1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30/*
31 * IEEE 802.11 generic handler
32 */
33#include "opt_wlan.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/socket.h>
40#include <sys/sbuf.h>
41
42#include <machine/stdarg.h>
43
44#include <net/if.h>
45#include <net/if_var.h>
46#include <net/if_dl.h>
47#include <net/if_media.h>
48#include <net/if_private.h>
49#include <net/if_types.h>
50#include <net/ethernet.h>
51
52#include <net80211/ieee80211_var.h>
53#include <net80211/ieee80211_regdomain.h>
54#ifdef IEEE80211_SUPPORT_SUPERG
55#include <net80211/ieee80211_superg.h>
56#endif
57#include <net80211/ieee80211_ratectl.h>
58#include <net80211/ieee80211_vht.h>
59
60#include <net/bpf.h>
61
62const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63	[IEEE80211_MODE_AUTO]	  = "auto",
64	[IEEE80211_MODE_11A]	  = "11a",
65	[IEEE80211_MODE_11B]	  = "11b",
66	[IEEE80211_MODE_11G]	  = "11g",
67	[IEEE80211_MODE_FH]	  = "FH",
68	[IEEE80211_MODE_TURBO_A]  = "turboA",
69	[IEEE80211_MODE_TURBO_G]  = "turboG",
70	[IEEE80211_MODE_STURBO_A] = "sturboA",
71	[IEEE80211_MODE_HALF]	  = "half",
72	[IEEE80211_MODE_QUARTER]  = "quarter",
73	[IEEE80211_MODE_11NA]	  = "11na",
74	[IEEE80211_MODE_11NG]	  = "11ng",
75	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
76	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
77};
78/* map ieee80211_opmode to the corresponding capability bit */
79const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
81	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
82	[IEEE80211_M_STA]	= IEEE80211_C_STA,
83	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
84	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
85	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
86#ifdef IEEE80211_SUPPORT_MESH
87	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
88#endif
89};
90
91const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93
94static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98static	int ieee80211_media_setup(struct ieee80211com *ic,
99		struct ifmedia *media, int caps, int addsta,
100		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101static	int media_status(enum ieee80211_opmode,
102		const struct ieee80211_channel *);
103static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104
105MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106
107/*
108 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109 */
110#define	B(r)	((r) | IEEE80211_RATE_BASIC)
111static const struct ieee80211_rateset ieee80211_rateset_11a =
112	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113static const struct ieee80211_rateset ieee80211_rateset_half =
114	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115static const struct ieee80211_rateset ieee80211_rateset_quarter =
116	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117static const struct ieee80211_rateset ieee80211_rateset_11b =
118	{ 4, { B(2), B(4), B(11), B(22) } };
119/* NB: OFDM rates are handled specially based on mode */
120static const struct ieee80211_rateset ieee80211_rateset_11g =
121	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122#undef B
123
124static int set_vht_extchan(struct ieee80211_channel *c);
125
126/*
127 * Fill in 802.11 available channel set, mark
128 * all available channels as active, and pick
129 * a default channel if not already specified.
130 */
131void
132ieee80211_chan_init(struct ieee80211com *ic)
133{
134#define	DEFAULTRATES(m, def) do { \
135	if (ic->ic_sup_rates[m].rs_nrates == 0) \
136		ic->ic_sup_rates[m] = def; \
137} while (0)
138	struct ieee80211_channel *c;
139	int i;
140
141	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142		("invalid number of channels specified: %u", ic->ic_nchans));
143	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146	for (i = 0; i < ic->ic_nchans; i++) {
147		c = &ic->ic_channels[i];
148		KASSERT(c->ic_flags != 0, ("channel with no flags"));
149		/*
150		 * Help drivers that work only with frequencies by filling
151		 * in IEEE channel #'s if not already calculated.  Note this
152		 * mimics similar work done in ieee80211_setregdomain when
153		 * changing regulatory state.
154		 */
155		if (c->ic_ieee == 0)
156			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157
158		/*
159		 * Setup the HT40/VHT40 upper/lower bits.
160		 * The VHT80/... math is done elsewhere.
161		 */
162		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165			    c->ic_flags);
166
167		/* Update VHT math */
168		/*
169		 * XXX VHT again, note that this assumes VHT80/... channels
170		 * are legit already.
171		 */
172		set_vht_extchan(c);
173
174		/* default max tx power to max regulatory */
175		if (c->ic_maxpower == 0)
176			c->ic_maxpower = 2*c->ic_maxregpower;
177		setbit(ic->ic_chan_avail, c->ic_ieee);
178		/*
179		 * Identify mode capabilities.
180		 */
181		if (IEEE80211_IS_CHAN_A(c))
182			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183		if (IEEE80211_IS_CHAN_B(c))
184			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185		if (IEEE80211_IS_CHAN_ANYG(c))
186			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187		if (IEEE80211_IS_CHAN_FHSS(c))
188			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189		if (IEEE80211_IS_CHAN_108A(c))
190			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191		if (IEEE80211_IS_CHAN_108G(c))
192			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193		if (IEEE80211_IS_CHAN_ST(c))
194			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195		if (IEEE80211_IS_CHAN_HALF(c))
196			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197		if (IEEE80211_IS_CHAN_QUARTER(c))
198			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199		if (IEEE80211_IS_CHAN_HTA(c))
200			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201		if (IEEE80211_IS_CHAN_HTG(c))
202			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203		if (IEEE80211_IS_CHAN_VHTA(c))
204			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205		if (IEEE80211_IS_CHAN_VHTG(c))
206			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207	}
208	/* initialize candidate channels to all available */
209	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210		sizeof(ic->ic_chan_avail));
211
212	/* sort channel table to allow lookup optimizations */
213	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214
215	/* invalidate any previous state */
216	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217	ic->ic_prevchan = NULL;
218	ic->ic_csa_newchan = NULL;
219	/* arbitrarily pick the first channel */
220	ic->ic_curchan = &ic->ic_channels[0];
221	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222
223	/* fillin well-known rate sets if driver has not specified */
224	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
225	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
226	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
227	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
228	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
229	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
230	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
231	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
232	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
233	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
234	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
235	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
236
237	/*
238	 * Setup required information to fill the mcsset field, if driver did
239	 * not. Assume a 2T2R setup for historic reasons.
240	 */
241	if (ic->ic_rxstream == 0)
242		ic->ic_rxstream = 2;
243	if (ic->ic_txstream == 0)
244		ic->ic_txstream = 2;
245
246	ieee80211_init_suphtrates(ic);
247
248	/*
249	 * Set auto mode to reset active channel state and any desired channel.
250	 */
251	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252#undef DEFAULTRATES
253}
254
255static void
256null_update_mcast(struct ieee80211com *ic)
257{
258
259	ic_printf(ic, "need multicast update callback\n");
260}
261
262static void
263null_update_promisc(struct ieee80211com *ic)
264{
265
266	ic_printf(ic, "need promiscuous mode update callback\n");
267}
268
269static void
270null_update_chw(struct ieee80211com *ic)
271{
272
273	ic_printf(ic, "%s: need callback\n", __func__);
274}
275
276int
277ic_printf(struct ieee80211com *ic, const char * fmt, ...)
278{
279	va_list ap;
280	int retval;
281
282	retval = printf("%s: ", ic->ic_name);
283	va_start(ap, fmt);
284	retval += vprintf(fmt, ap);
285	va_end(ap);
286	return (retval);
287}
288
289static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
290static struct mtx ic_list_mtx;
291MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
292
293static int
294sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
295{
296	struct ieee80211com *ic;
297	struct sbuf sb;
298	char *sp;
299	int error;
300
301	error = sysctl_wire_old_buffer(req, 0);
302	if (error)
303		return (error);
304	sbuf_new_for_sysctl(&sb, NULL, 8, req);
305	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
306	sp = "";
307	mtx_lock(&ic_list_mtx);
308	LIST_FOREACH(ic, &ic_head, ic_next) {
309		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310		sp = " ";
311	}
312	mtx_unlock(&ic_list_mtx);
313	error = sbuf_finish(&sb);
314	sbuf_delete(&sb);
315	return (error);
316}
317
318SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
319    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
320    sysctl_ieee80211coms, "A", "names of available 802.11 devices");
321
322/*
323 * Attach/setup the common net80211 state.  Called by
324 * the driver on attach to prior to creating any vap's.
325 */
326void
327ieee80211_ifattach(struct ieee80211com *ic)
328{
329
330	IEEE80211_LOCK_INIT(ic, ic->ic_name);
331	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
332	TAILQ_INIT(&ic->ic_vaps);
333
334	/* Create a taskqueue for all state changes */
335	ic->ic_tq = taskqueue_create("ic_taskq",
336	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
337	    taskqueue_thread_enqueue, &ic->ic_tq);
338	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339	    ic->ic_name);
340	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
341	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
342	/*
343	 * Fill in 802.11 available channel set, mark all
344	 * available channels as active, and pick a default
345	 * channel if not already specified.
346	 */
347	ieee80211_chan_init(ic);
348
349	ic->ic_update_mcast = null_update_mcast;
350	ic->ic_update_promisc = null_update_promisc;
351	ic->ic_update_chw = null_update_chw;
352
353	ic->ic_hash_key = arc4random();
354	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355	ic->ic_lintval = ic->ic_bintval;
356	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357
358	ieee80211_crypto_attach(ic);
359	ieee80211_node_attach(ic);
360	ieee80211_power_attach(ic);
361	ieee80211_proto_attach(ic);
362#ifdef IEEE80211_SUPPORT_SUPERG
363	ieee80211_superg_attach(ic);
364#endif
365	ieee80211_ht_attach(ic);
366	ieee80211_vht_attach(ic);
367	ieee80211_scan_attach(ic);
368	ieee80211_regdomain_attach(ic);
369	ieee80211_dfs_attach(ic);
370
371	ieee80211_sysctl_attach(ic);
372
373	mtx_lock(&ic_list_mtx);
374	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375	mtx_unlock(&ic_list_mtx);
376}
377
378/*
379 * Detach net80211 state on device detach.  Tear down
380 * all vap's and reclaim all common state prior to the
381 * device state going away.  Note we may call back into
382 * driver; it must be prepared for this.
