1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42#include "opt_ddb.h"
43#include "opt_watchdog.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/asan.h>
48#include <sys/bio.h>
49#include <sys/buf.h>
50#include <sys/capsicum.h>
51#include <sys/condvar.h>
52#include <sys/conf.h>
53#include <sys/counter.h>
54#include <sys/dirent.h>
55#include <sys/event.h>
56#include <sys/eventhandler.h>
57#include <sys/extattr.h>
58#include <sys/file.h>
59#include <sys/fcntl.h>
60#include <sys/jail.h>
61#include <sys/kdb.h>
62#include <sys/kernel.h>
63#include <sys/kthread.h>
64#include <sys/ktr.h>
65#include <sys/limits.h>
66#include <sys/lockf.h>
67#include <sys/malloc.h>
68#include <sys/mount.h>
69#include <sys/namei.h>
70#include <sys/pctrie.h>
71#include <sys/priv.h>
72#include <sys/reboot.h>
73#include <sys/refcount.h>
74#include <sys/rwlock.h>
75#include <sys/sched.h>
76#include <sys/sleepqueue.h>
77#include <sys/smr.h>
78#include <sys/smp.h>
79#include <sys/stat.h>
80#include <sys/sysctl.h>
81#include <sys/syslog.h>
82#include <sys/vmmeter.h>
83#include <sys/vnode.h>
84#include <sys/watchdog.h>
85
86#include <machine/stdarg.h>
87
88#include <security/mac/mac_framework.h>
89
90#include <vm/vm.h>
91#include <vm/vm_object.h>
92#include <vm/vm_extern.h>
93#include <vm/pmap.h>
94#include <vm/vm_map.h>
95#include <vm/vm_page.h>
96#include <vm/vm_kern.h>
97#include <vm/vnode_pager.h>
98#include <vm/uma.h>
99
100#if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101#error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102#endif
103
104#ifdef DDB
105#include <ddb/ddb.h>
106#endif
107
108static void	delmntque(struct vnode *vp);
109static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110		    int slpflag, int slptimeo);
111static void	syncer_shutdown(void *arg, int howto);
112static int	vtryrecycle(struct vnode *vp, bool isvnlru);
113static void	v_init_counters(struct vnode *);
114static void	vn_seqc_init(struct vnode *);
115static void	vn_seqc_write_end_free(struct vnode *vp);
116static void	vgonel(struct vnode *);
117static bool	vhold_recycle_free(struct vnode *);
118static void	vdropl_recycle(struct vnode *vp);
119static void	vdrop_recycle(struct vnode *vp);
120static void	vfs_knllock(void *arg);
121static void	vfs_knlunlock(void *arg);
122static void	vfs_knl_assert_lock(void *arg, int what);
123static void	destroy_vpollinfo(struct vpollinfo *vi);
124static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125		    daddr_t startlbn, daddr_t endlbn);
126static void	vnlru_recalc(void);
127
128static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129    "vnode configuration and statistics");
130static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131    "vnode configuration");
132static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133    "vnode statistics");
134static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135    "vnode recycling");
136
137/*
138 * Number of vnodes in existence.  Increased whenever getnewvnode()
139 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140 */
141static u_long __exclusive_cache_line numvnodes;
142
143SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144    "Number of vnodes in existence (legacy)");
145SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146    "Number of vnodes in existence");
147
148static counter_u64_t vnodes_created;
149SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150    "Number of vnodes created by getnewvnode (legacy)");
151SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152    "Number of vnodes created by getnewvnode");
153
154/*
155 * Conversion tables for conversion from vnode types to inode formats
156 * and back.
157 */
158__enum_uint8(vtype) iftovt_tab[16] = {
159	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161};
162int vttoif_tab[10] = {
163	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165};
166
167/*
168 * List of allocates vnodes in the system.
169 */
170static TAILQ_HEAD(freelst, vnode) vnode_list;
171static struct vnode *vnode_list_free_marker;
172static struct vnode *vnode_list_reclaim_marker;
173
174/*
175 * "Free" vnode target.  Free vnodes are rarely completely free, but are
176 * just ones that are cheap to recycle.  Usually they are for files which
177 * have been stat'd but not read; these usually have inode and namecache
178 * data attached to them.  This target is the preferred minimum size of a
179 * sub-cache consisting mostly of such files. The system balances the size
180 * of this sub-cache with its complement to try to prevent either from
181 * thrashing while the other is relatively inactive.  The targets express
182 * a preference for the best balance.
183 *
184 * "Above" this target there are 2 further targets (watermarks) related
185 * to recyling of free vnodes.  In the best-operating case, the cache is
186 * exactly full, the free list has size between vlowat and vhiwat above the
187 * free target, and recycling from it and normal use maintains this state.
188 * Sometimes the free list is below vlowat or even empty, but this state
189 * is even better for immediate use provided the cache is not full.
190 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191 * ones) to reach one of these states.  The watermarks are currently hard-
192 * coded as 4% and 9% of the available space higher.  These and the default
193 * of 25% for wantfreevnodes are too large if the memory size is large.
194 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195 * whenever vnlru_proc() becomes active.
196 */
197static long wantfreevnodes;
198static long __exclusive_cache_line freevnodes;
199static long freevnodes_old;
200
201static u_long recycles_count;
202SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203    "Number of vnodes recycled to meet vnode cache targets (legacy)");
204SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205    &recycles_count, 0,
206    "Number of vnodes recycled to meet vnode cache targets");
207
208static u_long recycles_free_count;
209SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210    &recycles_free_count, 0,
211    "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213    &recycles_free_count, 0,
214    "Number of free vnodes recycled to meet vnode cache targets");
215
216static counter_u64_t direct_recycles_free_count;
217SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218    &direct_recycles_free_count,
219    "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220
221static counter_u64_t vnode_skipped_requeues;
222SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223    "Number of times LRU requeue was skipped due to lock contention");
224
225static u_long deferred_inact;
226SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227    &deferred_inact, 0, "Number of times inactive processing was deferred");
228
229/* To keep more than one thread at a time from running vfs_getnewfsid */
230static struct mtx mntid_mtx;
231
232/*
233 * Lock for any access to the following:
234 *	vnode_list
235 *	numvnodes
236 *	freevnodes
237 */
238static struct mtx __exclusive_cache_line vnode_list_mtx;
239
240/* Publicly exported FS */
241struct nfs_public nfs_pub;
242
243static uma_zone_t buf_trie_zone;
244static smr_t buf_trie_smr;
245
246/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247static uma_zone_t vnode_zone;
248MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249
250__read_frequently smr_t vfs_smr;
251
252/*
253 * The workitem queue.
254 *
255 * It is useful to delay writes of file data and filesystem metadata
256 * for tens of seconds so that quickly created and deleted files need
257 * not waste disk bandwidth being created and removed. To realize this,
258 * we append vnodes to a "workitem" queue. When running with a soft
259 * updates implementation, most pending metadata dependencies should
260 * not wait for more than a few seconds. Thus, mounted on block devices
261 * are delayed only about a half the time that file data is delayed.
262 * Similarly, directory updates are more critical, so are only delayed
263 * about a third the time that file data is delayed. Thus, there are
264 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265 * one each second (driven off the filesystem syncer process). The
266 * syncer_delayno variable indicates the next queue that is to be processed.
267 * Items that need to be processed soon are placed in this queue:
268 *
269 *	syncer_workitem_pending[syncer_delayno]
270 *
271 * A delay of fifteen seconds is done by placing the request fifteen
272 * entries later in the queue:
273 *
274 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275 *
276 */
277static int syncer_delayno;
278static long syncer_mask;
279LIST_HEAD(synclist, bufobj);
280static struct synclist *syncer_workitem_pending;
281/*
282 * The sync_mtx protects:
283 *	bo->bo_synclist
284 *	sync_vnode_count
285 *	syncer_delayno
286 *	syncer_state
287 *	syncer_workitem_pending
288 *	syncer_worklist_len
289 *	rushjob
290 */
291static struct mtx sync_mtx;
292static struct cv sync_wakeup;
293
294#define SYNCER_MAXDELAY		32
295static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
296static int syncdelay = 30;		/* max time to delay syncing data */
297static int filedelay = 30;		/* time to delay syncing files */
298SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299    "Time to delay syncing files (in seconds)");
300static int dirdelay = 29;		/* time to delay syncing directories */
301SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302    "Time to delay syncing directories (in seconds)");
303static int metadelay = 28;		/* time to delay syncing metadata */
304SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305    "Time to delay syncing metadata (in seconds)");
306static int rushjob;		/* number of slots to run ASAP */
307static int stat_rush_requests;	/* number of times I/O speeded up */
308SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309    "Number of times I/O speeded up (rush requests)");
310
311#define	VDBATCH_SIZE 8
312struct vdbatch {
313	u_int index;
314	struct mtx lock;
315	struct vnode *tab[VDBATCH_SIZE];
316};
317DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318
319static void	vdbatch_dequeue(struct vnode *vp);
320
321/*
322 * When shutting down the syncer, run it at four times normal speed.
323 */
324#define SYNCER_SHUTDOWN_SPEEDUP		4
325static int sync_vnode_count;
326static int syncer_worklist_len;
327static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
328    syncer_state;
329
330/* Target for maximum number of vnodes. */
331u_long desiredvnodes;
332static u_long gapvnodes;		/* gap between wanted and desired */
333static u_long vhiwat;		/* enough extras after expansion */
334static u_long vlowat;		/* minimal extras before expansion */
335static bool vstir;		/* nonzero to stir non-free vnodes */
336static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
337
338static u_long vnlru_read_freevnodes(void);
339
340/*
341 * Note that no attempt is made to sanitize these parameters.
342 */
343static int
344sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
345{
346	u_long val;
347	int error;
348
349	val = desiredvnodes;
350	error = sysctl_handle_long(oidp, &val, 0, req);
351	if (error != 0 || req->newptr == NULL)
352		return (error);
353
354	if (val == desiredvnodes)
355		return (0);
356	mtx_lock(&vnode_list_mtx);
357	desiredvnodes = val;
358	wantfreevnodes = desiredvnodes / 4;
359	vnlru_recalc();
360	mtx_unlock(&vnode_list_mtx);
361	/*
362	 * XXX There is no protection against multiple threads changing
363	 * desiredvnodes at the same time. Locking above only helps vnlru and
364	 * getnewvnode.
365	 */
366	vfs_hash_changesize(desiredvnodes);
367	cache_changesize(desiredvnodes);
368	return (0);
369}
370
371SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
372    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
373    "LU", "Target for maximum number of vnodes (legacy)");
374SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
375    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
376    "LU", "Target for maximum number of vnodes");
377
378static int
379sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
380{
381	u_long rfreevnodes;
382
383	rfreevnodes = vnlru_read_freevnodes();
384	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
385}
386
387SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
388    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
389    "LU", "Number of \"free\" vnodes (legacy)");
390SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
391    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
392    "LU", "Number of \"free\" vnodes");
393
394static int
395sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
396{
397	u_long val;
398	int error;
399
400	val = wantfreevnodes;
401	error = sysctl_handle_long(oidp, &val, 0, req);
402	if (error != 0 || req->newptr == NULL)
403		return (error);
404
405	if (val == wantfreevnodes)
406		return (0);
407	mtx_lock(&vnode_list_mtx);
408	wantfreevnodes = val;
409	vnlru_recalc();
410	mtx_unlock(&vnode_list_mtx);
411	return (0);
412}
413
414SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
415    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
416    "LU", "Target for minimum number of \"free\" vnodes (legacy)");
417SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
418    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
419    "LU", "Target for minimum number of \"free\" vnodes");
420
421static int vnlru_nowhere;
422SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
423    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
424
425static int
426sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
427{
428	struct vnode *vp;
429	struct nameidata nd;
430	char *buf;
431	unsigned long ndflags;
432	int error;
433
434	if (req->newptr == NULL)
435		return (EINVAL);
436	if (req->newlen >= PATH_MAX)
437		return (E2BIG);
438
439	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
440	error = SYSCTL_IN(req, buf, req->newlen);
441	if (error != 0)
442		goto out;
443
444	buf[req->newlen] = '\0';
445
446	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
447	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
448	if ((error = namei(&nd)) != 0)
449		goto out;
450	vp = nd.ni_vp;
451
452	if (VN_IS_DOOMED(vp)) {
453		/*
454		 * This vnode is being recycled.  Return != 0 to let the caller
455		 * know that the sysctl had no effect.  Return EAGAIN because a
456		 * subsequent call will likely succeed (since namei will create
457		 * a new vnode if necessary)
458		 */
459		error = EAGAIN;
460		goto putvnode;
461	}
462
463	vgone(vp);
464putvnode:
465	vput(vp);
466	NDFREE_PNBUF(&nd);
467out:
468	free(buf, M_TEMP);
469	return (error);
470}
471
472static int
473sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
474{
475	struct thread *td = curthread;
476	struct vnode *vp;
477	struct file *fp;
478	int error;
479	int fd;
480
481	if (req->newptr == NULL)
482		return (EBADF);
483
484        error = sysctl_handle_int(oidp, &fd, 0, req);
485        if (error != 0)
486                return (error);
487	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
488	if (error != 0)
489		return (error);
490	vp = fp->f_vnode;
491
492	error = vn_lock(vp, LK_EXCLUSIVE);
493	if (error != 0)
494		goto drop;
495
496	vgone(vp);
497	VOP_UNLOCK(vp);
498drop:
499	fdrop(fp, td);
500	return (error);
501}
502
503SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
504    CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
505    sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
506SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
507    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
508    sysctl_ftry_reclaim_vnode, "I",
509    "Try to reclaim a vnode by its file descriptor");
510
511/* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
512#define vnsz2log 8
513#ifndef DEBUG_LOCKS
514_Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
515    sizeof(struct vnode) < 1UL << (vnsz2log + 1),
516    "vnsz2log needs to be updated");
517#endif
518
519/*
520 * Support for the bufobj clean & dirty pctrie.
521 */
522static void *
523buf_trie_alloc(struct pctrie *ptree)
524{
525	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
526}
527
528static void
529buf_trie_free(struct pctrie *ptree, void *node)
530{
531	uma_zfree_smr(buf_trie_zone, node);
532}
533PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
534    buf_trie_smr);
535
536/*
537 * Initialize the vnode management data structures.
538 *
539 * Reevaluate the following cap on the number of vnodes after the physical
540 * memory size exceeds 512GB.  In the limit, as the physical memory size
541 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
542 */
543#ifndef	MAXVNODES_MAX
544#define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
545#endif
546
547static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
548
549static struct vnode *
550vn_alloc_marker(struct mount *mp)
551{
552	struct vnode *vp;
553
554	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
555	vp->v_type = VMARKER;
556	vp->v_mount = mp;
557
558	return (vp);
559}
560
561static void
562vn_free_marker(struct vnode *vp)
563{
564
565	MPASS(vp->v_type == VMARKER);
566	free(vp, M_VNODE_MARKER);
567}
568
569#ifdef KASAN
570static int
571vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
572{
573	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
574	return (0);
575}
576
577static void
578vnode_dtor(void *mem, int size, void *arg __unused)
579{
580	size_t end1, end2, off1, off2;
581
582	_Static_assert(offsetof(struct vnode, v_vnodelist) <
583	    offsetof(struct vnode, v_dbatchcpu),
584	    "KASAN marks require updating");
585
586	off1 = offsetof(struct vnode, v_vnodelist);
587	off2 = offsetof(struct vnode, v_dbatchcpu);
588	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
589	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
590
591	/*
592	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
593	 * after the vnode has been freed.  Try to get some KASAN coverage by
594	 * marking everything except those two fields as invalid.  Because
595	 * KASAN's tracking is not byte-granular, any preceding fields sharing
596	 * the same 8-byte aligned word must also be marked valid.
597	 */
598
599	/* Handle the area from the start until v_vnodelist... */
600	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
601	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
602
603	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
604	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
605	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
606	if (off2 > off1)
607		kasan_mark((void *)((char *)mem + off1), off2 - off1,
608		    off2 - off1, KASAN_UMA_FREED);
609
610	/* ... and finally the area from v_dbatchcpu to the end. */
611	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
612	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
613	    KASAN_UMA_FREED);
614}
615#endif /* KASAN */
616
617/*
618 * Initialize a vnode as it first enters the zone.
619 */
620static int
621vnode_init(void *mem, int size, int flags)
622{
623	struct vnode *vp;
624
625	vp = mem;
626	bzero(vp, size);
627	/*
628	 * Setup locks.
629	 */
630	vp->v_vnlock = &vp->v_lock;
631	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
632	/*
633	 * By default, don't allow shared locks unless filesystems opt-in.
634	 */
635	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
636	    LK_NOSHARE | LK_IS_VNODE);
637	/*
638	 * Initialize bufobj.
639	 */
640	bufobj_init(&vp->v_bufobj, vp);
641	/*
642	 * Initialize namecache.
643	 */
644	cache_vnode_init(vp);
645	/*
646	 * Initialize rangelocks.
647	 */
648	rangelock_init(&vp->v_rl);
649
650	vp->v_dbatchcpu = NOCPU;
651
652	vp->v_state = VSTATE_DEAD;
653
654	/*
655	 * Check vhold_recycle_free for an explanation.
656	 */
657	vp->v_holdcnt = VHOLD_NO_SMR;
658	vp->v_type = VNON;
659	mtx_lock(&vnode_list_mtx);
660	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
661	mtx_unlock(&vnode_list_mtx);
662	return (0);
663}
664
665/*
666 * Free a vnode when it is cleared from the zone.
667 */
668static void
669vnode_fini(void *mem, int size)
670{
671	struct vnode *vp;
672	struct bufobj *bo;
673
674	vp = mem;
675	vdbatch_dequeue(vp);
676	mtx_lock(&vnode_list_mtx);
677	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
678	mtx_unlock(&vnode_list_mtx);
679	rangelock_destroy(&vp->v_rl);
680	lockdestroy(vp->v_vnlock);
681	mtx_destroy(&vp->v_interlock);
682	bo = &vp->v_bufobj;
683	rw_destroy(BO_LOCKPTR(bo));
684
685	kasan_mark(mem, size, size, 0);
686}
687
688/*
689 * Provide the size of NFS nclnode and NFS fh for calculation of the
690 * vnode memory consumption.  The size is specified directly to
691 * eliminate dependency on NFS-private header.
692 *
693 * Other filesystems may use bigger or smaller (like UFS and ZFS)
694 * private inode data, but the NFS-based estimation is ample enough.
695 * Still, we care about differences in the size between 64- and 32-bit
696 * platforms.
697 *
698 * Namecache structure size is heuristically
699 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
700 */
701#ifdef _LP64
702#define	NFS_NCLNODE_SZ	(528 + 64)
703#define	NC_SZ		148
704#else
705#define	NFS_NCLNODE_SZ	(360 + 32)
706#define	NC_SZ		92
707#endif
708
709static void
710vntblinit(void *dummy __unused)
711{
712	struct vdbatch *vd;
713	uma_ctor ctor;
714	uma_dtor dtor;
715	int cpu, physvnodes, virtvnodes;
716
717	/*
718	 * Desiredvnodes is a function of the physical memory size and the
719	 * kernel's heap size.  Generally speaking, it scales with the
720	 * physical memory size.  The ratio of desiredvnodes to the physical
721	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
722	 * Thereafter, the
723	 * marginal ratio of desiredvnodes to the physical memory size is
724	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
725	 * size.  The memory required by desiredvnodes vnodes and vm objects
726	 * must not exceed 1/10th of the kernel's heap size.
727	 */
728	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
729	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
730	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
731	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
732	desiredvnodes = min(physvnodes, virtvnodes);
733	if (desiredvnodes > MAXVNODES_MAX) {
734		if (bootverbose)
735			printf("Reducing kern.maxvnodes %lu -> %lu\n",
736			    desiredvnodes, MAXVNODES_MAX);
737		desiredvnodes = MAXVNODES_MAX;
738	}
739	wantfreevnodes = desiredvnodes / 4;
740	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
741	TAILQ_INIT(&vnode_list);
742	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
743	/*
744	 * The lock is taken to appease WITNESS.
745	 */
746	mtx_lock(&vnode_list_mtx);
747	vnlru_recalc();
748	mtx_unlock(&vnode_list_mtx);
749	vnode_list_free_marker = vn_alloc_marker(NULL);
750	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
751	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
752	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
753
754#ifdef KASAN
755	ctor = vnode_ctor;
756	dtor = vnode_dtor;
757#else
758	ctor = NULL;
759	dtor = NULL;
760#endif
761	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
762	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
763	uma_zone_set_smr(vnode_zone, vfs_smr);
764
765	/*
766	 * Preallocate enough nodes to support one-per buf so that
767	 * we can not fail an insert.  reassignbuf() callers can not
768	 * tolerate the insertion failure.
769	 */
770	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
771	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
772	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
773	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
774	uma_prealloc(buf_trie_zone, nbuf);
775
776	vnodes_created = counter_u64_alloc(M_WAITOK);
777	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
778	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
779
780	/*
781	 * Initialize the filesystem syncer.
782	 */
783	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
784	    &syncer_mask);
785	syncer_maxdelay = syncer_mask + 1;
786	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
787	cv_init(&sync_wakeup, "syncer");
788
789	CPU_FOREACH(cpu) {
790		vd = DPCPU_ID_PTR((cpu), vd);
791		bzero(vd, sizeof(*vd));
792		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
793	}
794}
795SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
796
797/*
798 * Mark a mount point as busy. Used to synchronize access and to delay
799 * unmounting. Eventually, mountlist_mtx is not released on failure.
800 *
801 * vfs_busy() is a custom lock, it can block the caller.
802 * vfs_busy() only sleeps if the unmount is active on the mount point.
803 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
804 * vnode belonging to mp.
805 *
806 * Lookup uses vfs_busy() to traverse mount points.
807 * root fs			var fs
808 * / vnode lock		A	/ vnode lock (/var)		D
809 * /var vnode lock	B	/log vnode lock(/var/log)	E
810 * vfs_busy lock	C	vfs_busy lock			F
811 *
812 * Within each file system, the lock order is C->A->B and F->D->E.
813 *
814 * When traversing across mounts, the system follows that lock order:
815 *
816 *        C->A->B
817 *              |
818 *              +->F->D->E
819 *
820 * The lookup() process for namei("/var") illustrates the process:
821 *  1. VOP_LOOKUP() obtains B while A is held
822 *  2. vfs_busy() obtains a shared lock on F while A and B are held
823 *  3. vput() releases lock on B
824 *  4. vput() releases lock on A
825 *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
826 *  6. vfs_unbusy() releases shared lock on F
827 *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
828 *     Attempt to lock A (instead of vp_crossmp) while D is held would
829 *     violate the global order, causing deadlocks.
830 *
831 * dounmount() locks B while F is drained.  Note that for stacked
832 * filesystems, D and B in the example above may be the same lock,
833 * which introdues potential lock order reversal deadlock between
834 * dounmount() and step 5 above.  These filesystems may avoid the LOR
835 * by setting VV_CROSSLOCK on the covered vnode so that lock B will
836 * remain held until after step 5.
837 */
838int
839vfs_busy(struct mount *mp, int flags)
840{
841	struct mount_pcpu *mpcpu;
842
843	MPASS((flags & ~MBF_MASK) == 0);
844	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
845
846	if (vfs_op_thread_enter(mp, mpcpu)) {
847		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
848		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
849		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
850		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
851		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
852		vfs_op_thread_exit(mp, mpcpu);
853		if (flags & MBF_MNTLSTLOCK)
854			mtx_unlock(&mountlist_mtx);
855		return (0);
856	}
857
858	MNT_ILOCK(mp);
859	vfs_assert_mount_counters(mp);
860	MNT_REF(mp);
861	/*
862	 * If mount point is currently being unmounted, sleep until the
863	 * mount point fate is decided.  If thread doing the unmounting fails,
864	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
865	 * that this mount point has survived the unmount attempt and vfs_busy
866	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
867	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
868	 * about to be really destroyed.  vfs_busy needs to release its
869	 * reference on the mount point in this case and return with ENOENT,
870	 * telling the caller the mount it tried to busy is no longer valid.
871	 */
872	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
873		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
874		    ("%s: non-empty upper mount list with pending unmount",
875		    __func__));
876		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
877			MNT_REL(mp);
878			MNT_IUNLOCK(mp);
879			CTR1(KTR_VFS, "%s: failed busying before sleeping",
880			    __func__);
881			return (ENOENT);
882		}
883		if (flags & MBF_MNTLSTLOCK)
884			mtx_unlock(&mountlist_mtx);
885		mp->mnt_kern_flag |= MNTK_MWAIT;
886		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
887		if (flags & MBF_MNTLSTLOCK)
888			mtx_lock(&mountlist_mtx);
889		MNT_ILOCK(mp);
890	}
891	if (flags & MBF_MNTLSTLOCK)
892		mtx_unlock(&mountlist_mtx);
893	mp->mnt_lockref++;
894	MNT_IUNLOCK(mp);
895	return (0);
896}
897
898/*
899 * Free a busy filesystem.
900 */
901void
902vfs_unbusy(struct mount *mp)
903{
904	struct mount_pcpu *mpcpu;
905	int c;
906
907	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
908
909	if (vfs_op_thread_enter(mp, mpcpu)) {
910		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
911		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
912		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
913		vfs_op_thread_exit(mp, mpcpu);
914		return;
915	}
916
917	MNT_ILOCK(mp);
918	vfs_assert_mount_counters(mp);
919	MNT_REL(mp);
920	c = --mp->mnt_lockref;
921	if (mp->mnt_vfs_ops == 0) {
922		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
923		MNT_IUNLOCK(mp);
924		return;
925	}
926	if (c < 0)
927		vfs_dump_mount_counters(mp);
928	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
929		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
930		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
931		mp->mnt_kern_flag &= ~MNTK_DRAINING;
932		wakeup(&mp->mnt_lockref);
933	}
934	MNT_IUNLOCK(mp);
935}
936
937/*
938 * Lookup a mount point by filesystem identifier.
