1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Berkeley Software Design Inc's name may not be used to endorse or
15 *    promote products derived from this software without specific prior
16 *    written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32 */
33
34/*
35 * Implementation of turnstiles used to hold queue of threads blocked on
36 * non-sleepable locks.  Sleepable locks use condition variables to
37 * implement their queues.  Turnstiles differ from a sleep queue in that
38 * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
39 * when one thread is enqueued onto a turnstile, it can lend its priority
40 * to the owning thread.
41 *
42 * We wish to avoid bloating locks with an embedded turnstile and we do not
43 * want to use back-pointers in the locks for the same reason.  Thus, we
44 * use a similar approach to that of Solaris 7 as described in Solaris
45 * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
46 * in a hash table based on the address of the lock.  Each entry in the
47 * hash table is a linked-lists of turnstiles and is called a turnstile
48 * chain.  Each chain contains a spin mutex that protects all of the
49 * turnstiles in the chain.
50 *
51 * Each time a thread is created, a turnstile is allocated from a UMA zone
52 * and attached to that thread.  When a thread blocks on a lock, if it is the
53 * first thread to block, it lends its turnstile to the lock.  If the lock
54 * already has a turnstile, then it gives its turnstile to the lock's
55 * turnstile's free list.  When a thread is woken up, it takes a turnstile from
56 * the free list if there are any other waiters.  If it is the only thread
57 * blocked on the lock, then it reclaims the turnstile associated with the lock
58 * and removes it from the hash table.
59 */
60
61#include <sys/cdefs.h>
62#include "opt_ddb.h"
63#include "opt_turnstile_profiling.h"
64#include "opt_sched.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/kdb.h>
69#include <sys/kernel.h>
70#include <sys/ktr.h>
71#include <sys/lock.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/queue.h>
75#include <sys/sched.h>
76#include <sys/sdt.h>
77#include <sys/sysctl.h>
78#include <sys/turnstile.h>
79
80#include <vm/uma.h>
81
82#ifdef DDB
83#include <ddb/ddb.h>
84#include <sys/lockmgr.h>
85#include <sys/sx.h>
86#endif
87
88/*
89 * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
90 * number chosen because the sleep queue's use the same value for the
91 * shift.  Basically, we ignore the lower 8 bits of the address.
92 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
93 */
94#define	TC_TABLESIZE	128			/* Must be power of 2. */
95#define	TC_MASK		(TC_TABLESIZE - 1)
96#define	TC_SHIFT	8
97#define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
98#define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
99
100/*
101 * There are three different lists of turnstiles as follows.  The list
102 * connected by ts_link entries is a per-thread list of all the turnstiles
103 * attached to locks that we own.  This is used to fixup our priority when
104 * a lock is released.  The other two lists use the ts_hash entries.  The
105 * first of these two is the turnstile chain list that a turnstile is on
106 * when it is attached to a lock.  The second list to use ts_hash is the
107 * free list hung off of a turnstile that is attached to a lock.
108 *
109 * Each turnstile contains three lists of threads.  The two ts_blocked lists
110 * are linked list of threads blocked on the turnstile's lock.  One list is
111 * for exclusive waiters, and the other is for shared waiters.  The
112 * ts_pending list is a linked list of threads previously awakened by
113 * turnstile_signal() or turnstile_wait() that are waiting to be put on
114 * the run queue.
115 *
116 * Locking key:
117 *  c - turnstile chain lock
118 *  q - td_contested lock
119 */
120struct turnstile {
121	struct mtx ts_lock;			/* Spin lock for self. */
122	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
123	struct threadqueue ts_pending;		/* (c) Pending threads. */
124	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
125	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
126	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
127	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
128	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
129};
130
131struct turnstile_chain {
132	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
133	struct mtx tc_lock;			/* Spin lock for this chain. */
134#ifdef TURNSTILE_PROFILING
135	u_int	tc_depth;			/* Length of tc_queues. */
136	u_int	tc_max_depth;			/* Max length of tc_queues. */
137#endif
138};
139
140#ifdef TURNSTILE_PROFILING
141u_int turnstile_max_depth;
142static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
143    "turnstile profiling");
144static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains,
145    CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
146    "turnstile chain stats");
147SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
148    &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
149#endif
150static struct mtx td_contested_lock;
151static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
152static uma_zone_t turnstile_zone;
153
154/*
155 * Prototypes for non-exported routines.
