1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5 *	The Regents of the University of California.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*-
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 *    must display the following acknowledgements:
46 *	This product includes software developed by the University of
47 *	California, Berkeley and its contributors.
48 *	This product includes software developed at the Information
49 *	Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 *    may be used to endorse or promote products derived from this software
52 *    without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72#include <sys/cdefs.h>
73#include "opt_inet.h"
74#include "opt_inet6.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/sysctl.h>
80#include <sys/malloc.h>
81#include <sys/mbuf.h>
82#include <sys/proc.h>		/* for proc0 declaration */
83#include <sys/protosw.h>
84#include <sys/socket.h>
85#include <sys/socketvar.h>
86#include <sys/syslog.h>
87#include <sys/systm.h>
88
89#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
90
91#include <vm/uma.h>
92
93#include <net/if.h>
94#include <net/if_var.h>
95#include <net/route.h>
96#include <net/vnet.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/ip.h>
101#include <netinet/in_var.h>
102#include <netinet/in_pcb.h>
103#include <netinet/ip_var.h>
104#include <netinet/ip6.h>
105#include <netinet/icmp6.h>
106#include <netinet6/nd6.h>
107#include <netinet6/ip6_var.h>
108#include <netinet6/in6_pcb.h>
109#include <netinet/tcp.h>
110#include <netinet/tcp_fsm.h>
111#include <netinet/tcp_seq.h>
112#include <netinet/tcp_timer.h>
113#include <netinet/tcp_var.h>
114#include <netinet/tcpip.h>
115#include <netinet/cc/cc.h>
116
117#include <machine/in_cksum.h>
118
119VNET_DECLARE(struct uma_zone *, sack_hole_zone);
120#define	V_sack_hole_zone		VNET(sack_hole_zone)
121
122SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
123    "TCP SACK");
124
125VNET_DEFINE(int, tcp_do_sack) = 1;
126SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
127    &VNET_NAME(tcp_do_sack), 0,
128    "Enable/Disable TCP SACK support");
129
130VNET_DEFINE(int, tcp_do_newsack) = 1;
131SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, revised, CTLFLAG_VNET | CTLFLAG_RW,
132    &VNET_NAME(tcp_do_newsack), 0,
133    "Use revised SACK loss recovery per RFC 6675");
134
135VNET_DEFINE(int, tcp_do_lrd) = 1;
136SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, lrd, CTLFLAG_VNET | CTLFLAG_RW,
137    &VNET_NAME(tcp_do_lrd), 1,
138    "Perform Lost Retransmission Detection");
139
140VNET_DEFINE(int, tcp_sack_tso) = 0;
141SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, tso, CTLFLAG_VNET | CTLFLAG_RW,
142    &VNET_NAME(tcp_sack_tso), 0,
143    "Allow TSO during SACK loss recovery");
144
145VNET_DEFINE(int, tcp_sack_maxholes) = 128;
146SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
147    &VNET_NAME(tcp_sack_maxholes), 0,
148    "Maximum number of TCP SACK holes allowed per connection");
149
150VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
151SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
152    &VNET_NAME(tcp_sack_globalmaxholes), 0,
153    "Global maximum number of TCP SACK holes");
154
155VNET_DEFINE(int, tcp_sack_globalholes) = 0;
156SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
157    &VNET_NAME(tcp_sack_globalholes), 0,
158    "Global number of TCP SACK holes currently allocated");
159
160int
161tcp_dsack_block_exists(struct tcpcb *tp)
162{
163	/* Return true if a DSACK block exists */
164	if (tp->rcv_numsacks == 0)
165		return (0);
166	if (SEQ_LEQ(tp->sackblks[0].end, tp->rcv_nxt))
167		return(1);
168	return (0);
169}
170
171/*
172 * This function will find overlaps with the currently stored sackblocks
173 * and add any overlap as a dsack block upfront
174 */
175void
176tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
177{
178	struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
179	int i, j, n, identical;
180	tcp_seq start, end;
181
182	INP_WLOCK_ASSERT(tptoinpcb(tp));
183
184	KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
185
186	if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
187	    ((rcv_end == tp->rcv_nxt) &&
188	     (tp->rcv_numsacks > 0 ) &&
189	     (tp->sackblks[0].end == tp->rcv_nxt))) {
190		saved_blks[0].start = rcv_start;
191		saved_blks[0].end = rcv_end;
192	} else {
193		saved_blks[0].start = saved_blks[0].end = 0;
194	}
195
196	head_blk.start = head_blk.end = 0;
197	mid_blk.start = rcv_start;
198	mid_blk.end = rcv_end;
199	identical = 0;
200
201	for (i = 0; i < tp->rcv_numsacks; i++) {
202		start = tp->sackblks[i].start;
203		end = tp->sackblks[i].end;
204		if (SEQ_LT(rcv_end, start)) {
205			/* pkt left to sack blk */
206			continue;
207		}
208		if (SEQ_GT(rcv_start, end)) {
209			/* pkt right to sack blk */
210			continue;
211		}
212		if (SEQ_GT(tp->rcv_nxt, end)) {
