1/*-
2 * Copyright (c) 2016-2018 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26#include <sys/cdefs.h>
27#include "opt_inet.h"
28#include "opt_inet6.h"
29#include "opt_rss.h"
30
31/**
32 * Some notes about usage.
33 *
34 * The tcp_hpts system is designed to provide a high precision timer
35 * system for tcp. Its main purpose is to provide a mechanism for
36 * pacing packets out onto the wire. It can be used in two ways
37 * by a given TCP stack (and those two methods can be used simultaneously).
38 *
39 * First, and probably the main thing its used by Rack and BBR, it can
40 * be used to call tcp_output() of a transport stack at some time in the future.
41 * The normal way this is done is that tcp_output() of the stack schedules
42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
43 * slot is the time from now that the stack wants to be called but it
44 * must be converted to tcp_hpts's notion of slot. This is done with
45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
46 * call from the tcp_output() routine might look like:
47 *
48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
49 *
50 * The above would schedule tcp_output() to be called in 550 useconds.
51 * Note that if using this mechanism the stack will want to add near
52 * its top a check to prevent unwanted calls (from user land or the
53 * arrival of incoming ack's). So it would add something like:
54 *
55 * if (tcp_in_hpts(inp))
56 *    return;
57 *
58 * to prevent output processing until the time alotted has gone by.
59 * Of course this is a bare bones example and the stack will probably
60 * have more consideration then just the above.
61 *
62 * In order to run input queued segments from the HPTS context the
63 * tcp stack must define an input function for
64 * tfb_do_queued_segments(). This function understands
65 * how to dequeue a array of packets that were input and
66 * knows how to call the correct processing routine.
67 *
68 * Locking in this is important as well so most likely the
69 * stack will need to define the tfb_do_segment_nounlock()
70 * splitting tfb_do_segment() into two parts. The main processing
71 * part that does not unlock the INP and returns a value of 1 or 0.
72 * It returns 0 if all is well and the lock was not released. It
73 * returns 1 if we had to destroy the TCB (a reset received etc).
74 * The remains of tfb_do_segment() then become just a simple call
75 * to the tfb_do_segment_nounlock() function and check the return
76 * code and possibly unlock.
77 *
78 * The stack must also set the flag on the INP that it supports this
79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
80 * this flag as well and will queue packets when it is set.
81 * There are other flags as well INP_MBUF_QUEUE_READY and
82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
83 * that we are in the pacer for output so there is no
84 * need to wake up the hpts system to get immediate
85 * input. The second tells the LRO code that its okay
86 * if a SACK arrives you can still defer input and let
87 * the current hpts timer run (this is usually set when
88 * a rack timer is up so we know SACK's are happening
89 * on the connection already and don't want to wakeup yet).
90 *
91 * There is a common functions within the rack_bbr_common code
92 * version i.e. ctf_do_queued_segments(). This function
93 * knows how to take the input queue of packets from tp->t_inqueue
94 * and process them digging out all the arguments, calling any bpf tap and
95 * calling into tfb_do_segment_nounlock(). The common
96 * function (ctf_do_queued_segments())  requires that
97 * you have defined the tfb_do_segment_nounlock() as
98 * described above.
99 */
100
101#include <sys/param.h>
102#include <sys/bus.h>
103#include <sys/interrupt.h>
104#include <sys/module.h>
105#include <sys/kernel.h>
106#include <sys/hhook.h>
107#include <sys/malloc.h>
108#include <sys/mbuf.h>
109#include <sys/proc.h>		/* for proc0 declaration */
110#include <sys/socket.h>
111#include <sys/socketvar.h>
112#include <sys/sysctl.h>
113#include <sys/systm.h>
114#include <sys/refcount.h>
115#include <sys/sched.h>
116#include <sys/queue.h>
117#include <sys/smp.h>
118#include <sys/counter.h>
119#include <sys/time.h>
120#include <sys/kthread.h>
121#include <sys/kern_prefetch.h>
122
123#include <vm/uma.h>
124#include <vm/vm.h>
125
126#include <net/route.h>
127#include <net/vnet.h>
128
129#ifdef RSS
130#include <net/netisr.h>
131#include <net/rss_config.h>
132#endif
133
134#define TCPSTATES		/* for logging */
135
136#include <netinet/in.h>
137#include <netinet/in_kdtrace.h>
138#include <netinet/in_pcb.h>
139#include <netinet/ip.h>
140#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
141#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
142#include <netinet/ip_var.h>
143#include <netinet/ip6.h>
144#include <netinet6/in6_pcb.h>
145#include <netinet6/ip6_var.h>
146#include <netinet/tcp.h>
147#include <netinet/tcp_fsm.h>
148#include <netinet/tcp_seq.h>
149#include <netinet/tcp_timer.h>
150#include <netinet/tcp_var.h>
151#include <netinet/tcpip.h>
152#include <netinet/cc/cc.h>
153#include <netinet/tcp_hpts.h>
154#include <netinet/tcp_log_buf.h>
155
156#ifdef tcp_offload
157#include <netinet/tcp_offload.h>
158#endif
159
160/*
161 * The hpts uses a 102400 wheel. The wheel
162 * defines the time in 10 usec increments (102400 x 10).
163 * This gives a range of 10usec - 1024ms to place
164 * an entry within. If the user requests more than
165 * 1.024 second, a remaineder is attached and the hpts
166 * when seeing the remainder will re-insert the
167 * inpcb forward in time from where it is until
168 * the remainder is zero.
169 */
170
171#define NUM_OF_HPTSI_SLOTS 102400
172
173/* Each hpts has its own p_mtx which is used for locking */
174#define	HPTS_MTX_ASSERT(hpts)	mtx_assert(&(hpts)->p_mtx, MA_OWNED)
175#define	HPTS_LOCK(hpts)		mtx_lock(&(hpts)->p_mtx)
176#define	HPTS_UNLOCK(hpts)	mtx_unlock(&(hpts)->p_mtx)
177struct tcp_hpts_entry {
178	/* Cache line 0x00 */
179	struct mtx p_mtx;	/* Mutex for hpts */
180	struct timeval p_mysleep;	/* Our min sleep time */
181	uint64_t syscall_cnt;
182	uint64_t sleeping;	/* What the actual sleep was (if sleeping) */
183	uint16_t p_hpts_active; /* Flag that says hpts is awake  */
184	uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
185	uint32_t p_curtick;	/* Tick in 10 us the hpts is going to */
186	uint32_t p_runningslot; /* Current tick we are at if we are running */
187	uint32_t p_prev_slot;	/* Previous slot we were on */
188	uint32_t p_cur_slot;	/* Current slot in wheel hpts is draining */
189	uint32_t p_nxt_slot;	/* The next slot outside the current range of
190				 * slots that the hpts is running on. */
191	int32_t p_on_queue_cnt;	/* Count on queue in this hpts */
192	uint32_t p_lasttick;	/* Last tick before the current one */
193	uint8_t p_direct_wake :1, /* boolean */
194		p_on_min_sleep:1, /* boolean */
195		p_hpts_wake_scheduled:1, /* boolean */
196		hit_callout_thresh:1,
197		p_avail:4;
198	uint8_t p_fill[3];	  /* Fill to 32 bits */
199	/* Cache line 0x40 */
200	struct hptsh {
201		TAILQ_HEAD(, tcpcb)	head;
202		uint32_t		count;
203		uint32_t		gencnt;
204	} *p_hptss;			/* Hptsi wheel */
205	uint32_t p_hpts_sleep_time;	/* Current sleep interval having a max
206					 * of 255ms */
207	uint32_t overidden_sleep;	/* what was overrided by min-sleep for logging */
208	uint32_t saved_lasttick;	/* for logging */
209	uint32_t saved_curtick;		/* for logging */
210	uint32_t saved_curslot;		/* for logging */
211	uint32_t saved_prev_slot;       /* for logging */
212	uint32_t p_delayed_by;	/* How much were we delayed by */
213	/* Cache line 0x80 */
214	struct sysctl_ctx_list hpts_ctx;
215	struct sysctl_oid *hpts_root;
216	struct intr_event *ie;
217	void *ie_cookie;
218	uint16_t p_num;		/* The hpts number one per cpu */
219	uint16_t p_cpu;		/* The hpts CPU */
220	/* There is extra space in here */
221	/* Cache line 0x100 */
222	struct callout co __aligned(CACHE_LINE_SIZE);
223}               __aligned(CACHE_LINE_SIZE);
224
225static struct tcp_hptsi {
226	struct cpu_group **grps;
227	struct tcp_hpts_entry **rp_ent;	/* Array of hptss */
228	uint32_t *cts_last_ran;
229	uint32_t grp_cnt;
230	uint32_t rp_num_hptss;	/* Number of hpts threads */
231} tcp_pace;
232
233static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
234#ifdef RSS
235static int tcp_bind_threads = 1;
236#else
237static int tcp_bind_threads = 2;
238#endif
239static int tcp_use_irq_cpu = 0;
240static int hpts_does_tp_logging = 0;
241
242static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
243static void tcp_hpts_thread(void *ctx);
244
245int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
246static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
247static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
248static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
249
250
251SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
252    "TCP Hpts controls");
253SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
254    "TCP Hpts statistics");
255
256#define	timersub(tvp, uvp, vvp)						\
257	do {								\
258		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
259		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
260		if ((vvp)->tv_usec < 0) {				\
261			(vvp)->tv_sec--;				\
262			(vvp)->tv_usec += 1000000;			\
263		}							\
264	} while (0)
