1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42#include "opt_ddb.h"
43#include "opt_watchdog.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/asan.h>
48#include <sys/bio.h>
49#include <sys/buf.h>
50#include <sys/capsicum.h>
51#include <sys/condvar.h>
52#include <sys/conf.h>
53#include <sys/counter.h>
54#include <sys/dirent.h>
55#include <sys/event.h>
56#include <sys/eventhandler.h>
57#include <sys/extattr.h>
58#include <sys/file.h>
59#include <sys/fcntl.h>
60#include <sys/jail.h>
61#include <sys/kdb.h>
62#include <sys/kernel.h>
63#include <sys/kthread.h>
64#include <sys/ktr.h>
65#include <sys/limits.h>
66#include <sys/lockf.h>
67#include <sys/malloc.h>
68#include <sys/mount.h>
69#include <sys/namei.h>
70#include <sys/pctrie.h>
71#include <sys/priv.h>
72#include <sys/reboot.h>
73#include <sys/refcount.h>
74#include <sys/rwlock.h>
75#include <sys/sched.h>
76#include <sys/sleepqueue.h>
77#include <sys/smr.h>
78#include <sys/smp.h>
79#include <sys/stat.h>
80#include <sys/sysctl.h>
81#include <sys/syslog.h>
82#include <sys/vmmeter.h>
83#include <sys/vnode.h>
84#include <sys/watchdog.h>
85
86#include <machine/stdarg.h>
87
88#include <security/mac/mac_framework.h>
89
90#include <vm/vm.h>
91#include <vm/vm_object.h>
92#include <vm/vm_extern.h>
93#include <vm/pmap.h>
94#include <vm/vm_map.h>
95#include <vm/vm_page.h>
96#include <vm/vm_kern.h>
97#include <vm/vnode_pager.h>
98#include <vm/uma.h>
99
100#if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101#error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102#endif
103
104#ifdef DDB
105#include <ddb/ddb.h>
106#endif
107
108static void	delmntque(struct vnode *vp);
109static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110		    int slpflag, int slptimeo);
111static void	syncer_shutdown(void *arg, int howto);
112static int	vtryrecycle(struct vnode *vp, bool isvnlru);
113static void	v_init_counters(struct vnode *);
114static void	vn_seqc_init(struct vnode *);
115static void	vn_seqc_write_end_free(struct vnode *vp);
116static void	vgonel(struct vnode *);
117static bool	vhold_recycle_free(struct vnode *);
118static void	vdropl_recycle(struct vnode *vp);
119static void	vdrop_recycle(struct vnode *vp);
120static void	vfs_knllock(void *arg);
121static void	vfs_knlunlock(void *arg);
122static void	vfs_knl_assert_lock(void *arg, int what);
123static void	destroy_vpollinfo(struct vpollinfo *vi);
124static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125		    daddr_t startlbn, daddr_t endlbn);
126static void	vnlru_recalc(void);
127
128static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129    "vnode configuration and statistics");
130static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131    "vnode configuration");
132static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133    "vnode statistics");
134static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135    "vnode recycling");
136
137/*
138 * Number of vnodes in existence.  Increased whenever getnewvnode()
139 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140 */
141static u_long __exclusive_cache_line numvnodes;
142
143SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144    "Number of vnodes in existence (legacy)");
145SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146    "Number of vnodes in existence");
147
148static counter_u64_t vnodes_created;
149SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150    "Number of vnodes created by getnewvnode (legacy)");
151SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152    "Number of vnodes created by getnewvnode");
153
154/*
155 * Conversion tables for conversion from vnode types to inode formats
156 * and back.
157 */
158__enum_uint8(vtype) iftovt_tab[16] = {
159	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161};
162int vttoif_tab[10] = {
163	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165};
166
167/*
168 * List of allocates vnodes in the system.
169 */
170static TAILQ_HEAD(freelst, vnode) vnode_list;
171static struct vnode *vnode_list_free_marker;
172static struct vnode *vnode_list_reclaim_marker;
173
174/*
175 * "Free" vnode target.  Free vnodes are rarely completely free, but are
176 * just ones that are cheap to recycle.  Usually they are for files which
177 * have been stat'd but not read; these usually have inode and namecache
178 * data attached to them.  This target is the preferred minimum size of a
179 * sub-cache consisting mostly of such files. The system balances the size
180 * of this sub-cache with its complement to try to prevent either from
181 * thrashing while the other is relatively inactive.  The targets express
182 * a preference for the best balance.
183 *
184 * "Above" this target there are 2 further targets (watermarks) related
185 * to recyling of free vnodes.  In the best-operating case, the cache is
186 * exactly full, the free list has size between vlowat and vhiwat above the
187 * free target, and recycling from it and normal use maintains this state.
188 * Sometimes the free list is below vlowat or even empty, but this state
189 * is even better for immediate use provided the cache is not full.
190 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191 * ones) to reach one of these states.  The watermarks are currently hard-
192 * coded as 4% and 9% of the available space higher.  These and the default
193 * of 25% for wantfreevnodes are too large if the memory size is large.
194 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195 * whenever vnlru_proc() becomes active.
196 */
197static long wantfreevnodes;
198static long __exclusive_cache_line freevnodes;
199static long freevnodes_old;
200
201static u_long recycles_count;
202SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203    "Number of vnodes recycled to meet vnode cache targets (legacy)");
204SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205    &recycles_count, 0,
206    "Number of vnodes recycled to meet vnode cache targets");
207
208static u_long recycles_free_count;
209SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210    &recycles_free_count, 0,
211    "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213    &recycles_free_count, 0,
214    "Number of free vnodes recycled to meet vnode cache targets");
215
216static counter_u64_t direct_recycles_free_count;
217SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218    &direct_recycles_free_count,
219    "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220
221static counter_u64_t vnode_skipped_requeues;
222SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223    "Number of times LRU requeue was skipped due to lock contention");
224
225static u_long deferred_inact;
226SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227    &deferred_inact, 0, "Number of times inactive processing was deferred");
228
229/* To keep more than one thread at a time from running vfs_getnewfsid */
230static struct mtx mntid_mtx;
231
232/*
233 * Lock for any access to the following:
234 *	vnode_list
235 *	numvnodes
236 *	freevnodes
237 */
238static struct mtx __exclusive_cache_line vnode_list_mtx;
239
240/* Publicly exported FS */
241struct nfs_public nfs_pub;
242
243static uma_zone_t buf_trie_zone;
244static smr_t buf_trie_smr;
245
246/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247static uma_zone_t vnode_zone;
248MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249
250__read_frequently smr_t vfs_smr;
251
252/*
253 * The workitem queue.
254 *
255 * It is useful to delay writes of file data and filesystem metadata
256 * for tens of seconds so that quickly created and deleted files need
257 * not waste disk bandwidth being created and removed. To realize this,
258 * we append vnodes to a "workitem" queue. When running with a soft
259 * updates implementation, most pending metadata dependencies should
260 * not wait for more than a few seconds. Thus, mounted on block devices
261 * are delayed only about a half the time that file data is delayed.
262 * Similarly, directory updates are more critical, so are only delayed
263 * about a third the time that file data is delayed. Thus, there are
264 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265 * one each second (driven off the filesystem syncer process). The
266 * syncer_delayno variable indicates the next queue that is to be processed.
267 * Items that need to be processed soon are placed in this queue:
268 *
269 *	syncer_workitem_pending[syncer_delayno]
270 *
271 * A delay of fifteen seconds is done by placing the request fifteen
272 * entries later in the queue:
273 *
274 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275 *
276 */
277static int syncer_delayno;
278static long syncer_mask;
279LIST_HEAD(synclist, bufobj);
280static struct synclist *syncer_workitem_pending;
281/*
282 * The sync_mtx protects:
283 *	bo->bo_synclist
284 *	sync_vnode_count
285 *	syncer_delayno
286 *	syncer_state
287 *	syncer_workitem_pending
288 *	syncer_worklist_len
289 *	rushjob
290 */
291static struct mtx sync_mtx;
292static struct cv sync_wakeup;
293
294#define SYNCER_MAXDELAY		32
295static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
296static int syncdelay = 30;		/* max time to delay syncing data */
297static int filedelay = 30;		/* time to delay syncing files */
298SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299    "Time to delay syncing files (in seconds)");
300static int dirdelay = 29;		/* time to delay syncing directories */
301SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302    "Time to delay syncing directories (in seconds)");
303static int metadelay = 28;		/* time to delay syncing metadata */
304SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305    "Time to delay syncing metadata (in seconds)");
306static int rushjob;		/* number of slots to run ASAP */
307static int stat_rush_requests;	/* number of times I/O speeded up */
308SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309    "Number of times I/O speeded up (rush requests)");
310
311#define	VDBATCH_SIZE 8
312struct vdbatch {
313	u_int index;
314	struct mtx lock;
315	struct vnode *tab[VDBATCH_SIZE];
316};
317DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318
319static void	vdbatch_dequeue(struct vnode *vp);
320
321/*
322 * When shutting down the syncer, run it at four times normal speed.
323 */
324#define SYNCER_SHUTDOWN_SPEEDUP		4
325static int sync_vnode_count;
326static int syncer_worklist_len;
327static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
328    syncer_state;
329
330/* Target for maximum number of vnodes. */
331u_long desiredvnodes;
332static u_long gapvnodes;		/* gap between wanted and desired */
333static u_long vhiwat;		/* enough extras after expansion */
334static u_long vlowat;		/* minimal extras before expansion */
335static bool vstir;		/* nonzero to stir non-free vnodes */
336static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
337
338static u_long vnlru_read_freevnodes(void);
339
340/*
341 * Note that no attempt is made to sanitize these parameters.
342 */
343static int
344sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
345{
346	u_long val;
347	int error;
348
349	val = desiredvnodes;
350	error = sysctl_handle_long(oidp, &val, 0, req);
351	if (error != 0 || req->newptr == NULL)
352		return (error);
353
354	if (val == desiredvnodes)
355		return (0);
356	mtx_lock(&vnode_list_mtx);
357	desiredvnodes = val;
358	wantfreevnodes = desiredvnodes / 4;
359	vnlru_recalc();
360	mtx_unlock(&vnode_list_mtx);
361	/*
362	 * XXX There is no protection against multiple threads changing
363	 * desiredvnodes at the same time. Locking above only helps vnlru and
364	 * getnewvnode.
365	 */
366	vfs_hash_changesize(desiredvnodes);
367	cache_changesize(desiredvnodes);
368	return (0);
369}
370
371SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
372    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
373    "LU", "Target for maximum number of vnodes (legacy)");
374SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
375    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
376    "LU", "Target for maximum number of vnodes");
377
378static int
379sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
380{
381	u_long rfreevnodes;
382
383	rfreevnodes = vnlru_read_freevnodes();
384	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
385}
386
387SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
388    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
389    "LU", "Number of \"free\" vnodes (legacy)");
390SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
391    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
392    "LU", "Number of \"free\" vnodes");
393
394static int
395sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
396{
397	u_long val;
398	int error;
399
400	val = wantfreevnodes;
401	error = sysctl_handle_long(oidp, &val, 0, req);
402	if (error != 0 || req->newptr == NULL)
403		return (error);
404
405	if (val == wantfreevnodes)
406		return (0);
407	mtx_lock(&vnode_list_mtx);
408	wantfreevnodes = val;
409	vnlru_recalc();
410	mtx_unlock(&vnode_list_mtx);
411	return (0);
412}
413
414SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
415    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
416    "LU", "Target for minimum number of \"free\" vnodes (legacy)");
417SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
418    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
419    "LU", "Target for minimum number of \"free\" vnodes");
420
421static int vnlru_nowhere;
422SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
423    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
424
425static int
426sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
427{
428	struct vnode *vp;
429	struct nameidata nd;
430	char *buf;
431	unsigned long ndflags;
432	int error;
433
434	if (req->newptr == NULL)
435		return (EINVAL);
436	if (req->newlen >= PATH_MAX)
437		return (E2BIG);
438
439	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
440	error = SYSCTL_IN(req, buf, req->newlen);
441	if (error != 0)
442		goto out;
443
444	buf[req->newlen] = '\0';
445
446	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
447	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
448	if ((error = namei(&nd)) != 0)
449		goto out;
450	vp = nd.ni_vp;
451
452	if (VN_IS_DOOMED(vp)) {
453		/*
454		 * This vnode is being recycled.  Return != 0 to let the caller
455		 * know that the sysctl had no effect.  Return EAGAIN because a
456		 * subsequent call will likely succeed (since namei will create
457		 * a new vnode if necessary)
458		 */
459		error = EAGAIN;
460		goto putvnode;
461	}
462
463	vgone(vp);
464putvnode:
465	vput(vp);
466	NDFREE_PNBUF(&nd);
467out:
468	free(buf, M_TEMP);
469	return (error);
470}
471
472static int
473sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
474{
475	struct thread *td = curthread;
476	struct vnode *vp;
477	struct file *fp;
478	int error;
479	int fd;
480
481	if (req->newptr == NULL)
482		return (EBADF);
483
484        error = sysctl_handle_int(oidp, &fd, 0, req);
485        if (error != 0)
486                return (error);
487	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
488	if (error != 0)
489		return (error);
490	vp = fp->f_vnode;
491
492	error = vn_lock(vp, LK_EXCLUSIVE);
493	if (error != 0)
494		goto drop;
495
496	vgone(vp);
497	VOP_UNLOCK(vp);
498drop:
499	fdrop(fp, td);
500	return (error);
501}
502
503SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
504    CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
505    sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
506SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
507    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
508    sysctl_ftry_reclaim_vnode, "I",
509    "Try to reclaim a vnode by its file descriptor");
510
511/* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
512#define vnsz2log 8
513#ifndef DEBUG_LOCKS
514_Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
515    sizeof(struct vnode) < 1UL << (vnsz2log + 1),
516    "vnsz2log needs to be updated");
517#endif
518
519/*
520 * Support for the bufobj clean & dirty pctrie.
521 */
522static void *
523buf_trie_alloc(struct pctrie *ptree)
524{
525	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
526}
527
528static void
529buf_trie_free(struct pctrie *ptree, void *node)
530{
531	uma_zfree_smr(buf_trie_zone, node);
532}
533PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
534    buf_trie_smr);
535
536/*
537 * Initialize the vnode management data structures.
538 *
539 * Reevaluate the following cap on the number of vnodes after the physical
540 * memory size exceeds 512GB.  In the limit, as the physical memory size
541 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
542 */
543#ifndef	MAXVNODES_MAX
544#define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
545#endif
546
547static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
548
549static struct vnode *
550vn_alloc_marker(struct mount *mp)
551{
552	struct vnode *vp;
553
554	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
555	vp->v_type = VMARKER;
556	vp->v_mount = mp;
557
558	return (vp);
559}
560
561static void
562vn_free_marker(struct vnode *vp)
563{
564
565	MPASS(vp->v_type == VMARKER);
566	free(vp, M_VNODE_MARKER);
567}
568
569#ifdef KASAN
570static int
571vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
572{
573	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
574	return (0);
575}
576
577static void
578vnode_dtor(void *mem, int size, void *arg __unused)
579{
580	size_t end1, end2, off1, off2;
581
582	_Static_assert(offsetof(struct vnode, v_vnodelist) <
583	    offsetof(struct vnode, v_dbatchcpu),
584	    "KASAN marks require updating");
585
586	off1 = offsetof(struct vnode, v_vnodelist);
587	off2 = offsetof(struct vnode, v_dbatchcpu);
588	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
589	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
590
591	/*
592	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
593	 * after the vnode has been freed.  Try to get some KASAN coverage by
594	 * marking everything except those two fields as invalid.  Because
595	 * KASAN's tracking is not byte-granular, any preceding fields sharing
596	 * the same 8-byte aligned word must also be marked valid.
597	 */
598
599	/* Handle the area from the start until v_vnodelist... */
600	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
601	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
602
603	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
604	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
605	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
606	if (off2 > off1)
607		kasan_mark((void *)((char *)mem + off1), off2 - off1,
608		    off2 - off1, KASAN_UMA_FREED);
609
610	/* ... and finally the area from v_dbatchcpu to the end. */
611	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
612	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
613	    KASAN_UMA_FREED);
614}
615#endif /* KASAN */
616
617/*
618 * Initialize a vnode as it first enters the zone.
619 */
620static int
621vnode_init(void *mem, int size, int flags)
622{
623	struct vnode *vp;
624
625	vp = mem;
626	bzero(vp, size);
627	/*
628	 * Setup locks.
629	 */
630	vp->v_vnlock = &vp->v_lock;
631	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
632	/*
633	 * By default, don't allow shared locks unless filesystems opt-in.
634	 */
635	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
636	    LK_NOSHARE | LK_IS_VNODE);
637	/*
638	 * Initialize bufobj.
639	 */
640	bufobj_init(&vp->v_bufobj, vp);
641	/*
642	 * Initialize namecache.
643	 */
644	cache_vnode_init(vp);
645	/*
646	 * Initialize rangelocks.
647	 */
648	rangelock_init(&vp->v_rl);
649
650	vp->v_dbatchcpu = NOCPU;
651
652	vp->v_state = VSTATE_DEAD;
653
654	/*
655	 * Check vhold_recycle_free for an explanation.
656	 */
657	vp->v_holdcnt = VHOLD_NO_SMR;
658	vp->v_type = VNON;
659	mtx_lock(&vnode_list_mtx);
660	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
661	mtx_unlock(&vnode_list_mtx);
662	return (0);
663}
664
665/*
666 * Free a vnode when it is cleared from the zone.
667 */
668static void
669vnode_fini(void *mem, int size)
670{
671	struct vnode *vp;
672	struct bufobj *bo;
673
674	vp = mem;
675	vdbatch_dequeue(vp);
676	mtx_lock(&vnode_list_mtx);
677	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
678	mtx_unlock(&vnode_list_mtx);
679	rangelock_destroy(&vp->v_rl);
680	lockdestroy(vp->v_vnlock);
681	mtx_destroy(&vp->v_interlock);
682	bo = &vp->v_bufobj;
683	rw_destroy(BO_LOCKPTR(bo));
684
685	kasan_mark(mem, size, size, 0);
686}
687
688/*
689 * Provide the size of NFS nclnode and NFS fh for calculation of the
690 * vnode memory consumption.  The size is specified directly to
691 * eliminate dependency on NFS-private header.
692 *
693 * Other filesystems may use bigger or smaller (like UFS and ZFS)
694 * private inode data, but the NFS-based estimation is ample enough.
695 * Still, we care about differences in the size between 64- and 32-bit
696 * platforms.
697 *
698 * Namecache structure size is heuristically
699 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
700 */
701#ifdef _LP64
702#define	NFS_NCLNODE_SZ	(528 + 64)
703#define	NC_SZ		148
704#else
705#define	NFS_NCLNODE_SZ	(360 + 32)
706#define	NC_SZ		92
707#endif
708
709static void
710vntblinit(void *dummy __unused)
711{
712	struct vdbatch *vd;
713	uma_ctor ctor;
714	uma_dtor dtor;
715	int cpu, physvnodes, virtvnodes;
716
717	/*
718	 * Desiredvnodes is a function of the physical memory size and the
719	 * kernel's heap size.  Generally speaking, it scales with the
720	 * physical memory size.  The ratio of desiredvnodes to the physical
721	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
722	 * Thereafter, the
723	 * marginal ratio of desiredvnodes to the physical memory size is
724	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
725	 * size.  The memory required by desiredvnodes vnodes and vm objects
726	 * must not exceed 1/10th of the kernel's heap size.
727	 */
728	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
729	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
730	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
731	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
732	desiredvnodes = min(physvnodes, virtvnodes);
733	if (desiredvnodes > MAXVNODES_MAX) {
734		if (bootverbose)
735			printf("Reducing kern.maxvnodes %lu -> %lu\n",
736			    desiredvnodes, MAXVNODES_MAX);
737		desiredvnodes = MAXVNODES_MAX;
738	}
739	wantfreevnodes = desiredvnodes / 4;
740	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
741	TAILQ_INIT(&vnode_list);
742	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
743	/*
744	 * The lock is taken to appease WITNESS.
745	 */
746	mtx_lock(&vnode_list_mtx);
747	vnlru_recalc();
748	mtx_unlock(&vnode_list_mtx);
749	vnode_list_free_marker = vn_alloc_marker(NULL);
750	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
751	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
752	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
753
754#ifdef KASAN
755	ctor = vnode_ctor;
756	dtor = vnode_dtor;
757#else
758	ctor = NULL;
759	dtor = NULL;
760#endif
761	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
762	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
763	uma_zone_set_smr(vnode_zone, vfs_smr);
764
765	/*
766	 * Preallocate enough nodes to support one-per buf so that
767	 * we can not fail an insert.  reassignbuf() callers can not
768	 * tolerate the insertion failure.
769	 */
770	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
771	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
772	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
773	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
774	uma_prealloc(buf_trie_zone, nbuf);
775
776	vnodes_created = counter_u64_alloc(M_WAITOK);
777	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
778	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
779
780	/*
781	 * Initialize the filesystem syncer.
782	 */
783	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
784	    &syncer_mask);
785	syncer_maxdelay = syncer_mask + 1;
786	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
787	cv_init(&sync_wakeup, "syncer");
788
789	CPU_FOREACH(cpu) {
790		vd = DPCPU_ID_PTR((cpu), vd);
791		bzero(vd, sizeof(*vd));
792		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
793	}
794}
795SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
796
797/*
798 * Mark a mount point as busy. Used to synchronize access and to delay
799 * unmounting. Eventually, mountlist_mtx is not released on failure.
800 *
801 * vfs_busy() is a custom lock, it can block the caller.
802 * vfs_busy() only sleeps if the unmount is active on the mount point.
803 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
804 * vnode belonging to mp.
805 *
806 * Lookup uses vfs_busy() to traverse mount points.
807 * root fs			var fs
808 * / vnode lock		A	/ vnode lock (/var)		D
809 * /var vnode lock	B	/log vnode lock(/var/log)	E
810 * vfs_busy lock	C	vfs_busy lock			F
811 *
812 * Within each file system, the lock order is C->A->B and F->D->E.
813 *
814 * When traversing across mounts, the system follows that lock order:
815 *
816 *        C->A->B
817 *              |
818 *              +->F->D->E
819 *
820 * The lookup() process for namei("/var") illustrates the process:
821 *  1. VOP_LOOKUP() obtains B while A is held
822 *  2. vfs_busy() obtains a shared lock on F while A and B are held
823 *  3. vput() releases lock on B
824 *  4. vput() releases lock on A
825 *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
826 *  6. vfs_unbusy() releases shared lock on F
827 *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
828 *     Attempt to lock A (instead of vp_crossmp) while D is held would
829 *     violate the global order, causing deadlocks.
830 *
831 * dounmount() locks B while F is drained.  Note that for stacked
832 * filesystems, D and B in the example above may be the same lock,
833 * which introdues potential lock order reversal deadlock between
834 * dounmount() and step 5 above.  These filesystems may avoid the LOR
835 * by setting VV_CROSSLOCK on the covered vnode so that lock B will
836 * remain held until after step 5.
837 */
838int
839vfs_busy(struct mount *mp, int flags)
840{
841	struct mount_pcpu *mpcpu;
842
843	MPASS((flags & ~MBF_MASK) == 0);
844	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
845
846	if (vfs_op_thread_enter(mp, mpcpu)) {
847		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
848		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
849		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
850		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
851		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
852		vfs_op_thread_exit(mp, mpcpu);
853		if (flags & MBF_MNTLSTLOCK)
854			mtx_unlock(&mountlist_mtx);
855		return (0);
856	}
857
858	MNT_ILOCK(mp);
859	vfs_assert_mount_counters(mp);
860	MNT_REF(mp);
861	/*
862	 * If mount point is currently being unmounted, sleep until the
863	 * mount point fate is decided.  If thread doing the unmounting fails,
864	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
865	 * that this mount point has survived the unmount attempt and vfs_busy
866	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
867	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
868	 * about to be really destroyed.  vfs_busy needs to release its
869	 * reference on the mount point in this case and return with ENOENT,
870	 * telling the caller the mount it tried to busy is no longer valid.
871	 */
872	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
873		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
874		    ("%s: non-empty upper mount list with pending unmount",
875		    __func__));
876		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
877			MNT_REL(mp);
878			MNT_IUNLOCK(mp);
879			CTR1(KTR_VFS, "%s: failed busying before sleeping",
880			    __func__);
881			return (ENOENT);
882		}
883		if (flags & MBF_MNTLSTLOCK)
884			mtx_unlock(&mountlist_mtx);
885		mp->mnt_kern_flag |= MNTK_MWAIT;
886		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
887		if (flags & MBF_MNTLSTLOCK)
888			mtx_lock(&mountlist_mtx);
889		MNT_ILOCK(mp);
890	}
891	if (flags & MBF_MNTLSTLOCK)
892		mtx_unlock(&mountlist_mtx);
893	mp->mnt_lockref++;
894	MNT_IUNLOCK(mp);
895	return (0);
896}
897
898/*
899 * Free a busy filesystem.
900 */
901void
902vfs_unbusy(struct mount *mp)
903{
904	struct mount_pcpu *mpcpu;
905	int c;
906
907	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
908
909	if (vfs_op_thread_enter(mp, mpcpu)) {
910		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
911		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
912		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
913		vfs_op_thread_exit(mp, mpcpu);
914		return;
915	}
916
917	MNT_ILOCK(mp);
918	vfs_assert_mount_counters(mp);
919	MNT_REL(mp);
920	c = --mp->mnt_lockref;
921	if (mp->mnt_vfs_ops == 0) {
922		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
923		MNT_IUNLOCK(mp);
924		return;
925	}
926	if (c < 0)
927		vfs_dump_mount_counters(mp);
928	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
929		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
930		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
931		mp->mnt_kern_flag &= ~MNTK_DRAINING;
932		wakeup(&mp->mnt_lockref);
933	}
934	MNT_IUNLOCK(mp);
935}
936
937/*
938 * Lookup a mount point by filesystem identifier.
939 */
940struct mount *
941vfs_getvfs(fsid_t *fsid)
942{
943	struct mount *mp;
944
945	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
946	mtx_lock(&mountlist_mtx);
947	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
948		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
949			vfs_ref(mp);
950			mtx_unlock(&mountlist_mtx);
951			return (mp);
952		}
953	}
954	mtx_unlock(&mountlist_mtx);
955	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
956	return ((struct mount *) 0);
957}
958
959/*
960 * Lookup a mount point by filesystem identifier, busying it before
961 * returning.