213			if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
214			    (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
215			    (head_blk.start == head_blk.end))) {
216				head_blk.start = SEQ_MAX(rcv_start, start);
217				head_blk.end = SEQ_MIN(rcv_end, end);
218			}
219			continue;
220		}
221		if (((head_blk.start == head_blk.end) ||
222		     SEQ_LT(start, head_blk.start)) &&
223		     (SEQ_GT(end, rcv_start) &&
224		      SEQ_LEQ(start, rcv_end))) {
225			head_blk.start = start;
226			head_blk.end = end;
227		}
228		mid_blk.start = SEQ_MIN(mid_blk.start, start);
229		mid_blk.end = SEQ_MAX(mid_blk.end, end);
230		if ((mid_blk.start == start) &&
231		    (mid_blk.end == end))
232			identical = 1;
233	}
234	if (SEQ_LT(head_blk.start, head_blk.end)) {
235		/* store overlapping range */
236		saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
237		saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
238	}
239	n = 1;
240	/*
241	 * Second, if not ACKed, store the SACK block that
242	 * overlaps with the DSACK block unless it is identical
243	 */
244	if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
245	    !((mid_blk.start == saved_blks[0].start) &&
246	    (mid_blk.end == saved_blks[0].end))) ||
247	    identical == 1) {
248		saved_blks[n].start = mid_blk.start;
249		saved_blks[n++].end = mid_blk.end;
250	}
251	for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
252		if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
253		      SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
254		    (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
255		saved_blks[n++] = tp->sackblks[j];
256	}
257	j = 0;
258	for (i = 0; i < n; i++) {
259		/* we can end up with a stale initial entry */
260		if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
261			tp->sackblks[j++] = saved_blks[i];
262		}
263	}
264	tp->rcv_numsacks = j;
265}
266
267/*
268 * This function is called upon receipt of new valid data (while not in
269 * header prediction mode), and it updates the ordered list of sacks.
270 */
271void
272tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
273{
274	/*
275	 * First reported block MUST be the most recent one.  Subsequent
276	 * blocks SHOULD be in the order in which they arrived at the
277	 * receiver.  These two conditions make the implementation fully
278	 * compliant with RFC 2018.
279	 */
280	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
281	int num_head, num_saved, i;
282
283	INP_WLOCK_ASSERT(tptoinpcb(tp));
284
285	/* Check arguments. */
286	KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
287
288	if ((rcv_start == rcv_end) &&
289	    (tp->rcv_numsacks >= 1) &&
290	    (rcv_end == tp->sackblks[0].end)) {
291		/* retaining DSACK block below rcv_nxt (todrop) */
292		head_blk = tp->sackblks[0];
293	} else {
294		/* SACK block for the received segment. */
295		head_blk.start = rcv_start;
296		head_blk.end = rcv_end;
297	}
298
299	/*
300	 * Merge updated SACK blocks into head_blk, and save unchanged SACK
301	 * blocks into saved_blks[].  num_saved will have the number of the
302	 * saved SACK blocks.
303	 */
304	num_saved = 0;
305	for (i = 0; i < tp->rcv_numsacks; i++) {
306		tcp_seq start = tp->sackblks[i].start;
307		tcp_seq end = tp->sackblks[i].end;
308		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
309			/*
310			 * Discard this SACK block.
311			 */
312		} else if (SEQ_LEQ(head_blk.start, end) &&
313			   SEQ_GEQ(head_blk.end, start)) {
314			/*
315			 * Merge this SACK block into head_blk.  This SACK
316			 * block itself will be discarded.
317			 */
318			/*
319			 * |-|
320			 *   |---|  merge
321			 *
322			 *     |-|
323			 * |---|    merge
324			 *
325			 * |-----|
326			 *   |-|    DSACK smaller
327			 *
328			 *   |-|
329			 * |-----|  DSACK smaller
330			 */
331			if (head_blk.start == end)
332				head_blk.start = start;
333			else if (head_blk.end == start)
334				head_blk.end = end;
335			else {
336				if (SEQ_LT(head_blk.start, start)) {
337					tcp_seq temp = start;
338					start = head_blk.start;
339					head_blk.start = temp;
340				}
341				if (SEQ_GT(head_blk.end, end)) {
342					tcp_seq temp = end;
343					end = head_blk.end;
344					head_blk.end = temp;
345				}
346				if ((head_blk.start != start) ||
347				    (head_blk.end != end)) {
348					if ((num_saved >= 1) &&
349					   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
350					   SEQ_LEQ(saved_blks[num_saved-1].end, end))
351						num_saved--;
352					saved_blks[num_saved].start = start;
353					saved_blks[num_saved].end = end;
354					num_saved++;
355				}
356			}
357		} else {
358			/*
359			 * This block supercedes the prior block
360			 */
361			if ((num_saved >= 1) &&
362			   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
363			   SEQ_LEQ(saved_blks[num_saved-1].end, end))
364				num_saved--;
365			/*
366			 * Save this SACK block.