265
266static int32_t tcp_hpts_precision = 120;
267
268static struct hpts_domain_info {
269	int count;
270	int cpu[MAXCPU];
271} hpts_domains[MAXMEMDOM];
272
273counter_u64_t hpts_hopelessly_behind;
274
275SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
276    &hpts_hopelessly_behind,
277    "Number of times hpts could not catch up and was behind hopelessly");
278
279counter_u64_t hpts_loops;
280
281SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
282    &hpts_loops, "Number of times hpts had to loop to catch up");
283
284counter_u64_t back_tosleep;
285
286SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
287    &back_tosleep, "Number of times hpts found no tcbs");
288
289counter_u64_t combined_wheel_wrap;
290
291SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
292    &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
293
294counter_u64_t wheel_wrap;
295
296SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
297    &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
298
299counter_u64_t hpts_direct_call;
300SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
301    &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
302
303counter_u64_t hpts_wake_timeout;
304
305SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
306    &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
307
308counter_u64_t hpts_direct_awakening;
309
310SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
311    &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
312
313counter_u64_t hpts_back_tosleep;
314
315SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
316    &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
317
318counter_u64_t cpu_uses_flowid;
319counter_u64_t cpu_uses_random;
320
321SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
322    &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
323SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
324    &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
325
326TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
327TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
328SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
329    &tcp_bind_threads, 2,
330    "Thread Binding tunable");
331SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
332    &tcp_use_irq_cpu, 0,
333    "Use of irq CPU  tunable");
334SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
335    &tcp_hpts_precision, 120,
336    "Value for PRE() precision of callout");
337SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
338    &conn_cnt_thresh, 0,
339    "How many connections (below) make us use the callout based mechanism");
340SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
341    &hpts_does_tp_logging, 0,
342    "Do we add to any tp that has logging on pacer logs");
343SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
344    &dynamic_min_sleep, 250,
345    "What is the dynamic minsleep value?");
346SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
347    &dynamic_max_sleep, 5000,
348    "What is the dynamic maxsleep value?");
349
350static int32_t max_pacer_loops = 10;
351SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
352    &max_pacer_loops, 10,
353    "What is the maximum number of times the pacer will loop trying to catch up");
354
355#define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
356
357static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
358
359static int
360sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
361{
362	int error;
363	uint32_t new;
364
365	new = hpts_sleep_max;
366	error = sysctl_handle_int(oidp, &new, 0, req);
367	if (error == 0 && req->newptr) {
368		if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
369		     (new > HPTS_MAX_SLEEP_ALLOWED))
370			error = EINVAL;
371		else
372			hpts_sleep_max = new;
373	}
374	return (error);
375}
376
377static int
378sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
379{
380	int error;
381	uint32_t new;
382
383	new = tcp_min_hptsi_time;
384	error = sysctl_handle_int(oidp, &new, 0, req);
385	if (error == 0 && req->newptr) {
386		if (new < LOWEST_SLEEP_ALLOWED)
387			error = EINVAL;
388		else
389			tcp_min_hptsi_time = new;
390	}
391	return (error);
392}
393
394SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
395    CTLTYPE_UINT | CTLFLAG_RW,
396    &hpts_sleep_max, 0,
397    &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
398    "Maximum time hpts will sleep in slots");
399
400SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
401    CTLTYPE_UINT | CTLFLAG_RW,
402    &tcp_min_hptsi_time, 0,
403    &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
404    "The minimum time the hpts must sleep before processing more slots");
405
406static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
407static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
408static int tcp_hpts_no_wake_over_thresh = 1;
409
410SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
411    &ticks_indicate_more_sleep, 0,
412    "If we only process this many or less on a timeout, we need longer sleep on the next callout");
413SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
414    &ticks_indicate_less_sleep, 0,
415    "If we process this many or more on a timeout, we need less sleep on the next callout");
416SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
417    &tcp_hpts_no_wake_over_thresh, 0,
418    "When we are over the threshold on the pacer do we prohibit wakeups?");
419
420static uint16_t
421hpts_random_cpu(void)
422{
423	uint16_t cpuid;
424	uint32_t ran;
425
426	ran = arc4random();
427	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
428	return (cpuid);
429}
430
431static void
432tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
433	     int slots_to_run, int idx, int from_callout)
434{
435	union tcp_log_stackspecific log;
436	/*
437	 * Unused logs are
438	 * 64 bit - delRate, rttProp, bw_inuse
439	 * 16 bit - cwnd_gain
440	 *  8 bit - bbr_state, bbr_substate, inhpts;
441	 */
442	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
443	log.u_bbr.flex1 = hpts->p_nxt_slot;
444	log.u_bbr.flex2 = hpts->p_cur_slot;
445	log.u_bbr.flex3 = hpts->p_prev_slot;
446	log.u_bbr.flex4 = idx;
447	log.u_bbr.flex5 = hpts->p_curtick;
448	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
449	log.u_bbr.flex7 = hpts->p_cpu;
450	log.u_bbr.flex8 = (uint8_t)from_callout;
451	log.u_bbr.inflight = slots_to_run;
452	log.u_bbr.applimited = hpts->overidden_sleep;
453	log.u_bbr.delivered = hpts->saved_curtick;
454	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
455	log.u_bbr.epoch = hpts->saved_curslot;
456	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
457	log.u_bbr.pkts_out = hpts->p_delayed_by;
458	log.u_bbr.lost = hpts->p_hpts_sleep_time;
459	log.u_bbr.pacing_gain = hpts->p_cpu;
460	log.u_bbr.pkt_epoch = hpts->p_runningslot;
461	log.u_bbr.use_lt_bw = 1;
462	TCP_LOG_EVENTP(tp, NULL,
463		       &tptosocket(tp)->so_rcv,
464		       &tptosocket(tp)->so_snd,
465		       BBR_LOG_HPTSDIAG, 0,
466		       0, &log, false, tv);
467}
468
469static void
470tcp_wakehpts(struct tcp_hpts_entry *hpts)
471{
472	HPTS_MTX_ASSERT(hpts);
473
474	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
475		hpts->p_direct_wake = 0;
476		return;
477	}
478	if (hpts->p_hpts_wake_scheduled == 0) {
479		hpts->p_hpts_wake_scheduled = 1;
480		swi_sched(hpts->ie_cookie, 0);
481	}
482}
483
484static void
485hpts_timeout_swi(void *arg)
486{
487	struct tcp_hpts_entry *hpts;
488
489	hpts = (struct tcp_hpts_entry *)arg;
490	swi_sched(hpts->ie_cookie, 0);
491}
492
493static void
494tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts)
495{
496	struct inpcb *inp = tptoinpcb(tp);
497	struct hptsh *hptsh;
498
499	INP_WLOCK_ASSERT(inp);
500	HPTS_MTX_ASSERT(hpts);
501	MPASS(hpts->p_cpu == tp->t_hpts_cpu);
502	MPASS(!(inp->inp_flags & INP_DROPPED));
503
504	hptsh = &hpts->p_hptss[tp->t_hpts_slot];
505
506	if (tp->t_in_hpts == IHPTS_NONE) {
507		tp->t_in_hpts = IHPTS_ONQUEUE;
508		in_pcbref(inp);
509	} else if (tp->t_in_hpts == IHPTS_MOVING) {
510		tp->t_in_hpts = IHPTS_ONQUEUE;
511	} else
512		MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
513	tp->t_hpts_gencnt = hptsh->gencnt;
514
515	TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts);
516	hptsh->count++;
517	hpts->p_on_queue_cnt++;
518}
519
520static struct tcp_hpts_entry *
521tcp_hpts_lock(struct tcpcb *tp)
522{
523	struct tcp_hpts_entry *hpts;
524
525	INP_LOCK_ASSERT(tptoinpcb(tp));
526
527	hpts = tcp_pace.rp_ent[tp->t_hpts_cpu];
528	HPTS_LOCK(hpts);
529
530	return (hpts);
531}
532
533static void
534tcp_hpts_release(struct tcpcb *tp)
535{
536	bool released __diagused;
537
538	tp->t_in_hpts = IHPTS_NONE;
539	released = in_pcbrele_wlocked(tptoinpcb(tp));
540	MPASS(released == false);
541}
542
543/*
544 * Initialize tcpcb to get ready for use with HPTS.  We will know which CPU
545 * is preferred on the first incoming packet.  Before that avoid crowding
546 * a single CPU with newborn connections and use a random one.
547 * This initialization is normally called on a newborn tcpcb, but potentially
548 * can be called once again if stack is switched.  In that case we inherit CPU
549 * that the previous stack has set, be it random or not.  In extreme cases,
550 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state
551 * and has never received a first packet.