939 */
940struct mount *
941vfs_getvfs(fsid_t *fsid)
942{
943	struct mount *mp;
944
945	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
946	mtx_lock(&mountlist_mtx);
947	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
948		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
949			vfs_ref(mp);
950			mtx_unlock(&mountlist_mtx);
951			return (mp);
952		}
953	}
954	mtx_unlock(&mountlist_mtx);
955	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
956	return ((struct mount *) 0);
957}
958
959/*
960 * Lookup a mount point by filesystem identifier, busying it before
961 * returning.
962 *
963 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
964 * cache for popular filesystem identifiers.  The cache is lockess, using
965 * the fact that struct mount's are never freed.  In worst case we may
966 * get pointer to unmounted or even different filesystem, so we have to
967 * check what we got, and go slow way if so.
968 */
969struct mount *
970vfs_busyfs(fsid_t *fsid)
971{
972#define	FSID_CACHE_SIZE	256
973	typedef struct mount * volatile vmp_t;
974	static vmp_t cache[FSID_CACHE_SIZE];
975	struct mount *mp;
976	int error;
977	uint32_t hash;
978
979	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
980	hash = fsid->val[0] ^ fsid->val[1];
981	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
982	mp = cache[hash];
983	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
984		goto slow;
985	if (vfs_busy(mp, 0) != 0) {
986		cache[hash] = NULL;
987		goto slow;
988	}
989	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
990		return (mp);
991	else
992	    vfs_unbusy(mp);
993
994slow:
995	mtx_lock(&mountlist_mtx);
996	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
997		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
998			error = vfs_busy(mp, MBF_MNTLSTLOCK);
999			if (error) {
1000				cache[hash] = NULL;
1001				mtx_unlock(&mountlist_mtx);
1002				return (NULL);
1003			}
1004			cache[hash] = mp;
1005			return (mp);
1006		}
1007	}
1008	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1009	mtx_unlock(&mountlist_mtx);
1010	return ((struct mount *) 0);
1011}
1012
1013/*
1014 * Check if a user can access privileged mount options.
1015 */
1016int
1017vfs_suser(struct mount *mp, struct thread *td)
1018{
1019	int error;
1020
1021	if (jailed(td->td_ucred)) {
1022		/*
1023		 * If the jail of the calling thread lacks permission for
1024		 * this type of file system, deny immediately.
1025		 */
1026		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1027			return (EPERM);
1028
1029		/*
1030		 * If the file system was mounted outside the jail of the
1031		 * calling thread, deny immediately.
1032		 */
1033		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1034			return (EPERM);
1035	}
1036
1037	/*
1038	 * If file system supports delegated administration, we don't check
1039	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1040	 * by the file system itself.
1041	 * If this is not the user that did original mount, we check for
1042	 * the PRIV_VFS_MOUNT_OWNER privilege.
1043	 */
1044	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1045	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1046		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1047			return (error);
1048	}
1049	return (0);
1050}
1051
1052/*
1053 * Get a new unique fsid.  Try to make its val[0] unique, since this value
1054 * will be used to create fake device numbers for stat().  Also try (but
1055 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1056 * support 16-bit device numbers.  We end up with unique val[0]'s for the
1057 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1058 *
1059 * Keep in mind that several mounts may be running in parallel.  Starting
1060 * the search one past where the previous search terminated is both a
1061 * micro-optimization and a defense against returning the same fsid to
1062 * different mounts.
1063 */
1064void
1065vfs_getnewfsid(struct mount *mp)
1066{
1067	static uint16_t mntid_base;
1068	struct mount *nmp;
1069	fsid_t tfsid;
1070	int mtype;
1071
1072	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1073	mtx_lock(&mntid_mtx);
1074	mtype = mp->mnt_vfc->vfc_typenum;
1075	tfsid.val[1] = mtype;
1076	mtype = (mtype & 0xFF) << 24;
1077	for (;;) {
1078		tfsid.val[0] = makedev(255,
1079		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1080		mntid_base++;
1081		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1082			break;
1083		vfs_rel(nmp);
1084	}
1085	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1086	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1087	mtx_unlock(&mntid_mtx);
1088}
1089
1090/*
1091 * Knob to control the precision of file timestamps:
1092 *
1093 *   0 = seconds only; nanoseconds zeroed.
1094 *   1 = seconds and nanoseconds, accurate within 1/HZ.
1095 *   2 = seconds and nanoseconds, truncated to microseconds.
1096 * >=3 = seconds and nanoseconds, maximum precision.
1097 */
1098enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1099
1100static int timestamp_precision = TSP_USEC;
1101SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1102    &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1103    "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1104    "3+: sec + ns (max. precision))");
1105
1106/*
1107 * Get a current timestamp.
1108 */
1109void
1110vfs_timestamp(struct timespec *tsp)
1111{
1112	struct timeval tv;
1113
1114	switch (timestamp_precision) {
1115	case TSP_SEC:
1116		tsp->tv_sec = time_second;
1117		tsp->tv_nsec = 0;
1118		break;
1119	case TSP_HZ:
1120		getnanotime(tsp);
1121		break;
1122	case TSP_USEC:
1123		microtime(&tv);
1124		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1125		break;
1126	case TSP_NSEC:
1127	default:
1128		nanotime(tsp);
1129		break;
1130	}
1131}
1132
1133/*
1134 * Set vnode attributes to VNOVAL
1135 */
1136void
1137vattr_null(struct vattr *vap)
1138{
1139
1140	vap->va_type = VNON;
1141	vap->va_size = VNOVAL;
1142	vap->va_bytes = VNOVAL;
1143	vap->va_mode = VNOVAL;
1144	vap->va_nlink = VNOVAL;
1145	vap->va_uid = VNOVAL;
1146	vap->va_gid = VNOVAL;
1147	vap->va_fsid = VNOVAL;
1148	vap->va_fileid = VNOVAL;
1149	vap->va_blocksize = VNOVAL;
1150	vap->va_rdev = VNOVAL;
1151	vap->va_atime.tv_sec = VNOVAL;
1152	vap->va_atime.tv_nsec = VNOVAL;
1153	vap->va_mtime.tv_sec = VNOVAL;
1154	vap->va_mtime.tv_nsec = VNOVAL;
1155	vap->va_ctime.tv_sec = VNOVAL;
1156	vap->va_ctime.tv_nsec = VNOVAL;
1157	vap->va_birthtime.tv_sec = VNOVAL;
1158	vap->va_birthtime.tv_nsec = VNOVAL;
1159	vap->va_flags = VNOVAL;
1160	vap->va_gen = VNOVAL;
1161	vap->va_vaflags = 0;
1162}
1163
1164/*
1165 * Try to reduce the total number of vnodes.
1166 *
1167 * This routine (and its user) are buggy in at least the following ways:
1168 * - all parameters were picked years ago when RAM sizes were significantly
1169 *   smaller
1170 * - it can pick vnodes based on pages used by the vm object, but filesystems
1171 *   like ZFS don't use it making the pick broken
1172 * - since ZFS has its own aging policy it gets partially combated by this one
1173 * - a dedicated method should be provided for filesystems to let them decide
1174 *   whether the vnode should be recycled
1175 *
1176 * This routine is called when we have too many vnodes.  It attempts
1177 * to free <count> vnodes and will potentially free vnodes that still
1178 * have VM backing store (VM backing store is typically the cause
1179 * of a vnode blowout so we want to do this).  Therefore, this operation
1180 * is not considered cheap.
1181 *
1182 * A number of conditions may prevent a vnode from being reclaimed.
1183 * the buffer cache may have references on the vnode, a directory
1184 * vnode may still have references due to the namei cache representing
1185 * underlying files, or the vnode may be in active use.   It is not
1186 * desirable to reuse such vnodes.  These conditions may cause the
1187 * number of vnodes to reach some minimum value regardless of what
1188 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1189 *
1190 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1191 * 			 entries if this argument is strue
1192 * @param trigger	 Only reclaim vnodes with fewer than this many resident
1193 *			 pages.
1194 * @param target	 How many vnodes to reclaim.
1195 * @return		 The number of vnodes that were reclaimed.
1196 */
1197static int
1198vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1199{
1200	struct vnode *vp, *mvp;
1201	struct mount *mp;
1202	struct vm_object *object;
1203	u_long done;
1204	bool retried;
1205
1206	mtx_assert(&vnode_list_mtx, MA_OWNED);
1207
1208	retried = false;
1209	done = 0;
1210
1211	mvp = vnode_list_reclaim_marker;
1212restart:
1213	vp = mvp;
1214	while (done < target) {
1215		vp = TAILQ_NEXT(vp, v_vnodelist);
1216		if (__predict_false(vp == NULL))
1217			break;
1218
1219		if (__predict_false(vp->v_type == VMARKER))
1220			continue;
1221
1222		/*
1223		 * If it's been deconstructed already, it's still
1224		 * referenced, or it exceeds the trigger, skip it.
1225		 * Also skip free vnodes.  We are trying to make space
1226		 * for more free vnodes, not reduce their count.
1227		 */
1228		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1229		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1230			goto next_iter;
1231
1232		if (vp->v_type == VBAD || vp->v_type == VNON)
1233			goto next_iter;
1234
1235		object = atomic_load_ptr(&vp->v_object);
1236		if (object == NULL || object->resident_page_count > trigger) {
1237			goto next_iter;
1238		}
1239
1240		/*
1241		 * Handle races against vnode allocation. Filesystems lock the
1242		 * vnode some time after it gets returned from getnewvnode,
1243		 * despite type and hold count being manipulated earlier.
1244		 * Resorting to checking v_mount restores guarantees present
1245		 * before the global list was reworked to contain all vnodes.
1246		 */
1247		if (!VI_TRYLOCK(vp))
1248			goto next_iter;
1249		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1250			VI_UNLOCK(vp);
1251			goto next_iter;
1252		}
1253		if (vp->v_mount == NULL) {
1254			VI_UNLOCK(vp);
1255			goto next_iter;
1256		}
1257		vholdl(vp);
1258		VI_UNLOCK(vp);
1259		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1260		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1261		mtx_unlock(&vnode_list_mtx);
1262
1263		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1264			vdrop_recycle(vp);
1265			goto next_iter_unlocked;
1266		}
1267		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1268			vdrop_recycle(vp);
1269			vn_finished_write(mp);
1270			goto next_iter_unlocked;
1271		}
1272
1273		VI_LOCK(vp);
1274		if (vp->v_usecount > 0 ||
1275		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1276		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1277		    vp->v_object->resident_page_count > trigger)) {
1278			VOP_UNLOCK(vp);
1279			vdropl_recycle(vp);
1280			vn_finished_write(mp);
1281			goto next_iter_unlocked;
1282		}
1283		recycles_count++;
1284		vgonel(vp);
1285		VOP_UNLOCK(vp);
1286		vdropl_recycle(vp);
1287		vn_finished_write(mp);
1288		done++;
1289next_iter_unlocked:
1290		maybe_yield();
1291		mtx_lock(&vnode_list_mtx);
1292		goto restart;
1293next_iter:
1294		MPASS(vp->v_type != VMARKER);
1295		if (!should_yield())
1296			continue;
1297		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299		mtx_unlock(&vnode_list_mtx);
1300		kern_yield(PRI_USER);
1301		mtx_lock(&vnode_list_mtx);
1302		goto restart;
1303	}
1304	if (done == 0 && !retried) {
1305		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1306		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1307		retried = true;
1308		goto restart;
1309	}
1310	return (done);
1311}
1312
1313static int max_free_per_call = 10000;
1314SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1315    "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1316SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1317    &max_free_per_call, 0,
1318    "limit on vnode free requests per call to the vnlru_free routine");
1319
1320/*
1321 * Attempt to recycle requested amount of free vnodes.
1322 */
1323static int
1324vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1325{
1326	struct vnode *vp;
1327	struct mount *mp;
1328	int ocount;
1329	bool retried;
1330
1331	mtx_assert(&vnode_list_mtx, MA_OWNED);
1332	if (count > max_free_per_call)
1333		count = max_free_per_call;
1334	if (count == 0) {
1335		mtx_unlock(&vnode_list_mtx);
1336		return (0);
1337	}
1338	ocount = count;
1339	retried = false;
1340	vp = mvp;
1341	for (;;) {
1342		vp = TAILQ_NEXT(vp, v_vnodelist);
1343		if (__predict_false(vp == NULL)) {
1344			/*
1345			 * The free vnode marker can be past eligible vnodes:
1346			 * 1. if vdbatch_process trylock failed
1347			 * 2. if vtryrecycle failed
1348			 *
1349			 * If so, start the scan from scratch.
1350			 */
1351			if (!retried && vnlru_read_freevnodes() > 0) {
1352				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1353				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1354				vp = mvp;
1355				retried = true;
1356				continue;
1357			}
1358
1359			/*
1360			 * Give up
1361			 */
1362			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1363			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1364			mtx_unlock(&vnode_list_mtx);
1365			break;
1366		}
1367		if (__predict_false(vp->v_type == VMARKER))
1368			continue;
1369		if (vp->v_holdcnt > 0)
1370			continue;
1371		/*
1372		 * Don't recycle if our vnode is from different type
1373		 * of mount point.  Note that mp is type-safe, the
1374		 * check does not reach unmapped address even if
1375		 * vnode is reclaimed.
1376		 */
1377		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1378		    mp->mnt_op != mnt_op) {
1379			continue;
1380		}
1381		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1382			continue;
1383		}
1384		if (!vhold_recycle_free(vp))
1385			continue;
1386		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1387		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1388		mtx_unlock(&vnode_list_mtx);
1389		/*
1390		 * FIXME: ignores the return value, meaning it may be nothing
1391		 * got recycled but it claims otherwise to the caller.
1392		 *
1393		 * Originally the value started being ignored in 2005 with
1394		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1395		 *
1396		 * Respecting the value can run into significant stalls if most
1397		 * vnodes belong to one file system and it has writes
1398		 * suspended.  In presence of many threads and millions of
1399		 * vnodes they keep contending on the vnode_list_mtx lock only
1400		 * to find vnodes they can't recycle.
1401		 *
1402		 * The solution would be to pre-check if the vnode is likely to
1403		 * be recycle-able, but it needs to happen with the
1404		 * vnode_list_mtx lock held. This runs into a problem where
1405		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1406		 * writes are frozen) can take locks which LOR against it.
1407		 *
1408		 * Check nullfs for one example (null_getwritemount).
1409		 */
1410		vtryrecycle(vp, isvnlru);
1411		count--;
1412		if (count == 0) {
1413			break;
1414		}
1415		mtx_lock(&vnode_list_mtx);
1416		vp = mvp;
1417	}
1418	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1419	return (ocount - count);
1420}
1421
1422/*
1423 * XXX: returns without vnode_list_mtx locked!
1424 */
1425static int
1426vnlru_free_locked_direct(int count)
1427{
1428	int ret;
1429
1430	mtx_assert(&vnode_list_mtx, MA_OWNED);
1431	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1432	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1433	return (ret);
1434}
1435
1436static int
1437vnlru_free_locked_vnlru(int count)
1438{
1439	int ret;
1440
1441	mtx_assert(&vnode_list_mtx, MA_OWNED);
1442	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1443	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1444	return (ret);
1445}
1446
1447static int
1448vnlru_free_vnlru(int count)
1449{
1450
1451	mtx_lock(&vnode_list_mtx);
1452	return (vnlru_free_locked_vnlru(count));
1453}
1454
1455void
1456vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1457{
1458
1459	MPASS(mnt_op != NULL);
1460	MPASS(mvp != NULL);
1461	VNPASS(mvp->v_type == VMARKER, mvp);
1462	mtx_lock(&vnode_list_mtx);
1463	vnlru_free_impl(count, mnt_op, mvp, true);
1464	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1465}
1466
1467struct vnode *
1468vnlru_alloc_marker(void)
1469{
1470	struct vnode *mvp;
1471
1472	mvp = vn_alloc_marker(NULL);
1473	mtx_lock(&vnode_list_mtx);
1474	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1475	mtx_unlock(&vnode_list_mtx);
1476	return (mvp);
1477}
1478
1479void
1480vnlru_free_marker(struct vnode *mvp)
1481{
1482	mtx_lock(&vnode_list_mtx);
1483	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1484	mtx_unlock(&vnode_list_mtx);
1485	vn_free_marker(mvp);
1486}
1487
1488static void
1489vnlru_recalc(void)
1490{
1491
1492	mtx_assert(&vnode_list_mtx, MA_OWNED);
1493	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1494	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1495	vlowat = vhiwat / 2;
1496}
1497
1498/*
1499 * Attempt to recycle vnodes in a context that is always safe to block.
1500 * Calling vlrurecycle() from the bowels of filesystem code has some
1501 * interesting deadlock problems.
1502 */
1503static struct proc *vnlruproc;
1504static int vnlruproc_sig;
1505static u_long vnlruproc_kicks;
1506
1507SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1508    "Number of times vnlru awakened due to vnode shortage");
1509
1510#define VNLRU_COUNT_SLOP 100
1511
1512/*
1513 * The main freevnodes counter is only updated when a counter local to CPU
1514 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1515 * walked to compute a more accurate total.
1516 *
1517 * Note: the actual value at any given moment can still exceed slop, but it
1518 * should not be by significant margin in practice.
1519 */
1520#define VNLRU_FREEVNODES_SLOP 126
1521
1522static void __noinline
1523vfs_freevnodes_rollup(int8_t *lfreevnodes)
1524{
1525
1526	atomic_add_long(&freevnodes, *lfreevnodes);
1527	*lfreevnodes = 0;
1528	critical_exit();
1529}
1530
1531static __inline void
1532vfs_freevnodes_inc(void)
1533{
1534	int8_t *lfreevnodes;
1535
1536	critical_enter();
1537	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1538	(*lfreevnodes)++;
1539	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1540		vfs_freevnodes_rollup(lfreevnodes);
1541	else
1542		critical_exit();
1543}
1544
1545static __inline void
1546vfs_freevnodes_dec(void)
1547{
1548	int8_t *lfreevnodes;
1549
1550	critical_enter();
1551	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1552	(*lfreevnodes)--;
1553	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1554		vfs_freevnodes_rollup(lfreevnodes);
1555	else
1556		critical_exit();
1557}
1558
1559static u_long
1560vnlru_read_freevnodes(void)
1561{
1562	long slop, rfreevnodes, rfreevnodes_old;
1563	int cpu;
1564
1565	rfreevnodes = atomic_load_long(&freevnodes);
1566	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1567
1568	if (rfreevnodes > rfreevnodes_old)
1569		slop = rfreevnodes - rfreevnodes_old;
1570	else
1571		slop = rfreevnodes_old - rfreevnodes;
1572	if (slop < VNLRU_FREEVNODES_SLOP)
1573		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1574	CPU_FOREACH(cpu) {
1575		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1576	}
1577	atomic_store_long(&freevnodes_old, rfreevnodes);
1578	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1579}
1580
1581static bool
1582vnlru_under(u_long rnumvnodes, u_long limit)
1583{
1584	u_long rfreevnodes, space;
1585
1586	if (__predict_false(rnumvnodes > desiredvnodes))
1587		return (true);
1588
1589	space = desiredvnodes - rnumvnodes;
1590	if (space < limit) {
1591		rfreevnodes = vnlru_read_freevnodes();
1592		if (rfreevnodes > wantfreevnodes)
1593			space += rfreevnodes - wantfreevnodes;
1594	}
1595	return (space < limit);
1596}
1597
1598static void
1599vnlru_kick_locked(void)
1600{
1601
1602	mtx_assert(&vnode_list_mtx, MA_OWNED);
1603	if (vnlruproc_sig == 0) {
1604		vnlruproc_sig = 1;
1605		vnlruproc_kicks++;
1606		wakeup(vnlruproc);
1607	}
1608}
1609
1610static void
1611vnlru_kick_cond(void)
1612{
1613
1614	if (vnlru_read_freevnodes() > wantfreevnodes)
1615		return;
1616
1617	if (vnlruproc_sig)
1618		return;
1619	mtx_lock(&vnode_list_mtx);
1620	vnlru_kick_locked();
1621	mtx_unlock(&vnode_list_mtx);
1622}
1623
1624static void
1625vnlru_proc_sleep(void)
1626{
1627
1628	if (vnlruproc_sig) {
1629		vnlruproc_sig = 0;
1630		wakeup(&vnlruproc_sig);
1631	}
1632	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1633}
1634
1635/*
1636 * A lighter version of the machinery below.
1637 *
1638 * Tries to reach goals only by recycling free vnodes and does not invoke
1639 * uma_reclaim(UMA_RECLAIM_DRAIN).
1640 *
1641 * This works around pathological behavior in vnlru in presence of tons of free
1642 * vnodes, but without having to rewrite the machinery at this time. Said
1643 * behavior boils down to continuously trying to reclaim all kinds of vnodes
1644 * (cycling through all levels of "force") when the count is transiently above
1645 * limit. This happens a lot when all vnodes are used up and vn_alloc
1646 * speculatively increments the counter.
1647 *
1648 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1649 * 1 million files in total and 20 find(1) processes stating them in parallel
1650 * (one per each tree).
1651 *
1652 * On a kernel with only stock machinery this needs anywhere between 60 and 120
1653 * seconds to execute (time varies *wildly* between runs). With the workaround
1654 * it consistently stays around 20 seconds [it got further down with later
1655 * changes].
1656 *
1657 * That is to say the entire thing needs a fundamental redesign (most notably
1658 * to accommodate faster recycling), the above only tries to get it ouf the way.
1659 *
1660 * Return values are:
1661 * -1 -- fallback to regular vnlru loop
1662 *  0 -- do nothing, go to sleep
1663 * >0 -- recycle this many vnodes
1664 */
1665static long
1666vnlru_proc_light_pick(void)
1667{
1668	u_long rnumvnodes, rfreevnodes;
1669
1670	if (vstir || vnlruproc_sig == 1)
1671		return (-1);
1672
1673	rnumvnodes = atomic_load_long(&numvnodes);
1674	rfreevnodes = vnlru_read_freevnodes();
1675
1676	/*
1677	 * vnode limit might have changed and now we may be at a significant
1678	 * excess. Bail if we can't sort it out with free vnodes.
1679	 *
1680	 * Due to atomic updates the count can legitimately go above
1681	 * the limit for a short period, don't bother doing anything in
1682	 * that case.
1683	 */
1684	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1685		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1686		    rfreevnodes <= wantfreevnodes) {
1687			return (-1);
1688		}
1689
1690		return (rnumvnodes - desiredvnodes);
1691	}
1692
1693	/*
1694	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1695	 * to begin with.
1696	 */
1697	if (rnumvnodes < wantfreevnodes) {
1698		return (0);
1699	}
1700
1701	if (rfreevnodes < wantfreevnodes) {
1702		return (-1);
1703	}
1704
1705	return (0);
1706}
1707
1708static bool
1709vnlru_proc_light(void)
1710{
1711	long freecount;
1712
1713	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1714
1715	freecount = vnlru_proc_light_pick();
1716	if (freecount == -1)
1717		return (false);
1718
1719	if (freecount != 0) {
1720		vnlru_free_vnlru(freecount);
1721	}
1722
1723	mtx_lock(&vnode_list_mtx);
1724	vnlru_proc_sleep();
1725	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1726	return (true);
1727}
1728
1729static u_long uma_reclaim_calls;
1730SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1731    &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1732
1733static void
1734vnlru_proc(void)
1735{
1736	u_long rnumvnodes, rfreevnodes, target;
1737	unsigned long onumvnodes;
1738	int done, force, trigger, usevnodes;
1739	bool reclaim_nc_src, want_reread;
1740
1741	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1742	    SHUTDOWN_PRI_FIRST);
1743
1744	force = 0;
1745	want_reread = false;
1746	for (;;) {
1747		kproc_suspend_check(vnlruproc);
1748
1749		if (force == 0 && vnlru_proc_light())
1750			continue;
1751
1752		mtx_lock(&vnode_list_mtx);
1753		rnumvnodes = atomic_load_long(&numvnodes);
1754
1755		if (want_reread) {
1756			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1757			want_reread = false;
1758		}
1759
1760		/*
1761		 * If numvnodes is too large (due to desiredvnodes being
1762		 * adjusted using its sysctl, or emergency growth), first
1763		 * try to reduce it by discarding free vnodes.
1764		 */
1765		if (rnumvnodes > desiredvnodes + 10) {
1766			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1767			mtx_lock(&vnode_list_mtx);
1768			rnumvnodes = atomic_load_long(&numvnodes);
1769		}
1770		/*
1771		 * Sleep if the vnode cache is in a good state.  This is
1772		 * when it is not over-full and has space for about a 4%
1773		 * or 9% expansion (by growing its size or inexcessively
1774		 * reducing free vnode count).  Otherwise, try to reclaim
1775		 * space for a 10% expansion.
1776		 */
1777		if (vstir && force == 0) {
1778			force = 1;
1779			vstir = false;
1780		}
1781		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1782			vnlru_proc_sleep();
1783			continue;
1784		}
1785		rfreevnodes = vnlru_read_freevnodes();
1786
1787		onumvnodes = rnumvnodes;
1788		/*
1789		 * Calculate parameters for recycling.  These are the same
1790		 * throughout the loop to give some semblance of fairness.
1791		 * The trigger point is to avoid recycling vnodes with lots
1792		 * of resident pages.  We aren't trying to free memory; we
1793		 * are trying to recycle or at least free vnodes.
1794		 */
1795		if (rnumvnodes <= desiredvnodes)
1796			usevnodes = rnumvnodes - rfreevnodes;
1797		else
1798			usevnodes = rnumvnodes;
1799		if (usevnodes <= 0)
1800			usevnodes = 1;
1801		/*
1802		 * The trigger value is chosen to give a conservatively
1803		 * large value to ensure that it alone doesn't prevent
1804		 * making progress.  The value can easily be so large that
1805		 * it is effectively infinite in some congested and
1806		 * misconfigured cases, and this is necessary.  Normally
1807		 * it is about 8 to 100 (pages), which is quite large.
