1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32#include "opt_inet.h"
33#include "opt_inet6.h"
34#include "opt_netgraph.h"
35#include "opt_mbuf_profiling.h"
36#include "opt_rss.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/devctl.h>
41#include <sys/eventhandler.h>
42#include <sys/jail.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/module.h>
48#include <sys/msan.h>
49#include <sys/proc.h>
50#include <sys/priv.h>
51#include <sys/random.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/sysctl.h>
55#include <sys/uuid.h>
56#ifdef KDB
57#include <sys/kdb.h>
58#endif
59
60#include <net/ieee_oui.h>
61#include <net/if.h>
62#include <net/if_var.h>
63#include <net/if_private.h>
64#include <net/if_arp.h>
65#include <net/netisr.h>
66#include <net/route.h>
67#include <net/if_llc.h>
68#include <net/if_dl.h>
69#include <net/if_types.h>
70#include <net/bpf.h>
71#include <net/ethernet.h>
72#include <net/if_bridgevar.h>
73#include <net/if_vlan_var.h>
74#include <net/if_llatbl.h>
75#include <net/pfil.h>
76#include <net/rss_config.h>
77#include <net/vnet.h>
78
79#include <netpfil/pf/pf_mtag.h>
80
81#if defined(INET) || defined(INET6)
82#include <netinet/in.h>
83#include <netinet/in_var.h>
84#include <netinet/if_ether.h>
85#include <netinet/ip_carp.h>
86#include <netinet/ip_var.h>
87#endif
88#ifdef INET6
89#include <netinet6/nd6.h>
90#endif
91#include <security/mac/mac_framework.h>
92
93#include <crypto/sha1.h>
94
95#ifdef CTASSERT
96CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
97CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
98#endif
99
100VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
101
102/* netgraph node hooks for ng_ether(4) */
103void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
104void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
105int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
106void	(*ng_ether_attach_p)(struct ifnet *ifp);
107void	(*ng_ether_detach_p)(struct ifnet *ifp);
108
109void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
110
111/* if_bridge(4) support */
112void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
113
114/* if_lagg(4) support */
115struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
116
117static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
118			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
119
120static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
121		struct sockaddr *);
122static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
123
124static inline bool ether_do_pcp(struct ifnet *, struct mbuf *);
125
126#define senderr(e) do { error = (e); goto bad;} while (0)
127
128static void
129update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
130{
131	int csum_flags = 0;
132
133	if (src->m_pkthdr.csum_flags & CSUM_IP)
134		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
135	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
136		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
137	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
138		csum_flags |= CSUM_SCTP_VALID;
139	dst->m_pkthdr.csum_flags |= csum_flags;
140	if (csum_flags & CSUM_DATA_VALID)
141		dst->m_pkthdr.csum_data = 0xffff;
142}
143
144/*
145 * Handle link-layer encapsulation requests.
146 */
147static int
148ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
149{
150	struct ether_header *eh;
151	struct arphdr *ah;
152	uint16_t etype;
153	const u_char *lladdr;
154
155	if (req->rtype != IFENCAP_LL)
156		return (EOPNOTSUPP);
157
158	if (req->bufsize < ETHER_HDR_LEN)
159		return (ENOMEM);
160
161	eh = (struct ether_header *)req->buf;
162	lladdr = req->lladdr;
163	req->lladdr_off = 0;
164
165	switch (req->family) {
166	case AF_INET:
167		etype = htons(ETHERTYPE_IP);
168		break;
169	case AF_INET6:
170		etype = htons(ETHERTYPE_IPV6);
171		break;
172	case AF_ARP:
173		ah = (struct arphdr *)req->hdata;
174		ah->ar_hrd = htons(ARPHRD_ETHER);
175
176		switch(ntohs(ah->ar_op)) {
177		case ARPOP_REVREQUEST:
178		case ARPOP_REVREPLY:
179			etype = htons(ETHERTYPE_REVARP);
180			break;
181		case ARPOP_REQUEST:
182		case ARPOP_REPLY:
183		default:
184			etype = htons(ETHERTYPE_ARP);
185			break;
186		}
187
188		if (req->flags & IFENCAP_FLAG_BROADCAST)
189			lladdr = ifp->if_broadcastaddr;
190		break;
191	default:
192		return (EAFNOSUPPORT);
193	}
194
195	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
196	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
197	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
198	req->bufsize = sizeof(struct ether_header);
199
200	return (0);
201}
202
203static int
204ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
205	const struct sockaddr *dst, struct route *ro, u_char *phdr,
206	uint32_t *pflags, struct llentry **plle)
207{
208	uint32_t lleflags = 0;
209	int error = 0;
210#if defined(INET) || defined(INET6)
211	struct ether_header *eh = (struct ether_header *)phdr;
212	uint16_t etype;
213#endif
214
215	if (plle)
216		*plle = NULL;
217
218	switch (dst->sa_family) {
219#ifdef INET
220	case AF_INET:
221		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
222			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
223			    plle);
224		else {
225			if (m->m_flags & M_BCAST)
226				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
227				    ETHER_ADDR_LEN);
228			else {
229				const struct in_addr *a;
230				a = &(((const struct sockaddr_in *)dst)->sin_addr);
231				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
232			}
233			etype = htons(ETHERTYPE_IP);
234			memcpy(&eh->ether_type, &etype, sizeof(etype));
235			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
236		}
237		break;
238#endif
239#ifdef INET6
240	case AF_INET6:
241		if ((m->m_flags & M_MCAST) == 0) {
242			int af = RO_GET_FAMILY(ro, dst);
243			error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
244			    &lleflags, plle);
245		} else {
246			const struct in6_addr *a6;
247			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
248			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
249			etype = htons(ETHERTYPE_IPV6);
250			memcpy(&eh->ether_type, &etype, sizeof(etype));
251			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
252		}
253		break;
254#endif
255	default:
256		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
257		if (m != NULL)
258			m_freem(m);
259		return (EAFNOSUPPORT);
260	}
261
262	if (error == EHOSTDOWN) {
263		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
264			error = EHOSTUNREACH;
265	}
266
267	if (error != 0)
268		return (error);
269
270	*pflags = RT_MAY_LOOP;
271	if (lleflags & LLE_IFADDR)
272		*pflags |= RT_L2_ME;
273
274	return (0);
275}
276
277/*
278 * Ethernet output routine.