552 */
553void
554tcp_hpts_init(struct tcpcb *tp)
555{
556
557	if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) {
558		tp->t_hpts_cpu = hpts_random_cpu();
559		MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET));
560	}
561}
562
563/*
564 * Called normally with the INP_LOCKED but it
565 * does not matter, the hpts lock is the key
566 * but the lock order allows us to hold the
567 * INP lock and then get the hpts lock.
568 */
569void
570tcp_hpts_remove(struct tcpcb *tp)
571{
572	struct tcp_hpts_entry *hpts;
573	struct hptsh *hptsh;
574
575	INP_WLOCK_ASSERT(tptoinpcb(tp));
576
577	hpts = tcp_hpts_lock(tp);
578	if (tp->t_in_hpts == IHPTS_ONQUEUE) {
579		hptsh = &hpts->p_hptss[tp->t_hpts_slot];
580		tp->t_hpts_request = 0;
581		if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) {
582			TAILQ_REMOVE(&hptsh->head, tp, t_hpts);
583			MPASS(hptsh->count > 0);
584			hptsh->count--;
585			MPASS(hpts->p_on_queue_cnt > 0);
586			hpts->p_on_queue_cnt--;
587			tcp_hpts_release(tp);
588		} else {
589			/*
590			 * tcp_hptsi() now owns the TAILQ head of this inp.
591			 * Can't TAILQ_REMOVE, just mark it.
592			 */
593#ifdef INVARIANTS
594			struct tcpcb *tmp;
595
596			TAILQ_FOREACH(tmp, &hptsh->head, t_hpts)
597				MPASS(tmp != tp);
598#endif
599			tp->t_in_hpts = IHPTS_MOVING;
600			tp->t_hpts_slot = -1;
601		}
602	} else if (tp->t_in_hpts == IHPTS_MOVING) {
603		/*
604		 * Handle a special race condition:
605		 * tcp_hptsi() moves inpcb to detached tailq
606		 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
607		 * tcp_hpts_insert() sets slot to a meaningful value
608		 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
609		 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
610		 */
611		tp->t_hpts_slot = -1;
612	}
613	HPTS_UNLOCK(hpts);
614}
615
616static inline int
617hpts_slot(uint32_t wheel_slot, uint32_t plus)
618{
619	/*
620	 * Given a slot on the wheel, what slot
621	 * is that plus ticks out?
622	 */
623	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
624	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
625}
626
627static inline int
628tick_to_wheel(uint32_t cts_in_wticks)
629{
630	/*
631	 * Given a timestamp in ticks (so by
632	 * default to get it to a real time one
633	 * would multiply by 10.. i.e the number
634	 * of ticks in a slot) map it to our limited
635	 * space wheel.
636	 */
637	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
638}
639
640static inline int
641hpts_slots_diff(int prev_slot, int slot_now)
642{
643	/*
644	 * Given two slots that are someplace
645	 * on our wheel. How far are they apart?
646	 */
647	if (slot_now > prev_slot)
648		return (slot_now - prev_slot);
649	else if (slot_now == prev_slot)
650		/*
651		 * Special case, same means we can go all of our
652		 * wheel less one slot.
653		 */
654		return (NUM_OF_HPTSI_SLOTS - 1);
655	else
656		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
657}
658
659/*
660 * Given a slot on the wheel that is the current time
661 * mapped to the wheel (wheel_slot), what is the maximum
662 * distance forward that can be obtained without
663 * wrapping past either prev_slot or running_slot
664 * depending on the htps state? Also if passed
665 * a uint32_t *, fill it with the slot location.
666 *
667 * Note if you do not give this function the current
668 * time (that you think it is) mapped to the wheel slot
669 * then the results will not be what you expect and
670 * could lead to invalid inserts.
671 */
672static inline int32_t
673max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
674{
675	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
676
677	if ((hpts->p_hpts_active == 1) &&
678	    (hpts->p_wheel_complete == 0)) {
679		end_slot = hpts->p_runningslot;
680		/* Back up one tick */
681		if (end_slot == 0)
682			end_slot = NUM_OF_HPTSI_SLOTS - 1;
683		else
684			end_slot--;
685		if (target_slot)
686			*target_slot = end_slot;
687	} else {
688		/*
689		 * For the case where we are
690		 * not active, or we have
691		 * completed the pass over
692		 * the wheel, we can use the
693		 * prev tick and subtract one from it. This puts us
694		 * as far out as possible on the wheel.
695		 */
696		end_slot = hpts->p_prev_slot;
697		if (end_slot == 0)
698			end_slot = NUM_OF_HPTSI_SLOTS - 1;
699		else
700			end_slot--;
701		if (target_slot)
702			*target_slot = end_slot;
703		/*
704		 * Now we have close to the full wheel left minus the
705		 * time it has been since the pacer went to sleep. Note
706		 * that wheel_tick, passed in, should be the current time
707		 * from the perspective of the caller, mapped to the wheel.
708		 */
709		if (hpts->p_prev_slot != wheel_slot)
710			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
711		else
712			dis_to_travel = 1;
713		/*
714		 * dis_to_travel in this case is the space from when the
715		 * pacer stopped (p_prev_slot) and where our wheel_slot
716		 * is now. To know how many slots we can put it in we
717		 * subtract from the wheel size. We would not want
718		 * to place something after p_prev_slot or it will
719		 * get ran too soon.
720		 */
721		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
722	}
723	/*
724	 * So how many slots are open between p_runningslot -> p_cur_slot
725	 * that is what is currently un-available for insertion. Special
726	 * case when we are at the last slot, this gets 1, so that
727	 * the answer to how many slots are available is all but 1.
728	 */
729	if (hpts->p_runningslot == hpts->p_cur_slot)
730		dis_to_travel = 1;
731	else
732		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
733	/*
734	 * How long has the pacer been running?
735	 */
736	if (hpts->p_cur_slot != wheel_slot) {
737		/* The pacer is a bit late */
738		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
739	} else {
740		/* The pacer is right on time, now == pacers start time */
741		pacer_to_now = 0;
742	}
743	/*
744	 * To get the number left we can insert into we simply
745	 * subtract the distance the pacer has to run from how
746	 * many slots there are.
747	 */
748	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
749	/*
750	 * Now how many of those we will eat due to the pacer's
751	 * time (p_cur_slot) of start being behind the
752	 * real time (wheel_slot)?
753	 */
754	if (avail_on_wheel <= pacer_to_now) {
755		/*
756		 * Wheel wrap, we can't fit on the wheel, that
757		 * is unusual the system must be way overloaded!
758		 * Insert into the assured slot, and return special
759		 * "0".
760		 */
761		counter_u64_add(combined_wheel_wrap, 1);
762		if (target_slot)
763			*target_slot = hpts->p_nxt_slot;
764		return (0);
765	} else {
766		/*
767		 * We know how many slots are open
768		 * on the wheel (the reverse of what
769		 * is left to run. Take away the time
770		 * the pacer started to now (wheel_slot)
771		 * and that tells you how many slots are
772		 * open that can be inserted into that won't
773		 * be touched by the pacer until later.
774		 */
775		return (avail_on_wheel - pacer_to_now);
776	}
777}
778
779
780#ifdef INVARIANTS
781static void
782check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp,
783    uint32_t hptsslot, int line)
784{
785	/*
786	 * Sanity checks for the pacer with invariants
787	 * on insert.
788	 */
789	KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS,
790		("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot));
791	if ((hpts->p_hpts_active) &&
792	    (hpts->p_wheel_complete == 0)) {
793		/*
794		 * If the pacer is processing a arc
795		 * of the wheel, we need to make
796		 * sure we are not inserting within
797		 * that arc.
798		 */
799		int distance, yet_to_run;
800
801		distance = hpts_slots_diff(hpts->p_runningslot, hptsslot);
802		if (hpts->p_runningslot != hpts->p_cur_slot)
803			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
804		else
805			yet_to_run = 0;	/* processing last slot */
806		KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d "
807		    "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp,
808		    hptsslot, distance, yet_to_run, hpts->p_runningslot,
809		    hpts->p_cur_slot));
810	}
811}
812#endif
813
814uint32_t
815tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag)
816{
817	struct tcp_hpts_entry *hpts;
818	struct timeval tv;
819	uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
820	int32_t wheel_slot, maxslots;
821	bool need_wakeup = false;
822
823	INP_WLOCK_ASSERT(tptoinpcb(tp));
824	MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED));
825	MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE));
826
827	/*
828	 * We now return the next-slot the hpts will be on, beyond its
829	 * current run (if up) or where it was when it stopped if it is
830	 * sleeping.