156 */
157static void	init_turnstile0(void *dummy);
158#ifdef TURNSTILE_PROFILING
159static void	init_turnstile_profiling(void *arg);
160#endif
161static void	propagate_priority(struct thread *td);
162static int	turnstile_adjust_thread(struct turnstile *ts,
163		    struct thread *td);
164static struct thread *turnstile_first_waiter(struct turnstile *ts);
165static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
166#ifdef INVARIANTS
167static void	turnstile_dtor(void *mem, int size, void *arg);
168#endif
169static int	turnstile_init(void *mem, int size, int flags);
170static void	turnstile_fini(void *mem, int size);
171
172SDT_PROVIDER_DECLARE(sched);
173SDT_PROBE_DEFINE(sched, , , sleep);
174SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
175    "struct proc *");
176
177static inline void
178propagate_unlock_ts(struct turnstile *top, struct turnstile *ts)
179{
180
181	if (ts != top)
182		mtx_unlock_spin(&ts->ts_lock);
183}
184
185static inline void
186propagate_unlock_td(struct turnstile *top, struct thread *td)
187{
188
189	if (td->td_lock != &top->ts_lock)
190		thread_unlock(td);
191}
192
193/*
194 * Walks the chain of turnstiles and their owners to propagate the priority
195 * of the thread being blocked to all the threads holding locks that have to
196 * release their locks before this thread can run again.
197 */
198static void
199propagate_priority(struct thread *td)
200{
201	struct turnstile *ts, *top;
202	int pri;
203
204	THREAD_LOCK_ASSERT(td, MA_OWNED);
205	pri = td->td_priority;
206	top = ts = td->td_blocked;
207	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
208
209	/*
210	 * The original turnstile lock is held across the entire
211	 * operation.  We only ever lock down the chain so the lock
212	 * order is constant.
213	 */
214	for (;;) {
215		td = ts->ts_owner;
216
217		if (td == NULL) {
218			/*
219			 * This might be a read lock with no owner.  There's
220			 * not much we can do, so just bail.
221			 */
222			propagate_unlock_ts(top, ts);
223			return;
224		}
225
226		/*
227		 * Wait for the thread lock to be stable and then only
228		 * acquire if it is not the turnstile lock.
229		 */
230		thread_lock_block_wait(td);
231		if (td->td_lock != &ts->ts_lock) {
232			thread_lock_flags(td, MTX_DUPOK);
233			propagate_unlock_ts(top, ts);
234		}
235		MPASS(td->td_proc != NULL);
236		MPASS(td->td_proc->p_magic == P_MAGIC);
237
238		/*
239		 * If the thread is asleep, then we are probably about
240		 * to deadlock.  To make debugging this easier, show
241		 * backtrace of misbehaving thread and panic to not
242		 * leave the kernel deadlocked.
243		 */
244		if (TD_IS_SLEEPING(td)) {
245			printf(
246		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
247			    td->td_tid, td->td_proc->p_pid);
248			kdb_backtrace_thread(td);
249			panic("sleeping thread");
250		}
251
252		/*
253		 * If this thread already has higher priority than the
254		 * thread that is being blocked, we are finished.
255		 */
256		if (td->td_priority <= pri) {
257			propagate_unlock_td(top, td);
258			return;
259		}
260
261		/*
262		 * Bump this thread's priority.
263		 */
264		sched_lend_prio(td, pri);
265
266		/*
267		 * If lock holder is actually running or on the run queue
268		 * then we are done.
269		 */
270		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
271			MPASS(td->td_blocked == NULL);
272			propagate_unlock_td(top, td);
273			return;
274		}
275
276#ifndef SMP
277		/*
278		 * For UP, we check to see if td is curthread (this shouldn't
279		 * ever happen however as it would mean we are in a deadlock.)
280		 */
281		KASSERT(td != curthread, ("Deadlock detected"));
282#endif
283
284		/*
285		 * If we aren't blocked on a lock, we should be.
286		 */
287		KASSERT(TD_ON_LOCK(td), (
288		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
289		    td->td_tid, td->td_name, TD_GET_STATE(td),
290		    ts->ts_lockobj->lo_name));
291
292		/*
293		 * Pick up the lock that td is blocked on.