279 * Encapsulate a packet of type family for the local net.
280 * Use trailer local net encapsulation if enough data in first
281 * packet leaves a multiple of 512 bytes of data in remainder.
282 */
283int
284ether_output(struct ifnet *ifp, struct mbuf *m,
285	const struct sockaddr *dst, struct route *ro)
286{
287	int error = 0;
288	char linkhdr[ETHER_HDR_LEN], *phdr;
289	struct ether_header *eh;
290	struct pf_mtag *t;
291	bool loop_copy;
292	int hlen;	/* link layer header length */
293	uint32_t pflags;
294	struct llentry *lle = NULL;
295	int addref = 0;
296
297	phdr = NULL;
298	pflags = 0;
299	if (ro != NULL) {
300		/* XXX BPF uses ro_prepend */
301		if (ro->ro_prepend != NULL) {
302			phdr = ro->ro_prepend;
303			hlen = ro->ro_plen;
304		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
305			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
306				lle = ro->ro_lle;
307				if (lle != NULL &&
308				    (lle->la_flags & LLE_VALID) == 0) {
309					LLE_FREE(lle);
310					lle = NULL;	/* redundant */
311					ro->ro_lle = NULL;
312				}
313				if (lle == NULL) {
314					/* if we lookup, keep cache */
315					addref = 1;
316				} else
317					/*
318					 * Notify LLE code that
319					 * the entry was used
320					 * by datapath.
321					 */
322					llentry_provide_feedback(lle);
323			}
324			if (lle != NULL) {
325				phdr = lle->r_linkdata;
326				hlen = lle->r_hdrlen;
327				pflags = lle->r_flags;
328			}
329		}
330	}
331
332#ifdef MAC
333	error = mac_ifnet_check_transmit(ifp, m);
334	if (error)
335		senderr(error);
336#endif
337
338	M_PROFILE(m);
339	if (ifp->if_flags & IFF_MONITOR)
340		senderr(ENETDOWN);
341	if (!((ifp->if_flags & IFF_UP) &&
342	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
343		senderr(ENETDOWN);
344
345	if (phdr == NULL) {
346		/* No prepend data supplied. Try to calculate ourselves. */
347		phdr = linkhdr;
348		hlen = ETHER_HDR_LEN;
349		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
350		    addref ? &lle : NULL);
351		if (addref && lle != NULL)
352			ro->ro_lle = lle;
353		if (error != 0)
354			return (error == EWOULDBLOCK ? 0 : error);
355	}
356
357	if ((pflags & RT_L2_ME) != 0) {
358		update_mbuf_csumflags(m, m);
359		return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
360	}
361	loop_copy = (pflags & RT_MAY_LOOP) != 0;
362
363	/*
364	 * Add local net header.  If no space in first mbuf,
365	 * allocate another.
366	 *
367	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
368	 * This is done because BPF code shifts m_data pointer
369	 * to the end of ethernet header prior to calling if_output().
370	 */
371	M_PREPEND(m, hlen, M_NOWAIT);
372	if (m == NULL)
373		senderr(ENOBUFS);
374	if ((pflags & RT_HAS_HEADER) == 0) {
375		eh = mtod(m, struct ether_header *);
376		memcpy(eh, phdr, hlen);
377	}
378
379	/*
380	 * If a simplex interface, and the packet is being sent to our
381	 * Ethernet address or a broadcast address, loopback a copy.
382	 * XXX To make a simplex device behave exactly like a duplex
383	 * device, we should copy in the case of sending to our own
384	 * ethernet address (thus letting the original actually appear
385	 * on the wire). However, we don't do that here for security
386	 * reasons and compatibility with the original behavior.
387	 */
388	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
389	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
390		struct mbuf *n;
391
392		/*
393		 * Because if_simloop() modifies the packet, we need a
394		 * writable copy through m_dup() instead of a readonly
395		 * one as m_copy[m] would give us. The alternative would
396		 * be to modify if_simloop() to handle the readonly mbuf,
397		 * but performancewise it is mostly equivalent (trading
398		 * extra data copying vs. extra locking).
399		 *
400		 * XXX This is a local workaround.  A number of less
401		 * often used kernel parts suffer from the same bug.
402		 * See PR kern/105943 for a proposed general solution.
403		 */
404		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
405			update_mbuf_csumflags(m, n);
406			(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
407		} else
408			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
409	}
410
411       /*
412	* Bridges require special output handling.