831	 */
832	hpts = tcp_hpts_lock(tp);
833	microuptime(&tv);
834	if (diag) {
835		memset(diag, 0, sizeof(struct hpts_diag));
836		diag->p_hpts_active = hpts->p_hpts_active;
837		diag->p_prev_slot = hpts->p_prev_slot;
838		diag->p_runningslot = hpts->p_runningslot;
839		diag->p_nxt_slot = hpts->p_nxt_slot;
840		diag->p_cur_slot = hpts->p_cur_slot;
841		diag->p_curtick = hpts->p_curtick;
842		diag->p_lasttick = hpts->p_lasttick;
843		diag->slot_req = slot;
844		diag->p_on_min_sleep = hpts->p_on_min_sleep;
845		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
846	}
847	if (slot == 0) {
848		/* Ok we need to set it on the hpts in the current slot */
849		tp->t_hpts_request = 0;
850		if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
851			/*
852			 * A sleeping hpts we want in next slot to run
853			 * note that in this state p_prev_slot == p_cur_slot
854			 */
855			tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1);
856			if ((hpts->p_on_min_sleep == 0) &&
857			    (hpts->p_hpts_active == 0))
858				need_wakeup = true;
859		} else
860			tp->t_hpts_slot = hpts->p_runningslot;
861		if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
862			tcp_hpts_insert_internal(tp, hpts);
863		if (need_wakeup) {
864			/*
865			 * Activate the hpts if it is sleeping and its
866			 * timeout is not 1.
867			 */
868			hpts->p_direct_wake = 1;
869			tcp_wakehpts(hpts);
870		}
871		slot_on = hpts->p_nxt_slot;
872		HPTS_UNLOCK(hpts);
873
874		return (slot_on);
875	}
876	/* Get the current time relative to the wheel */
877	wheel_cts = tcp_tv_to_hptstick(&tv);
878	/* Map it onto the wheel */
879	wheel_slot = tick_to_wheel(wheel_cts);
880	/* Now what's the max we can place it at? */
881	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
882	if (diag) {
883		diag->wheel_slot = wheel_slot;
884		diag->maxslots = maxslots;
885		diag->wheel_cts = wheel_cts;
886	}
887	if (maxslots == 0) {
888		/* The pacer is in a wheel wrap behind, yikes! */
889		if (slot > 1) {
890			/*
891			 * Reduce by 1 to prevent a forever loop in
892			 * case something else is wrong. Note this
893			 * probably does not hurt because the pacer
894			 * if its true is so far behind we will be
895			 * > 1second late calling anyway.
896			 */
897			slot--;
898		}
899		tp->t_hpts_slot = last_slot;
900		tp->t_hpts_request = slot;
901	} else 	if (maxslots >= slot) {
902		/* It all fits on the wheel */
903		tp->t_hpts_request = 0;
904		tp->t_hpts_slot = hpts_slot(wheel_slot, slot);
905	} else {
906		/* It does not fit */
907		tp->t_hpts_request = slot - maxslots;
908		tp->t_hpts_slot = last_slot;
909	}
910	if (diag) {
911		diag->slot_remaining = tp->t_hpts_request;
912		diag->inp_hptsslot = tp->t_hpts_slot;
913	}
914#ifdef INVARIANTS
915	check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line);
916#endif
917	if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
918		tcp_hpts_insert_internal(tp, hpts);
919	if ((hpts->p_hpts_active == 0) &&
920	    (tp->t_hpts_request == 0) &&
921	    (hpts->p_on_min_sleep == 0)) {
922		/*
923		 * The hpts is sleeping and NOT on a minimum
924		 * sleep time, we need to figure out where
925		 * it will wake up at and if we need to reschedule
926		 * its time-out.
927		 */
928		uint32_t have_slept, yet_to_sleep;
929
930		/* Now do we need to restart the hpts's timer? */
931		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
932		if (have_slept < hpts->p_hpts_sleep_time)
933			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
934		else {
935			/* We are over-due */
936			yet_to_sleep = 0;
937			need_wakeup = 1;
938		}
939		if (diag) {
940			diag->have_slept = have_slept;
941			diag->yet_to_sleep = yet_to_sleep;
942		}
943		if (yet_to_sleep &&
944		    (yet_to_sleep > slot)) {
945			/*
946			 * We need to reschedule the hpts's time-out.
947			 */
948			hpts->p_hpts_sleep_time = slot;
949			need_new_to = slot * HPTS_TICKS_PER_SLOT;
950		}
951	}
952	/*
953	 * Now how far is the hpts sleeping to? if active is 1, its
954	 * up and ticking we do nothing, otherwise we may need to
955	 * reschedule its callout if need_new_to is set from above.
956	 */
957	if (need_wakeup) {
958		hpts->p_direct_wake = 1;
959		tcp_wakehpts(hpts);
960		if (diag) {
961			diag->need_new_to = 0;
962			diag->co_ret = 0xffff0000;
963		}
964	} else if (need_new_to) {
965		int32_t co_ret;
966		struct timeval tv;
967		sbintime_t sb;
968
969		tv.tv_sec = 0;
970		tv.tv_usec = 0;
971		while (need_new_to > HPTS_USEC_IN_SEC) {
972			tv.tv_sec++;
973			need_new_to -= HPTS_USEC_IN_SEC;
974		}
975		tv.tv_usec = need_new_to;
976		sb = tvtosbt(tv);
977		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
978					      hpts_timeout_swi, hpts, hpts->p_cpu,
979					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
980		if (diag) {
981			diag->need_new_to = need_new_to;
982			diag->co_ret = co_ret;
983		}
984	}
985	slot_on = hpts->p_nxt_slot;
986	HPTS_UNLOCK(hpts);
987
988	return (slot_on);
989}
990
991static uint16_t
992hpts_cpuid(struct tcpcb *tp, int *failed)
993{
994	struct inpcb *inp = tptoinpcb(tp);
995	u_int cpuid;
996#ifdef NUMA
997	struct hpts_domain_info *di;
998#endif
999
1000	*failed = 0;
1001	if (tp->t_flags2 & TF2_HPTS_CPU_SET) {
1002		return (tp->t_hpts_cpu);
1003	}
1004	/*
1005	 * If we are using the irq cpu set by LRO or
1006	 * the driver then it overrides all other domains.
1007	 */
1008	if (tcp_use_irq_cpu) {
1009		if (tp->t_lro_cpu == HPTS_CPU_NONE) {
1010			*failed = 1;
1011			return (0);
1012		}
1013		return (tp->t_lro_cpu);
1014	}
1015	/* If one is set the other must be the same */
1016#ifdef RSS
1017	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1018	if (cpuid == NETISR_CPUID_NONE)
1019		return (hpts_random_cpu());
1020	else
1021		return (cpuid);
1022#endif
1023	/*
1024	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1025	 * unknown cpuids to curcpu.  Not the best, but apparently better
1026	 * than defaulting to swi 0.
1027	 */
1028	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1029		counter_u64_add(cpu_uses_random, 1);
1030		return (hpts_random_cpu());
1031	}
1032	/*
1033	 * Hash to a thread based on the flowid.  If we are using numa,
1034	 * then restrict the hash to the numa domain where the inp lives.
1035	 */
1036
1037#ifdef NUMA
1038	if ((vm_ndomains == 1) ||
1039	    (inp->inp_numa_domain == M_NODOM)) {
1040#endif
1041		cpuid = inp->inp_flowid % mp_ncpus;
1042#ifdef NUMA
1043	} else {
1044		/* Hash into the cpu's that use that domain */
1045		di = &hpts_domains[inp->inp_numa_domain];
1046		cpuid = di->cpu[inp->inp_flowid % di->count];
1047	}
1048#endif
1049	counter_u64_add(cpu_uses_flowid, 1);
1050	return (cpuid);
1051}
1052
1053static void
1054tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1055{
1056	uint32_t t = 0, i;
1057
1058	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1059		/*
1060		 * Find next slot that is occupied and use that to
1061		 * be the sleep time.
1062		 */
1063		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1064			if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1065				break;
1066			}
1067			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1068		}
1069		KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1070		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1071	} else {
1072		/* No one on the wheel sleep for all but 400 slots or sleep max  */
1073		hpts->p_hpts_sleep_time = hpts_sleep_max;
1074	}
1075}
1076
1077static int32_t
1078tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1079{
1080	struct tcpcb *tp;
1081	struct timeval tv;
1082	int32_t slots_to_run, i, error;
1083	int32_t loop_cnt = 0;
1084	int32_t did_prefetch = 0;
1085	int32_t prefetch_tp = 0;
1086	int32_t wrap_loop_cnt = 0;
1087	int32_t slot_pos_of_endpoint = 0;
1088	int32_t orig_exit_slot;
1089	int8_t completed_measure = 0, seen_endpoint = 0;
1090
1091	HPTS_MTX_ASSERT(hpts);
1092	NET_EPOCH_ASSERT();
1093	/* record previous info for any logging */
1094	hpts->saved_lasttick = hpts->p_lasttick;
1095	hpts->saved_curtick = hpts->p_curtick;
1096	hpts->saved_curslot = hpts->p_cur_slot;
1097	hpts->saved_prev_slot = hpts->p_prev_slot;
1098
1099	hpts->p_lasttick = hpts->p_curtick;
1100	hpts->p_curtick = tcp_gethptstick(&tv);
1101	tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1102	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1103	if ((hpts->p_on_queue_cnt == 0) ||
1104	    (hpts->p_lasttick == hpts->p_curtick)) {
1105		/*
1106		 * No time has yet passed,
1107		 * or nothing to do.