1808		 */
1809		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1810		if (force < 2)
1811			trigger = vsmalltrigger;
1812		reclaim_nc_src = force >= 3;
1813		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1814		target = target / 10 + 1;
1815		done = vlrureclaim(reclaim_nc_src, trigger, target);
1816		mtx_unlock(&vnode_list_mtx);
1817		/*
1818		 * Total number of vnodes can transiently go slightly above the
1819		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1820		 * this happens.
1821		 */
1822		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1823		    numvnodes <= desiredvnodes) {
1824			uma_reclaim_calls++;
1825			uma_reclaim(UMA_RECLAIM_DRAIN);
1826		}
1827		if (done == 0) {
1828			if (force == 0 || force == 1) {
1829				force = 2;
1830				continue;
1831			}
1832			if (force == 2) {
1833				force = 3;
1834				continue;
1835			}
1836			want_reread = true;
1837			force = 0;
1838			vnlru_nowhere++;
1839			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1840		} else {
1841			want_reread = true;
1842			kern_yield(PRI_USER);
1843		}
1844	}
1845}
1846
1847static struct kproc_desc vnlru_kp = {
1848	"vnlru",
1849	vnlru_proc,
1850	&vnlruproc
1851};
1852SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1853    &vnlru_kp);
1854
1855/*
1856 * Routines having to do with the management of the vnode table.
1857 */
1858
1859/*
1860 * Try to recycle a freed vnode.
1861 */
1862static int
1863vtryrecycle(struct vnode *vp, bool isvnlru)
1864{
1865	struct mount *vnmp;
1866
1867	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1868	VNPASS(vp->v_holdcnt > 0, vp);
1869	/*
1870	 * This vnode may found and locked via some other list, if so we
1871	 * can't recycle it yet.
1872	 */
1873	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1874		CTR2(KTR_VFS,
1875		    "%s: impossible to recycle, vp %p lock is already held",
1876		    __func__, vp);
1877		vdrop_recycle(vp);
1878		return (EWOULDBLOCK);
1879	}
1880	/*
1881	 * Don't recycle if its filesystem is being suspended.
1882	 */
1883	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1884		VOP_UNLOCK(vp);
1885		CTR2(KTR_VFS,
1886		    "%s: impossible to recycle, cannot start the write for %p",
1887		    __func__, vp);
1888		vdrop_recycle(vp);
1889		return (EBUSY);
1890	}
1891	/*
1892	 * If we got this far, we need to acquire the interlock and see if
1893	 * anyone picked up this vnode from another list.  If not, we will
1894	 * mark it with DOOMED via vgonel() so that anyone who does find it
1895	 * will skip over it.
1896	 */
1897	VI_LOCK(vp);
1898	if (vp->v_usecount) {
1899		VOP_UNLOCK(vp);
1900		vdropl_recycle(vp);
1901		vn_finished_write(vnmp);
1902		CTR2(KTR_VFS,
1903		    "%s: impossible to recycle, %p is already referenced",
1904		    __func__, vp);
1905		return (EBUSY);
1906	}
1907	if (!VN_IS_DOOMED(vp)) {
1908		if (isvnlru)
1909			recycles_free_count++;
1910		else
1911			counter_u64_add(direct_recycles_free_count, 1);
1912		vgonel(vp);
1913	}
1914	VOP_UNLOCK(vp);
1915	vdropl_recycle(vp);
1916	vn_finished_write(vnmp);
1917	return (0);
1918}
1919
1920/*
1921 * Allocate a new vnode.
1922 *
1923 * The operation never returns an error. Returning an error was disabled
1924 * in r145385 (dated 2005) with the following comment:
1925 *
1926 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1927 *
1928 * Given the age of this commit (almost 15 years at the time of writing this
1929 * comment) restoring the ability to fail requires a significant audit of
1930 * all codepaths.
1931 *
1932 * The routine can try to free a vnode or stall for up to 1 second waiting for
1933 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1934 */
1935static u_long vn_alloc_cyclecount;
1936static u_long vn_alloc_sleeps;
1937
1938SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1939    "Number of times vnode allocation blocked waiting on vnlru");
1940
1941static struct vnode * __noinline
1942vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1943{
1944	u_long rfreevnodes;
1945
1946	if (bumped) {
1947		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1948			atomic_subtract_long(&numvnodes, 1);
1949			bumped = false;
1950		}
1951	}
1952
1953	mtx_lock(&vnode_list_mtx);
1954
1955	if (vn_alloc_cyclecount != 0) {
1956		rnumvnodes = atomic_load_long(&numvnodes);
1957		if (rnumvnodes + 1 < desiredvnodes) {
1958			vn_alloc_cyclecount = 0;
1959			mtx_unlock(&vnode_list_mtx);
1960			goto alloc;
1961		}
1962
1963		rfreevnodes = vnlru_read_freevnodes();
1964		if (rfreevnodes < wantfreevnodes) {
1965			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1966				vn_alloc_cyclecount = 0;
1967				vstir = true;
1968			}
1969		} else {
1970			vn_alloc_cyclecount = 0;
1971		}
1972	}
1973
1974	/*
1975	 * Grow the vnode cache if it will not be above its target max after
1976	 * growing.  Otherwise, if there is at least one free vnode, try to
1977	 * reclaim 1 item from it before growing the cache (possibly above its
1978	 * target max if the reclamation failed or is delayed).
1979	 */
1980	if (vnlru_free_locked_direct(1) > 0)
1981		goto alloc;
1982	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1983	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1984		/*
1985		 * Wait for space for a new vnode.
1986		 */
1987		if (bumped) {
1988			atomic_subtract_long(&numvnodes, 1);
1989			bumped = false;
1990		}
1991		mtx_lock(&vnode_list_mtx);
1992		vnlru_kick_locked();
1993		vn_alloc_sleeps++;
1994		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1995		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1996		    vnlru_read_freevnodes() > 1)
1997			vnlru_free_locked_direct(1);
1998		else
1999			mtx_unlock(&vnode_list_mtx);
2000	}
2001alloc:
2002	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2003	if (!bumped)
2004		atomic_add_long(&numvnodes, 1);
2005	vnlru_kick_cond();
2006	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2007}
2008
2009static struct vnode *
2010vn_alloc(struct mount *mp)
2011{
2012	u_long rnumvnodes;
2013
2014	if (__predict_false(vn_alloc_cyclecount != 0))
2015		return (vn_alloc_hard(mp, 0, false));
2016	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2017	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2018		return (vn_alloc_hard(mp, rnumvnodes, true));
2019	}
2020
2021	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2022}
2023
2024static void
2025vn_free(struct vnode *vp)
2026{
2027
2028	atomic_subtract_long(&numvnodes, 1);
2029	uma_zfree_smr(vnode_zone, vp);
2030}
2031
2032/*
2033 * Allocate a new vnode.
2034 */
2035int
2036getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2037    struct vnode **vpp)
2038{
2039	struct vnode *vp;
2040	struct thread *td;
2041	struct lock_object *lo;
2042
2043	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2044
2045	KASSERT(vops->registered,
2046	    ("%s: not registered vector op %p\n", __func__, vops));
2047	cache_validate_vop_vector(mp, vops);
2048
2049	td = curthread;
2050	if (td->td_vp_reserved != NULL) {
2051		vp = td->td_vp_reserved;
2052		td->td_vp_reserved = NULL;
2053	} else {
2054		vp = vn_alloc(mp);
2055	}
2056	counter_u64_add(vnodes_created, 1);
2057
2058	vn_set_state(vp, VSTATE_UNINITIALIZED);
2059
2060	/*
2061	 * Locks are given the generic name "vnode" when created.
2062	 * Follow the historic practice of using the filesystem
2063	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2064	 *
2065	 * Locks live in a witness group keyed on their name. Thus,
2066	 * when a lock is renamed, it must also move from the witness
2067	 * group of its old name to the witness group of its new name.
2068	 *
2069	 * The change only needs to be made when the vnode moves
2070	 * from one filesystem type to another. We ensure that each
2071	 * filesystem use a single static name pointer for its tag so
2072	 * that we can compare pointers rather than doing a strcmp().
2073	 */
2074	lo = &vp->v_vnlock->lock_object;
2075#ifdef WITNESS
2076	if (lo->lo_name != tag) {
2077#endif
2078		lo->lo_name = tag;
2079#ifdef WITNESS
2080		WITNESS_DESTROY(lo);
2081		WITNESS_INIT(lo, tag);
2082	}
2083#endif
2084	/*
2085	 * By default, don't allow shared locks unless filesystems opt-in.
2086	 */
2087	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2088	/*
2089	 * Finalize various vnode identity bits.
2090	 */
2091	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2092	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2093	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2094	vp->v_type = VNON;
2095	vp->v_op = vops;
2096	vp->v_irflag = 0;
2097	v_init_counters(vp);
2098	vn_seqc_init(vp);
2099	vp->v_bufobj.bo_ops = &buf_ops_bio;
2100#ifdef DIAGNOSTIC
2101	if (mp == NULL && vops != &dead_vnodeops)
2102		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2103#endif
2104#ifdef MAC
2105	mac_vnode_init(vp);
2106	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2107		mac_vnode_associate_singlelabel(mp, vp);
2108#endif
2109	if (mp != NULL) {
2110		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2111	}
2112
2113	/*
2114	 * For the filesystems which do not use vfs_hash_insert(),
2115	 * still initialize v_hash to have vfs_hash_index() useful.
2116	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2117	 * its own hashing.
2118	 */
2119	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2120
2121	*vpp = vp;
2122	return (0);
2123}
2124
2125void
2126getnewvnode_reserve(void)
2127{
2128	struct thread *td;
2129
2130	td = curthread;
2131	MPASS(td->td_vp_reserved == NULL);
2132	td->td_vp_reserved = vn_alloc(NULL);
2133}
2134
2135void
2136getnewvnode_drop_reserve(void)
2137{
2138	struct thread *td;
2139
2140	td = curthread;
2141	if (td->td_vp_reserved != NULL) {
2142		vn_free(td->td_vp_reserved);
2143		td->td_vp_reserved = NULL;
2144	}
2145}
2146
2147static void __noinline
2148freevnode(struct vnode *vp)
2149{
2150	struct bufobj *bo;
2151
2152	/*
2153	 * The vnode has been marked for destruction, so free it.
2154	 *
2155	 * The vnode will be returned to the zone where it will
2156	 * normally remain until it is needed for another vnode. We
2157	 * need to cleanup (or verify that the cleanup has already
2158	 * been done) any residual data left from its current use
2159	 * so as not to contaminate the freshly allocated vnode.
2160	 */
2161	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2162	/*
2163	 * Paired with vgone.
2164	 */
2165	vn_seqc_write_end_free(vp);
2166
2167	bo = &vp->v_bufobj;
2168	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2169	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2170	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2171	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2172	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2173	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2174	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2175	    ("clean blk trie not empty"));
2176	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2177	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2178	    ("dirty blk trie not empty"));
2179	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2180	    ("Dangling rangelock waiters"));
2181	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2182	    ("Leaked inactivation"));
2183	VI_UNLOCK(vp);
2184	cache_assert_no_entries(vp);
2185
2186#ifdef MAC
2187	mac_vnode_destroy(vp);
2188#endif
2189	if (vp->v_pollinfo != NULL) {
2190		/*
2191		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2192		 * here while having another vnode locked when trying to
2193		 * satisfy a lookup and needing to recycle.
2194		 */
2195		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2196		destroy_vpollinfo(vp->v_pollinfo);
2197		VOP_UNLOCK(vp);
2198		vp->v_pollinfo = NULL;
2199	}
2200	vp->v_mountedhere = NULL;
2201	vp->v_unpcb = NULL;
2202	vp->v_rdev = NULL;
2203	vp->v_fifoinfo = NULL;
2204	vp->v_iflag = 0;
2205	vp->v_vflag = 0;
2206	bo->bo_flag = 0;
2207	vn_free(vp);
2208}
2209
2210/*
2211 * Delete from old mount point vnode list, if on one.
2212 */
2213static void
2214delmntque(struct vnode *vp)
2215{
2216	struct mount *mp;
2217
2218	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2219
2220	mp = vp->v_mount;
2221	MNT_ILOCK(mp);
2222	VI_LOCK(vp);
2223	vp->v_mount = NULL;
2224	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2225		("bad mount point vnode list size"));
2226	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2227	mp->mnt_nvnodelistsize--;
2228	MNT_REL(mp);
2229	MNT_IUNLOCK(mp);
2230	/*
2231	 * The caller expects the interlock to be still held.
2232	 */
2233	ASSERT_VI_LOCKED(vp, __func__);
2234}
2235
2236static int
2237insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2238{
2239
2240	KASSERT(vp->v_mount == NULL,
2241		("insmntque: vnode already on per mount vnode list"));
2242	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2243	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2244		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2245	} else {
2246		KASSERT(!dtr,
2247		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2248		    __func__));
2249	}
2250
2251	/*
2252	 * We acquire the vnode interlock early to ensure that the
2253	 * vnode cannot be recycled by another process releasing a
2254	 * holdcnt on it before we get it on both the vnode list
2255	 * and the active vnode list. The mount mutex protects only
2256	 * manipulation of the vnode list and the vnode freelist
2257	 * mutex protects only manipulation of the active vnode list.
2258	 * Hence the need to hold the vnode interlock throughout.
2259	 */
2260	MNT_ILOCK(mp);
2261	VI_LOCK(vp);
2262	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2263	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2264	    mp->mnt_nvnodelistsize == 0)) &&
2265	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2266		VI_UNLOCK(vp);
2267		MNT_IUNLOCK(mp);
2268		if (dtr) {
2269			vp->v_data = NULL;
2270			vp->v_op = &dead_vnodeops;
2271			vgone(vp);
2272			vput(vp);
2273		}
2274		return (EBUSY);
2275	}
2276	vp->v_mount = mp;
2277	MNT_REF(mp);
2278	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2279	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2280		("neg mount point vnode list size"));
2281	mp->mnt_nvnodelistsize++;
2282	VI_UNLOCK(vp);
2283	MNT_IUNLOCK(mp);
2284	return (0);
2285}
2286
2287/*
2288 * Insert into list of vnodes for the new mount point, if available.
2289 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2290 * leaves handling of the vnode to the caller.
2291 */
2292int
2293insmntque(struct vnode *vp, struct mount *mp)
2294{
2295	return (insmntque1_int(vp, mp, true));
2296}
2297
2298int
2299insmntque1(struct vnode *vp, struct mount *mp)
2300{
2301	return (insmntque1_int(vp, mp, false));
2302}
2303
2304/*
2305 * Flush out and invalidate all buffers associated with a bufobj
2306 * Called with the underlying object locked.
2307 */
2308int
2309bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2310{
2311	int error;
2312
2313	BO_LOCK(bo);
2314	if (flags & V_SAVE) {
2315		error = bufobj_wwait(bo, slpflag, slptimeo);
2316		if (error) {
2317			BO_UNLOCK(bo);
2318			return (error);
2319		}
2320		if (bo->bo_dirty.bv_cnt > 0) {
2321			BO_UNLOCK(bo);
2322			do {
2323				error = BO_SYNC(bo, MNT_WAIT);
2324			} while (error == ERELOOKUP);
2325			if (error != 0)
2326				return (error);
2327			BO_LOCK(bo);
2328			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2329				BO_UNLOCK(bo);
2330				return (EBUSY);
2331			}
2332		}
2333	}
2334	/*
2335	 * If you alter this loop please notice that interlock is dropped and
2336	 * reacquired in flushbuflist.  Special care is needed to ensure that
2337	 * no race conditions occur from this.
2338	 */
2339	do {
2340		error = flushbuflist(&bo->bo_clean,
2341		    flags, bo, slpflag, slptimeo);
2342		if (error == 0 && !(flags & V_CLEANONLY))
2343			error = flushbuflist(&bo->bo_dirty,
2344			    flags, bo, slpflag, slptimeo);
2345		if (error != 0 && error != EAGAIN) {
2346			BO_UNLOCK(bo);
2347			return (error);
2348		}
2349	} while (error != 0);
2350
2351	/*
2352	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2353	 * have write I/O in-progress but if there is a VM object then the
2354	 * VM object can also have read-I/O in-progress.
2355	 */
2356	do {
2357		bufobj_wwait(bo, 0, 0);
2358		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2359			BO_UNLOCK(bo);
2360			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2361			BO_LOCK(bo);
2362		}
2363	} while (bo->bo_numoutput > 0);
2364	BO_UNLOCK(bo);
2365
2366	/*
2367	 * Destroy the copy in the VM cache, too.
2368	 */
2369	if (bo->bo_object != NULL &&
2370	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2371		VM_OBJECT_WLOCK(bo->bo_object);
2372		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2373		    OBJPR_CLEANONLY : 0);
2374		VM_OBJECT_WUNLOCK(bo->bo_object);
2375	}
2376
2377#ifdef INVARIANTS
2378	BO_LOCK(bo);
2379	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2380	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2381	    bo->bo_clean.bv_cnt > 0))
2382		panic("vinvalbuf: flush failed");
2383	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2384	    bo->bo_dirty.bv_cnt > 0)
2385		panic("vinvalbuf: flush dirty failed");
2386	BO_UNLOCK(bo);
2387#endif
2388	return (0);
2389}
2390
2391/*
2392 * Flush out and invalidate all buffers associated with a vnode.
2393 * Called with the underlying object locked.
2394 */
2395int
2396vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2397{
2398
2399	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2400	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2401	if (vp->v_object != NULL && vp->v_object->handle != vp)
2402		return (0);
2403	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2404}
2405
2406/*
2407 * Flush out buffers on the specified list.
2408 *
2409 */
2410static int
2411flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2412    int slptimeo)
2413{
2414	struct buf *bp, *nbp;
2415	int retval, error;
2416	daddr_t lblkno;
2417	b_xflags_t xflags;
2418
2419	ASSERT_BO_WLOCKED(bo);
2420
2421	retval = 0;
2422	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2423		/*
2424		 * If we are flushing both V_NORMAL and V_ALT buffers then
2425		 * do not skip any buffers. If we are flushing only V_NORMAL
2426		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2427		 * flushing only V_ALT buffers then skip buffers not marked
2428		 * as BX_ALTDATA.
2429		 */
2430		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2431		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2432		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2433			continue;
2434		}
2435		if (nbp != NULL) {
2436			lblkno = nbp->b_lblkno;
2437			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2438		}
2439		retval = EAGAIN;
2440		error = BUF_TIMELOCK(bp,
2441		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2442		    "flushbuf", slpflag, slptimeo);
2443		if (error) {
2444			BO_LOCK(bo);
2445			return (error != ENOLCK ? error : EAGAIN);
2446		}
2447		KASSERT(bp->b_bufobj == bo,
2448		    ("bp %p wrong b_bufobj %p should be %p",
2449		    bp, bp->b_bufobj, bo));
2450		/*
2451		 * XXX Since there are no node locks for NFS, I
2452		 * believe there is a slight chance that a delayed
2453		 * write will occur while sleeping just above, so
2454		 * check for it.
2455		 */
2456		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2457		    (flags & V_SAVE)) {
2458			bremfree(bp);
2459			bp->b_flags |= B_ASYNC;
2460			bwrite(bp);
2461			BO_LOCK(bo);
2462			return (EAGAIN);	/* XXX: why not loop ? */
2463		}
2464		bremfree(bp);
2465		bp->b_flags |= (B_INVAL | B_RELBUF);
2466		bp->b_flags &= ~B_ASYNC;
2467		brelse(bp);
2468		BO_LOCK(bo);
2469		if (nbp == NULL)
2470			break;
2471		nbp = gbincore(bo, lblkno);
2472		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2473		    != xflags)
2474			break;			/* nbp invalid */
2475	}
2476	return (retval);
2477}
2478
2479int
2480bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2481{
2482	struct buf *bp;
2483	int error;
2484	daddr_t lblkno;
2485
2486	ASSERT_BO_LOCKED(bo);
2487
2488	for (lblkno = startn;;) {
2489again:
2490		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2491		if (bp == NULL || bp->b_lblkno >= endn ||
2492		    bp->b_lblkno < startn)
2493			break;
2494		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2495		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2496		if (error != 0) {
2497			BO_RLOCK(bo);
2498			if (error == ENOLCK)
2499				goto again;
2500			return (error);
2501		}
2502		KASSERT(bp->b_bufobj == bo,
2503		    ("bp %p wrong b_bufobj %p should be %p",
2504		    bp, bp->b_bufobj, bo));
2505		lblkno = bp->b_lblkno + 1;
2506		if ((bp->b_flags & B_MANAGED) == 0)
2507			bremfree(bp);
2508		bp->b_flags |= B_RELBUF;
2509		/*
2510		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2511		 * pages backing each buffer in the range are unlikely to be
2512		 * reused.  Dirty buffers will have the hint applied once
2513		 * they've been written.
2514		 */
2515		if ((bp->b_flags & B_VMIO) != 0)
2516			bp->b_flags |= B_NOREUSE;
2517		brelse(bp);
2518		BO_RLOCK(bo);
2519	}
2520	return (0);
2521}
2522
2523/*
2524 * Truncate a file's buffer and pages to a specified length.  This
2525 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2526 * sync activity.
2527 */
2528int
2529vtruncbuf(struct vnode *vp, off_t length, int blksize)
2530{
2531	struct buf *bp, *nbp;
2532	struct bufobj *bo;
2533	daddr_t startlbn;
2534
2535	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2536	    vp, blksize, (uintmax_t)length);
2537
2538	/*
2539	 * Round up to the *next* lbn.
2540	 */
2541	startlbn = howmany(length, blksize);
2542
2543	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2544
2545	bo = &vp->v_bufobj;
2546restart_unlocked:
2547	BO_LOCK(bo);
2548
2549	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2550		;
2551
2552	if (length > 0) {
2553		/*
2554		 * Write out vnode metadata, e.g. indirect blocks.
2555		 */
2556restartsync:
2557		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2558			if (bp->b_lblkno >= 0)
2559				continue;
2560			/*
2561			 * Since we hold the vnode lock this should only
2562			 * fail if we're racing with the buf daemon.
2563			 */
2564			if (BUF_LOCK(bp,
2565			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2566			    BO_LOCKPTR(bo)) == ENOLCK)
2567				goto restart_unlocked;
2568
2569			VNASSERT((bp->b_flags & B_DELWRI), vp,
2570			    ("buf(%p) on dirty queue without DELWRI", bp));
2571
2572			bremfree(bp);
2573			bawrite(bp);
2574			BO_LOCK(bo);
2575			goto restartsync;
2576		}
2577	}
2578
2579	bufobj_wwait(bo, 0, 0);
2580	BO_UNLOCK(bo);
2581	vnode_pager_setsize(vp, length);
2582
2583	return (0);
2584}
2585
2586/*
2587 * Invalidate the cached pages of a file's buffer within the range of block
2588 * numbers [startlbn, endlbn).
2589 */
2590void
2591v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2592    int blksize)
2593{
2594	struct bufobj *bo;
2595	off_t start, end;
2596
2597	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2598
2599	start = blksize * startlbn;
2600	end = blksize * endlbn;
2601
2602	bo = &vp->v_bufobj;
2603	BO_LOCK(bo);
2604	MPASS(blksize == bo->bo_bsize);
2605
2606	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2607		;
2608
2609	BO_UNLOCK(bo);
2610	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2611}
2612
2613static int
2614v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2615    daddr_t startlbn, daddr_t endlbn)
2616{
2617	struct buf *bp, *nbp;
2618	bool anyfreed;
2619
2620	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2621	ASSERT_BO_LOCKED(bo);
2622
2623	do {
2624		anyfreed = false;
2625		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2626			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2627				continue;
2628			if (BUF_LOCK(bp,
2629			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2630			    BO_LOCKPTR(bo)) == ENOLCK) {
2631				BO_LOCK(bo);
2632				return (EAGAIN);
2633			}
2634
2635			bremfree(bp);
2636			bp->b_flags |= B_INVAL | B_RELBUF;
2637			bp->b_flags &= ~B_ASYNC;
2638			brelse(bp);
2639			anyfreed = true;
2640
2641			BO_LOCK(bo);
2642			if (nbp != NULL &&
2643			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2644			    nbp->b_vp != vp ||
2645			    (nbp->b_flags & B_DELWRI) != 0))
2646				return (EAGAIN);
2647		}
2648
2649		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2650			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2651				continue;
2652			if (BUF_LOCK(bp,
2653			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2654			    BO_LOCKPTR(bo)) == ENOLCK) {
2655				BO_LOCK(bo);
2656				return (EAGAIN);
2657			}
2658			bremfree(bp);
2659			bp->b_flags |= B_INVAL | B_RELBUF;
2660			bp->b_flags &= ~B_ASYNC;
2661			brelse(bp);
2662			anyfreed = true;
2663
2664			BO_LOCK(bo);
2665			if (nbp != NULL &&
2666			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2667			    (nbp->b_vp != vp) ||
2668			    (nbp->b_flags & B_DELWRI) == 0))
2669				return (EAGAIN);
2670		}
2671	} while (anyfreed);
2672	return (0);
2673}
2674
2675static void
2676buf_vlist_remove(struct buf *bp)
2677{
2678	struct bufv *bv;
2679	b_xflags_t flags;
2680
2681	flags = bp->b_xflags;
2682
2683	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2684	ASSERT_BO_WLOCKED(bp->b_bufobj);
2685	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2686	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2687	    ("%s: buffer %p has invalid queue state", __func__, bp));
2688
2689	if ((flags & BX_VNDIRTY) != 0)
2690		bv = &bp->b_bufobj->bo_dirty;
2691	else
2692		bv = &bp->b_bufobj->bo_clean;
2693	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2694	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2695	bv->bv_cnt--;
2696	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2697}
2698
2699/*
2700 * Add the buffer to the sorted clean or dirty block list.
2701 *
2702 * NOTE: xflags is passed as a constant, optimizing this inline function!
2703 */
2704static void
2705buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2706{
2707	struct bufv *bv;
2708	struct buf *n;
2709	int error;
2710
2711	ASSERT_BO_WLOCKED(bo);
2712	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2713	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2714	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2715	    ("dead bo %p", bo));
2716	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2717	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2718	bp->b_xflags |= xflags;
2719	if (xflags & BX_VNDIRTY)
2720		bv = &bo->bo_dirty;
2721	else
2722		bv = &bo->bo_clean;
2723
2724	/*
2725	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2726	 * we tend to grow at the tail so lookup_le should usually be cheaper
2727	 * than _ge.