413	*/
414	if (ifp->if_bridge) {
415		BRIDGE_OUTPUT(ifp, m, error);
416		return (error);
417	}
418
419#if defined(INET) || defined(INET6)
420	if (ifp->if_carp &&
421	    (error = (*carp_output_p)(ifp, m, dst)))
422		goto bad;
423#endif
424
425	/* Handle ng_ether(4) processing, if any */
426	if (ifp->if_l2com != NULL) {
427		KASSERT(ng_ether_output_p != NULL,
428		    ("ng_ether_output_p is NULL"));
429		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
430bad:			if (m != NULL)
431				m_freem(m);
432			return (error);
433		}
434		if (m == NULL)
435			return (0);
436	}
437
438	/* Continue with link-layer output */
439	return ether_output_frame(ifp, m);
440}
441
442static bool
443ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
444{
445	struct ether_8021q_tag qtag;
446	struct ether_header *eh;
447
448	eh = mtod(*mp, struct ether_header *);
449	if (eh->ether_type == htons(ETHERTYPE_VLAN) ||
450	    eh->ether_type == htons(ETHERTYPE_QINQ)) {
451		(*mp)->m_flags &= ~M_VLANTAG;
452		return (true);
453	}
454
455	qtag.vid = 0;
456	qtag.pcp = pcp;
457	qtag.proto = ETHERTYPE_VLAN;
458	if (ether_8021q_frame(mp, ifp, ifp, &qtag))
459		return (true);
460	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
461	return (false);
462}
463
464/*
465 * Ethernet link layer output routine to send a raw frame to the device.
466 *
467 * This assumes that the 14 byte Ethernet header is present and contiguous
468 * in the first mbuf (if BRIDGE'ing).
469 */
470int
471ether_output_frame(struct ifnet *ifp, struct mbuf *m)
472{
473	if (ether_do_pcp(ifp, m) && !ether_set_pcp(&m, ifp, ifp->if_pcp))
474		return (0);
475
476	if (PFIL_HOOKED_OUT(V_link_pfil_head))
477		switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
478		case PFIL_DROPPED:
479			return (EACCES);
480		case PFIL_CONSUMED:
481			return (0);
482		}
483
484#ifdef EXPERIMENTAL
485#if defined(INET6) && defined(INET)
486	/* draft-ietf-6man-ipv6only-flag */
487	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
488	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
489		struct ether_header *eh;
490
491		eh = mtod(m, struct ether_header *);
492		switch (ntohs(eh->ether_type)) {
493		case ETHERTYPE_IP:
494		case ETHERTYPE_ARP:
495		case ETHERTYPE_REVARP:
496			m_freem(m);
497			return (EAFNOSUPPORT);
498			/* NOTREACHED */
499			break;
500		};
501	}
502#endif
503#endif
504
505	/*
506	 * Queue message on interface, update output statistics if successful,
507	 * and start output if interface not yet active.
508	 *
509	 * If KMSAN is enabled, use it to verify that the data does not contain
510	 * any uninitialized bytes.
511	 */
512	kmsan_check_mbuf(m, "ether_output");
513	return ((ifp->if_transmit)(ifp, m));
514}
515
516/*
517 * Process a received Ethernet packet; the packet is in the
518 * mbuf chain m with the ethernet header at the front.
519 */
520static void
521ether_input_internal(struct ifnet *ifp, struct mbuf *m)
522{
523	struct ether_header *eh;
524	u_short etype;
525
526	if ((ifp->if_flags & IFF_UP) == 0) {
527		m_freem(m);
528		return;
529	}
530#ifdef DIAGNOSTIC
531	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
532		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
533		m_freem(m);
534		return;
535	}
536#endif
537	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
538		/* Drivers should pullup and ensure the mbuf is valid */
539		if_printf(ifp, "discard frame w/o leading ethernet "
540				"header (len %d pkt len %d)\n",
541				m->m_len, m->m_pkthdr.len);
542		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
543		m_freem(m);
544		return;
545	}
546	eh = mtod(m, struct ether_header *);
547	etype = ntohs(eh->ether_type);
548	random_harvest_queue_ether(m, sizeof(*m));
549
550#ifdef EXPERIMENTAL
551#if defined(INET6) && defined(INET)
552	/* draft-ietf-6man-ipv6only-flag */
553	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
554	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
555		switch (etype) {
556		case ETHERTYPE_IP:
557		case ETHERTYPE_ARP:
558		case ETHERTYPE_REVARP:
559			m_freem(m);
560			return;
561			/* NOTREACHED */
562			break;
563		};
564	}
565#endif
566#endif
567
568	CURVNET_SET_QUIET(ifp->if_vnet);
569
570	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
571		if (ETHER_IS_BROADCAST(eh->ether_dhost))
572			m->m_flags |= M_BCAST;
573		else
574			m->m_flags |= M_MCAST;
575		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
576	}
577
578#ifdef MAC
579	/*
580	 * Tag the mbuf with an appropriate MAC label before any other
581	 * consumers can get to it.
582	 */
583	mac_ifnet_create_mbuf(ifp, m);
584#endif
585
586	/*
587	 * Give bpf a chance at the packet.
588	 */
589	ETHER_BPF_MTAP(ifp, m);
590
591	/*
592	 * If the CRC is still on the packet, trim it off. We do this once
593	 * and once only in case we are re-entered. Nothing else on the
594	 * Ethernet receive path expects to see the FCS.
595	 */
596	if (m->m_flags & M_HASFCS) {
597		m_adj(m, -ETHER_CRC_LEN);
598		m->m_flags &= ~M_HASFCS;
599	}
600
601	if (!(ifp->if_capenable & IFCAP_HWSTATS))
602		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
603
604	/* Allow monitor mode to claim this frame, after stats are updated. */
605	if (ifp->if_flags & IFF_MONITOR) {
606		m_freem(m);
607		CURVNET_RESTORE();
608		return;
609	}
610
611	/* Handle input from a lagg(4) port */
612	if (ifp->if_type == IFT_IEEE8023ADLAG) {
613		KASSERT(lagg_input_ethernet_p != NULL,
614		    ("%s: if_lagg not loaded!", __func__));
615		m = (*lagg_input_ethernet_p)(ifp, m);
616		if (m != NULL)
617			ifp = m->m_pkthdr.rcvif;
618		else {
619			CURVNET_RESTORE();
620			return;
621		}
622	}
623
624	/*
625	 * If the hardware did not process an 802.1Q tag, do this now,
626	 * to allow 802.1P priority frames to be passed to the main input
627	 * path correctly.