1108		 */
1109		hpts->p_prev_slot = hpts->p_cur_slot;
1110		hpts->p_lasttick = hpts->p_curtick;
1111		goto no_run;
1112	}
1113again:
1114	hpts->p_wheel_complete = 0;
1115	HPTS_MTX_ASSERT(hpts);
1116	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1117	if (((hpts->p_curtick - hpts->p_lasttick) >
1118	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1119	    (hpts->p_on_queue_cnt != 0)) {
1120		/*
1121		 * Wheel wrap is occuring, basically we
1122		 * are behind and the distance between
1123		 * run's has spread so much it has exceeded
1124		 * the time on the wheel (1.024 seconds). This
1125		 * is ugly and should NOT be happening. We
1126		 * need to run the entire wheel. We last processed
1127		 * p_prev_slot, so that needs to be the last slot
1128		 * we run. The next slot after that should be our
1129		 * reserved first slot for new, and then starts
1130		 * the running position. Now the problem is the
1131		 * reserved "not to yet" place does not exist
1132		 * and there may be inp's in there that need
1133		 * running. We can merge those into the
1134		 * first slot at the head.
1135		 */
1136		wrap_loop_cnt++;
1137		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1138		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1139		/*
1140		 * Adjust p_cur_slot to be where we are starting from
1141		 * hopefully we will catch up (fat chance if something
1142		 * is broken this bad :( )
1143		 */
1144		hpts->p_cur_slot = hpts->p_prev_slot;
1145		/*
1146		 * The next slot has guys to run too, and that would
1147		 * be where we would normally start, lets move them into
1148		 * the next slot (p_prev_slot + 2) so that we will
1149		 * run them, the extra 10usecs of late (by being
1150		 * put behind) does not really matter in this situation.
1151		 */
1152		TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1153		    t_hpts) {
1154			MPASS(tp->t_hpts_slot == hpts->p_nxt_slot);
1155			MPASS(tp->t_hpts_gencnt ==
1156			    hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1157			MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1158
1159			/*
1160			 * Update gencnt and nextslot accordingly to match
1161			 * the new location. This is safe since it takes both
1162			 * the INP lock and the pacer mutex to change the
1163			 * t_hptsslot and t_hpts_gencnt.
1164			 */
1165			tp->t_hpts_gencnt =
1166			    hpts->p_hptss[hpts->p_runningslot].gencnt;
1167			tp->t_hpts_slot = hpts->p_runningslot;
1168		}
1169		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1170		    &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts);
1171		hpts->p_hptss[hpts->p_runningslot].count +=
1172		    hpts->p_hptss[hpts->p_nxt_slot].count;
1173		hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1174		hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1175		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1176		counter_u64_add(wheel_wrap, 1);
1177	} else {
1178		/*
1179		 * Nxt slot is always one after p_runningslot though
1180		 * its not used usually unless we are doing wheel wrap.
1181		 */
1182		hpts->p_nxt_slot = hpts->p_prev_slot;
1183		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1184	}
1185	if (hpts->p_on_queue_cnt == 0) {
1186		goto no_one;
1187	}
1188	for (i = 0; i < slots_to_run; i++) {
1189		struct tcpcb *tp, *ntp;
1190		TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head);
1191		struct hptsh *hptsh;
1192		uint32_t runningslot;
1193
1194		/*
1195		 * Calculate our delay, if there are no extra ticks there
1196		 * was not any (i.e. if slots_to_run == 1, no delay).
1197		 */
1198		hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1199		    HPTS_TICKS_PER_SLOT;
1200
1201		runningslot = hpts->p_runningslot;
1202		hptsh = &hpts->p_hptss[runningslot];
1203		TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts);
1204		hpts->p_on_queue_cnt -= hptsh->count;
1205		hptsh->count = 0;
1206		hptsh->gencnt++;
1207
1208		HPTS_UNLOCK(hpts);
1209
1210		TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) {
1211			struct inpcb *inp = tptoinpcb(tp);
1212			bool set_cpu;
1213
1214			if (ntp != NULL) {
1215				/*
1216				 * If we have a next tcpcb, see if we can
1217				 * prefetch it. Note this may seem
1218				 * "risky" since we have no locks (other
1219				 * than the previous inp) and there no
1220				 * assurance that ntp was not pulled while
1221				 * we were processing tp and freed. If this
1222				 * occurred it could mean that either:
1223				 *
1224				 * a) Its NULL (which is fine we won't go
1225				 * here) <or> b) Its valid (which is cool we
1226				 * will prefetch it) <or> c) The inp got
1227				 * freed back to the slab which was
1228				 * reallocated. Then the piece of memory was
1229				 * re-used and something else (not an
1230				 * address) is in inp_ppcb. If that occurs
1231				 * we don't crash, but take a TLB shootdown
1232				 * performance hit (same as if it was NULL
1233				 * and we tried to pre-fetch it).
1234				 *
1235				 * Considering that the likelyhood of <c> is
1236				 * quite rare we will take a risk on doing
1237				 * this. If performance drops after testing
1238				 * we can always take this out. NB: the
1239				 * kern_prefetch on amd64 actually has
1240				 * protection against a bad address now via
1241				 * the DMAP_() tests. This will prevent the
1242				 * TLB hit, and instead if <c> occurs just
1243				 * cause us to load cache with a useless
1244				 * address (to us).
1245				 *
1246				 * XXXGL: this comment and the prefetch action
1247				 * could be outdated after tp == inp change.
1248				 */
1249				kern_prefetch(ntp, &prefetch_tp);
1250				prefetch_tp = 1;
1251			}
1252
1253			/* For debugging */
1254			if (seen_endpoint == 0) {
1255				seen_endpoint = 1;
1256				orig_exit_slot = slot_pos_of_endpoint =
1257				    runningslot;
1258			} else if (completed_measure == 0) {
1259				/* Record the new position */
1260				orig_exit_slot = runningslot;
1261			}
1262
1263			INP_WLOCK(inp);
1264			if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) {
1265				set_cpu = true;
1266			} else {
1267				set_cpu = false;
1268			}
1269
1270			if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) {
1271				if (tp->t_hpts_slot == -1) {
1272					tp->t_in_hpts = IHPTS_NONE;
1273					if (in_pcbrele_wlocked(inp) == false)
1274						INP_WUNLOCK(inp);
1275				} else {
1276					HPTS_LOCK(hpts);
1277					tcp_hpts_insert_internal(tp, hpts);
1278					HPTS_UNLOCK(hpts);
1279					INP_WUNLOCK(inp);
1280				}
1281				continue;
1282			}
1283
1284			MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1285			MPASS(!(inp->inp_flags & INP_DROPPED));
1286			KASSERT(runningslot == tp->t_hpts_slot,
1287				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1288				 hpts, inp, runningslot, tp->t_hpts_slot));
1289
1290			if (tp->t_hpts_request) {
1291				/*
1292				 * This guy is deferred out further in time
1293				 * then our wheel had available on it.
1294				 * Push him back on the wheel or run it
1295				 * depending.
1296				 */
1297				uint32_t maxslots, last_slot, remaining_slots;
1298
1299				remaining_slots = slots_to_run - (i + 1);
1300				if (tp->t_hpts_request > remaining_slots) {
1301					HPTS_LOCK(hpts);
1302					/*
1303					 * How far out can we go?
1304					 */
1305					maxslots = max_slots_available(hpts,
1306					    hpts->p_cur_slot, &last_slot);
1307					if (maxslots >= tp->t_hpts_request) {
1308						/* We can place it finally to
1309						 * be processed.  */
1310						tp->t_hpts_slot = hpts_slot(
1311						    hpts->p_runningslot,
1312						    tp->t_hpts_request);
1313						tp->t_hpts_request = 0;
1314					} else {
1315						/* Work off some more time */
1316						tp->t_hpts_slot = last_slot;
1317						tp->t_hpts_request -=
1318						    maxslots;
1319					}
1320					tcp_hpts_insert_internal(tp, hpts);
1321					HPTS_UNLOCK(hpts);
1322					INP_WUNLOCK(inp);
1323					continue;
1324				}
1325				tp->t_hpts_request = 0;
1326				/* Fall through we will so do it now */
1327			}
1328
1329			tcp_hpts_release(tp);
1330			if (set_cpu) {
1331				/*
1332				 * Setup so the next time we will move to
1333				 * the right CPU. This should be a rare
1334				 * event. It will sometimes happens when we
1335				 * are the client side (usually not the
1336				 * server). Somehow tcp_output() gets called
1337				 * before the tcp_do_segment() sets the
1338				 * intial state. This means the r_cpu and
1339				 * r_hpts_cpu is 0. We get on the hpts, and
1340				 * then tcp_input() gets called setting up
1341				 * the r_cpu to the correct value. The hpts
1342				 * goes off and sees the mis-match. We
1343				 * simply correct it here and the CPU will
1344				 * switch to the new hpts nextime the tcb
1345				 * gets added to the hpts (not this one)
1346				 * :-)
1347				 */
1348				tcp_set_hpts(tp);
1349			}
1350			CURVNET_SET(inp->inp_vnet);
1351			/* Lets do any logging that we might want to */
1352			if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
1353				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1354			}
1355
1356			if (tp->t_fb_ptr != NULL) {
1357				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1358				did_prefetch = 1;
1359			}
1360			/*
1361			 * We set TF2_HPTS_CALLS before any possible output.