383 */
384void
385ieee80211_ifdetach(struct ieee80211com *ic)
386{
387	struct ieee80211vap *vap;
388
389	/*
390	 * We use this as an indicator that ifattach never had a chance to be
391	 * called, e.g. early driver attach failed and ifdetach was called
392	 * during subsequent detach.  Never fear, for we have nothing to do
393	 * here.
394	 */
395	if (ic->ic_tq == NULL)
396		return;
397
398	mtx_lock(&ic_list_mtx);
399	LIST_REMOVE(ic, ic_next);
400	mtx_unlock(&ic_list_mtx);
401
402	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403
404	/*
405	 * The VAP is responsible for setting and clearing
406	 * the VIMAGE context.
407	 */
408	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409		ieee80211_com_vdetach(vap);
410		ieee80211_vap_destroy(vap);
411	}
412	ieee80211_waitfor_parent(ic);
413
414	ieee80211_sysctl_detach(ic);
415	ieee80211_dfs_detach(ic);
416	ieee80211_regdomain_detach(ic);
417	ieee80211_scan_detach(ic);
418#ifdef IEEE80211_SUPPORT_SUPERG
419	ieee80211_superg_detach(ic);
420#endif
421	ieee80211_vht_detach(ic);
422	ieee80211_ht_detach(ic);
423	/* NB: must be called before ieee80211_node_detach */
424	ieee80211_proto_detach(ic);
425	ieee80211_crypto_detach(ic);
426	ieee80211_power_detach(ic);
427	ieee80211_node_detach(ic);
428
429	counter_u64_free(ic->ic_ierrors);
430	counter_u64_free(ic->ic_oerrors);
431
432	taskqueue_free(ic->ic_tq);
433	IEEE80211_TX_LOCK_DESTROY(ic);
434	IEEE80211_LOCK_DESTROY(ic);
435}
436
437/*
438 * Called by drivers during attach to set the supported
439 * cipher set for software encryption.
440 */
441void
442ieee80211_set_software_ciphers(struct ieee80211com *ic,
443    uint32_t cipher_suite)
444{
445	ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
446}
447
448/*
449 * Called by drivers during attach to set the supported
450 * cipher set for hardware encryption.
451 */
452void
453ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
454    uint32_t cipher_suite)
455{
456	ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
457}
458
459/*
460 * Called by drivers during attach to set the supported
461 * key management suites by the driver/hardware.
462 */
463void
464ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
465    uint32_t keymgmt_set)
466{
467	ieee80211_crypto_set_supported_driver_keymgmt(ic,
468	    keymgmt_set);
469}
470
471struct ieee80211com *
472ieee80211_find_com(const char *name)
473{
474	struct ieee80211com *ic;
475
476	mtx_lock(&ic_list_mtx);
477	LIST_FOREACH(ic, &ic_head, ic_next)
478		if (strcmp(ic->ic_name, name) == 0)
479			break;
480	mtx_unlock(&ic_list_mtx);
481
482	return (ic);
483}
484
485void
486ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
487{
488	struct ieee80211com *ic;
489
490	mtx_lock(&ic_list_mtx);
491	LIST_FOREACH(ic, &ic_head, ic_next)
492		(*f)(arg, ic);
493	mtx_unlock(&ic_list_mtx);
494}
495
496/*
497 * Default reset method for use with the ioctl support.  This
498 * method is invoked after any state change in the 802.11
499 * layer that should be propagated to the hardware but not
500 * require re-initialization of the 802.11 state machine (e.g
501 * rescanning for an ap).  We always return ENETRESET which
502 * should cause the driver to re-initialize the device. Drivers
503 * can override this method to implement more optimized support.
504 */
505static int
506default_reset(struct ieee80211vap *vap, u_long cmd)
507{
508	return ENETRESET;
509}
510
511/*
512 * Default for updating the VAP default TX key index.
513 *
514 * Drivers that support TX offload as well as hardware encryption offload
515 * may need to be informed of key index changes separate from the key
516 * update.
517 */
518static void
519default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
520{
521
522	/* XXX assert validity */
523	/* XXX assert we're in a key update block */
524	vap->iv_def_txkey = kid;
525}
526
527/*
528 * Add underlying device errors to vap errors.
529 */
530static uint64_t
531ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
532{
533	struct ieee80211vap *vap = ifp->if_softc;
534	struct ieee80211com *ic = vap->iv_ic;
535	uint64_t rv;
536
537	rv = if_get_counter_default(ifp, cnt);
538	switch (cnt) {
539	case IFCOUNTER_OERRORS:
540		rv += counter_u64_fetch(ic->ic_oerrors);
541		break;
542	case IFCOUNTER_IERRORS:
543		rv += counter_u64_fetch(ic->ic_ierrors);
544		break;
545	default:
546		break;
547	}
548
549	return (rv);
550}
551
552/*
553 * Prepare a vap for use.  Drivers use this call to
554 * setup net80211 state in new vap's prior attaching
555 * them with ieee80211_vap_attach (below).
556 */
557int
558ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
559    const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
560    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
561{
562	struct ifnet *ifp;
563
564	ifp = if_alloc(IFT_ETHER);
565	if (ifp == NULL) {
566		ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
567		return ENOMEM;
568	}
569	if_initname(ifp, name, unit);
570	ifp->if_softc = vap;			/* back pointer */
571	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
572	ifp->if_transmit = ieee80211_vap_transmit;
573	ifp->if_qflush = ieee80211_vap_qflush;
574	ifp->if_ioctl = ieee80211_ioctl;
575	ifp->if_init = ieee80211_init;
576	ifp->if_get_counter = ieee80211_get_counter;
577
578	vap->iv_ifp = ifp;
579	vap->iv_ic = ic;
580	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
581	vap->iv_flags_ext = ic->ic_flags_ext;
582	vap->iv_flags_ven = ic->ic_flags_ven;
583	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
584
585	/* 11n capabilities - XXX methodize */
586	vap->iv_htcaps = ic->ic_htcaps;
587	vap->iv_htextcaps = ic->ic_htextcaps;
588
589	/* 11ac capabilities - XXX methodize */
590	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
591	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
592
593	vap->iv_opmode = opmode;
594	vap->iv_caps |= ieee80211_opcap[opmode];
595	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
596	switch (opmode) {
597	case IEEE80211_M_WDS:
598		/*
599		 * WDS links must specify the bssid of the far end.
600		 * For legacy operation this is a static relationship.
601		 * For non-legacy operation the station must associate
602		 * and be authorized to pass traffic.  Plumbing the
603		 * vap to the proper node happens when the vap
604		 * transitions to RUN state.
605		 */
606		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
607		vap->iv_flags |= IEEE80211_F_DESBSSID;
608		if (flags & IEEE80211_CLONE_WDSLEGACY)
609			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
610		break;
611#ifdef IEEE80211_SUPPORT_TDMA
612	case IEEE80211_M_AHDEMO:
613		if (flags & IEEE80211_CLONE_TDMA) {
614			/* NB: checked before clone operation allowed */
615			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
616			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
617			/*
618			 * Propagate TDMA capability to mark vap; this
619			 * cannot be removed and is used to distinguish
620			 * regular ahdemo operation from ahdemo+tdma.
621			 */
622			vap->iv_caps |= IEEE80211_C_TDMA;
623		}
624		break;
625#endif
626	default:
627		break;
628	}
629	/* auto-enable s/w beacon miss support */
630	if (flags & IEEE80211_CLONE_NOBEACONS)
631		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
632	/* auto-generated or user supplied MAC address */
633	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
634		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
635	/*
636	 * Enable various functionality by default if we're
637	 * capable; the driver can override us if it knows better.
638	 */
639	if (vap->iv_caps & IEEE80211_C_WME)
640		vap->iv_flags |= IEEE80211_F_WME;
641	if (vap->iv_caps & IEEE80211_C_BURST)
642		vap->iv_flags |= IEEE80211_F_BURST;
643	/* NB: bg scanning only makes sense for station mode right now */
644	if (vap->iv_opmode == IEEE80211_M_STA &&
645	    (vap->iv_caps & IEEE80211_C_BGSCAN))
646		vap->iv_flags |= IEEE80211_F_BGSCAN;
647	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
648	/* NB: DFS support only makes sense for ap mode right now */
649	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
650	    (vap->iv_caps & IEEE80211_C_DFS))
651		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
652	/* NB: only flip on U-APSD for hostap/sta for now */
653	if ((vap->iv_opmode == IEEE80211_M_STA)
654	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
655		if (vap->iv_caps & IEEE80211_C_UAPSD)
656			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
657	}
658
659	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
660	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
661	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
662	/*
663	 * Install a default reset method for the ioctl support;
664	 * the driver can override this.
665	 */
666	vap->iv_reset = default_reset;
667
668	/*
669	 * Install a default crypto key update method, the driver
670	 * can override this.
671	 */
672	vap->iv_update_deftxkey = default_update_deftxkey;
673
674	ieee80211_sysctl_vattach(vap);
675	ieee80211_crypto_vattach(vap);
676	ieee80211_node_vattach(vap);
677	ieee80211_power_vattach(vap);
678	ieee80211_proto_vattach(vap);
679#ifdef IEEE80211_SUPPORT_SUPERG
680	ieee80211_superg_vattach(vap);
681#endif
682	ieee80211_ht_vattach(vap);
683	ieee80211_vht_vattach(vap);
684	ieee80211_scan_vattach(vap);
685	ieee80211_regdomain_vattach(vap);
686	ieee80211_radiotap_vattach(vap);
687	ieee80211_vap_reset_erp(vap);
688	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
689
690	return 0;
691}
692
693/*
694 * Activate a vap.  State should have been prepared with a
695 * call to ieee80211_vap_setup and by the driver.  On return
696 * from this call the vap is ready for use.
697 */
698int
699ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
700    ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
701{
702	struct ifnet *ifp = vap->iv_ifp;
703	struct ieee80211com *ic = vap->iv_ic;
704	struct ifmediareq imr;
705	int maxrate;
706
707	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
708	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
709	    __func__, ieee80211_opmode_name[vap->iv_opmode],
710	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
711
712	/*
713	 * Do late attach work that cannot happen until after
714	 * the driver has had a chance to override defaults.