367			 */
368			saved_blks[num_saved].start = start;
369			saved_blks[num_saved].end = end;
370			num_saved++;
371		}
372	}
373
374	/*
375	 * Update SACK list in tp->sackblks[].
376	 */
377	num_head = 0;
378	if (SEQ_LT(rcv_start, rcv_end)) {
379		/*
380		 * The received data segment is an out-of-order segment.  Put
381		 * head_blk at the top of SACK list.
382		 */
383		tp->sackblks[0] = head_blk;
384		num_head = 1;
385		/*
386		 * If the number of saved SACK blocks exceeds its limit,
387		 * discard the last SACK block.
388		 */
389		if (num_saved >= MAX_SACK_BLKS)
390			num_saved--;
391	}
392	if ((rcv_start == rcv_end) &&
393	    (rcv_start == tp->sackblks[0].end)) {
394		num_head = 1;
395	}
396	if (num_saved > 0) {
397		/*
398		 * Copy the saved SACK blocks back.
399		 */
400		bcopy(saved_blks, &tp->sackblks[num_head],
401		      sizeof(struct sackblk) * num_saved);
402	}
403
404	/* Save the number of SACK blocks. */
405	tp->rcv_numsacks = num_head + num_saved;
406}
407
408void
409tcp_clean_dsack_blocks(struct tcpcb *tp)
410{
411	struct sackblk saved_blks[MAX_SACK_BLKS];
412	int num_saved, i;
413
414	INP_WLOCK_ASSERT(tptoinpcb(tp));
415	/*
416	 * Clean up any DSACK blocks that
417	 * are in our queue of sack blocks.
418	 *
419	 */
420	num_saved = 0;
421	for (i = 0; i < tp->rcv_numsacks; i++) {
422		tcp_seq start = tp->sackblks[i].start;
423		tcp_seq end = tp->sackblks[i].end;
424		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
425			/*
426			 * Discard this D-SACK block.
427			 */
428			continue;
429		}
430		/*
431		 * Save this SACK block.
432		 */
433		saved_blks[num_saved].start = start;
434		saved_blks[num_saved].end = end;
435		num_saved++;
436	}
437	if (num_saved > 0) {
438		/*
439		 * Copy the saved SACK blocks back.
440		 */
441		bcopy(saved_blks, &tp->sackblks[0],
442		      sizeof(struct sackblk) * num_saved);
443	}
444	tp->rcv_numsacks = num_saved;
445}
446
447/*
448 * Delete all receiver-side SACK information.
449 */
450void
451tcp_clean_sackreport(struct tcpcb *tp)
452{
453	int i;
454
455	INP_WLOCK_ASSERT(tptoinpcb(tp));
456	tp->rcv_numsacks = 0;
457	for (i = 0; i < MAX_SACK_BLKS; i++)
458		tp->sackblks[i].start = tp->sackblks[i].end=0;
459}
460
461/*
462 * Allocate struct sackhole.
463 */
464static struct sackhole *
465tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
466{
467	struct sackhole *hole;
468
469	if (tp->snd_numholes >= V_tcp_sack_maxholes ||
470	    V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
471		TCPSTAT_INC(tcps_sack_sboverflow);
472		return NULL;
473	}
474
475	hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
476	if (hole == NULL)
477		return NULL;
478
479	hole->start = start;
480	hole->end = end;
481	hole->rxmit = start;
482
483	tp->snd_numholes++;
484	atomic_add_int(&V_tcp_sack_globalholes, 1);
485
486	return hole;
487}
488
489/*
490 * Free struct sackhole.
491 */
492static void
493tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
494{
495
496	uma_zfree(V_sack_hole_zone, hole);
497
498	tp->snd_numholes--;
499	atomic_subtract_int(&V_tcp_sack_globalholes, 1);
500
501	KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
502	KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
503}
504
505/*
506 * Insert new SACK hole into scoreboard.
507 */
508static struct sackhole *
509tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
510    struct sackhole *after)
511{
512	struct sackhole *hole;
513
514	/* Allocate a new SACK hole. */
515	hole = tcp_sackhole_alloc(tp, start, end);
516	if (hole == NULL)
517		return NULL;
518
519	/* Insert the new SACK hole into scoreboard. */
520	if (after != NULL)
521		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
522	else
523		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
524
525	/* Update SACK hint. */
526	if (tp->sackhint.nexthole == NULL)
527		tp->sackhint.nexthole = hole;
528
529	return hole;
530}
531
532/*
533 * Remove SACK hole from scoreboard.
534 */
535static void
536tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
537{
538
539	/* Update SACK hint. */
540	if (tp->sackhint.nexthole == hole)
541		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
542
543	/* Remove this SACK hole. */
544	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
545
546	/* Free this SACK hole. */
547	tcp_sackhole_free(tp, hole);
548}
549
550/*
551 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
552 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
553 * the sequence space).