1362			 * The contract with the transport is that if it cares
1363			 * about hpts calling it should clear the flag. That
1364			 * way next time it is called it will know it is hpts.
1365			 *
1366			 * We also only call tfb_do_queued_segments() <or>
1367			 * tcp_output().  It is expected that if segments are
1368			 * queued and come in that the final input mbuf will
1369			 * cause a call to output if it is needed so we do
1370			 * not need a second call to tcp_output(). So we do
1371			 * one or the other but not both.
1372			 */
1373			tp->t_flags2 |= TF2_HPTS_CALLS;
1374			if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) &&
1375			    !STAILQ_EMPTY(&tp->t_inqueue)) {
1376				error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0);
1377				/*
1378				 * A non-zero return for input queue processing
1379				 * is the lock is released and most likely the
1380				 * inp is gone.
1381				 */
1382				if (error)
1383					goto skip_pacing;
1384			} else
1385				error = tcp_output(tp);
1386			if (error < 0)
1387				goto skip_pacing;
1388			INP_WUNLOCK(inp);
1389		skip_pacing:
1390			CURVNET_RESTORE();
1391		}
1392		if (seen_endpoint) {
1393			/*
1394			 * We now have a accurate distance between
1395			 * slot_pos_of_endpoint <-> orig_exit_slot
1396			 * to tell us how late we were, orig_exit_slot
1397			 * is where we calculated the end of our cycle to
1398			 * be when we first entered.
1399			 */
1400			completed_measure = 1;
1401		}
1402		HPTS_LOCK(hpts);
1403		hpts->p_runningslot++;
1404		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1405			hpts->p_runningslot = 0;
1406		}
1407	}
1408no_one:
1409	HPTS_MTX_ASSERT(hpts);
1410	hpts->p_delayed_by = 0;
1411	/*
1412	 * Check to see if we took an excess amount of time and need to run
1413	 * more ticks (if we did not hit eno-bufs).
1414	 */
1415	hpts->p_prev_slot = hpts->p_cur_slot;
1416	hpts->p_lasttick = hpts->p_curtick;
1417	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1418		/*
1419		 * Something is serious slow we have
1420		 * looped through processing the wheel
1421		 * and by the time we cleared the
1422		 * needs to run max_pacer_loops time
1423		 * we still needed to run. That means
1424		 * the system is hopelessly behind and
1425		 * can never catch up :(
1426		 *
1427		 * We will just lie to this thread
1428		 * and let it thing p_curtick is
1429		 * correct. When it next awakens
1430		 * it will find itself further behind.
1431		 */
1432		if (from_callout)
1433			counter_u64_add(hpts_hopelessly_behind, 1);
1434		goto no_run;
1435	}
1436	hpts->p_curtick = tcp_gethptstick(&tv);
1437	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1438	if (seen_endpoint == 0) {
1439		/* We saw no endpoint but we may be looping */
1440		orig_exit_slot = hpts->p_cur_slot;
1441	}
1442	if ((wrap_loop_cnt < 2) &&
1443	    (hpts->p_lasttick != hpts->p_curtick)) {
1444		counter_u64_add(hpts_loops, 1);
1445		loop_cnt++;
1446		goto again;
1447	}
1448no_run:
1449	tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1450	/*
1451	 * Set flag to tell that we are done for
1452	 * any slot input that happens during
1453	 * input.
1454	 */
1455	hpts->p_wheel_complete = 1;
1456	/*
1457	 * Now did we spend too long running input and need to run more ticks?
1458	 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1459	 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1460	 * is greater than 2, then the condtion most likely are *not* true.
1461	 * Also if we are called not from the callout, we don't run the wheel
1462	 * multiple times so the slots may not align either.
1463	 */
1464	KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1465		 (wrap_loop_cnt >= 2) || (from_callout == 0)),
1466		("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1467		 hpts->p_prev_slot, hpts->p_cur_slot));
1468	KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1469		 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1470		("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1471		 hpts->p_lasttick, hpts->p_curtick));
1472	if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1473		hpts->p_curtick = tcp_gethptstick(&tv);
1474		counter_u64_add(hpts_loops, 1);
1475		hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1476		goto again;
1477	}
1478
1479	if (from_callout){
1480		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1481	}
1482	if (seen_endpoint)
1483		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1484	else
1485		return (0);
1486}
1487
1488void
1489__tcp_set_hpts(struct tcpcb *tp, int32_t line)
1490{
1491	struct tcp_hpts_entry *hpts;
1492	int failed;
1493
1494	INP_WLOCK_ASSERT(tptoinpcb(tp));
1495
1496	hpts = tcp_hpts_lock(tp);
1497	if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) {
1498		tp->t_hpts_cpu = hpts_cpuid(tp, &failed);
1499		if (failed == 0)
1500			tp->t_flags2 |= TF2_HPTS_CPU_SET;
1501	}
1502	mtx_unlock(&hpts->p_mtx);
1503}
1504
1505static struct tcp_hpts_entry *
1506tcp_choose_hpts_to_run(void)
1507{
1508	int i, oldest_idx, start, end;
1509	uint32_t cts, time_since_ran, calc;
1510
1511	cts = tcp_get_usecs(NULL);
1512	time_since_ran = 0;
1513	/* Default is all one group */
1514	start = 0;
1515	end = tcp_pace.rp_num_hptss;
1516	/*
1517	 * If we have more than one L3 group figure out which one
1518	 * this CPU is in.
1519	 */
1520	if (tcp_pace.grp_cnt > 1) {
1521		for (i = 0; i < tcp_pace.grp_cnt; i++) {
1522			if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1523				start = tcp_pace.grps[i]->cg_first;
1524				end = (tcp_pace.grps[i]->cg_last + 1);
1525				break;
1526			}
1527		}
1528	}
1529	oldest_idx = -1;
1530	for (i = start; i < end; i++) {
1531		if (TSTMP_GT(cts, tcp_pace.cts_last_ran[i]))
1532			calc = cts - tcp_pace.cts_last_ran[i];
1533		else
1534			calc = 0;
1535		if (calc > time_since_ran) {
1536			oldest_idx = i;
1537			time_since_ran = calc;
1538		}
1539	}
1540	if (oldest_idx >= 0)
1541		return(tcp_pace.rp_ent[oldest_idx]);
1542	else
1543		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1544}
1545
1546static void
1547__tcp_run_hpts(void)
1548{
1549	struct epoch_tracker et;
1550	struct tcp_hpts_entry *hpts;
1551	int ticks_ran;
1552
1553	hpts = tcp_choose_hpts_to_run();
1554
1555	if (hpts->p_hpts_active) {
1556		/* Already active */
1557		return;
1558	}
1559	if (mtx_trylock(&hpts->p_mtx) == 0) {
1560		/* Someone else got the lock */
1561		return;
1562	}
1563	NET_EPOCH_ENTER(et);
1564	if (hpts->p_hpts_active)
1565		goto out_with_mtx;
1566	hpts->syscall_cnt++;
1567	counter_u64_add(hpts_direct_call, 1);
1568	hpts->p_hpts_active = 1;
1569	ticks_ran = tcp_hptsi(hpts, 0);
1570	/* We may want to adjust the sleep values here */
1571	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1572		if (ticks_ran > ticks_indicate_less_sleep) {
1573			struct timeval tv;
1574			sbintime_t sb;
1575
1576			hpts->p_mysleep.tv_usec /= 2;
1577			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1578				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1579			/* Reschedule with new to value */
1580			tcp_hpts_set_max_sleep(hpts, 0);
1581			tv.tv_sec = 0;
1582			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1583			/* Validate its in the right ranges */
1584			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1585				hpts->overidden_sleep = tv.tv_usec;
1586				tv.tv_usec = hpts->p_mysleep.tv_usec;
1587			} else if (tv.tv_usec > dynamic_max_sleep) {
1588				/* Lets not let sleep get above this value */
1589				hpts->overidden_sleep = tv.tv_usec;
1590				tv.tv_usec = dynamic_max_sleep;
1591			}
1592			/*
1593			 * In this mode the timer is a backstop to
1594			 * all the userret/lro_flushes so we use
1595			 * the dynamic value and set the on_min_sleep
1596			 * flag so we will not be awoken.