294		 */
295		ts = td->td_blocked;
296		MPASS(ts != NULL);
297		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
298		/* Resort td on the list if needed. */
299		if (!turnstile_adjust_thread(ts, td)) {
300			propagate_unlock_ts(top, ts);
301			return;
302		}
303		/* The thread lock is released as ts lock above. */
304	}
305}
306
307/*
308 * Adjust the thread's position on a turnstile after its priority has been
309 * changed.
310 */
311static int
312turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
313{
314	struct thread *td1, *td2;
315	int queue;
316
317	THREAD_LOCK_ASSERT(td, MA_OWNED);
318	MPASS(TD_ON_LOCK(td));
319
320	/*
321	 * This thread may not be blocked on this turnstile anymore
322	 * but instead might already be woken up on another CPU
323	 * that is waiting on the thread lock in turnstile_unpend() to
324	 * finish waking this thread up.  We can detect this case
325	 * by checking to see if this thread has been given a
326	 * turnstile by either turnstile_signal() or
327	 * turnstile_broadcast().  In this case, treat the thread as
328	 * if it was already running.
329	 */
330	if (td->td_turnstile != NULL)
331		return (0);
332
333	/*
334	 * Check if the thread needs to be moved on the blocked chain.
335	 * It needs to be moved if either its priority is lower than
336	 * the previous thread or higher than the next thread.
337	 */
338	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
339	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
340	td2 = TAILQ_NEXT(td, td_lockq);
341	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
342	    (td2 != NULL && td->td_priority > td2->td_priority)) {
343		/*
344		 * Remove thread from blocked chain and determine where
345		 * it should be moved to.
346		 */
347		queue = td->td_tsqueue;
348		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
349		mtx_lock_spin(&td_contested_lock);
350		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
351		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
352			MPASS(td1->td_proc->p_magic == P_MAGIC);
353			if (td1->td_priority > td->td_priority)
354				break;
355		}
356
357		if (td1 == NULL)
358			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
359		else
360			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
361		mtx_unlock_spin(&td_contested_lock);
362		if (td1 == NULL)
363			CTR3(KTR_LOCK,
364		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
365			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
366		else
367			CTR4(KTR_LOCK,
368		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
369			    td->td_tid, td1->td_tid, ts->ts_lockobj,
370			    ts->ts_lockobj->lo_name);
371	}
372	return (1);
373}
374
375/*
376 * Early initialization of turnstiles.  This is not done via a SYSINIT()
377 * since this needs to be initialized very early when mutexes are first
378 * initialized.
379 */
380void
381init_turnstiles(void)
382{
383	int i;
384
385	for (i = 0; i < TC_TABLESIZE; i++) {
386		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
387		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
388		    NULL, MTX_SPIN);
389	}
390	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
391	LIST_INIT(&thread0.td_contested);
392	thread0.td_turnstile = NULL;
393}
394
395#ifdef TURNSTILE_PROFILING
396static void
397init_turnstile_profiling(void *arg)
398{
399	struct sysctl_oid *chain_oid;
400	char chain_name[10];
401	int i;
402
403	for (i = 0; i < TC_TABLESIZE; i++) {
404		snprintf(chain_name, sizeof(chain_name), "%d", i);
405		chain_oid = SYSCTL_ADD_NODE(NULL,
406		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
407		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
408		    "turnstile chain stats");
409		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
410		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
411		    NULL);
412		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
413		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
414		    0, NULL);
415	}
416}
417SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
418    init_turnstile_profiling, NULL);
419#endif
420
421static void
422init_turnstile0(void *dummy)
423{
424
425	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
426	    NULL,
427#ifdef INVARIANTS
428	    turnstile_dtor,
429#else
430	    NULL,
431#endif
432	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
433	thread0.td_turnstile = turnstile_alloc();
434}
435SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
436
437/*
438 * Update a thread on the turnstile list after it's priority has been changed.
439 * The old priority is passed in as an argument.
440 */
441void
442turnstile_adjust(struct thread *td, u_char oldpri)
443{
444	struct turnstile *ts;
445
446	MPASS(TD_ON_LOCK(td));
447
448	/*
449	 * Pick up the lock that td is blocked on.