2728	 */
2729	if (bv->bv_cnt == 0 ||
2730	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2731		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2732	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2733		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2734	else
2735		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2736	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2737	if (error)
2738		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2739	bv->bv_cnt++;
2740}
2741
2742/*
2743 * Look up a buffer using the buffer tries.
2744 */
2745struct buf *
2746gbincore(struct bufobj *bo, daddr_t lblkno)
2747{
2748	struct buf *bp;
2749
2750	ASSERT_BO_LOCKED(bo);
2751	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2752	if (bp != NULL)
2753		return (bp);
2754	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2755}
2756
2757/*
2758 * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2759 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2760 * stability of the result.  Like other lockless lookups, the found buf may
2761 * already be invalid by the time this function returns.
2762 */
2763struct buf *
2764gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2765{
2766	struct buf *bp;
2767
2768	ASSERT_BO_UNLOCKED(bo);
2769	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2770	if (bp != NULL)
2771		return (bp);
2772	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2773}
2774
2775/*
2776 * Associate a buffer with a vnode.
2777 */
2778void
2779bgetvp(struct vnode *vp, struct buf *bp)
2780{
2781	struct bufobj *bo;
2782
2783	bo = &vp->v_bufobj;
2784	ASSERT_BO_WLOCKED(bo);
2785	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2786
2787	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2788	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2789	    ("bgetvp: bp already attached! %p", bp));
2790
2791	vhold(vp);
2792	bp->b_vp = vp;
2793	bp->b_bufobj = bo;
2794	/*
2795	 * Insert onto list for new vnode.
2796	 */
2797	buf_vlist_add(bp, bo, BX_VNCLEAN);
2798}
2799
2800/*
2801 * Disassociate a buffer from a vnode.
2802 */
2803void
2804brelvp(struct buf *bp)
2805{
2806	struct bufobj *bo;
2807	struct vnode *vp;
2808
2809	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2810	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2811
2812	/*
2813	 * Delete from old vnode list, if on one.
2814	 */
2815	vp = bp->b_vp;		/* XXX */
2816	bo = bp->b_bufobj;
2817	BO_LOCK(bo);
2818	buf_vlist_remove(bp);
2819	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2820		bo->bo_flag &= ~BO_ONWORKLST;
2821		mtx_lock(&sync_mtx);
2822		LIST_REMOVE(bo, bo_synclist);
2823		syncer_worklist_len--;
2824		mtx_unlock(&sync_mtx);
2825	}
2826	bp->b_vp = NULL;
2827	bp->b_bufobj = NULL;
2828	BO_UNLOCK(bo);
2829	vdrop(vp);
2830}
2831
2832/*
2833 * Add an item to the syncer work queue.
2834 */
2835static void
2836vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2837{
2838	int slot;
2839
2840	ASSERT_BO_WLOCKED(bo);
2841
2842	mtx_lock(&sync_mtx);
2843	if (bo->bo_flag & BO_ONWORKLST)
2844		LIST_REMOVE(bo, bo_synclist);
2845	else {
2846		bo->bo_flag |= BO_ONWORKLST;
2847		syncer_worklist_len++;
2848	}
2849
2850	if (delay > syncer_maxdelay - 2)
2851		delay = syncer_maxdelay - 2;
2852	slot = (syncer_delayno + delay) & syncer_mask;
2853
2854	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2855	mtx_unlock(&sync_mtx);
2856}
2857
2858static int
2859sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2860{
2861	int error, len;
2862
2863	mtx_lock(&sync_mtx);
2864	len = syncer_worklist_len - sync_vnode_count;
2865	mtx_unlock(&sync_mtx);
2866	error = SYSCTL_OUT(req, &len, sizeof(len));
2867	return (error);
2868}
2869
2870SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2871    CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2872    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2873
2874static struct proc *updateproc;
2875static void sched_sync(void);
2876static struct kproc_desc up_kp = {
2877	"syncer",
2878	sched_sync,
2879	&updateproc
2880};
2881SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2882
2883static int
2884sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2885{
2886	struct vnode *vp;
2887	struct mount *mp;
2888
2889	*bo = LIST_FIRST(slp);
2890	if (*bo == NULL)
2891		return (0);
2892	vp = bo2vnode(*bo);
2893	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2894		return (1);
2895	/*
2896	 * We use vhold in case the vnode does not
2897	 * successfully sync.  vhold prevents the vnode from
2898	 * going away when we unlock the sync_mtx so that
2899	 * we can acquire the vnode interlock.
2900	 */
2901	vholdl(vp);
2902	mtx_unlock(&sync_mtx);
2903	VI_UNLOCK(vp);
2904	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2905		vdrop(vp);
2906		mtx_lock(&sync_mtx);
2907		return (*bo == LIST_FIRST(slp));
2908	}
2909	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2910	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2911	    ("suspended mp syncing vp %p", vp));
2912	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2913	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2914	VOP_UNLOCK(vp);
2915	vn_finished_write(mp);
2916	BO_LOCK(*bo);
2917	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2918		/*
2919		 * Put us back on the worklist.  The worklist
2920		 * routine will remove us from our current
2921		 * position and then add us back in at a later
2922		 * position.
2923		 */
2924		vn_syncer_add_to_worklist(*bo, syncdelay);
2925	}
2926	BO_UNLOCK(*bo);
2927	vdrop(vp);
2928	mtx_lock(&sync_mtx);
2929	return (0);
2930}
2931
2932static int first_printf = 1;
2933
2934/*
2935 * System filesystem synchronizer daemon.
2936 */
2937static void
2938sched_sync(void)
2939{
2940	struct synclist *next, *slp;
2941	struct bufobj *bo;
2942	long starttime;
2943	struct thread *td = curthread;
2944	int last_work_seen;
2945	int net_worklist_len;
2946	int syncer_final_iter;
2947	int error;
2948
2949	last_work_seen = 0;
2950	syncer_final_iter = 0;
2951	syncer_state = SYNCER_RUNNING;
2952	starttime = time_uptime;
2953	td->td_pflags |= TDP_NORUNNINGBUF;
2954
2955	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2956	    SHUTDOWN_PRI_LAST);
2957
2958	mtx_lock(&sync_mtx);
2959	for (;;) {
2960		if (syncer_state == SYNCER_FINAL_DELAY &&
2961		    syncer_final_iter == 0) {
2962			mtx_unlock(&sync_mtx);
2963			kproc_suspend_check(td->td_proc);
2964			mtx_lock(&sync_mtx);
2965		}
2966		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2967		if (syncer_state != SYNCER_RUNNING &&
2968		    starttime != time_uptime) {
2969			if (first_printf) {
2970				printf("\nSyncing disks, vnodes remaining... ");
2971				first_printf = 0;
2972			}
2973			printf("%d ", net_worklist_len);
2974		}
2975		starttime = time_uptime;
2976
2977		/*
2978		 * Push files whose dirty time has expired.  Be careful
2979		 * of interrupt race on slp queue.
2980		 *
2981		 * Skip over empty worklist slots when shutting down.
2982		 */
2983		do {
2984			slp = &syncer_workitem_pending[syncer_delayno];
2985			syncer_delayno += 1;
2986			if (syncer_delayno == syncer_maxdelay)
2987				syncer_delayno = 0;
2988			next = &syncer_workitem_pending[syncer_delayno];
2989			/*
2990			 * If the worklist has wrapped since the
2991			 * it was emptied of all but syncer vnodes,
2992			 * switch to the FINAL_DELAY state and run
2993			 * for one more second.
2994			 */
2995			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2996			    net_worklist_len == 0 &&
2997			    last_work_seen == syncer_delayno) {
2998				syncer_state = SYNCER_FINAL_DELAY;
2999				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3000			}
3001		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3002		    syncer_worklist_len > 0);
3003
3004		/*
3005		 * Keep track of the last time there was anything
3006		 * on the worklist other than syncer vnodes.
3007		 * Return to the SHUTTING_DOWN state if any
3008		 * new work appears.
3009		 */
3010		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3011			last_work_seen = syncer_delayno;
3012		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3013			syncer_state = SYNCER_SHUTTING_DOWN;
3014		while (!LIST_EMPTY(slp)) {
3015			error = sync_vnode(slp, &bo, td);
3016			if (error == 1) {
3017				LIST_REMOVE(bo, bo_synclist);
3018				LIST_INSERT_HEAD(next, bo, bo_synclist);
3019				continue;
3020			}
3021
3022			if (first_printf == 0) {
3023				/*
3024				 * Drop the sync mutex, because some watchdog
3025				 * drivers need to sleep while patting
3026				 */
3027				mtx_unlock(&sync_mtx);
3028				wdog_kern_pat(WD_LASTVAL);
3029				mtx_lock(&sync_mtx);
3030			}
3031		}
3032		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3033			syncer_final_iter--;
3034		/*
3035		 * The variable rushjob allows the kernel to speed up the
3036		 * processing of the filesystem syncer process. A rushjob
3037		 * value of N tells the filesystem syncer to process the next
3038		 * N seconds worth of work on its queue ASAP. Currently rushjob
3039		 * is used by the soft update code to speed up the filesystem
3040		 * syncer process when the incore state is getting so far
3041		 * ahead of the disk that the kernel memory pool is being
3042		 * threatened with exhaustion.
3043		 */
3044		if (rushjob > 0) {
3045			rushjob -= 1;
3046			continue;
3047		}
3048		/*
3049		 * Just sleep for a short period of time between
3050		 * iterations when shutting down to allow some I/O
3051		 * to happen.
3052		 *
3053		 * If it has taken us less than a second to process the
3054		 * current work, then wait. Otherwise start right over
3055		 * again. We can still lose time if any single round
3056		 * takes more than two seconds, but it does not really
3057		 * matter as we are just trying to generally pace the
3058		 * filesystem activity.
3059		 */
3060		if (syncer_state != SYNCER_RUNNING ||
3061		    time_uptime == starttime) {
3062			thread_lock(td);
3063			sched_prio(td, PPAUSE);
3064			thread_unlock(td);
3065		}
3066		if (syncer_state != SYNCER_RUNNING)
3067			cv_timedwait(&sync_wakeup, &sync_mtx,
3068			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3069		else if (time_uptime == starttime)
3070			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3071	}
3072}
3073
3074/*
3075 * Request the syncer daemon to speed up its work.
3076 * We never push it to speed up more than half of its
3077 * normal turn time, otherwise it could take over the cpu.
3078 */
3079int
3080speedup_syncer(void)
3081{
3082	int ret = 0;
3083
3084	mtx_lock(&sync_mtx);
3085	if (rushjob < syncdelay / 2) {
3086		rushjob += 1;
3087		stat_rush_requests += 1;
3088		ret = 1;
3089	}
3090	mtx_unlock(&sync_mtx);
3091	cv_broadcast(&sync_wakeup);
3092	return (ret);
3093}
3094
3095/*
3096 * Tell the syncer to speed up its work and run though its work
3097 * list several times, then tell it to shut down.
3098 */
3099static void
3100syncer_shutdown(void *arg, int howto)
3101{
3102
3103	if (howto & RB_NOSYNC)
3104		return;
3105	mtx_lock(&sync_mtx);
3106	syncer_state = SYNCER_SHUTTING_DOWN;
3107	rushjob = 0;
3108	mtx_unlock(&sync_mtx);
3109	cv_broadcast(&sync_wakeup);
3110	kproc_shutdown(arg, howto);
3111}
3112
3113void
3114syncer_suspend(void)
3115{
3116
3117	syncer_shutdown(updateproc, 0);
3118}
3119
3120void
3121syncer_resume(void)
3122{
3123
3124	mtx_lock(&sync_mtx);
3125	first_printf = 1;
3126	syncer_state = SYNCER_RUNNING;
3127	mtx_unlock(&sync_mtx);
3128	cv_broadcast(&sync_wakeup);
3129	kproc_resume(updateproc);
3130}
3131
3132/*
3133 * Move the buffer between the clean and dirty lists of its vnode.
3134 */
3135void
3136reassignbuf(struct buf *bp)
3137{
3138	struct vnode *vp;
3139	struct bufobj *bo;
3140	int delay;
3141#ifdef INVARIANTS
3142	struct bufv *bv;
3143#endif
3144
3145	vp = bp->b_vp;
3146	bo = bp->b_bufobj;
3147
3148	KASSERT((bp->b_flags & B_PAGING) == 0,
3149	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3150
3151	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3152	    bp, bp->b_vp, bp->b_flags);
3153
3154	BO_LOCK(bo);
3155	buf_vlist_remove(bp);
3156
3157	/*
3158	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3159	 * of clean buffers.
3160	 */
3161	if (bp->b_flags & B_DELWRI) {
3162		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3163			switch (vp->v_type) {
3164			case VDIR:
3165				delay = dirdelay;
3166				break;
3167			case VCHR:
3168				delay = metadelay;
3169				break;
3170			default:
3171				delay = filedelay;
3172			}
3173			vn_syncer_add_to_worklist(bo, delay);
3174		}
3175		buf_vlist_add(bp, bo, BX_VNDIRTY);
3176	} else {
3177		buf_vlist_add(bp, bo, BX_VNCLEAN);
3178
3179		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3180			mtx_lock(&sync_mtx);
3181			LIST_REMOVE(bo, bo_synclist);
3182			syncer_worklist_len--;
3183			mtx_unlock(&sync_mtx);
3184			bo->bo_flag &= ~BO_ONWORKLST;
3185		}
3186	}
3187#ifdef INVARIANTS
3188	bv = &bo->bo_clean;
3189	bp = TAILQ_FIRST(&bv->bv_hd);
3190	KASSERT(bp == NULL || bp->b_bufobj == bo,
3191	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3192	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3193	KASSERT(bp == NULL || bp->b_bufobj == bo,
3194	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3195	bv = &bo->bo_dirty;
3196	bp = TAILQ_FIRST(&bv->bv_hd);
3197	KASSERT(bp == NULL || bp->b_bufobj == bo,
3198	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3199	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3200	KASSERT(bp == NULL || bp->b_bufobj == bo,
3201	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3202#endif
3203	BO_UNLOCK(bo);
3204}
3205
3206static void
3207v_init_counters(struct vnode *vp)
3208{
3209
3210	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3211	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3212	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3213
3214	refcount_init(&vp->v_holdcnt, 1);
3215	refcount_init(&vp->v_usecount, 1);
3216}
3217
3218/*
3219 * Get a usecount on a vnode.
3220 *
3221 * vget and vget_finish may fail to lock the vnode if they lose a race against
3222 * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3223 *
3224 * Consumers which don't guarantee liveness of the vnode can use SMR to
3225 * try to get a reference. Note this operation can fail since the vnode
3226 * may be awaiting getting freed by the time they get to it.
3227 */
3228enum vgetstate
3229vget_prep_smr(struct vnode *vp)
3230{
3231	enum vgetstate vs;
3232
3233	VFS_SMR_ASSERT_ENTERED();
3234
3235	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3236		vs = VGET_USECOUNT;
3237	} else {
3238		if (vhold_smr(vp))
3239			vs = VGET_HOLDCNT;
3240		else
3241			vs = VGET_NONE;
3242	}
3243	return (vs);
3244}
3245
3246enum vgetstate
3247vget_prep(struct vnode *vp)
3248{
3249	enum vgetstate vs;
3250
3251	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3252		vs = VGET_USECOUNT;
3253	} else {
3254		vhold(vp);
3255		vs = VGET_HOLDCNT;
3256	}
3257	return (vs);
3258}
3259
3260void
3261vget_abort(struct vnode *vp, enum vgetstate vs)
3262{
3263
3264	switch (vs) {
3265	case VGET_USECOUNT:
3266		vrele(vp);
3267		break;
3268	case VGET_HOLDCNT:
3269		vdrop(vp);
3270		break;
3271	default:
3272		__assert_unreachable();
3273	}
3274}
3275
3276int
3277vget(struct vnode *vp, int flags)
3278{
3279	enum vgetstate vs;
3280
3281	vs = vget_prep(vp);
3282	return (vget_finish(vp, flags, vs));
3283}
3284
3285int
3286vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3287{
3288	int error;
3289
3290	if ((flags & LK_INTERLOCK) != 0)
3291		ASSERT_VI_LOCKED(vp, __func__);
3292	else
3293		ASSERT_VI_UNLOCKED(vp, __func__);
3294	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3295	VNPASS(vp->v_holdcnt > 0, vp);
3296	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3297
3298	error = vn_lock(vp, flags);
3299	if (__predict_false(error != 0)) {
3300		vget_abort(vp, vs);
3301		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3302		    vp);
3303		return (error);
3304	}
3305
3306	vget_finish_ref(vp, vs);
3307	return (0);
3308}
3309
3310void
3311vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3312{
3313	int old;
3314
3315	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3316	VNPASS(vp->v_holdcnt > 0, vp);
3317	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3318
3319	if (vs == VGET_USECOUNT)
3320		return;
3321
3322	/*
3323	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3324	 * the vnode around. Otherwise someone else lended their hold count and
3325	 * we have to drop ours.
3326	 */
3327	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3328	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3329	if (old != 0) {
3330#ifdef INVARIANTS
3331		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3332		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3333#else
3334		refcount_release(&vp->v_holdcnt);
3335#endif
3336	}
3337}
3338
3339void
3340vref(struct vnode *vp)
3341{
3342	enum vgetstate vs;
3343
3344	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3345	vs = vget_prep(vp);
3346	vget_finish_ref(vp, vs);
3347}
3348
3349void
3350vrefact(struct vnode *vp)
3351{
3352	int old __diagused;
3353
3354	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3355	old = refcount_acquire(&vp->v_usecount);
3356	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3357}
3358
3359void
3360vlazy(struct vnode *vp)
3361{
3362	struct mount *mp;
3363
3364	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3365
3366	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3367		return;
3368	/*
3369	 * We may get here for inactive routines after the vnode got doomed.
3370	 */
3371	if (VN_IS_DOOMED(vp))
3372		return;
3373	mp = vp->v_mount;
3374	mtx_lock(&mp->mnt_listmtx);
3375	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3376		vp->v_mflag |= VMP_LAZYLIST;
3377		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3378		mp->mnt_lazyvnodelistsize++;
3379	}
3380	mtx_unlock(&mp->mnt_listmtx);
3381}
3382
3383static void
3384vunlazy(struct vnode *vp)
3385{
3386	struct mount *mp;
3387
3388	ASSERT_VI_LOCKED(vp, __func__);
3389	VNPASS(!VN_IS_DOOMED(vp), vp);
3390
3391	mp = vp->v_mount;
3392	mtx_lock(&mp->mnt_listmtx);
3393	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3394	/*
3395	 * Don't remove the vnode from the lazy list if another thread
3396	 * has increased the hold count. It may have re-enqueued the
3397	 * vnode to the lazy list and is now responsible for its
3398	 * removal.
3399	 */
3400	if (vp->v_holdcnt == 0) {
3401		vp->v_mflag &= ~VMP_LAZYLIST;
3402		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3403		mp->mnt_lazyvnodelistsize--;
3404	}
3405	mtx_unlock(&mp->mnt_listmtx);
3406}
3407
3408/*
3409 * This routine is only meant to be called from vgonel prior to dooming
3410 * the vnode.
3411 */
3412static void
3413vunlazy_gone(struct vnode *vp)
3414{
3415	struct mount *mp;
3416
3417	ASSERT_VOP_ELOCKED(vp, __func__);
3418	ASSERT_VI_LOCKED(vp, __func__);
3419	VNPASS(!VN_IS_DOOMED(vp), vp);
3420
3421	if (vp->v_mflag & VMP_LAZYLIST) {
3422		mp = vp->v_mount;
3423		mtx_lock(&mp->mnt_listmtx);
3424		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3425		vp->v_mflag &= ~VMP_LAZYLIST;
3426		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3427		mp->mnt_lazyvnodelistsize--;
3428		mtx_unlock(&mp->mnt_listmtx);
3429	}
3430}
3431
3432static void
3433vdefer_inactive(struct vnode *vp)
3434{
3435
3436	ASSERT_VI_LOCKED(vp, __func__);
3437	VNPASS(vp->v_holdcnt > 0, vp);
3438	if (VN_IS_DOOMED(vp)) {
3439		vdropl(vp);
3440		return;
3441	}
3442	if (vp->v_iflag & VI_DEFINACT) {
3443		VNPASS(vp->v_holdcnt > 1, vp);
3444		vdropl(vp);
3445		return;
3446	}
3447	if (vp->v_usecount > 0) {
3448		vp->v_iflag &= ~VI_OWEINACT;
3449		vdropl(vp);
3450		return;
3451	}
3452	vlazy(vp);
3453	vp->v_iflag |= VI_DEFINACT;
3454	VI_UNLOCK(vp);
3455	atomic_add_long(&deferred_inact, 1);
3456}
3457
3458static void
3459vdefer_inactive_unlocked(struct vnode *vp)
3460{
3461
3462	VI_LOCK(vp);
3463	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3464		vdropl(vp);
3465		return;
3466	}
3467	vdefer_inactive(vp);
3468}
3469
3470enum vput_op { VRELE, VPUT, VUNREF };
3471
3472/*
3473 * Handle ->v_usecount transitioning to 0.
3474 *
3475 * By releasing the last usecount we take ownership of the hold count which
3476 * provides liveness of the vnode, meaning we have to vdrop.
3477 *
3478 * For all vnodes we may need to perform inactive processing. It requires an
3479 * exclusive lock on the vnode, while it is legal to call here with only a
3480 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3481 * inactive processing gets deferred to the syncer.
3482 *
3483 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3484 * on the lock being held all the way until VOP_INACTIVE. This in particular
3485 * happens with UFS which adds half-constructed vnodes to the hash, where they
3486 * can be found by other code.
3487 */
3488static void
3489vput_final(struct vnode *vp, enum vput_op func)
3490{
3491	int error;
3492	bool want_unlock;
3493
3494	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3495	VNPASS(vp->v_holdcnt > 0, vp);
3496
3497	VI_LOCK(vp);
3498
3499	/*
3500	 * By the time we got here someone else might have transitioned
3501	 * the count back to > 0.
3502	 */
3503	if (vp->v_usecount > 0)
3504		goto out;
3505
3506	/*
3507	 * If the vnode is doomed vgone already performed inactive processing
3508	 * (if needed).
3509	 */
3510	if (VN_IS_DOOMED(vp))
3511		goto out;
3512
3513	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3514		goto out;
3515
3516	if (vp->v_iflag & VI_DOINGINACT)
3517		goto out;
3518
3519	/*
3520	 * Locking operations here will drop the interlock and possibly the
3521	 * vnode lock, opening a window where the vnode can get doomed all the
3522	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3523	 * perform inactive.
3524	 */
3525	vp->v_iflag |= VI_OWEINACT;
3526	want_unlock = false;
3527	error = 0;
3528	switch (func) {
3529	case VRELE:
3530		switch (VOP_ISLOCKED(vp)) {
3531		case LK_EXCLUSIVE:
3532			break;
3533		case LK_EXCLOTHER:
3534		case 0:
3535			want_unlock = true;
3536			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3537			VI_LOCK(vp);
3538			break;
3539		default:
3540			/*
3541			 * The lock has at least one sharer, but we have no way
3542			 * to conclude whether this is us. Play it safe and
3543			 * defer processing.
3544			 */
3545			error = EAGAIN;
3546			break;
3547		}
3548		break;
3549	case VPUT:
3550		want_unlock = true;
3551		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3552			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3553			    LK_NOWAIT);
3554			VI_LOCK(vp);
3555		}
3556		break;
3557	case VUNREF:
3558		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3559			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3560			VI_LOCK(vp);
3561		}
3562		break;
3563	}
3564	if (error == 0) {
3565		if (func == VUNREF) {
3566			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3567			    ("recursive vunref"));
3568			vp->v_vflag |= VV_UNREF;
3569		}
3570		for (;;) {
3571			error = vinactive(vp);
3572			if (want_unlock)
3573				VOP_UNLOCK(vp);
3574			if (error != ERELOOKUP || !want_unlock)
3575				break;
3576			VOP_LOCK(vp, LK_EXCLUSIVE);
3577		}
3578		if (func == VUNREF)
3579			vp->v_vflag &= ~VV_UNREF;
3580		vdropl(vp);
3581	} else {
3582		vdefer_inactive(vp);
3583	}
3584	return;
3585out:
3586	if (func == VPUT)
3587		VOP_UNLOCK(vp);
3588	vdropl(vp);
3589}
3590
3591/*
3592 * Decrement ->v_usecount for a vnode.
3593 *
3594 * Releasing the last use count requires additional processing, see vput_final
3595 * above for details.
3596 *
3597 * Comment above each variant denotes lock state on entry and exit.
3598 */
3599
3600/*
3601 * in: any
3602 * out: same as passed in
3603 */
3604void
3605vrele(struct vnode *vp)
3606{
3607
3608	ASSERT_VI_UNLOCKED(vp, __func__);
3609	if (!refcount_release(&vp->v_usecount))
3610		return;
3611	vput_final(vp, VRELE);
3612}
3613
3614/*
3615 * in: locked
3616 * out: unlocked
3617 */
3618void
3619vput(struct vnode *vp)
3620{
3621
3622	ASSERT_VOP_LOCKED(vp, __func__);
3623	ASSERT_VI_UNLOCKED(vp, __func__);
3624	if (!refcount_release(&vp->v_usecount)) {
3625		VOP_UNLOCK(vp);
3626		return;
3627	}
3628	vput_final(vp, VPUT);
3629}
3630
3631/*
3632 * in: locked
3633 * out: locked
3634 */
3635void
3636vunref(struct vnode *vp)
3637{
3638
3639	ASSERT_VOP_LOCKED(vp, __func__);
3640	ASSERT_VI_UNLOCKED(vp, __func__);
3641	if (!refcount_release(&vp->v_usecount))
3642		return;
3643	vput_final(vp, VUNREF);
3644}
3645
3646void
3647vhold(struct vnode *vp)
3648{
3649	int old;
3650
3651	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3652	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3653	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3654	    ("%s: wrong hold count %d", __func__, old));
3655	if (old == 0)
3656		vfs_freevnodes_dec();
3657}
3658
3659void
3660vholdnz(struct vnode *vp)
3661{
3662
3663	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3664#ifdef INVARIANTS
3665	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3666	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3667	    ("%s: wrong hold count %d", __func__, old));
3668#else
3669	atomic_add_int(&vp->v_holdcnt, 1);
3670#endif
3671}
3672
3673/*
3674 * Grab a hold count unless the vnode is freed.