1597			 */
1598			sb = tvtosbt(tv);
1599			/* Store off to make visible the actual sleep time */
1600			hpts->sleeping = tv.tv_usec;
1601			callout_reset_sbt_on(&hpts->co, sb, 0,
1602					     hpts_timeout_swi, hpts, hpts->p_cpu,
1603					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1604		} else if (ticks_ran < ticks_indicate_more_sleep) {
1605			/* For the further sleep, don't reschedule  hpts */
1606			hpts->p_mysleep.tv_usec *= 2;
1607			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1608				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1609		}
1610		hpts->p_on_min_sleep = 1;
1611	}
1612	hpts->p_hpts_active = 0;
1613out_with_mtx:
1614	HPTS_MTX_ASSERT(hpts);
1615	mtx_unlock(&hpts->p_mtx);
1616	NET_EPOCH_EXIT(et);
1617}
1618
1619static void
1620tcp_hpts_thread(void *ctx)
1621{
1622	struct tcp_hpts_entry *hpts;
1623	struct epoch_tracker et;
1624	struct timeval tv;
1625	sbintime_t sb;
1626	int ticks_ran;
1627
1628	hpts = (struct tcp_hpts_entry *)ctx;
1629	mtx_lock(&hpts->p_mtx);
1630	if (hpts->p_direct_wake) {
1631		/* Signaled by input or output with low occupancy count. */
1632		callout_stop(&hpts->co);
1633		counter_u64_add(hpts_direct_awakening, 1);
1634	} else {
1635		/* Timed out, the normal case. */
1636		counter_u64_add(hpts_wake_timeout, 1);
1637		if (callout_pending(&hpts->co) ||
1638		    !callout_active(&hpts->co)) {
1639			mtx_unlock(&hpts->p_mtx);
1640			return;
1641		}
1642	}
1643	callout_deactivate(&hpts->co);
1644	hpts->p_hpts_wake_scheduled = 0;
1645	NET_EPOCH_ENTER(et);
1646	if (hpts->p_hpts_active) {
1647		/*
1648		 * We are active already. This means that a syscall
1649		 * trap or LRO is running in behalf of hpts. In that case
1650		 * we need to double our timeout since there seems to be
1651		 * enough activity in the system that we don't need to
1652		 * run as often (if we were not directly woken).
1653		 */
1654		tv.tv_sec = 0;
1655		if (hpts->p_direct_wake == 0) {
1656			counter_u64_add(hpts_back_tosleep, 1);
1657			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1658				hpts->p_mysleep.tv_usec *= 2;
1659				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1660					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1661				tv.tv_usec = hpts->p_mysleep.tv_usec;
1662				hpts->p_on_min_sleep = 1;
1663			} else {
1664				/*
1665				 * Here we have low count on the wheel, but
1666				 * somehow we still collided with one of the
1667				 * connections. Lets go back to sleep for a
1668				 * min sleep time, but clear the flag so we
1669				 * can be awoken by insert.
1670				 */
1671				hpts->p_on_min_sleep = 0;
1672				tv.tv_usec = tcp_min_hptsi_time;
1673			}
1674		} else {
1675			/*
1676			 * Directly woken most likely to reset the
1677			 * callout time.
1678			 */
1679			tv.tv_usec = hpts->p_mysleep.tv_usec;
1680		}
1681		goto back_to_sleep;
1682	}
1683	hpts->sleeping = 0;
1684	hpts->p_hpts_active = 1;
1685	ticks_ran = tcp_hptsi(hpts, 1);
1686	tv.tv_sec = 0;
1687	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1688	if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) {
1689		hpts->hit_callout_thresh = 1;
1690		atomic_add_int(&hpts_that_need_softclock, 1);
1691	} else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) {
1692		hpts->hit_callout_thresh = 0;
1693		atomic_subtract_int(&hpts_that_need_softclock, 1);
1694	}
1695	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1696		if(hpts->p_direct_wake == 0) {
1697			/*
1698			 * Only adjust sleep time if we were
1699			 * called from the callout i.e. direct_wake == 0.
1700			 */
1701			if (ticks_ran < ticks_indicate_more_sleep) {
1702				hpts->p_mysleep.tv_usec *= 2;
1703				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1704					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1705			} else if (ticks_ran > ticks_indicate_less_sleep) {
1706				hpts->p_mysleep.tv_usec /= 2;
1707				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1708					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1709			}
1710		}
1711		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1712			hpts->overidden_sleep = tv.tv_usec;
1713			tv.tv_usec = hpts->p_mysleep.tv_usec;
1714		} else if (tv.tv_usec > dynamic_max_sleep) {
1715			/* Lets not let sleep get above this value */
1716			hpts->overidden_sleep = tv.tv_usec;
1717			tv.tv_usec = dynamic_max_sleep;
1718		}
1719		/*
1720		 * In this mode the timer is a backstop to
1721		 * all the userret/lro_flushes so we use
1722		 * the dynamic value and set the on_min_sleep
1723		 * flag so we will not be awoken.
1724		 */
1725		hpts->p_on_min_sleep = 1;
1726	} else if (hpts->p_on_queue_cnt == 0)  {
1727		/*
1728		 * No one on the wheel, please wake us up
1729		 * if you insert on the wheel.
1730		 */
1731		hpts->p_on_min_sleep = 0;
1732		hpts->overidden_sleep = 0;
1733	} else {
1734		/*
1735		 * We hit here when we have a low number of
1736		 * clients on the wheel (our else clause).
1737		 * We may need to go on min sleep, if we set
1738		 * the flag we will not be awoken if someone
1739		 * is inserted ahead of us. Clearing the flag
1740		 * means we can be awoken. This is "old mode"
1741		 * where the timer is what runs hpts mainly.
1742		 */
1743		if (tv.tv_usec < tcp_min_hptsi_time) {
1744			/*
1745			 * Yes on min sleep, which means
1746			 * we cannot be awoken.
1747			 */
1748			hpts->overidden_sleep = tv.tv_usec;
1749			tv.tv_usec = tcp_min_hptsi_time;
1750			hpts->p_on_min_sleep = 1;
1751		} else {
1752			/* Clear the min sleep flag */
1753			hpts->overidden_sleep = 0;
1754			hpts->p_on_min_sleep = 0;
1755		}
1756	}
1757	HPTS_MTX_ASSERT(hpts);
1758	hpts->p_hpts_active = 0;
1759back_to_sleep:
1760	hpts->p_direct_wake = 0;
1761	sb = tvtosbt(tv);
1762	/* Store off to make visible the actual sleep time */
1763	hpts->sleeping = tv.tv_usec;
1764	callout_reset_sbt_on(&hpts->co, sb, 0,
1765			     hpts_timeout_swi, hpts, hpts->p_cpu,
1766			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1767	NET_EPOCH_EXIT(et);
1768	mtx_unlock(&hpts->p_mtx);
1769}
1770
1771#undef	timersub
1772
1773static int32_t
1774hpts_count_level(struct cpu_group *cg)
1775{
1776	int32_t count_l3, i;
1777
1778	count_l3 = 0;
1779	if (cg->cg_level == CG_SHARE_L3)
1780		count_l3++;
1781	/* Walk all the children looking for L3 */
1782	for (i = 0; i < cg->cg_children; i++) {
1783		count_l3 += hpts_count_level(&cg->cg_child[i]);
1784	}
1785	return (count_l3);
1786}
1787
1788static void
1789hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1790{
1791	int32_t idx, i;
1792
1793	idx = *at;
1794	if (cg->cg_level == CG_SHARE_L3) {
1795		grps[idx] = cg;
1796		idx++;
1797		if (idx == max) {
1798			*at = idx;
1799			return;
1800		}
1801	}
1802	*at = idx;
1803	/* Walk all the children looking for L3 */
1804	for (i = 0; i < cg->cg_children; i++) {
1805		hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1806	}
1807}
1808
1809static void
1810tcp_hpts_mod_load(void)
1811{
1812	struct cpu_group *cpu_top;
1813	int32_t error __diagused;
1814	int32_t i, j, bound = 0, created = 0;
1815	size_t sz, asz;
1816	struct timeval tv;
1817	sbintime_t sb;
1818	struct tcp_hpts_entry *hpts;
1819	struct pcpu *pc;
1820	char unit[16];
1821	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1822	int count, domain;
1823
1824#ifdef SMP
1825	cpu_top = smp_topo();
1826#else
1827	cpu_top = NULL;
1828#endif
1829	tcp_pace.rp_num_hptss = ncpus;
1830	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1831	hpts_loops = counter_u64_alloc(M_WAITOK);
1832	back_tosleep = counter_u64_alloc(M_WAITOK);
1833	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1834	wheel_wrap = counter_u64_alloc(M_WAITOK);
1835	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1836	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1837	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1838	hpts_direct_call = counter_u64_alloc(M_WAITOK);
1839	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1840	cpu_uses_random = counter_u64_alloc(M_WAITOK);
1841
1842	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1843	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1844	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1845	tcp_pace.cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1846	tcp_pace.grp_cnt = 0;
1847	if (cpu_top == NULL) {
1848		tcp_pace.grp_cnt = 1;
1849	} else {
1850		/* Find out how many cache level 3 domains we have */
1851		count = 0;
1852		tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1853		if (tcp_pace.grp_cnt == 0) {
1854			tcp_pace.grp_cnt = 1;
1855		}
1856		sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1857		tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1858		/* Now populate the groups */
1859		if (tcp_pace.grp_cnt == 1) {
1860			/*
1861			 * All we need is the top level all cpu's are in
1862			 * the same cache so when we use grp[0]->cg_mask
1863			 * with the cg_first <-> cg_last it will include
1864			 * all cpu's in it. The level here is probably
1865			 * zero which is ok.
