kstate *state,
1623    struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1624{
1625	struct timeval uptime;
1626	u_int32_t tsval, tsecr;
1627	u_int tsval_from_last;
1628	u_int8_t hdr[60];
1629	u_int8_t *opt;
1630	int copyback = 0;
1631	int got_ts = 0;
1632	size_t startoff;
1633
1634	KASSERT((src->scrub || dst->scrub),
1635	    ("%s: src->scrub && dst->scrub!", __func__));
1636
1637	/*
1638	 * Enforce the minimum TTL seen for this connection.  Negate a common
1639	 * technique to evade an intrusion detection system and confuse
1640	 * firewall state code.
1641	 */
1642	switch (pd->af) {
1643#ifdef INET
1644	case AF_INET: {
1645		if (src->scrub) {
1646			struct ip *h = mtod(m, struct ip *);
1647			if (h->ip_ttl > src->scrub->pfss_ttl)
1648				src->scrub->pfss_ttl = h->ip_ttl;
1649			h->ip_ttl = src->scrub->pfss_ttl;
1650		}
1651		break;
1652	}
1653#endif /* INET */
1654#ifdef INET6
1655	case AF_INET6: {
1656		if (src->scrub) {
1657			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1658			if (h->ip6_hlim > src->scrub->pfss_ttl)
1659				src->scrub->pfss_ttl = h->ip6_hlim;
1660			h->ip6_hlim = src->scrub->pfss_ttl;
1661		}
1662		break;
1663	}
1664#endif /* INET6 */
1665	}
1666
1667	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1668	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1669	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1670	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1671		/* Diddle with TCP options */
1672		int hlen;
1673		opt = hdr + sizeof(struct tcphdr);
1674		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1675		while (hlen >= TCPOLEN_TIMESTAMP) {
1676			startoff = opt - (hdr + sizeof(struct tcphdr));
1677			switch (*opt) {
1678			case TCPOPT_EOL:	/* FALLTHROUGH */
1679			case TCPOPT_NOP:
1680				opt++;
1681				hlen--;
1682				break;
1683			case TCPOPT_TIMESTAMP:
1684				/* Modulate the timestamps.  Can be used for
1685				 * NAT detection, OS uptime determination or
1686				 * reboot detection.
1687				 */
1688
1689				if (got_ts) {
1690					/* Huh?  Multiple timestamps!? */
1691					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1692						DPFPRINTF(("multiple TS??\n"));
1693						pf_print_state(state);
1694						printf("\n");
1695					}
1696					REASON_SET(reason, PFRES_TS);
1697					return (PF_DROP);
1698				}
1699				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1700					memcpy(&tsval, &opt[2],
1701					    sizeof(u_int32_t));
1702					if (tsval && src->scrub &&
1703					    (src->scrub->pfss_flags &
1704					    PFSS_TIMESTAMP)) {
1705						tsval = ntohl(tsval);
1706						pf_patch_32_unaligned(m,
1707						    &th->th_sum,
1708						    &opt[2],
1709						    htonl(tsval +
1710						    src->scrub->pfss_ts_mod),
1711						    PF_ALGNMNT(startoff),
1712						    0);
1713						copyback = 1;
1714					}
1715
1716					/* Modulate TS reply iff valid (!0) */
1717					memcpy(&tsecr, &opt[6],
1718					    sizeof(u_int32_t));
1719					if (tsecr && dst->scrub &&
1720					    (dst->scrub->pfss_flags &
1721					    PFSS_TIMESTAMP)) {
1722						tsecr = ntohl(tsecr)
1723						    - dst->scrub->pfss_ts_mod;
1724						pf_patch_32_unaligned(m,
1725						    &th->th_sum,
1726						    &opt[6],
1727						    htonl(tsecr),
1728						    PF_ALGNMNT(startoff),
1729						    0);
1730						copyback = 1;
1731					}
1732					got_ts = 1;
1733				}
1734				/* FALLTHROUGH */
1735			default:
1736				hlen -= MAX(opt[1], 2);
1737				opt += MAX(opt[1], 2);
1738				break;
1739			}
1740		}
1741		if (copyback) {
1742			/* Copyback the options, caller copys back header */
1743			*writeback = 1;
1744			m_copyback(m, off + sizeof(struct tcphdr),
1745			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1746			    sizeof(struct tcphdr));
1747		}
1748	}
1749
1750	/*
1751	 * Must invalidate PAWS checks on connections idle for too long.