962 *
963 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
964 * cache for popular filesystem identifiers.  The cache is lockess, using
965 * the fact that struct mount's are never freed.  In worst case we may
966 * get pointer to unmounted or even different filesystem, so we have to
967 * check what we got, and go slow way if so.
968 */
969struct mount *
970vfs_busyfs(fsid_t *fsid)
971{
972#define	FSID_CACHE_SIZE	256
973	typedef struct mount * volatile vmp_t;
974	static vmp_t cache[FSID_CACHE_SIZE];
975	struct mount *mp;
976	int error;
977	uint32_t hash;
978
979	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
980	hash = fsid->val[0] ^ fsid->val[1];
981	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
982	mp = cache[hash];
983	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
984		goto slow;
985	if (vfs_busy(mp, 0) != 0) {
986		cache[hash] = NULL;
987		goto slow;
988	}
989	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
990		return (mp);
991	else
992	    vfs_unbusy(mp);
993
994slow:
995	mtx_lock(&mountlist_mtx);
996	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
997		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
998			error = vfs_busy(mp, MBF_MNTLSTLOCK);
999			if (error) {
1000				cache[hash] = NULL;
1001				mtx_unlock(&mountlist_mtx);
1002				return (NULL);
1003			}
1004			cache[hash] = mp;
1005			return (mp);
1006		}
1007	}
1008	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1009	mtx_unlock(&mountlist_mtx);
1010	return ((struct mount *) 0);
1011}
1012
1013/*
1014 * Check if a user can access privileged mount options.
1015 */
1016int
1017vfs_suser(struct mount *mp, struct thread *td)
1018{
1019	int error;
1020
1021	if (jailed(td->td_ucred)) {
1022		/*
1023		 * If the jail of the calling thread lacks permission for
1024		 * this type of file system, deny immediately.
1025		 */
1026		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1027			return (EPERM);
1028
1029		/*
1030		 * If the file system was mounted outside the jail of the
1031		 * calling thread, deny immediately.
1032		 */
1033		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1034			return (EPERM);
1035	}
1036
1037	/*
1038	 * If file system supports delegated administration, we don't check
1039	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1040	 * by the file system itself.
1041	 * If this is not the user that did original mount, we check for
1042	 * the PRIV_VFS_MOUNT_OWNER privilege.
1043	 */
1044	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1045	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1046		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1047			return (error);
1048	}
1049	return (0);
1050}
1051
1052/*
1053 * Get a new unique fsid.  Try to make its val[0] unique, since this value
1054 * will be used to create fake device numbers for stat().  Also try (but
1055 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1056 * support 16-bit device numbers.  We end up with unique val[0]'s for the
1057 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1058 *
1059 * Keep in mind that several mounts may be running in parallel.  Starting
1060 * the search one past where the previous search terminated is both a
1061 * micro-optimization and a defense against returning the same fsid to
1062 * different mounts.
1063 */
1064void
1065vfs_getnewfsid(struct mount *mp)
1066{
1067	static uint16_t mntid_base;
1068	struct mount *nmp;
1069	fsid_t tfsid;
1070	int mtype;
1071
1072	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1073	mtx_lock(&mntid_mtx);
1074	mtype = mp->mnt_vfc->vfc_typenum;
1075	tfsid.val[1] = mtype;
1076	mtype = (mtype & 0xFF) << 24;
1077	for (;;) {
1078		tfsid.val[0] = makedev(255,
1079		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1080		mntid_base++;
1081		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1082			break;
1083		vfs_rel(nmp);
1084	}
1085	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1086	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1087	mtx_unlock(&mntid_mtx);
1088}
1089
1090/*
1091 * Knob to control the precision of file timestamps:
1092 *
1093 *   0 = seconds only; nanoseconds zeroed.
1094 *   1 = seconds and nanoseconds, accurate within 1/HZ.
1095 *   2 = seconds and nanoseconds, truncated to microseconds.
1096 * >=3 = seconds and nanoseconds, maximum precision.
1097 */
1098enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1099
1100static int timestamp_precision = TSP_USEC;
1101SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1102    &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1103    "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1104    "3+: sec + ns (max. precision))");
1105
1106/*
1107 * Get a current timestamp.
1108 */
1109void
1110vfs_timestamp(struct timespec *tsp)
1111{
1112	struct timeval tv;
1113
1114	switch (timestamp_precision) {
1115	case TSP_SEC:
1116		tsp->tv_sec = time_second;
1117		tsp->tv_nsec = 0;
1118		break;
1119	case TSP_HZ:
1120		getnanotime(tsp);
1121		break;
1122	case TSP_USEC:
1123		microtime(&tv);
1124		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1125		break;
1126	case TSP_NSEC:
1127	default:
1128		nanotime(tsp);
1129		break;
1130	}
1131}
1132
1133/*
1134 * Set vnode attributes to VNOVAL
1135 */
1136void
1137vattr_null(struct vattr *vap)
1138{
1139
1140	vap->va_type = VNON;
1141	vap->va_size = VNOVAL;
1142	vap->va_bytes = VNOVAL;
1143	vap->va_mode = VNOVAL;
1144	vap->va_nlink = VNOVAL;
1145	vap->va_uid = VNOVAL;
1146	vap->va_gid = VNOVAL;
1147	vap->va_fsid = VNOVAL;
1148	vap->va_fileid = VNOVAL;
1149	vap->va_blocksize = VNOVAL;
1150	vap->va_rdev = VNOVAL;
1151	vap->va_atime.tv_sec = VNOVAL;
1152	vap->va_atime.tv_nsec = VNOVAL;
1153	vap->va_mtime.tv_sec = VNOVAL;
1154	vap->va_mtime.tv_nsec = VNOVAL;
1155	vap->va_ctime.tv_sec = VNOVAL;
1156	vap->va_ctime.tv_nsec = VNOVAL;
1157	vap->va_birthtime.tv_sec = VNOVAL;
1158	vap->va_birthtime.tv_nsec = VNOVAL;
1159	vap->va_flags = VNOVAL;
1160	vap->va_gen = VNOVAL;
1161	vap->va_vaflags = 0;
1162}
1163
1164/*
1165 * Try to reduce the total number of vnodes.
1166 *
1167 * This routine (and its user) are buggy in at least the following ways:
1168 * - all parameters were picked years ago when RAM sizes were significantly
1169 *   smaller
1170 * - it can pick vnodes based on pages used by the vm object, but filesystems
1171 *   like ZFS don't use it making the pick broken
1172 * - since ZFS has its own aging policy it gets partially combated by this one
1173 * - a dedicated method should be provided for filesystems to let them decide
1174 *   whether the vnode should be recycled
1175 *
1176 * This routine is called when we have too many vnodes.  It attempts
1177 * to free <count> vnodes and will potentially free vnodes that still
1178 * have VM backing store (VM backing store is typically the cause
1179 * of a vnode blowout so we want to do this).  Therefore, this operation
1180 * is not considered cheap.
1181 *
1182 * A number of conditions may prevent a vnode from being reclaimed.
1183 * the buffer cache may have references on the vnode, a directory
1184 * vnode may still have references due to the namei cache representing
1185 * underlying files, or the vnode may be in active use.   It is not
1186 * desirable to reuse such vnodes.  These conditions may cause the
1187 * number of vnodes to reach some minimum value regardless of what
1188 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1189 *
1190 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1191 * 			 entries if this argument is strue
1192 * @param trigger	 Only reclaim vnodes with fewer than this many resident
1193 *			 pages.
1194 * @param target	 How many vnodes to reclaim.
1195 * @return		 The number of vnodes that were reclaimed.
1196 */
1197static int
1198vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1199{
1200	struct vnode *vp, *mvp;
1201	struct mount *mp;
1202	struct vm_object *object;
1203	u_long done;
1204	bool retried;
1205
1206	mtx_assert(&vnode_list_mtx, MA_OWNED);
1207
1208	retried = false;
1209	done = 0;
1210
1211	mvp = vnode_list_reclaim_marker;
1212restart:
1213	vp = mvp;
1214	while (done < target) {
1215		vp = TAILQ_NEXT(vp, v_vnodelist);
1216		if (__predict_false(vp == NULL))
1217			break;
1218
1219		if (__predict_false(vp->v_type == VMARKER))
1220			continue;
1221
1222		/*
1223		 * If it's been deconstructed already, it's still
1224		 * referenced, or it exceeds the trigger, skip it.
1225		 * Also skip free vnodes.  We are trying to make space
1226		 * for more free vnodes, not reduce their count.
1227		 */
1228		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1229		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1230			goto next_iter;
1231
1232		if (vp->v_type == VBAD || vp->v_type == VNON)
1233			goto next_iter;
1234
1235		object = atomic_load_ptr(&vp->v_object);
1236		if (object == NULL || object->resident_page_count > trigger) {
1237			goto next_iter;
1238		}
1239
1240		/*
1241		 * Handle races against vnode allocation. Filesystems lock the
1242		 * vnode some time after it gets returned from getnewvnode,
1243		 * despite type and hold count being manipulated earlier.
1244		 * Resorting to checking v_mount restores guarantees present
1245		 * before the global list was reworked to contain all vnodes.
1246		 */
1247		if (!VI_TRYLOCK(vp))
1248			goto next_iter;
1249		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1250			VI_UNLOCK(vp);
1251			goto next_iter;
1252		}
1253		if (vp->v_mount == NULL) {
1254			VI_UNLOCK(vp);
1255			goto next_iter;
1256		}
1257		vholdl(vp);
1258		VI_UNLOCK(vp);
1259		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1260		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1261		mtx_unlock(&vnode_list_mtx);
1262
1263		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1264			vdrop_recycle(vp);
1265			goto next_iter_unlocked;
1266		}
1267		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1268			vdrop_recycle(vp);
1269			vn_finished_write(mp);
1270			goto next_iter_unlocked;
1271		}
1272
1273		VI_LOCK(vp);
1274		if (vp->v_usecount > 0 ||
1275		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1276		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1277		    vp->v_object->resident_page_count > trigger)) {
1278			VOP_UNLOCK(vp);
1279			vdropl_recycle(vp);
1280			vn_finished_write(mp);
1281			goto next_iter_unlocked;
1282		}
1283		recycles_count++;
1284		vgonel(vp);
1285		VOP_UNLOCK(vp);
1286		vdropl_recycle(vp);
1287		vn_finished_write(mp);
1288		done++;
1289next_iter_unlocked:
1290		maybe_yield();
1291		mtx_lock(&vnode_list_mtx);
1292		goto restart;
1293next_iter:
1294		MPASS(vp->v_type != VMARKER);
1295		if (!should_yield())
1296			continue;
1297		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299		mtx_unlock(&vnode_list_mtx);
1300		kern_yield(PRI_USER);
1301		mtx_lock(&vnode_list_mtx);
1302		goto restart;
1303	}
1304	if (done == 0 && !retried) {
1305		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1306		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1307		retried = true;
1308		goto restart;
1309	}
1310	return (done);
1311}
1312
1313static int max_free_per_call = 10000;
1314SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1315    "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1316SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1317    &max_free_per_call, 0,
1318    "limit on vnode free requests per call to the vnlru_free routine");
1319
1320/*
1321 * Attempt to recycle requested amount of free vnodes.
1322 */
1323static int
1324vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1325{
1326	struct vnode *vp;
1327	struct mount *mp;
1328	int ocount;
1329	bool retried;
1330
1331	mtx_assert(&vnode_list_mtx, MA_OWNED);
1332	if (count > max_free_per_call)
1333		count = max_free_per_call;
1334	if (count == 0) {
1335		mtx_unlock(&vnode_list_mtx);
1336		return (0);
1337	}
1338	ocount = count;
1339	retried = false;
1340	vp = mvp;
1341	for (;;) {
1342		vp = TAILQ_NEXT(vp, v_vnodelist);
1343		if (__predict_false(vp == NULL)) {
1344			/*
1345			 * The free vnode marker can be past eligible vnodes:
1346			 * 1. if vdbatch_process trylock failed
1347			 * 2. if vtryrecycle failed
1348			 *
1349			 * If so, start the scan from scratch.
1350			 */
1351			if (!retried && vnlru_read_freevnodes() > 0) {
1352				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1353				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1354				vp = mvp;
1355				retried = true;
1356				continue;
1357			}
1358
1359			/*
1360			 * Give up
1361			 */
1362			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1363			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1364			mtx_unlock(&vnode_list_mtx);
1365			break;
1366		}
1367		if (__predict_false(vp->v_type == VMARKER))
1368			continue;
1369		if (vp->v_holdcnt > 0)
1370			continue;
1371		/*
1372		 * Don't recycle if our vnode is from different type
1373		 * of mount point.  Note that mp is type-safe, the
1374		 * check does not reach unmapped address even if
1375		 * vnode is reclaimed.
1376		 */
1377		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1378		    mp->mnt_op != mnt_op) {
1379			continue;
1380		}
1381		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1382			continue;
1383		}
1384		if (!vhold_recycle_free(vp))
1385			continue;
1386		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1387		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1388		mtx_unlock(&vnode_list_mtx);
1389		/*
1390		 * FIXME: ignores the return value, meaning it may be nothing
1391		 * got recycled but it claims otherwise to the caller.
1392		 *
1393		 * Originally the value started being ignored in 2005 with
1394		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1395		 *
1396		 * Respecting the value can run into significant stalls if most
1397		 * vnodes belong to one file system and it has writes
1398		 * suspended.  In presence of many threads and millions of
1399		 * vnodes they keep contending on the vnode_list_mtx lock only
1400		 * to find vnodes they can't recycle.
1401		 *
1402		 * The solution would be to pre-check if the vnode is likely to
1403		 * be recycle-able, but it needs to happen with the
1404		 * vnode_list_mtx lock held. This runs into a problem where
1405		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1406		 * writes are frozen) can take locks which LOR against it.
1407		 *
1408		 * Check nullfs for one example (null_getwritemount).
1409		 */
1410		vtryrecycle(vp, isvnlru);
1411		count--;
1412		if (count == 0) {
1413			break;
1414		}
1415		mtx_lock(&vnode_list_mtx);
1416		vp = mvp;
1417	}
1418	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1419	return (ocount - count);
1420}
1421
1422/*
1423 * XXX: returns without vnode_list_mtx locked!
1424 */
1425static int
1426vnlru_free_locked_direct(int count)
1427{
1428	int ret;
1429
1430	mtx_assert(&vnode_list_mtx, MA_OWNED);
1431	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1432	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1433	return (ret);
1434}
1435
1436static int
1437vnlru_free_locked_vnlru(int count)
1438{
1439	int ret;
1440
1441	mtx_assert(&vnode_list_mtx, MA_OWNED);
1442	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1443	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1444	return (ret);
1445}
1446
1447static int
1448vnlru_free_vnlru(int count)
1449{
1450
1451	mtx_lock(&vnode_list_mtx);
1452	return (vnlru_free_locked_vnlru(count));
1453}
1454
1455void
1456vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1457{
1458
1459	MPASS(mnt_op != NULL);
1460	MPASS(mvp != NULL);
1461	VNPASS(mvp->v_type == VMARKER, mvp);
1462	mtx_lock(&vnode_list_mtx);
1463	vnlru_free_impl(count, mnt_op, mvp, true);
1464	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1465}
1466
1467struct vnode *
1468vnlru_alloc_marker(void)
1469{
1470	struct vnode *mvp;
1471
1472	mvp = vn_alloc_marker(NULL);
1473	mtx_lock(&vnode_list_mtx);
1474	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1475	mtx_unlock(&vnode_list_mtx);
1476	return (mvp);
1477}
1478
1479void
1480vnlru_free_marker(struct vnode *mvp)
1481{
1482	mtx_lock(&vnode_list_mtx);
1483	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1484	mtx_unlock(&vnode_list_mtx);
1485	vn_free_marker(mvp);
1486}
1487
1488static void
1489vnlru_recalc(void)
1490{
1491
1492	mtx_assert(&vnode_list_mtx, MA_OWNED);
1493	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1494	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1495	vlowat = vhiwat / 2;
1496}
1497
1498/*
1499 * Attempt to recycle vnodes in a context that is always safe to block.
1500 * Calling vlrurecycle() from the bowels of filesystem code has some
1501 * interesting deadlock problems.
1502 */
1503static struct proc *vnlruproc;
1504static int vnlruproc_sig;
1505static u_long vnlruproc_kicks;
1506
1507SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1508    "Number of times vnlru awakened due to vnode shortage");
1509
1510#define VNLRU_COUNT_SLOP 100
1511
1512/*
1513 * The main freevnodes counter is only updated when a counter local to CPU
1514 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1515 * walked to compute a more accurate total.
1516 *
1517 * Note: the actual value at any given moment can still exceed slop, but it
1518 * should not be by significant margin in practice.
1519 */
1520#define VNLRU_FREEVNODES_SLOP 126
1521
1522static void __noinline
1523vfs_freevnodes_rollup(int8_t *lfreevnodes)
1524{
1525
1526	atomic_add_long(&freevnodes, *lfreevnodes);
1527	*lfreevnodes = 0;
1528	critical_exit();
1529}
1530
1531static __inline void
1532vfs_freevnodes_inc(void)
1533{
1534	int8_t *lfreevnodes;
1535
1536	critical_enter();
1537	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1538	(*lfreevnodes)++;
1539	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1540		vfs_freevnodes_rollup(lfreevnodes);
1541	else
1542		critical_exit();
1543}
1544
1545static __inline void
1546vfs_freevnodes_dec(void)
1547{
1548	int8_t *lfreevnodes;
1549
1550	critical_enter();
1551	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1552	(*lfreevnodes)--;
1553	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1554		vfs_freevnodes_rollup(lfreevnodes);
1555	else
1556		critical_exit();
1557}
1558
1559static u_long
1560vnlru_read_freevnodes(void)
1561{
1562	long slop, rfreevnodes, rfreevnodes_old;
1563	int cpu;
1564
1565	rfreevnodes = atomic_load_long(&freevnodes);
1566	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1567
1568	if (rfreevnodes > rfreevnodes_old)
1569		slop = rfreevnodes - rfreevnodes_old;
1570	else
1571		slop = rfreevnodes_old - rfreevnodes;
1572	if (slop < VNLRU_FREEVNODES_SLOP)
1573		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1574	CPU_FOREACH(cpu) {
1575		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1576	}
1577	atomic_store_long(&freevnodes_old, rfreevnodes);
1578	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1579}
1580
1581static bool
1582vnlru_under(u_long rnumvnodes, u_long limit)
1583{
1584	u_long rfreevnodes, space;
1585
1586	if (__predict_false(rnumvnodes > desiredvnodes))
1587		return (true);
1588
1589	space = desiredvnodes - rnumvnodes;
1590	if (space < limit) {
1591		rfreevnodes = vnlru_read_freevnodes();
1592		if (rfreevnodes > wantfreevnodes)
1593			space += rfreevnodes - wantfreevnodes;
1594	}
1595	return (space < limit);
1596}
1597
1598static void
1599vnlru_kick_locked(void)
1600{
1601
1602	mtx_assert(&vnode_list_mtx, MA_OWNED);
1603	if (vnlruproc_sig == 0) {
1604		vnlruproc_sig = 1;
1605		vnlruproc_kicks++;
1606		wakeup(vnlruproc);
1607	}
1608}
1609
1610static void
1611vnlru_kick_cond(void)
1612{
1613
1614	if (vnlru_read_freevnodes() > wantfreevnodes)
1615		return;
1616
1617	if (vnlruproc_sig)
1618		return;
1619	mtx_lock(&vnode_list_mtx);
1620	vnlru_kick_locked();
1621	mtx_unlock(&vnode_list_mtx);
1622}
1623
1624static void
1625vnlru_proc_sleep(void)
1626{
1627
1628	if (vnlruproc_sig) {
1629		vnlruproc_sig = 0;
1630		wakeup(&vnlruproc_sig);
1631	}
1632	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1633}
1634
1635/*
1636 * A lighter version of the machinery below.
1637 *
1638 * Tries to reach goals only by recycling free vnodes and does not invoke
1639 * uma_reclaim(UMA_RECLAIM_DRAIN).
1640 *
1641 * This works around pathological behavior in vnlru in presence of tons of free
1642 * vnodes, but without having to rewrite the machinery at this time. Said
1643 * behavior boils down to continuously trying to reclaim all kinds of vnodes
1644 * (cycling through all levels of "force") when the count is transiently above
1645 * limit. This happens a lot when all vnodes are used up and vn_alloc
1646 * speculatively increments the counter.
1647 *
1648 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1649 * 1 million files in total and 20 find(1) processes stating them in parallel
1650 * (one per each tree).
1651 *
1652 * On a kernel with only stock machinery this needs anywhere between 60 and 120
1653 * seconds to execute (time varies *wildly* between runs). With the workaround
1654 * it consistently stays around 20 seconds [it got further down with later
1655 * changes].
1656 *
1657 * That is to say the entire thing needs a fundamental redesign (most notably
1658 * to accommodate faster recycling), the above only tries to get it ouf the way.
1659 *
1660 * Return values are:
1661 * -1 -- fallback to regular vnlru loop
1662 *  0 -- do nothing, go to sleep
1663 * >0 -- recycle this many vnodes
1664 */
1665static long
1666vnlru_proc_light_pick(void)
1667{
1668	u_long rnumvnodes, rfreevnodes;
1669
1670	if (vstir || vnlruproc_sig == 1)
1671		return (-1);
1672
1673	rnumvnodes = atomic_load_long(&numvnodes);
1674	rfreevnodes = vnlru_read_freevnodes();
1675
1676	/*
1677	 * vnode limit might have changed and now we may be at a significant
1678	 * excess. Bail if we can't sort it out with free vnodes.
1679	 *
1680	 * Due to atomic updates the count can legitimately go above
1681	 * the limit for a short period, don't bother doing anything in
1682	 * that case.
1683	 */
1684	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1685		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1686		    rfreevnodes <= wantfreevnodes) {
1687			return (-1);
1688		}
1689
1690		return (rnumvnodes - desiredvnodes);
1691	}
1692
1693	/*
1694	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1695	 * to begin with.
1696	 */
1697	if (rnumvnodes < wantfreevnodes) {
1698		return (0);
1699	}
1700
1701	if (rfreevnodes < wantfreevnodes) {
1702		return (-1);
1703	}
1704
1705	return (0);
1706}
1707
1708static bool
1709vnlru_proc_light(void)
1710{
1711	long freecount;
1712
1713	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1714
1715	freecount = vnlru_proc_light_pick();
1716	if (freecount == -1)
1717		return (false);
1718
1719	if (freecount != 0) {
1720		vnlru_free_vnlru(freecount);
1721	}
1722
1723	mtx_lock(&vnode_list_mtx);
1724	vnlru_proc_sleep();
1725	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1726	return (true);
1727}
1728
1729static u_long uma_reclaim_calls;
1730SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1731    &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1732
1733static void
1734vnlru_proc(void)
1735{
1736	u_long rnumvnodes, rfreevnodes, target;
1737	unsigned long onumvnodes;
1738	int done, force, trigger, usevnodes;
1739	bool reclaim_nc_src, want_reread;
1740
1741	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1742	    SHUTDOWN_PRI_FIRST);
1743
1744	force = 0;
1745	want_reread = false;
1746	for (;;) {
1747		kproc_suspend_check(vnlruproc);
1748
1749		if (force == 0 && vnlru_proc_light())
1750			continue;
1751
1752		mtx_lock(&vnode_list_mtx);
1753		rnumvnodes = atomic_load_long(&numvnodes);
1754
1755		if (want_reread) {
1756			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1757			want_reread = false;
1758		}
1759
1760		/*
1761		 * If numvnodes is too large (due to desiredvnodes being
1762		 * adjusted using its sysctl, or emergency growth), first
1763		 * try to reduce it by discarding free vnodes.
1764		 */
1765		if (rnumvnodes > desiredvnodes + 10) {
1766			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1767			mtx_lock(&vnode_list_mtx);
1768			rnumvnodes = atomic_load_long(&numvnodes);
1769		}
1770		/*
1771		 * Sleep if the vnode cache is in a good state.  This is
1772		 * when it is not over-full and has space for about a 4%
1773		 * or 9% expansion (by growing its size or inexcessively
1774		 * reducing free vnode count).  Otherwise, try to reclaim
1775		 * space for a 10% expansion.
1776		 */
1777		if (vstir && force == 0) {
1778			force = 1;
1779			vstir = false;
1780		}
1781		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1782			vnlru_proc_sleep();
1783			continue;
1784		}
1785		rfreevnodes = vnlru_read_freevnodes();
1786
1787		onumvnodes = rnumvnodes;
1788		/*
1789		 * Calculate parameters for recycling.  These are the same
1790		 * throughout the loop to give some semblance of fairness.
1791		 * The trigger point is to avoid recycling vnodes with lots
1792		 * of resident pages.  We aren't trying to free memory; we
1793		 * are trying to recycle or at least free vnodes.
1794		 */
1795		if (rnumvnodes <= desiredvnodes)
1796			usevnodes = rnumvnodes - rfreevnodes;
1797		else
1798			usevnodes = rnumvnodes;
1799		if (usevnodes <= 0)
1800			usevnodes = 1;
1801		/*
1802		 * The trigger value is chosen to give a conservatively
1803		 * large value to ensure that it alone doesn't prevent
1804		 * making progress.  The value can easily be so large that
1805		 * it is effectively infinite in some congested and
1806		 * misconfigured cases, and this is necessary.  Normally
1807		 * it is about 8 to 100 (pages), which is quite large.
1808		 */
1809		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1810		if (force < 2)
1811			trigger = vsmalltrigger;
1812		reclaim_nc_src = force >= 3;
1813		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1814		target = target / 10 + 1;
1815		done = vlrureclaim(reclaim_nc_src, trigger, target);
1816		mtx_unlock(&vnode_list_mtx);
1817		/*
1818		 * Total number of vnodes can transiently go slightly above the
1819		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1820		 * this happens.