715	 */
716	ieee80211_node_latevattach(vap);
717	ieee80211_power_latevattach(vap);
718
719	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
720	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
721	ieee80211_media_status(ifp, &imr);
722	/* NB: strip explicit mode; we're actually in autoselect */
723	ifmedia_set(&vap->iv_media,
724	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
725	if (maxrate)
726		ifp->if_baudrate = IF_Mbps(maxrate);
727
728	ether_ifattach(ifp, macaddr);
729	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
730	/* hook output method setup by ether_ifattach */
731	vap->iv_output = ifp->if_output;
732	ifp->if_output = ieee80211_output;
733	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
734
735	IEEE80211_LOCK(ic);
736	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
737	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
738#ifdef IEEE80211_SUPPORT_SUPERG
739	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
740#endif
741	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
742	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
743	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
744	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
745
746	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
747	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
748	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
749	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
750	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
751	IEEE80211_UNLOCK(ic);
752
753	return 1;
754}
755
756/*
757 * Tear down vap state and reclaim the ifnet.
758 * The driver is assumed to have prepared for
759 * this; e.g. by turning off interrupts for the
760 * underlying device.
761 */
762void
763ieee80211_vap_detach(struct ieee80211vap *vap)
764{
765	struct ieee80211com *ic = vap->iv_ic;
766	struct ifnet *ifp = vap->iv_ifp;
767	int i;
768
769	CURVNET_SET(ifp->if_vnet);
770
771	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
772	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
773
774	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
775	ether_ifdetach(ifp);
776
777	ieee80211_stop(vap);
778
779	/*
780	 * Flush any deferred vap tasks.
781	 */
782	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
783		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
784	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
785	ieee80211_draintask(ic, &vap->iv_wme_task);
786	ieee80211_draintask(ic, &ic->ic_parent_task);
787
788	/* XXX band-aid until ifnet handles this for us */
789	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
790
791	IEEE80211_LOCK(ic);
792	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
793	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
794	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
795#ifdef IEEE80211_SUPPORT_SUPERG
796	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
797#endif
798	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
799	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
800	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
801	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
802
803	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
804	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
805	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
806	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
807	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
808
809	/* NB: this handles the bpfdetach done below */
810	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
811	if (vap->iv_ifflags & IFF_PROMISC)
812		ieee80211_promisc(vap, false);
813	if (vap->iv_ifflags & IFF_ALLMULTI)
814		ieee80211_allmulti(vap, false);
815	IEEE80211_UNLOCK(ic);
816
817	ifmedia_removeall(&vap->iv_media);
818
819	ieee80211_radiotap_vdetach(vap);
820	ieee80211_regdomain_vdetach(vap);
821	ieee80211_scan_vdetach(vap);
822#ifdef IEEE80211_SUPPORT_SUPERG
823	ieee80211_superg_vdetach(vap);
824#endif
825	ieee80211_vht_vdetach(vap);
826	ieee80211_ht_vdetach(vap);
827	/* NB: must be before ieee80211_node_vdetach */
828	ieee80211_proto_vdetach(vap);
829	ieee80211_crypto_vdetach(vap);
830	ieee80211_power_vdetach(vap);
831	ieee80211_node_vdetach(vap);
832	ieee80211_sysctl_vdetach(vap);
833
834	if_free(ifp);
835
836	CURVNET_RESTORE();
837}
838
839/*
840 * Count number of vaps in promisc, and issue promisc on
841 * parent respectively.
842 */
843void
844ieee80211_promisc(struct ieee80211vap *vap, bool on)
845{
846	struct ieee80211com *ic = vap->iv_ic;
847
848	IEEE80211_LOCK_ASSERT(ic);
849
850	if (on) {
851		if (++ic->ic_promisc == 1)
852			ieee80211_runtask(ic, &ic->ic_promisc_task);
853	} else {
854		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
855		    __func__, ic));
856		if (--ic->ic_promisc == 0)
857			ieee80211_runtask(ic, &ic->ic_promisc_task);
858	}
859}
860
861/*
862 * Count number of vaps in allmulti, and issue allmulti on
863 * parent respectively.
864 */
865void
866ieee80211_allmulti(struct ieee80211vap *vap, bool on)
867{
868	struct ieee80211com *ic = vap->iv_ic;
869
870	IEEE80211_LOCK_ASSERT(ic);
871
872	if (on) {
873		if (++ic->ic_allmulti == 1)
874			ieee80211_runtask(ic, &ic->ic_mcast_task);
875	} else {
876		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
877		    __func__, ic));
878		if (--ic->ic_allmulti == 0)
879			ieee80211_runtask(ic, &ic->ic_mcast_task);
880	}
881}
882
883/*
884 * Synchronize flag bit state in the com structure
885 * according to the state of all vap's.  This is used,
886 * for example, to handle state changes via ioctls.
887 */
888static void
889ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
890{
891	struct ieee80211vap *vap;
892	int bit;
893
894	IEEE80211_LOCK_ASSERT(ic);
895
896	bit = 0;
897	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
898		if (vap->iv_flags & flag) {
899			bit = 1;
900			break;
901		}
902	if (bit)
903		ic->ic_flags |= flag;
904	else
905		ic->ic_flags &= ~flag;
906}
907
908void
909ieee80211_syncflag(struct ieee80211vap *vap, int flag)
910{
911	struct ieee80211com *ic = vap->iv_ic;
912
913	IEEE80211_LOCK(ic);
914	if (flag < 0) {
915		flag = -flag;
916		vap->iv_flags &= ~flag;
917	} else
918		vap->iv_flags |= flag;
919	ieee80211_syncflag_locked(ic, flag);
920	IEEE80211_UNLOCK(ic);
921}
922
923/*
924 * Synchronize flags_ht bit state in the com structure
925 * according to the state of all vap's.  This is used,
926 * for example, to handle state changes via ioctls.
927 */
928static void
929ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
930{
931	struct ieee80211vap *vap;
932	int bit;
933
934	IEEE80211_LOCK_ASSERT(ic);
935
936	bit = 0;
937	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
938		if (vap->iv_flags_ht & flag) {
939			bit = 1;
940			break;
941		}
942	if (bit)
943		ic->ic_flags_ht |= flag;
944	else
945		ic->ic_flags_ht &= ~flag;
946}
947
948void
949ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
950{
951	struct ieee80211com *ic = vap->iv_ic;
952
953	IEEE80211_LOCK(ic);
954	if (flag < 0) {
955		flag = -flag;
956		vap->iv_flags_ht &= ~flag;
957	} else
958		vap->iv_flags_ht |= flag;
959	ieee80211_syncflag_ht_locked(ic, flag);
960	IEEE80211_UNLOCK(ic);
961}
962
963/*
964 * Synchronize flags_vht bit state in the com structure
965 * according to the state of all vap's.  This is used,
966 * for example, to handle state changes via ioctls.
967 */
968static void
969ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
970{
971	struct ieee80211vap *vap;
972	int bit;
973
974	IEEE80211_LOCK_ASSERT(ic);
975
976	bit = 0;
977	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
978		if (vap->iv_vht_flags & flag) {
979			bit = 1;
980			break;
981		}
982	if (bit)
983		ic->ic_vht_flags |= flag;
984	else
985		ic->ic_vht_flags &= ~flag;
986}
987
988void
989ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
990{
991	struct ieee80211com *ic = vap->iv_ic;
992
993	IEEE80211_LOCK(ic);
994	if (flag < 0) {
995		flag = -flag;
996		vap->iv_vht_flags &= ~flag;
997	} else
998		vap->iv_vht_flags |= flag;
999	ieee80211_syncflag_vht_locked(ic, flag);
1000	IEEE80211_UNLOCK(ic);
1001}
1002
1003/*
1004 * Synchronize flags_ext bit state in the com structure
1005 * according to the state of all vap's.  This is used,
1006 * for example, to handle state changes via ioctls.
1007 */
1008static void
1009ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
1010{
1011	struct ieee80211vap *vap;
1012	int bit;
1013
1014	IEEE80211_LOCK_ASSERT(ic);
1015
1016	bit = 0;
1017	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1018		if (vap->iv_flags_ext & flag) {
1019			bit = 1;
1020			break;
1021		}
1022	if (bit)
1023		ic->ic_flags_ext |= flag;
1024	else
1025		ic->ic_flags_ext &= ~flag;
1026}
1027
1028void
1029ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1030{
1031	struct ieee80211com *ic = vap->iv_ic;
1032
1033	IEEE80211_LOCK(ic);
1034	if (flag < 0) {
1035		flag = -flag;
1036		vap->iv_flags_ext &= ~flag;
1037	} else
1038		vap->iv_flags_ext |= flag;
1039	ieee80211_syncflag_ext_locked(ic, flag);
1040	IEEE80211_UNLOCK(ic);
1041}
1042
1043static __inline int
1044mapgsm(u_int freq, u_int flags)
1045{
1046	freq *= 10;
1047	if (flags & IEEE80211_CHAN_QUARTER)
1048		freq += 5;
1049	else if (flags & IEEE80211_CHAN_HALF)
1050		freq += 10;
1051	else
1052		freq += 20;
1053	/* NB: there is no 907/20 wide but leave room */
1054	return (freq - 906*10) / 5;
1055}
1056
1057static __inline int
1058mappsb(u_int freq, u_int flags)
1059{
1060	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1061}
1062
1063/*
1064 * Convert MHz frequency to IEEE channel number.
1065 */
1066int
1067ieee80211_mhz2ieee(u_int freq, u_int flags)
1068{
1069#define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1070	if (flags & IEEE80211_CHAN_GSM)
1071		return mapgsm(freq, flags);
1072	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1073		if (freq == 2484)
1074			return 14;
1075		if (freq < 2484)
1076			return ((int) freq - 2407) / 5;
1077		else
1078			return 15 + ((freq - 2512) / 20);
1079	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1080		if (freq <= 5000) {
1081			/* XXX check regdomain? */
1082			if (IS_FREQ_IN_PSB(freq))
1083				return mappsb(freq, flags);
1084			return (freq - 4000) / 5;
1085		} else
1086			return (freq - 5000) / 5;
1087	} else {				/* either, guess */
1088		if (freq == 2484)
1089			return 14;
1090		if (freq < 2484) {
1091			if (907 <= freq && freq <= 922)
1092				return mapgsm(freq, flags);
1093			return ((int) freq - 2407) / 5;
1094		}
1095		if (freq < 5000) {
1096			if (IS_FREQ_IN_PSB(freq))
1097				return mappsb(freq, flags);
1098			else if (freq > 4900)
1099				return (freq - 4000) / 5;
1100			else
1101				return 15 + ((freq - 2512) / 20);
1102		}
1103		return (freq - 5000) / 5;
1104	}
1105#undef IS_FREQ_IN_PSB
1106}
1107
1108/*
1109 * Convert channel to IEEE channel number.