3675 *
3676 * Only use this routine if vfs smr is the only protection you have against
3677 * freeing the vnode.
3678 *
3679 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3680 * is not set.  After the flag is set the vnode becomes immutable to anyone but
3681 * the thread which managed to set the flag.
3682 *
3683 * It may be tempting to replace the loop with:
3684 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3685 * if (count & VHOLD_NO_SMR) {
3686 *     backpedal and error out;
3687 * }
3688 *
3689 * However, while this is more performant, it hinders debugging by eliminating
3690 * the previously mentioned invariant.
3691 */
3692bool
3693vhold_smr(struct vnode *vp)
3694{
3695	int count;
3696
3697	VFS_SMR_ASSERT_ENTERED();
3698
3699	count = atomic_load_int(&vp->v_holdcnt);
3700	for (;;) {
3701		if (count & VHOLD_NO_SMR) {
3702			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3703			    ("non-zero hold count with flags %d\n", count));
3704			return (false);
3705		}
3706		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3707		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3708			if (count == 0)
3709				vfs_freevnodes_dec();
3710			return (true);
3711		}
3712	}
3713}
3714
3715/*
3716 * Hold a free vnode for recycling.
3717 *
3718 * Note: vnode_init references this comment.
3719 *
3720 * Attempts to recycle only need the global vnode list lock and have no use for
3721 * SMR.
3722 *
3723 * However, vnodes get inserted into the global list before they get fully
3724 * initialized and stay there until UMA decides to free the memory. This in
3725 * particular means the target can be found before it becomes usable and after
3726 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3727 * VHOLD_NO_SMR.
3728 *
3729 * Note: the vnode may gain more references after we transition the count 0->1.
3730 */
3731static bool
3732vhold_recycle_free(struct vnode *vp)
3733{
3734	int count;
3735
3736	mtx_assert(&vnode_list_mtx, MA_OWNED);
3737
3738	count = atomic_load_int(&vp->v_holdcnt);
3739	for (;;) {
3740		if (count & VHOLD_NO_SMR) {
3741			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3742			    ("non-zero hold count with flags %d\n", count));
3743			return (false);
3744		}
3745		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3746		if (count > 0) {
3747			return (false);
3748		}
3749		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3750			vfs_freevnodes_dec();
3751			return (true);
3752		}
3753	}
3754}
3755
3756static void __noinline
3757vdbatch_process(struct vdbatch *vd)
3758{
3759	struct vnode *vp;
3760	int i;
3761
3762	mtx_assert(&vd->lock, MA_OWNED);
3763	MPASS(curthread->td_pinned > 0);
3764	MPASS(vd->index == VDBATCH_SIZE);
3765
3766	/*
3767	 * Attempt to requeue the passed batch, but give up easily.
3768	 *
3769	 * Despite batching the mechanism is prone to transient *significant*
3770	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3771	 * if multiple CPUs get here (one real-world example is highly parallel
3772	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3773	 * quasi-LRU (read: not that great even if fully honoured) just dodge
3774	 * the problem. Parties which don't like it are welcome to implement
3775	 * something better.
3776	 */
3777	critical_enter();
3778	if (mtx_trylock(&vnode_list_mtx)) {
3779		for (i = 0; i < VDBATCH_SIZE; i++) {
3780			vp = vd->tab[i];
3781			vd->tab[i] = NULL;
3782			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3783			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3784			MPASS(vp->v_dbatchcpu != NOCPU);
3785			vp->v_dbatchcpu = NOCPU;
3786		}
3787		mtx_unlock(&vnode_list_mtx);
3788	} else {
3789		counter_u64_add(vnode_skipped_requeues, 1);
3790
3791		for (i = 0; i < VDBATCH_SIZE; i++) {
3792			vp = vd->tab[i];
3793			vd->tab[i] = NULL;
3794			MPASS(vp->v_dbatchcpu != NOCPU);
3795			vp->v_dbatchcpu = NOCPU;
3796		}
3797	}
3798	vd->index = 0;
3799	critical_exit();
3800}
3801
3802static void
3803vdbatch_enqueue(struct vnode *vp)
3804{
3805	struct vdbatch *vd;
3806
3807	ASSERT_VI_LOCKED(vp, __func__);
3808	VNPASS(!VN_IS_DOOMED(vp), vp);
3809
3810	if (vp->v_dbatchcpu != NOCPU) {
3811		VI_UNLOCK(vp);
3812		return;
3813	}
3814
3815	sched_pin();
3816	vd = DPCPU_PTR(vd);
3817	mtx_lock(&vd->lock);
3818	MPASS(vd->index < VDBATCH_SIZE);
3819	MPASS(vd->tab[vd->index] == NULL);
3820	/*
3821	 * A hack: we depend on being pinned so that we know what to put in
3822	 * ->v_dbatchcpu.
3823	 */
3824	vp->v_dbatchcpu = curcpu;
3825	vd->tab[vd->index] = vp;
3826	vd->index++;
3827	VI_UNLOCK(vp);
3828	if (vd->index == VDBATCH_SIZE)
3829		vdbatch_process(vd);
3830	mtx_unlock(&vd->lock);
3831	sched_unpin();
3832}
3833
3834/*
3835 * This routine must only be called for vnodes which are about to be
3836 * deallocated. Supporting dequeue for arbitrary vndoes would require
3837 * validating that the locked batch matches.
3838 */
3839static void
3840vdbatch_dequeue(struct vnode *vp)
3841{
3842	struct vdbatch *vd;
3843	int i;
3844	short cpu;
3845
3846	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3847
3848	cpu = vp->v_dbatchcpu;
3849	if (cpu == NOCPU)
3850		return;
3851
3852	vd = DPCPU_ID_PTR(cpu, vd);
3853	mtx_lock(&vd->lock);
3854	for (i = 0; i < vd->index; i++) {
3855		if (vd->tab[i] != vp)
3856			continue;
3857		vp->v_dbatchcpu = NOCPU;
3858		vd->index--;
3859		vd->tab[i] = vd->tab[vd->index];
3860		vd->tab[vd->index] = NULL;
3861		break;
3862	}
3863	mtx_unlock(&vd->lock);
3864	/*
3865	 * Either we dequeued the vnode above or the target CPU beat us to it.
3866	 */
3867	MPASS(vp->v_dbatchcpu == NOCPU);
3868}
3869
3870/*
3871 * Drop the hold count of the vnode.
3872 *
3873 * It will only get freed if this is the last hold *and* it has been vgone'd.
3874 *
3875 * Because the vnode vm object keeps a hold reference on the vnode if
3876 * there is at least one resident non-cached page, the vnode cannot
3877 * leave the active list without the page cleanup done.
3878 */
3879static void __noinline
3880vdropl_final(struct vnode *vp)
3881{
3882
3883	ASSERT_VI_LOCKED(vp, __func__);
3884	VNPASS(VN_IS_DOOMED(vp), vp);
3885	/*
3886	 * Set the VHOLD_NO_SMR flag.
3887	 *
3888	 * We may be racing against vhold_smr. If they win we can just pretend
3889	 * we never got this far, they will vdrop later.
3890	 */
3891	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3892		vfs_freevnodes_inc();
3893		VI_UNLOCK(vp);
3894		/*
3895		 * We lost the aforementioned race. Any subsequent access is
3896		 * invalid as they might have managed to vdropl on their own.
3897		 */
3898		return;
3899	}
3900	/*
3901	 * Don't bump freevnodes as this one is going away.
3902	 */
3903	freevnode(vp);
3904}
3905
3906void
3907vdrop(struct vnode *vp)
3908{
3909
3910	ASSERT_VI_UNLOCKED(vp, __func__);
3911	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3912	if (refcount_release_if_not_last(&vp->v_holdcnt))
3913		return;
3914	VI_LOCK(vp);
3915	vdropl(vp);
3916}
3917
3918static void __always_inline
3919vdropl_impl(struct vnode *vp, bool enqueue)
3920{
3921
3922	ASSERT_VI_LOCKED(vp, __func__);
3923	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3924	if (!refcount_release(&vp->v_holdcnt)) {
3925		VI_UNLOCK(vp);
3926		return;
3927	}
3928	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3929	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3930	if (VN_IS_DOOMED(vp)) {
3931		vdropl_final(vp);
3932		return;
3933	}
3934
3935	vfs_freevnodes_inc();
3936	if (vp->v_mflag & VMP_LAZYLIST) {
3937		vunlazy(vp);
3938	}
3939
3940	if (!enqueue) {
3941		VI_UNLOCK(vp);
3942		return;
3943	}
3944
3945	/*
3946	 * Also unlocks the interlock. We can't assert on it as we
3947	 * released our hold and by now the vnode might have been
3948	 * freed.
3949	 */
3950	vdbatch_enqueue(vp);
3951}
3952
3953void
3954vdropl(struct vnode *vp)
3955{
3956
3957	vdropl_impl(vp, true);
3958}
3959
3960/*
3961 * vdrop a vnode when recycling
3962 *
3963 * This is a special case routine only to be used when recycling, differs from
3964 * regular vdrop by not requeieing the vnode on LRU.
3965 *
3966 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3967 * e.g., frozen writes on the filesystem), filling the batch and causing it to
3968 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3969 * loop which can last for as long as writes are frozen.
3970 */
3971static void
3972vdropl_recycle(struct vnode *vp)
3973{
3974
3975	vdropl_impl(vp, false);
3976}
3977
3978static void
3979vdrop_recycle(struct vnode *vp)
3980{
3981
3982	VI_LOCK(vp);
3983	vdropl_recycle(vp);
3984}
3985
3986/*
3987 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3988 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3989 */
3990static int
3991vinactivef(struct vnode *vp)
3992{
3993	int error;
3994
3995	ASSERT_VOP_ELOCKED(vp, "vinactive");
3996	ASSERT_VI_LOCKED(vp, "vinactive");
3997	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3998	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3999	vp->v_iflag |= VI_DOINGINACT;
4000	vp->v_iflag &= ~VI_OWEINACT;
4001	VI_UNLOCK(vp);
4002
4003	/*
4004	 * Before moving off the active list, we must be sure that any
4005	 * modified pages are converted into the vnode's dirty
4006	 * buffers, since these will no longer be checked once the
4007	 * vnode is on the inactive list.
4008	 *
4009	 * The write-out of the dirty pages is asynchronous.  At the
4010	 * point that VOP_INACTIVE() is called, there could still be
4011	 * pending I/O and dirty pages in the object.
4012	 */
4013	if ((vp->v_vflag & VV_NOSYNC) == 0)
4014		vnode_pager_clean_async(vp);
4015
4016	error = VOP_INACTIVE(vp);
4017	VI_LOCK(vp);
4018	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4019	vp->v_iflag &= ~VI_DOINGINACT;
4020	return (error);
4021}
4022
4023int
4024vinactive(struct vnode *vp)
4025{
4026
4027	ASSERT_VOP_ELOCKED(vp, "vinactive");
4028	ASSERT_VI_LOCKED(vp, "vinactive");
4029	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4030
4031	if ((vp->v_iflag & VI_OWEINACT) == 0)
4032		return (0);
4033	if (vp->v_iflag & VI_DOINGINACT)
4034		return (0);
4035	if (vp->v_usecount > 0) {
4036		vp->v_iflag &= ~VI_OWEINACT;
4037		return (0);
4038	}
4039	return (vinactivef(vp));
4040}
4041
4042/*
4043 * Remove any vnodes in the vnode table belonging to mount point mp.
4044 *
4045 * If FORCECLOSE is not specified, there should not be any active ones,
4046 * return error if any are found (nb: this is a user error, not a
4047 * system error). If FORCECLOSE is specified, detach any active vnodes
4048 * that are found.
4049 *
4050 * If WRITECLOSE is set, only flush out regular file vnodes open for
4051 * writing.
4052 *
4053 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4054 *
4055 * `rootrefs' specifies the base reference count for the root vnode
4056 * of this filesystem. The root vnode is considered busy if its
4057 * v_usecount exceeds this value. On a successful return, vflush(, td)
4058 * will call vrele() on the root vnode exactly rootrefs times.
4059 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4060 * be zero.
4061 */
4062#ifdef DIAGNOSTIC
4063static int busyprt = 0;		/* print out busy vnodes */
4064SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4065#endif
4066
4067int
4068vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4069{
4070	struct vnode *vp, *mvp, *rootvp = NULL;
4071	struct vattr vattr;
4072	int busy = 0, error;
4073
4074	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4075	    rootrefs, flags);
4076	if (rootrefs > 0) {
4077		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4078		    ("vflush: bad args"));
4079		/*
4080		 * Get the filesystem root vnode. We can vput() it
4081		 * immediately, since with rootrefs > 0, it won't go away.
4082		 */
4083		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4084			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4085			    __func__, error);
4086			return (error);
4087		}
4088		vput(rootvp);
4089	}
4090loop:
4091	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4092		vholdl(vp);
4093		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4094		if (error) {
4095			vdrop(vp);
4096			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4097			goto loop;
4098		}
4099		/*
4100		 * Skip over a vnodes marked VV_SYSTEM.
4101		 */
4102		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4103			VOP_UNLOCK(vp);
4104			vdrop(vp);
4105			continue;
4106		}
4107		/*
4108		 * If WRITECLOSE is set, flush out unlinked but still open
4109		 * files (even if open only for reading) and regular file
4110		 * vnodes open for writing.
4111		 */
4112		if (flags & WRITECLOSE) {
4113			vnode_pager_clean_async(vp);
4114			do {
4115				error = VOP_FSYNC(vp, MNT_WAIT, td);
4116			} while (error == ERELOOKUP);
4117			if (error != 0) {
4118				VOP_UNLOCK(vp);
4119				vdrop(vp);
4120				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4121				return (error);
4122			}
4123			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4124			VI_LOCK(vp);
4125
4126			if ((vp->v_type == VNON ||
4127			    (error == 0 && vattr.va_nlink > 0)) &&
4128			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4129				VOP_UNLOCK(vp);
4130				vdropl(vp);
4131				continue;
4132			}
4133		} else
4134			VI_LOCK(vp);
4135		/*
4136		 * With v_usecount == 0, all we need to do is clear out the
4137		 * vnode data structures and we are done.
4138		 *
4139		 * If FORCECLOSE is set, forcibly close the vnode.
4140		 */
4141		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4142			vgonel(vp);
4143		} else {
4144			busy++;
4145#ifdef DIAGNOSTIC
4146			if (busyprt)
4147				vn_printf(vp, "vflush: busy vnode ");
4148#endif
4149		}
4150		VOP_UNLOCK(vp);
4151		vdropl(vp);
4152	}
4153	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4154		/*
4155		 * If just the root vnode is busy, and if its refcount
4156		 * is equal to `rootrefs', then go ahead and kill it.
4157		 */
4158		VI_LOCK(rootvp);
4159		KASSERT(busy > 0, ("vflush: not busy"));
4160		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4161		    ("vflush: usecount %d < rootrefs %d",
4162		     rootvp->v_usecount, rootrefs));
4163		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4164			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4165			vgone(rootvp);
4166			VOP_UNLOCK(rootvp);
4167			busy = 0;
4168		} else
4169			VI_UNLOCK(rootvp);
4170	}
4171	if (busy) {
4172		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4173		    busy);
4174		return (EBUSY);
4175	}
4176	for (; rootrefs > 0; rootrefs--)
4177		vrele(rootvp);
4178	return (0);
4179}
4180
4181/*
4182 * Recycle an unused vnode.
4183 */
4184int
4185vrecycle(struct vnode *vp)
4186{
4187	int recycled;
4188
4189	VI_LOCK(vp);
4190	recycled = vrecyclel(vp);
4191	VI_UNLOCK(vp);
4192	return (recycled);
4193}
4194
4195/*
4196 * vrecycle, with the vp interlock held.
4197 */
4198int
4199vrecyclel(struct vnode *vp)
4200{
4201	int recycled;
4202
4203	ASSERT_VOP_ELOCKED(vp, __func__);
4204	ASSERT_VI_LOCKED(vp, __func__);
4205	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4206	recycled = 0;
4207	if (vp->v_usecount == 0) {
4208		recycled = 1;
4209		vgonel(vp);
4210	}
4211	return (recycled);
4212}
4213
4214/*
4215 * Eliminate all activity associated with a vnode
4216 * in preparation for reuse.
4217 */
4218void
4219vgone(struct vnode *vp)
4220{
4221	VI_LOCK(vp);
4222	vgonel(vp);
4223	VI_UNLOCK(vp);
4224}
4225
4226/*
4227 * Notify upper mounts about reclaimed or unlinked vnode.
4228 */
4229void
4230vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4231{
4232	struct mount *mp;
4233	struct mount_upper_node *ump;
4234
4235	mp = atomic_load_ptr(&vp->v_mount);
4236	if (mp == NULL)
4237		return;
4238	if (TAILQ_EMPTY(&mp->mnt_notify))
4239		return;
4240
4241	MNT_ILOCK(mp);
4242	mp->mnt_upper_pending++;
4243	KASSERT(mp->mnt_upper_pending > 0,
4244	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4245	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4246		MNT_IUNLOCK(mp);
4247		switch (event) {
4248		case VFS_NOTIFY_UPPER_RECLAIM:
4249			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4250			break;
4251		case VFS_NOTIFY_UPPER_UNLINK:
4252			VFS_UNLINK_LOWERVP(ump->mp, vp);
4253			break;
4254		}
4255		MNT_ILOCK(mp);
4256	}
4257	mp->mnt_upper_pending--;
4258	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4259	    mp->mnt_upper_pending == 0) {
4260		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4261		wakeup(&mp->mnt_uppers);
4262	}
4263	MNT_IUNLOCK(mp);
4264}
4265
4266/*
4267 * vgone, with the vp interlock held.
4268 */
4269static void
4270vgonel(struct vnode *vp)
4271{
4272	struct thread *td;
4273	struct mount *mp;
4274	vm_object_t object;
4275	bool active, doinginact, oweinact;
4276
4277	ASSERT_VOP_ELOCKED(vp, "vgonel");
4278	ASSERT_VI_LOCKED(vp, "vgonel");
4279	VNASSERT(vp->v_holdcnt, vp,
4280	    ("vgonel: vp %p has no reference.", vp));
4281	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4282	td = curthread;
4283
4284	/*
4285	 * Don't vgonel if we're already doomed.
4286	 */
4287	if (VN_IS_DOOMED(vp)) {
4288		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4289		    vn_get_state(vp) == VSTATE_DEAD, vp);
4290		return;
4291	}
4292	/*
4293	 * Paired with freevnode.
4294	 */
4295	vn_seqc_write_begin_locked(vp);
4296	vunlazy_gone(vp);
4297	vn_irflag_set_locked(vp, VIRF_DOOMED);
4298	vn_set_state(vp, VSTATE_DESTROYING);
4299
4300	/*
4301	 * Check to see if the vnode is in use.  If so, we have to
4302	 * call VOP_CLOSE() and VOP_INACTIVE().
4303	 *
4304	 * It could be that VOP_INACTIVE() requested reclamation, in
4305	 * which case we should avoid recursion, so check
4306	 * VI_DOINGINACT.  This is not precise but good enough.
4307	 */
4308	active = vp->v_usecount > 0;
4309	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4310	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4311
4312	/*
4313	 * If we need to do inactive VI_OWEINACT will be set.
4314	 */
4315	if (vp->v_iflag & VI_DEFINACT) {
4316		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4317		vp->v_iflag &= ~VI_DEFINACT;
4318		vdropl(vp);
4319	} else {
4320		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4321		VI_UNLOCK(vp);
4322	}
4323	cache_purge_vgone(vp);
4324	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4325
4326	/*
4327	 * If purging an active vnode, it must be closed and
4328	 * deactivated before being reclaimed.
4329	 */
4330	if (active)
4331		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4332	if (!doinginact) {
4333		do {
4334			if (oweinact || active) {
4335				VI_LOCK(vp);
4336				vinactivef(vp);
4337				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4338				VI_UNLOCK(vp);
4339			}
4340		} while (oweinact);
4341	}
4342	if (vp->v_type == VSOCK)
4343		vfs_unp_reclaim(vp);
4344
4345	/*
4346	 * Clean out any buffers associated with the vnode.
4347	 * If the flush fails, just toss the buffers.
4348	 */
4349	mp = NULL;
4350	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4351		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4352	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4353		while (vinvalbuf(vp, 0, 0, 0) != 0)
4354			;
4355	}
4356
4357	BO_LOCK(&vp->v_bufobj);
4358	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4359	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4360	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4361	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4362	    ("vp %p bufobj not invalidated", vp));
4363
4364	/*
4365	 * For VMIO bufobj, BO_DEAD is set later, or in
4366	 * vm_object_terminate() after the object's page queue is
4367	 * flushed.
4368	 */
4369	object = vp->v_bufobj.bo_object;
4370	if (object == NULL)
4371		vp->v_bufobj.bo_flag |= BO_DEAD;
4372	BO_UNLOCK(&vp->v_bufobj);
4373
4374	/*
4375	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4376	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4377	 * should not touch the object borrowed from the lower vnode
4378	 * (the handle check).
4379	 */
4380	if (object != NULL && object->type == OBJT_VNODE &&
4381	    object->handle == vp)
4382		vnode_destroy_vobject(vp);
4383
4384	/*
4385	 * Reclaim the vnode.
4386	 */
4387	if (VOP_RECLAIM(vp))
4388		panic("vgone: cannot reclaim");
4389	if (mp != NULL)
4390		vn_finished_secondary_write(mp);
4391	VNASSERT(vp->v_object == NULL, vp,
4392	    ("vop_reclaim left v_object vp=%p", vp));
4393	/*
4394	 * Clear the advisory locks and wake up waiting threads.
4395	 */
4396	if (vp->v_lockf != NULL) {
4397		(void)VOP_ADVLOCKPURGE(vp);
4398		vp->v_lockf = NULL;
4399	}
4400	/*
4401	 * Delete from old mount point vnode list.
4402	 */
4403	if (vp->v_mount == NULL) {
4404		VI_LOCK(vp);
4405	} else {
4406		delmntque(vp);
4407		ASSERT_VI_LOCKED(vp, "vgonel 2");
4408	}
4409	/*
4410	 * Done with purge, reset to the standard lock and invalidate
4411	 * the vnode.
4412	 */
4413	vp->v_vnlock = &vp->v_lock;
4414	vp->v_op = &dead_vnodeops;
4415	vp->v_type = VBAD;
4416	vn_set_state(vp, VSTATE_DEAD);
4417}
4418
4419/*
4420 * Print out a description of a vnode.
4421 */
4422static const char *const vtypename[] = {
4423	[VNON] = "VNON",
4424	[VREG] = "VREG",
4425	[VDIR] = "VDIR",
4426	[VBLK] = "VBLK",
4427	[VCHR] = "VCHR",
4428	[VLNK] = "VLNK",
4429	[VSOCK] = "VSOCK",
4430	[VFIFO] = "VFIFO",
4431	[VBAD] = "VBAD",
4432	[VMARKER] = "VMARKER",
4433};
4434_Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4435    "vnode type name not added to vtypename");
4436
4437static const char *const vstatename[] = {
4438	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4439	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4440	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4441	[VSTATE_DEAD] = "VSTATE_DEAD",
4442};
4443_Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4444    "vnode state name not added to vstatename");
4445
4446_Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4447    "new hold count flag not added to vn_printf");
4448
4449void
4450vn_printf(struct vnode *vp, const char *fmt, ...)