1821		 */
1822		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1823		    numvnodes <= desiredvnodes) {
1824			uma_reclaim_calls++;
1825			uma_reclaim(UMA_RECLAIM_DRAIN);
1826		}
1827		if (done == 0) {
1828			if (force == 0 || force == 1) {
1829				force = 2;
1830				continue;
1831			}
1832			if (force == 2) {
1833				force = 3;
1834				continue;
1835			}
1836			want_reread = true;
1837			force = 0;
1838			vnlru_nowhere++;
1839			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1840		} else {
1841			want_reread = true;
1842			kern_yield(PRI_USER);
1843		}
1844	}
1845}
1846
1847static struct kproc_desc vnlru_kp = {
1848	"vnlru",
1849	vnlru_proc,
1850	&vnlruproc
1851};
1852SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1853    &vnlru_kp);
1854
1855/*
1856 * Routines having to do with the management of the vnode table.
1857 */
1858
1859/*
1860 * Try to recycle a freed vnode.
1861 */
1862static int
1863vtryrecycle(struct vnode *vp, bool isvnlru)
1864{
1865	struct mount *vnmp;
1866
1867	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1868	VNPASS(vp->v_holdcnt > 0, vp);
1869	/*
1870	 * This vnode may found and locked via some other list, if so we
1871	 * can't recycle it yet.
1872	 */
1873	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1874		CTR2(KTR_VFS,
1875		    "%s: impossible to recycle, vp %p lock is already held",
1876		    __func__, vp);
1877		vdrop_recycle(vp);
1878		return (EWOULDBLOCK);
1879	}
1880	/*
1881	 * Don't recycle if its filesystem is being suspended.
1882	 */
1883	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1884		VOP_UNLOCK(vp);
1885		CTR2(KTR_VFS,
1886		    "%s: impossible to recycle, cannot start the write for %p",
1887		    __func__, vp);
1888		vdrop_recycle(vp);
1889		return (EBUSY);
1890	}
1891	/*
1892	 * If we got this far, we need to acquire the interlock and see if
1893	 * anyone picked up this vnode from another list.  If not, we will
1894	 * mark it with DOOMED via vgonel() so that anyone who does find it
1895	 * will skip over it.
1896	 */
1897	VI_LOCK(vp);
1898	if (vp->v_usecount) {
1899		VOP_UNLOCK(vp);
1900		vdropl_recycle(vp);
1901		vn_finished_write(vnmp);
1902		CTR2(KTR_VFS,
1903		    "%s: impossible to recycle, %p is already referenced",
1904		    __func__, vp);
1905		return (EBUSY);
1906	}
1907	if (!VN_IS_DOOMED(vp)) {
1908		if (isvnlru)
1909			recycles_free_count++;
1910		else
1911			counter_u64_add(direct_recycles_free_count, 1);
1912		vgonel(vp);
1913	}
1914	VOP_UNLOCK(vp);
1915	vdropl_recycle(vp);
1916	vn_finished_write(vnmp);
1917	return (0);
1918}
1919
1920/*
1921 * Allocate a new vnode.
1922 *
1923 * The operation never returns an error. Returning an error was disabled
1924 * in r145385 (dated 2005) with the following comment:
1925 *
1926 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1927 *
1928 * Given the age of this commit (almost 15 years at the time of writing this
1929 * comment) restoring the ability to fail requires a significant audit of
1930 * all codepaths.
1931 *
1932 * The routine can try to free a vnode or stall for up to 1 second waiting for
1933 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1934 */
1935static u_long vn_alloc_cyclecount;
1936static u_long vn_alloc_sleeps;
1937
1938SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1939    "Number of times vnode allocation blocked waiting on vnlru");
1940
1941static struct vnode * __noinline
1942vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1943{
1944	u_long rfreevnodes;
1945
1946	if (bumped) {
1947		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1948			atomic_subtract_long(&numvnodes, 1);
1949			bumped = false;
1950		}
1951	}
1952
1953	mtx_lock(&vnode_list_mtx);
1954
1955	if (vn_alloc_cyclecount != 0) {
1956		rnumvnodes = atomic_load_long(&numvnodes);
1957		if (rnumvnodes + 1 < desiredvnodes) {
1958			vn_alloc_cyclecount = 0;
1959			mtx_unlock(&vnode_list_mtx);
1960			goto alloc;
1961		}
1962
1963		rfreevnodes = vnlru_read_freevnodes();
1964		if (rfreevnodes < wantfreevnodes) {
1965			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1966				vn_alloc_cyclecount = 0;
1967				vstir = true;
1968			}
1969		} else {
1970			vn_alloc_cyclecount = 0;
1971		}
1972	}
1973
1974	/*
1975	 * Grow the vnode cache if it will not be above its target max after
1976	 * growing.  Otherwise, if there is at least one free vnode, try to
1977	 * reclaim 1 item from it before growing the cache (possibly above its
1978	 * target max if the reclamation failed or is delayed).
1979	 */
1980	if (vnlru_free_locked_direct(1) > 0)
1981		goto alloc;
1982	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1983	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1984		/*
1985		 * Wait for space for a new vnode.
1986		 */
1987		if (bumped) {
1988			atomic_subtract_long(&numvnodes, 1);
1989			bumped = false;
1990		}
1991		mtx_lock(&vnode_list_mtx);
1992		vnlru_kick_locked();
1993		vn_alloc_sleeps++;
1994		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1995		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1996		    vnlru_read_freevnodes() > 1)
1997			vnlru_free_locked_direct(1);
1998		else
1999			mtx_unlock(&vnode_list_mtx);
2000	}
2001alloc:
2002	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2003	if (!bumped)
2004		atomic_add_long(&numvnodes, 1);
2005	vnlru_kick_cond();
2006	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2007}
2008
2009static struct vnode *
2010vn_alloc(struct mount *mp)
2011{
2012	u_long rnumvnodes;
2013
2014	if (__predict_false(vn_alloc_cyclecount != 0))
2015		return (vn_alloc_hard(mp, 0, false));
2016	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2017	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2018		return (vn_alloc_hard(mp, rnumvnodes, true));
2019	}
2020
2021	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2022}
2023
2024static void
2025vn_free(struct vnode *vp)
2026{
2027
2028	atomic_subtract_long(&numvnodes, 1);
2029	uma_zfree_smr(vnode_zone, vp);
2030}
2031
2032/*
2033 * Allocate a new vnode.
2034 */
2035int
2036getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2037    struct vnode **vpp)
2038{
2039	struct vnode *vp;
2040	struct thread *td;
2041	struct lock_object *lo;
2042
2043	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2044
2045	KASSERT(vops->registered,
2046	    ("%s: not registered vector op %p\n", __func__, vops));
2047	cache_validate_vop_vector(mp, vops);
2048
2049	td = curthread;
2050	if (td->td_vp_reserved != NULL) {
2051		vp = td->td_vp_reserved;
2052		td->td_vp_reserved = NULL;
2053	} else {
2054		vp = vn_alloc(mp);
2055	}
2056	counter_u64_add(vnodes_created, 1);
2057
2058	vn_set_state(vp, VSTATE_UNINITIALIZED);
2059
2060	/*
2061	 * Locks are given the generic name "vnode" when created.
2062	 * Follow the historic practice of using the filesystem
2063	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2064	 *
2065	 * Locks live in a witness group keyed on their name. Thus,
2066	 * when a lock is renamed, it must also move from the witness
2067	 * group of its old name to the witness group of its new name.
2068	 *
2069	 * The change only needs to be made when the vnode moves
2070	 * from one filesystem type to another. We ensure that each
2071	 * filesystem use a single static name pointer for its tag so
2072	 * that we can compare pointers rather than doing a strcmp().
2073	 */
2074	lo = &vp->v_vnlock->lock_object;
2075#ifdef WITNESS
2076	if (lo->lo_name != tag) {
2077#endif
2078		lo->lo_name = tag;
2079#ifdef WITNESS
2080		WITNESS_DESTROY(lo);
2081		WITNESS_INIT(lo, tag);
2082	}
2083#endif
2084	/*
2085	 * By default, don't allow shared locks unless filesystems opt-in.
2086	 */
2087	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2088	/*
2089	 * Finalize various vnode identity bits.
2090	 */
2091	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2092	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2093	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2094	vp->v_type = VNON;
2095	vp->v_op = vops;
2096	vp->v_irflag = 0;
2097	v_init_counters(vp);
2098	vn_seqc_init(vp);
2099	vp->v_bufobj.bo_ops = &buf_ops_bio;
2100#ifdef DIAGNOSTIC
2101	if (mp == NULL && vops != &dead_vnodeops)
2102		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2103#endif
2104#ifdef MAC
2105	mac_vnode_init(vp);
2106	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2107		mac_vnode_associate_singlelabel(mp, vp);
2108#endif
2109	if (mp != NULL) {
2110		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2111	}
2112
2113	/*
2114	 * For the filesystems which do not use vfs_hash_insert(),
2115	 * still initialize v_hash to have vfs_hash_index() useful.
2116	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2117	 * its own hashing.
2118	 */
2119	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2120
2121	*vpp = vp;
2122	return (0);
2123}
2124
2125void
2126getnewvnode_reserve(void)
2127{
2128	struct thread *td;
2129
2130	td = curthread;
2131	MPASS(td->td_vp_reserved == NULL);
2132	td->td_vp_reserved = vn_alloc(NULL);
2133}
2134
2135void
2136getnewvnode_drop_reserve(void)
2137{
2138	struct thread *td;
2139
2140	td = curthread;
2141	if (td->td_vp_reserved != NULL) {
2142		vn_free(td->td_vp_reserved);
2143		td->td_vp_reserved = NULL;
2144	}
2145}
2146
2147static void __noinline
2148freevnode(struct vnode *vp)
2149{
2150	struct bufobj *bo;
2151
2152	/*
2153	 * The vnode has been marked for destruction, so free it.
2154	 *
2155	 * The vnode will be returned to the zone where it will
2156	 * normally remain until it is needed for another vnode. We
2157	 * need to cleanup (or verify that the cleanup has already
2158	 * been done) any residual data left from its current use
2159	 * so as not to contaminate the freshly allocated vnode.
2160	 */
2161	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2162	/*
2163	 * Paired with vgone.
2164	 */
2165	vn_seqc_write_end_free(vp);
2166
2167	bo = &vp->v_bufobj;
2168	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2169	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2170	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2171	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2172	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2173	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2174	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2175	    ("clean blk trie not empty"));
2176	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2177	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2178	    ("dirty blk trie not empty"));
2179	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2180	    ("Dangling rangelock waiters"));
2181	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2182	    ("Leaked inactivation"));
2183	VI_UNLOCK(vp);
2184	cache_assert_no_entries(vp);
2185
2186#ifdef MAC
2187	mac_vnode_destroy(vp);
2188#endif
2189	if (vp->v_pollinfo != NULL) {
2190		/*
2191		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2192		 * here while having another vnode locked when trying to
2193		 * satisfy a lookup and needing to recycle.
2194		 */
2195		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2196		destroy_vpollinfo(vp->v_pollinfo);
2197		VOP_UNLOCK(vp);
2198		vp->v_pollinfo = NULL;
2199	}
2200	vp->v_mountedhere = NULL;
2201	vp->v_unpcb = NULL;
2202	vp->v_rdev = NULL;
2203	vp->v_fifoinfo = NULL;
2204	vp->v_iflag = 0;
2205	vp->v_vflag = 0;
2206	bo->bo_flag = 0;
2207	vn_free(vp);
2208}
2209
2210/*
2211 * Delete from old mount point vnode list, if on one.
2212 */
2213static void
2214delmntque(struct vnode *vp)
2215{
2216	struct mount *mp;
2217
2218	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2219
2220	mp = vp->v_mount;
2221	MNT_ILOCK(mp);
2222	VI_LOCK(vp);
2223	vp->v_mount = NULL;
2224	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2225		("bad mount point vnode list size"));
2226	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2227	mp->mnt_nvnodelistsize--;
2228	MNT_REL(mp);
2229	MNT_IUNLOCK(mp);
2230	/*
2231	 * The caller expects the interlock to be still held.
2232	 */
2233	ASSERT_VI_LOCKED(vp, __func__);
2234}
2235
2236static int
2237insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2238{
2239
2240	KASSERT(vp->v_mount == NULL,
2241		("insmntque: vnode already on per mount vnode list"));
2242	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2243	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2244		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2245	} else {
2246		KASSERT(!dtr,
2247		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2248		    __func__));
2249	}
2250
2251	/*
2252	 * We acquire the vnode interlock early to ensure that the
2253	 * vnode cannot be recycled by another process releasing a
2254	 * holdcnt on it before we get it on both the vnode list
2255	 * and the active vnode list. The mount mutex protects only
2256	 * manipulation of the vnode list and the vnode freelist
2257	 * mutex protects only manipulation of the active vnode list.
2258	 * Hence the need to hold the vnode interlock throughout.
2259	 */
2260	MNT_ILOCK(mp);
2261	VI_LOCK(vp);
2262	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2263	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2264	    mp->mnt_nvnodelistsize == 0)) &&
2265	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2266		VI_UNLOCK(vp);
2267		MNT_IUNLOCK(mp);
2268		if (dtr) {
2269			vp->v_data = NULL;
2270			vp->v_op = &dead_vnodeops;
2271			vgone(vp);
2272			vput(vp);
2273		}
2274		return (EBUSY);
2275	}
2276	vp->v_mount = mp;
2277	MNT_REF(mp);
2278	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2279	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2280		("neg mount point vnode list size"));
2281	mp->mnt_nvnodelistsize++;
2282	VI_UNLOCK(vp);
2283	MNT_IUNLOCK(mp);
2284	return (0);
2285}
2286
2287/*
2288 * Insert into list of vnodes for the new mount point, if available.
2289 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2290 * leaves handling of the vnode to the caller.
2291 */
2292int
2293insmntque(struct vnode *vp, struct mount *mp)
2294{
2295	return (insmntque1_int(vp, mp, true));
2296}
2297
2298int
2299insmntque1(struct vnode *vp, struct mount *mp)
2300{
2301	return (insmntque1_int(vp, mp, false));
2302}
2303
2304/*
2305 * Flush out and invalidate all buffers associated with a bufobj
2306 * Called with the underlying object locked.
2307 */
2308int
2309bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2310{
2311	int error;
2312
2313	BO_LOCK(bo);
2314	if (flags & V_SAVE) {
2315		error = bufobj_wwait(bo, slpflag, slptimeo);
2316		if (error) {
2317			BO_UNLOCK(bo);
2318			return (error);
2319		}
2320		if (bo->bo_dirty.bv_cnt > 0) {
2321			BO_UNLOCK(bo);
2322			do {
2323				error = BO_SYNC(bo, MNT_WAIT);
2324			} while (error == ERELOOKUP);
2325			if (error != 0)
2326				return (error);
2327			BO_LOCK(bo);
2328			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2329				BO_UNLOCK(bo);
2330				return (EBUSY);
2331			}
2332		}
2333	}
2334	/*
2335	 * If you alter this loop please notice that interlock is dropped and
2336	 * reacquired in flushbuflist.  Special care is needed to ensure that
2337	 * no race conditions occur from this.
2338	 */
2339	do {
2340		error = flushbuflist(&bo->bo_clean,
2341		    flags, bo, slpflag, slptimeo);
2342		if (error == 0 && !(flags & V_CLEANONLY))
2343			error = flushbuflist(&bo->bo_dirty,
2344			    flags, bo, slpflag, slptimeo);
2345		if (error != 0 && error != EAGAIN) {
2346			BO_UNLOCK(bo);
2347			return (error);
2348		}
2349	} while (error != 0);
2350
2351	/*
2352	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2353	 * have write I/O in-progress but if there is a VM object then the
2354	 * VM object can also have read-I/O in-progress.
2355	 */
2356	do {
2357		bufobj_wwait(bo, 0, 0);
2358		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2359			BO_UNLOCK(bo);
2360			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2361			BO_LOCK(bo);
2362		}
2363	} while (bo->bo_numoutput > 0);
2364	BO_UNLOCK(bo);
2365
2366	/*
2367	 * Destroy the copy in the VM cache, too.
2368	 */
2369	if (bo->bo_object != NULL &&
2370	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2371		VM_OBJECT_WLOCK(bo->bo_object);
2372		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2373		    OBJPR_CLEANONLY : 0);
2374		VM_OBJECT_WUNLOCK(bo->bo_object);
2375	}
2376
2377#ifdef INVARIANTS
2378	BO_LOCK(bo);
2379	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2380	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2381	    bo->bo_clean.bv_cnt > 0))
2382		panic("vinvalbuf: flush failed");
2383	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2384	    bo->bo_dirty.bv_cnt > 0)
2385		panic("vinvalbuf: flush dirty failed");
2386	BO_UNLOCK(bo);
2387#endif
2388	return (0);
2389}
2390
2391/*
2392 * Flush out and invalidate all buffers associated with a vnode.
2393 * Called with the underlying object locked.
2394 */
2395int
2396vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2397{
2398
2399	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2400	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2401	if (vp->v_object != NULL && vp->v_object->handle != vp)
2402		return (0);
2403	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2404}
2405
2406/*
2407 * Flush out buffers on the specified list.
2408 *
2409 */
2410static int
2411flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2412    int slptimeo)
2413{
2414	struct buf *bp, *nbp;
2415	int retval, error;
2416	daddr_t lblkno;
2417	b_xflags_t xflags;
2418
2419	ASSERT_BO_WLOCKED(bo);
2420
2421	retval = 0;
2422	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2423		/*
2424		 * If we are flushing both V_NORMAL and V_ALT buffers then
2425		 * do not skip any buffers. If we are flushing only V_NORMAL
2426		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2427		 * flushing only V_ALT buffers then skip buffers not marked
2428		 * as BX_ALTDATA.
2429		 */
2430		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2431		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2432		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2433			continue;
2434		}
2435		if (nbp != NULL) {
2436			lblkno = nbp->b_lblkno;
2437			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2438		}
2439		retval = EAGAIN;
2440		error = BUF_TIMELOCK(bp,
2441		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2442		    "flushbuf", slpflag, slptimeo);
2443		if (error) {
2444			BO_LOCK(bo);
2445			return (error != ENOLCK ? error : EAGAIN);
2446		}
2447		KASSERT(bp->b_bufobj == bo,
2448		    ("bp %p wrong b_bufobj %p should be %p",
2449		    bp, bp->b_bufobj, bo));
2450		/*
2451		 * XXX Since there are no node locks for NFS, I
2452		 * believe there is a slight chance that a delayed
2453		 * write will occur while sleeping just above, so
2454		 * check for it.
2455		 */
2456		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2457		    (flags & V_SAVE)) {
2458			bremfree(bp);
2459			bp->b_flags |= B_ASYNC;
2460			bwrite(bp);
2461			BO_LOCK(bo);
2462			return (EAGAIN);	/* XXX: why not loop ? */
2463		}
2464		bremfree(bp);
2465		bp->b_flags |= (B_INVAL | B_RELBUF);
2466		bp->b_flags &= ~B_ASYNC;
2467		brelse(bp);
2468		BO_LOCK(bo);
2469		if (nbp == NULL)
2470			break;
2471		nbp = gbincore(bo, lblkno);
2472		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2473		    != xflags)
2474			break;			/* nbp invalid */
2475	}
2476	return (retval);
2477}
2478
2479int
2480bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2481{
2482	struct buf *bp;
2483	int error;
2484	daddr_t lblkno;
2485
2486	ASSERT_BO_LOCKED(bo);
2487
2488	for (lblkno = startn;;) {
2489again:
2490		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2491		if (bp == NULL || bp->b_lblkno >= endn ||
2492		    bp->b_lblkno < startn)
2493			break;
2494		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2495		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2496		if (error != 0) {
2497			BO_RLOCK(bo);
2498			if (error == ENOLCK)
2499				goto again;
2500			return (error);
2501		}
2502		KASSERT(bp->b_bufobj == bo,
2503		    ("bp %p wrong b_bufobj %p should be %p",
2504		    bp, bp->b_bufobj, bo));
2505		lblkno = bp->b_lblkno + 1;
2506		if ((bp->b_flags & B_MANAGED) == 0)
2507			bremfree(bp);
2508		bp->b_flags |= B_RELBUF;
2509		/*
2510		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2511		 * pages backing each buffer in the range are unlikely to be
2512		 * reused.  Dirty buffers will have the hint applied once
2513		 * they've been written.
2514		 */
2515		if ((bp->b_flags & B_VMIO) != 0)
2516			bp->b_flags |= B_NOREUSE;
2517		brelse(bp);
2518		BO_RLOCK(bo);
2519	}
2520	return (0);
2521}
2522
2523/*
2524 * Truncate a file's buffer and pages to a specified length.  This
2525 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2526 * sync activity.
2527 */
2528int
2529vtruncbuf(struct vnode *vp, off_t length, int blksize)
2530{
2531	struct buf *bp, *nbp;
2532	struct bufobj *bo;
2533	daddr_t startlbn;
2534
2535	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2536	    vp, blksize, (uintmax_t)length);
2537
2538	/*
2539	 * Round up to the *next* lbn.
2540	 */
2541	startlbn = howmany(length, blksize);
2542
2543	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2544
2545	bo = &vp->v_bufobj;
2546restart_unlocked:
2547	BO_LOCK(bo);
2548
2549	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2550		;
2551
2552	if (length > 0) {
2553		/*
2554		 * Write out vnode metadata, e.g. indirect blocks.
2555		 */
2556restartsync:
2557		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2558			if (bp->b_lblkno >= 0)
2559				continue;
2560			/*
2561			 * Since we hold the vnode lock this should only
2562			 * fail if we're racing with the buf daemon.
2563			 */
2564			if (BUF_LOCK(bp,
2565			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2566			    BO_LOCKPTR(bo)) == ENOLCK)
2567				goto restart_unlocked;
2568
2569			VNASSERT((bp->b_flags & B_DELWRI), vp,
2570			    ("buf(%p) on dirty queue without DELWRI", bp));
2571
2572			bremfree(bp);
2573			bawrite(bp);
2574			BO_LOCK(bo);
2575			goto restartsync;
2576		}
2577	}
2578
2579	bufobj_wwait(bo, 0, 0);
2580	BO_UNLOCK(bo);
2581	vnode_pager_setsize(vp, length);
2582
2583	return (0);
2584}
2585
2586/*
2587 * Invalidate the cached pages of a file's buffer within the range of block
2588 * numbers [startlbn, endlbn).
2589 */
2590void
2591v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2592    int blksize)
2593{
2594	struct bufobj *bo;
2595	off_t start, end;
2596
2597	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2598
2599	start = blksize * startlbn;
2600	end = blksize * endlbn;
2601
2602	bo = &vp->v_bufobj;
2603	BO_LOCK(bo);
2604	MPASS(blksize == bo->bo_bsize);
2605
2606	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2607		;
2608
2609	BO_UNLOCK(bo);
2610	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2611}
2612
2613static int
2614v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2615    daddr_t startlbn, daddr_t endlbn)
2616{
2617	struct buf *bp, *nbp;
2618	bool anyfreed;
2619
2620	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2621	ASSERT_BO_LOCKED(bo);
2622
2623	do {
2624		anyfreed = false;
2625		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2626			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2627				continue;
2628			if (BUF_LOCK(bp,
2629			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2630			    BO_LOCKPTR(bo)) == ENOLCK) {
2631				BO_LOCK(bo);
2632				return (EAGAIN);
2633			}
2634
2635			bremfree(bp);
2636			bp->b_flags |= B_INVAL | B_RELBUF;
2637			bp->b_flags &= ~B_ASYNC;
2638			brelse(bp);
2639			anyfreed = true;
2640
2641			BO_LOCK(bo);
2642			if (nbp != NULL &&
2643			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2644			    nbp->b_vp != vp ||
2645			    (nbp->b_flags & B_DELWRI) != 0))
2646				return (EAGAIN);
2647		}
2648
2649		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2650			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2651				continue;
2652			if (BUF_LOCK(bp,
2653			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2654			    BO_LOCKPTR(bo)) == ENOLCK) {
2655				BO_LOCK(bo);
2656				return (EAGAIN);
2657			}
2658			bremfree(bp);
2659			bp->b_flags |= B_INVAL | B_RELBUF;
2660			bp->b_flags &= ~B_ASYNC;
2661			brelse(bp);
2662			anyfreed = true;
2663
2664			BO_LOCK(bo);
2665			if (nbp != NULL &&
2666			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2667			    (nbp->b_vp != vp) ||
2668			    (nbp->b_flags & B_DELWRI) == 0))
2669				return (EAGAIN);
2670		}
2671	} while (anyfreed);
2672	return (0);
2673}
2674
2675static void
2676buf_vlist_remove(struct buf *bp)
2677{
2678	struct bufv *bv;
2679	b_xflags_t flags;
2680
2681	flags = bp->b_xflags;
2682
2683	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2684	ASSERT_BO_WLOCKED(bp->b_bufobj);
2685	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2686	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2687	    ("%s: buffer %p has invalid queue state", __func__, bp));
2688
2689	if ((flags & BX_VNDIRTY) != 0)
2690		bv = &bp->b_bufobj->bo_dirty;
2691	else
2692		bv = &bp->b_bufobj->bo_clean;
2693	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2694	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2695	bv->bv_cnt--;
2696	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2697}
2698
2699/*
2700 * Add the buffer to the sorted clean or dirty block list.  Return zero on
2701 * success, EEXIST if a buffer with this identity already exists, or another
2702 * error on allocation failure.
2703 */
2704static inline int
2705buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2706{
2707	struct bufv *bv;
2708	struct buf *n;
2709	int error;
2710
2711	ASSERT_BO_WLOCKED(bo);
2712	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2713	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2714	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2715	    ("dead bo %p", bo));
2716	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2717	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2718
2719	if (xflags & BX_VNDIRTY)
2720		bv = &bo->bo_dirty;
2721	else
2722		bv = &bo->bo_clean;
2723
2724	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, &n);
2725	if (n == NULL) {
2726		KASSERT(error != EEXIST,
2727		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2728		    bp));
2729	} else {
2730		KASSERT((uint64_t)n->b_lblkno <= (uint64_t)bp->b_lblkno,
2731		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2732		    bp, n));
2733		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2734		    ("buf_vlist_add: inconsistent result for existing buf: "
2735		    "error %d bp %p n %p", error, bp, n));
2736	}
2737	if (error != 0)
2738		return (error);
2739
2740	/* Keep the list ordered. */
2741	if (n == NULL) {
2742		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2743		    (uint64_t)bp->b_lblkno <
2744		    (uint64_t)TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2745		    ("buf_vlist_add: queue order: "
2746		    "%p should be before first %p",
2747		    bp, TAILQ_FIRST(&bv->bv_hd)));
2748		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2749	} else {
2750		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2751		    (uint64_t)bp->b_lblkno <
2752		    (uint64_t)TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2753		    ("buf_vlist_add: queue order: "
2754		    "%p should be before next %p",
2755		    bp, TAILQ_NEXT(n, b_bobufs)));
2756		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2757	}
2758
2759	bv->bv_cnt++;
2760	return (0);
2761}
2762
2763/*
2764 * Add the buffer to the sorted clean or dirty block list.