1110 */
1111int
1112ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1113{
1114	if (c == NULL) {
1115		ic_printf(ic, "invalid channel (NULL)\n");
1116		return 0;		/* XXX */
1117	}
1118	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1119}
1120
1121/*
1122 * Convert IEEE channel number to MHz frequency.
1123 */
1124u_int
1125ieee80211_ieee2mhz(u_int chan, u_int flags)
1126{
1127	if (flags & IEEE80211_CHAN_GSM)
1128		return 907 + 5 * (chan / 10);
1129	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1130		if (chan == 14)
1131			return 2484;
1132		if (chan < 14)
1133			return 2407 + chan*5;
1134		else
1135			return 2512 + ((chan-15)*20);
1136	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1137		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1138			chan -= 37;
1139			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1140		}
1141		return 5000 + (chan*5);
1142	} else {				/* either, guess */
1143		/* XXX can't distinguish PSB+GSM channels */
1144		if (chan == 14)
1145			return 2484;
1146		if (chan < 14)			/* 0-13 */
1147			return 2407 + chan*5;
1148		if (chan < 27)			/* 15-26 */
1149			return 2512 + ((chan-15)*20);
1150		return 5000 + (chan*5);
1151	}
1152}
1153
1154static __inline void
1155set_extchan(struct ieee80211_channel *c)
1156{
1157
1158	/*
1159	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1160	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1161	 */
1162	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1163		c->ic_extieee = c->ic_ieee + 4;
1164	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1165		c->ic_extieee = c->ic_ieee - 4;
1166	else
1167		c->ic_extieee = 0;
1168}
1169
1170/*
1171 * Populate the freq1/freq2 fields as appropriate for VHT channels.
1172 *
1173 * This for now uses a hard-coded list of 80MHz wide channels.
1174 *
1175 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1176 * wide channel we've already decided upon.
1177 *
1178 * For VHT80 and VHT160, there are only a small number of fixed
1179 * 80/160MHz wide channels, so we just use those.
1180 *
1181 * This is all likely very very wrong - both the regulatory code
1182 * and this code needs to ensure that all four channels are
1183 * available and valid before the VHT80 (and eight for VHT160) channel
1184 * is created.
1185 */
1186
1187struct vht_chan_range {
1188	uint16_t freq_start;
1189	uint16_t freq_end;
1190};
1191
1192struct vht_chan_range vht80_chan_ranges[] = {
1193	{ 5170, 5250 },
1194	{ 5250, 5330 },
1195	{ 5490, 5570 },
1196	{ 5570, 5650 },
1197	{ 5650, 5730 },
1198	{ 5735, 5815 },
1199	{ 0, 0 }
1200};
1201
1202struct vht_chan_range vht160_chan_ranges[] = {
1203	{ 5170, 5330 },
1204	{ 5490, 5650 },
1205	{ 0, 0 }
1206};
1207
1208static int
1209set_vht_extchan(struct ieee80211_channel *c)
1210{
1211	int i;
1212
1213	if (! IEEE80211_IS_CHAN_VHT(c))
1214		return (0);
1215
1216	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1217		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1218		    __func__, c->ic_ieee, c->ic_flags);
1219	}
1220
1221	if (IEEE80211_IS_CHAN_VHT160(c)) {
1222		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1223			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1224			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1225				int midpoint;
1226
1227				midpoint = vht160_chan_ranges[i].freq_start + 80;
1228				c->ic_vht_ch_freq1 =
1229				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1230				c->ic_vht_ch_freq2 = 0;
1231#if 0
1232				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1233				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1234				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1235#endif
1236				return (1);
1237			}
1238		}
1239		return (0);
1240	}
1241
1242	if (IEEE80211_IS_CHAN_VHT80(c)) {
1243		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1244			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1245			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1246				int midpoint;
1247
1248				midpoint = vht80_chan_ranges[i].freq_start + 40;
1249				c->ic_vht_ch_freq1 =
1250				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1251				c->ic_vht_ch_freq2 = 0;
1252#if 0
1253				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1254				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1255				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1256#endif
1257				return (1);
1258			}
1259		}
1260		return (0);
1261	}
1262
1263	if (IEEE80211_IS_CHAN_VHT40(c)) {
1264		if (IEEE80211_IS_CHAN_HT40U(c))
1265			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1266		else if (IEEE80211_IS_CHAN_HT40D(c))
1267			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1268		else
1269			return (0);
1270		return (1);
1271	}
1272
1273	if (IEEE80211_IS_CHAN_VHT20(c)) {
1274		c->ic_vht_ch_freq1 = c->ic_ieee;
1275		return (1);
1276	}
1277
1278	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1279	    __func__, c->ic_ieee, c->ic_flags);
1280
1281	return (0);
1282}
1283
1284/*
1285 * Return whether the current channel could possibly be a part of
1286 * a VHT80/VHT160 channel.
1287 *
1288 * This doesn't check that the whole range is in the allowed list
1289 * according to regulatory.
1290 */
1291static bool
1292is_vht160_valid_freq(uint16_t freq)
1293{
1294	int i;
1295
1296	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1297		if (freq >= vht160_chan_ranges[i].freq_start &&
1298		    freq < vht160_chan_ranges[i].freq_end)
1299			return (true);
1300	}
1301	return (false);
1302}
1303
1304static int
1305is_vht80_valid_freq(uint16_t freq)
1306{
1307	int i;
1308	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1309		if (freq >= vht80_chan_ranges[i].freq_start &&
1310		    freq < vht80_chan_ranges[i].freq_end)
1311			return (1);
1312	}
1313	return (0);
1314}
1315
1316static int
1317addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1318    uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1319{
1320	struct ieee80211_channel *c;
1321
1322	if (*nchans >= maxchans)
1323		return (ENOBUFS);
1324
1325#if 0
1326	printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1327	    __func__, *nchans, maxchans, ieee, freq, flags);
1328#endif
1329
1330	c = &chans[(*nchans)++];
1331	c->ic_ieee = ieee;
1332	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1333	c->ic_maxregpower = maxregpower;
1334	c->ic_maxpower = 2 * maxregpower;
1335	c->ic_flags = flags;
1336	c->ic_vht_ch_freq1 = 0;
1337	c->ic_vht_ch_freq2 = 0;
1338	set_extchan(c);
1339	set_vht_extchan(c);
1340
1341	return (0);
1342}
1343
1344static int
1345copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1346    uint32_t flags)
1347{
1348	struct ieee80211_channel *c;
1349
1350	KASSERT(*nchans > 0, ("channel list is empty\n"));
1351
1352	if (*nchans >= maxchans)
1353		return (ENOBUFS);
1354
1355#if 0
1356	printf("%s: %d of %d: flags=0x%08x\n",
1357	    __func__, *nchans, maxchans, flags);
1358#endif
1359
1360	c = &chans[(*nchans)++];
1361	c[0] = c[-1];
1362	c->ic_flags = flags;
1363	c->ic_vht_ch_freq1 = 0;
1364	c->ic_vht_ch_freq2 = 0;
1365	set_extchan(c);
1366	set_vht_extchan(c);
1367
1368	return (0);
1369}
1370
1371/*
1372 * XXX VHT-2GHz
1373 */
1374static void
1375getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1376{
1377	int nmodes;
1378
1379	nmodes = 0;
1380	if (isset(bands, IEEE80211_MODE_11B))
1381		flags[nmodes++] = IEEE80211_CHAN_B;
1382	if (isset(bands, IEEE80211_MODE_11G))
1383		flags[nmodes++] = IEEE80211_CHAN_G;
1384	if (isset(bands, IEEE80211_MODE_11NG))
1385		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1386	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1387		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1388		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1389	}
1390	flags[nmodes] = 0;
1391}
1392
1393static void
1394getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1395{
1396	int nmodes;
1397
1398	/*
1399	 * The addchan_list() function seems to expect the flags array to
1400	 * be in channel width order, so the VHT bits are interspersed
1401	 * as appropriate to maintain said order.
1402	 *
1403	 * It also assumes HT40U is before HT40D.
1404	 */
1405	nmodes = 0;
1406
1407	/* 20MHz */
1408	if (isset(bands, IEEE80211_MODE_11A))
1409		flags[nmodes++] = IEEE80211_CHAN_A;
1410	if (isset(bands, IEEE80211_MODE_11NA))
1411		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1412	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1413		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1414		    IEEE80211_CHAN_VHT20;
1415	}
1416
1417	/* 40MHz */
1418	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1419		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1420	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1421	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1422		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1423		    IEEE80211_CHAN_VHT40U;
1424	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1425		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1426	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1427	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1428		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1429		    IEEE80211_CHAN_VHT40D;
1430
1431	/* 80MHz */
1432	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1433	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1434		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1435		    IEEE80211_CHAN_VHT80;
1436		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1437		    IEEE80211_CHAN_VHT80;
1438	}
1439
1440	/* VHT160 */
1441	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1442	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1443		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1444		    IEEE80211_CHAN_VHT160;
1445		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1446		    IEEE80211_CHAN_VHT160;
1447	}
1448
1449	/* VHT80+80 */
1450	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1451	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1452		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1453		    IEEE80211_CHAN_VHT80P80;
1454		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1455		    IEEE80211_CHAN_VHT80P80;
1456	}
1457
1458	flags[nmodes] = 0;
1459}
1460
1461static void
1462getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1463{
1464
1465	flags[0] = 0;
1466	if (isset(bands, IEEE80211_MODE_11A) ||
1467	    isset(bands, IEEE80211_MODE_11NA) ||
1468	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1469		if (isset(bands, IEEE80211_MODE_11B) ||
1470		    isset(bands, IEEE80211_MODE_11G) ||
1471		    isset(bands, IEEE80211_MODE_11NG) ||
1472		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1473			return;
1474
1475		getflags_5ghz(bands, flags, cbw_flags);
1476	} else
1477		getflags_2ghz(bands, flags, cbw_flags);
1478}
1479
1480/*
1481 * Add one 20 MHz channel into specified channel list.