554 * Returns SACK_NEWLOSS if incoming ACK indicates ongoing loss (hole split, new hole),
555 * SACK_CHANGE if incoming ACK has previously unknown SACK information,
556 * SACK_NOCHANGE otherwise.
557 */
558sackstatus_t
559tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
560{
561	struct sackhole *cur, *temp;
562	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
563	int i, j, num_sack_blks;
564	sackstatus_t sack_changed;
565	int delivered_data, left_edge_delta;
566	int maxseg = tp->t_maxseg - MAX_TCPOPTLEN;
567
568	tcp_seq loss_hiack = 0;
569	int loss_thresh = 0;
570	int loss_sblks = 0;
571	int notlost_bytes = 0;
572
573	INP_WLOCK_ASSERT(tptoinpcb(tp));
574
575	num_sack_blks = 0;
576	sack_changed = SACK_NOCHANGE;
577	delivered_data = 0;
578	left_edge_delta = 0;
579	/*
580	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
581	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
582	 * Account changes to SND.UNA always in delivered data.
583	 */
584	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
585		left_edge_delta = th_ack - tp->snd_una;
586		sack_blocks[num_sack_blks].start = tp->snd_una;
587		sack_blocks[num_sack_blks++].end = th_ack;
588		/*
589		 * Pulling snd_fack forward if we got here
590		 * due to DSACK blocks
591		 */
592		if (SEQ_LT(tp->snd_fack, th_ack)) {
593			delivered_data += th_ack - tp->snd_una;
594			tp->snd_fack = th_ack;
595			sack_changed = SACK_CHANGE;
596		}
597	}
598	/*
599	 * Append received valid SACK blocks to sack_blocks[], but only if we
600	 * received new blocks from the other side.
601	 */
602	if (to->to_flags & TOF_SACK) {
603		for (i = 0; i < to->to_nsacks; i++) {
604			bcopy((to->to_sacks + i * TCPOLEN_SACK),
605			    &sack, sizeof(sack));
606			sack.start = ntohl(sack.start);
607			sack.end = ntohl(sack.end);
608			if (SEQ_GT(sack.end, sack.start) &&
609			    SEQ_GT(sack.start, tp->snd_una) &&
610			    SEQ_GT(sack.start, th_ack) &&
611			    SEQ_LT(sack.start, tp->snd_max) &&
612			    SEQ_GT(sack.end, tp->snd_una) &&
613			    SEQ_LEQ(sack.end, tp->snd_max) &&
614			    ((sack.end - sack.start) >= maxseg ||
615			     SEQ_GEQ(sack.end, tp->snd_max))) {
616				sack_blocks[num_sack_blks++] = sack;
617			} else if (SEQ_LEQ(sack.start, th_ack) &&
618			    SEQ_LEQ(sack.end, th_ack)) {
619				/*
620				 * Its a D-SACK block.
621				 */
622				tcp_record_dsack(tp, sack.start, sack.end, 0);
623			}
624		}
625	}
626	/*
627	 * Return if SND.UNA is not advanced and no valid SACK block is
628	 * received.
629	 */
630	if (num_sack_blks == 0)
631		return (sack_changed);
632
633	/*
634	 * Sort the SACK blocks so we can update the scoreboard with just one
635	 * pass. The overhead of sorting up to 4+1 elements is less than
636	 * making up to 4+1 passes over the scoreboard.
637	 */
638	for (i = 0; i < num_sack_blks; i++) {
639		for (j = i + 1; j < num_sack_blks; j++) {
640			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
641				sack = sack_blocks[i];
642				sack_blocks[i] = sack_blocks[j];
643				sack_blocks[j] = sack;
644			}
645		}
646	}
647	if (TAILQ_EMPTY(&tp->snd_holes)) {
648		/*
649		 * Empty scoreboard. Need to initialize snd_fack (it may be
650		 * uninitialized or have a bogus value). Scoreboard holes
651		 * (from the sack blocks received) are created later below
652		 * (in the logic that adds holes to the tail of the
653		 * scoreboard).
654		 */
655		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
656		tp->sackhint.sacked_bytes = 0;	/* reset */
657		tp->sackhint.hole_bytes = 0;
658	}
659	/*
660	 * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
661	 * SACK holes (snd_holes) are traversed from their tails with just
662	 * one pass in order to reduce the number of compares especially when
663	 * the bandwidth-delay product is large.
664	 *
665	 * Note: Typically, in the first RTT of SACK recovery, the highest
666	 * three or four SACK blocks with the same ack number are received.
667	 * In the second RTT, if retransmitted data segments are not lost,
668	 * the highest three or four SACK blocks with ack number advancing
669	 * are received.
670	 */
671	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
672	tp->sackhint.last_sack_ack = sblkp->end;
673	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
674		/*
675		 * The highest SACK block is beyond fack.  First,
676		 * check if there was a successful Rescue Retransmission,
677		 * and move this hole left. With normal holes, snd_fack
678		 * is always to the right of the end.