628	 */
629	if ((m->m_flags & M_VLANTAG) == 0 &&
630	    ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
631		struct ether_vlan_header *evl;
632
633		if (m->m_len < sizeof(*evl) &&
634		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
635#ifdef DIAGNOSTIC
636			if_printf(ifp, "cannot pullup VLAN header\n");
637#endif
638			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
639			CURVNET_RESTORE();
640			return;
641		}
642
643		evl = mtod(m, struct ether_vlan_header *);
644		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
645		m->m_flags |= M_VLANTAG;
646
647		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
648		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
649		m_adj(m, ETHER_VLAN_ENCAP_LEN);
650		eh = mtod(m, struct ether_header *);
651	}
652
653	M_SETFIB(m, ifp->if_fib);
654
655	/* Allow ng_ether(4) to claim this frame. */
656	if (ifp->if_l2com != NULL) {
657		KASSERT(ng_ether_input_p != NULL,
658		    ("%s: ng_ether_input_p is NULL", __func__));
659		m->m_flags &= ~M_PROMISC;
660		(*ng_ether_input_p)(ifp, &m);
661		if (m == NULL) {
662			CURVNET_RESTORE();
663			return;
664		}
665		eh = mtod(m, struct ether_header *);
666	}
667
668	/*
669	 * Allow if_bridge(4) to claim this frame.
670	 *
671	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
672	 * and the frame should be delivered locally.
673	 *
674	 * If M_BRIDGE_INJECT is set, the packet was received directly by the
675	 * bridge via netmap, so "ifp" is the bridge itself and the packet
676	 * should be re-examined.
677	 */
678	if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
679		m->m_flags &= ~M_PROMISC;
680		BRIDGE_INPUT(ifp, m);
681		if (m == NULL) {
682			CURVNET_RESTORE();
683			return;
684		}
685		eh = mtod(m, struct ether_header *);
686	}
687
688#if defined(INET) || defined(INET6)
689	/*
690	 * Clear M_PROMISC on frame so that carp(4) will see it when the
691	 * mbuf flows up to Layer 3.
692	 * FreeBSD's implementation of carp(4) uses the inprotosw
693	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
694	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
695	 * is outside the scope of the M_PROMISC test below.
696	 * TODO: Maintain a hash table of ethernet addresses other than
697	 * ether_dhost which may be active on this ifp.
698	 */
699	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
700		m->m_flags &= ~M_PROMISC;
701	} else
702#endif
703	{
704		/*
705		 * If the frame received was not for our MAC address, set the
706		 * M_PROMISC flag on the mbuf chain. The frame may need to
707		 * be seen by the rest of the Ethernet input path in case of
708		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
709		 * seen by upper protocol layers.
710		 */
711		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
712		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
713			m->m_flags |= M_PROMISC;
714	}
715
716	ether_demux(ifp, m);
717	CURVNET_RESTORE();
718}
719
720/*
721 * Ethernet input dispatch; by default, direct dispatch here regardless of
722 * global configuration.  However, if RSS is enabled, hook up RSS affinity
723 * so that when deferred or hybrid dispatch is enabled, we can redistribute
724 * load based on RSS.
725 *
726 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
727 * not it had already done work distribution via multi-queue.  Then we could
728 * direct dispatch in the event load balancing was already complete and
729 * handle the case of interfaces with different capabilities better.
730 *
731 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
732 * at multiple layers?
733 *
734 * XXXRW: For now, enable all this only if RSS is compiled in, although it
735 * works fine without RSS.  Need to characterise the performance overhead
736 * of the detour through the netisr code in the event the result is always
737 * direct dispatch.
738 */
739static void
740ether_nh_input(struct mbuf *m)
741{
742
743	M_ASSERTPKTHDR(m);
744	KASSERT(m->m_pkthdr.rcvif != NULL,
745	    ("%s: NULL interface pointer", __func__));
746	ether_input_internal(m->m_pkthdr.rcvif, m);
747}
748
749static struct netisr_handler	ether_nh = {
750	.nh_name = "ether",
751	.nh_handler = ether_nh_input,
752	.nh_proto = NETISR_ETHER,
753#ifdef RSS
754	.nh_policy = NETISR_POLICY_CPU,
755	.nh_dispatch = NETISR_DISPATCH_DIRECT,
756	.nh_m2cpuid = rss_m2cpuid,
757#else
758	.nh_policy = NETISR_POLICY_SOURCE,
759	.nh_dispatch = NETISR_DISPATCH_DIRECT,
760#endif
761};
762
763static void
764ether_init(__unused void *arg)
765{
766
767	netisr_register(&ether_nh);
768}
769SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
770
771static void
772vnet_ether_init(__unused void *arg)
773{
774	struct pfil_head_args args;
775
776	args.pa_version = PFIL_VERSION;
777	args.pa_flags = PFIL_IN | PFIL_OUT;
778	args.pa_type = PFIL_TYPE_ETHERNET;
779	args.pa_headname = PFIL_ETHER_NAME;
780	V_link_pfil_head = pfil_head_register(&args);
781
782#ifdef VIMAGE
783	netisr_register_vnet(&ether_nh);
784#endif
785}
786VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
787    vnet_ether_init, NULL);
788
789#ifdef VIMAGE
790static void
791vnet_ether_pfil_destroy(__unused void *arg)
792{
793
794	pfil_head_unregister(V_link_pfil_head);
795}
796VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
797    vnet_ether_pfil_destroy, NULL);
798
799static void
800vnet_ether_destroy(__unused void *arg)
801{
802
803	netisr_unregister_vnet(&ether_nh);
804}
805VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
806    vnet_ether_destroy, NULL);
807#endif
808
809static void
810ether_input(struct ifnet *ifp, struct mbuf *m)
811{
812	struct epoch_tracker et;
813	struct mbuf *mn;
814	bool needs_epoch;
815
816	needs_epoch = (ifp->if_flags & IFF_NEEDSEPOCH);
817#ifdef INVARIANTS
818	/*
819	 * This temporary code is here to prevent epoch unaware and unmarked
820	 * drivers to panic the system.  Once all drivers are taken care of,
821	 * the whole INVARIANTS block should go away.