1482 * You MUST NOT mix bands when calling this.  It will not add 5ghz
1483 * channels if you have any B/G/N band bit set.
1484 * The _cbw() variant does also support HT40/VHT80/160/80+80.
1485 */
1486int
1487ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1488    int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1489    uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1490{
1491	uint32_t flags[IEEE80211_MODE_MAX];
1492	int i, error;
1493
1494	getflags(bands, flags, cbw_flags);
1495	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1496
1497	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1498	    flags[0] | chan_flags);
1499	for (i = 1; flags[i] != 0 && error == 0; i++) {
1500		error = copychan_prev(chans, maxchans, nchans,
1501		    flags[i] | chan_flags);
1502	}
1503
1504	return (error);
1505}
1506
1507int
1508ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1509    int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1510    uint32_t chan_flags, const uint8_t bands[])
1511{
1512
1513	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1514	    maxregpower, chan_flags, bands, 0));
1515}
1516
1517static struct ieee80211_channel *
1518findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1519    uint32_t flags)
1520{
1521	struct ieee80211_channel *c;
1522	int i;
1523
1524	flags &= IEEE80211_CHAN_ALLTURBO;
1525	/* brute force search */
1526	for (i = 0; i < nchans; i++) {
1527		c = &chans[i];
1528		if (c->ic_freq == freq &&
1529		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1530			return c;
1531	}
1532	return NULL;
1533}
1534
1535/*
1536 * Add 40 MHz channel pair into specified channel list.
1537 */
1538/* XXX VHT */
1539int
1540ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1541    int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1542{
1543	struct ieee80211_channel *cent, *extc;
1544	uint16_t freq;
1545	int error;
1546
1547	freq = ieee80211_ieee2mhz(ieee, flags);
1548
1549	/*
1550	 * Each entry defines an HT40 channel pair; find the
1551	 * center channel, then the extension channel above.
1552	 */
1553	flags |= IEEE80211_CHAN_HT20;
1554	cent = findchannel(chans, *nchans, freq, flags);
1555	if (cent == NULL)
1556		return (EINVAL);
1557
1558	extc = findchannel(chans, *nchans, freq + 20, flags);
1559	if (extc == NULL)
1560		return (ENOENT);
1561
1562	flags &= ~IEEE80211_CHAN_HT;
1563	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1564	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1565	if (error != 0)
1566		return (error);
1567
1568	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1569	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1570
1571	return (error);
1572}
1573
1574/*
1575 * Fetch the center frequency for the primary channel.
1576 */
1577uint32_t
1578ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1579{
1580
1581	return (c->ic_freq);
1582}
1583
1584/*
1585 * Fetch the center frequency for the primary BAND channel.
1586 *
1587 * For 5, 10, 20MHz channels it'll be the normally configured channel
1588 * frequency.
1589 *
1590 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1591 * wide channel, not the centre of the primary channel (that's ic_freq).
1592 *
1593 * For 80+80MHz channels this will be the centre of the primary
1594 * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1595 */
1596uint32_t
1597ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1598{
1599
1600	/*
1601	 * VHT - use the pre-calculated centre frequency
1602	 * of the given channel.
1603	 */
1604	if (IEEE80211_IS_CHAN_VHT(c))
1605		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1606
1607	if (IEEE80211_IS_CHAN_HT40U(c)) {
1608		return (c->ic_freq + 10);
1609	}
1610	if (IEEE80211_IS_CHAN_HT40D(c)) {
1611		return (c->ic_freq - 10);
1612	}
1613
1614	return (c->ic_freq);
1615}
1616
1617/*
1618 * For now, no 80+80 support; it will likely always return 0.
1619 */
1620uint32_t
1621ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1622{
1623
1624	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1625		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1626
1627	return (0);
1628}
1629
1630/*
1631 * Adds channels into specified channel list (ieee[] array must be sorted).
1632 * Channels are already sorted.
1633 */
1634static int
1635add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1636    const uint8_t ieee[], int nieee, uint32_t flags[])
1637{
1638	uint16_t freq;
1639	int i, j, error;
1640	int is_vht;
1641
1642	for (i = 0; i < nieee; i++) {
1643		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1644		for (j = 0; flags[j] != 0; j++) {
1645			/*
1646			 * Notes:
1647			 * + HT40 and VHT40 channels occur together, so
1648			 *   we need to be careful that we actually allow that.
1649			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1650			 *   make sure it's not skipped because of the overlap
1651			 *   check used for (V)HT40.
1652			 */
1653			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1654
1655			/* XXX TODO FIXME VHT80P80. */
1656
1657			/* Test for VHT160 analogue to the VHT80 below. */
1658			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1659				if (! is_vht160_valid_freq(freq))
1660					continue;
1661
1662			/*
1663			 * Test for VHT80.
1664			 * XXX This is all very broken right now.
1665			 * What we /should/ do is:
1666			 *
1667			 * + check that the frequency is in the list of
1668			 *   allowed VHT80 ranges; and
1669			 * + the other 3 channels in the list are actually
1670			 *   also available.
1671			 */
1672			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1673				if (! is_vht80_valid_freq(freq))
1674					continue;
1675
1676			/*
1677			 * Test for (V)HT40.
1678			 *
1679			 * This is also a fall through from VHT80; as we only
1680			 * allow a VHT80 channel if the VHT40 combination is
1681			 * also valid.  If the VHT40 form is not valid then
1682			 * we certainly can't do VHT80..
1683			 */
1684			if (flags[j] & IEEE80211_CHAN_HT40D)
1685				/*
1686				 * Can't have a "lower" channel if we are the
1687				 * first channel.
1688				 *
1689				 * Can't have a "lower" channel if it's below/
1690				 * within 20MHz of the first channel.
1691				 *
1692				 * Can't have a "lower" channel if the channel
1693				 * below it is not 20MHz away.
1694				 */
1695				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1696				    freq - 20 !=
1697				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1698					continue;
1699			if (flags[j] & IEEE80211_CHAN_HT40U)
1700				/*
1701				 * Can't have an "upper" channel if we are
1702				 * the last channel.
1703				 *
1704				 * Can't have an "upper" channel be above the
1705				 * last channel in the list.
1706				 *
1707				 * Can't have an "upper" channel if the next
1708				 * channel according to the math isn't 20MHz
1709				 * away.  (Likely for channel 13/14.)
1710				 */
1711				if (i == nieee - 1 ||
1712				    ieee[i] + 4 > ieee[nieee - 1] ||
1713				    freq + 20 !=
1714				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1715					continue;
1716
1717			if (j == 0) {
1718				error = addchan(chans, maxchans, nchans,
1719				    ieee[i], freq, 0, flags[j]);
1720			} else {
1721				error = copychan_prev(chans, maxchans, nchans,
1722				    flags[j]);
1723			}
1724			if (error != 0)
1725				return (error);
1726		}
1727	}
1728
1729	return (0);
1730}
1731
1732int
1733ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1734    int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1735    int cbw_flags)
1736{
1737	uint32_t flags[IEEE80211_MODE_MAX];
1738
1739	/* XXX no VHT for now */
1740	getflags_2ghz(bands, flags, cbw_flags);
1741	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1742
1743	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1744}
1745
1746int
1747ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1748    int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1749{
1750	const uint8_t default_chan_list[] =
1751	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1752
1753	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1754	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1755}
1756
1757int
1758ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1759    int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1760    int cbw_flags)
1761{
1762	/*
1763	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1764	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1765	 */
1766	uint32_t flags[2 * IEEE80211_MODE_MAX];
1767
1768	getflags_5ghz(bands, flags, cbw_flags);
1769	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1770
1771	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1772}
1773
1774/*
1775 * Locate a channel given a frequency+flags.  We cache
1776 * the previous lookup to optimize switching between two
1777 * channels--as happens with dynamic turbo.
1778 */
1779struct ieee80211_channel *
1780ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1781{
1782	struct ieee80211_channel *c;
1783
1784	flags &= IEEE80211_CHAN_ALLTURBO;
1785	c = ic->ic_prevchan;
1786	if (c != NULL && c->ic_freq == freq &&
1787	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1788		return c;
1789	/* brute force search */
1790	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1791}
1792
1793/*
1794 * Locate a channel given a channel number+flags.  We cache
1795 * the previous lookup to optimize switching between two
1796 * channels--as happens with dynamic turbo.
1797 */
1798struct ieee80211_channel *
1799ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1800{
1801	struct ieee80211_channel *c;
1802	int i;
1803
1804	flags &= IEEE80211_CHAN_ALLTURBO;
1805	c = ic->ic_prevchan;
1806	if (c != NULL && c->ic_ieee == ieee &&
1807	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1808		return c;
1809	/* brute force search */
1810	for (i = 0; i < ic->ic_nchans; i++) {
1811		c = &ic->ic_channels[i];
1812		if (c->ic_ieee == ieee &&
1813		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1814			return c;
1815	}
1816	return NULL;
1817}
1818
1819/*
1820 * Lookup a channel suitable for the given rx status.
1821 *
1822 * This is used to find a channel for a frame (eg beacon, probe
1823 * response) based purely on the received PHY information.
1824 *
1825 * For now it tries to do it based on R_FREQ / R_IEEE.
1826 * This is enough for 11bg and 11a (and thus 11ng/11na)
1827 * but it will not be enough for GSM, PSB channels and the
1828 * like.  It also doesn't know about legacy-turbog and
1829 * legacy-turbo modes, which some offload NICs actually
1830 * support in weird ways.
1831 *
1832 * Takes the ic and rxstatus; returns the channel or NULL
1833 * if not found.
1834 *
1835 * XXX TODO: Add support for that when the need arises.