679		 */
680		if (((temp = TAILQ_LAST(&tp->snd_holes, sackhole_head)) != NULL) &&
681		    SEQ_LEQ(tp->snd_fack,temp->end)) {
682			tp->sackhint.hole_bytes -= temp->end - temp->start;
683			temp->start = SEQ_MAX(tp->snd_fack, SEQ_MAX(tp->snd_una, th_ack));
684			temp->end = sblkp->start;
685			temp->rxmit = temp->start;
686			delivered_data += sblkp->end - sblkp->start;
687			tp->sackhint.hole_bytes += temp->end - temp->start;
688			KASSERT(tp->sackhint.hole_bytes >= 0,
689			    ("sackhint hole bytes >= 0"));
690			tp->snd_fack = sblkp->end;
691			sblkp--;
692			sack_changed = SACK_NEWLOSS;
693		} else {
694			/*
695			 * Append a new SACK hole at the tail.  If the
696			 * second or later highest SACK blocks are also
697			 * beyond the current fack, they will be inserted
698			 * by way of hole splitting in the while-loop below.
699			 */
700			temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
701			if (temp != NULL) {
702				delivered_data += sblkp->end - sblkp->start;
703				tp->sackhint.hole_bytes += temp->end - temp->start;
704				tp->snd_fack = sblkp->end;
705				/* Go to the previous sack block. */
706				sblkp--;
707				sack_changed = SACK_CHANGE;
708			} else {
709				/*
710				 * We failed to add a new hole based on the current
711				 * sack block.  Skip over all the sack blocks that
712				 * fall completely to the right of snd_fack and
713				 * proceed to trim the scoreboard based on the
714				 * remaining sack blocks.  This also trims the
715				 * scoreboard for th_ack (which is sack_blocks[0]).
716				 */
717				while (sblkp >= sack_blocks &&
718				       SEQ_LT(tp->snd_fack, sblkp->start))
719					sblkp--;
720				if (sblkp >= sack_blocks &&
721				    SEQ_LT(tp->snd_fack, sblkp->end)) {
722					delivered_data += sblkp->end - tp->snd_fack;
723					tp->snd_fack = sblkp->end;
724					/*
725					 * While the Scoreboard didn't change in
726					 * size, we only ended up here because
727					 * some SACK data had to be dismissed.
728					 */
729					sack_changed = SACK_NEWLOSS;
730				}
731			}
732		}
733	} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
734		/* fack is advanced. */
735		delivered_data += sblkp->end - tp->snd_fack;
736		tp->snd_fack = sblkp->end;
737		sack_changed = SACK_CHANGE;
738	}
739	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
740	loss_hiack = tp->snd_fack;
741
742	/*
743	 * Since the incoming sack blocks are sorted, we can process them
744	 * making one sweep of the scoreboard.
745	 */
746	while (cur != NULL) {
747		if (!(sblkp >= sack_blocks)) {
748			if (((loss_sblks >= tcprexmtthresh) ||
749			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
750				break;
751			loss_thresh += loss_hiack - cur->end;
752			loss_hiack = cur->start;
753			loss_sblks++;
754			if (!((loss_sblks >= tcprexmtthresh) ||
755			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg))) {
756				notlost_bytes += cur->end - cur->start;
757			} else {
758				break;
759			}
760			cur = TAILQ_PREV(cur, sackhole_head, scblink);
761			continue;
762		}
763		if (SEQ_GEQ(sblkp->start, cur->end)) {
764			/*
765			 * SACKs data beyond the current hole.  Go to the
766			 * previous sack block.
767			 */
768			sblkp--;
769			continue;
770		}
771		if (SEQ_LEQ(sblkp->end, cur->start)) {
772			/*
773			 * SACKs data before the current hole.  Go to the
774			 * previous hole.
775			 */
776			loss_thresh += loss_hiack - cur->end;
777			loss_hiack = cur->start;
778			loss_sblks++;
779			if (!((loss_sblks >= tcprexmtthresh) ||
780			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
781				notlost_bytes += cur->end - cur->start;
782			cur = TAILQ_PREV(cur, sackhole_head, scblink);
783			continue;
784		}
785		tp->sackhint.sack_bytes_rexmit -=
786		    (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
787		KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
788		    ("sackhint bytes rtx >= 0"));
789		sack_changed = SACK_CHANGE;
790		if (SEQ_LEQ(sblkp->start, cur->start)) {
791			/* Data acks at least the beginning of hole. */
792			if (SEQ_GEQ(sblkp->end, cur->end)) {
793				/* Acks entire hole, so delete hole. */
794				delivered_data += (cur->end - cur->start);
795				temp = cur;
796				cur = TAILQ_PREV(cur, sackhole_head, scblink);
797				tp->sackhint.hole_bytes -= temp->end - temp->start;
798				tcp_sackhole_remove(tp, temp);
799				/*
800				 * The sack block may ack all or part of the
801				 * next hole too, so continue onto the next
802				 * hole.