1752	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1753	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1754	 * TS echo check only works for the first 12 days of a connection
1755	 * when the TS has exhausted half its 32bit space
1756	 */
1757#define TS_MAX_IDLE	(24*24*60*60)
1758#define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1759
1760	getmicrouptime(&uptime);
1761	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1762	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1763	    time_uptime - (state->creation / 1000) > TS_MAX_CONN))  {
1764		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1765			DPFPRINTF(("src idled out of PAWS\n"));
1766			pf_print_state(state);
1767			printf("\n");
1768		}
1769		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1770		    | PFSS_PAWS_IDLED;
1771	}
1772	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1773	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1774		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1775			DPFPRINTF(("dst idled out of PAWS\n"));
1776			pf_print_state(state);
1777			printf("\n");
1778		}
1779		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1780		    | PFSS_PAWS_IDLED;
1781	}
1782
1783	if (got_ts && src->scrub && dst->scrub &&
1784	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1785	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1786		/* Validate that the timestamps are "in-window".
1787		 * RFC1323 describes TCP Timestamp options that allow
1788		 * measurement of RTT (round trip time) and PAWS
1789		 * (protection against wrapped sequence numbers).  PAWS
1790		 * gives us a set of rules for rejecting packets on
1791		 * long fat pipes (packets that were somehow delayed
1792		 * in transit longer than the time it took to send the
1793		 * full TCP sequence space of 4Gb).  We can use these
1794		 * rules and infer a few others that will let us treat
1795		 * the 32bit timestamp and the 32bit echoed timestamp
1796		 * as sequence numbers to prevent a blind attacker from
1797		 * inserting packets into a connection.
1798		 *
1799		 * RFC1323 tells us:
1800		 *  - The timestamp on this packet must be greater than
1801		 *    or equal to the last value echoed by the other
1802		 *    endpoint.  The RFC says those will be discarded
1803		 *    since it is a dup that has already been acked.
1804		 *    This gives us a lowerbound on the timestamp.
1805		 *        timestamp >= other last echoed timestamp
1806		 *  - The timestamp will be less than or equal to
1807		 *    the last timestamp plus the time between the
1808		 *    last packet and now.  The RFC defines the max
1809		 *    clock rate as 1ms.  We will allow clocks to be
1810		 *    up to 10% fast and will allow a total difference
1811		 *    or 30 seconds due to a route change.  And this
1812		 *    gives us an upperbound on the timestamp.
1813		 *        timestamp <= last timestamp + max ticks
1814		 *    We have to be careful here.  Windows will send an
1815		 *    initial timestamp of zero and then initialize it
1816		 *    to a random value after the 3whs; presumably to
1817		 *    avoid a DoS by having to call an expensive RNG
1818		 *    during a SYN flood.  Proof MS has at least one
1819		 *    good security geek.
1820		 *
1821		 *  - The TCP timestamp option must also echo the other
1822		 *    endpoints timestamp.  The timestamp echoed is the
1823		 *    one carried on the earliest unacknowledged segment
1824		 *    on the left edge of the sequence window.  The RFC
1825		 *    states that the host will reject any echoed
1826		 *    timestamps that were larger than any ever sent.
1827		 *    This gives us an upperbound on the TS echo.
1828		 *        tescr <= largest_tsval
1829		 *  - The lowerbound on the TS echo is a little more
1830		 *    tricky to determine.  The other endpoint's echoed
1831		 *    values will not decrease.  But there may be
1832		 *    network conditions that re-order packets and
1833		 *    cause our view of them to decrease.  For now the
1834		 *    only lowerbound we can safely determine is that
1835		 *    the TS echo will never be less than the original
1836		 *    TS.  XXX There is probably a better lowerbound.
1837		 *    Remove TS_MAX_CONN with better lowerbound check.
1838		 *        tescr >= other original TS
1839		 *
1840		 * It is also important to note that the fastest
1841		 * timestamp clock of 1ms will wrap its 32bit space in
1842		 * 24 days.  So we just disable TS checking after 24
1843		 * days of idle time.  We actually must use a 12d
1844		 * connection limit until we can come up with a better
1845		 * lowerbound to the TS echo check.
1846		 */
1847		struct timeval delta_ts;
1848		int ts_fudge;
1849
1850		/*
1851		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1852		 * a host's timestamp.  This can happen if the previous
1853		 * packet got delayed in transit for much longer than
1854		 * this packet.