1836 */
1837struct ieee80211_channel *
1838ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1839    const struct ieee80211_rx_stats *rxs)
1840{
1841	struct ieee80211com *ic = vap->iv_ic;
1842	uint32_t flags;
1843	struct ieee80211_channel *c;
1844
1845	if (rxs == NULL)
1846		return (NULL);
1847
1848	/*
1849	 * Strictly speaking we only use freq for now,
1850	 * however later on we may wish to just store
1851	 * the ieee for verification.
1852	 */
1853	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1854		return (NULL);
1855	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1856		return (NULL);
1857	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1858		return (NULL);
1859
1860	/*
1861	 * If the rx status contains a valid ieee/freq, then
1862	 * ensure we populate the correct channel information
1863	 * in rxchan before passing it up to the scan infrastructure.
1864	 * Offload NICs will pass up beacons from all channels
1865	 * during background scans.
1866	 */
1867
1868	/* Determine a band */
1869	switch (rxs->c_band) {
1870	case IEEE80211_CHAN_2GHZ:
1871		flags = IEEE80211_CHAN_G;
1872		break;
1873	case IEEE80211_CHAN_5GHZ:
1874		flags = IEEE80211_CHAN_A;
1875		break;
1876	default:
1877		if (rxs->c_freq < 3000) {
1878			flags = IEEE80211_CHAN_G;
1879		} else {
1880			flags = IEEE80211_CHAN_A;
1881		}
1882		break;
1883	}
1884
1885	/* Channel lookup */
1886	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1887
1888	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1889	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1890	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1891
1892	return (c);
1893}
1894
1895static void
1896addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1897{
1898#define	ADD(_ic, _s, _o) \
1899	ifmedia_add(media, \
1900		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1901	static const u_int mopts[IEEE80211_MODE_MAX] = {
1902	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1903	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1904	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1905	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1906	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1907	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1908	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1909	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1910	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1911	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1912	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1913	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1914	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1915	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1916	};
1917	u_int mopt;
1918
1919	mopt = mopts[mode];
1920	if (addsta)
1921		ADD(ic, mword, mopt);	/* STA mode has no cap */
1922	if (caps & IEEE80211_C_IBSS)
1923		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1924	if (caps & IEEE80211_C_HOSTAP)
1925		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1926	if (caps & IEEE80211_C_AHDEMO)
1927		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1928	if (caps & IEEE80211_C_MONITOR)
1929		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1930	if (caps & IEEE80211_C_WDS)
1931		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1932	if (caps & IEEE80211_C_MBSS)
1933		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1934#undef ADD
1935}
1936
1937/*
1938 * Setup the media data structures according to the channel and
1939 * rate tables.
1940 */
1941static int
1942ieee80211_media_setup(struct ieee80211com *ic,
1943	struct ifmedia *media, int caps, int addsta,
1944	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1945{
1946	int i, j, rate, maxrate, mword, r;
1947	enum ieee80211_phymode mode;
1948	const struct ieee80211_rateset *rs;
1949	struct ieee80211_rateset allrates;
1950
1951	/*
1952	 * Fill in media characteristics.
1953	 */
1954	ifmedia_init(media, 0, media_change, media_stat);
1955	maxrate = 0;
1956	/*
1957	 * Add media for legacy operating modes.
1958	 */
1959	memset(&allrates, 0, sizeof(allrates));
1960	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1961		if (isclr(ic->ic_modecaps, mode))
1962			continue;
1963		addmedia(media, caps, addsta, mode, IFM_AUTO);
1964		if (mode == IEEE80211_MODE_AUTO)
1965			continue;
1966		rs = &ic->ic_sup_rates[mode];
1967		for (i = 0; i < rs->rs_nrates; i++) {
1968			rate = rs->rs_rates[i];
1969			mword = ieee80211_rate2media(ic, rate, mode);
1970			if (mword == 0)
1971				continue;
1972			addmedia(media, caps, addsta, mode, mword);
1973			/*
1974			 * Add legacy rate to the collection of all rates.
1975			 */
1976			r = rate & IEEE80211_RATE_VAL;
1977			for (j = 0; j < allrates.rs_nrates; j++)
1978				if (allrates.rs_rates[j] == r)
1979					break;
1980			if (j == allrates.rs_nrates) {
1981				/* unique, add to the set */
1982				allrates.rs_rates[j] = r;
1983				allrates.rs_nrates++;
1984			}
1985			rate = (rate & IEEE80211_RATE_VAL) / 2;
1986			if (rate > maxrate)
1987				maxrate = rate;
1988		}
1989	}
1990	for (i = 0; i < allrates.rs_nrates; i++) {
1991		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1992				IEEE80211_MODE_AUTO);
1993		if (mword == 0)
1994			continue;
1995		/* NB: remove media options from mword */
1996		addmedia(media, caps, addsta,
1997		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1998	}
1999	/*
2000	 * Add HT/11n media.  Note that we do not have enough
2001	 * bits in the media subtype to express the MCS so we
2002	 * use a "placeholder" media subtype and any fixed MCS
2003	 * must be specified with a different mechanism.
2004	 */
2005	for (; mode <= IEEE80211_MODE_11NG; mode++) {
2006		if (isclr(ic->ic_modecaps, mode))
2007			continue;
2008		addmedia(media, caps, addsta, mode, IFM_AUTO);
2009		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2010	}
2011	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2012	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2013		addmedia(media, caps, addsta,
2014		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2015		i = ic->ic_txstream * 8 - 1;
2016		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2017		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2018			rate = ieee80211_htrates[i].ht40_rate_400ns;
2019		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2020			rate = ieee80211_htrates[i].ht40_rate_800ns;
2021		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2022			rate = ieee80211_htrates[i].ht20_rate_400ns;
2023		else
2024			rate = ieee80211_htrates[i].ht20_rate_800ns;
2025		if (rate > maxrate)
2026			maxrate = rate;
2027	}
2028
2029	/*
2030	 * Add VHT media.
2031	 * XXX-BZ skip "VHT_2GHZ" for now.
2032	 */
2033	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2034	    mode++) {
2035		if (isclr(ic->ic_modecaps, mode))
2036			continue;
2037		addmedia(media, caps, addsta, mode, IFM_AUTO);
2038		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2039	}
2040	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2041	       addmedia(media, caps, addsta,
2042		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2043
2044		/* XXX TODO: VHT maxrate */
2045	}
2046
2047	return maxrate;
2048}
2049
2050/* XXX inline or eliminate? */
2051const struct ieee80211_rateset *
2052ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2053{
2054	/* XXX does this work for 11ng basic rates? */
2055	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2056}
2057
2058/* XXX inline or eliminate? */
2059const struct ieee80211_htrateset *
2060ieee80211_get_suphtrates(struct ieee80211com *ic,
2061    const struct ieee80211_channel *c)
2062{
2063	return &ic->ic_sup_htrates;
2064}
2065
2066void
2067ieee80211_announce(struct ieee80211com *ic)
2068{
2069	int i, rate, mword;
2070	enum ieee80211_phymode mode;
2071	const struct ieee80211_rateset *rs;
2072
2073	/* NB: skip AUTO since it has no rates */
2074	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2075		if (isclr(ic->ic_modecaps, mode))
2076			continue;
2077		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2078		rs = &ic->ic_sup_rates[mode];
2079		for (i = 0; i < rs->rs_nrates; i++) {
2080			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2081			if (mword == 0)
2082				continue;
2083			rate = ieee80211_media2rate(mword);
2084			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2085			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2086		}
2087		printf("\n");
2088	}
2089	ieee80211_ht_announce(ic);
2090	ieee80211_vht_announce(ic);
2091}
2092
2093void
2094ieee80211_announce_channels(struct ieee80211com *ic)
2095{
2096	const struct ieee80211_channel *c;
2097	char type;
2098	int i, cw;
2099
2100	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2101	for (i = 0; i < ic->ic_nchans; i++) {
2102		c = &ic->ic_channels[i];
2103		if (IEEE80211_IS_CHAN_ST(c))
2104			type = 'S';
2105		else if (IEEE80211_IS_CHAN_108A(c))
2106			type = 'T';
2107		else if (IEEE80211_IS_CHAN_108G(c))
2108			type = 'G';
2109		else if (IEEE80211_IS_CHAN_HT(c))
2110			type = 'n';
2111		else if (IEEE80211_IS_CHAN_A(c))
2112			type = 'a';
2113		else if (IEEE80211_IS_CHAN_ANYG(c))
2114			type = 'g';
2115		else if (IEEE80211_IS_CHAN_B(c))
2116			type = 'b';
2117		else
2118			type = 'f';
2119		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2120			cw = 40;
2121		else if (IEEE80211_IS_CHAN_HALF(c))
2122			cw = 10;
2123		else if (IEEE80211_IS_CHAN_QUARTER(c))
2124			cw = 5;
2125		else
2126			cw = 20;
2127		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2128			, c->ic_ieee, c->ic_freq, type
2129			, cw
2130			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2131			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2132			, c->ic_maxregpower
2133			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2134			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2135		);
2136	}
2137}
2138
2139static int
2140media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2141{
2142	switch (IFM_MODE(ime->ifm_media)) {
2143	case IFM_IEEE80211_11A:
2144		*mode = IEEE80211_MODE_11A;
2145		break;
2146	case IFM_IEEE80211_11B:
2147		*mode = IEEE80211_MODE_11B;
2148		break;
2149	case IFM_IEEE80211_11G:
2150		*mode = IEEE80211_MODE_11G;
2151		break;
2152	case IFM_IEEE80211_FH:
2153		*mode = IEEE80211_MODE_FH;
2154		break;
2155	case IFM_IEEE80211_11NA:
2156		*mode = IEEE80211_MODE_11NA;
2157		break;
2158	case IFM_IEEE80211_11NG:
2159		*mode = IEEE80211_MODE_11NG;
2160		break;
2161	case IFM_IEEE80211_VHT2G:
2162		*mode = IEEE80211_MODE_VHT_2GHZ;
2163		break;
2164	case IFM_IEEE80211_VHT5G:
2165		*mode = IEEE80211_MODE_VHT_5GHZ;
2166		break;
2167	case IFM_AUTO:
2168		*mode = IEEE80211_MODE_AUTO;
2169		break;
2170	default:
2171		return 0;
2172	}
2173	/*
2174	 * Turbo mode is an ``option''.