803				 */
804				continue;
805			} else {
806				/* Move start of hole forward. */
807				delivered_data += (sblkp->end - cur->start);
808				tp->sackhint.hole_bytes -= sblkp->end - cur->start;
809				cur->start = sblkp->end;
810				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
811			}
812		} else {
813			/* Data acks at least the end of hole. */
814			if (SEQ_GEQ(sblkp->end, cur->end)) {
815				/* Move end of hole backward. */
816				delivered_data += (cur->end - sblkp->start);
817				tp->sackhint.hole_bytes -= cur->end - sblkp->start;
818				cur->end = sblkp->start;
819				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
820				if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
821					cur->rxmit = tp->snd_recover;
822			} else {
823				/*
824				 * ACKs some data in middle of a hole; need
825				 * to split current hole
826				 */
827				temp = tcp_sackhole_insert(tp, sblkp->end,
828				    cur->end, cur);
829				sack_changed = SACK_NEWLOSS;
830				if (temp != NULL) {
831					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
832						temp->rxmit = cur->rxmit;
833						tp->sackhint.sack_bytes_rexmit +=
834						    (SEQ_MIN(temp->rxmit,
835						    temp->end) - temp->start);
836					}
837					tp->sackhint.hole_bytes -= sblkp->end - sblkp->start;
838					loss_thresh += loss_hiack - temp->end;
839					loss_hiack = temp->start;
840					loss_sblks++;
841					if (!((loss_sblks >= tcprexmtthresh) ||
842					    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
843						notlost_bytes += temp->end - temp->start;
844					cur->end = sblkp->start;
845					cur->rxmit = SEQ_MIN(cur->rxmit,
846					    cur->end);
847					if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
848						cur->rxmit = tp->snd_recover;
849					delivered_data += (sblkp->end - sblkp->start);
850				}
851			}
852		}
853		tp->sackhint.sack_bytes_rexmit +=
854		    (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
855		/*
856		 * Testing sblkp->start against cur->start tells us whether
857		 * we're done with the sack block or the sack hole.
858		 * Accordingly, we advance one or the other.
859		 */
860		if (SEQ_LEQ(sblkp->start, cur->start)) {
861			loss_thresh += loss_hiack - cur->end;
862			loss_hiack = cur->start;
863			loss_sblks++;
864			if (!((loss_sblks >= tcprexmtthresh) ||
865			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
866				notlost_bytes += cur->end - cur->start;
867			cur = TAILQ_PREV(cur, sackhole_head, scblink);
868		} else {
869			sblkp--;
870		}
871	}
872
873	KASSERT(!(TAILQ_EMPTY(&tp->snd_holes) && (tp->sackhint.hole_bytes != 0)),
874	    ("SACK scoreboard empty, but accounting non-zero\n"));
875
876	KASSERT(notlost_bytes <= tp->sackhint.hole_bytes,
877	    ("SACK: more bytes marked notlost than in scoreboard holes"));
878
879	if (!(to->to_flags & TOF_SACK))
880		/*
881		 * If this ACK did not contain any
882		 * SACK blocks, any only moved the
883		 * left edge right, it is a pure
884		 * cumulative ACK. Do not count
885		 * DupAck for this. Also required
886		 * for RFC6675 rescue retransmission.
887		 */
888		sack_changed = SACK_NOCHANGE;
889	tp->sackhint.delivered_data = delivered_data;
890	tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
891	tp->sackhint.lost_bytes = tp->sackhint.hole_bytes - notlost_bytes;
892	KASSERT((delivered_data >= 0), ("delivered_data < 0"));
893	KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
894	return (sack_changed);
895}
896
897/*
898 * Free all SACK holes to clear the scoreboard.
899 */
900void
901tcp_free_sackholes(struct tcpcb *tp)
902{
903	struct sackhole *q;
904
905	INP_WLOCK_ASSERT(tptoinpcb(tp));
906	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
907		tcp_sackhole_remove(tp, q);
908	tp->sackhint.sack_bytes_rexmit = 0;
909	tp->sackhint.delivered_data = 0;
910	tp->sackhint.sacked_bytes = 0;
911	tp->sackhint.hole_bytes = 0;
912	tp->sackhint.lost_bytes = 0;
913
914	KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
915	KASSERT(tp->sackhint.nexthole == NULL,
916		("tp->sackhint.nexthole == NULL"));
917}
918
919/*
920 * Resend all the currently existing SACK holes of
921 * the scoreboard. This is in line with the Errata to
922 * RFC 2018, which allows the use of SACK data past
923 * an RTO to good effect typically.
924 */
925void
926tcp_resend_sackholes(struct tcpcb *tp)
927{
928	struct sackhole *p;
929
930	INP_WLOCK_ASSERT(tptoinpcb(tp));
931	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
932		p->rxmit = p->start;
933	}
934	tp->sackhint.nexthole = TAILQ_FIRST(&tp->snd_holes);
935	tp->sackhint.sack_bytes_rexmit = 0;
936}
937
938/*
939 * Partial ack handling within a sack recovery episode.  Keeping this very
940 * simple for now.  When a partial ack is received, force snd_cwnd to a value
941 * that will allow the sender to transmit no more than 2 segments.  If
942 * necessary, a better scheme can be adopted at a later point, but for now,
943 * the goal is to prevent the sender from bursting a large amount of data in
944 * the midst of sack recovery.