822	 */
823	if (!needs_epoch && !in_epoch(net_epoch_preempt)) {
824		static bool printedonce;
825
826		needs_epoch = true;
827		if (!printedonce) {
828			printedonce = true;
829			if_printf(ifp, "called %s w/o net epoch! "
830			    "PLEASE file a bug report.", __func__);
831#ifdef KDB
832			kdb_backtrace();
833#endif
834		}
835	}
836#endif
837
838	/*
839	 * The drivers are allowed to pass in a chain of packets linked with
840	 * m_nextpkt. We split them up into separate packets here and pass
841	 * them up. This allows the drivers to amortize the receive lock.
842	 */
843	CURVNET_SET_QUIET(ifp->if_vnet);
844	if (__predict_false(needs_epoch))
845		NET_EPOCH_ENTER(et);
846	while (m) {
847		mn = m->m_nextpkt;
848		m->m_nextpkt = NULL;
849
850		/*
851		 * We will rely on rcvif being set properly in the deferred
852		 * context, so assert it is correct here.
853		 */
854		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
855		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
856		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
857		netisr_dispatch(NETISR_ETHER, m);
858		m = mn;
859	}
860	if (__predict_false(needs_epoch))
861		NET_EPOCH_EXIT(et);
862	CURVNET_RESTORE();
863}
864
865/*
866 * Upper layer processing for a received Ethernet packet.
867 */
868void
869ether_demux(struct ifnet *ifp, struct mbuf *m)
870{
871	struct ether_header *eh;
872	int i, isr;
873	u_short ether_type;
874
875	NET_EPOCH_ASSERT();
876	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
877
878	/* Do not grab PROMISC frames in case we are re-entered. */
879	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
880		i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
881		if (i != PFIL_PASS)
882			return;
883	}
884
885	eh = mtod(m, struct ether_header *);
886	ether_type = ntohs(eh->ether_type);
887
888	/*
889	 * If this frame has a VLAN tag other than 0, call vlan_input()
890	 * if its module is loaded. Otherwise, drop.
891	 */
892	if ((m->m_flags & M_VLANTAG) &&
893	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
894		if (ifp->if_vlantrunk == NULL) {
895			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
896			m_freem(m);
897			return;
898		}
899		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
900		    __func__));
901		/* Clear before possibly re-entering ether_input(). */
902		m->m_flags &= ~M_PROMISC;
903		(*vlan_input_p)(ifp, m);
904		return;
905	}
906
907	/*
908	 * Pass promiscuously received frames to the upper layer if the user
909	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
910	 */
911	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
912		m_freem(m);
913		return;
914	}
915
916	/*
917	 * Reset layer specific mbuf flags to avoid confusing upper layers.
918	 */
919	m->m_flags &= ~M_VLANTAG;
920	m_clrprotoflags(m);
921
922	/*
923	 * Dispatch frame to upper layer.
924	 */
925	switch (ether_type) {
926#ifdef INET
927	case ETHERTYPE_IP:
928		isr = NETISR_IP;
929		break;
930
931	case ETHERTYPE_ARP:
932		if (ifp->if_flags & IFF_NOARP) {
933			/* Discard packet if ARP is disabled on interface */
934			m_freem(m);
935			return;
936		}
937		isr = NETISR_ARP;
938		break;
939#endif
940#ifdef INET6
941	case ETHERTYPE_IPV6:
942		isr = NETISR_IPV6;
943		break;
944#endif
945	default:
946		goto discard;
947	}
948
949	/* Strip off Ethernet header. */
950	m_adj(m, ETHER_HDR_LEN);
951
952	netisr_dispatch(isr, m);
953	return;
954
955discard:
956	/*
957	 * Packet is to be discarded.  If netgraph is present,
958	 * hand the packet to it for last chance processing;
959	 * otherwise dispose of it.
960	 */
961	if (ifp->if_l2com != NULL) {
962		KASSERT(ng_ether_input_orphan_p != NULL,
963		    ("ng_ether_input_orphan_p is NULL"));
964		(*ng_ether_input_orphan_p)(ifp, m);
965		return;
966	}
967	m_freem(m);
968}
969
970/*
971 * Convert Ethernet address to printable (loggable) representation.
972 * This routine is for compatibility; it's better to just use
973 *
974 *	printf("%6D", <pointer to address>, ":");
975 *
976 * since there's no static buffer involved.