1855		 */
1856		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1857			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1858
1859		/* Calculate max ticks since the last timestamp */
1860#define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1861#define TS_MICROSECS	1000000		/* microseconds per second */
1862		delta_ts = uptime;
1863		timevalsub(&delta_ts, &src->scrub->pfss_last);
1864		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1865		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1866
1867		if ((src->state >= TCPS_ESTABLISHED &&
1868		    dst->state >= TCPS_ESTABLISHED) &&
1869		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1870		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1871		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1872		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1873			/* Bad RFC1323 implementation or an insertion attack.
1874			 *
1875			 * - Solaris 2.6 and 2.7 are known to send another ACK
1876			 *   after the FIN,FIN|ACK,ACK closing that carries
1877			 *   an old timestamp.
1878			 */
1879
1880			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1881			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1882			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1883			    tsval_from_last) ? '1' : ' ',
1884			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1885			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1886			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1887			    "idle: %jus %lums\n",
1888			    tsval, tsecr, tsval_from_last,
1889			    (uintmax_t)delta_ts.tv_sec,
1890			    delta_ts.tv_usec / 1000));
1891			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1892			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1893			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1894			    "\n", dst->scrub->pfss_tsval,
1895			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1896			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1897				pf_print_state(state);
1898				pf_print_flags(th->th_flags);
1899				printf("\n");
1900			}
1901			REASON_SET(reason, PFRES_TS);
1902			return (PF_DROP);
1903		}
1904
1905		/* XXX I'd really like to require tsecr but it's optional */
1906
1907	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1908	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1909	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1910	    src->scrub && dst->scrub &&
1911	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1912	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1913		/* Didn't send a timestamp.  Timestamps aren't really useful
1914		 * when:
1915		 *  - connection opening or closing (often not even sent).
1916		 *    but we must not let an attacker to put a FIN on a
1917		 *    data packet to sneak it through our ESTABLISHED check.
1918		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1919		 *  - on an empty ACK.  The TS will not be echoed so it will
1920		 *    probably not help keep the RTT calculation in sync and
1921		 *    there isn't as much danger when the sequence numbers
1922		 *    got wrapped.  So some stacks don't include TS on empty
1923		 *    ACKs :-(
1924		 *
1925		 * To minimize the disruption to mostly RFC1323 conformant
1926		 * stacks, we will only require timestamps on data packets.
1927		 *
1928		 * And what do ya know, we cannot require timestamps on data
1929		 * packets.  There appear to be devices that do legitimate
1930		 * TCP connection hijacking.  There are HTTP devices that allow
1931		 * a 3whs (with timestamps) and then buffer the HTTP request.
1932		 * If the intermediate device has the HTTP response cache, it
1933		 * will spoof the response but not bother timestamping its
1934		 * packets.  So we can look for the presence of a timestamp in
1935		 * the first data packet and if there, require it in all future
1936		 * packets.
1937		 */
1938
1939		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1940			/*
1941			 * Hey!  Someone tried to sneak a packet in.  Or the
1942			 * stack changed its RFC1323 behavior?!?!
1943			 */
1944			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1945				DPFPRINTF(("Did not receive expected RFC1323 "
1946				    "timestamp\n"));
1947				pf_print_state(state);
1948				pf_print_flags(th->th_flags);
1949				printf("\n");
1950			}
1951			REASON_SET(reason, PFRES_TS);
1952			return (PF_DROP);
1953		}
1954	}
1955
1956	/*
1957	 * We will note if a host sends his data packets with or without
1958	 * timestamps.  And require all data packets to contain a timestamp
1959	 * if the first does.  PAWS implicitly requires that all data packets be
1960	 * timestamped.  But I think there are middle-man devices that hijack
1961	 * TCP streams immediately after the 3whs and don't timestamp their
1962	 * packets (seen in a WWW accelerator or cache).