945 */
946void
947tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th, u_int *maxsegp)
948{
949	struct sackhole *temp;
950	int num_segs = 1;
951	u_int maxseg;
952
953	INP_WLOCK_ASSERT(tptoinpcb(tp));
954
955	if (*maxsegp == 0) {
956		*maxsegp = tcp_maxseg(tp);
957	}
958	maxseg = *maxsegp;
959	tcp_timer_activate(tp, TT_REXMT, 0);
960	tp->t_rtttime = 0;
961	/* Send one or 2 segments based on how much new data was acked. */
962	if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
963		num_segs = 2;
964	if (V_tcp_do_newsack) {
965		tp->snd_cwnd = imax(tp->snd_nxt - th->th_ack +
966				tp->sackhint.sack_bytes_rexmit -
967				tp->sackhint.sacked_bytes -
968				tp->sackhint.lost_bytes, maxseg) +
969				num_segs * maxseg;
970	} else {
971		tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
972		    imax(0, tp->snd_nxt - tp->snd_recover) +
973		    num_segs * maxseg);
974	}
975	if (tp->snd_cwnd > tp->snd_ssthresh)
976		tp->snd_cwnd = tp->snd_ssthresh;
977	tp->t_flags |= TF_ACKNOW;
978	/*
979	 * RFC6675 rescue retransmission
980	 * Add a hole between th_ack (snd_una is not yet set) and snd_max,
981	 * if this was a pure cumulative ACK and no data was send beyond
982	 * recovery point. Since the data in the socket has not been freed
983	 * at this point, we check if the scoreboard is empty, and the ACK
984	 * delivered some new data, indicating a full ACK. Also, if the
985	 * recovery point is still at snd_max, we are probably application
986	 * limited. However, this inference might not always be true. The
987	 * rescue retransmission may rarely be slightly premature
988	 * compared to RFC6675.
989	 * The corresponding ACK+SACK will cause any further outstanding
990	 * segments to be retransmitted. This addresses a corner case, when
991	 * the trailing packets of a window are lost and no further data
992	 * is available for sending.
993	 */
994	if ((V_tcp_do_newsack) &&
995	    SEQ_LT(th->th_ack, tp->snd_recover) &&
996	    TAILQ_EMPTY(&tp->snd_holes) &&
997	    (tp->sackhint.delivered_data > 0)) {
998		/*
999		 * Exclude FIN sequence space in
1000		 * the hole for the rescue retransmission,
1001		 * and also don't create a hole, if only
1002		 * the ACK for a FIN is outstanding.
1003		 */
1004		tcp_seq highdata = tp->snd_max;
1005		if (tp->t_flags & TF_SENTFIN)
1006			highdata--;
1007		highdata = SEQ_MIN(highdata, tp->snd_recover);
1008		if (SEQ_LT(th->th_ack, highdata)) {
1009			tp->snd_fack = th->th_ack;
1010			if ((temp = tcp_sackhole_insert(tp, SEQ_MAX(th->th_ack,
1011			    highdata - maxseg), highdata, NULL)) != NULL) {
1012				tp->sackhint.hole_bytes +=
1013					temp->end - temp->start;
1014			}
1015		}
1016	}
1017	(void) tcp_output(tp);
1018}
1019
1020/*
1021 * Returns the next hole to retransmit and the number of retransmitted bytes
1022 * from the scoreboard.  We store both the next hole and the number of
1023 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
1024 * reception).  This avoids scoreboard traversals completely.
1025 *
1026 * The loop here will traverse *at most* one link.  Here's the argument.  For
1027 * the loop to traverse more than 1 link before finding the next hole to
1028 * retransmit, we would need to have at least 1 node following the current
1029 * hint with (rxmit == end).  But, for all holes following the current hint,
1030 * (start == rxmit), since we have not yet retransmitted from them.
1031 * Therefore, in order to traverse more 1 link in the loop below, we need to
1032 * have at least one node following the current hint with (start == rxmit ==
1033 * end).  But that can't happen, (start == end) means that all the data in
1034 * that hole has been sacked, in which case, the hole would have been removed
1035 * from the scoreboard.