450	 */
451	ts = td->td_blocked;
452	MPASS(ts != NULL);
453	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
454	mtx_assert(&ts->ts_lock, MA_OWNED);
455
456	/* Resort the turnstile on the list. */
457	if (!turnstile_adjust_thread(ts, td))
458		return;
459	/*
460	 * If our priority was lowered and we are at the head of the
461	 * turnstile, then propagate our new priority up the chain.
462	 * Note that we currently don't try to revoke lent priorities
463	 * when our priority goes up.
464	 */
465	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
466	    td->td_tsqueue == TS_SHARED_QUEUE);
467	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
468	    td->td_priority < oldpri) {
469		propagate_priority(td);
470	}
471}
472
473/*
474 * Set the owner of the lock this turnstile is attached to.
475 */
476static void
477turnstile_setowner(struct turnstile *ts, struct thread *owner)
478{
479
480	mtx_assert(&td_contested_lock, MA_OWNED);
481	MPASS(ts->ts_owner == NULL);
482
483	/* A shared lock might not have an owner. */
484	if (owner == NULL)
485		return;
486
487	MPASS(owner->td_proc->p_magic == P_MAGIC);
488	ts->ts_owner = owner;
489	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
490}
491
492#ifdef INVARIANTS
493/*
494 * UMA zone item deallocator.
495 */
496static void
497turnstile_dtor(void *mem, int size, void *arg)
498{
499	struct turnstile *ts;
500
501	ts = mem;
502	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
503	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
504	MPASS(TAILQ_EMPTY(&ts->ts_pending));
505}
506#endif
507
508/*
509 * UMA zone item initializer.
510 */
511static int
512turnstile_init(void *mem, int size, int flags)
513{
514	struct turnstile *ts;
515
516	bzero(mem, size);
517	ts = mem;
518	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
519	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
520	TAILQ_INIT(&ts->ts_pending);
521	LIST_INIT(&ts->ts_free);
522	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN);
523	return (0);
524}
525
526static void
527turnstile_fini(void *mem, int size)
528{
529	struct turnstile *ts;
530
531	ts = mem;
532	mtx_destroy(&ts->ts_lock);
533}
534
535/*
536 * Get a turnstile for a new thread.
537 */
538struct turnstile *
539turnstile_alloc(void)
540{
541
542	return (uma_zalloc(turnstile_zone, M_WAITOK));
543}
544
545/*
546 * Free a turnstile when a thread is destroyed.
547 */
548void
549turnstile_free(struct turnstile *ts)
550{
551
552	uma_zfree(turnstile_zone, ts);
553}
554
555/*
556 * Lock the turnstile chain associated with the specified lock.
557 */
558void
559turnstile_chain_lock(struct lock_object *lock)
560{
561	struct turnstile_chain *tc;
562
563	tc = TC_LOOKUP(lock);
564	mtx_lock_spin(&tc->tc_lock);
565}
566
567struct turnstile *
568turnstile_trywait(struct lock_object *lock)
569{
570	struct turnstile_chain *tc;
571	struct turnstile *ts;
572
573	tc = TC_LOOKUP(lock);
574	mtx_lock_spin(&tc->tc_lock);
575	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
576		if (ts->ts_lockobj == lock) {
577			mtx_lock_spin(&ts->ts_lock);
578			return (ts);
579		}
580
581	ts = curthread->td_turnstile;
582	MPASS(ts != NULL);
583	mtx_lock_spin(&ts->ts_lock);
584	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
585	ts->ts_lockobj = lock;
586
587	return (ts);
588}
589
590bool
591turnstile_lock(struct turnstile *ts, struct lock_object **lockp,
592    struct thread **tdp)
593{
594	struct turnstile_chain *tc;
595	struct lock_object *lock;
596
597	if ((lock = ts->ts_lockobj) == NULL)
598		return (false);
599	tc = TC_LOOKUP(lock);
600	mtx_lock_spin(&tc->tc_lock);
601	mtx_lock_spin(&ts->ts_lock);
602	if (__predict_false(lock != ts->ts_lockobj)) {
603		mtx_unlock_spin(&tc->tc_lock);