2765 *
2766 * NOTE: xflags is passed as a constant, optimizing this inline function!
2767 */
2768static void
2769buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2770{
2771	int error;
2772
2773	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2774	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2775	bp->b_xflags |= xflags;
2776	error = buf_vlist_find_or_add(bp, bo, xflags);
2777	if (error)
2778		panic("buf_vlist_add: error=%d", error);
2779}
2780
2781/*
2782 * Look up a buffer using the buffer tries.
2783 */
2784struct buf *
2785gbincore(struct bufobj *bo, daddr_t lblkno)
2786{
2787	struct buf *bp;
2788
2789	ASSERT_BO_LOCKED(bo);
2790	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2791	if (bp != NULL)
2792		return (bp);
2793	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2794}
2795
2796/*
2797 * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2798 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2799 * stability of the result.  Like other lockless lookups, the found buf may
2800 * already be invalid by the time this function returns.
2801 */
2802struct buf *
2803gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2804{
2805	struct buf *bp;
2806
2807	ASSERT_BO_UNLOCKED(bo);
2808	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2809	if (bp != NULL)
2810		return (bp);
2811	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2812}
2813
2814/*
2815 * Associate a buffer with a vnode.
2816 */
2817int
2818bgetvp(struct vnode *vp, struct buf *bp)
2819{
2820	struct bufobj *bo;
2821	int error;
2822
2823	bo = &vp->v_bufobj;
2824	ASSERT_BO_UNLOCKED(bo);
2825	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2826
2827	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2828	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2829	    ("bgetvp: bp already attached! %p", bp));
2830
2831	/*
2832	 * Add the buf to the vnode's clean list unless we lost a race and find
2833	 * an existing buf in either dirty or clean.
2834	 */
2835	bp->b_vp = vp;
2836	bp->b_bufobj = bo;
2837	bp->b_xflags |= BX_VNCLEAN;
2838	error = EEXIST;
2839	BO_LOCK(bo);
2840	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2841		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2842	BO_UNLOCK(bo);
2843	if (__predict_true(error == 0)) {
2844		vhold(vp);
2845		return (0);
2846	}
2847	if (error != EEXIST)
2848		panic("bgetvp: buf_vlist_add error: %d", error);
2849	bp->b_vp = NULL;
2850	bp->b_bufobj = NULL;
2851	bp->b_xflags &= ~BX_VNCLEAN;
2852	return (error);
2853}
2854
2855/*
2856 * Disassociate a buffer from a vnode.
2857 */
2858void
2859brelvp(struct buf *bp)
2860{
2861	struct bufobj *bo;
2862	struct vnode *vp;
2863
2864	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2865	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2866
2867	/*
2868	 * Delete from old vnode list, if on one.
2869	 */
2870	vp = bp->b_vp;		/* XXX */
2871	bo = bp->b_bufobj;
2872	BO_LOCK(bo);
2873	buf_vlist_remove(bp);
2874	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2875		bo->bo_flag &= ~BO_ONWORKLST;
2876		mtx_lock(&sync_mtx);
2877		LIST_REMOVE(bo, bo_synclist);
2878		syncer_worklist_len--;
2879		mtx_unlock(&sync_mtx);
2880	}
2881	bp->b_vp = NULL;
2882	bp->b_bufobj = NULL;
2883	BO_UNLOCK(bo);
2884	vdrop(vp);
2885}
2886
2887/*
2888 * Add an item to the syncer work queue.
2889 */
2890static void
2891vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2892{
2893	int slot;
2894
2895	ASSERT_BO_WLOCKED(bo);
2896
2897	mtx_lock(&sync_mtx);
2898	if (bo->bo_flag & BO_ONWORKLST)
2899		LIST_REMOVE(bo, bo_synclist);
2900	else {
2901		bo->bo_flag |= BO_ONWORKLST;
2902		syncer_worklist_len++;
2903	}
2904
2905	if (delay > syncer_maxdelay - 2)
2906		delay = syncer_maxdelay - 2;
2907	slot = (syncer_delayno + delay) & syncer_mask;
2908
2909	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2910	mtx_unlock(&sync_mtx);
2911}
2912
2913static int
2914sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2915{
2916	int error, len;
2917
2918	mtx_lock(&sync_mtx);
2919	len = syncer_worklist_len - sync_vnode_count;
2920	mtx_unlock(&sync_mtx);
2921	error = SYSCTL_OUT(req, &len, sizeof(len));
2922	return (error);
2923}
2924
2925SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2926    CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2927    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2928
2929static struct proc *updateproc;
2930static void sched_sync(void);
2931static struct kproc_desc up_kp = {
2932	"syncer",
2933	sched_sync,
2934	&updateproc
2935};
2936SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2937
2938static int
2939sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2940{
2941	struct vnode *vp;
2942	struct mount *mp;
2943
2944	*bo = LIST_FIRST(slp);
2945	if (*bo == NULL)
2946		return (0);
2947	vp = bo2vnode(*bo);
2948	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2949		return (1);
2950	/*
2951	 * We use vhold in case the vnode does not
2952	 * successfully sync.  vhold prevents the vnode from
2953	 * going away when we unlock the sync_mtx so that
2954	 * we can acquire the vnode interlock.
2955	 */
2956	vholdl(vp);
2957	mtx_unlock(&sync_mtx);
2958	VI_UNLOCK(vp);
2959	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2960		vdrop(vp);
2961		mtx_lock(&sync_mtx);
2962		return (*bo == LIST_FIRST(slp));
2963	}
2964	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2965	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2966	    ("suspended mp syncing vp %p", vp));
2967	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2968	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2969	VOP_UNLOCK(vp);
2970	vn_finished_write(mp);
2971	BO_LOCK(*bo);
2972	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2973		/*
2974		 * Put us back on the worklist.  The worklist
2975		 * routine will remove us from our current
2976		 * position and then add us back in at a later
2977		 * position.
2978		 */
2979		vn_syncer_add_to_worklist(*bo, syncdelay);
2980	}
2981	BO_UNLOCK(*bo);
2982	vdrop(vp);
2983	mtx_lock(&sync_mtx);
2984	return (0);
2985}
2986
2987static int first_printf = 1;
2988
2989/*
2990 * System filesystem synchronizer daemon.
2991 */
2992static void
2993sched_sync(void)
2994{
2995	struct synclist *next, *slp;
2996	struct bufobj *bo;
2997	long starttime;
2998	struct thread *td = curthread;
2999	int last_work_seen;
3000	int net_worklist_len;
3001	int syncer_final_iter;
3002	int error;
3003
3004	last_work_seen = 0;
3005	syncer_final_iter = 0;
3006	syncer_state = SYNCER_RUNNING;
3007	starttime = time_uptime;
3008	td->td_pflags |= TDP_NORUNNINGBUF;
3009
3010	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3011	    SHUTDOWN_PRI_LAST);
3012
3013	mtx_lock(&sync_mtx);
3014	for (;;) {
3015		if (syncer_state == SYNCER_FINAL_DELAY &&
3016		    syncer_final_iter == 0) {
3017			mtx_unlock(&sync_mtx);
3018			kproc_suspend_check(td->td_proc);
3019			mtx_lock(&sync_mtx);
3020		}
3021		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3022		if (syncer_state != SYNCER_RUNNING &&
3023		    starttime != time_uptime) {
3024			if (first_printf) {
3025				printf("\nSyncing disks, vnodes remaining... ");
3026				first_printf = 0;
3027			}
3028			printf("%d ", net_worklist_len);
3029		}
3030		starttime = time_uptime;
3031
3032		/*
3033		 * Push files whose dirty time has expired.  Be careful
3034		 * of interrupt race on slp queue.
3035		 *
3036		 * Skip over empty worklist slots when shutting down.
3037		 */
3038		do {
3039			slp = &syncer_workitem_pending[syncer_delayno];
3040			syncer_delayno += 1;
3041			if (syncer_delayno == syncer_maxdelay)
3042				syncer_delayno = 0;
3043			next = &syncer_workitem_pending[syncer_delayno];
3044			/*
3045			 * If the worklist has wrapped since the
3046			 * it was emptied of all but syncer vnodes,
3047			 * switch to the FINAL_DELAY state and run
3048			 * for one more second.
3049			 */
3050			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3051			    net_worklist_len == 0 &&
3052			    last_work_seen == syncer_delayno) {
3053				syncer_state = SYNCER_FINAL_DELAY;
3054				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3055			}
3056		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3057		    syncer_worklist_len > 0);
3058
3059		/*
3060		 * Keep track of the last time there was anything
3061		 * on the worklist other than syncer vnodes.
3062		 * Return to the SHUTTING_DOWN state if any
3063		 * new work appears.
3064		 */
3065		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3066			last_work_seen = syncer_delayno;
3067		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3068			syncer_state = SYNCER_SHUTTING_DOWN;
3069		while (!LIST_EMPTY(slp)) {
3070			error = sync_vnode(slp, &bo, td);
3071			if (error == 1) {
3072				LIST_REMOVE(bo, bo_synclist);
3073				LIST_INSERT_HEAD(next, bo, bo_synclist);
3074				continue;
3075			}
3076
3077			if (first_printf == 0) {
3078				/*
3079				 * Drop the sync mutex, because some watchdog
3080				 * drivers need to sleep while patting
3081				 */
3082				mtx_unlock(&sync_mtx);
3083				wdog_kern_pat(WD_LASTVAL);
3084				mtx_lock(&sync_mtx);
3085			}
3086		}
3087		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3088			syncer_final_iter--;
3089		/*
3090		 * The variable rushjob allows the kernel to speed up the
3091		 * processing of the filesystem syncer process. A rushjob
3092		 * value of N tells the filesystem syncer to process the next
3093		 * N seconds worth of work on its queue ASAP. Currently rushjob
3094		 * is used by the soft update code to speed up the filesystem
3095		 * syncer process when the incore state is getting so far
3096		 * ahead of the disk that the kernel memory pool is being
3097		 * threatened with exhaustion.
3098		 */
3099		if (rushjob > 0) {
3100			rushjob -= 1;
3101			continue;
3102		}
3103		/*
3104		 * Just sleep for a short period of time between
3105		 * iterations when shutting down to allow some I/O
3106		 * to happen.
3107		 *
3108		 * If it has taken us less than a second to process the
3109		 * current work, then wait. Otherwise start right over
3110		 * again. We can still lose time if any single round
3111		 * takes more than two seconds, but it does not really
3112		 * matter as we are just trying to generally pace the
3113		 * filesystem activity.
3114		 */
3115		if (syncer_state != SYNCER_RUNNING ||
3116		    time_uptime == starttime) {
3117			thread_lock(td);
3118			sched_prio(td, PPAUSE);
3119			thread_unlock(td);
3120		}
3121		if (syncer_state != SYNCER_RUNNING)
3122			cv_timedwait(&sync_wakeup, &sync_mtx,
3123			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3124		else if (time_uptime == starttime)
3125			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3126	}
3127}
3128
3129/*
3130 * Request the syncer daemon to speed up its work.
3131 * We never push it to speed up more than half of its
3132 * normal turn time, otherwise it could take over the cpu.
3133 */
3134int
3135speedup_syncer(void)
3136{
3137	int ret = 0;
3138
3139	mtx_lock(&sync_mtx);
3140	if (rushjob < syncdelay / 2) {
3141		rushjob += 1;
3142		stat_rush_requests += 1;
3143		ret = 1;
3144	}
3145	mtx_unlock(&sync_mtx);
3146	cv_broadcast(&sync_wakeup);
3147	return (ret);
3148}
3149
3150/*
3151 * Tell the syncer to speed up its work and run though its work
3152 * list several times, then tell it to shut down.
3153 */
3154static void
3155syncer_shutdown(void *arg, int howto)
3156{
3157
3158	if (howto & RB_NOSYNC)
3159		return;
3160	mtx_lock(&sync_mtx);
3161	syncer_state = SYNCER_SHUTTING_DOWN;
3162	rushjob = 0;
3163	mtx_unlock(&sync_mtx);
3164	cv_broadcast(&sync_wakeup);
3165	kproc_shutdown(arg, howto);
3166}
3167
3168void
3169syncer_suspend(void)
3170{
3171
3172	syncer_shutdown(updateproc, 0);
3173}
3174
3175void
3176syncer_resume(void)
3177{
3178
3179	mtx_lock(&sync_mtx);
3180	first_printf = 1;
3181	syncer_state = SYNCER_RUNNING;
3182	mtx_unlock(&sync_mtx);
3183	cv_broadcast(&sync_wakeup);
3184	kproc_resume(updateproc);
3185}
3186
3187/*
3188 * Move the buffer between the clean and dirty lists of its vnode.
3189 */
3190void
3191reassignbuf(struct buf *bp)
3192{
3193	struct vnode *vp;
3194	struct bufobj *bo;
3195	int delay;
3196#ifdef INVARIANTS
3197	struct bufv *bv;
3198#endif
3199
3200	vp = bp->b_vp;
3201	bo = bp->b_bufobj;
3202
3203	KASSERT((bp->b_flags & B_PAGING) == 0,
3204	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3205
3206	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3207	    bp, bp->b_vp, bp->b_flags);
3208
3209	BO_LOCK(bo);
3210	buf_vlist_remove(bp);
3211
3212	/*
3213	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3214	 * of clean buffers.
3215	 */
3216	if (bp->b_flags & B_DELWRI) {
3217		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3218			switch (vp->v_type) {
3219			case VDIR:
3220				delay = dirdelay;
3221				break;
3222			case VCHR:
3223				delay = metadelay;
3224				break;
3225			default:
3226				delay = filedelay;
3227			}
3228			vn_syncer_add_to_worklist(bo, delay);
3229		}
3230		buf_vlist_add(bp, bo, BX_VNDIRTY);
3231	} else {
3232		buf_vlist_add(bp, bo, BX_VNCLEAN);
3233
3234		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3235			mtx_lock(&sync_mtx);
3236			LIST_REMOVE(bo, bo_synclist);
3237			syncer_worklist_len--;
3238			mtx_unlock(&sync_mtx);
3239			bo->bo_flag &= ~BO_ONWORKLST;
3240		}
3241	}
3242#ifdef INVARIANTS
3243	bv = &bo->bo_clean;
3244	bp = TAILQ_FIRST(&bv->bv_hd);
3245	KASSERT(bp == NULL || bp->b_bufobj == bo,
3246	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3247	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3248	KASSERT(bp == NULL || bp->b_bufobj == bo,
3249	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3250	bv = &bo->bo_dirty;
3251	bp = TAILQ_FIRST(&bv->bv_hd);
3252	KASSERT(bp == NULL || bp->b_bufobj == bo,
3253	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3254	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3255	KASSERT(bp == NULL || bp->b_bufobj == bo,
3256	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3257#endif
3258	BO_UNLOCK(bo);
3259}
3260
3261static void
3262v_init_counters(struct vnode *vp)
3263{
3264
3265	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3266	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3267	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3268
3269	refcount_init(&vp->v_holdcnt, 1);
3270	refcount_init(&vp->v_usecount, 1);
3271}
3272
3273/*
3274 * Get a usecount on a vnode.
3275 *
3276 * vget and vget_finish may fail to lock the vnode if they lose a race against
3277 * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3278 *
3279 * Consumers which don't guarantee liveness of the vnode can use SMR to
3280 * try to get a reference. Note this operation can fail since the vnode
3281 * may be awaiting getting freed by the time they get to it.
3282 */
3283enum vgetstate
3284vget_prep_smr(struct vnode *vp)
3285{
3286	enum vgetstate vs;
3287
3288	VFS_SMR_ASSERT_ENTERED();
3289
3290	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3291		vs = VGET_USECOUNT;
3292	} else {
3293		if (vhold_smr(vp))
3294			vs = VGET_HOLDCNT;
3295		else
3296			vs = VGET_NONE;
3297	}
3298	return (vs);
3299}
3300
3301enum vgetstate
3302vget_prep(struct vnode *vp)
3303{
3304	enum vgetstate vs;
3305
3306	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3307		vs = VGET_USECOUNT;
3308	} else {
3309		vhold(vp);
3310		vs = VGET_HOLDCNT;
3311	}
3312	return (vs);
3313}
3314
3315void
3316vget_abort(struct vnode *vp, enum vgetstate vs)
3317{
3318
3319	switch (vs) {
3320	case VGET_USECOUNT:
3321		vrele(vp);
3322		break;
3323	case VGET_HOLDCNT:
3324		vdrop(vp);
3325		break;
3326	default:
3327		__assert_unreachable();
3328	}
3329}
3330
3331int
3332vget(struct vnode *vp, int flags)
3333{
3334	enum vgetstate vs;
3335
3336	vs = vget_prep(vp);
3337	return (vget_finish(vp, flags, vs));
3338}
3339
3340int
3341vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3342{
3343	int error;
3344
3345	if ((flags & LK_INTERLOCK) != 0)
3346		ASSERT_VI_LOCKED(vp, __func__);
3347	else
3348		ASSERT_VI_UNLOCKED(vp, __func__);
3349	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3350	VNPASS(vp->v_holdcnt > 0, vp);
3351	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3352
3353	error = vn_lock(vp, flags);
3354	if (__predict_false(error != 0)) {
3355		vget_abort(vp, vs);
3356		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3357		    vp);
3358		return (error);
3359	}
3360
3361	vget_finish_ref(vp, vs);
3362	return (0);
3363}
3364
3365void
3366vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3367{
3368	int old;
3369
3370	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3371	VNPASS(vp->v_holdcnt > 0, vp);
3372	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3373
3374	if (vs == VGET_USECOUNT)
3375		return;
3376
3377	/*
3378	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3379	 * the vnode around. Otherwise someone else lended their hold count and
3380	 * we have to drop ours.
3381	 */
3382	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3383	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3384	if (old != 0) {
3385#ifdef INVARIANTS
3386		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3387		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3388#else
3389		refcount_release(&vp->v_holdcnt);
3390#endif
3391	}
3392}
3393
3394void
3395vref(struct vnode *vp)
3396{
3397	enum vgetstate vs;
3398
3399	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3400	vs = vget_prep(vp);
3401	vget_finish_ref(vp, vs);
3402}
3403
3404void
3405vrefact(struct vnode *vp)
3406{
3407	int old __diagused;
3408
3409	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3410	old = refcount_acquire(&vp->v_usecount);
3411	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3412}
3413
3414void
3415vlazy(struct vnode *vp)
3416{
3417	struct mount *mp;
3418
3419	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3420
3421	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3422		return;
3423	/*
3424	 * We may get here for inactive routines after the vnode got doomed.
3425	 */
3426	if (VN_IS_DOOMED(vp))
3427		return;
3428	mp = vp->v_mount;
3429	mtx_lock(&mp->mnt_listmtx);
3430	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3431		vp->v_mflag |= VMP_LAZYLIST;
3432		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3433		mp->mnt_lazyvnodelistsize++;
3434	}
3435	mtx_unlock(&mp->mnt_listmtx);
3436}
3437
3438static void
3439vunlazy(struct vnode *vp)
3440{
3441	struct mount *mp;
3442
3443	ASSERT_VI_LOCKED(vp, __func__);
3444	VNPASS(!VN_IS_DOOMED(vp), vp);
3445
3446	mp = vp->v_mount;
3447	mtx_lock(&mp->mnt_listmtx);
3448	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3449	/*
3450	 * Don't remove the vnode from the lazy list if another thread
3451	 * has increased the hold count. It may have re-enqueued the
3452	 * vnode to the lazy list and is now responsible for its
3453	 * removal.
3454	 */
3455	if (vp->v_holdcnt == 0) {
3456		vp->v_mflag &= ~VMP_LAZYLIST;
3457		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3458		mp->mnt_lazyvnodelistsize--;
3459	}
3460	mtx_unlock(&mp->mnt_listmtx);
3461}
3462
3463/*
3464 * This routine is only meant to be called from vgonel prior to dooming
3465 * the vnode.
3466 */
3467static void
3468vunlazy_gone(struct vnode *vp)
3469{
3470	struct mount *mp;
3471
3472	ASSERT_VOP_ELOCKED(vp, __func__);
3473	ASSERT_VI_LOCKED(vp, __func__);
3474	VNPASS(!VN_IS_DOOMED(vp), vp);
3475
3476	if (vp->v_mflag & VMP_LAZYLIST) {
3477		mp = vp->v_mount;
3478		mtx_lock(&mp->mnt_listmtx);
3479		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3480		vp->v_mflag &= ~VMP_LAZYLIST;
3481		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3482		mp->mnt_lazyvnodelistsize--;
3483		mtx_unlock(&mp->mnt_listmtx);
3484	}
3485}
3486
3487static void
3488vdefer_inactive(struct vnode *vp)
3489{
3490
3491	ASSERT_VI_LOCKED(vp, __func__);
3492	VNPASS(vp->v_holdcnt > 0, vp);
3493	if (VN_IS_DOOMED(vp)) {
3494		vdropl(vp);
3495		return;
3496	}
3497	if (vp->v_iflag & VI_DEFINACT) {
3498		VNPASS(vp->v_holdcnt > 1, vp);
3499		vdropl(vp);
3500		return;
3501	}
3502	if (vp->v_usecount > 0) {
3503		vp->v_iflag &= ~VI_OWEINACT;
3504		vdropl(vp);
3505		return;
3506	}
3507	vlazy(vp);
3508	vp->v_iflag |= VI_DEFINACT;
3509	VI_UNLOCK(vp);
3510	atomic_add_long(&deferred_inact, 1);
3511}
3512
3513static void
3514vdefer_inactive_unlocked(struct vnode *vp)
3515{
3516
3517	VI_LOCK(vp);
3518	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3519		vdropl(vp);
3520		return;
3521	}
3522	vdefer_inactive(vp);
3523}
3524
3525enum vput_op { VRELE, VPUT, VUNREF };
3526
3527/*
3528 * Handle ->v_usecount transitioning to 0.
3529 *
3530 * By releasing the last usecount we take ownership of the hold count which
3531 * provides liveness of the vnode, meaning we have to vdrop.
3532 *
3533 * For all vnodes we may need to perform inactive processing. It requires an
3534 * exclusive lock on the vnode, while it is legal to call here with only a
3535 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3536 * inactive processing gets deferred to the syncer.
3537 *
3538 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3539 * on the lock being held all the way until VOP_INACTIVE. This in particular
3540 * happens with UFS which adds half-constructed vnodes to the hash, where they
3541 * can be found by other code.
3542 */
3543static void
3544vput_final(struct vnode *vp, enum vput_op func)
3545{
3546	int error;
3547	bool want_unlock;
3548
3549	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3550	VNPASS(vp->v_holdcnt > 0, vp);
3551
3552	VI_LOCK(vp);
3553
3554	/*
3555	 * By the time we got here someone else might have transitioned
3556	 * the count back to > 0.
3557	 */
3558	if (vp->v_usecount > 0)
3559		goto out;
3560
3561	/*
3562	 * If the vnode is doomed vgone already performed inactive processing
3563	 * (if needed).
3564	 */
3565	if (VN_IS_DOOMED(vp))
3566		goto out;
3567
3568	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3569		goto out;
3570
3571	if (vp->v_iflag & VI_DOINGINACT)
3572		goto out;
3573
3574	/*
3575	 * Locking operations here will drop the interlock and possibly the
3576	 * vnode lock, opening a window where the vnode can get doomed all the
3577	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3578	 * perform inactive.
3579	 */
3580	vp->v_iflag |= VI_OWEINACT;
3581	want_unlock = false;
3582	error = 0;
3583	switch (func) {
3584	case VRELE:
3585		switch (VOP_ISLOCKED(vp)) {
3586		case LK_EXCLUSIVE:
3587			break;
3588		case LK_EXCLOTHER:
3589		case 0:
3590			want_unlock = true;
3591			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3592			VI_LOCK(vp);
3593			break;
3594		default:
3595			/*
3596			 * The lock has at least one sharer, but we have no way
3597			 * to conclude whether this is us. Play it safe and
3598			 * defer processing.
3599			 */
3600			error = EAGAIN;
3601			break;
3602		}
3603		break;
3604	case VPUT:
3605		want_unlock = true;
3606		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3607			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3608			    LK_NOWAIT);
3609			VI_LOCK(vp);
3610		}
3611		break;
3612	case VUNREF:
3613		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3614			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3615			VI_LOCK(vp);
3616		}
3617		break;
3618	}
3619	if (error == 0) {
3620		if (func == VUNREF) {
3621			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3622			    ("recursive vunref"));
3623			vp->v_vflag |= VV_UNREF;
3624		}
3625		for (;;) {
3626			error = vinactive(vp);
3627			if (want_unlock)
3628				VOP_UNLOCK(vp);
3629			if (error != ERELOOKUP || !want_unlock)
3630				break;
3631			VOP_LOCK(vp, LK_EXCLUSIVE);
3632		}
3633		if (func == VUNREF)
3634			vp->v_vflag &= ~VV_UNREF;
3635		vdropl(vp);
3636	} else {
3637		vdefer_inactive(vp);
3638	}
3639	return;
3640out:
3641	if (func == VPUT)
3642		VOP_UNLOCK(vp);
3643	vdropl(vp);
3644}
3645
3646/*
3647 * Decrement ->v_usecount for a vnode.
3648 *
3649 * Releasing the last use count requires additional processing, see vput_final
3650 * above for details.
3651 *
3652 * Comment above each variant denotes lock state on entry and exit.