1036 */
1037struct sackhole *
1038tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
1039{
1040	struct sackhole *hole = NULL;
1041
1042	INP_WLOCK_ASSERT(tptoinpcb(tp));
1043	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
1044	hole = tp->sackhint.nexthole;
1045	if (hole == NULL)
1046		return (hole);
1047	if (SEQ_GEQ(hole->rxmit, hole->end)) {
1048		for (;;) {
1049			hole = TAILQ_NEXT(hole, scblink);
1050			if (hole == NULL)
1051				return (hole);
1052			if (SEQ_LT(hole->rxmit, hole->end)) {
1053				tp->sackhint.nexthole = hole;
1054				break;
1055			}
1056		}
1057	}
1058	KASSERT(SEQ_LT(hole->start, hole->end), ("%s: hole.start >= hole.end", __func__));
1059	if (!(V_tcp_do_newsack)) {
1060		KASSERT(SEQ_LT(hole->start, tp->snd_fack), ("%s: hole.start >= snd.fack", __func__));
1061		KASSERT(SEQ_LT(hole->end, tp->snd_fack), ("%s: hole.end >= snd.fack", __func__));
1062		KASSERT(SEQ_LT(hole->rxmit, tp->snd_fack), ("%s: hole.rxmit >= snd.fack", __func__));
1063		if (SEQ_GEQ(hole->start, hole->end) ||
1064		    SEQ_GEQ(hole->start, tp->snd_fack) ||
1065		    SEQ_GEQ(hole->end, tp->snd_fack) ||
1066		    SEQ_GEQ(hole->rxmit, tp->snd_fack)) {
1067			log(LOG_CRIT,"tcp: invalid SACK hole (%u-%u,%u) vs fwd ack %u, ignoring.\n",
1068					hole->start, hole->end, hole->rxmit, tp->snd_fack);
1069			return (NULL);
1070		}
1071	}
1072	return (hole);
1073}
1074
1075/*
1076 * After a timeout, the SACK list may be rebuilt.  This SACK information
1077 * should be used to avoid retransmitting SACKed data.  This function
1078 * traverses the SACK list to see if snd_nxt should be moved forward.
1079 */
1080void
1081tcp_sack_adjust(struct tcpcb *tp)
1082{
1083	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
1084
1085	INP_WLOCK_ASSERT(tptoinpcb(tp));
1086	if (cur == NULL) {
1087		/* No holes */
1088		return;
1089	}
1090	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack)) {
1091		/* We're already beyond any SACKed blocks */
1092		return;
1093	}
1094	/*-
1095	 * Two cases for which we want to advance snd_nxt:
1096	 * i) snd_nxt lies between end of one hole and beginning of another
1097	 * ii) snd_nxt lies between end of last hole and snd_fack
1098	 */
1099	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
1100		if (SEQ_LT(tp->snd_nxt, cur->end)) {
1101			return;
1102		}
1103		if (SEQ_GEQ(tp->snd_nxt, p->start)) {
1104			cur = p;
1105		} else {
1106			tp->snd_nxt = p->start;
1107			return;
1108		}
1109	}
1110	if (SEQ_LT(tp->snd_nxt, cur->end)) {
1111		return;
1112	}
1113	tp->snd_nxt = tp->snd_fack;
1114}
1115
1116/*
1117 * Lost Retransmission Detection
1118 * Check is FACK is beyond the rexmit of the leftmost hole.
1119 * If yes, we restart sending from still existing holes,
1120 * and adjust cwnd via the congestion control module.
1121 */
1122void
1123tcp_sack_lost_retransmission(struct tcpcb *tp, struct tcphdr *th)
1124{
1125	struct sackhole *temp;
1126
1127	if (IN_RECOVERY(tp->t_flags) &&
1128	    SEQ_GT(tp->snd_fack, tp->snd_recover) &&
1129	    ((temp = TAILQ_FIRST(&tp->snd_holes)) != NULL) &&
1130	    SEQ_GEQ(temp->rxmit, temp->end) &&
1131	    SEQ_GEQ(tp->snd_fack, temp->rxmit)) {
1132		TCPSTAT_INC(tcps_sack_lostrexmt);
1133		/*
1134		 * Start retransmissions from the first hole, and
1135		 * subsequently all other remaining holes, including
1136		 * those, which had been sent completely before.
1137		 */
1138		tp->sackhint.nexthole = temp;
1139		TAILQ_FOREACH(temp, &tp->snd_holes, scblink) {
1140			if (SEQ_GEQ(tp->snd_fack, temp->rxmit) &&
1141			    SEQ_GEQ(temp->rxmit, temp->end))
1142				temp->rxmit = temp->start;
1143		}
1144		/*
1145		 * Remember the old ssthresh, to deduct the beta factor used
1146		 * by the CC module. Finally, set cwnd to ssthresh just
1147		 * prior to invoking another cwnd reduction by the CC
1148		 * module, to not shrink it excessively.
1149		 */
1150		tp->snd_cwnd = tp->snd_ssthresh;
1151		/*
1152		 * Formally exit recovery, and let the CC module adjust
1153		 * ssthresh as intended.
1154		 */
1155		EXIT_RECOVERY(tp->t_flags);
1156		cc_cong_signal(tp, th, CC_NDUPACK);
1157		/*
1158		 * For PRR, adjust recover_fs as if this new reduction
1159		 * initialized this variable.
1160		 * cwnd will be adjusted by SACK or PRR processing
1161		 * subsequently, only set it to a safe value here.
1162		 */
1163		tp->snd_cwnd = tcp_maxseg(tp);
1164		tp->sackhint.recover_fs = (tp->snd_max - tp->snd_una) -
1165					    tp->sackhint.recover_fs;
1166	}
1167}
1168