4451{
4452	va_list ap;
4453	char buf[256], buf2[16];
4454	u_long flags;
4455	u_int holdcnt;
4456	short irflag;
4457
4458	va_start(ap, fmt);
4459	vprintf(fmt, ap);
4460	va_end(ap);
4461	printf("%p: ", (void *)vp);
4462	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4463	    vstatename[vp->v_state], vp->v_op);
4464	holdcnt = atomic_load_int(&vp->v_holdcnt);
4465	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4466	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4467	    vp->v_seqc_users);
4468	switch (vp->v_type) {
4469	case VDIR:
4470		printf(" mountedhere %p\n", vp->v_mountedhere);
4471		break;
4472	case VCHR:
4473		printf(" rdev %p\n", vp->v_rdev);
4474		break;
4475	case VSOCK:
4476		printf(" socket %p\n", vp->v_unpcb);
4477		break;
4478	case VFIFO:
4479		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4480		break;
4481	default:
4482		printf("\n");
4483		break;
4484	}
4485	buf[0] = '\0';
4486	buf[1] = '\0';
4487	if (holdcnt & VHOLD_NO_SMR)
4488		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4489	printf("    hold count flags (%s)\n", buf + 1);
4490
4491	buf[0] = '\0';
4492	buf[1] = '\0';
4493	irflag = vn_irflag_read(vp);
4494	if (irflag & VIRF_DOOMED)
4495		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4496	if (irflag & VIRF_PGREAD)
4497		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4498	if (irflag & VIRF_MOUNTPOINT)
4499		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4500	if (irflag & VIRF_TEXT_REF)
4501		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4502	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4503	if (flags != 0) {
4504		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4505		strlcat(buf, buf2, sizeof(buf));
4506	}
4507	if (vp->v_vflag & VV_ROOT)
4508		strlcat(buf, "|VV_ROOT", sizeof(buf));
4509	if (vp->v_vflag & VV_ISTTY)
4510		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4511	if (vp->v_vflag & VV_NOSYNC)
4512		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4513	if (vp->v_vflag & VV_ETERNALDEV)
4514		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4515	if (vp->v_vflag & VV_CACHEDLABEL)
4516		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4517	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4518		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4519	if (vp->v_vflag & VV_COPYONWRITE)
4520		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4521	if (vp->v_vflag & VV_SYSTEM)
4522		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4523	if (vp->v_vflag & VV_PROCDEP)
4524		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4525	if (vp->v_vflag & VV_DELETED)
4526		strlcat(buf, "|VV_DELETED", sizeof(buf));
4527	if (vp->v_vflag & VV_MD)
4528		strlcat(buf, "|VV_MD", sizeof(buf));
4529	if (vp->v_vflag & VV_FORCEINSMQ)
4530		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4531	if (vp->v_vflag & VV_READLINK)
4532		strlcat(buf, "|VV_READLINK", sizeof(buf));
4533	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4534	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4535	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4536	if (flags != 0) {
4537		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4538		strlcat(buf, buf2, sizeof(buf));
4539	}
4540	if (vp->v_iflag & VI_MOUNT)
4541		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4542	if (vp->v_iflag & VI_DOINGINACT)
4543		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4544	if (vp->v_iflag & VI_OWEINACT)
4545		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4546	if (vp->v_iflag & VI_DEFINACT)
4547		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4548	if (vp->v_iflag & VI_FOPENING)
4549		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4550	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4551	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4552	if (flags != 0) {
4553		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4554		strlcat(buf, buf2, sizeof(buf));
4555	}
4556	if (vp->v_mflag & VMP_LAZYLIST)
4557		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4558	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4559	if (flags != 0) {
4560		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4561		strlcat(buf, buf2, sizeof(buf));
4562	}
4563	printf("    flags (%s)", buf + 1);
4564	if (mtx_owned(VI_MTX(vp)))
4565		printf(" VI_LOCKed");
4566	printf("\n");
4567	if (vp->v_object != NULL)
4568		printf("    v_object %p ref %d pages %d "
4569		    "cleanbuf %d dirtybuf %d\n",
4570		    vp->v_object, vp->v_object->ref_count,
4571		    vp->v_object->resident_page_count,
4572		    vp->v_bufobj.bo_clean.bv_cnt,
4573		    vp->v_bufobj.bo_dirty.bv_cnt);
4574	printf("    ");
4575	lockmgr_printinfo(vp->v_vnlock);
4576	if (vp->v_data != NULL)
4577		VOP_PRINT(vp);
4578}
4579
4580#ifdef DDB
4581/*
4582 * List all of the locked vnodes in the system.
4583 * Called when debugging the kernel.
4584 */
4585DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4586{
4587	struct mount *mp;
4588	struct vnode *vp;
4589
4590	/*
4591	 * Note: because this is DDB, we can't obey the locking semantics
4592	 * for these structures, which means we could catch an inconsistent
4593	 * state and dereference a nasty pointer.  Not much to be done
4594	 * about that.
4595	 */
4596	db_printf("Locked vnodes\n");
4597	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4598		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4599			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4600				vn_printf(vp, "vnode ");
4601		}
4602	}
4603}
4604
4605/*
4606 * Show details about the given vnode.
4607 */
4608DB_SHOW_COMMAND(vnode, db_show_vnode)
4609{
4610	struct vnode *vp;
4611
4612	if (!have_addr)
4613		return;
4614	vp = (struct vnode *)addr;
4615	vn_printf(vp, "vnode ");
4616}
4617
4618/*
4619 * Show details about the given mount point.
4620 */
4621DB_SHOW_COMMAND(mount, db_show_mount)
4622{
4623	struct mount *mp;
4624	struct vfsopt *opt;
4625	struct statfs *sp;
4626	struct vnode *vp;
4627	char buf[512];
4628	uint64_t mflags;
4629	u_int flags;
4630
4631	if (!have_addr) {
4632		/* No address given, print short info about all mount points. */
4633		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4634			db_printf("%p %s on %s (%s)\n", mp,
4635			    mp->mnt_stat.f_mntfromname,
4636			    mp->mnt_stat.f_mntonname,
4637			    mp->mnt_stat.f_fstypename);
4638			if (db_pager_quit)
4639				break;
4640		}
4641		db_printf("\nMore info: show mount <addr>\n");
4642		return;
4643	}
4644
4645	mp = (struct mount *)addr;
4646	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4647	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4648
4649	buf[0] = '\0';
4650	mflags = mp->mnt_flag;
4651#define	MNT_FLAG(flag)	do {						\
4652	if (mflags & (flag)) {						\
4653		if (buf[0] != '\0')					\
4654			strlcat(buf, ", ", sizeof(buf));		\
4655		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4656		mflags &= ~(flag);					\
4657	}								\
4658} while (0)
4659	MNT_FLAG(MNT_RDONLY);
4660	MNT_FLAG(MNT_SYNCHRONOUS);
4661	MNT_FLAG(MNT_NOEXEC);
4662	MNT_FLAG(MNT_NOSUID);
4663	MNT_FLAG(MNT_NFS4ACLS);
4664	MNT_FLAG(MNT_UNION);
4665	MNT_FLAG(MNT_ASYNC);
4666	MNT_FLAG(MNT_SUIDDIR);
4667	MNT_FLAG(MNT_SOFTDEP);
4668	MNT_FLAG(MNT_NOSYMFOLLOW);
4669	MNT_FLAG(MNT_GJOURNAL);
4670	MNT_FLAG(MNT_MULTILABEL);
4671	MNT_FLAG(MNT_ACLS);
4672	MNT_FLAG(MNT_NOATIME);
4673	MNT_FLAG(MNT_NOCLUSTERR);
4674	MNT_FLAG(MNT_NOCLUSTERW);
4675	MNT_FLAG(MNT_SUJ);
4676	MNT_FLAG(MNT_EXRDONLY);
4677	MNT_FLAG(MNT_EXPORTED);
4678	MNT_FLAG(MNT_DEFEXPORTED);
4679	MNT_FLAG(MNT_EXPORTANON);
4680	MNT_FLAG(MNT_EXKERB);
4681	MNT_FLAG(MNT_EXPUBLIC);
4682	MNT_FLAG(MNT_LOCAL);
4683	MNT_FLAG(MNT_QUOTA);
4684	MNT_FLAG(MNT_ROOTFS);
4685	MNT_FLAG(MNT_USER);
4686	MNT_FLAG(MNT_IGNORE);
4687	MNT_FLAG(MNT_UPDATE);
4688	MNT_FLAG(MNT_DELEXPORT);
4689	MNT_FLAG(MNT_RELOAD);
4690	MNT_FLAG(MNT_FORCE);
4691	MNT_FLAG(MNT_SNAPSHOT);
4692	MNT_FLAG(MNT_BYFSID);
4693#undef MNT_FLAG
4694	if (mflags != 0) {
4695		if (buf[0] != '\0')
4696			strlcat(buf, ", ", sizeof(buf));
4697		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4698		    "0x%016jx", mflags);
4699	}
4700	db_printf("    mnt_flag = %s\n", buf);
4701
4702	buf[0] = '\0';
4703	flags = mp->mnt_kern_flag;
4704#define	MNT_KERN_FLAG(flag)	do {					\
4705	if (flags & (flag)) {						\
4706		if (buf[0] != '\0')					\
4707			strlcat(buf, ", ", sizeof(buf));		\
4708		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4709		flags &= ~(flag);					\
4710	}								\
4711} while (0)
4712	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4713	MNT_KERN_FLAG(MNTK_ASYNC);
4714	MNT_KERN_FLAG(MNTK_SOFTDEP);
4715	MNT_KERN_FLAG(MNTK_NOMSYNC);
4716	MNT_KERN_FLAG(MNTK_DRAINING);
4717	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4718	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4719	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4720	MNT_KERN_FLAG(MNTK_NO_IOPF);
4721	MNT_KERN_FLAG(MNTK_RECURSE);
4722	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4723	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4724	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4725	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4726	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4727	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4728	MNT_KERN_FLAG(MNTK_NOASYNC);
4729	MNT_KERN_FLAG(MNTK_UNMOUNT);
4730	MNT_KERN_FLAG(MNTK_MWAIT);
4731	MNT_KERN_FLAG(MNTK_SUSPEND);
4732	MNT_KERN_FLAG(MNTK_SUSPEND2);
4733	MNT_KERN_FLAG(MNTK_SUSPENDED);
4734	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4735	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4736#undef MNT_KERN_FLAG
4737	if (flags != 0) {
4738		if (buf[0] != '\0')
4739			strlcat(buf, ", ", sizeof(buf));
4740		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4741		    "0x%08x", flags);
4742	}
4743	db_printf("    mnt_kern_flag = %s\n", buf);
4744
4745	db_printf("    mnt_opt = ");
4746	opt = TAILQ_FIRST(mp->mnt_opt);
4747	if (opt != NULL) {
4748		db_printf("%s", opt->name);
4749		opt = TAILQ_NEXT(opt, link);
4750		while (opt != NULL) {
4751			db_printf(", %s", opt->name);
4752			opt = TAILQ_NEXT(opt, link);
4753		}
4754	}
4755	db_printf("\n");
4756
4757	sp = &mp->mnt_stat;
4758	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4759	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4760	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4761	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4762	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4763	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4764	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4765	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4766	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4767	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4768	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4769	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4770
4771	db_printf("    mnt_cred = { uid=%u ruid=%u",
4772	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4773	if (jailed(mp->mnt_cred))
4774		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4775	db_printf(" }\n");
4776	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4777	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4778	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4779	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4780	db_printf("    mnt_lazyvnodelistsize = %d\n",
4781	    mp->mnt_lazyvnodelistsize);
4782	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4783	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4784	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4785	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4786	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4787	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4788	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4789	db_printf("    mnt_secondary_accwrites = %d\n",
4790	    mp->mnt_secondary_accwrites);
4791	db_printf("    mnt_gjprovider = %s\n",
4792	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4793	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4794
4795	db_printf("\n\nList of active vnodes\n");
4796	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4797		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4798			vn_printf(vp, "vnode ");
4799			if (db_pager_quit)
4800				break;
4801		}
4802	}
4803	db_printf("\n\nList of inactive vnodes\n");
4804	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4805		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4806			vn_printf(vp, "vnode ");
4807			if (db_pager_quit)
4808				break;
4809		}
4810	}
4811}
4812#endif	/* DDB */
4813
4814/*
4815 * Fill in a struct xvfsconf based on a struct vfsconf.
4816 */
4817static int
4818vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4819{
4820	struct xvfsconf xvfsp;
4821
4822	bzero(&xvfsp, sizeof(xvfsp));
4823	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4824	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4825	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4826	xvfsp.vfc_flags = vfsp->vfc_flags;
4827	/*
4828	 * These are unused in userland, we keep them
4829	 * to not break binary compatibility.
4830	 */
4831	xvfsp.vfc_vfsops = NULL;
4832	xvfsp.vfc_next = NULL;
4833	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4834}
4835
4836#ifdef COMPAT_FREEBSD32
4837struct xvfsconf32 {
4838	uint32_t	vfc_vfsops;
4839	char		vfc_name[MFSNAMELEN];
4840	int32_t		vfc_typenum;
4841	int32_t		vfc_refcount;
4842	int32_t		vfc_flags;
4843	uint32_t	vfc_next;
4844};
4845
4846static int
4847vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4848{
4849	struct xvfsconf32 xvfsp;
4850
4851	bzero(&xvfsp, sizeof(xvfsp));
4852	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4853	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4854	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4855	xvfsp.vfc_flags = vfsp->vfc_flags;
4856	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4857}
4858#endif
4859
4860/*
4861 * Top level filesystem related information gathering.
4862 */
4863static int
4864sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4865{
4866	struct vfsconf *vfsp;
4867	int error;
4868
4869	error = 0;
4870	vfsconf_slock();
4871	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4872#ifdef COMPAT_FREEBSD32
4873		if (req->flags & SCTL_MASK32)
4874			error = vfsconf2x32(req, vfsp);
4875		else
4876#endif
4877			error = vfsconf2x(req, vfsp);
4878		if (error)
4879			break;
4880	}
4881	vfsconf_sunlock();
4882	return (error);
4883}
4884
4885SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4886    CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4887    "S,xvfsconf", "List of all configured filesystems");
4888
4889#ifndef BURN_BRIDGES
4890static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4891
4892static int
4893vfs_sysctl(SYSCTL_HANDLER_ARGS)
4894{
4895	int *name = (int *)arg1 - 1;	/* XXX */
4896	u_int namelen = arg2 + 1;	/* XXX */
4897	struct vfsconf *vfsp;
4898
4899	log(LOG_WARNING, "userland calling deprecated sysctl, "
4900	    "please rebuild world\n");
4901
4902#if 1 || defined(COMPAT_PRELITE2)
4903	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4904	if (namelen == 1)
4905		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4906#endif
4907
4908	switch (name[1]) {
4909	case VFS_MAXTYPENUM:
4910		if (namelen != 2)
4911			return (ENOTDIR);
4912		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4913	case VFS_CONF:
4914		if (namelen != 3)
4915			return (ENOTDIR);	/* overloaded */
4916		vfsconf_slock();
4917		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4918			if (vfsp->vfc_typenum == name[2])
4919				break;
4920		}
4921		vfsconf_sunlock();
4922		if (vfsp == NULL)
4923			return (EOPNOTSUPP);
4924#ifdef COMPAT_FREEBSD32
4925		if (req->flags & SCTL_MASK32)
4926			return (vfsconf2x32(req, vfsp));
4927		else
4928#endif
4929			return (vfsconf2x(req, vfsp));
4930	}
4931	return (EOPNOTSUPP);
4932}
4933
4934static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4935    CTLFLAG_MPSAFE, vfs_sysctl,
4936    "Generic filesystem");
4937
4938#if 1 || defined(COMPAT_PRELITE2)
4939
4940static int
4941sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4942{
4943	int error;
4944	struct vfsconf *vfsp;
4945	struct ovfsconf ovfs;
4946
4947	vfsconf_slock();
4948	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4949		bzero(&ovfs, sizeof(ovfs));
4950		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4951		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4952		ovfs.vfc_index = vfsp->vfc_typenum;
4953		ovfs.vfc_refcount = vfsp->vfc_refcount;
4954		ovfs.vfc_flags = vfsp->vfc_flags;
4955		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4956		if (error != 0) {
4957			vfsconf_sunlock();
4958			return (error);
4959		}
4960	}
4961	vfsconf_sunlock();
4962	return (0);
4963}
4964
4965#endif /* 1 || COMPAT_PRELITE2 */
4966#endif /* !BURN_BRIDGES */
4967
4968static void
4969unmount_or_warn(struct mount *mp)
4970{
4971	int error;
4972
4973	error = dounmount(mp, MNT_FORCE, curthread);
4974	if (error != 0) {
4975		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4976		if (error == EBUSY)
4977			printf("BUSY)\n");
4978		else
4979			printf("%d)\n", error);
4980	}
4981}
4982
4983/*
4984 * Unmount all filesystems. The list is traversed in reverse order
4985 * of mounting to avoid dependencies.
4986 */
4987void
4988vfs_unmountall(void)
4989{
4990	struct mount *mp, *tmp;
4991
4992	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4993
4994	/*
4995	 * Since this only runs when rebooting, it is not interlocked.
4996	 */
4997	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4998		vfs_ref(mp);
4999
5000		/*
5001		 * Forcibly unmounting "/dev" before "/" would prevent clean
5002		 * unmount of the latter.
5003		 */
5004		if (mp == rootdevmp)
5005			continue;
5006
5007		unmount_or_warn(mp);
5008	}
5009
5010	if (rootdevmp != NULL)
5011		unmount_or_warn(rootdevmp);
5012}
5013
5014static void
5015vfs_deferred_inactive(struct vnode *vp, int lkflags)
5016{
5017
5018	ASSERT_VI_LOCKED(vp, __func__);
5019	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5020	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5021		vdropl(vp);
5022		return;
5023	}
5024	if (vn_lock(vp, lkflags) == 0) {
5025		VI_LOCK(vp);
5026		vinactive(vp);
5027		VOP_UNLOCK(vp);
5028		vdropl(vp);
5029		return;
5030	}
5031	vdefer_inactive_unlocked(vp);
5032}
5033
5034static int
5035vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5036{
5037
5038	return (vp->v_iflag & VI_DEFINACT);
5039}
5040
5041static void __noinline
5042vfs_periodic_inactive(struct mount *mp, int flags)
5043{
5044	struct vnode *vp, *mvp;
5045	int lkflags;
5046
5047	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5048	if (flags != MNT_WAIT)
5049		lkflags |= LK_NOWAIT;
5050
5051	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5052		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5053			VI_UNLOCK(vp);
5054			continue;
5055		}
5056		vp->v_iflag &= ~VI_DEFINACT;
5057		vfs_deferred_inactive(vp, lkflags);
5058	}
5059}
5060
5061static inline bool
5062vfs_want_msync(struct vnode *vp)
5063{
5064	struct vm_object *obj;
5065
5066	/*
5067	 * This test may be performed without any locks held.
5068	 * We rely on vm_object's type stability.
5069	 */
5070	if (vp->v_vflag & VV_NOSYNC)
5071		return (false);
5072	obj = vp->v_object;
5073	return (obj != NULL && vm_object_mightbedirty(obj));
5074}
5075
5076static int
5077vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5078{
5079
5080	if (vp->v_vflag & VV_NOSYNC)
5081		return (false);
5082	if (vp->v_iflag & VI_DEFINACT)
5083		return (true);
5084	return (vfs_want_msync(vp));
5085}
5086
5087static void __noinline
5088vfs_periodic_msync_inactive(struct mount *mp, int flags)
5089{
5090	struct vnode *vp, *mvp;
5091	int lkflags;
5092	bool seen_defer;
5093
5094	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5095	if (flags != MNT_WAIT)
5096		lkflags |= LK_NOWAIT;
5097
5098	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5099		seen_defer = false;
5100		if (vp->v_iflag & VI_DEFINACT) {
5101			vp->v_iflag &= ~VI_DEFINACT;
5102			seen_defer = true;
5103		}
5104		if (!vfs_want_msync(vp)) {
5105			if (seen_defer)
5106				vfs_deferred_inactive(vp, lkflags);
5107			else
5108				VI_UNLOCK(vp);
5109			continue;
5110		}
5111		if (vget(vp, lkflags) == 0) {
5112			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5113				if (flags == MNT_WAIT)
5114					vnode_pager_clean_sync(vp);
5115				else
5116					vnode_pager_clean_async(vp);
5117			}
5118			vput(vp);
5119			if (seen_defer)
5120				vdrop(vp);
5121		} else {
5122			if (seen_defer)
5123				vdefer_inactive_unlocked(vp);
5124		}
5125	}
5126}
5127
5128void
5129vfs_periodic(struct mount *mp, int flags)
5130{
5131
5132	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5133
5134	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5135		vfs_periodic_inactive(mp, flags);
5136	else
5137		vfs_periodic_msync_inactive(mp, flags);
5138}
5139
5140static void
5141destroy_vpollinfo_free(struct vpollinfo *vi)
5142{
5143
5144	knlist_destroy(&vi->vpi_selinfo.si_note);
5145	mtx_destroy(&vi->vpi_lock);
5146	free(vi, M_VNODEPOLL);
5147}
5148
5149static void
5150destroy_vpollinfo(struct vpollinfo *vi)
5151{
5152
5153	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5154	seldrain(&vi->vpi_selinfo);
5155	destroy_vpollinfo_free(vi);
5156}
5157
5158/*
5159 * Initialize per-vnode helper structure to hold poll-related state.
5160 */
5161void
5162v_addpollinfo(struct vnode *vp)
5163{
5164	struct vpollinfo *vi;
5165
5166	if (vp->v_pollinfo != NULL)
5167		return;
5168	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5169	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5170	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5171	    vfs_knlunlock, vfs_knl_assert_lock);
5172	VI_LOCK(vp);
5173	if (vp->v_pollinfo != NULL) {
5174		VI_UNLOCK(vp);
5175		destroy_vpollinfo_free(vi);
5176		return;
5177	}
5178	vp->v_pollinfo = vi;
5179	VI_UNLOCK(vp);
5180}
5181
5182/*
5183 * Record a process's interest in events which might happen to
5184 * a vnode.  Because poll uses the historic select-style interface
5185 * internally, this routine serves as both the ``check for any
5186 * pending events'' and the ``record my interest in future events''
5187 * functions.  (These are done together, while the lock is held,
5188 * to avoid race conditions.)
5189 */
5190int
5191vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5192{
5193
5194	v_addpollinfo(vp);
5195	mtx_lock(&vp->v_pollinfo->vpi_lock);
5196	if (vp->v_pollinfo->vpi_revents & events) {
5197		/*
5198		 * This leaves events we are not interested
5199		 * in available for the other process which
5200		 * which presumably had requested them
5201		 * (otherwise they would never have been
5202		 * recorded).
5203		 */
5204		events &= vp->v_pollinfo->vpi_revents;
5205		vp->v_pollinfo->vpi_revents &= ~events;
5206
5207		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5208		return (events);
5209	}
5210	vp->v_pollinfo->vpi_events |= events;
5211	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5212	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5213	return (0);
5214}
5215
5216/*
5217 * Routine to create and manage a filesystem syncer vnode.
5218 */
5219#define sync_close ((int (*)(struct  vop_close_args *))nullop)
5220static int	sync_fsync(struct  vop_fsync_args *);
5221static int	sync_inactive(struct  vop_inactive_args *);
5222static int	sync_reclaim(struct  vop_reclaim_args *);
5223
5224static struct vop_vector sync_vnodeops = {
5225	.vop_bypass =	VOP_EOPNOTSUPP,
5226	.vop_close =	sync_close,
5227	.vop_fsync =	sync_fsync,
5228	.vop_getwritemount = vop_stdgetwritemount,
5229	.vop_inactive =	sync_inactive,
5230	.vop_need_inactive = vop_stdneed_inactive,
5231	.vop_reclaim =	sync_reclaim,
5232	.vop_lock1 =	vop_stdlock,
5233	.vop_unlock =	vop_stdunlock,
5234	.vop_islocked =	vop_stdislocked,
5235	.vop_fplookup_vexec = VOP_EAGAIN,
5236	.vop_fplookup_symlink = VOP_EAGAIN,
5237};
5238VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5239
5240/*
5241 * Create a new filesystem syncer vnode for the specified mount point.
5242 */
5243void
5244vfs_allocate_syncvnode(struct mount *mp)
5245{
5246	struct vnode *vp;
5247	struct bufobj *bo;
5248	static long start, incr, next;
5249	int error;
5250
5251	/* Allocate a new vnode */
5252	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5253	if (error != 0)
5254		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5255	vp->v_type = VNON;
5256	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5257	vp->v_vflag |= VV_FORCEINSMQ;
5258	error = insmntque1(vp, mp);
5259	if (error != 0)
5260		panic("vfs_allocate_syncvnode: insmntque() failed");
5261	vp->v_vflag &= ~VV_FORCEINSMQ;
5262	vn_set_state(vp, VSTATE_CONSTRUCTED);
5263	VOP_UNLOCK(vp);
5264	/*
5265	 * Place the vnode onto the syncer worklist. We attempt to
5266	 * scatter them about on the list so that they will go off
5267	 * at evenly distributed times even if all the filesystems
5268	 * are mounted at once.
5269	 */
5270	next += incr;
5271	if (next == 0 || next > syncer_maxdelay) {
5272		start /= 2;
5273		incr /= 2;
5274		if (start == 0) {
5275			start = syncer_maxdelay / 2;
5276			incr = syncer_maxdelay;
5277		}
5278		next = start;
5279	}
5280	bo = &vp->v_bufobj;
5281	BO_LOCK(bo);
5282	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5283	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5284	mtx_lock(&sync_mtx);
5285	sync_vnode_count++;
5286	if (mp->mnt_syncer == NULL) {
5287		mp->mnt_syncer = vp;
5288		vp = NULL;
5289	}
5290	mtx_unlock(&sync_mtx);
5291	BO_UNLOCK(bo);
5292	if (vp != NULL) {
5293		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5294		vgone(vp);
5295		vput(vp);
5296	}
5297}
5298
5299void
5300vfs_deallocate_syncvnode(struct mount *mp)
5301{
5302	struct vnode *vp;
5303
5304	mtx_lock(&sync_mtx);
5305	vp = mp->mnt_syncer;
5306	if (vp != NULL)
5307		mp->mnt_syncer = NULL;
5308	mtx_unlock(&sync_mtx);
5309	if (vp != NULL)
5310		vrele(vp);
5311}
5312
5313/*
5314 * Do a lazy sync of the filesystem.
5315 */
5316static int
5317sync_fsync(struct vop_fsync_args *ap)
5318{
5319	struct vnode *syncvp = ap->a_vp;
5320	struct mount *mp = syncvp->v_mount;
5321	int error, save;
5322	struct bufobj *bo;
5323
5324	/*
5325	 * We only need to do something if this is a lazy evaluation.
5326	 */
5327	if (ap->a_waitfor != MNT_LAZY)
5328		return (0);
5329
5330	/*
5331	 * Move ourselves to the back of the sync list.
5332	 */
5333	bo = &syncvp->v_bufobj;
5334	BO_LOCK(bo);
5335	vn_syncer_add_to_worklist(bo, syncdelay);
5336	BO_UNLOCK(bo);
5337
5338	/*
5339	 * Walk the list of vnodes pushing all that are dirty and
5340	 * not already on the sync list.
5341	 */
5342	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5343		return (0);
5344	VOP_UNLOCK(syncvp);
5345	save = curthread_pflags_set(TDP_SYNCIO);
5346	/*
5347	 * The filesystem at hand may be idle with free vnodes stored in the
5348	 * batch.  Return them instead of letting them stay there indefinitely.
5349	 */
5350	vfs_periodic(mp, MNT_NOWAIT);
5351	error = VFS_SYNC(mp, MNT_LAZY);
5352	curthread_pflags_restore(save);
5353	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5354	vfs_unbusy(mp);
5355	return (error);
5356}
5357
5358/*
5359 * The syncer vnode is no referenced.
5360 */
5361static int
5362sync_inactive(struct vop_inactive_args *ap)
5363{
5364
5365	vgone(ap->a_vp);
5366	return (0);
5367}
5368
5369/*
5370 * The syncer vnode is no longer needed and is being decommissioned.