1963	 */
1964	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1965	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1966		if (got_ts)
1967			src->scrub->pfss_flags |= PFSS_DATA_TS;
1968		else {
1969			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1970			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1971			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1972				/* Don't warn if other host rejected RFC1323 */
1973				DPFPRINTF(("Broken RFC1323 stack did not "
1974				    "timestamp data packet. Disabled PAWS "
1975				    "security.\n"));
1976				pf_print_state(state);
1977				pf_print_flags(th->th_flags);
1978				printf("\n");
1979			}
1980		}
1981	}
1982
1983	/*
1984	 * Update PAWS values
1985	 */
1986	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1987	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1988		getmicrouptime(&src->scrub->pfss_last);
1989		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1990		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1991			src->scrub->pfss_tsval = tsval;
1992
1993		if (tsecr) {
1994			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1995			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1996				src->scrub->pfss_tsecr = tsecr;
1997
1998			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1999			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
2000			    src->scrub->pfss_tsval0 == 0)) {
2001				/* tsval0 MUST be the lowest timestamp */
2002				src->scrub->pfss_tsval0 = tsval;
2003			}
2004
2005			/* Only fully initialized after a TS gets echoed */
2006			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
2007				src->scrub->pfss_flags |= PFSS_PAWS;
2008		}
2009	}
2010
2011	/* I have a dream....  TCP segment reassembly.... */
2012	return (0);
2013}
2014
2015int
2016pf_normalize_mss(struct mbuf *m, int off, struct pf_pdesc *pd)
2017{
2018	struct tcphdr	*th = &pd->hdr.tcp;
2019	u_int16_t	*mss;
2020	int		 thoff;
2021	int		 opt, cnt, optlen = 0;
2022	u_char		 opts[TCP_MAXOLEN];
2023	u_char		*optp = opts;
2024	size_t		 startoff;
2025
2026	thoff = th->th_off << 2;
2027	cnt = thoff - sizeof(struct tcphdr);
2028
2029	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
2030	    NULL, NULL, pd->af))
2031		return (0);
2032
2033	for (; cnt > 0; cnt -= optlen, optp += optlen) {
2034		startoff = optp - opts;
2035		opt = optp[0];
2036		if (opt == TCPOPT_EOL)
2037			break;
2038		if (opt == TCPOPT_NOP)
2039			optlen = 1;
2040		else {
2041			if (cnt < 2)
2042				break;
2043			optlen = optp[1];
2044			if (optlen < 2 || optlen > cnt)
2045				break;
2046		}
2047		switch (opt) {
2048		case TCPOPT_MAXSEG:
2049			mss = (u_int16_t *)(optp + 2);
2050			if ((ntohs(*mss)) > pd->act.max_mss) {
2051				pf_patch_16_unaligned(m,
2052				    &th->th_sum,
2053				    mss, htons(pd->act.max_mss),
2054				    PF_ALGNMNT(startoff),
2055				    0);
2056				m_copyback(m, off + sizeof(*th),
2057				    thoff - sizeof(*th), opts);
2058				m_copyback(m, off, sizeof(*th), (caddr_t)th);
2059			}
2060			break;
2061		default:
2062			break;
2063		}
2064	}
2065
2066	return (0);
2067}
2068
2069static int
2070pf_scan_sctp(struct mbuf *m, int ipoff, int off, struct pf_pdesc *pd,
2071    struct pfi_kkif *kif)
2072{
2073	struct sctp_chunkhdr ch = { };
2074	int chunk_off = sizeof(struct sctphdr);
2075	int chunk_start;
2076	int ret;
2077
2078	while (off + chunk_off < pd->tot_len) {
2079		if (!pf_pull_hdr(m, off + chunk_off, &ch, sizeof(ch), NULL,
2080		    NULL, pd->af))
2081			return (PF_DROP);
2082
2083		/* Length includes the header, this must be at least 4. */
2084		if (ntohs(ch.chunk_length) < 4)
2085			return (PF_DROP);
2086
2087		chunk_start = chunk_off;
2088		chunk_off += roundup(ntohs(ch.chunk_length), 4);
2089
2090		switch (ch.chunk_type) {
2091		case SCTP_INITIATION:
2092		case SCTP_INITIATION_ACK: {
2093			struct sctp_init_chunk init;
2094
2095			if (!pf_pull_hdr(m, off + chunk_start, &init,
2096			    sizeof(init), NULL, NULL, pd->af))
2097				return (PF_DROP);
2098
2099			/*
2100			 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have
2101			 * any value except 0."
2102			 */
2103			if (init.init.initiate_tag == 0)
2104				return (PF_DROP);
2105			if (init.init.num_inbound_streams == 0)
2106				return (PF_DROP);
2107			if (init.init.num_outbound_streams == 0)
2108				return (PF_DROP);
2109			if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND)
2110				return (PF_DROP);
2111
2112			/*
2113			 * RFC 9260, Section 3.1, INIT chunks MUST have zero
2114			 * verification tag.