3653 */
3654
3655/*
3656 * in: any
3657 * out: same as passed in
3658 */
3659void
3660vrele(struct vnode *vp)
3661{
3662
3663	ASSERT_VI_UNLOCKED(vp, __func__);
3664	if (!refcount_release(&vp->v_usecount))
3665		return;
3666	vput_final(vp, VRELE);
3667}
3668
3669/*
3670 * in: locked
3671 * out: unlocked
3672 */
3673void
3674vput(struct vnode *vp)
3675{
3676
3677	ASSERT_VOP_LOCKED(vp, __func__);
3678	ASSERT_VI_UNLOCKED(vp, __func__);
3679	if (!refcount_release(&vp->v_usecount)) {
3680		VOP_UNLOCK(vp);
3681		return;
3682	}
3683	vput_final(vp, VPUT);
3684}
3685
3686/*
3687 * in: locked
3688 * out: locked
3689 */
3690void
3691vunref(struct vnode *vp)
3692{
3693
3694	ASSERT_VOP_LOCKED(vp, __func__);
3695	ASSERT_VI_UNLOCKED(vp, __func__);
3696	if (!refcount_release(&vp->v_usecount))
3697		return;
3698	vput_final(vp, VUNREF);
3699}
3700
3701void
3702vhold(struct vnode *vp)
3703{
3704	int old;
3705
3706	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3707	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3708	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3709	    ("%s: wrong hold count %d", __func__, old));
3710	if (old == 0)
3711		vfs_freevnodes_dec();
3712}
3713
3714void
3715vholdnz(struct vnode *vp)
3716{
3717
3718	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3719#ifdef INVARIANTS
3720	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3721	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3722	    ("%s: wrong hold count %d", __func__, old));
3723#else
3724	atomic_add_int(&vp->v_holdcnt, 1);
3725#endif
3726}
3727
3728/*
3729 * Grab a hold count unless the vnode is freed.
3730 *
3731 * Only use this routine if vfs smr is the only protection you have against
3732 * freeing the vnode.
3733 *
3734 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3735 * is not set.  After the flag is set the vnode becomes immutable to anyone but
3736 * the thread which managed to set the flag.
3737 *
3738 * It may be tempting to replace the loop with:
3739 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3740 * if (count & VHOLD_NO_SMR) {
3741 *     backpedal and error out;
3742 * }
3743 *
3744 * However, while this is more performant, it hinders debugging by eliminating
3745 * the previously mentioned invariant.
3746 */
3747bool
3748vhold_smr(struct vnode *vp)
3749{
3750	int count;
3751
3752	VFS_SMR_ASSERT_ENTERED();
3753
3754	count = atomic_load_int(&vp->v_holdcnt);
3755	for (;;) {
3756		if (count & VHOLD_NO_SMR) {
3757			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3758			    ("non-zero hold count with flags %d\n", count));
3759			return (false);
3760		}
3761		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3762		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3763			if (count == 0)
3764				vfs_freevnodes_dec();
3765			return (true);
3766		}
3767	}
3768}
3769
3770/*
3771 * Hold a free vnode for recycling.
3772 *
3773 * Note: vnode_init references this comment.
3774 *
3775 * Attempts to recycle only need the global vnode list lock and have no use for
3776 * SMR.
3777 *
3778 * However, vnodes get inserted into the global list before they get fully
3779 * initialized and stay there until UMA decides to free the memory. This in
3780 * particular means the target can be found before it becomes usable and after
3781 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3782 * VHOLD_NO_SMR.
3783 *
3784 * Note: the vnode may gain more references after we transition the count 0->1.
3785 */
3786static bool
3787vhold_recycle_free(struct vnode *vp)
3788{
3789	int count;
3790
3791	mtx_assert(&vnode_list_mtx, MA_OWNED);
3792
3793	count = atomic_load_int(&vp->v_holdcnt);
3794	for (;;) {
3795		if (count & VHOLD_NO_SMR) {
3796			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3797			    ("non-zero hold count with flags %d\n", count));
3798			return (false);
3799		}
3800		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3801		if (count > 0) {
3802			return (false);
3803		}
3804		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3805			vfs_freevnodes_dec();
3806			return (true);
3807		}
3808	}
3809}
3810
3811static void __noinline
3812vdbatch_process(struct vdbatch *vd)
3813{
3814	struct vnode *vp;
3815	int i;
3816
3817	mtx_assert(&vd->lock, MA_OWNED);
3818	MPASS(curthread->td_pinned > 0);
3819	MPASS(vd->index == VDBATCH_SIZE);
3820
3821	/*
3822	 * Attempt to requeue the passed batch, but give up easily.
3823	 *
3824	 * Despite batching the mechanism is prone to transient *significant*
3825	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3826	 * if multiple CPUs get here (one real-world example is highly parallel
3827	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3828	 * quasi-LRU (read: not that great even if fully honoured) just dodge
3829	 * the problem. Parties which don't like it are welcome to implement
3830	 * something better.
3831	 */
3832	critical_enter();
3833	if (mtx_trylock(&vnode_list_mtx)) {
3834		for (i = 0; i < VDBATCH_SIZE; i++) {
3835			vp = vd->tab[i];
3836			vd->tab[i] = NULL;
3837			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3838			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3839			MPASS(vp->v_dbatchcpu != NOCPU);
3840			vp->v_dbatchcpu = NOCPU;
3841		}
3842		mtx_unlock(&vnode_list_mtx);
3843	} else {
3844		counter_u64_add(vnode_skipped_requeues, 1);
3845
3846		for (i = 0; i < VDBATCH_SIZE; i++) {
3847			vp = vd->tab[i];
3848			vd->tab[i] = NULL;
3849			MPASS(vp->v_dbatchcpu != NOCPU);
3850			vp->v_dbatchcpu = NOCPU;
3851		}
3852	}
3853	vd->index = 0;
3854	critical_exit();
3855}
3856
3857static void
3858vdbatch_enqueue(struct vnode *vp)
3859{
3860	struct vdbatch *vd;
3861
3862	ASSERT_VI_LOCKED(vp, __func__);
3863	VNPASS(!VN_IS_DOOMED(vp), vp);
3864
3865	if (vp->v_dbatchcpu != NOCPU) {
3866		VI_UNLOCK(vp);
3867		return;
3868	}
3869
3870	sched_pin();
3871	vd = DPCPU_PTR(vd);
3872	mtx_lock(&vd->lock);
3873	MPASS(vd->index < VDBATCH_SIZE);
3874	MPASS(vd->tab[vd->index] == NULL);
3875	/*
3876	 * A hack: we depend on being pinned so that we know what to put in
3877	 * ->v_dbatchcpu.
3878	 */
3879	vp->v_dbatchcpu = curcpu;
3880	vd->tab[vd->index] = vp;
3881	vd->index++;
3882	VI_UNLOCK(vp);
3883	if (vd->index == VDBATCH_SIZE)
3884		vdbatch_process(vd);
3885	mtx_unlock(&vd->lock);
3886	sched_unpin();
3887}
3888
3889/*
3890 * This routine must only be called for vnodes which are about to be
3891 * deallocated. Supporting dequeue for arbitrary vndoes would require
3892 * validating that the locked batch matches.
3893 */
3894static void
3895vdbatch_dequeue(struct vnode *vp)
3896{
3897	struct vdbatch *vd;
3898	int i;
3899	short cpu;
3900
3901	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3902
3903	cpu = vp->v_dbatchcpu;
3904	if (cpu == NOCPU)
3905		return;
3906
3907	vd = DPCPU_ID_PTR(cpu, vd);
3908	mtx_lock(&vd->lock);
3909	for (i = 0; i < vd->index; i++) {
3910		if (vd->tab[i] != vp)
3911			continue;
3912		vp->v_dbatchcpu = NOCPU;
3913		vd->index--;
3914		vd->tab[i] = vd->tab[vd->index];
3915		vd->tab[vd->index] = NULL;
3916		break;
3917	}
3918	mtx_unlock(&vd->lock);
3919	/*
3920	 * Either we dequeued the vnode above or the target CPU beat us to it.
3921	 */
3922	MPASS(vp->v_dbatchcpu == NOCPU);
3923}
3924
3925/*
3926 * Drop the hold count of the vnode.
3927 *
3928 * It will only get freed if this is the last hold *and* it has been vgone'd.
3929 *
3930 * Because the vnode vm object keeps a hold reference on the vnode if
3931 * there is at least one resident non-cached page, the vnode cannot
3932 * leave the active list without the page cleanup done.
3933 */
3934static void __noinline
3935vdropl_final(struct vnode *vp)
3936{
3937
3938	ASSERT_VI_LOCKED(vp, __func__);
3939	VNPASS(VN_IS_DOOMED(vp), vp);
3940	/*
3941	 * Set the VHOLD_NO_SMR flag.
3942	 *
3943	 * We may be racing against vhold_smr. If they win we can just pretend
3944	 * we never got this far, they will vdrop later.
3945	 */
3946	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3947		vfs_freevnodes_inc();
3948		VI_UNLOCK(vp);
3949		/*
3950		 * We lost the aforementioned race. Any subsequent access is
3951		 * invalid as they might have managed to vdropl on their own.
3952		 */
3953		return;
3954	}
3955	/*
3956	 * Don't bump freevnodes as this one is going away.
3957	 */
3958	freevnode(vp);
3959}
3960
3961void
3962vdrop(struct vnode *vp)
3963{
3964
3965	ASSERT_VI_UNLOCKED(vp, __func__);
3966	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3967	if (refcount_release_if_not_last(&vp->v_holdcnt))
3968		return;
3969	VI_LOCK(vp);
3970	vdropl(vp);
3971}
3972
3973static void __always_inline
3974vdropl_impl(struct vnode *vp, bool enqueue)
3975{
3976
3977	ASSERT_VI_LOCKED(vp, __func__);
3978	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3979	if (!refcount_release(&vp->v_holdcnt)) {
3980		VI_UNLOCK(vp);
3981		return;
3982	}
3983	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3984	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3985	if (VN_IS_DOOMED(vp)) {
3986		vdropl_final(vp);
3987		return;
3988	}
3989
3990	vfs_freevnodes_inc();
3991	if (vp->v_mflag & VMP_LAZYLIST) {
3992		vunlazy(vp);
3993	}
3994
3995	if (!enqueue) {
3996		VI_UNLOCK(vp);
3997		return;
3998	}
3999
4000	/*
4001	 * Also unlocks the interlock. We can't assert on it as we
4002	 * released our hold and by now the vnode might have been
4003	 * freed.
4004	 */
4005	vdbatch_enqueue(vp);
4006}
4007
4008void
4009vdropl(struct vnode *vp)
4010{
4011
4012	vdropl_impl(vp, true);
4013}
4014
4015/*
4016 * vdrop a vnode when recycling
4017 *
4018 * This is a special case routine only to be used when recycling, differs from
4019 * regular vdrop by not requeieing the vnode on LRU.
4020 *
4021 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4022 * e.g., frozen writes on the filesystem), filling the batch and causing it to
4023 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4024 * loop which can last for as long as writes are frozen.
4025 */
4026static void
4027vdropl_recycle(struct vnode *vp)
4028{
4029
4030	vdropl_impl(vp, false);
4031}
4032
4033static void
4034vdrop_recycle(struct vnode *vp)
4035{
4036
4037	VI_LOCK(vp);
4038	vdropl_recycle(vp);
4039}
4040
4041/*
4042 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4043 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4044 */
4045static int
4046vinactivef(struct vnode *vp)
4047{
4048	int error;
4049
4050	ASSERT_VOP_ELOCKED(vp, "vinactive");
4051	ASSERT_VI_LOCKED(vp, "vinactive");
4052	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4053	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4054	vp->v_iflag |= VI_DOINGINACT;
4055	vp->v_iflag &= ~VI_OWEINACT;
4056	VI_UNLOCK(vp);
4057
4058	/*
4059	 * Before moving off the active list, we must be sure that any
4060	 * modified pages are converted into the vnode's dirty
4061	 * buffers, since these will no longer be checked once the
4062	 * vnode is on the inactive list.
4063	 *
4064	 * The write-out of the dirty pages is asynchronous.  At the
4065	 * point that VOP_INACTIVE() is called, there could still be
4066	 * pending I/O and dirty pages in the object.
4067	 */
4068	if ((vp->v_vflag & VV_NOSYNC) == 0)
4069		vnode_pager_clean_async(vp);
4070
4071	error = VOP_INACTIVE(vp);
4072	VI_LOCK(vp);
4073	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4074	vp->v_iflag &= ~VI_DOINGINACT;
4075	return (error);
4076}
4077
4078int
4079vinactive(struct vnode *vp)
4080{
4081
4082	ASSERT_VOP_ELOCKED(vp, "vinactive");
4083	ASSERT_VI_LOCKED(vp, "vinactive");
4084	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4085
4086	if ((vp->v_iflag & VI_OWEINACT) == 0)
4087		return (0);
4088	if (vp->v_iflag & VI_DOINGINACT)
4089		return (0);
4090	if (vp->v_usecount > 0) {
4091		vp->v_iflag &= ~VI_OWEINACT;
4092		return (0);
4093	}
4094	return (vinactivef(vp));
4095}
4096
4097/*
4098 * Remove any vnodes in the vnode table belonging to mount point mp.
4099 *
4100 * If FORCECLOSE is not specified, there should not be any active ones,
4101 * return error if any are found (nb: this is a user error, not a
4102 * system error). If FORCECLOSE is specified, detach any active vnodes
4103 * that are found.
4104 *
4105 * If WRITECLOSE is set, only flush out regular file vnodes open for
4106 * writing.
4107 *
4108 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4109 *
4110 * `rootrefs' specifies the base reference count for the root vnode
4111 * of this filesystem. The root vnode is considered busy if its
4112 * v_usecount exceeds this value. On a successful return, vflush(, td)
4113 * will call vrele() on the root vnode exactly rootrefs times.
4114 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4115 * be zero.
4116 */
4117#ifdef DIAGNOSTIC
4118static int busyprt = 0;		/* print out busy vnodes */
4119SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4120#endif
4121
4122int
4123vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4124{
4125	struct vnode *vp, *mvp, *rootvp = NULL;
4126	struct vattr vattr;
4127	int busy = 0, error;
4128
4129	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4130	    rootrefs, flags);
4131	if (rootrefs > 0) {
4132		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4133		    ("vflush: bad args"));
4134		/*
4135		 * Get the filesystem root vnode. We can vput() it
4136		 * immediately, since with rootrefs > 0, it won't go away.
4137		 */
4138		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4139			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4140			    __func__, error);
4141			return (error);
4142		}
4143		vput(rootvp);
4144	}
4145loop:
4146	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4147		vholdl(vp);
4148		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4149		if (error) {
4150			vdrop(vp);
4151			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4152			goto loop;
4153		}
4154		/*
4155		 * Skip over a vnodes marked VV_SYSTEM.
4156		 */
4157		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4158			VOP_UNLOCK(vp);
4159			vdrop(vp);
4160			continue;
4161		}
4162		/*
4163		 * If WRITECLOSE is set, flush out unlinked but still open
4164		 * files (even if open only for reading) and regular file
4165		 * vnodes open for writing.
4166		 */
4167		if (flags & WRITECLOSE) {
4168			vnode_pager_clean_async(vp);
4169			do {
4170				error = VOP_FSYNC(vp, MNT_WAIT, td);
4171			} while (error == ERELOOKUP);
4172			if (error != 0) {
4173				VOP_UNLOCK(vp);
4174				vdrop(vp);
4175				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4176				return (error);
4177			}
4178			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4179			VI_LOCK(vp);
4180
4181			if ((vp->v_type == VNON ||
4182			    (error == 0 && vattr.va_nlink > 0)) &&
4183			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4184				VOP_UNLOCK(vp);
4185				vdropl(vp);
4186				continue;
4187			}
4188		} else
4189			VI_LOCK(vp);
4190		/*
4191		 * With v_usecount == 0, all we need to do is clear out the
4192		 * vnode data structures and we are done.
4193		 *
4194		 * If FORCECLOSE is set, forcibly close the vnode.
4195		 */
4196		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4197			vgonel(vp);
4198		} else {
4199			busy++;
4200#ifdef DIAGNOSTIC
4201			if (busyprt)
4202				vn_printf(vp, "vflush: busy vnode ");
4203#endif
4204		}
4205		VOP_UNLOCK(vp);
4206		vdropl(vp);
4207	}
4208	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4209		/*
4210		 * If just the root vnode is busy, and if its refcount
4211		 * is equal to `rootrefs', then go ahead and kill it.
4212		 */
4213		VI_LOCK(rootvp);
4214		KASSERT(busy > 0, ("vflush: not busy"));
4215		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4216		    ("vflush: usecount %d < rootrefs %d",
4217		     rootvp->v_usecount, rootrefs));
4218		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4219			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4220			vgone(rootvp);
4221			VOP_UNLOCK(rootvp);
4222			busy = 0;
4223		} else
4224			VI_UNLOCK(rootvp);
4225	}
4226	if (busy) {
4227		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4228		    busy);
4229		return (EBUSY);
4230	}
4231	for (; rootrefs > 0; rootrefs--)
4232		vrele(rootvp);
4233	return (0);
4234}
4235
4236/*
4237 * Recycle an unused vnode.
4238 */
4239int
4240vrecycle(struct vnode *vp)
4241{
4242	int recycled;
4243
4244	VI_LOCK(vp);
4245	recycled = vrecyclel(vp);
4246	VI_UNLOCK(vp);
4247	return (recycled);
4248}
4249
4250/*
4251 * vrecycle, with the vp interlock held.
4252 */
4253int
4254vrecyclel(struct vnode *vp)
4255{
4256	int recycled;
4257
4258	ASSERT_VOP_ELOCKED(vp, __func__);
4259	ASSERT_VI_LOCKED(vp, __func__);
4260	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4261	recycled = 0;
4262	if (vp->v_usecount == 0) {
4263		recycled = 1;
4264		vgonel(vp);
4265	}
4266	return (recycled);
4267}
4268
4269/*
4270 * Eliminate all activity associated with a vnode
4271 * in preparation for reuse.
4272 */
4273void
4274vgone(struct vnode *vp)
4275{
4276	VI_LOCK(vp);
4277	vgonel(vp);
4278	VI_UNLOCK(vp);
4279}
4280
4281/*
4282 * Notify upper mounts about reclaimed or unlinked vnode.
4283 */
4284void
4285vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4286{
4287	struct mount *mp;
4288	struct mount_upper_node *ump;
4289
4290	mp = atomic_load_ptr(&vp->v_mount);
4291	if (mp == NULL)
4292		return;
4293	if (TAILQ_EMPTY(&mp->mnt_notify))
4294		return;
4295
4296	MNT_ILOCK(mp);
4297	mp->mnt_upper_pending++;
4298	KASSERT(mp->mnt_upper_pending > 0,
4299	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4300	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4301		MNT_IUNLOCK(mp);
4302		switch (event) {
4303		case VFS_NOTIFY_UPPER_RECLAIM:
4304			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4305			break;
4306		case VFS_NOTIFY_UPPER_UNLINK:
4307			VFS_UNLINK_LOWERVP(ump->mp, vp);
4308			break;
4309		}
4310		MNT_ILOCK(mp);
4311	}
4312	mp->mnt_upper_pending--;
4313	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4314	    mp->mnt_upper_pending == 0) {
4315		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4316		wakeup(&mp->mnt_uppers);
4317	}
4318	MNT_IUNLOCK(mp);
4319}
4320
4321/*
4322 * vgone, with the vp interlock held.
4323 */
4324static void
4325vgonel(struct vnode *vp)
4326{
4327	struct thread *td;
4328	struct mount *mp;
4329	vm_object_t object;
4330	bool active, doinginact, oweinact;
4331
4332	ASSERT_VOP_ELOCKED(vp, "vgonel");
4333	ASSERT_VI_LOCKED(vp, "vgonel");
4334	VNASSERT(vp->v_holdcnt, vp,
4335	    ("vgonel: vp %p has no reference.", vp));
4336	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4337	td = curthread;
4338
4339	/*
4340	 * Don't vgonel if we're already doomed.
4341	 */
4342	if (VN_IS_DOOMED(vp)) {
4343		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4344		    vn_get_state(vp) == VSTATE_DEAD, vp);
4345		return;
4346	}
4347	/*
4348	 * Paired with freevnode.
4349	 */
4350	vn_seqc_write_begin_locked(vp);
4351	vunlazy_gone(vp);
4352	vn_irflag_set_locked(vp, VIRF_DOOMED);
4353	vn_set_state(vp, VSTATE_DESTROYING);
4354
4355	/*
4356	 * Check to see if the vnode is in use.  If so, we have to
4357	 * call VOP_CLOSE() and VOP_INACTIVE().
4358	 *
4359	 * It could be that VOP_INACTIVE() requested reclamation, in
4360	 * which case we should avoid recursion, so check
4361	 * VI_DOINGINACT.  This is not precise but good enough.
4362	 */
4363	active = vp->v_usecount > 0;
4364	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4365	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4366
4367	/*
4368	 * If we need to do inactive VI_OWEINACT will be set.
4369	 */
4370	if (vp->v_iflag & VI_DEFINACT) {
4371		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4372		vp->v_iflag &= ~VI_DEFINACT;
4373		vdropl(vp);
4374	} else {
4375		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4376		VI_UNLOCK(vp);
4377	}
4378	cache_purge_vgone(vp);
4379	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4380
4381	/*
4382	 * If purging an active vnode, it must be closed and
4383	 * deactivated before being reclaimed.
4384	 */
4385	if (active)
4386		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4387	if (!doinginact) {
4388		do {
4389			if (oweinact || active) {
4390				VI_LOCK(vp);
4391				vinactivef(vp);
4392				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4393				VI_UNLOCK(vp);
4394			}
4395		} while (oweinact);
4396	}
4397	if (vp->v_type == VSOCK)
4398		vfs_unp_reclaim(vp);
4399
4400	/*
4401	 * Clean out any buffers associated with the vnode.
4402	 * If the flush fails, just toss the buffers.
4403	 */
4404	mp = NULL;
4405	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4406		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4407	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4408		while (vinvalbuf(vp, 0, 0, 0) != 0)
4409			;
4410	}
4411
4412	BO_LOCK(&vp->v_bufobj);
4413	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4414	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4415	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4416	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4417	    ("vp %p bufobj not invalidated", vp));
4418
4419	/*
4420	 * For VMIO bufobj, BO_DEAD is set later, or in
4421	 * vm_object_terminate() after the object's page queue is
4422	 * flushed.
4423	 */
4424	object = vp->v_bufobj.bo_object;
4425	if (object == NULL)
4426		vp->v_bufobj.bo_flag |= BO_DEAD;
4427	BO_UNLOCK(&vp->v_bufobj);
4428
4429	/*
4430	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4431	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4432	 * should not touch the object borrowed from the lower vnode
4433	 * (the handle check).
4434	 */
4435	if (object != NULL && object->type == OBJT_VNODE &&
4436	    object->handle == vp)
4437		vnode_destroy_vobject(vp);
4438
4439	/*
4440	 * Reclaim the vnode.
4441	 */
4442	if (VOP_RECLAIM(vp))
4443		panic("vgone: cannot reclaim");
4444	if (mp != NULL)
4445		vn_finished_secondary_write(mp);
4446	VNASSERT(vp->v_object == NULL, vp,
4447	    ("vop_reclaim left v_object vp=%p", vp));
4448	/*
4449	 * Clear the advisory locks and wake up waiting threads.
4450	 */
4451	if (vp->v_lockf != NULL) {
4452		(void)VOP_ADVLOCKPURGE(vp);
4453		vp->v_lockf = NULL;
4454	}
4455	/*
4456	 * Delete from old mount point vnode list.
4457	 */
4458	if (vp->v_mount == NULL) {
4459		VI_LOCK(vp);
4460	} else {
4461		delmntque(vp);
4462		ASSERT_VI_LOCKED(vp, "vgonel 2");
4463	}
4464	/*
4465	 * Done with purge, reset to the standard lock and invalidate
4466	 * the vnode.
4467	 */
4468	vp->v_vnlock = &vp->v_lock;
4469	vp->v_op = &dead_vnodeops;
4470	vp->v_type = VBAD;
4471	vn_set_state(vp, VSTATE_DEAD);
4472}
4473
4474/*
4475 * Print out a description of a vnode.
4476 */
4477static const char *const vtypename[] = {
4478	[VNON] = "VNON",
4479	[VREG] = "VREG",
4480	[VDIR] = "VDIR",
4481	[VBLK] = "VBLK",
4482	[VCHR] = "VCHR",
4483	[VLNK] = "VLNK",
4484	[VSOCK] = "VSOCK",
4485	[VFIFO] = "VFIFO",
4486	[VBAD] = "VBAD",
4487	[VMARKER] = "VMARKER",
4488};
4489_Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4490    "vnode type name not added to vtypename");
4491
4492static const char *const vstatename[] = {
4493	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4494	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4495	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4496	[VSTATE_DEAD] = "VSTATE_DEAD",
4497};
4498_Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4499    "vnode state name not added to vstatename");
4500
4501_Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4502    "new hold count flag not added to vn_printf");
4503
4504void
4505vn_printf(struct vnode *vp, const char *fmt, ...)