977 */
978char *
979ether_sprintf(const u_char *ap)
980{
981	static char etherbuf[18];
982	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
983	return (etherbuf);
984}
985
986/*
987 * Perform common duties while attaching to interface list
988 */
989void
990ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
991{
992	int i;
993	struct ifaddr *ifa;
994	struct sockaddr_dl *sdl;
995
996	ifp->if_addrlen = ETHER_ADDR_LEN;
997	ifp->if_hdrlen = ETHER_HDR_LEN;
998	ifp->if_mtu = ETHERMTU;
999	if_attach(ifp);
1000	ifp->if_output = ether_output;
1001	ifp->if_input = ether_input;
1002	ifp->if_resolvemulti = ether_resolvemulti;
1003	ifp->if_requestencap = ether_requestencap;
1004#ifdef VIMAGE
1005	ifp->if_reassign = ether_reassign;
1006#endif
1007	if (ifp->if_baudrate == 0)
1008		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1009	ifp->if_broadcastaddr = etherbroadcastaddr;
1010
1011	ifa = ifp->if_addr;
1012	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
1013	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1014	sdl->sdl_type = IFT_ETHER;
1015	sdl->sdl_alen = ifp->if_addrlen;
1016	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
1017
1018	if (ifp->if_hw_addr != NULL)
1019		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1020
1021	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1022	if (ng_ether_attach_p != NULL)
1023		(*ng_ether_attach_p)(ifp);
1024
1025	/* Announce Ethernet MAC address if non-zero. */
1026	for (i = 0; i < ifp->if_addrlen; i++)
1027		if (lla[i] != 0)
1028			break;
1029	if (i != ifp->if_addrlen)
1030		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1031
1032	uuid_ether_add(LLADDR(sdl));
1033
1034	/* Add necessary bits are setup; announce it now. */
1035	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1036	if (IS_DEFAULT_VNET(curvnet))
1037		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1038}
1039
1040/*
1041 * Perform common duties while detaching an Ethernet interface
1042 */
1043void
1044ether_ifdetach(struct ifnet *ifp)
1045{
1046	struct sockaddr_dl *sdl;
1047
1048	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1049	uuid_ether_del(LLADDR(sdl));
1050
1051	if (ifp->if_l2com != NULL) {
1052		KASSERT(ng_ether_detach_p != NULL,
1053		    ("ng_ether_detach_p is NULL"));
1054		(*ng_ether_detach_p)(ifp);
1055	}
1056
1057	bpfdetach(ifp);
1058	if_detach(ifp);
1059}
1060
1061#ifdef VIMAGE
1062void
1063ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1064{
1065
1066	if (ifp->if_l2com != NULL) {
1067		KASSERT(ng_ether_detach_p != NULL,
1068		    ("ng_ether_detach_p is NULL"));
1069		(*ng_ether_detach_p)(ifp);
1070	}
1071
1072	if (ng_ether_attach_p != NULL) {
1073		CURVNET_SET_QUIET(new_vnet);
1074		(*ng_ether_attach_p)(ifp);
1075		CURVNET_RESTORE();
1076	}
1077}
1078#endif
1079
1080SYSCTL_DECL(_net_link);
1081SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1082    "Ethernet");
1083
1084#if 0
1085/*
1086 * This is for reference.  We have a table-driven version
1087 * of the little-endian crc32 generator, which is faster
1088 * than the double-loop.
1089 */
1090uint32_t
1091ether_crc32_le(const uint8_t *buf, size_t len)
1092{
1093	size_t i;
1094	uint32_t crc;
1095	int bit;
1096	uint8_t data;
1097
1098	crc = 0xffffffff;	/* initial value */
1099
1100	for (i = 0; i < len; i++) {
1101		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1102			carry = (crc ^ data) & 1;
1103			crc >>= 1;
1104			if (carry)
1105				crc = (crc ^ ETHER_CRC_POLY_LE);
1106		}
1107	}
1108
1109	return (crc);
1110}
1111#else
1112uint32_t
1113ether_crc32_le(const uint8_t *buf, size_t len)
1114{
1115	static const uint32_t crctab[] = {
1116		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1117		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1118		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1119		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1120	};
1121	size_t i;
1122	uint32_t crc;
1123
1124	crc = 0xffffffff;	/* initial value */
1125
1126	for (i = 0; i < len; i++) {
1127		crc ^= buf[i];
1128		crc = (crc >> 4) ^ crctab[crc & 0xf];
1129		crc = (crc >> 4) ^ crctab[crc & 0xf];
1130	}
1131
1132	return (crc);
1133}
1134#endif
1135
1136uint32_t
1137ether_crc32_be(const uint8_t *buf, size_t len)
1138{
1139	size_t i;
1140	uint32_t crc, carry;
1141	int bit;
1142	uint8_t data;
1143
1144	crc = 0xffffffff;	/* initial value */
1145
1146	for (i = 0; i < len; i++) {
1147		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1148			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1149			crc <<= 1;
1150			if (carry)
1151				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1152		}
1153	}
1154
1155	return (crc);
1156}
1157
1158int
1159ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1160{
1161	struct ifaddr *ifa = (struct ifaddr *) data;
1162	struct ifreq *ifr = (struct ifreq *) data;
1163	int error = 0;
1164
1165	switch (command) {
1166	case SIOCSIFADDR:
1167		ifp->if_flags |= IFF_UP;
1168
1169		switch (ifa->ifa_addr->sa_family) {
1170#ifdef INET
1171		case AF_INET:
1172			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1173			arp_ifinit(ifp, ifa);
1174			break;
1175#endif
1176		default:
1177			ifp->if_init(ifp->if_softc);
1178			break;
1179		}
1180		break;
1181
1182	case SIOCGIFADDR:
1183		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1184		    ETHER_ADDR_LEN);
1185		break;
1186
1187	case SIOCSIFMTU:
1188		/*
1189		 * Set the interface MTU.