5371 *
5372 * Modifications to the worklist must be protected by sync_mtx.
5373 */
5374static int
5375sync_reclaim(struct vop_reclaim_args *ap)
5376{
5377	struct vnode *vp = ap->a_vp;
5378	struct bufobj *bo;
5379
5380	bo = &vp->v_bufobj;
5381	BO_LOCK(bo);
5382	mtx_lock(&sync_mtx);
5383	if (vp->v_mount->mnt_syncer == vp)
5384		vp->v_mount->mnt_syncer = NULL;
5385	if (bo->bo_flag & BO_ONWORKLST) {
5386		LIST_REMOVE(bo, bo_synclist);
5387		syncer_worklist_len--;
5388		sync_vnode_count--;
5389		bo->bo_flag &= ~BO_ONWORKLST;
5390	}
5391	mtx_unlock(&sync_mtx);
5392	BO_UNLOCK(bo);
5393
5394	return (0);
5395}
5396
5397int
5398vn_need_pageq_flush(struct vnode *vp)
5399{
5400	struct vm_object *obj;
5401
5402	obj = vp->v_object;
5403	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5404	    vm_object_mightbedirty(obj));
5405}
5406
5407/*
5408 * Check if vnode represents a disk device
5409 */
5410bool
5411vn_isdisk_error(struct vnode *vp, int *errp)
5412{
5413	int error;
5414
5415	if (vp->v_type != VCHR) {
5416		error = ENOTBLK;
5417		goto out;
5418	}
5419	error = 0;
5420	dev_lock();
5421	if (vp->v_rdev == NULL)
5422		error = ENXIO;
5423	else if (vp->v_rdev->si_devsw == NULL)
5424		error = ENXIO;
5425	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5426		error = ENOTBLK;
5427	dev_unlock();
5428out:
5429	*errp = error;
5430	return (error == 0);
5431}
5432
5433bool
5434vn_isdisk(struct vnode *vp)
5435{
5436	int error;
5437
5438	return (vn_isdisk_error(vp, &error));
5439}
5440
5441/*
5442 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5443 * the comment above cache_fplookup for details.
5444 */
5445int
5446vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5447{
5448	int error;
5449
5450	VFS_SMR_ASSERT_ENTERED();
5451
5452	/* Check the owner. */
5453	if (cred->cr_uid == file_uid) {
5454		if (file_mode & S_IXUSR)
5455			return (0);
5456		goto out_error;
5457	}
5458
5459	/* Otherwise, check the groups (first match) */
5460	if (groupmember(file_gid, cred)) {
5461		if (file_mode & S_IXGRP)
5462			return (0);
5463		goto out_error;
5464	}
5465
5466	/* Otherwise, check everyone else. */
5467	if (file_mode & S_IXOTH)
5468		return (0);
5469out_error:
5470	/*
5471	 * Permission check failed, but it is possible denial will get overwritten
5472	 * (e.g., when root is traversing through a 700 directory owned by someone
5473	 * else).
5474	 *
5475	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5476	 * modules overriding this result. It's quite unclear what semantics
5477	 * are allowed for them to operate, thus for safety we don't call them
5478	 * from within the SMR section. This also means if any such modules
5479	 * are present, we have to let the regular lookup decide.
5480	 */
5481	error = priv_check_cred_vfs_lookup_nomac(cred);
5482	switch (error) {
5483	case 0:
5484		return (0);
5485	case EAGAIN:
5486		/*
5487		 * MAC modules present.
5488		 */
5489		return (EAGAIN);
5490	case EPERM:
5491		return (EACCES);
5492	default:
5493		return (error);
5494	}
5495}
5496
5497/*
5498 * Common filesystem object access control check routine.  Accepts a
5499 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5500 * Returns 0 on success, or an errno on failure.
5501 */
5502int
5503vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5504    accmode_t accmode, struct ucred *cred)
5505{
5506	accmode_t dac_granted;
5507	accmode_t priv_granted;
5508
5509	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5510	    ("invalid bit in accmode"));
5511	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5512	    ("VAPPEND without VWRITE"));
5513
5514	/*
5515	 * Look for a normal, non-privileged way to access the file/directory
5516	 * as requested.  If it exists, go with that.
5517	 */
5518
5519	dac_granted = 0;
5520
5521	/* Check the owner. */
5522	if (cred->cr_uid == file_uid) {
5523		dac_granted |= VADMIN;
5524		if (file_mode & S_IXUSR)
5525			dac_granted |= VEXEC;
5526		if (file_mode & S_IRUSR)
5527			dac_granted |= VREAD;
5528		if (file_mode & S_IWUSR)
5529			dac_granted |= (VWRITE | VAPPEND);
5530
5531		if ((accmode & dac_granted) == accmode)
5532			return (0);
5533
5534		goto privcheck;
5535	}
5536
5537	/* Otherwise, check the groups (first match) */
5538	if (groupmember(file_gid, cred)) {
5539		if (file_mode & S_IXGRP)
5540			dac_granted |= VEXEC;
5541		if (file_mode & S_IRGRP)
5542			dac_granted |= VREAD;
5543		if (file_mode & S_IWGRP)
5544			dac_granted |= (VWRITE | VAPPEND);
5545
5546		if ((accmode & dac_granted) == accmode)
5547			return (0);
5548
5549		goto privcheck;
5550	}
5551
5552	/* Otherwise, check everyone else. */
5553	if (file_mode & S_IXOTH)
5554		dac_granted |= VEXEC;
5555	if (file_mode & S_IROTH)
5556		dac_granted |= VREAD;
5557	if (file_mode & S_IWOTH)
5558		dac_granted |= (VWRITE | VAPPEND);
5559	if ((accmode & dac_granted) == accmode)
5560		return (0);
5561
5562privcheck:
5563	/*
5564	 * Build a privilege mask to determine if the set of privileges
5565	 * satisfies the requirements when combined with the granted mask
5566	 * from above.  For each privilege, if the privilege is required,
5567	 * bitwise or the request type onto the priv_granted mask.
5568	 */
5569	priv_granted = 0;
5570
5571	if (type == VDIR) {
5572		/*
5573		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5574		 * requests, instead of PRIV_VFS_EXEC.
5575		 */
5576		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5577		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5578			priv_granted |= VEXEC;
5579	} else {
5580		/*
5581		 * Ensure that at least one execute bit is on. Otherwise,
5582		 * a privileged user will always succeed, and we don't want
5583		 * this to happen unless the file really is executable.
5584		 */
5585		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5586		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5587		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5588			priv_granted |= VEXEC;
5589	}
5590
5591	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5592	    !priv_check_cred(cred, PRIV_VFS_READ))
5593		priv_granted |= VREAD;
5594
5595	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5596	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5597		priv_granted |= (VWRITE | VAPPEND);
5598
5599	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5600	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5601		priv_granted |= VADMIN;
5602
5603	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5604		return (0);
5605	}
5606
5607	return ((accmode & VADMIN) ? EPERM : EACCES);
5608}
5609
5610/*
5611 * Credential check based on process requesting service, and per-attribute
5612 * permissions.
5613 */
5614int
5615extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5616    struct thread *td, accmode_t accmode)
5617{
5618
5619	/*
5620	 * Kernel-invoked always succeeds.
5621	 */
5622	if (cred == NOCRED)
5623		return (0);
5624
5625	/*
5626	 * Do not allow privileged processes in jail to directly manipulate
5627	 * system attributes.
5628	 */
5629	switch (attrnamespace) {
5630	case EXTATTR_NAMESPACE_SYSTEM:
5631		/* Potentially should be: return (EPERM); */
5632		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5633	case EXTATTR_NAMESPACE_USER:
5634		return (VOP_ACCESS(vp, accmode, cred, td));
5635	default:
5636		return (EPERM);
5637	}
5638}
5639
5640#ifdef DEBUG_VFS_LOCKS
5641int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5642SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5643    "Drop into debugger on lock violation");
5644
5645int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5646SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5647    0, "Check for interlock across VOPs");
5648
5649int vfs_badlock_print = 1;	/* Print lock violations. */
5650SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5651    0, "Print lock violations");
5652
5653int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5654SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5655    0, "Print vnode details on lock violations");
5656
5657#ifdef KDB
5658int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5659SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5660    &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5661#endif
5662
5663static void
5664vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5665{
5666
5667#ifdef KDB
5668	if (vfs_badlock_backtrace)
5669		kdb_backtrace();
5670#endif
5671	if (vfs_badlock_vnode)
5672		vn_printf(vp, "vnode ");
5673	if (vfs_badlock_print)
5674		printf("%s: %p %s\n", str, (void *)vp, msg);
5675	if (vfs_badlock_ddb)
5676		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5677}
5678
5679void
5680assert_vi_locked(struct vnode *vp, const char *str)
5681{
5682
5683	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5684		vfs_badlock("interlock is not locked but should be", str, vp);
5685}
5686
5687void
5688assert_vi_unlocked(struct vnode *vp, const char *str)
5689{
5690
5691	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5692		vfs_badlock("interlock is locked but should not be", str, vp);
5693}
5694
5695void
5696assert_vop_locked(struct vnode *vp, const char *str)
5697{
5698	if (KERNEL_PANICKED() || vp == NULL)
5699		return;
5700
5701#ifdef WITNESS
5702	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5703	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5704#else
5705	int locked = VOP_ISLOCKED(vp);
5706	if (locked == 0 || locked == LK_EXCLOTHER)
5707#endif
5708		vfs_badlock("is not locked but should be", str, vp);
5709}
5710
5711void
5712assert_vop_unlocked(struct vnode *vp, const char *str)
5713{
5714	if (KERNEL_PANICKED() || vp == NULL)
5715		return;
5716
5717#ifdef WITNESS
5718	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5719	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5720#else
5721	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5722#endif
5723		vfs_badlock("is locked but should not be", str, vp);
5724}
5725
5726void
5727assert_vop_elocked(struct vnode *vp, const char *str)
5728{
5729	if (KERNEL_PANICKED() || vp == NULL)
5730		return;
5731
5732	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5733		vfs_badlock("is not exclusive locked but should be", str, vp);
5734}
5735#endif /* DEBUG_VFS_LOCKS */
5736
5737void
5738vop_rename_fail(struct vop_rename_args *ap)
5739{
5740
5741	if (ap->a_tvp != NULL)
5742		vput(ap->a_tvp);
5743	if (ap->a_tdvp == ap->a_tvp)
5744		vrele(ap->a_tdvp);
5745	else
5746		vput(ap->a_tdvp);
5747	vrele(ap->a_fdvp);
5748	vrele(ap->a_fvp);
5749}
5750
5751void
5752vop_rename_pre(void *ap)
5753{
5754	struct vop_rename_args *a = ap;
5755
5756#ifdef DEBUG_VFS_LOCKS
5757	if (a->a_tvp)
5758		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5759	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5760	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5761	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5762
5763	/* Check the source (from). */
5764	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5765	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5766		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5767	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5768		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5769
5770	/* Check the target. */
5771	if (a->a_tvp)
5772		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5773	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5774#endif
5775	/*
5776	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5777	 * in vop_rename_post but that's not going to work out since some
5778	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5779	 *
5780	 * For now filesystems are expected to do the relevant calls after they
5781	 * decide what vnodes to operate on.
5782	 */
5783	if (a->a_tdvp != a->a_fdvp)
5784		vhold(a->a_fdvp);
5785	if (a->a_tvp != a->a_fvp)
5786		vhold(a->a_fvp);
5787	vhold(a->a_tdvp);
5788	if (a->a_tvp)
5789		vhold(a->a_tvp);
5790}
5791
5792#ifdef DEBUG_VFS_LOCKS
5793void
5794vop_fplookup_vexec_debugpre(void *ap __unused)
5795{
5796
5797	VFS_SMR_ASSERT_ENTERED();
5798}
5799
5800void
5801vop_fplookup_vexec_debugpost(void *ap, int rc)
5802{
5803	struct vop_fplookup_vexec_args *a;
5804	struct vnode *vp;
5805
5806	a = ap;
5807	vp = a->a_vp;
5808
5809	VFS_SMR_ASSERT_ENTERED();
5810	if (rc == EOPNOTSUPP)
5811		VNPASS(VN_IS_DOOMED(vp), vp);
5812}
5813
5814void
5815vop_fplookup_symlink_debugpre(void *ap __unused)
5816{
5817
5818	VFS_SMR_ASSERT_ENTERED();
5819}
5820
5821void
5822vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5823{
5824
5825	VFS_SMR_ASSERT_ENTERED();
5826}
5827
5828static void
5829vop_fsync_debugprepost(struct vnode *vp, const char *name)
5830{
5831	if (vp->v_type == VCHR)
5832		;
5833	/*
5834	 * The shared vs. exclusive locking policy for fsync()
5835	 * is actually determined by vp's write mount as indicated
5836	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5837	 * may not be the same as vp->v_mount.  However, if the
5838	 * underlying filesystem which really handles the fsync()
5839	 * supports shared locking, the stacked filesystem must also
5840	 * be prepared for its VOP_FSYNC() operation to be called
5841	 * with only a shared lock.  On the other hand, if the
5842	 * stacked filesystem claims support for shared write
5843	 * locking but the underlying filesystem does not, and the
5844	 * caller incorrectly uses a shared lock, this condition
5845	 * should still be caught when the stacked filesystem
5846	 * invokes VOP_FSYNC() on the underlying filesystem.
5847	 */
5848	else if (MNT_SHARED_WRITES(vp->v_mount))
5849		ASSERT_VOP_LOCKED(vp, name);
5850	else
5851		ASSERT_VOP_ELOCKED(vp, name);
5852}
5853
5854void
5855vop_fsync_debugpre(void *a)
5856{
5857	struct vop_fsync_args *ap;
5858
5859	ap = a;
5860	vop_fsync_debugprepost(ap->a_vp, "fsync");
5861}
5862
5863void
5864vop_fsync_debugpost(void *a, int rc __unused)
5865{
5866	struct vop_fsync_args *ap;
5867
5868	ap = a;
5869	vop_fsync_debugprepost(ap->a_vp, "fsync");
5870}
5871
5872void
5873vop_fdatasync_debugpre(void *a)
5874{
5875	struct vop_fdatasync_args *ap;
5876
5877	ap = a;
5878	vop_fsync_debugprepost(ap->a_vp, "fsync");
5879}
5880
5881void
5882vop_fdatasync_debugpost(void *a, int rc __unused)
5883{
5884	struct vop_fdatasync_args *ap;
5885
5886	ap = a;
5887	vop_fsync_debugprepost(ap->a_vp, "fsync");
5888}
5889
5890void
5891vop_strategy_debugpre(void *ap)
5892{
5893	struct vop_strategy_args *a;
5894	struct buf *bp;
5895
5896	a = ap;
5897	bp = a->a_bp;
5898
5899	/*
5900	 * Cluster ops lock their component buffers but not the IO container.
5901	 */
5902	if ((bp->b_flags & B_CLUSTER) != 0)
5903		return;
5904
5905	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5906		if (vfs_badlock_print)
5907			printf(
5908			    "VOP_STRATEGY: bp is not locked but should be\n");
5909		if (vfs_badlock_ddb)
5910			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5911	}
5912}
5913
5914void
5915vop_lock_debugpre(void *ap)
5916{
5917	struct vop_lock1_args *a = ap;
5918
5919	if ((a->a_flags & LK_INTERLOCK) == 0)
5920		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5921	else
5922		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5923}
5924
5925void
5926vop_lock_debugpost(void *ap, int rc)
5927{
5928	struct vop_lock1_args *a = ap;
5929
5930	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5931	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5932		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5933}
5934
5935void
5936vop_unlock_debugpre(void *ap)
5937{
5938	struct vop_unlock_args *a = ap;
5939	struct vnode *vp = a->a_vp;
5940
5941	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5942	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5943}
5944
5945void
5946vop_need_inactive_debugpre(void *ap)
5947{
5948	struct vop_need_inactive_args *a = ap;
5949
5950	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5951}
5952
5953void
5954vop_need_inactive_debugpost(void *ap, int rc)
5955{
5956	struct vop_need_inactive_args *a = ap;
5957
5958	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5959}
5960#endif
5961
5962void
5963vop_create_pre(void *ap)
5964{
5965	struct vop_create_args *a;
5966	struct vnode *dvp;
5967
5968	a = ap;
5969	dvp = a->a_dvp;
5970	vn_seqc_write_begin(dvp);
5971}
5972
5973void
5974vop_create_post(void *ap, int rc)
5975{
5976	struct vop_create_args *a;
5977	struct vnode *dvp;
5978
5979	a = ap;
5980	dvp = a->a_dvp;
5981	vn_seqc_write_end(dvp);
5982	if (!rc)
5983		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5984}
5985
5986void
5987vop_whiteout_pre(void *ap)
5988{
5989	struct vop_whiteout_args *a;
5990	struct vnode *dvp;
5991
5992	a = ap;
5993	dvp = a->a_dvp;
5994	vn_seqc_write_begin(dvp);
5995}
5996
5997void
5998vop_whiteout_post(void *ap, int rc)
5999{
6000	struct vop_whiteout_args *a;
6001	struct vnode *dvp;
6002
6003	a = ap;
6004	dvp = a->a_dvp;
6005	vn_seqc_write_end(dvp);
6006}
6007
6008void
6009vop_deleteextattr_pre(void *ap)
6010{
6011	struct vop_deleteextattr_args *a;
6012	struct vnode *vp;
6013
6014	a = ap;
6015	vp = a->a_vp;
6016	vn_seqc_write_begin(vp);
6017}
6018
6019void
6020vop_deleteextattr_post(void *ap, int rc)
6021{
6022	struct vop_deleteextattr_args *a;
6023	struct vnode *vp;
6024
6025	a = ap;
6026	vp = a->a_vp;
6027	vn_seqc_write_end(vp);
6028	if (!rc)
6029		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6030}
6031
6032void
6033vop_link_pre(void *ap)
6034{
6035	struct vop_link_args *a;
6036	struct vnode *vp, *tdvp;
6037
6038	a = ap;
6039	vp = a->a_vp;
6040	tdvp = a->a_tdvp;
6041	vn_seqc_write_begin(vp);
6042	vn_seqc_write_begin(tdvp);
6043}
6044
6045void
6046vop_link_post(void *ap, int rc)
6047{
6048	struct vop_link_args *a;
6049	struct vnode *vp, *tdvp;
6050
6051	a = ap;
6052	vp = a->a_vp;
6053	tdvp = a->a_tdvp;
6054	vn_seqc_write_end(vp);
6055	vn_seqc_write_end(tdvp);
6056	if (!rc) {
6057		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6058		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6059	}
6060}
6061
6062void
6063vop_mkdir_pre(void *ap)
6064{
6065	struct vop_mkdir_args *a;
6066	struct vnode *dvp;
6067
6068	a = ap;
6069	dvp = a->a_dvp;
6070	vn_seqc_write_begin(dvp);
6071}
6072
6073void
6074vop_mkdir_post(void *ap, int rc)
6075{
6076	struct vop_mkdir_args *a;
6077	struct vnode *dvp;
6078
6079	a = ap;
6080	dvp = a->a_dvp;
6081	vn_seqc_write_end(dvp);
6082	if (!rc)
6083		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6084}
6085
6086#ifdef DEBUG_VFS_LOCKS
6087void
6088vop_mkdir_debugpost(void *ap, int rc)
6089{
6090	struct vop_mkdir_args *a;
6091
6092	a = ap;
6093	if (!rc)
6094		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6095}
6096#endif
6097
6098void
6099vop_mknod_pre(void *ap)
6100{
6101	struct vop_mknod_args *a;
6102	struct vnode *dvp;
6103
6104	a = ap;
6105	dvp = a->a_dvp;
6106	vn_seqc_write_begin(dvp);
6107}
6108
6109void
6110vop_mknod_post(void *ap, int rc)
6111{
6112	struct vop_mknod_args *a;
6113	struct vnode *dvp;
6114
6115	a = ap;
6116	dvp = a->a_dvp;
6117	vn_seqc_write_end(dvp);
6118	if (!rc)
6119		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6120}
6121
6122void
6123vop_reclaim_post(void *ap, int rc)
6124{
6125	struct vop_reclaim_args *a;
6126	struct vnode *vp;
6127
6128	a = ap;
6129	vp = a->a_vp;
6130	ASSERT_VOP_IN_SEQC(vp);
6131	if (!rc)
6132		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6133}
6134
6135void
6136vop_remove_pre(void *ap)
6137{
6138	struct vop_remove_args *a;
6139	struct vnode *dvp, *vp;
6140
6141	a = ap;
6142	dvp = a->a_dvp;
6143	vp = a->a_vp;
6144	vn_seqc_write_begin(dvp);
6145	vn_seqc_write_begin(vp);
6146}
6147
6148void
6149vop_remove_post(void *ap, int rc)
6150{
6151	struct vop_remove_args *a;
6152	struct vnode *dvp, *vp;
6153
6154	a = ap;
6155	dvp = a->a_dvp;
6156	vp = a->a_vp;
6157	vn_seqc_write_end(dvp);
6158	vn_seqc_write_end(vp);
6159	if (!rc) {
6160		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6161		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6162	}
6163}
6164
6165void
6166vop_rename_post(void *ap, int rc)
6167{
6168	struct vop_rename_args *a = ap;
6169	long hint;
6170
6171	if (!rc) {
6172		hint = NOTE_WRITE;
6173		if (a->a_fdvp == a->a_tdvp) {
6174			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6175				hint |= NOTE_LINK;
6176			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6177			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6178		} else {
6179			hint |= NOTE_EXTEND;
6180			if (a->a_fvp->v_type == VDIR)
6181				hint |= NOTE_LINK;
6182			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6183
6184			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6185			    a->a_tvp->v_type == VDIR)
6186				hint &= ~NOTE_LINK;
6187			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6188		}
6189
6190		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6191		if (a->a_tvp)
6192			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6193	}
6194	if (a->a_tdvp != a->a_fdvp)
6195		vdrop(a->a_fdvp);
6196	if (a->a_tvp != a->a_fvp)
6197		vdrop(a->a_fvp);
6198	vdrop(a->a_tdvp);
6199	if (a->a_tvp)
6200		vdrop(a->a_tvp);
6201}
6202
6203void
6204vop_rmdir_pre(void *ap)
6205{
6206	struct vop_rmdir_args *a;
6207	struct vnode *dvp, *vp;
6208
6209	a = ap;
6210	dvp = a->a_dvp;
6211	vp = a->a_vp;
6212	vn_seqc_write_begin(dvp);
6213	vn_seqc_write_begin(vp);
6214}
6215
6216void
6217vop_rmdir_post(void *ap, int rc)
6218{
6219	struct vop_rmdir_args *a;
6220	struct vnode *dvp, *vp;
6221
6222	a = ap;
6223	dvp = a->a_dvp;
6224	vp = a->a_vp;
6225	vn_seqc_write_end(dvp);
6226	vn_seqc_write_end(vp);
6227	if (!rc) {
6228		vp->v_vflag |= VV_UNLINKED;
6229		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6230		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6231	}
6232}
6233
6234void
6235vop_setattr_pre(void *ap)
6236{
6237	struct vop_setattr_args *a;
6238	struct vnode *vp;
6239
6240	a = ap;
6241	vp = a->a_vp;
6242	vn_seqc_write_begin(vp);
6243}
6244
6245void
6246vop_setattr_post(void *ap, int rc)
6247{
6248	struct vop_setattr_args *a;
6249	struct vnode *vp;
6250
6251	a = ap;
6252	vp = a->a_vp;
6253	vn_seqc_write_end(vp);
6254	if (!rc)
6255		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6256}
6257
6258void
6259vop_setacl_pre(void *ap)
6260{
6261	struct vop_setacl_args *a;
6262	struct vnode *vp;
6263
6264	a = ap;
6265	vp = a->a_vp;
6266	vn_seqc_write_begin(vp);
6267}
6268
6269void
6270vop_setacl_post(void *ap, int rc __unused)
6271{
6272	struct vop_setacl_args *a;
6273	struct vnode *vp;
6274
6275	a = ap;
6276	vp = a->a_vp;
6277	vn_seqc_write_end(vp);
6278}
6279
6280void
6281vop_setextattr_pre(void *ap)
6282{
6283	struct vop_setextattr_args *a;
6284	struct vnode *vp;
6285
6286	a = ap;
6287	vp = a->a_vp;
6288	vn_seqc_write_begin(vp);
6289}
6290
6291void
6292vop_setextattr_post(void *ap, int rc)
6293{
6294	struct vop_setextattr_args *a;
6295	struct vnode *vp;
6296
6297	a = ap;
6298	vp = a->a_vp;
6299	vn_seqc_write_end(vp);
6300	if (!rc)
6301		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6302}
6303
6304void
6305vop_symlink_pre(void *ap)
6306{
6307	struct vop_symlink_args *a;
6308	struct vnode *dvp;
6309
6310	a = ap;
6311	dvp = a->a_dvp;
6312	vn_seqc_write_begin(dvp);
6313}
6314
6315void
6316vop_symlink_post(void *ap, int rc)
6317{
6318	struct vop_symlink_args *a;
6319	struct vnode *dvp;
6320
6321	a = ap;
6322	dvp = a->a_dvp;
6323	vn_seqc_write_end(dvp);
6324	if (!rc)
6325		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6326}
6327
6328void
6329vop_open_post(void *ap, int rc)
6330{
6331	struct vop_open_args *a = ap;
6332
6333	if (!rc)
6334		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6335}
6336
6337void
6338vop_close_post(void *ap, int rc)
6339{
6340	struct vop_close_args *a = ap;
6341
6342	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6343	    !VN_IS_DOOMED(a->a_vp))) {
6344		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6345		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6346	}
6347}
6348
6349void
6350vop_read_post(void *ap, int rc)
6351{
6352	struct vop_read_args *a = ap;
6353
6354	if (!rc)
6355		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6356}
6357
6358void
6359vop_read_pgcache_post(void *ap, int rc)
6360{
6361	struct vop_read_pgcache_args *a = ap;
6362
6363	if (!rc)
6364		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6365}
6366
6367void
6368vop_readdir_post(void *ap, int rc)
6369{
6370	struct vop_readdir_args *a = ap;
6371
6372	if (!rc)
6373		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6374}
6375
6376static struct knlist fs_knlist;
6377
6378static void
6379vfs_event_init(void *arg)
6380{
6381	knlist_init_mtx(&fs_knlist, NULL);
6382}
6383/* XXX - correct order? */
6384SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6385
6386void
6387vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6388{
6389
6390	KNOTE_UNLOCKED(&fs_knlist, event);
6391}
6392
6393static int	filt_fsattach(struct knote *kn);
6394static void	filt_fsdetach(struct knote *kn);
6395static int	filt_fsevent(struct knote *kn, long hint);
6396
6397struct filterops fs_filtops = {
6398	.f_isfd = 0,
6399	.f_attach = filt_fsattach,
6400	.f_detach = filt_fsdetach,
6401	.f_event = filt_fsevent
6402};
6403
6404static int
6405filt_fsattach(struct knote *kn)
6406{
6407
6408	kn->kn_flags |= EV_CLEAR;
6409	knlist_add(&fs_knlist, kn, 0);
6410	return (0);
6411}
6412
6413static void
6414filt_fsdetach(struct knote *kn)
6415{
6416
6417	knlist_remove(&fs_knlist, kn, 0);
6418}
6419
6420static int
6421filt_fsevent(struct knote *kn, long hint)
6422{
6423
6424	kn->kn_fflags |= kn->kn_sfflags & hint;
6425
6426	return (kn->kn_fflags != 0);
6427}
6428
6429static int
6430sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6431{
6432	struct vfsidctl vc;
6433	int error;
6434	struct mount *mp;
6435
6436	error = SYSCTL_IN(req, &vc, sizeof(vc));
6437	if (error)
6438		return (error);
6439	if (vc.vc_vers != VFS_CTL_VERS1)
6440		return (EINVAL);
6441	mp = vfs_getvfs(&vc.vc_fsid);
6442	if (mp == NULL)
6443		return (ENOENT);
6444	/* ensure that a specific sysctl goes to the right filesystem. */
6445	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6446	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6447		vfs_rel(mp);
6448		return (EINVAL);
6449	}
6450	VCTLTOREQ(&vc, req);
6451	error = VFS_SYSCTL(mp, vc.vc_op, req);
6452	vfs_rel(mp);
6453	return (error);
6454}
6455
6456SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6457    NULL, 0, sysctl_vfs_ctl, "",
6458    "Sysctl by fsid");
6459
6460/*
6461 * Function to initialize a va_filerev field sensibly.