2115			 */
2116			if (ch.chunk_type == SCTP_INITIATION &&
2117			    pd->hdr.sctp.v_tag != 0)
2118				return (PF_DROP);
2119
2120			pd->sctp_initiate_tag = init.init.initiate_tag;
2121
2122			if (ch.chunk_type == SCTP_INITIATION)
2123				pd->sctp_flags |= PFDESC_SCTP_INIT;
2124			else
2125				pd->sctp_flags |= PFDESC_SCTP_INIT_ACK;
2126
2127			ret = pf_multihome_scan_init(m, off + chunk_start,
2128			    ntohs(init.ch.chunk_length), pd, kif);
2129			if (ret != PF_PASS)
2130				return (ret);
2131
2132			break;
2133		}
2134		case SCTP_ABORT_ASSOCIATION:
2135			pd->sctp_flags |= PFDESC_SCTP_ABORT;
2136			break;
2137		case SCTP_SHUTDOWN:
2138		case SCTP_SHUTDOWN_ACK:
2139			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN;
2140			break;
2141		case SCTP_SHUTDOWN_COMPLETE:
2142			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE;
2143			break;
2144		case SCTP_COOKIE_ECHO:
2145			pd->sctp_flags |= PFDESC_SCTP_COOKIE;
2146			break;
2147		case SCTP_COOKIE_ACK:
2148			pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK;
2149			break;
2150		case SCTP_DATA:
2151			pd->sctp_flags |= PFDESC_SCTP_DATA;
2152			break;
2153		case SCTP_HEARTBEAT_REQUEST:
2154			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT;
2155			break;
2156		case SCTP_HEARTBEAT_ACK:
2157			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK;
2158			break;
2159		case SCTP_ASCONF:
2160			pd->sctp_flags |= PFDESC_SCTP_ASCONF;
2161
2162			ret = pf_multihome_scan_asconf(m, off + chunk_start,
2163			    ntohs(ch.chunk_length), pd, kif);
2164			if (ret != PF_PASS)
2165				return (ret);
2166			break;
2167		default:
2168			pd->sctp_flags |= PFDESC_SCTP_OTHER;
2169			break;
2170		}
2171	}
2172
2173	/* Validate chunk lengths vs. packet length. */
2174	if (off + chunk_off != pd->tot_len)
2175		return (PF_DROP);
2176
2177	/*
2178	 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only
2179	 * one in a packet.
2180	 */
2181	if ((pd->sctp_flags & PFDESC_SCTP_INIT) &&
2182	    (pd->sctp_flags & ~PFDESC_SCTP_INIT))
2183		return (PF_DROP);
2184	if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) &&
2185	    (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK))
2186		return (PF_DROP);
2187	if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) &&
2188	    (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE))
2189		return (PF_DROP);
2190
2191	return (PF_PASS);
2192}
2193
2194int
2195pf_normalize_sctp(int dir, struct pfi_kkif *kif, struct mbuf *m, int ipoff,
2196    int off, void *h, struct pf_pdesc *pd)
2197{
2198	struct pf_krule	*r, *rm = NULL;
2199	struct sctphdr	*sh = &pd->hdr.sctp;
2200	u_short		 reason;
2201	sa_family_t	 af = pd->af;
2202	int		 srs;
2203
2204	PF_RULES_RASSERT();
2205
2206	/* Unconditionally scan the SCTP packet, because we need to look for
2207	 * things like shutdown and asconf chunks. */
2208	if (pf_scan_sctp(m, ipoff, off, pd, kif) != PF_PASS)
2209		goto sctp_drop;
2210
2211	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
2212	/* Check if there any scrub rules. Lack of scrub rules means enforced
2213	 * packet normalization operation just like in OpenBSD. */
2214	srs = (r != NULL);
2215	while (r != NULL) {
2216		pf_counter_u64_add(&r->evaluations, 1);
2217		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
2218			r = r->skip[PF_SKIP_IFP].ptr;
2219		else if (r->direction && r->direction != dir)
2220			r = r->skip[PF_SKIP_DIR].ptr;
2221		else if (r->af && r->af != af)
2222			r = r->skip[PF_SKIP_AF].ptr;
2223		else if (r->proto && r->proto != pd->proto)
2224			r = r->skip[PF_SKIP_PROTO].ptr;