1190		 */
1191		if (ifr->ifr_mtu > ETHERMTU) {
1192			error = EINVAL;
1193		} else {
1194			ifp->if_mtu = ifr->ifr_mtu;
1195		}
1196		break;
1197
1198	case SIOCSLANPCP:
1199		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1200		if (error != 0)
1201			break;
1202		if (ifr->ifr_lan_pcp > 7 &&
1203		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1204			error = EINVAL;
1205		} else {
1206			ifp->if_pcp = ifr->ifr_lan_pcp;
1207			/* broadcast event about PCP change */
1208			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1209		}
1210		break;
1211
1212	case SIOCGLANPCP:
1213		ifr->ifr_lan_pcp = ifp->if_pcp;
1214		break;
1215
1216	default:
1217		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1218		break;
1219	}
1220	return (error);
1221}
1222
1223static int
1224ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1225	struct sockaddr *sa)
1226{
1227	struct sockaddr_dl *sdl;
1228#ifdef INET
1229	struct sockaddr_in *sin;
1230#endif
1231#ifdef INET6
1232	struct sockaddr_in6 *sin6;
1233#endif
1234	u_char *e_addr;
1235
1236	switch(sa->sa_family) {
1237	case AF_LINK:
1238		/*
1239		 * No mapping needed. Just check that it's a valid MC address.
1240		 */
1241		sdl = (struct sockaddr_dl *)sa;
1242		e_addr = LLADDR(sdl);
1243		if (!ETHER_IS_MULTICAST(e_addr))
1244			return EADDRNOTAVAIL;
1245		*llsa = NULL;
1246		return 0;
1247
1248#ifdef INET
1249	case AF_INET:
1250		sin = (struct sockaddr_in *)sa;
1251		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1252			return EADDRNOTAVAIL;
1253		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1254		sdl->sdl_alen = ETHER_ADDR_LEN;
1255		e_addr = LLADDR(sdl);
1256		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1257		*llsa = (struct sockaddr *)sdl;
1258		return 0;
1259#endif
1260#ifdef INET6
1261	case AF_INET6:
1262		sin6 = (struct sockaddr_in6 *)sa;
1263		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1264			/*
1265			 * An IP6 address of 0 means listen to all
1266			 * of the Ethernet multicast address used for IP6.
1267			 * (This is used for multicast routers.)
1268			 */
1269			ifp->if_flags |= IFF_ALLMULTI;
1270			*llsa = NULL;
1271			return 0;
1272		}
1273		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1274			return EADDRNOTAVAIL;
1275		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1276		sdl->sdl_alen = ETHER_ADDR_LEN;
1277		e_addr = LLADDR(sdl);
1278		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1279		*llsa = (struct sockaddr *)sdl;
1280		return 0;
1281#endif
1282
1283	default:
1284		/*
1285		 * Well, the text isn't quite right, but it's the name
1286		 * that counts...
1287		 */
1288		return EAFNOSUPPORT;
1289	}
1290}
1291
1292static moduledata_t ether_mod = {
1293	.name = "ether",
1294};
1295
1296void
1297ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1298{
1299	struct ether_vlan_header vlan;
1300	struct mbuf mv, mb;
1301
1302	KASSERT((m->m_flags & M_VLANTAG) != 0,
1303	    ("%s: vlan information not present", __func__));
1304	KASSERT(m->m_len >= sizeof(struct ether_header),
1305	    ("%s: mbuf not large enough for header", __func__));
1306	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1307	vlan.evl_proto = vlan.evl_encap_proto;
1308	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1309	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1310	m->m_len -= sizeof(struct ether_header);
1311	m->m_data += sizeof(struct ether_header);
1312	/*
1313	 * If a data link has been supplied by the caller, then we will need to
1314	 * re-create a stack allocated mbuf chain with the following structure:
1315	 *
1316	 * (1) mbuf #1 will contain the supplied data link
1317	 * (2) mbuf #2 will contain the vlan header
1318	 * (3) mbuf #3 will contain the original mbuf's packet data
1319	 *
1320	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1321	 */
1322	if (data != NULL) {
1323		mv.m_next = m;
1324		mv.m_data = (caddr_t)&vlan;
1325		mv.m_len = sizeof(vlan);
1326		mb.m_next = &mv;
1327		mb.m_data = data;
1328		mb.m_len = dlen;
1329		bpf_mtap(bp, &mb);
1330	} else
1331		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1332	m->m_len += sizeof(struct ether_header);
1333	m->m_data -= sizeof(struct ether_header);
1334}
1335
1336struct mbuf *
1337ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1338{
1339	struct ether_vlan_header *evl;
1340
1341	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1342	if (m == NULL)
1343		return (NULL);
1344	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1345
1346	if (m->m_len < sizeof(*evl)) {
1347		m = m_pullup(m, sizeof(*evl));
1348		if (m == NULL)
1349			return (NULL);
1350	}
1351
1352	/*
1353	 * Transform the Ethernet header into an Ethernet header
1354	 * with 802.1Q encapsulation.