2175	 * XXX does not apply to AUTO
2176	 */
2177	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2178		if (*mode == IEEE80211_MODE_11A) {
2179			if (flags & IEEE80211_F_TURBOP)
2180				*mode = IEEE80211_MODE_TURBO_A;
2181			else
2182				*mode = IEEE80211_MODE_STURBO_A;
2183		} else if (*mode == IEEE80211_MODE_11G)
2184			*mode = IEEE80211_MODE_TURBO_G;
2185		else
2186			return 0;
2187	}
2188	/* XXX HT40 +/- */
2189	return 1;
2190}
2191
2192/*
2193 * Handle a media change request on the vap interface.
2194 */
2195int
2196ieee80211_media_change(struct ifnet *ifp)
2197{
2198	struct ieee80211vap *vap = ifp->if_softc;
2199	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2200	uint16_t newmode;
2201
2202	if (!media2mode(ime, vap->iv_flags, &newmode))
2203		return EINVAL;
2204	if (vap->iv_des_mode != newmode) {
2205		vap->iv_des_mode = newmode;
2206		/* XXX kick state machine if up+running */
2207	}
2208	return 0;
2209}
2210
2211/*
2212 * Common code to calculate the media status word
2213 * from the operating mode and channel state.
2214 */
2215static int
2216media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2217{
2218	int status;
2219
2220	status = IFM_IEEE80211;
2221	switch (opmode) {
2222	case IEEE80211_M_STA:
2223		break;
2224	case IEEE80211_M_IBSS:
2225		status |= IFM_IEEE80211_ADHOC;
2226		break;
2227	case IEEE80211_M_HOSTAP:
2228		status |= IFM_IEEE80211_HOSTAP;
2229		break;
2230	case IEEE80211_M_MONITOR:
2231		status |= IFM_IEEE80211_MONITOR;
2232		break;
2233	case IEEE80211_M_AHDEMO:
2234		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2235		break;
2236	case IEEE80211_M_WDS:
2237		status |= IFM_IEEE80211_WDS;
2238		break;
2239	case IEEE80211_M_MBSS:
2240		status |= IFM_IEEE80211_MBSS;
2241		break;
2242	}
2243	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2244		status |= IFM_IEEE80211_VHT5G;
2245	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2246		status |= IFM_IEEE80211_VHT2G;
2247	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2248		status |= IFM_IEEE80211_11NA;
2249	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2250		status |= IFM_IEEE80211_11NG;
2251	} else if (IEEE80211_IS_CHAN_A(chan)) {
2252		status |= IFM_IEEE80211_11A;
2253	} else if (IEEE80211_IS_CHAN_B(chan)) {
2254		status |= IFM_IEEE80211_11B;
2255	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2256		status |= IFM_IEEE80211_11G;
2257	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2258		status |= IFM_IEEE80211_FH;
2259	}
2260	/* XXX else complain? */
2261
2262	if (IEEE80211_IS_CHAN_TURBO(chan))
2263		status |= IFM_IEEE80211_TURBO;
2264#if 0
2265	if (IEEE80211_IS_CHAN_HT20(chan))
2266		status |= IFM_IEEE80211_HT20;
2267	if (IEEE80211_IS_CHAN_HT40(chan))
2268		status |= IFM_IEEE80211_HT40;
2269#endif
2270	return status;
2271}
2272
2273void
2274ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2275{
2276	struct ieee80211vap *vap = ifp->if_softc;
2277	struct ieee80211com *ic = vap->iv_ic;
2278	enum ieee80211_phymode mode;
2279
2280	imr->ifm_status = IFM_AVALID;
2281	/*
2282	 * NB: use the current channel's mode to lock down a xmit
2283	 * rate only when running; otherwise we may have a mismatch
2284	 * in which case the rate will not be convertible.
2285	 */
2286	if (vap->iv_state == IEEE80211_S_RUN ||
2287	    vap->iv_state == IEEE80211_S_SLEEP) {
2288		imr->ifm_status |= IFM_ACTIVE;
2289		mode = ieee80211_chan2mode(ic->ic_curchan);
2290	} else
2291		mode = IEEE80211_MODE_AUTO;
2292	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2293	/*
2294	 * Calculate a current rate if possible.
2295	 */
2296	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2297		/*
2298		 * A fixed rate is set, report that.
2299		 */
2300		imr->ifm_active |= ieee80211_rate2media(ic,
2301			vap->iv_txparms[mode].ucastrate, mode);
2302	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2303		/*
2304		 * In station mode report the current transmit rate.
2305		 */
2306		imr->ifm_active |= ieee80211_rate2media(ic,
2307			vap->iv_bss->ni_txrate, mode);
2308	} else
2309		imr->ifm_active |= IFM_AUTO;
2310	if (imr->ifm_status & IFM_ACTIVE)
2311		imr->ifm_current = imr->ifm_active;
2312}
2313
2314/*
2315 * Set the current phy mode and recalculate the active channel
2316 * set based on the available channels for this mode.  Also
2317 * select a new default/current channel if the current one is
2318 * inappropriate for this mode.
2319 */
2320int
2321ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2322{
2323	/*
2324	 * Adjust basic rates in 11b/11g supported rate set.
2325	 * Note that if operating on a hal/quarter rate channel
2326	 * this is a noop as those rates sets are different
2327	 * and used instead.
2328	 */
2329	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2330		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2331
2332	ic->ic_curmode = mode;
2333	ieee80211_reset_erp(ic);	/* reset global ERP state */
2334
2335	return 0;
2336}
2337
2338/*
2339 * Return the phy mode for with the specified channel.
2340 */
2341enum ieee80211_phymode
2342ieee80211_chan2mode(const struct ieee80211_channel *chan)
2343{
2344
2345	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2346		return IEEE80211_MODE_VHT_2GHZ;
2347	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2348		return IEEE80211_MODE_VHT_5GHZ;
2349	else if (IEEE80211_IS_CHAN_HTA(chan))
2350		return IEEE80211_MODE_11NA;
2351	else if (IEEE80211_IS_CHAN_HTG(chan))
2352		return IEEE80211_MODE_11NG;
2353	else if (IEEE80211_IS_CHAN_108G(chan))
2354		return IEEE80211_MODE_TURBO_G;
2355	else if (IEEE80211_IS_CHAN_ST(chan))
2356		return IEEE80211_MODE_STURBO_A;
2357	else if (IEEE80211_IS_CHAN_TURBO(chan))
2358		return IEEE80211_MODE_TURBO_A;
2359	else if (IEEE80211_IS_CHAN_HALF(chan))
2360		return IEEE80211_MODE_HALF;
2361	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2362		return IEEE80211_MODE_QUARTER;
2363	else if (IEEE80211_IS_CHAN_A(chan))
2364		return IEEE80211_MODE_11A;
2365	else if (IEEE80211_IS_CHAN_ANYG(chan))
2366		return IEEE80211_MODE_11G;
2367	else if (IEEE80211_IS_CHAN_B(chan))
2368		return IEEE80211_MODE_11B;
2369	else if (IEEE80211_IS_CHAN_FHSS(chan))
2370		return IEEE80211_MODE_FH;
2371
2372	/* NB: should not get here */
2373	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2374		__func__, chan->ic_freq, chan->ic_flags);
2375	return IEEE80211_MODE_11B;
2376}
2377
2378struct ratemedia {
2379	u_int	match;	/* rate + mode */
2380	u_int	media;	/* if_media rate */
2381};
2382
2383static int
2384findmedia(const struct ratemedia rates[], int n, u_int match)
2385{
2386	int i;
2387
2388	for (i = 0; i < n; i++)
2389		if (rates[i].match == match)
2390			return rates[i].media;
2391	return IFM_AUTO;
2392}
2393
2394/*
2395 * Convert IEEE80211 rate value to ifmedia subtype.
2396 * Rate is either a legacy rate in units of 0.5Mbps
2397 * or an MCS index.