4506{
4507	va_list ap;
4508	char buf[256], buf2[16];
4509	u_long flags;
4510	u_int holdcnt;
4511	short irflag;
4512
4513	va_start(ap, fmt);
4514	vprintf(fmt, ap);
4515	va_end(ap);
4516	printf("%p: ", (void *)vp);
4517	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4518	    vstatename[vp->v_state], vp->v_op);
4519	holdcnt = atomic_load_int(&vp->v_holdcnt);
4520	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4521	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4522	    vp->v_seqc_users);
4523	switch (vp->v_type) {
4524	case VDIR:
4525		printf(" mountedhere %p\n", vp->v_mountedhere);
4526		break;
4527	case VCHR:
4528		printf(" rdev %p\n", vp->v_rdev);
4529		break;
4530	case VSOCK:
4531		printf(" socket %p\n", vp->v_unpcb);
4532		break;
4533	case VFIFO:
4534		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4535		break;
4536	default:
4537		printf("\n");
4538		break;
4539	}
4540	buf[0] = '\0';
4541	buf[1] = '\0';
4542	if (holdcnt & VHOLD_NO_SMR)
4543		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4544	printf("    hold count flags (%s)\n", buf + 1);
4545
4546	buf[0] = '\0';
4547	buf[1] = '\0';
4548	irflag = vn_irflag_read(vp);
4549	if (irflag & VIRF_DOOMED)
4550		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4551	if (irflag & VIRF_PGREAD)
4552		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4553	if (irflag & VIRF_MOUNTPOINT)
4554		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4555	if (irflag & VIRF_TEXT_REF)
4556		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4557	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4558	if (flags != 0) {
4559		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4560		strlcat(buf, buf2, sizeof(buf));
4561	}
4562	if (vp->v_vflag & VV_ROOT)
4563		strlcat(buf, "|VV_ROOT", sizeof(buf));
4564	if (vp->v_vflag & VV_ISTTY)
4565		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4566	if (vp->v_vflag & VV_NOSYNC)
4567		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4568	if (vp->v_vflag & VV_ETERNALDEV)
4569		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4570	if (vp->v_vflag & VV_CACHEDLABEL)
4571		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4572	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4573		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4574	if (vp->v_vflag & VV_COPYONWRITE)
4575		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4576	if (vp->v_vflag & VV_SYSTEM)
4577		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4578	if (vp->v_vflag & VV_PROCDEP)
4579		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4580	if (vp->v_vflag & VV_DELETED)
4581		strlcat(buf, "|VV_DELETED", sizeof(buf));
4582	if (vp->v_vflag & VV_MD)
4583		strlcat(buf, "|VV_MD", sizeof(buf));
4584	if (vp->v_vflag & VV_FORCEINSMQ)
4585		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4586	if (vp->v_vflag & VV_READLINK)
4587		strlcat(buf, "|VV_READLINK", sizeof(buf));
4588	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4589	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4590	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4591	if (flags != 0) {
4592		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4593		strlcat(buf, buf2, sizeof(buf));
4594	}
4595	if (vp->v_iflag & VI_MOUNT)
4596		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4597	if (vp->v_iflag & VI_DOINGINACT)
4598		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4599	if (vp->v_iflag & VI_OWEINACT)
4600		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4601	if (vp->v_iflag & VI_DEFINACT)
4602		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4603	if (vp->v_iflag & VI_FOPENING)
4604		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4605	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4606	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4607	if (flags != 0) {
4608		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4609		strlcat(buf, buf2, sizeof(buf));
4610	}
4611	if (vp->v_mflag & VMP_LAZYLIST)
4612		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4613	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4614	if (flags != 0) {
4615		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4616		strlcat(buf, buf2, sizeof(buf));
4617	}
4618	printf("    flags (%s)", buf + 1);
4619	if (mtx_owned(VI_MTX(vp)))
4620		printf(" VI_LOCKed");
4621	printf("\n");
4622	if (vp->v_object != NULL)
4623		printf("    v_object %p ref %d pages %d "
4624		    "cleanbuf %d dirtybuf %d\n",
4625		    vp->v_object, vp->v_object->ref_count,
4626		    vp->v_object->resident_page_count,
4627		    vp->v_bufobj.bo_clean.bv_cnt,
4628		    vp->v_bufobj.bo_dirty.bv_cnt);
4629	printf("    ");
4630	lockmgr_printinfo(vp->v_vnlock);
4631	if (vp->v_data != NULL)
4632		VOP_PRINT(vp);
4633}
4634
4635#ifdef DDB
4636/*
4637 * List all of the locked vnodes in the system.
4638 * Called when debugging the kernel.
4639 */
4640DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4641{
4642	struct mount *mp;
4643	struct vnode *vp;
4644
4645	/*
4646	 * Note: because this is DDB, we can't obey the locking semantics
4647	 * for these structures, which means we could catch an inconsistent
4648	 * state and dereference a nasty pointer.  Not much to be done
4649	 * about that.
4650	 */
4651	db_printf("Locked vnodes\n");
4652	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4653		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4654			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4655				vn_printf(vp, "vnode ");
4656		}
4657	}
4658}
4659
4660/*
4661 * Show details about the given vnode.
4662 */
4663DB_SHOW_COMMAND(vnode, db_show_vnode)
4664{
4665	struct vnode *vp;
4666
4667	if (!have_addr)
4668		return;
4669	vp = (struct vnode *)addr;
4670	vn_printf(vp, "vnode ");
4671}
4672
4673/*
4674 * Show details about the given mount point.
4675 */
4676DB_SHOW_COMMAND(mount, db_show_mount)
4677{
4678	struct mount *mp;
4679	struct vfsopt *opt;
4680	struct statfs *sp;
4681	struct vnode *vp;
4682	char buf[512];
4683	uint64_t mflags;
4684	u_int flags;
4685
4686	if (!have_addr) {
4687		/* No address given, print short info about all mount points. */
4688		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4689			db_printf("%p %s on %s (%s)\n", mp,
4690			    mp->mnt_stat.f_mntfromname,
4691			    mp->mnt_stat.f_mntonname,
4692			    mp->mnt_stat.f_fstypename);
4693			if (db_pager_quit)
4694				break;
4695		}
4696		db_printf("\nMore info: show mount <addr>\n");
4697		return;
4698	}
4699
4700	mp = (struct mount *)addr;
4701	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4702	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4703
4704	buf[0] = '\0';
4705	mflags = mp->mnt_flag;
4706#define	MNT_FLAG(flag)	do {						\
4707	if (mflags & (flag)) {						\
4708		if (buf[0] != '\0')					\
4709			strlcat(buf, ", ", sizeof(buf));		\
4710		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4711		mflags &= ~(flag);					\
4712	}								\
4713} while (0)
4714	MNT_FLAG(MNT_RDONLY);
4715	MNT_FLAG(MNT_SYNCHRONOUS);
4716	MNT_FLAG(MNT_NOEXEC);
4717	MNT_FLAG(MNT_NOSUID);
4718	MNT_FLAG(MNT_NFS4ACLS);
4719	MNT_FLAG(MNT_UNION);
4720	MNT_FLAG(MNT_ASYNC);
4721	MNT_FLAG(MNT_SUIDDIR);
4722	MNT_FLAG(MNT_SOFTDEP);
4723	MNT_FLAG(MNT_NOSYMFOLLOW);
4724	MNT_FLAG(MNT_GJOURNAL);
4725	MNT_FLAG(MNT_MULTILABEL);
4726	MNT_FLAG(MNT_ACLS);
4727	MNT_FLAG(MNT_NOATIME);
4728	MNT_FLAG(MNT_NOCLUSTERR);
4729	MNT_FLAG(MNT_NOCLUSTERW);
4730	MNT_FLAG(MNT_SUJ);
4731	MNT_FLAG(MNT_EXRDONLY);
4732	MNT_FLAG(MNT_EXPORTED);
4733	MNT_FLAG(MNT_DEFEXPORTED);
4734	MNT_FLAG(MNT_EXPORTANON);
4735	MNT_FLAG(MNT_EXKERB);
4736	MNT_FLAG(MNT_EXPUBLIC);
4737	MNT_FLAG(MNT_LOCAL);
4738	MNT_FLAG(MNT_QUOTA);
4739	MNT_FLAG(MNT_ROOTFS);
4740	MNT_FLAG(MNT_USER);
4741	MNT_FLAG(MNT_IGNORE);
4742	MNT_FLAG(MNT_UPDATE);
4743	MNT_FLAG(MNT_DELEXPORT);
4744	MNT_FLAG(MNT_RELOAD);
4745	MNT_FLAG(MNT_FORCE);
4746	MNT_FLAG(MNT_SNAPSHOT);
4747	MNT_FLAG(MNT_BYFSID);
4748#undef MNT_FLAG
4749	if (mflags != 0) {
4750		if (buf[0] != '\0')
4751			strlcat(buf, ", ", sizeof(buf));
4752		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4753		    "0x%016jx", mflags);
4754	}
4755	db_printf("    mnt_flag = %s\n", buf);
4756
4757	buf[0] = '\0';
4758	flags = mp->mnt_kern_flag;
4759#define	MNT_KERN_FLAG(flag)	do {					\
4760	if (flags & (flag)) {						\
4761		if (buf[0] != '\0')					\
4762			strlcat(buf, ", ", sizeof(buf));		\
4763		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4764		flags &= ~(flag);					\
4765	}								\
4766} while (0)
4767	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4768	MNT_KERN_FLAG(MNTK_ASYNC);
4769	MNT_KERN_FLAG(MNTK_SOFTDEP);
4770	MNT_KERN_FLAG(MNTK_NOMSYNC);
4771	MNT_KERN_FLAG(MNTK_DRAINING);
4772	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4773	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4774	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4775	MNT_KERN_FLAG(MNTK_NO_IOPF);
4776	MNT_KERN_FLAG(MNTK_RECURSE);
4777	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4778	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4779	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4780	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4781	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4782	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4783	MNT_KERN_FLAG(MNTK_NOASYNC);
4784	MNT_KERN_FLAG(MNTK_UNMOUNT);
4785	MNT_KERN_FLAG(MNTK_MWAIT);
4786	MNT_KERN_FLAG(MNTK_SUSPEND);
4787	MNT_KERN_FLAG(MNTK_SUSPEND2);
4788	MNT_KERN_FLAG(MNTK_SUSPENDED);
4789	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4790	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4791#undef MNT_KERN_FLAG
4792	if (flags != 0) {
4793		if (buf[0] != '\0')
4794			strlcat(buf, ", ", sizeof(buf));
4795		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4796		    "0x%08x", flags);
4797	}
4798	db_printf("    mnt_kern_flag = %s\n", buf);
4799
4800	db_printf("    mnt_opt = ");
4801	opt = TAILQ_FIRST(mp->mnt_opt);
4802	if (opt != NULL) {
4803		db_printf("%s", opt->name);
4804		opt = TAILQ_NEXT(opt, link);
4805		while (opt != NULL) {
4806			db_printf(", %s", opt->name);
4807			opt = TAILQ_NEXT(opt, link);
4808		}
4809	}
4810	db_printf("\n");
4811
4812	sp = &mp->mnt_stat;
4813	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4814	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4815	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4816	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4817	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4818	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4819	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4820	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4821	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4822	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4823	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4824	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4825
4826	db_printf("    mnt_cred = { uid=%u ruid=%u",
4827	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4828	if (jailed(mp->mnt_cred))
4829		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4830	db_printf(" }\n");
4831	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4832	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4833	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4834	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4835	db_printf("    mnt_lazyvnodelistsize = %d\n",
4836	    mp->mnt_lazyvnodelistsize);
4837	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4838	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4839	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4840	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4841	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4842	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4843	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4844	db_printf("    mnt_secondary_accwrites = %d\n",
4845	    mp->mnt_secondary_accwrites);
4846	db_printf("    mnt_gjprovider = %s\n",
4847	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4848	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4849
4850	db_printf("\n\nList of active vnodes\n");
4851	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4852		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4853			vn_printf(vp, "vnode ");
4854			if (db_pager_quit)
4855				break;
4856		}
4857	}
4858	db_printf("\n\nList of inactive vnodes\n");
4859	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4860		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4861			vn_printf(vp, "vnode ");
4862			if (db_pager_quit)
4863				break;
4864		}
4865	}
4866}
4867#endif	/* DDB */
4868
4869/*
4870 * Fill in a struct xvfsconf based on a struct vfsconf.
4871 */
4872static int
4873vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4874{
4875	struct xvfsconf xvfsp;
4876
4877	bzero(&xvfsp, sizeof(xvfsp));
4878	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4879	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4880	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4881	xvfsp.vfc_flags = vfsp->vfc_flags;
4882	/*
4883	 * These are unused in userland, we keep them
4884	 * to not break binary compatibility.
4885	 */
4886	xvfsp.vfc_vfsops = NULL;
4887	xvfsp.vfc_next = NULL;
4888	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4889}
4890
4891#ifdef COMPAT_FREEBSD32
4892struct xvfsconf32 {
4893	uint32_t	vfc_vfsops;
4894	char		vfc_name[MFSNAMELEN];
4895	int32_t		vfc_typenum;
4896	int32_t		vfc_refcount;
4897	int32_t		vfc_flags;
4898	uint32_t	vfc_next;
4899};
4900
4901static int
4902vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4903{
4904	struct xvfsconf32 xvfsp;
4905
4906	bzero(&xvfsp, sizeof(xvfsp));
4907	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4908	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4909	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4910	xvfsp.vfc_flags = vfsp->vfc_flags;
4911	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4912}
4913#endif
4914
4915/*
4916 * Top level filesystem related information gathering.
4917 */
4918static int
4919sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4920{
4921	struct vfsconf *vfsp;
4922	int error;
4923
4924	error = 0;
4925	vfsconf_slock();
4926	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4927#ifdef COMPAT_FREEBSD32
4928		if (req->flags & SCTL_MASK32)
4929			error = vfsconf2x32(req, vfsp);
4930		else
4931#endif
4932			error = vfsconf2x(req, vfsp);
4933		if (error)
4934			break;
4935	}
4936	vfsconf_sunlock();
4937	return (error);
4938}
4939
4940SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4941    CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4942    "S,xvfsconf", "List of all configured filesystems");
4943
4944#ifndef BURN_BRIDGES
4945static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4946
4947static int
4948vfs_sysctl(SYSCTL_HANDLER_ARGS)
4949{
4950	int *name = (int *)arg1 - 1;	/* XXX */
4951	u_int namelen = arg2 + 1;	/* XXX */
4952	struct vfsconf *vfsp;
4953
4954	log(LOG_WARNING, "userland calling deprecated sysctl, "
4955	    "please rebuild world\n");
4956
4957#if 1 || defined(COMPAT_PRELITE2)
4958	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4959	if (namelen == 1)
4960		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4961#endif
4962
4963	switch (name[1]) {
4964	case VFS_MAXTYPENUM:
4965		if (namelen != 2)
4966			return (ENOTDIR);
4967		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4968	case VFS_CONF:
4969		if (namelen != 3)
4970			return (ENOTDIR);	/* overloaded */
4971		vfsconf_slock();
4972		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4973			if (vfsp->vfc_typenum == name[2])
4974				break;
4975		}
4976		vfsconf_sunlock();
4977		if (vfsp == NULL)
4978			return (EOPNOTSUPP);
4979#ifdef COMPAT_FREEBSD32
4980		if (req->flags & SCTL_MASK32)
4981			return (vfsconf2x32(req, vfsp));
4982		else
4983#endif
4984			return (vfsconf2x(req, vfsp));
4985	}
4986	return (EOPNOTSUPP);
4987}
4988
4989static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4990    CTLFLAG_MPSAFE, vfs_sysctl,
4991    "Generic filesystem");
4992
4993#if 1 || defined(COMPAT_PRELITE2)
4994
4995static int
4996sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4997{
4998	int error;
4999	struct vfsconf *vfsp;
5000	struct ovfsconf ovfs;
5001
5002	vfsconf_slock();
5003	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5004		bzero(&ovfs, sizeof(ovfs));
5005		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5006		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5007		ovfs.vfc_index = vfsp->vfc_typenum;
5008		ovfs.vfc_refcount = vfsp->vfc_refcount;
5009		ovfs.vfc_flags = vfsp->vfc_flags;
5010		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5011		if (error != 0) {
5012			vfsconf_sunlock();
5013			return (error);
5014		}
5015	}
5016	vfsconf_sunlock();
5017	return (0);
5018}
5019
5020#endif /* 1 || COMPAT_PRELITE2 */
5021#endif /* !BURN_BRIDGES */
5022
5023static void
5024unmount_or_warn(struct mount *mp)
5025{
5026	int error;
5027
5028	error = dounmount(mp, MNT_FORCE, curthread);
5029	if (error != 0) {
5030		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5031		if (error == EBUSY)
5032			printf("BUSY)\n");
5033		else
5034			printf("%d)\n", error);
5035	}
5036}
5037
5038/*
5039 * Unmount all filesystems. The list is traversed in reverse order
5040 * of mounting to avoid dependencies.
5041 */
5042void
5043vfs_unmountall(void)
5044{
5045	struct mount *mp, *tmp;
5046
5047	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5048
5049	/*
5050	 * Since this only runs when rebooting, it is not interlocked.
5051	 */
5052	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5053		vfs_ref(mp);
5054
5055		/*
5056		 * Forcibly unmounting "/dev" before "/" would prevent clean
5057		 * unmount of the latter.
5058		 */
5059		if (mp == rootdevmp)
5060			continue;
5061
5062		unmount_or_warn(mp);
5063	}
5064
5065	if (rootdevmp != NULL)
5066		unmount_or_warn(rootdevmp);
5067}
5068
5069static void
5070vfs_deferred_inactive(struct vnode *vp, int lkflags)
5071{
5072
5073	ASSERT_VI_LOCKED(vp, __func__);
5074	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5075	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5076		vdropl(vp);
5077		return;
5078	}
5079	if (vn_lock(vp, lkflags) == 0) {
5080		VI_LOCK(vp);
5081		vinactive(vp);
5082		VOP_UNLOCK(vp);
5083		vdropl(vp);
5084		return;
5085	}
5086	vdefer_inactive_unlocked(vp);
5087}
5088
5089static int
5090vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5091{
5092
5093	return (vp->v_iflag & VI_DEFINACT);
5094}
5095
5096static void __noinline
5097vfs_periodic_inactive(struct mount *mp, int flags)
5098{
5099	struct vnode *vp, *mvp;
5100	int lkflags;
5101
5102	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5103	if (flags != MNT_WAIT)
5104		lkflags |= LK_NOWAIT;
5105
5106	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5107		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5108			VI_UNLOCK(vp);
5109			continue;
5110		}
5111		vp->v_iflag &= ~VI_DEFINACT;
5112		vfs_deferred_inactive(vp, lkflags);
5113	}
5114}
5115
5116static inline bool
5117vfs_want_msync(struct vnode *vp)
5118{
5119	struct vm_object *obj;
5120
5121	/*
5122	 * This test may be performed without any locks held.
5123	 * We rely on vm_object's type stability.
5124	 */
5125	if (vp->v_vflag & VV_NOSYNC)
5126		return (false);
5127	obj = vp->v_object;
5128	return (obj != NULL && vm_object_mightbedirty(obj));
5129}
5130
5131static int
5132vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5133{
5134
5135	if (vp->v_vflag & VV_NOSYNC)
5136		return (false);
5137	if (vp->v_iflag & VI_DEFINACT)
5138		return (true);
5139	return (vfs_want_msync(vp));
5140}
5141
5142static void __noinline
5143vfs_periodic_msync_inactive(struct mount *mp, int flags)
5144{
5145	struct vnode *vp, *mvp;
5146	int lkflags;
5147	bool seen_defer;
5148
5149	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5150	if (flags != MNT_WAIT)
5151		lkflags |= LK_NOWAIT;
5152
5153	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5154		seen_defer = false;
5155		if (vp->v_iflag & VI_DEFINACT) {
5156			vp->v_iflag &= ~VI_DEFINACT;
5157			seen_defer = true;
5158		}
5159		if (!vfs_want_msync(vp)) {
5160			if (seen_defer)
5161				vfs_deferred_inactive(vp, lkflags);
5162			else
5163				VI_UNLOCK(vp);
5164			continue;
5165		}
5166		if (vget(vp, lkflags) == 0) {
5167			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5168				if (flags == MNT_WAIT)
5169					vnode_pager_clean_sync(vp);
5170				else
5171					vnode_pager_clean_async(vp);
5172			}
5173			vput(vp);
5174			if (seen_defer)
5175				vdrop(vp);
5176		} else {
5177			if (seen_defer)
5178				vdefer_inactive_unlocked(vp);
5179		}
5180	}
5181}
5182
5183void
5184vfs_periodic(struct mount *mp, int flags)
5185{
5186
5187	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5188
5189	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5190		vfs_periodic_inactive(mp, flags);
5191	else
5192		vfs_periodic_msync_inactive(mp, flags);
5193}
5194
5195static void
5196destroy_vpollinfo_free(struct vpollinfo *vi)
5197{
5198
5199	knlist_destroy(&vi->vpi_selinfo.si_note);
5200	mtx_destroy(&vi->vpi_lock);
5201	free(vi, M_VNODEPOLL);
5202}
5203
5204static void
5205destroy_vpollinfo(struct vpollinfo *vi)
5206{
5207
5208	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5209	seldrain(&vi->vpi_selinfo);
5210	destroy_vpollinfo_free(vi);
5211}
5212
5213/*
5214 * Initialize per-vnode helper structure to hold poll-related state.
5215 */
5216void
5217v_addpollinfo(struct vnode *vp)
5218{
5219	struct vpollinfo *vi;
5220
5221	if (vp->v_pollinfo != NULL)
5222		return;
5223	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5224	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5225	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5226	    vfs_knlunlock, vfs_knl_assert_lock);
5227	VI_LOCK(vp);
5228	if (vp->v_pollinfo != NULL) {
5229		VI_UNLOCK(vp);
5230		destroy_vpollinfo_free(vi);
5231		return;
5232	}
5233	vp->v_pollinfo = vi;
5234	VI_UNLOCK(vp);
5235}
5236
5237/*
5238 * Record a process's interest in events which might happen to
5239 * a vnode.  Because poll uses the historic select-style interface
5240 * internally, this routine serves as both the ``check for any
5241 * pending events'' and the ``record my interest in future events''
5242 * functions.  (These are done together, while the lock is held,
5243 * to avoid race conditions.)
5244 */
5245int
5246vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5247{
5248
5249	v_addpollinfo(vp);
5250	mtx_lock(&vp->v_pollinfo->vpi_lock);
5251	if (vp->v_pollinfo->vpi_revents & events) {
5252		/*
5253		 * This leaves events we are not interested
5254		 * in available for the other process which
5255		 * which presumably had requested them
5256		 * (otherwise they would never have been
5257		 * recorded).
5258		 */
5259		events &= vp->v_pollinfo->vpi_revents;
5260		vp->v_pollinfo->vpi_revents &= ~events;
5261
5262		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5263		return (events);
5264	}
5265	vp->v_pollinfo->vpi_events |= events;
5266	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5267	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5268	return (0);
5269}
5270
5271/*
5272 * Routine to create and manage a filesystem syncer vnode.
5273 */
5274#define sync_close ((int (*)(struct  vop_close_args *))nullop)
5275static int	sync_fsync(struct  vop_fsync_args *);
5276static int	sync_inactive(struct  vop_inactive_args *);
5277static int	sync_reclaim(struct  vop_reclaim_args *);
5278
5279static struct vop_vector sync_vnodeops = {
5280	.vop_bypass =	VOP_EOPNOTSUPP,
5281	.vop_close =	sync_close,
5282	.vop_fsync =	sync_fsync,
5283	.vop_getwritemount = vop_stdgetwritemount,
5284	.vop_inactive =	sync_inactive,
5285	.vop_need_inactive = vop_stdneed_inactive,
5286	.vop_reclaim =	sync_reclaim,
5287	.vop_lock1 =	vop_stdlock,
5288	.vop_unlock =	vop_stdunlock,
5289	.vop_islocked =	vop_stdislocked,
5290	.vop_fplookup_vexec = VOP_EAGAIN,
5291	.vop_fplookup_symlink = VOP_EAGAIN,
5292};
5293VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5294
5295/*
5296 * Create a new filesystem syncer vnode for the specified mount point.
5297 */
5298void
5299vfs_allocate_syncvnode(struct mount *mp)
5300{
5301	struct vnode *vp;
5302	struct bufobj *bo;
5303	static long start, incr, next;
5304	int error;
5305
5306	/* Allocate a new vnode */
5307	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5308	if (error != 0)
5309		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5310	vp->v_type = VNON;
5311	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5312	vp->v_vflag |= VV_FORCEINSMQ;
5313	error = insmntque1(vp, mp);
5314	if (error != 0)
5315		panic("vfs_allocate_syncvnode: insmntque() failed");
5316	vp->v_vflag &= ~VV_FORCEINSMQ;
5317	vn_set_state(vp, VSTATE_CONSTRUCTED);
5318	VOP_UNLOCK(vp);
5319	/*
5320	 * Place the vnode onto the syncer worklist. We attempt to
5321	 * scatter them about on the list so that they will go off
5322	 * at evenly distributed times even if all the filesystems
5323	 * are mounted at once.
5324	 */
5325	next += incr;
5326	if (next == 0 || next > syncer_maxdelay) {
5327		start /= 2;
5328		incr /= 2;
5329		if (start == 0) {
5330			start = syncer_maxdelay / 2;
5331			incr = syncer_maxdelay;
5332		}
5333		next = start;
5334	}
5335	bo = &vp->v_bufobj;
5336	BO_LOCK(bo);
5337	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5338	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5339	mtx_lock(&sync_mtx);
5340	sync_vnode_count++;
5341	if (mp->mnt_syncer == NULL) {
5342		mp->mnt_syncer = vp;
5343		vp = NULL;
5344	}
5345	mtx_unlock(&sync_mtx);
5346	BO_UNLOCK(bo);
5347	if (vp != NULL) {
5348		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5349		vgone(vp);
5350		vput(vp);
5351	}
5352}
5353
5354void
5355vfs_deallocate_syncvnode(struct mount *mp)
5356{
5357	struct vnode *vp;
5358
5359	mtx_lock(&sync_mtx);
5360	vp = mp->mnt_syncer;
5361	if (vp != NULL)
5362		mp->mnt_syncer = NULL;
5363	mtx_unlock(&sync_mtx);
5364	if (vp != NULL)
5365		vrele(vp);
5366}
5367
5368/*
5369 * Do a lazy sync of the filesystem.
5370 */
5371static int
5372sync_fsync(struct vop_fsync_args *ap)
5373{
5374	struct vnode *syncvp = ap->a_vp;
5375	struct mount *mp = syncvp->v_mount;
5376	int error, save;
5377	struct bufobj *bo;
5378
5379	/*
5380	 * We only need to do something if this is a lazy evaluation.
5381	 */
5382	if (ap->a_waitfor != MNT_LAZY)
5383		return (0);
5384
5385	/*
5386	 * Move ourselves to the back of the sync list.
5387	 */
5388	bo = &syncvp->v_bufobj;
5389	BO_LOCK(bo);
5390	vn_syncer_add_to_worklist(bo, syncdelay);
5391	BO_UNLOCK(bo);
5392
5393	/*
5394	 * Walk the list of vnodes pushing all that are dirty and
5395	 * not already on the sync list.
5396	 */
5397	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5398		return (0);
5399	VOP_UNLOCK(syncvp);
5400	save = curthread_pflags_set(TDP_SYNCIO);
5401	/*
5402	 * The filesystem at hand may be idle with free vnodes stored in the
5403	 * batch.  Return them instead of letting them stay there indefinitely.