1355	 */
1356	evl = mtod(m, struct ether_vlan_header *);
1357	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1358	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1359	evl->evl_encap_proto = htons(proto);
1360	evl->evl_tag = htons(tag);
1361	return (m);
1362}
1363
1364void
1365ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1366{
1367	if (bpf_peers_present(ifp->if_bpf)) {
1368		M_ASSERTVALID(m);
1369		if ((m->m_flags & M_VLANTAG) != 0)
1370			ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1371		else
1372			bpf_mtap(ifp->if_bpf, m);
1373	}
1374}
1375
1376static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1377    "IEEE 802.1Q VLAN");
1378static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1379    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1380    "for consistency");
1381
1382VNET_DEFINE_STATIC(int, soft_pad);
1383#define	V_soft_pad	VNET(soft_pad)
1384SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1385    &VNET_NAME(soft_pad), 0,
1386    "pad short frames before tagging");
1387
1388/*
1389 * For now, make preserving PCP via an mbuf tag optional, as it increases
1390 * per-packet memory allocations and frees.  In the future, it would be
1391 * preferable to reuse ether_vtag for this, or similar.
1392 */
1393VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1394#define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
1395SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1396    &VNET_NAME(vlan_mtag_pcp), 0,
1397    "Retain VLAN PCP information as packets are passed up the stack");
1398
1399static inline bool
1400ether_do_pcp(struct ifnet *ifp, struct mbuf *m)
1401{
1402	if (ifp->if_type == IFT_L2VLAN)
1403		return (false);
1404	if (ifp->if_pcp != IFNET_PCP_NONE || (m->m_flags & M_VLANTAG) != 0)
1405		return (true);
1406	if (V_vlan_mtag_pcp &&
1407	    m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL) != NULL)
1408		return (true);
1409	return (false);
1410}
1411
1412bool
1413ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1414    const struct ether_8021q_tag *qtag)
1415{
1416	struct m_tag *mtag;
1417	int n;
1418	uint16_t tag;
1419	uint8_t pcp = qtag->pcp;
1420	static const char pad[8];	/* just zeros */
1421
1422	/*
1423	 * Pad the frame to the minimum size allowed if told to.
1424	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1425	 * paragraph C.4.4.3.b.  It can help to work around buggy
1426	 * bridges that violate paragraph C.4.4.3.a from the same
1427	 * document, i.e., fail to pad short frames after untagging.
1428	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1429	 * untagging it will produce a 62-byte frame, which is a runt
1430	 * and requires padding.  There are VLAN-enabled network
1431	 * devices that just discard such runts instead or mishandle
1432	 * them somehow.
1433	 */
1434	if (V_soft_pad && p->if_type == IFT_ETHER) {
1435		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1436		     n > 0; n -= sizeof(pad)) {
1437			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1438				break;
1439		}
1440		if (n > 0) {
1441			m_freem(*mp);
1442			*mp = NULL;
1443			if_printf(ife, "cannot pad short frame");
1444			return (false);
1445		}
1446	}
1447
1448	/*
1449	 * If PCP is set in mbuf, use it
1450	 */
1451	if ((*mp)->m_flags & M_VLANTAG) {
1452		pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1453	}
1454
1455	/*
1456	 * If underlying interface can do VLAN tag insertion itself,
1457	 * just pass the packet along. However, we need some way to
1458	 * tell the interface where the packet came from so that it
1459	 * knows how to find the VLAN tag to use, so we attach a
1460	 * packet tag that holds it.
1461	 */
1462	if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1463	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1464		tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1465	else
1466		tag = EVL_MAKETAG(qtag->vid, pcp, 0);
1467	if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1468	    (qtag->proto == ETHERTYPE_VLAN)) {
1469		(*mp)->m_pkthdr.ether_vtag = tag;
1470		(*mp)->m_flags |= M_VLANTAG;
1471	} else {
1472		*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1473		if (*mp == NULL) {
1474			if_printf(ife, "unable to prepend 802.1Q header");
1475			return (false);
1476		}
1477		(*mp)->m_flags &= ~M_VLANTAG;
1478	}
1479	return (true);
1480}
1481
1482/*
1483 * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1484 * cryptographic hash function on the containing jail's name, UUID and the
1485 * interface name to attempt to provide a unique but stable address.
1486 * Pseudo-interfaces which require a MAC address should use this function to
1487 * allocate non-locally-administered addresses.
1488 */
1489void
1490ether_gen_addr_byname(const char *nameunit, struct ether_addr *hwaddr)
1491{
1492	SHA1_CTX ctx;
1493	char *buf;
1494	char uuid[HOSTUUIDLEN + 1];
1495	uint64_t addr;
1496	int i, sz;
1497	char digest[SHA1_RESULTLEN];
1498	char jailname[MAXHOSTNAMELEN];
1499
1500	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1501	if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1502		/* Fall back to a random mac address. */
1503		goto rando;
1504	}
1505
1506	/* If each (vnet) jail would also have a unique hostuuid this would not
1507	 * be necessary. */
1508	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1509	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, nameunit,
1510	    jailname);
1511	if (sz < 0) {
1512		/* Fall back to a random mac address. */
1513		goto rando;
1514	}
1515
1516	SHA1Init(&ctx);
1517	SHA1Update(&ctx, buf, sz);
1518	SHA1Final(digest, &ctx);
1519	free(buf, M_TEMP);
1520
1521	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1522	    OUI_FREEBSD_GENERATED_MASK;
1523	addr = OUI_FREEBSD(addr);
1524	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1525		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1526		    0xFF;
1527	}
1528
1529	return;
1530rando:
1531	arc4rand(hwaddr, sizeof(*hwaddr), 0);
1532	/* Unicast */
1533	hwaddr->octet[0] &= 0xFE;
1534	/* Locally administered. */
1535	hwaddr->octet[0] |= 0x02;
1536}
1537
1538void
1539ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1540{
1541	ether_gen_addr_byname(if_name(ifp), hwaddr);
1542}
1543
1544DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1545MODULE_VERSION(ether, 1);
1546