2398 */
2399int
2400ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2401{
2402	static const struct ratemedia rates[] = {
2403		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2404		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2405		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2406		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2407		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2408		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2409		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2410		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2411		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2412		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2413		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2414		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2415		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2416		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2417		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2418		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2419		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2420		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2421		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2422		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2423		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2424		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2425		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2426		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2427		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2428		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2429		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2430		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2431		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2432		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2433		/* NB: OFDM72 doesn't really exist so we don't handle it */
2434	};
2435	static const struct ratemedia htrates[] = {
2436		{   0, IFM_IEEE80211_MCS },
2437		{   1, IFM_IEEE80211_MCS },
2438		{   2, IFM_IEEE80211_MCS },
2439		{   3, IFM_IEEE80211_MCS },
2440		{   4, IFM_IEEE80211_MCS },
2441		{   5, IFM_IEEE80211_MCS },
2442		{   6, IFM_IEEE80211_MCS },
2443		{   7, IFM_IEEE80211_MCS },
2444		{   8, IFM_IEEE80211_MCS },
2445		{   9, IFM_IEEE80211_MCS },
2446		{  10, IFM_IEEE80211_MCS },
2447		{  11, IFM_IEEE80211_MCS },
2448		{  12, IFM_IEEE80211_MCS },
2449		{  13, IFM_IEEE80211_MCS },
2450		{  14, IFM_IEEE80211_MCS },
2451		{  15, IFM_IEEE80211_MCS },
2452		{  16, IFM_IEEE80211_MCS },
2453		{  17, IFM_IEEE80211_MCS },
2454		{  18, IFM_IEEE80211_MCS },
2455		{  19, IFM_IEEE80211_MCS },
2456		{  20, IFM_IEEE80211_MCS },
2457		{  21, IFM_IEEE80211_MCS },
2458		{  22, IFM_IEEE80211_MCS },
2459		{  23, IFM_IEEE80211_MCS },
2460		{  24, IFM_IEEE80211_MCS },
2461		{  25, IFM_IEEE80211_MCS },
2462		{  26, IFM_IEEE80211_MCS },
2463		{  27, IFM_IEEE80211_MCS },
2464		{  28, IFM_IEEE80211_MCS },
2465		{  29, IFM_IEEE80211_MCS },
2466		{  30, IFM_IEEE80211_MCS },
2467		{  31, IFM_IEEE80211_MCS },
2468		{  32, IFM_IEEE80211_MCS },
2469		{  33, IFM_IEEE80211_MCS },
2470		{  34, IFM_IEEE80211_MCS },
2471		{  35, IFM_IEEE80211_MCS },
2472		{  36, IFM_IEEE80211_MCS },
2473		{  37, IFM_IEEE80211_MCS },
2474		{  38, IFM_IEEE80211_MCS },
2475		{  39, IFM_IEEE80211_MCS },
2476		{  40, IFM_IEEE80211_MCS },
2477		{  41, IFM_IEEE80211_MCS },
2478		{  42, IFM_IEEE80211_MCS },
2479		{  43, IFM_IEEE80211_MCS },
2480		{  44, IFM_IEEE80211_MCS },
2481		{  45, IFM_IEEE80211_MCS },
2482		{  46, IFM_IEEE80211_MCS },
2483		{  47, IFM_IEEE80211_MCS },
2484		{  48, IFM_IEEE80211_MCS },
2485		{  49, IFM_IEEE80211_MCS },
2486		{  50, IFM_IEEE80211_MCS },
2487		{  51, IFM_IEEE80211_MCS },
2488		{  52, IFM_IEEE80211_MCS },
2489		{  53, IFM_IEEE80211_MCS },
2490		{  54, IFM_IEEE80211_MCS },
2491		{  55, IFM_IEEE80211_MCS },
2492		{  56, IFM_IEEE80211_MCS },
2493		{  57, IFM_IEEE80211_MCS },
2494		{  58, IFM_IEEE80211_MCS },
2495		{  59, IFM_IEEE80211_MCS },
2496		{  60, IFM_IEEE80211_MCS },
2497		{  61, IFM_IEEE80211_MCS },
2498		{  62, IFM_IEEE80211_MCS },
2499		{  63, IFM_IEEE80211_MCS },
2500		{  64, IFM_IEEE80211_MCS },
2501		{  65, IFM_IEEE80211_MCS },
2502		{  66, IFM_IEEE80211_MCS },
2503		{  67, IFM_IEEE80211_MCS },
2504		{  68, IFM_IEEE80211_MCS },
2505		{  69, IFM_IEEE80211_MCS },
2506		{  70, IFM_IEEE80211_MCS },
2507		{  71, IFM_IEEE80211_MCS },
2508		{  72, IFM_IEEE80211_MCS },
2509		{  73, IFM_IEEE80211_MCS },
2510		{  74, IFM_IEEE80211_MCS },
2511		{  75, IFM_IEEE80211_MCS },
2512		{  76, IFM_IEEE80211_MCS },
2513	};
2514	static const struct ratemedia vhtrates[] = {
2515		{   0, IFM_IEEE80211_VHT },
2516		{   1, IFM_IEEE80211_VHT },
2517		{   2, IFM_IEEE80211_VHT },
2518		{   3, IFM_IEEE80211_VHT },
2519		{   4, IFM_IEEE80211_VHT },
2520		{   5, IFM_IEEE80211_VHT },
2521		{   6, IFM_IEEE80211_VHT },
2522		{   7, IFM_IEEE80211_VHT },
2523		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2524		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2525#if 0
2526		/* Some QCA and BRCM seem to support this; offspec. */
2527		{  10, IFM_IEEE80211_VHT },
2528		{  11, IFM_IEEE80211_VHT },
2529#endif
2530	};
2531	int m;
2532
2533	/*
2534	 * Check 11ac/11n rates first for match as an MCS.
2535	 */
2536	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2537		if (rate & IFM_IEEE80211_VHT) {
2538			rate &= ~IFM_IEEE80211_VHT;
2539			m = findmedia(vhtrates, nitems(vhtrates), rate);
2540			if (m != IFM_AUTO)
2541				return (m | IFM_IEEE80211_VHT);
2542		}
2543	} else if (mode == IEEE80211_MODE_11NA) {
2544		if (rate & IEEE80211_RATE_MCS) {
2545			rate &= ~IEEE80211_RATE_MCS;
2546			m = findmedia(htrates, nitems(htrates), rate);
2547			if (m != IFM_AUTO)
2548				return m | IFM_IEEE80211_11NA;
2549		}
2550	} else if (mode == IEEE80211_MODE_11NG) {
2551		/* NB: 12 is ambiguous, it will be treated as an MCS */
2552		if (rate & IEEE80211_RATE_MCS) {
2553			rate &= ~IEEE80211_RATE_MCS;
2554			m = findmedia(htrates, nitems(htrates), rate);
2555			if (m != IFM_AUTO)
2556				return m | IFM_IEEE80211_11NG;
2557		}
2558	}
2559	rate &= IEEE80211_RATE_VAL;
2560	switch (mode) {
2561	case IEEE80211_MODE_11A:
2562	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2563	case IEEE80211_MODE_QUARTER:
2564	case IEEE80211_MODE_11NA:
2565	case IEEE80211_MODE_TURBO_A:
2566	case IEEE80211_MODE_STURBO_A:
2567		return findmedia(rates, nitems(rates),
2568		    rate | IFM_IEEE80211_11A);
2569	case IEEE80211_MODE_11B:
2570		return findmedia(rates, nitems(rates),
2571		    rate | IFM_IEEE80211_11B);
2572	case IEEE80211_MODE_FH:
2573		return findmedia(rates, nitems(rates),
2574		    rate | IFM_IEEE80211_FH);
2575	case IEEE80211_MODE_AUTO:
2576		/* NB: ic may be NULL for some drivers */
2577		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2578			return findmedia(rates, nitems(rates),
2579			    rate | IFM_IEEE80211_FH);
2580		/* NB: hack, 11g matches both 11b+11a rates */
2581		/* fall thru... */
2582	case IEEE80211_MODE_11G:
2583	case IEEE80211_MODE_11NG:
2584	case IEEE80211_MODE_TURBO_G:
2585		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2586	case IEEE80211_MODE_VHT_2GHZ:
2587	case IEEE80211_MODE_VHT_5GHZ:
2588		/* XXX TODO: need to figure out mapping for VHT rates */
2589		return IFM_AUTO;
2590	}
2591	return IFM_AUTO;
2592}
2593
2594int
2595ieee80211_media2rate(int mword)
2596{
2597	static const int ieeerates[] = {
2598		-1,		/* IFM_AUTO */
2599		0,		/* IFM_MANUAL */
2600		0,		/* IFM_NONE */
2601		2,		/* IFM_IEEE80211_FH1 */
2602		4,		/* IFM_IEEE80211_FH2 */
2603		2,		/* IFM_IEEE80211_DS1 */
2604		4,		/* IFM_IEEE80211_DS2 */
2605		11,		/* IFM_IEEE80211_DS5 */
2606		22,		/* IFM_IEEE80211_DS11 */
2607		44,		/* IFM_IEEE80211_DS22 */
2608		12,		/* IFM_IEEE80211_OFDM6 */
2609		18,		/* IFM_IEEE80211_OFDM9 */
2610		24,		/* IFM_IEEE80211_OFDM12 */
2611		36,		/* IFM_IEEE80211_OFDM18 */
2612		48,		/* IFM_IEEE80211_OFDM24 */
2613		72,		/* IFM_IEEE80211_OFDM36 */
2614		96,		/* IFM_IEEE80211_OFDM48 */
2615		108,		/* IFM_IEEE80211_OFDM54 */
2616		144,		/* IFM_IEEE80211_OFDM72 */
2617		0,		/* IFM_IEEE80211_DS354k */
2618		0,		/* IFM_IEEE80211_DS512k */
2619		6,		/* IFM_IEEE80211_OFDM3 */
2620		9,		/* IFM_IEEE80211_OFDM4 */
2621		54,		/* IFM_IEEE80211_OFDM27 */
2622		-1,		/* IFM_IEEE80211_MCS */
2623		-1,		/* IFM_IEEE80211_VHT */
2624	};
2625	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2626		ieeerates[IFM_SUBTYPE(mword)] : 0;
2627}
2628
2629/*
2630 * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2631 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2632 */
2633#define	mix(a, b, c)							\
2634do {									\
2635	a -= b; a -= c; a ^= (c >> 13);					\
2636	b -= c; b -= a; b ^= (a << 8);					\
2637	c -= a; c -= b; c ^= (b >> 13);					\
2638	a -= b; a -= c; a ^= (c >> 12);					\
2639	b -= c; b -= a; b ^= (a << 16);					\
2640	c -= a; c -= b; c ^= (b >> 5);					\
2641	a -= b; a -= c; a ^= (c >> 3);					\
2642	b -= c; b -= a; b ^= (a << 10);					\
2643	c -= a; c -= b; c ^= (b >> 15);					\
2644} while (/*CONSTCOND*/0)
2645
2646uint32_t
2647ieee80211_mac_hash(const struct ieee80211com *ic,
2648	const uint8_t addr[IEEE80211_ADDR_LEN])
2649{
2650	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2651
2652	b += addr[5] << 8;
2653	b += addr[4];
2654	a += addr[3] << 24;
2655	a += addr[2] << 16;
2656	a += addr[1] << 8;
2657	a += addr[0];
2658
2659	mix(a, b, c);
2660
2661	return c;
2662}
2663#undef mix
2664
2665char
2666ieee80211_channel_type_char(const struct ieee80211_channel *c)
2667{
2668	if (IEEE80211_IS_CHAN_ST(c))
2669		return 'S';
2670	if (IEEE80211_IS_CHAN_108A(c))
2671		return 'T';
2672	if (IEEE80211_IS_CHAN_108G(c))
2673		return 'G';
2674	if (IEEE80211_IS_CHAN_VHT(c))
2675		return 'v';
2676	if (IEEE80211_IS_CHAN_HT(c))
2677		return 'n';
2678	if (IEEE80211_IS_CHAN_A(c))
2679		return 'a';
2680	if (IEEE80211_IS_CHAN_ANYG(c))
2681		return 'g';
2682	if (IEEE80211_IS_CHAN_B(c))
2683		return 'b';
2684	return 'f';
2685}
2686