5404	 */
5405	vfs_periodic(mp, MNT_NOWAIT);
5406	error = VFS_SYNC(mp, MNT_LAZY);
5407	curthread_pflags_restore(save);
5408	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5409	vfs_unbusy(mp);
5410	return (error);
5411}
5412
5413/*
5414 * The syncer vnode is no referenced.
5415 */
5416static int
5417sync_inactive(struct vop_inactive_args *ap)
5418{
5419
5420	vgone(ap->a_vp);
5421	return (0);
5422}
5423
5424/*
5425 * The syncer vnode is no longer needed and is being decommissioned.
5426 *
5427 * Modifications to the worklist must be protected by sync_mtx.
5428 */
5429static int
5430sync_reclaim(struct vop_reclaim_args *ap)
5431{
5432	struct vnode *vp = ap->a_vp;
5433	struct bufobj *bo;
5434
5435	bo = &vp->v_bufobj;
5436	BO_LOCK(bo);
5437	mtx_lock(&sync_mtx);
5438	if (vp->v_mount->mnt_syncer == vp)
5439		vp->v_mount->mnt_syncer = NULL;
5440	if (bo->bo_flag & BO_ONWORKLST) {
5441		LIST_REMOVE(bo, bo_synclist);
5442		syncer_worklist_len--;
5443		sync_vnode_count--;
5444		bo->bo_flag &= ~BO_ONWORKLST;
5445	}
5446	mtx_unlock(&sync_mtx);
5447	BO_UNLOCK(bo);
5448
5449	return (0);
5450}
5451
5452int
5453vn_need_pageq_flush(struct vnode *vp)
5454{
5455	struct vm_object *obj;
5456
5457	obj = vp->v_object;
5458	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5459	    vm_object_mightbedirty(obj));
5460}
5461
5462/*
5463 * Check if vnode represents a disk device
5464 */
5465bool
5466vn_isdisk_error(struct vnode *vp, int *errp)
5467{
5468	int error;
5469
5470	if (vp->v_type != VCHR) {
5471		error = ENOTBLK;
5472		goto out;
5473	}
5474	error = 0;
5475	dev_lock();
5476	if (vp->v_rdev == NULL)
5477		error = ENXIO;
5478	else if (vp->v_rdev->si_devsw == NULL)
5479		error = ENXIO;
5480	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5481		error = ENOTBLK;
5482	dev_unlock();
5483out:
5484	*errp = error;
5485	return (error == 0);
5486}
5487
5488bool
5489vn_isdisk(struct vnode *vp)
5490{
5491	int error;
5492
5493	return (vn_isdisk_error(vp, &error));
5494}
5495
5496/*
5497 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5498 * the comment above cache_fplookup for details.
5499 */
5500int
5501vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5502{
5503	int error;
5504
5505	VFS_SMR_ASSERT_ENTERED();
5506
5507	/* Check the owner. */
5508	if (cred->cr_uid == file_uid) {
5509		if (file_mode & S_IXUSR)
5510			return (0);
5511		goto out_error;
5512	}
5513
5514	/* Otherwise, check the groups (first match) */
5515	if (groupmember(file_gid, cred)) {
5516		if (file_mode & S_IXGRP)
5517			return (0);
5518		goto out_error;
5519	}
5520
5521	/* Otherwise, check everyone else. */
5522	if (file_mode & S_IXOTH)
5523		return (0);
5524out_error:
5525	/*
5526	 * Permission check failed, but it is possible denial will get overwritten
5527	 * (e.g., when root is traversing through a 700 directory owned by someone
5528	 * else).
5529	 *
5530	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5531	 * modules overriding this result. It's quite unclear what semantics
5532	 * are allowed for them to operate, thus for safety we don't call them
5533	 * from within the SMR section. This also means if any such modules
5534	 * are present, we have to let the regular lookup decide.
5535	 */
5536	error = priv_check_cred_vfs_lookup_nomac(cred);
5537	switch (error) {
5538	case 0:
5539		return (0);
5540	case EAGAIN:
5541		/*
5542		 * MAC modules present.
5543		 */
5544		return (EAGAIN);
5545	case EPERM:
5546		return (EACCES);
5547	default:
5548		return (error);
5549	}
5550}
5551
5552/*
5553 * Common filesystem object access control check routine.  Accepts a
5554 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5555 * Returns 0 on success, or an errno on failure.
5556 */
5557int
5558vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5559    accmode_t accmode, struct ucred *cred)
5560{
5561	accmode_t dac_granted;
5562	accmode_t priv_granted;
5563
5564	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5565	    ("invalid bit in accmode"));
5566	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5567	    ("VAPPEND without VWRITE"));
5568
5569	/*
5570	 * Look for a normal, non-privileged way to access the file/directory
5571	 * as requested.  If it exists, go with that.
5572	 */
5573
5574	dac_granted = 0;
5575
5576	/* Check the owner. */
5577	if (cred->cr_uid == file_uid) {
5578		dac_granted |= VADMIN;
5579		if (file_mode & S_IXUSR)
5580			dac_granted |= VEXEC;
5581		if (file_mode & S_IRUSR)
5582			dac_granted |= VREAD;
5583		if (file_mode & S_IWUSR)
5584			dac_granted |= (VWRITE | VAPPEND);
5585
5586		if ((accmode & dac_granted) == accmode)
5587			return (0);
5588
5589		goto privcheck;
5590	}
5591
5592	/* Otherwise, check the groups (first match) */
5593	if (groupmember(file_gid, cred)) {
5594		if (file_mode & S_IXGRP)
5595			dac_granted |= VEXEC;
5596		if (file_mode & S_IRGRP)
5597			dac_granted |= VREAD;
5598		if (file_mode & S_IWGRP)
5599			dac_granted |= (VWRITE | VAPPEND);
5600
5601		if ((accmode & dac_granted) == accmode)
5602			return (0);
5603
5604		goto privcheck;
5605	}
5606
5607	/* Otherwise, check everyone else. */
5608	if (file_mode & S_IXOTH)
5609		dac_granted |= VEXEC;
5610	if (file_mode & S_IROTH)
5611		dac_granted |= VREAD;
5612	if (file_mode & S_IWOTH)
5613		dac_granted |= (VWRITE | VAPPEND);
5614	if ((accmode & dac_granted) == accmode)
5615		return (0);
5616
5617privcheck:
5618	/*
5619	 * Build a privilege mask to determine if the set of privileges
5620	 * satisfies the requirements when combined with the granted mask
5621	 * from above.  For each privilege, if the privilege is required,
5622	 * bitwise or the request type onto the priv_granted mask.
5623	 */
5624	priv_granted = 0;
5625
5626	if (type == VDIR) {
5627		/*
5628		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5629		 * requests, instead of PRIV_VFS_EXEC.
5630		 */
5631		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5632		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5633			priv_granted |= VEXEC;
5634	} else {
5635		/*
5636		 * Ensure that at least one execute bit is on. Otherwise,
5637		 * a privileged user will always succeed, and we don't want
5638		 * this to happen unless the file really is executable.
5639		 */
5640		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5641		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5642		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5643			priv_granted |= VEXEC;
5644	}
5645
5646	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5647	    !priv_check_cred(cred, PRIV_VFS_READ))
5648		priv_granted |= VREAD;
5649
5650	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5651	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5652		priv_granted |= (VWRITE | VAPPEND);
5653
5654	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5655	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5656		priv_granted |= VADMIN;
5657
5658	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5659		return (0);
5660	}
5661
5662	return ((accmode & VADMIN) ? EPERM : EACCES);
5663}
5664
5665/*
5666 * Credential check based on process requesting service, and per-attribute
5667 * permissions.
5668 */
5669int
5670extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5671    struct thread *td, accmode_t accmode)
5672{
5673
5674	/*
5675	 * Kernel-invoked always succeeds.
5676	 */
5677	if (cred == NOCRED)
5678		return (0);
5679
5680	/*
5681	 * Do not allow privileged processes in jail to directly manipulate
5682	 * system attributes.
5683	 */
5684	switch (attrnamespace) {
5685	case EXTATTR_NAMESPACE_SYSTEM:
5686		/* Potentially should be: return (EPERM); */
5687		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5688	case EXTATTR_NAMESPACE_USER:
5689		return (VOP_ACCESS(vp, accmode, cred, td));
5690	default:
5691		return (EPERM);
5692	}
5693}
5694
5695#ifdef DEBUG_VFS_LOCKS
5696int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5697SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5698    "Drop into debugger on lock violation");
5699
5700int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5701SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5702    0, "Check for interlock across VOPs");
5703
5704int vfs_badlock_print = 1;	/* Print lock violations. */
5705SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5706    0, "Print lock violations");
5707
5708int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5709SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5710    0, "Print vnode details on lock violations");
5711
5712#ifdef KDB
5713int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5714SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5715    &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5716#endif
5717
5718static void
5719vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5720{
5721
5722#ifdef KDB
5723	if (vfs_badlock_backtrace)
5724		kdb_backtrace();
5725#endif
5726	if (vfs_badlock_vnode)
5727		vn_printf(vp, "vnode ");
5728	if (vfs_badlock_print)
5729		printf("%s: %p %s\n", str, (void *)vp, msg);
5730	if (vfs_badlock_ddb)
5731		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5732}
5733
5734void
5735assert_vi_locked(struct vnode *vp, const char *str)
5736{
5737
5738	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5739		vfs_badlock("interlock is not locked but should be", str, vp);
5740}
5741
5742void
5743assert_vi_unlocked(struct vnode *vp, const char *str)
5744{
5745
5746	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5747		vfs_badlock("interlock is locked but should not be", str, vp);
5748}
5749
5750void
5751assert_vop_locked(struct vnode *vp, const char *str)
5752{
5753	if (KERNEL_PANICKED() || vp == NULL)
5754		return;
5755
5756#ifdef WITNESS
5757	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5758	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5759#else
5760	int locked = VOP_ISLOCKED(vp);
5761	if (locked == 0 || locked == LK_EXCLOTHER)
5762#endif
5763		vfs_badlock("is not locked but should be", str, vp);
5764}
5765
5766void
5767assert_vop_unlocked(struct vnode *vp, const char *str)
5768{
5769	if (KERNEL_PANICKED() || vp == NULL)
5770		return;
5771
5772#ifdef WITNESS
5773	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5774	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5775#else
5776	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5777#endif
5778		vfs_badlock("is locked but should not be", str, vp);
5779}
5780
5781void
5782assert_vop_elocked(struct vnode *vp, const char *str)
5783{
5784	if (KERNEL_PANICKED() || vp == NULL)
5785		return;
5786
5787	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5788		vfs_badlock("is not exclusive locked but should be", str, vp);
5789}
5790#endif /* DEBUG_VFS_LOCKS */
5791
5792void
5793vop_rename_fail(struct vop_rename_args *ap)
5794{
5795
5796	if (ap->a_tvp != NULL)
5797		vput(ap->a_tvp);
5798	if (ap->a_tdvp == ap->a_tvp)
5799		vrele(ap->a_tdvp);
5800	else
5801		vput(ap->a_tdvp);
5802	vrele(ap->a_fdvp);
5803	vrele(ap->a_fvp);
5804}
5805
5806void
5807vop_rename_pre(void *ap)
5808{
5809	struct vop_rename_args *a = ap;
5810
5811#ifdef DEBUG_VFS_LOCKS
5812	if (a->a_tvp)
5813		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5814	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5815	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5816	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5817
5818	/* Check the source (from). */
5819	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5820	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5821		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5822	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5823		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5824
5825	/* Check the target. */
5826	if (a->a_tvp)
5827		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5828	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5829#endif
5830	/*
5831	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5832	 * in vop_rename_post but that's not going to work out since some
5833	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5834	 *
5835	 * For now filesystems are expected to do the relevant calls after they
5836	 * decide what vnodes to operate on.
5837	 */
5838	if (a->a_tdvp != a->a_fdvp)
5839		vhold(a->a_fdvp);
5840	if (a->a_tvp != a->a_fvp)
5841		vhold(a->a_fvp);
5842	vhold(a->a_tdvp);
5843	if (a->a_tvp)
5844		vhold(a->a_tvp);
5845}
5846
5847#ifdef DEBUG_VFS_LOCKS
5848void
5849vop_fplookup_vexec_debugpre(void *ap __unused)
5850{
5851
5852	VFS_SMR_ASSERT_ENTERED();
5853}
5854
5855void
5856vop_fplookup_vexec_debugpost(void *ap, int rc)
5857{
5858	struct vop_fplookup_vexec_args *a;
5859	struct vnode *vp;
5860
5861	a = ap;
5862	vp = a->a_vp;
5863
5864	VFS_SMR_ASSERT_ENTERED();
5865	if (rc == EOPNOTSUPP)
5866		VNPASS(VN_IS_DOOMED(vp), vp);
5867}
5868
5869void
5870vop_fplookup_symlink_debugpre(void *ap __unused)
5871{
5872
5873	VFS_SMR_ASSERT_ENTERED();
5874}
5875
5876void
5877vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5878{
5879
5880	VFS_SMR_ASSERT_ENTERED();
5881}
5882
5883static void
5884vop_fsync_debugprepost(struct vnode *vp, const char *name)
5885{
5886	if (vp->v_type == VCHR)
5887		;
5888	/*
5889	 * The shared vs. exclusive locking policy for fsync()
5890	 * is actually determined by vp's write mount as indicated
5891	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5892	 * may not be the same as vp->v_mount.  However, if the
5893	 * underlying filesystem which really handles the fsync()
5894	 * supports shared locking, the stacked filesystem must also
5895	 * be prepared for its VOP_FSYNC() operation to be called
5896	 * with only a shared lock.  On the other hand, if the
5897	 * stacked filesystem claims support for shared write
5898	 * locking but the underlying filesystem does not, and the
5899	 * caller incorrectly uses a shared lock, this condition
5900	 * should still be caught when the stacked filesystem
5901	 * invokes VOP_FSYNC() on the underlying filesystem.
5902	 */
5903	else if (MNT_SHARED_WRITES(vp->v_mount))
5904		ASSERT_VOP_LOCKED(vp, name);
5905	else
5906		ASSERT_VOP_ELOCKED(vp, name);
5907}
5908
5909void
5910vop_fsync_debugpre(void *a)
5911{
5912	struct vop_fsync_args *ap;
5913
5914	ap = a;
5915	vop_fsync_debugprepost(ap->a_vp, "fsync");
5916}
5917
5918void
5919vop_fsync_debugpost(void *a, int rc __unused)
5920{
5921	struct vop_fsync_args *ap;
5922
5923	ap = a;
5924	vop_fsync_debugprepost(ap->a_vp, "fsync");
5925}
5926
5927void
5928vop_fdatasync_debugpre(void *a)
5929{
5930	struct vop_fdatasync_args *ap;
5931
5932	ap = a;
5933	vop_fsync_debugprepost(ap->a_vp, "fsync");
5934}
5935
5936void
5937vop_fdatasync_debugpost(void *a, int rc __unused)
5938{
5939	struct vop_fdatasync_args *ap;
5940
5941	ap = a;
5942	vop_fsync_debugprepost(ap->a_vp, "fsync");
5943}
5944
5945void
5946vop_strategy_debugpre(void *ap)
5947{
5948	struct vop_strategy_args *a;
5949	struct buf *bp;
5950
5951	a = ap;
5952	bp = a->a_bp;
5953
5954	/*
5955	 * Cluster ops lock their component buffers but not the IO container.
5956	 */
5957	if ((bp->b_flags & B_CLUSTER) != 0)
5958		return;
5959
5960	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5961		if (vfs_badlock_print)
5962			printf(
5963			    "VOP_STRATEGY: bp is not locked but should be\n");
5964		if (vfs_badlock_ddb)
5965			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5966	}
5967}
5968
5969void
5970vop_lock_debugpre(void *ap)
5971{
5972	struct vop_lock1_args *a = ap;
5973
5974	if ((a->a_flags & LK_INTERLOCK) == 0)
5975		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5976	else
5977		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5978}
5979
5980void
5981vop_lock_debugpost(void *ap, int rc)
5982{
5983	struct vop_lock1_args *a = ap;
5984
5985	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5986	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5987		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5988}
5989
5990void
5991vop_unlock_debugpre(void *ap)
5992{
5993	struct vop_unlock_args *a = ap;
5994	struct vnode *vp = a->a_vp;
5995
5996	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5997	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5998}
5999
6000void
6001vop_need_inactive_debugpre(void *ap)
6002{
6003	struct vop_need_inactive_args *a = ap;
6004
6005	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6006}
6007
6008void
6009vop_need_inactive_debugpost(void *ap, int rc)
6010{
6011	struct vop_need_inactive_args *a = ap;
6012
6013	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6014}
6015#endif
6016
6017void
6018vop_create_pre(void *ap)
6019{
6020	struct vop_create_args *a;
6021	struct vnode *dvp;
6022
6023	a = ap;
6024	dvp = a->a_dvp;
6025	vn_seqc_write_begin(dvp);
6026}
6027
6028void
6029vop_create_post(void *ap, int rc)
6030{
6031	struct vop_create_args *a;
6032	struct vnode *dvp;
6033
6034	a = ap;
6035	dvp = a->a_dvp;
6036	vn_seqc_write_end(dvp);
6037	if (!rc)
6038		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6039}
6040
6041void
6042vop_whiteout_pre(void *ap)
6043{
6044	struct vop_whiteout_args *a;
6045	struct vnode *dvp;
6046
6047	a = ap;
6048	dvp = a->a_dvp;
6049	vn_seqc_write_begin(dvp);
6050}
6051
6052void
6053vop_whiteout_post(void *ap, int rc)
6054{
6055	struct vop_whiteout_args *a;
6056	struct vnode *dvp;
6057
6058	a = ap;
6059	dvp = a->a_dvp;
6060	vn_seqc_write_end(dvp);
6061}
6062
6063void
6064vop_deleteextattr_pre(void *ap)
6065{
6066	struct vop_deleteextattr_args *a;
6067	struct vnode *vp;
6068
6069	a = ap;
6070	vp = a->a_vp;
6071	vn_seqc_write_begin(vp);
6072}
6073
6074void
6075vop_deleteextattr_post(void *ap, int rc)
6076{
6077	struct vop_deleteextattr_args *a;
6078	struct vnode *vp;
6079
6080	a = ap;
6081	vp = a->a_vp;
6082	vn_seqc_write_end(vp);
6083	if (!rc)
6084		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6085}
6086
6087void
6088vop_link_pre(void *ap)
6089{
6090	struct vop_link_args *a;
6091	struct vnode *vp, *tdvp;
6092
6093	a = ap;
6094	vp = a->a_vp;
6095	tdvp = a->a_tdvp;
6096	vn_seqc_write_begin(vp);
6097	vn_seqc_write_begin(tdvp);
6098}
6099
6100void
6101vop_link_post(void *ap, int rc)
6102{
6103	struct vop_link_args *a;
6104	struct vnode *vp, *tdvp;
6105
6106	a = ap;
6107	vp = a->a_vp;
6108	tdvp = a->a_tdvp;
6109	vn_seqc_write_end(vp);
6110	vn_seqc_write_end(tdvp);
6111	if (!rc) {
6112		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6113		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6114	}
6115}
6116
6117void
6118vop_mkdir_pre(void *ap)
6119{
6120	struct vop_mkdir_args *a;
6121	struct vnode *dvp;
6122
6123	a = ap;
6124	dvp = a->a_dvp;
6125	vn_seqc_write_begin(dvp);
6126}
6127
6128void
6129vop_mkdir_post(void *ap, int rc)
6130{
6131	struct vop_mkdir_args *a;
6132	struct vnode *dvp;
6133
6134	a = ap;
6135	dvp = a->a_dvp;
6136	vn_seqc_write_end(dvp);
6137	if (!rc)
6138		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6139}
6140
6141#ifdef DEBUG_VFS_LOCKS
6142void
6143vop_mkdir_debugpost(void *ap, int rc)
6144{
6145	struct vop_mkdir_args *a;
6146
6147	a = ap;
6148	if (!rc)
6149		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6150}
6151#endif
6152
6153void
6154vop_mknod_pre(void *ap)
6155{
6156	struct vop_mknod_args *a;
6157	struct vnode *dvp;
6158
6159	a = ap;
6160	dvp = a->a_dvp;
6161	vn_seqc_write_begin(dvp);
6162}
6163
6164void
6165vop_mknod_post(void *ap, int rc)
6166{
6167	struct vop_mknod_args *a;
6168	struct vnode *dvp;
6169
6170	a = ap;
6171	dvp = a->a_dvp;
6172	vn_seqc_write_end(dvp);
6173	if (!rc)
6174		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6175}
6176
6177void
6178vop_reclaim_post(void *ap, int rc)
6179{
6180	struct vop_reclaim_args *a;
6181	struct vnode *vp;
6182
6183	a = ap;
6184	vp = a->a_vp;
6185	ASSERT_VOP_IN_SEQC(vp);
6186	if (!rc)
6187		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6188}
6189
6190void
6191vop_remove_pre(void *ap)
6192{
6193	struct vop_remove_args *a;
6194	struct vnode *dvp, *vp;
6195
6196	a = ap;
6197	dvp = a->a_dvp;
6198	vp = a->a_vp;
6199	vn_seqc_write_begin(dvp);
6200	vn_seqc_write_begin(vp);
6201}
6202
6203void
6204vop_remove_post(void *ap, int rc)
6205{
6206	struct vop_remove_args *a;
6207	struct vnode *dvp, *vp;
6208
6209	a = ap;
6210	dvp = a->a_dvp;
6211	vp = a->a_vp;
6212	vn_seqc_write_end(dvp);
6213	vn_seqc_write_end(vp);
6214	if (!rc) {
6215		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6216		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6217	}
6218}
6219
6220void
6221vop_rename_post(void *ap, int rc)
6222{
6223	struct vop_rename_args *a = ap;
6224	long hint;
6225
6226	if (!rc) {
6227		hint = NOTE_WRITE;
6228		if (a->a_fdvp == a->a_tdvp) {
6229			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6230				hint |= NOTE_LINK;
6231			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6232			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6233		} else {
6234			hint |= NOTE_EXTEND;
6235			if (a->a_fvp->v_type == VDIR)
6236				hint |= NOTE_LINK;
6237			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6238
6239			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6240			    a->a_tvp->v_type == VDIR)
6241				hint &= ~NOTE_LINK;
6242			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6243		}
6244
6245		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6246		if (a->a_tvp)
6247			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6248	}
6249	if (a->a_tdvp != a->a_fdvp)
6250		vdrop(a->a_fdvp);
6251	if (a->a_tvp != a->a_fvp)
6252		vdrop(a->a_fvp);
6253	vdrop(a->a_tdvp);
6254	if (a->a_tvp)
6255		vdrop(a->a_tvp);
6256}
6257
6258void
6259vop_rmdir_pre(void *ap)
6260{
6261	struct vop_rmdir_args *a;
6262	struct vnode *dvp, *vp;
6263
6264	a = ap;
6265	dvp = a->a_dvp;
6266	vp = a->a_vp;
6267	vn_seqc_write_begin(dvp);
6268	vn_seqc_write_begin(vp);
6269}
6270
6271void
6272vop_rmdir_post(void *ap, int rc)
6273{
6274	struct vop_rmdir_args *a;
6275	struct vnode *dvp, *vp;
6276
6277	a = ap;
6278	dvp = a->a_dvp;
6279	vp = a->a_vp;
6280	vn_seqc_write_end(dvp);
6281	vn_seqc_write_end(vp);
6282	if (!rc) {
6283		vp->v_vflag |= VV_UNLINKED;
6284		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6285		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6286	}
6287}
6288
6289void
6290vop_setattr_pre(void *ap)
6291{
6292	struct vop_setattr_args *a;
6293	struct vnode *vp;
6294
6295	a = ap;
6296	vp = a->a_vp;
6297	vn_seqc_write_begin(vp);
6298}
6299
6300void
6301vop_setattr_post(void *ap, int rc)
6302{
6303	struct vop_setattr_args *a;
6304	struct vnode *vp;
6305
6306	a = ap;
6307	vp = a->a_vp;
6308	vn_seqc_write_end(vp);
6309	if (!rc)
6310		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6311}
6312
6313void
6314vop_setacl_pre(void *ap)
6315{
6316	struct vop_setacl_args *a;
6317	struct vnode *vp;
6318
6319	a = ap;
6320	vp = a->a_vp;
6321	vn_seqc_write_begin(vp);
6322}
6323
6324void
6325vop_setacl_post(void *ap, int rc __unused)
6326{
6327	struct vop_setacl_args *a;
6328	struct vnode *vp;
6329
6330	a = ap;
6331	vp = a->a_vp;
6332	vn_seqc_write_end(vp);
6333}
6334
6335void
6336vop_setextattr_pre(void *ap)
6337{
6338	struct vop_setextattr_args *a;
6339	struct vnode *vp;
6340
6341	a = ap;
6342	vp = a->a_vp;
6343	vn_seqc_write_begin(vp);
6344}
6345
6346void
6347vop_setextattr_post(void *ap, int rc)
6348{
6349	struct vop_setextattr_args *a;
6350	struct vnode *vp;
6351
6352	a = ap;
6353	vp = a->a_vp;
6354	vn_seqc_write_end(vp);
6355	if (!rc)
6356		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6357}
6358
6359void
6360vop_symlink_pre(void *ap)
6361{
6362	struct vop_symlink_args *a;
6363	struct vnode *dvp;
6364
6365	a = ap;
6366	dvp = a->a_dvp;
6367	vn_seqc_write_begin(dvp);
6368}
6369
6370void
6371vop_symlink_post(void *ap, int rc)
6372{
6373	struct vop_symlink_args *a;
6374	struct vnode *dvp;
6375
6376	a = ap;
6377	dvp = a->a_dvp;
6378	vn_seqc_write_end(dvp);
6379	if (!rc)
6380		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6381}
6382
6383void
6384vop_open_post(void *ap, int rc)
6385{
6386	struct vop_open_args *a = ap;
6387
6388	if (!rc)
6389		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6390}
6391
6392void
6393vop_close_post(void *ap, int rc)
6394{
6395	struct vop_close_args *a = ap;
6396
6397	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6398	    !VN_IS_DOOMED(a->a_vp))) {
6399		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6400		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6401	}
6402}
6403
6404void
6405vop_read_post(void *ap, int rc)
6406{
6407	struct vop_read_args *a = ap;
6408
6409	if (!rc)
6410		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6411}
6412
6413void
6414vop_read_pgcache_post(void *ap, int rc)
6415{
6416	struct vop_read_pgcache_args *a = ap;
6417
6418	if (!rc)
6419		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6420}
6421
6422void
6423vop_readdir_post(void *ap, int rc)
6424{
6425	struct vop_readdir_args *a = ap;
6426
6427	if (!rc)
6428		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6429}
6430
6431static struct knlist fs_knlist;
6432
6433static void
6434vfs_event_init(void *arg)
6435{
6436	knlist_init_mtx(&fs_knlist, NULL);
6437}
6438/* XXX - correct order? */
6439SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6440
6441void
6442vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6443{
6444
6445	KNOTE_UNLOCKED(&fs_knlist, event);
6446}
6447
6448static int	filt_fsattach(struct knote *kn);
6449static void	filt_fsdetach(struct knote *kn);
6450static int	filt_fsevent(struct knote *kn, long hint);
6451
6452struct filterops fs_filtops = {
6453	.f_isfd = 0,
6454	.f_attach = filt_fsattach,
6455	.f_detach = filt_fsdetach,
6456	.f_event = filt_fsevent
6457};
6458
6459static int
6460filt_fsattach(struct knote *kn)
6461{
6462
6463	kn->kn_flags |= EV_CLEAR;
6464	knlist_add(&fs_knlist, kn, 0);
6465	return (0);
6466}
6467
6468static void
6469filt_fsdetach(struct knote *kn)
6470{
6471
6472	knlist_remove(&fs_knlist, kn, 0);
6473}
6474
6475static int
6476filt_fsevent(struct knote *kn, long hint)
6477{
6478
6479	kn->kn_fflags |= kn->kn_sfflags & hint;
6480
6481	return (kn->kn_fflags != 0);
6482}
6483
6484static int
6485sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6486{
6487	struct vfsidctl vc;
6488	int error;
6489	struct mount *mp;
6490
6491	error = SYSCTL_IN(req, &vc, sizeof(vc));
6492	if (error)
6493		return (error);
6494	if (vc.vc_vers != VFS_CTL_VERS1)
6495		return (EINVAL);
6496	mp = vfs_getvfs(&vc.vc_fsid);
6497	if (mp == NULL)
6498		return (ENOENT);
6499	/* ensure that a specific sysctl goes to the right filesystem. */
6500	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6501	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6502		vfs_rel(mp);
6503		return (EINVAL);
6504	}
6505	VCTLTOREQ(&vc, req);
6506	error = VFS_SYSCTL(mp, vc.vc_op, req);
6507	vfs_rel(mp);
6508	return (error);
6509}
6510
6511SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6512    NULL, 0, sysctl_vfs_ctl, "",
6513    "Sysctl by fsid");
6514
6515/*
6516 * Function to initialize a va_filerev field sensibly.