1866			 */
1867			tcp_pace.grps[0] = cpu_top;
1868		} else {
1869			/*
1870			 * Here we must find all the level three cache domains
1871			 * and setup our pointers to them.
1872			 */
1873			count = 0;
1874			hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1875		}
1876	}
1877	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1878	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1879		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1880		    M_TCPHPTS, M_WAITOK | M_ZERO);
1881		tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1882		hpts = tcp_pace.rp_ent[i];
1883		/*
1884		 * Init all the hpts structures that are not specifically
1885		 * zero'd by the allocations. Also lets attach them to the
1886		 * appropriate sysctl block as well.
1887		 */
1888		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1889		    "hpts", MTX_DEF | MTX_DUPOK);
1890		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1891			TAILQ_INIT(&hpts->p_hptss[j].head);
1892			hpts->p_hptss[j].count = 0;
1893			hpts->p_hptss[j].gencnt = 0;
1894		}
1895		sysctl_ctx_init(&hpts->hpts_ctx);
1896		sprintf(unit, "%d", i);
1897		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1898		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1899		    OID_AUTO,
1900		    unit,
1901		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1902		    "");
1903		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1904		    SYSCTL_CHILDREN(hpts->hpts_root),
1905		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1906		    &hpts->p_on_queue_cnt, 0,
1907		    "Count TCB's awaiting output processing");
1908		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1909		    SYSCTL_CHILDREN(hpts->hpts_root),
1910		    OID_AUTO, "active", CTLFLAG_RD,
1911		    &hpts->p_hpts_active, 0,
1912		    "Is the hpts active");
1913		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1914		    SYSCTL_CHILDREN(hpts->hpts_root),
1915		    OID_AUTO, "curslot", CTLFLAG_RD,
1916		    &hpts->p_cur_slot, 0,
1917		    "What the current running pacers goal");
1918		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1919		    SYSCTL_CHILDREN(hpts->hpts_root),
1920		    OID_AUTO, "runtick", CTLFLAG_RD,
1921		    &hpts->p_runningslot, 0,
1922		    "What the running pacers current slot is");
1923		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1924		    SYSCTL_CHILDREN(hpts->hpts_root),
1925		    OID_AUTO, "curtick", CTLFLAG_RD,
1926		    &hpts->p_curtick, 0,
1927		    "What the running pacers last tick mapped to the wheel was");
1928		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1929		    SYSCTL_CHILDREN(hpts->hpts_root),
1930		    OID_AUTO, "lastran", CTLFLAG_RD,
1931		    &tcp_pace.cts_last_ran[i], 0,
1932		    "The last usec tick that this hpts ran");
1933		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1934		    SYSCTL_CHILDREN(hpts->hpts_root),
1935		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1936		    &hpts->p_mysleep.tv_usec,
1937		    "What the running pacers is using for p_mysleep.tv_usec");
1938		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1939		    SYSCTL_CHILDREN(hpts->hpts_root),
1940		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
1941		    &hpts->sleeping, 0,
1942		    "What the running pacers is actually sleeping for");
1943		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1944		    SYSCTL_CHILDREN(hpts->hpts_root),
1945		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1946		    &hpts->syscall_cnt, 0,
1947		    "How many times we had syscalls on this hpts");
1948
1949		hpts->p_hpts_sleep_time = hpts_sleep_max;
1950		hpts->p_num = i;
1951		hpts->p_curtick = tcp_gethptstick(&tv);
1952		tcp_pace.cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1953		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1954		hpts->p_cpu = 0xffff;
1955		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1956		callout_init(&hpts->co, 1);
1957	}
1958	/* Don't try to bind to NUMA domains if we don't have any */
1959	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1960		tcp_bind_threads = 0;
1961
1962	/*
1963	 * Now lets start ithreads to handle the hptss.
1964	 */
1965	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1966		hpts = tcp_pace.rp_ent[i];
1967		hpts->p_cpu = i;
1968
1969		error = swi_add(&hpts->ie, "hpts",
1970		    tcp_hpts_thread, (void *)hpts,
1971		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1972		KASSERT(error == 0,
1973			("Can't add hpts:%p i:%d err:%d",
1974			 hpts, i, error));
1975		created++;
1976		hpts->p_mysleep.tv_sec = 0;
1977		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1978		if (tcp_bind_threads == 1) {
1979			if (intr_event_bind(hpts->ie, i) == 0)
1980				bound++;
1981		} else if (tcp_bind_threads == 2) {
1982			/* Find the group for this CPU (i) and bind into it */
1983			for (j = 0; j < tcp_pace.grp_cnt; j++) {
1984				if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
1985					if (intr_event_bind_ithread_cpuset(hpts->ie,
1986						&tcp_pace.grps[j]->cg_mask) == 0) {
1987						bound++;
1988						pc = pcpu_find(i);
1989						domain = pc->pc_domain;
1990						count = hpts_domains[domain].count;
1991						hpts_domains[domain].cpu[count] = i;
1992						hpts_domains[domain].count++;
1993						break;
1994					}
1995				}
1996			}
1997		}
1998		tv.tv_sec = 0;
1999		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
2000		hpts->sleeping = tv.tv_usec;
2001		sb = tvtosbt(tv);
2002		callout_reset_sbt_on(&hpts->co, sb, 0,
2003				     hpts_timeout_swi, hpts, hpts->p_cpu,
2004				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2005	}
2006	/*
2007	 * If we somehow have an empty domain, fall back to choosing
2008	 * among all htps threads.
2009	 */
2010	for (i = 0; i < vm_ndomains; i++) {
2011		if (hpts_domains[i].count == 0) {
2012			tcp_bind_threads = 0;
2013			break;
2014		}
2015	}
2016	tcp_hpts_softclock = __tcp_run_hpts;
2017	tcp_lro_hpts_init();
2018	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2019	    created, bound,
2020	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2021}
2022
2023static void
2024tcp_hpts_mod_unload(void)
2025{
2026	int rv __diagused;
2027
2028	tcp_lro_hpts_uninit();
2029	atomic_store_ptr(&tcp_hpts_softclock, NULL);
2030
2031	for (int i = 0; i < tcp_pace.rp_num_hptss; i++) {
2032		struct tcp_hpts_entry *hpts = tcp_pace.rp_ent[i];
2033
2034		rv = callout_drain(&hpts->co);
2035		MPASS(rv != 0);
2036
2037		rv = swi_remove(hpts->ie_cookie);
2038		MPASS(rv == 0);
2039
2040		rv = sysctl_ctx_free(&hpts->hpts_ctx);
2041		MPASS(rv == 0);
2042
2043		mtx_destroy(&hpts->p_mtx);
2044		free(hpts->p_hptss, M_TCPHPTS);
2045		free(hpts, M_TCPHPTS);
2046	}
2047
2048	free(tcp_pace.rp_ent, M_TCPHPTS);
2049	free(tcp_pace.cts_last_ran, M_TCPHPTS);
2050#ifdef SMP
2051	free(tcp_pace.grps, M_TCPHPTS);
2052#endif
2053
2054	counter_u64_free(hpts_hopelessly_behind);
2055	counter_u64_free(hpts_loops);
2056	counter_u64_free(back_tosleep);
2057	counter_u64_free(combined_wheel_wrap);
2058	counter_u64_free(wheel_wrap);
2059	counter_u64_free(hpts_wake_timeout);
2060	counter_u64_free(hpts_direct_awakening);
2061	counter_u64_free(hpts_back_tosleep);
2062	counter_u64_free(hpts_direct_call);
2063	counter_u64_free(cpu_uses_flowid);
2064	counter_u64_free(cpu_uses_random);
2065}
2066
2067static int
2068tcp_hpts_modevent(module_t mod, int what, void *arg)
2069{
2070
2071	switch (what) {
2072	case MOD_LOAD:
2073		tcp_hpts_mod_load();
2074		return (0);
2075	case MOD_QUIESCE:
2076		/*
2077		 * Since we are a dependency of TCP stack modules, they should
2078		 * already be unloaded, and the HPTS ring is empty.  However,
2079		 * function pointer manipulations aren't 100% safe.  Although,
2080		 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't.
2081		 * Thus, allow only forced unload of HPTS.
2082		 */
2083		return (EBUSY);
2084	case MOD_UNLOAD:
2085		tcp_hpts_mod_unload();
2086		return (0);
2087	default:
2088		return (EINVAL);
2089	};
2090}
2091
2092static moduledata_t tcp_hpts_module = {
2093	.name = "tcphpts",
2094	.evhand = tcp_hpts_modevent,
2095};
2096
2097DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY);
2098MODULE_VERSION(tcphpts, 1);
2099