2225		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
2226		    r->src.neg, kif, M_GETFIB(m)))
2227			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
2228		else if (r->src.port_op && !pf_match_port(r->src.port_op,
2229			    r->src.port[0], r->src.port[1], sh->src_port))
2230			r = r->skip[PF_SKIP_SRC_PORT].ptr;
2231		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
2232		    r->dst.neg, NULL, M_GETFIB(m)))
2233			r = r->skip[PF_SKIP_DST_ADDR].ptr;
2234		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
2235			    r->dst.port[0], r->dst.port[1], sh->dest_port))
2236			r = r->skip[PF_SKIP_DST_PORT].ptr;
2237		else {
2238			rm = r;
2239			break;
2240		}
2241	}
2242
2243	if (srs) {
2244		/* With scrub rules present SCTP normalization happens only
2245		 * if one of rules has matched and it's not a "no scrub" rule */
2246		if (rm == NULL || rm->action == PF_NOSCRUB)
2247			return (PF_PASS);
2248
2249		pf_counter_u64_critical_enter();
2250		pf_counter_u64_add_protected(&r->packets[dir == PF_OUT], 1);
2251		pf_counter_u64_add_protected(&r->bytes[dir == PF_OUT], pd->tot_len);
2252		pf_counter_u64_critical_exit();
2253	}
2254
2255	/* Verify we're a multiple of 4 bytes long */
2256	if ((pd->tot_len - off - sizeof(struct sctphdr)) % 4)
2257		goto sctp_drop;
2258
2259	/* INIT chunk needs to be the only chunk */
2260	if (pd->sctp_flags & PFDESC_SCTP_INIT)
2261		if (pd->sctp_flags & ~PFDESC_SCTP_INIT)
2262			goto sctp_drop;
2263
2264	return (PF_PASS);
2265
2266sctp_drop:
2267	REASON_SET(&reason, PFRES_NORM);
2268	if (rm != NULL && r->log)
2269		PFLOG_PACKET(kif, m, AF_INET, PF_DROP, reason, r, NULL, NULL, pd,
2270		    1);
2271
2272	return (PF_DROP);
2273}
2274
2275#ifdef INET
2276void
2277pf_scrub_ip(struct mbuf **m0, struct pf_pdesc *pd)
2278{
2279	struct mbuf		*m = *m0;
2280	struct ip		*h = mtod(m, struct ip *);
2281
2282	/* Clear IP_DF if no-df was requested */
2283	if (pd->act.flags & PFSTATE_NODF && h->ip_off & htons(IP_DF)) {
2284		u_int16_t ip_off = h->ip_off;
2285
2286		h->ip_off &= htons(~IP_DF);
2287		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2288	}
2289
2290	/* Enforce a minimum ttl, may cause endless packet loops */
2291	if (pd->act.min_ttl && h->ip_ttl < pd->act.min_ttl) {
2292		u_int16_t ip_ttl = h->ip_ttl;
2293
2294		h->ip_ttl = pd->act.min_ttl;
2295		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2296	}
2297
2298	/* Enforce tos */
2299	if (pd->act.flags & PFSTATE_SETTOS) {
2300		u_int16_t	ov, nv;
2301
2302		ov = *(u_int16_t *)h;
2303		h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK);
2304		nv = *(u_int16_t *)h;
2305
2306		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2307	}
2308
2309	/* random-id, but not for fragments */
2310	if (pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2311		uint16_t ip_id = h->ip_id;
2312
2313		ip_fillid(h);
2314		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2315	}
2316}
2317#endif /* INET */
2318
2319#ifdef INET6
2320void
2321pf_scrub_ip6(struct mbuf **m0, struct pf_pdesc *pd)
2322{
2323	struct mbuf		*m = *m0;
2324	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
2325
2326	/* Enforce a minimum ttl, may cause endless packet loops */
2327	if (pd->act.min_ttl && h->ip6_hlim < pd->act.min_ttl)
2328		h->ip6_hlim = pd->act.min_ttl;
2329
2330	/* Enforce tos. Set traffic class bits */
2331	if (pd->act.flags & PFSTATE_SETTOS) {
2332		h->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
2333		h->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h)) << 20);
2334	}
2335}
2336#endif
2337