6517 * XXX: Wouldn't a random number make a lot more sense ??
6518 */
6519u_quad_t
6520init_va_filerev(void)
6521{
6522	struct bintime bt;
6523
6524	getbinuptime(&bt);
6525	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6526}
6527
6528static int	filt_vfsread(struct knote *kn, long hint);
6529static int	filt_vfswrite(struct knote *kn, long hint);
6530static int	filt_vfsvnode(struct knote *kn, long hint);
6531static void	filt_vfsdetach(struct knote *kn);
6532static struct filterops vfsread_filtops = {
6533	.f_isfd = 1,
6534	.f_detach = filt_vfsdetach,
6535	.f_event = filt_vfsread
6536};
6537static struct filterops vfswrite_filtops = {
6538	.f_isfd = 1,
6539	.f_detach = filt_vfsdetach,
6540	.f_event = filt_vfswrite
6541};
6542static struct filterops vfsvnode_filtops = {
6543	.f_isfd = 1,
6544	.f_detach = filt_vfsdetach,
6545	.f_event = filt_vfsvnode
6546};
6547
6548static void
6549vfs_knllock(void *arg)
6550{
6551	struct vnode *vp = arg;
6552
6553	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6554}
6555
6556static void
6557vfs_knlunlock(void *arg)
6558{
6559	struct vnode *vp = arg;
6560
6561	VOP_UNLOCK(vp);
6562}
6563
6564static void
6565vfs_knl_assert_lock(void *arg, int what)
6566{
6567#ifdef DEBUG_VFS_LOCKS
6568	struct vnode *vp = arg;
6569
6570	if (what == LA_LOCKED)
6571		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6572	else
6573		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6574#endif
6575}
6576
6577int
6578vfs_kqfilter(struct vop_kqfilter_args *ap)
6579{
6580	struct vnode *vp = ap->a_vp;
6581	struct knote *kn = ap->a_kn;
6582	struct knlist *knl;
6583
6584	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6585	    kn->kn_filter != EVFILT_WRITE),
6586	    ("READ/WRITE filter on a FIFO leaked through"));
6587	switch (kn->kn_filter) {
6588	case EVFILT_READ:
6589		kn->kn_fop = &vfsread_filtops;
6590		break;
6591	case EVFILT_WRITE:
6592		kn->kn_fop = &vfswrite_filtops;
6593		break;
6594	case EVFILT_VNODE:
6595		kn->kn_fop = &vfsvnode_filtops;
6596		break;
6597	default:
6598		return (EINVAL);
6599	}
6600
6601	kn->kn_hook = (caddr_t)vp;
6602
6603	v_addpollinfo(vp);
6604	if (vp->v_pollinfo == NULL)
6605		return (ENOMEM);
6606	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6607	vhold(vp);
6608	knlist_add(knl, kn, 0);
6609
6610	return (0);
6611}
6612
6613/*
6614 * Detach knote from vnode
6615 */
6616static void
6617filt_vfsdetach(struct knote *kn)
6618{
6619	struct vnode *vp = (struct vnode *)kn->kn_hook;
6620
6621	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6622	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6623	vdrop(vp);
6624}
6625
6626/*ARGSUSED*/
6627static int
6628filt_vfsread(struct knote *kn, long hint)
6629{
6630	struct vnode *vp = (struct vnode *)kn->kn_hook;
6631	off_t size;
6632	int res;
6633
6634	/*
6635	 * filesystem is gone, so set the EOF flag and schedule
6636	 * the knote for deletion.
6637	 */
6638	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6639		VI_LOCK(vp);
6640		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6641		VI_UNLOCK(vp);
6642		return (1);
6643	}
6644
6645	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6646		return (0);
6647
6648	VI_LOCK(vp);
6649	kn->kn_data = size - kn->kn_fp->f_offset;
6650	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6651	VI_UNLOCK(vp);
6652	return (res);
6653}
6654
6655/*ARGSUSED*/
6656static int
6657filt_vfswrite(struct knote *kn, long hint)
6658{
6659	struct vnode *vp = (struct vnode *)kn->kn_hook;
6660
6661	VI_LOCK(vp);
6662
6663	/*
6664	 * filesystem is gone, so set the EOF flag and schedule
6665	 * the knote for deletion.
6666	 */
6667	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6668		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6669
6670	kn->kn_data = 0;
6671	VI_UNLOCK(vp);
6672	return (1);
6673}
6674
6675static int
6676filt_vfsvnode(struct knote *kn, long hint)
6677{
6678	struct vnode *vp = (struct vnode *)kn->kn_hook;
6679	int res;
6680
6681	VI_LOCK(vp);
6682	if (kn->kn_sfflags & hint)
6683		kn->kn_fflags |= hint;
6684	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6685		kn->kn_flags |= EV_EOF;
6686		VI_UNLOCK(vp);
6687		return (1);
6688	}
6689	res = (kn->kn_fflags != 0);
6690	VI_UNLOCK(vp);
6691	return (res);
6692}
6693
6694int
6695vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6696{
6697	int error;
6698
6699	if (dp->d_reclen > ap->a_uio->uio_resid)
6700		return (ENAMETOOLONG);
6701	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6702	if (error) {
6703		if (ap->a_ncookies != NULL) {
6704			if (ap->a_cookies != NULL)
6705				free(ap->a_cookies, M_TEMP);
6706			ap->a_cookies = NULL;
6707			*ap->a_ncookies = 0;
6708		}
6709		return (error);
6710	}
6711	if (ap->a_ncookies == NULL)
6712		return (0);
6713
6714	KASSERT(ap->a_cookies,
6715	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6716
6717	*ap->a_cookies = realloc(*ap->a_cookies,
6718	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6719	(*ap->a_cookies)[*ap->a_ncookies] = off;
6720	*ap->a_ncookies += 1;
6721	return (0);
6722}
6723
6724/*
6725 * The purpose of this routine is to remove granularity from accmode_t,
6726 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6727 * VADMIN and VAPPEND.
6728 *
6729 * If it returns 0, the caller is supposed to continue with the usual
6730 * access checks using 'accmode' as modified by this routine.  If it
6731 * returns nonzero value, the caller is supposed to return that value
6732 * as errno.
6733 *
6734 * Note that after this routine runs, accmode may be zero.
6735 */
6736int
6737vfs_unixify_accmode(accmode_t *accmode)
6738{
6739	/*
6740	 * There is no way to specify explicit "deny" rule using
6741	 * file mode or POSIX.1e ACLs.
6742	 */
6743	if (*accmode & VEXPLICIT_DENY) {
6744		*accmode = 0;
6745		return (0);
6746	}
6747
6748	/*
6749	 * None of these can be translated into usual access bits.
6750	 * Also, the common case for NFSv4 ACLs is to not contain
6751	 * either of these bits. Caller should check for VWRITE
6752	 * on the containing directory instead.
6753	 */
6754	if (*accmode & (VDELETE_CHILD | VDELETE))
6755		return (EPERM);
6756
6757	if (*accmode & VADMIN_PERMS) {
6758		*accmode &= ~VADMIN_PERMS;
6759		*accmode |= VADMIN;
6760	}
6761
6762	/*
6763	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6764	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6765	 */
6766	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6767
6768	return (0);
6769}
6770
6771/*
6772 * Clear out a doomed vnode (if any) and replace it with a new one as long
6773 * as the fs is not being unmounted. Return the root vnode to the caller.
6774 */
6775static int __noinline
6776vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6777{
6778	struct vnode *vp;
6779	int error;
6780
6781restart:
6782	if (mp->mnt_rootvnode != NULL) {
6783		MNT_ILOCK(mp);
6784		vp = mp->mnt_rootvnode;
6785		if (vp != NULL) {
6786			if (!VN_IS_DOOMED(vp)) {
6787				vrefact(vp);
6788				MNT_IUNLOCK(mp);
6789				error = vn_lock(vp, flags);
6790				if (error == 0) {
6791					*vpp = vp;
6792					return (0);
6793				}
6794				vrele(vp);
6795				goto restart;
6796			}
6797			/*
6798			 * Clear the old one.
6799			 */
6800			mp->mnt_rootvnode = NULL;
6801		}
6802		MNT_IUNLOCK(mp);
6803		if (vp != NULL) {
6804			vfs_op_barrier_wait(mp);
6805			vrele(vp);
6806		}
6807	}
6808	error = VFS_CACHEDROOT(mp, flags, vpp);
6809	if (error != 0)
6810		return (error);
6811	if (mp->mnt_vfs_ops == 0) {
6812		MNT_ILOCK(mp);
6813		if (mp->mnt_vfs_ops != 0) {
6814			MNT_IUNLOCK(mp);
6815			return (0);
6816		}
6817		if (mp->mnt_rootvnode == NULL) {
6818			vrefact(*vpp);
6819			mp->mnt_rootvnode = *vpp;
6820		} else {
6821			if (mp->mnt_rootvnode != *vpp) {
6822				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6823					panic("%s: mismatch between vnode returned "
6824					    " by VFS_CACHEDROOT and the one cached "
6825					    " (%p != %p)",
6826					    __func__, *vpp, mp->mnt_rootvnode);
6827				}
6828			}
6829		}
6830		MNT_IUNLOCK(mp);
6831	}
6832	return (0);
6833}
6834
6835int
6836vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6837{
6838	struct mount_pcpu *mpcpu;
6839	struct vnode *vp;
6840	int error;
6841
6842	if (!vfs_op_thread_enter(mp, mpcpu))
6843		return (vfs_cache_root_fallback(mp, flags, vpp));
6844	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6845	if (vp == NULL || VN_IS_DOOMED(vp)) {
6846		vfs_op_thread_exit(mp, mpcpu);
6847		return (vfs_cache_root_fallback(mp, flags, vpp));
6848	}
6849	vrefact(vp);
6850	vfs_op_thread_exit(mp, mpcpu);
6851	error = vn_lock(vp, flags);
6852	if (error != 0) {
6853		vrele(vp);
6854		return (vfs_cache_root_fallback(mp, flags, vpp));
6855	}
6856	*vpp = vp;
6857	return (0);
6858}
6859
6860struct vnode *
6861vfs_cache_root_clear(struct mount *mp)
6862{
6863	struct vnode *vp;
6864
6865	/*
6866	 * ops > 0 guarantees there is nobody who can see this vnode
6867	 */
6868	MPASS(mp->mnt_vfs_ops > 0);
6869	vp = mp->mnt_rootvnode;
6870	if (vp != NULL)
6871		vn_seqc_write_begin(vp);
6872	mp->mnt_rootvnode = NULL;
6873	return (vp);
6874}
6875
6876void
6877vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6878{
6879
6880	MPASS(mp->mnt_vfs_ops > 0);
6881	vrefact(vp);
6882	mp->mnt_rootvnode = vp;
6883}
6884
6885/*
6886 * These are helper functions for filesystems to traverse all
6887 * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6888 *
6889 * This interface replaces MNT_VNODE_FOREACH.
6890 */
6891
6892struct vnode *
6893__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6894{
6895	struct vnode *vp;
6896
6897	maybe_yield();
6898	MNT_ILOCK(mp);
6899	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6900	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6901	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6902		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6903		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6904			continue;
6905		VI_LOCK(vp);
6906		if (VN_IS_DOOMED(vp)) {
6907			VI_UNLOCK(vp);
6908			continue;
6909		}
6910		break;
6911	}
6912	if (vp == NULL) {
6913		__mnt_vnode_markerfree_all(mvp, mp);
6914		/* MNT_IUNLOCK(mp); -- done in above function */
6915		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6916		return (NULL);
6917	}
6918	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6919	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6920	MNT_IUNLOCK(mp);
6921	return (vp);
6922}
6923
6924struct vnode *
6925__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6926{
6927	struct vnode *vp;
6928
6929	*mvp = vn_alloc_marker(mp);
6930	MNT_ILOCK(mp);
6931	MNT_REF(mp);
6932
6933	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6934		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6935		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6936			continue;
6937		VI_LOCK(vp);
6938		if (VN_IS_DOOMED(vp)) {
6939			VI_UNLOCK(vp);
6940			continue;
6941		}
6942		break;
6943	}
6944	if (vp == NULL) {
6945		MNT_REL(mp);
6946		MNT_IUNLOCK(mp);
6947		vn_free_marker(*mvp);
6948		*mvp = NULL;
6949		return (NULL);
6950	}
6951	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6952	MNT_IUNLOCK(mp);
6953	return (vp);
6954}
6955
6956void
6957__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6958{
6959
6960	if (*mvp == NULL) {
6961		MNT_IUNLOCK(mp);
6962		return;
6963	}
6964
6965	mtx_assert(MNT_MTX(mp), MA_OWNED);
6966
6967	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6968	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6969	MNT_REL(mp);
6970	MNT_IUNLOCK(mp);
6971	vn_free_marker(*mvp);
6972	*mvp = NULL;
6973}
6974
6975/*
6976 * These are helper functions for filesystems to traverse their
6977 * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6978 */
6979static void
6980mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6981{
6982
6983	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6984
6985	MNT_ILOCK(mp);
6986	MNT_REL(mp);
6987	MNT_IUNLOCK(mp);
6988	vn_free_marker(*mvp);
6989	*mvp = NULL;
6990}
6991
6992/*
6993 * Relock the mp mount vnode list lock with the vp vnode interlock in the
6994 * conventional lock order during mnt_vnode_next_lazy iteration.
6995 *
6996 * On entry, the mount vnode list lock is held and the vnode interlock is not.
6997 * The list lock is dropped and reacquired.  On success, both locks are held.
6998 * On failure, the mount vnode list lock is held but the vnode interlock is
6999 * not, and the procedure may have yielded.
7000 */
7001static bool
7002mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7003    struct vnode *vp)
7004{
7005
7006	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7007	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7008	    ("%s: bad marker", __func__));
7009	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7010	    ("%s: inappropriate vnode", __func__));
7011	ASSERT_VI_UNLOCKED(vp, __func__);
7012	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7013
7014	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7015	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7016
7017	/*
7018	 * Note we may be racing against vdrop which transitioned the hold
7019	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7020	 * if we are the only user after we get the interlock we will just
7021	 * vdrop.
7022	 */
7023	vhold(vp);
7024	mtx_unlock(&mp->mnt_listmtx);
7025	VI_LOCK(vp);
7026	if (VN_IS_DOOMED(vp)) {
7027		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7028		goto out_lost;
7029	}
7030	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7031	/*
7032	 * There is nothing to do if we are the last user.
7033	 */
7034	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7035		goto out_lost;
7036	mtx_lock(&mp->mnt_listmtx);
7037	return (true);
7038out_lost:
7039	vdropl(vp);
7040	maybe_yield();
7041	mtx_lock(&mp->mnt_listmtx);
7042	return (false);
7043}
7044
7045static struct vnode *
7046mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7047    void *cbarg)
7048{
7049	struct vnode *vp;
7050
7051	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7052	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7053restart:
7054	vp = TAILQ_NEXT(*mvp, v_lazylist);
7055	while (vp != NULL) {
7056		if (vp->v_type == VMARKER) {
7057			vp = TAILQ_NEXT(vp, v_lazylist);
7058			continue;
7059		}
7060		/*
7061		 * See if we want to process the vnode. Note we may encounter a
7062		 * long string of vnodes we don't care about and hog the list
7063		 * as a result. Check for it and requeue the marker.
7064		 */
7065		VNPASS(!VN_IS_DOOMED(vp), vp);
7066		if (!cb(vp, cbarg)) {
7067			if (!should_yield()) {
7068				vp = TAILQ_NEXT(vp, v_lazylist);
7069				continue;
7070			}
7071			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7072			    v_lazylist);
7073			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7074			    v_lazylist);
7075			mtx_unlock(&mp->mnt_listmtx);
7076			kern_yield(PRI_USER);
7077			mtx_lock(&mp->mnt_listmtx);
7078			goto restart;
7079		}
7080		/*
7081		 * Try-lock because this is the wrong lock order.
7082		 */
7083		if (!VI_TRYLOCK(vp) &&
7084		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7085			goto restart;
7086		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7087		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7088		    ("alien vnode on the lazy list %p %p", vp, mp));
7089		VNPASS(vp->v_mount == mp, vp);
7090		VNPASS(!VN_IS_DOOMED(vp), vp);
7091		break;
7092	}
7093	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7094
7095	/* Check if we are done */
7096	if (vp == NULL) {
7097		mtx_unlock(&mp->mnt_listmtx);
7098		mnt_vnode_markerfree_lazy(mvp, mp);
7099		return (NULL);
7100	}
7101	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7102	mtx_unlock(&mp->mnt_listmtx);
7103	ASSERT_VI_LOCKED(vp, "lazy iter");
7104	return (vp);
7105}
7106
7107struct vnode *
7108__mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7109    void *cbarg)
7110{
7111
7112	maybe_yield();
7113	mtx_lock(&mp->mnt_listmtx);
7114	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7115}
7116
7117struct vnode *
7118__mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7119    void *cbarg)
7120{
7121	struct vnode *vp;
7122
7123	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7124		return (NULL);
7125
7126	*mvp = vn_alloc_marker(mp);
7127	MNT_ILOCK(mp);
7128	MNT_REF(mp);
7129	MNT_IUNLOCK(mp);
7130
7131	mtx_lock(&mp->mnt_listmtx);
7132	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7133	if (vp == NULL) {
7134		mtx_unlock(&mp->mnt_listmtx);
7135		mnt_vnode_markerfree_lazy(mvp, mp);
7136		return (NULL);
7137	}
7138	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7139	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7140}
7141
7142void
7143__mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7144{
7145
7146	if (*mvp == NULL)
7147		return;
7148
7149	mtx_lock(&mp->mnt_listmtx);
7150	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7151	mtx_unlock(&mp->mnt_listmtx);
7152	mnt_vnode_markerfree_lazy(mvp, mp);
7153}
7154
7155int
7156vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7157{
7158
7159	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7160		cnp->cn_flags &= ~NOEXECCHECK;
7161		return (0);
7162	}
7163
7164	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7165}
7166
7167/*
7168 * Do not use this variant unless you have means other than the hold count
7169 * to prevent the vnode from getting freed.
7170 */
7171void
7172vn_seqc_write_begin_locked(struct vnode *vp)
7173{
7174
7175	ASSERT_VI_LOCKED(vp, __func__);
7176	VNPASS(vp->v_holdcnt > 0, vp);
7177	VNPASS(vp->v_seqc_users >= 0, vp);
7178	vp->v_seqc_users++;
7179	if (vp->v_seqc_users == 1)
7180		seqc_sleepable_write_begin(&vp->v_seqc);
7181}
7182
7183void
7184vn_seqc_write_begin(struct vnode *vp)
7185{
7186
7187	VI_LOCK(vp);
7188	vn_seqc_write_begin_locked(vp);
7189	VI_UNLOCK(vp);
7190}
7191
7192void
7193vn_seqc_write_end_locked(struct vnode *vp)
7194{
7195
7196	ASSERT_VI_LOCKED(vp, __func__);
7197	VNPASS(vp->v_seqc_users > 0, vp);
7198	vp->v_seqc_users--;
7199	if (vp->v_seqc_users == 0)
7200		seqc_sleepable_write_end(&vp->v_seqc);
7201}
7202
7203void
7204vn_seqc_write_end(struct vnode *vp)
7205{
7206
7207	VI_LOCK(vp);
7208	vn_seqc_write_end_locked(vp);
7209	VI_UNLOCK(vp);
7210}
7211
7212/*
7213 * Special case handling for allocating and freeing vnodes.
7214 *
7215 * The counter remains unchanged on free so that a doomed vnode will
7216 * keep testing as in modify as long as it is accessible with SMR.
7217 */
7218static void
7219vn_seqc_init(struct vnode *vp)
7220{
7221
7222	vp->v_seqc = 0;
7223	vp->v_seqc_users = 0;
7224}
7225
7226static void
7227vn_seqc_write_end_free(struct vnode *vp)
7228{
7229
7230	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7231	VNPASS(vp->v_seqc_users == 1, vp);
7232}
7233
7234void
7235vn_irflag_set_locked(struct vnode *vp, short toset)
7236{
7237	short flags;
7238
7239	ASSERT_VI_LOCKED(vp, __func__);
7240	flags = vn_irflag_read(vp);
7241	VNASSERT((flags & toset) == 0, vp,
7242	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7243	    __func__, flags, toset));
7244	atomic_store_short(&vp->v_irflag, flags | toset);
7245}
7246
7247void
7248vn_irflag_set(struct vnode *vp, short toset)
7249{
7250
7251	VI_LOCK(vp);
7252	vn_irflag_set_locked(vp, toset);
7253	VI_UNLOCK(vp);
7254}
7255
7256void
7257vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7258{
7259	short flags;
7260
7261	ASSERT_VI_LOCKED(vp, __func__);
7262	flags = vn_irflag_read(vp);
7263	atomic_store_short(&vp->v_irflag, flags | toset);
7264}
7265
7266void
7267vn_irflag_set_cond(struct vnode *vp, short toset)
7268{
7269
7270	VI_LOCK(vp);
7271	vn_irflag_set_cond_locked(vp, toset);
7272	VI_UNLOCK(vp);
7273}
7274
7275void
7276vn_irflag_unset_locked(struct vnode *vp, short tounset)
7277{
7278	short flags;
7279
7280	ASSERT_VI_LOCKED(vp, __func__);
7281	flags = vn_irflag_read(vp);
7282	VNASSERT((flags & tounset) == tounset, vp,
7283	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7284	    __func__, flags, tounset));
7285	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7286}
7287
7288void
7289vn_irflag_unset(struct vnode *vp, short tounset)
7290{
7291
7292	VI_LOCK(vp);
7293	vn_irflag_unset_locked(vp, tounset);
7294	VI_UNLOCK(vp);
7295}
7296
7297int
7298vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7299{
7300	struct vattr vattr;
7301	int error;
7302
7303	ASSERT_VOP_LOCKED(vp, __func__);
7304	error = VOP_GETATTR(vp, &vattr, cred);
7305	if (__predict_true(error == 0)) {
7306		if (vattr.va_size <= OFF_MAX)
7307			*size = vattr.va_size;
7308		else
7309			error = EFBIG;
7310	}
7311	return (error);
7312}
7313
7314int
7315vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7316{
7317	int error;
7318
7319	VOP_LOCK(vp, LK_SHARED);
7320	error = vn_getsize_locked(vp, size, cred);
7321	VOP_UNLOCK(vp);
7322	return (error);
7323}
7324
7325#ifdef INVARIANTS
7326void
7327vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7328{
7329
7330	switch (vp->v_state) {
7331	case VSTATE_UNINITIALIZED:
7332		switch (state) {
7333		case VSTATE_CONSTRUCTED:
7334		case VSTATE_DESTROYING:
7335			return;
7336		default:
7337			break;
7338		}
7339		break;
7340	case VSTATE_CONSTRUCTED:
7341		ASSERT_VOP_ELOCKED(vp, __func__);
7342		switch (state) {
7343		case VSTATE_DESTROYING:
7344			return;
7345		default:
7346			break;
7347		}
7348		break;
7349	case VSTATE_DESTROYING:
7350		ASSERT_VOP_ELOCKED(vp, __func__);
7351		switch (state) {
7352		case VSTATE_DEAD:
7353			return;
7354		default:
7355			break;
7356		}
7357		break;
7358	case VSTATE_DEAD:
7359		switch (state) {
7360		case VSTATE_UNINITIALIZED:
7361			return;
7362		default:
7363			break;
7364		}
7365		break;
7366	}
7367
7368	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7369	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7370}
7371#endif
7372