6462 * XXX: Wouldn't a random number make a lot more sense ??
6463 */
6464u_quad_t
6465init_va_filerev(void)
6466{
6467	struct bintime bt;
6468
6469	getbinuptime(&bt);
6470	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6471}
6472
6473static int	filt_vfsread(struct knote *kn, long hint);
6474static int	filt_vfswrite(struct knote *kn, long hint);
6475static int	filt_vfsvnode(struct knote *kn, long hint);
6476static void	filt_vfsdetach(struct knote *kn);
6477static struct filterops vfsread_filtops = {
6478	.f_isfd = 1,
6479	.f_detach = filt_vfsdetach,
6480	.f_event = filt_vfsread
6481};
6482static struct filterops vfswrite_filtops = {
6483	.f_isfd = 1,
6484	.f_detach = filt_vfsdetach,
6485	.f_event = filt_vfswrite
6486};
6487static struct filterops vfsvnode_filtops = {
6488	.f_isfd = 1,
6489	.f_detach = filt_vfsdetach,
6490	.f_event = filt_vfsvnode
6491};
6492
6493static void
6494vfs_knllock(void *arg)
6495{
6496	struct vnode *vp = arg;
6497
6498	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6499}
6500
6501static void
6502vfs_knlunlock(void *arg)
6503{
6504	struct vnode *vp = arg;
6505
6506	VOP_UNLOCK(vp);
6507}
6508
6509static void
6510vfs_knl_assert_lock(void *arg, int what)
6511{
6512#ifdef DEBUG_VFS_LOCKS
6513	struct vnode *vp = arg;
6514
6515	if (what == LA_LOCKED)
6516		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6517	else
6518		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6519#endif
6520}
6521
6522int
6523vfs_kqfilter(struct vop_kqfilter_args *ap)
6524{
6525	struct vnode *vp = ap->a_vp;
6526	struct knote *kn = ap->a_kn;
6527	struct knlist *knl;
6528
6529	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6530	    kn->kn_filter != EVFILT_WRITE),
6531	    ("READ/WRITE filter on a FIFO leaked through"));
6532	switch (kn->kn_filter) {
6533	case EVFILT_READ:
6534		kn->kn_fop = &vfsread_filtops;
6535		break;
6536	case EVFILT_WRITE:
6537		kn->kn_fop = &vfswrite_filtops;
6538		break;
6539	case EVFILT_VNODE:
6540		kn->kn_fop = &vfsvnode_filtops;
6541		break;
6542	default:
6543		return (EINVAL);
6544	}
6545
6546	kn->kn_hook = (caddr_t)vp;
6547
6548	v_addpollinfo(vp);
6549	if (vp->v_pollinfo == NULL)
6550		return (ENOMEM);
6551	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6552	vhold(vp);
6553	knlist_add(knl, kn, 0);
6554
6555	return (0);
6556}
6557
6558/*
6559 * Detach knote from vnode
6560 */
6561static void
6562filt_vfsdetach(struct knote *kn)
6563{
6564	struct vnode *vp = (struct vnode *)kn->kn_hook;
6565
6566	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6567	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6568	vdrop(vp);
6569}
6570
6571/*ARGSUSED*/
6572static int
6573filt_vfsread(struct knote *kn, long hint)
6574{
6575	struct vnode *vp = (struct vnode *)kn->kn_hook;
6576	off_t size;
6577	int res;
6578
6579	/*
6580	 * filesystem is gone, so set the EOF flag and schedule
6581	 * the knote for deletion.
6582	 */
6583	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6584		VI_LOCK(vp);
6585		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6586		VI_UNLOCK(vp);
6587		return (1);
6588	}
6589
6590	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6591		return (0);
6592
6593	VI_LOCK(vp);
6594	kn->kn_data = size - kn->kn_fp->f_offset;
6595	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6596	VI_UNLOCK(vp);
6597	return (res);
6598}
6599
6600/*ARGSUSED*/
6601static int
6602filt_vfswrite(struct knote *kn, long hint)
6603{
6604	struct vnode *vp = (struct vnode *)kn->kn_hook;
6605
6606	VI_LOCK(vp);
6607
6608	/*
6609	 * filesystem is gone, so set the EOF flag and schedule
6610	 * the knote for deletion.
6611	 */
6612	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6613		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6614
6615	kn->kn_data = 0;
6616	VI_UNLOCK(vp);
6617	return (1);
6618}
6619
6620static int
6621filt_vfsvnode(struct knote *kn, long hint)
6622{
6623	struct vnode *vp = (struct vnode *)kn->kn_hook;
6624	int res;
6625
6626	VI_LOCK(vp);
6627	if (kn->kn_sfflags & hint)
6628		kn->kn_fflags |= hint;
6629	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6630		kn->kn_flags |= EV_EOF;
6631		VI_UNLOCK(vp);
6632		return (1);
6633	}
6634	res = (kn->kn_fflags != 0);
6635	VI_UNLOCK(vp);
6636	return (res);
6637}
6638
6639int
6640vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6641{
6642	int error;
6643
6644	if (dp->d_reclen > ap->a_uio->uio_resid)
6645		return (ENAMETOOLONG);
6646	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6647	if (error) {
6648		if (ap->a_ncookies != NULL) {
6649			if (ap->a_cookies != NULL)
6650				free(ap->a_cookies, M_TEMP);
6651			ap->a_cookies = NULL;
6652			*ap->a_ncookies = 0;
6653		}
6654		return (error);
6655	}
6656	if (ap->a_ncookies == NULL)
6657		return (0);
6658
6659	KASSERT(ap->a_cookies,
6660	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6661
6662	*ap->a_cookies = realloc(*ap->a_cookies,
6663	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6664	(*ap->a_cookies)[*ap->a_ncookies] = off;
6665	*ap->a_ncookies += 1;
6666	return (0);
6667}
6668
6669/*
6670 * The purpose of this routine is to remove granularity from accmode_t,
6671 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6672 * VADMIN and VAPPEND.
6673 *
6674 * If it returns 0, the caller is supposed to continue with the usual
6675 * access checks using 'accmode' as modified by this routine.  If it
6676 * returns nonzero value, the caller is supposed to return that value
6677 * as errno.
6678 *
6679 * Note that after this routine runs, accmode may be zero.
6680 */
6681int
6682vfs_unixify_accmode(accmode_t *accmode)
6683{
6684	/*
6685	 * There is no way to specify explicit "deny" rule using
6686	 * file mode or POSIX.1e ACLs.
6687	 */
6688	if (*accmode & VEXPLICIT_DENY) {
6689		*accmode = 0;
6690		return (0);
6691	}
6692
6693	/*
6694	 * None of these can be translated into usual access bits.
6695	 * Also, the common case for NFSv4 ACLs is to not contain
6696	 * either of these bits. Caller should check for VWRITE
6697	 * on the containing directory instead.
6698	 */
6699	if (*accmode & (VDELETE_CHILD | VDELETE))
6700		return (EPERM);
6701
6702	if (*accmode & VADMIN_PERMS) {
6703		*accmode &= ~VADMIN_PERMS;
6704		*accmode |= VADMIN;
6705	}
6706
6707	/*
6708	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6709	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6710	 */
6711	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6712
6713	return (0);
6714}
6715
6716/*
6717 * Clear out a doomed vnode (if any) and replace it with a new one as long
6718 * as the fs is not being unmounted. Return the root vnode to the caller.
6719 */
6720static int __noinline
6721vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6722{
6723	struct vnode *vp;
6724	int error;
6725
6726restart:
6727	if (mp->mnt_rootvnode != NULL) {
6728		MNT_ILOCK(mp);
6729		vp = mp->mnt_rootvnode;
6730		if (vp != NULL) {
6731			if (!VN_IS_DOOMED(vp)) {
6732				vrefact(vp);
6733				MNT_IUNLOCK(mp);
6734				error = vn_lock(vp, flags);
6735				if (error == 0) {
6736					*vpp = vp;
6737					return (0);
6738				}
6739				vrele(vp);
6740				goto restart;
6741			}
6742			/*
6743			 * Clear the old one.
6744			 */
6745			mp->mnt_rootvnode = NULL;
6746		}
6747		MNT_IUNLOCK(mp);
6748		if (vp != NULL) {
6749			vfs_op_barrier_wait(mp);
6750			vrele(vp);
6751		}
6752	}
6753	error = VFS_CACHEDROOT(mp, flags, vpp);
6754	if (error != 0)
6755		return (error);
6756	if (mp->mnt_vfs_ops == 0) {
6757		MNT_ILOCK(mp);
6758		if (mp->mnt_vfs_ops != 0) {
6759			MNT_IUNLOCK(mp);
6760			return (0);
6761		}
6762		if (mp->mnt_rootvnode == NULL) {
6763			vrefact(*vpp);
6764			mp->mnt_rootvnode = *vpp;
6765		} else {
6766			if (mp->mnt_rootvnode != *vpp) {
6767				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6768					panic("%s: mismatch between vnode returned "
6769					    " by VFS_CACHEDROOT and the one cached "
6770					    " (%p != %p)",
6771					    __func__, *vpp, mp->mnt_rootvnode);
6772				}
6773			}
6774		}
6775		MNT_IUNLOCK(mp);
6776	}
6777	return (0);
6778}
6779
6780int
6781vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6782{
6783	struct mount_pcpu *mpcpu;
6784	struct vnode *vp;
6785	int error;
6786
6787	if (!vfs_op_thread_enter(mp, mpcpu))
6788		return (vfs_cache_root_fallback(mp, flags, vpp));
6789	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6790	if (vp == NULL || VN_IS_DOOMED(vp)) {
6791		vfs_op_thread_exit(mp, mpcpu);
6792		return (vfs_cache_root_fallback(mp, flags, vpp));
6793	}
6794	vrefact(vp);
6795	vfs_op_thread_exit(mp, mpcpu);
6796	error = vn_lock(vp, flags);
6797	if (error != 0) {
6798		vrele(vp);
6799		return (vfs_cache_root_fallback(mp, flags, vpp));
6800	}
6801	*vpp = vp;
6802	return (0);
6803}
6804
6805struct vnode *
6806vfs_cache_root_clear(struct mount *mp)
6807{
6808	struct vnode *vp;
6809
6810	/*
6811	 * ops > 0 guarantees there is nobody who can see this vnode
6812	 */
6813	MPASS(mp->mnt_vfs_ops > 0);
6814	vp = mp->mnt_rootvnode;
6815	if (vp != NULL)
6816		vn_seqc_write_begin(vp);
6817	mp->mnt_rootvnode = NULL;
6818	return (vp);
6819}
6820
6821void
6822vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6823{
6824
6825	MPASS(mp->mnt_vfs_ops > 0);
6826	vrefact(vp);
6827	mp->mnt_rootvnode = vp;
6828}
6829
6830/*
6831 * These are helper functions for filesystems to traverse all
6832 * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6833 *
6834 * This interface replaces MNT_VNODE_FOREACH.
6835 */
6836
6837struct vnode *
6838__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6839{
6840	struct vnode *vp;
6841
6842	maybe_yield();
6843	MNT_ILOCK(mp);
6844	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6845	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6846	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6847		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6848		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6849			continue;
6850		VI_LOCK(vp);
6851		if (VN_IS_DOOMED(vp)) {
6852			VI_UNLOCK(vp);
6853			continue;
6854		}
6855		break;
6856	}
6857	if (vp == NULL) {
6858		__mnt_vnode_markerfree_all(mvp, mp);
6859		/* MNT_IUNLOCK(mp); -- done in above function */
6860		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6861		return (NULL);
6862	}
6863	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6864	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6865	MNT_IUNLOCK(mp);
6866	return (vp);
6867}
6868
6869struct vnode *
6870__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6871{
6872	struct vnode *vp;
6873
6874	*mvp = vn_alloc_marker(mp);
6875	MNT_ILOCK(mp);
6876	MNT_REF(mp);
6877
6878	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6879		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6880		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6881			continue;
6882		VI_LOCK(vp);
6883		if (VN_IS_DOOMED(vp)) {
6884			VI_UNLOCK(vp);
6885			continue;
6886		}
6887		break;
6888	}
6889	if (vp == NULL) {
6890		MNT_REL(mp);
6891		MNT_IUNLOCK(mp);
6892		vn_free_marker(*mvp);
6893		*mvp = NULL;
6894		return (NULL);
6895	}
6896	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6897	MNT_IUNLOCK(mp);
6898	return (vp);
6899}
6900
6901void
6902__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6903{
6904
6905	if (*mvp == NULL) {
6906		MNT_IUNLOCK(mp);
6907		return;
6908	}
6909
6910	mtx_assert(MNT_MTX(mp), MA_OWNED);
6911
6912	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6913	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6914	MNT_REL(mp);
6915	MNT_IUNLOCK(mp);
6916	vn_free_marker(*mvp);
6917	*mvp = NULL;
6918}
6919
6920/*
6921 * These are helper functions for filesystems to traverse their
6922 * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6923 */
6924static void
6925mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6926{
6927
6928	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6929
6930	MNT_ILOCK(mp);
6931	MNT_REL(mp);
6932	MNT_IUNLOCK(mp);
6933	vn_free_marker(*mvp);
6934	*mvp = NULL;
6935}
6936
6937/*
6938 * Relock the mp mount vnode list lock with the vp vnode interlock in the
6939 * conventional lock order during mnt_vnode_next_lazy iteration.
6940 *
6941 * On entry, the mount vnode list lock is held and the vnode interlock is not.
6942 * The list lock is dropped and reacquired.  On success, both locks are held.
6943 * On failure, the mount vnode list lock is held but the vnode interlock is
6944 * not, and the procedure may have yielded.
6945 */
6946static bool
6947mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6948    struct vnode *vp)
6949{
6950
6951	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6952	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6953	    ("%s: bad marker", __func__));
6954	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6955	    ("%s: inappropriate vnode", __func__));
6956	ASSERT_VI_UNLOCKED(vp, __func__);
6957	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6958
6959	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6960	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6961
6962	/*
6963	 * Note we may be racing against vdrop which transitioned the hold
6964	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6965	 * if we are the only user after we get the interlock we will just
6966	 * vdrop.
6967	 */
6968	vhold(vp);
6969	mtx_unlock(&mp->mnt_listmtx);
6970	VI_LOCK(vp);
6971	if (VN_IS_DOOMED(vp)) {
6972		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6973		goto out_lost;
6974	}
6975	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6976	/*
6977	 * There is nothing to do if we are the last user.
6978	 */
6979	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6980		goto out_lost;
6981	mtx_lock(&mp->mnt_listmtx);
6982	return (true);
6983out_lost:
6984	vdropl(vp);
6985	maybe_yield();
6986	mtx_lock(&mp->mnt_listmtx);
6987	return (false);
6988}
6989
6990static struct vnode *
6991mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6992    void *cbarg)
6993{
6994	struct vnode *vp;
6995
6996	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6997	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6998restart:
6999	vp = TAILQ_NEXT(*mvp, v_lazylist);
7000	while (vp != NULL) {
7001		if (vp->v_type == VMARKER) {
7002			vp = TAILQ_NEXT(vp, v_lazylist);
7003			continue;
7004		}
7005		/*
7006		 * See if we want to process the vnode. Note we may encounter a
7007		 * long string of vnodes we don't care about and hog the list
7008		 * as a result. Check for it and requeue the marker.
7009		 */
7010		VNPASS(!VN_IS_DOOMED(vp), vp);
7011		if (!cb(vp, cbarg)) {
7012			if (!should_yield()) {
7013				vp = TAILQ_NEXT(vp, v_lazylist);
7014				continue;
7015			}
7016			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7017			    v_lazylist);
7018			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7019			    v_lazylist);
7020			mtx_unlock(&mp->mnt_listmtx);
7021			kern_yield(PRI_USER);
7022			mtx_lock(&mp->mnt_listmtx);
7023			goto restart;
7024		}
7025		/*
7026		 * Try-lock because this is the wrong lock order.
7027		 */
7028		if (!VI_TRYLOCK(vp) &&
7029		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7030			goto restart;
7031		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7032		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7033		    ("alien vnode on the lazy list %p %p", vp, mp));
7034		VNPASS(vp->v_mount == mp, vp);
7035		VNPASS(!VN_IS_DOOMED(vp), vp);
7036		break;
7037	}
7038	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7039
7040	/* Check if we are done */
7041	if (vp == NULL) {
7042		mtx_unlock(&mp->mnt_listmtx);
7043		mnt_vnode_markerfree_lazy(mvp, mp);
7044		return (NULL);
7045	}
7046	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7047	mtx_unlock(&mp->mnt_listmtx);
7048	ASSERT_VI_LOCKED(vp, "lazy iter");
7049	return (vp);
7050}
7051
7052struct vnode *
7053__mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7054    void *cbarg)
7055{
7056
7057	maybe_yield();
7058	mtx_lock(&mp->mnt_listmtx);
7059	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7060}
7061
7062struct vnode *
7063__mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7064    void *cbarg)
7065{
7066	struct vnode *vp;
7067
7068	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7069		return (NULL);
7070
7071	*mvp = vn_alloc_marker(mp);
7072	MNT_ILOCK(mp);
7073	MNT_REF(mp);
7074	MNT_IUNLOCK(mp);
7075
7076	mtx_lock(&mp->mnt_listmtx);
7077	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7078	if (vp == NULL) {
7079		mtx_unlock(&mp->mnt_listmtx);
7080		mnt_vnode_markerfree_lazy(mvp, mp);
7081		return (NULL);
7082	}
7083	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7084	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7085}
7086
7087void
7088__mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7089{
7090
7091	if (*mvp == NULL)
7092		return;
7093
7094	mtx_lock(&mp->mnt_listmtx);
7095	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7096	mtx_unlock(&mp->mnt_listmtx);
7097	mnt_vnode_markerfree_lazy(mvp, mp);
7098}
7099
7100int
7101vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7102{
7103
7104	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7105		cnp->cn_flags &= ~NOEXECCHECK;
7106		return (0);
7107	}
7108
7109	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7110}
7111
7112/*
7113 * Do not use this variant unless you have means other than the hold count
7114 * to prevent the vnode from getting freed.
7115 */
7116void
7117vn_seqc_write_begin_locked(struct vnode *vp)
7118{
7119
7120	ASSERT_VI_LOCKED(vp, __func__);
7121	VNPASS(vp->v_holdcnt > 0, vp);
7122	VNPASS(vp->v_seqc_users >= 0, vp);
7123	vp->v_seqc_users++;
7124	if (vp->v_seqc_users == 1)
7125		seqc_sleepable_write_begin(&vp->v_seqc);
7126}
7127
7128void
7129vn_seqc_write_begin(struct vnode *vp)
7130{
7131
7132	VI_LOCK(vp);
7133	vn_seqc_write_begin_locked(vp);
7134	VI_UNLOCK(vp);
7135}
7136
7137void
7138vn_seqc_write_end_locked(struct vnode *vp)
7139{
7140
7141	ASSERT_VI_LOCKED(vp, __func__);
7142	VNPASS(vp->v_seqc_users > 0, vp);
7143	vp->v_seqc_users--;
7144	if (vp->v_seqc_users == 0)
7145		seqc_sleepable_write_end(&vp->v_seqc);
7146}
7147
7148void
7149vn_seqc_write_end(struct vnode *vp)
7150{
7151
7152	VI_LOCK(vp);
7153	vn_seqc_write_end_locked(vp);
7154	VI_UNLOCK(vp);
7155}
7156
7157/*
7158 * Special case handling for allocating and freeing vnodes.
7159 *
7160 * The counter remains unchanged on free so that a doomed vnode will
7161 * keep testing as in modify as long as it is accessible with SMR.
7162 */
7163static void
7164vn_seqc_init(struct vnode *vp)
7165{
7166
7167	vp->v_seqc = 0;
7168	vp->v_seqc_users = 0;
7169}
7170
7171static void
7172vn_seqc_write_end_free(struct vnode *vp)
7173{
7174
7175	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7176	VNPASS(vp->v_seqc_users == 1, vp);
7177}
7178
7179void
7180vn_irflag_set_locked(struct vnode *vp, short toset)
7181{
7182	short flags;
7183
7184	ASSERT_VI_LOCKED(vp, __func__);
7185	flags = vn_irflag_read(vp);
7186	VNASSERT((flags & toset) == 0, vp,
7187	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7188	    __func__, flags, toset));
7189	atomic_store_short(&vp->v_irflag, flags | toset);
7190}
7191
7192void
7193vn_irflag_set(struct vnode *vp, short toset)
7194{
7195
7196	VI_LOCK(vp);
7197	vn_irflag_set_locked(vp, toset);
7198	VI_UNLOCK(vp);
7199}
7200
7201void
7202vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7203{
7204	short flags;
7205
7206	ASSERT_VI_LOCKED(vp, __func__);
7207	flags = vn_irflag_read(vp);
7208	atomic_store_short(&vp->v_irflag, flags | toset);
7209}
7210
7211void
7212vn_irflag_set_cond(struct vnode *vp, short toset)
7213{
7214
7215	VI_LOCK(vp);
7216	vn_irflag_set_cond_locked(vp, toset);
7217	VI_UNLOCK(vp);
7218}
7219
7220void
7221vn_irflag_unset_locked(struct vnode *vp, short tounset)
7222{
7223	short flags;
7224
7225	ASSERT_VI_LOCKED(vp, __func__);
7226	flags = vn_irflag_read(vp);
7227	VNASSERT((flags & tounset) == tounset, vp,
7228	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7229	    __func__, flags, tounset));
7230	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7231}
7232
7233void
7234vn_irflag_unset(struct vnode *vp, short tounset)
7235{
7236
7237	VI_LOCK(vp);
7238	vn_irflag_unset_locked(vp, tounset);
7239	VI_UNLOCK(vp);
7240}
7241
7242int
7243vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7244{
7245	struct vattr vattr;
7246	int error;
7247
7248	ASSERT_VOP_LOCKED(vp, __func__);
7249	error = VOP_GETATTR(vp, &vattr, cred);
7250	if (__predict_true(error == 0)) {
7251		if (vattr.va_size <= OFF_MAX)
7252			*size = vattr.va_size;
7253		else
7254			error = EFBIG;
7255	}
7256	return (error);
7257}
7258
7259int
7260vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7261{
7262	int error;
7263
7264	VOP_LOCK(vp, LK_SHARED);
7265	error = vn_getsize_locked(vp, size, cred);
7266	VOP_UNLOCK(vp);
7267	return (error);
7268}
7269
7270#ifdef INVARIANTS
7271void
7272vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7273{
7274
7275	switch (vp->v_state) {
7276	case VSTATE_UNINITIALIZED:
7277		switch (state) {
7278		case VSTATE_CONSTRUCTED:
7279		case VSTATE_DESTROYING:
7280			return;
7281		default:
7282			break;
7283		}
7284		break;
7285	case VSTATE_CONSTRUCTED:
7286		ASSERT_VOP_ELOCKED(vp, __func__);
7287		switch (state) {
7288		case VSTATE_DESTROYING:
7289			return;
7290		default:
7291			break;
7292		}
7293		break;
7294	case VSTATE_DESTROYING:
7295		ASSERT_VOP_ELOCKED(vp, __func__);
7296		switch (state) {
7297		case VSTATE_DEAD:
7298			return;
7299		default:
7300			break;
7301		}
7302		break;
7303	case VSTATE_DEAD:
7304		switch (state) {
7305		case VSTATE_UNINITIALIZED:
7306			return;
7307		default:
7308			break;
7309		}
7310		break;
7311	}
7312
7313	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7314	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7315}
7316#endif
7317