604		mtx_unlock_spin(&ts->ts_lock);
605		return (false);
606	}
607	*lockp = lock;
608	*tdp = ts->ts_owner;
609	return (true);
610}
611
612void
613turnstile_unlock(struct turnstile *ts, struct lock_object *lock)
614{
615	struct turnstile_chain *tc;
616
617	mtx_assert(&ts->ts_lock, MA_OWNED);
618	mtx_unlock_spin(&ts->ts_lock);
619	if (ts == curthread->td_turnstile)
620		ts->ts_lockobj = NULL;
621	tc = TC_LOOKUP(lock);
622	mtx_unlock_spin(&tc->tc_lock);
623}
624
625void
626turnstile_assert(struct turnstile *ts)
627{
628	MPASS(ts->ts_lockobj == NULL);
629}
630
631void
632turnstile_cancel(struct turnstile *ts)
633{
634	struct turnstile_chain *tc;
635	struct lock_object *lock;
636
637	mtx_assert(&ts->ts_lock, MA_OWNED);
638
639	mtx_unlock_spin(&ts->ts_lock);
640	lock = ts->ts_lockobj;
641	if (ts == curthread->td_turnstile)
642		ts->ts_lockobj = NULL;
643	tc = TC_LOOKUP(lock);
644	mtx_unlock_spin(&tc->tc_lock);
645}
646
647/*
648 * Look up the turnstile for a lock in the hash table locking the associated
649 * turnstile chain along the way.  If no turnstile is found in the hash
650 * table, NULL is returned.
651 */
652struct turnstile *
653turnstile_lookup(struct lock_object *lock)
654{
655	struct turnstile_chain *tc;
656	struct turnstile *ts;
657
658	tc = TC_LOOKUP(lock);
659	mtx_assert(&tc->tc_lock, MA_OWNED);
660	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
661		if (ts->ts_lockobj == lock) {
662			mtx_lock_spin(&ts->ts_lock);
663			return (ts);
664		}
665	return (NULL);
666}
667
668/*
669 * Unlock the turnstile chain associated with a given lock.
670 */
671void
672turnstile_chain_unlock(struct lock_object *lock)
673{
674	struct turnstile_chain *tc;
675
676	tc = TC_LOOKUP(lock);
677	mtx_unlock_spin(&tc->tc_lock);
678}
679
680/*
681 * Return a pointer to the thread waiting on this turnstile with the
682 * most important priority or NULL if the turnstile has no waiters.
683 */
684static struct thread *
685turnstile_first_waiter(struct turnstile *ts)
686{
687	struct thread *std, *xtd;
688
689	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
690	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
691	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
692		return (std);
693	return (xtd);
694}
695
696/*
697 * Take ownership of a turnstile and adjust the priority of the new
698 * owner appropriately.
699 */
700void
701turnstile_claim(struct turnstile *ts)
702{
703	struct thread *td, *owner;
704	struct turnstile_chain *tc;
705
706	mtx_assert(&ts->ts_lock, MA_OWNED);
707	MPASS(ts != curthread->td_turnstile);
708
709	owner = curthread;
710	mtx_lock_spin(&td_contested_lock);
711	turnstile_setowner(ts, owner);
712	mtx_unlock_spin(&td_contested_lock);
713
714	td = turnstile_first_waiter(ts);
715	MPASS(td != NULL);
716	MPASS(td->td_proc->p_magic == P_MAGIC);
717	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
718
719	/*
720	 * Update the priority of the new owner if needed.
721	 */
722	thread_lock(owner);
723	if (td->td_priority < owner->td_priority)
724		sched_lend_prio(owner, td->td_priority);
725	thread_unlock(owner);
726	tc = TC_LOOKUP(ts->ts_lockobj);
727	mtx_unlock_spin(&ts->ts_lock);
728	mtx_unlock_spin(&tc->tc_lock);
729}
730
731/*
732 * Block the current thread on the turnstile assicated with 'lock'.  This
733 * function will context switch and not return until this thread has been
734 * woken back up.  This function must be called with the appropriate
735 * turnstile chain locked and will return with it unlocked.
736 */
737void
738turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
739{
740	struct turnstile_chain *tc;
741	struct thread *td, *td1;
742	struct lock_object *lock;
743
744	td = curthread;
745	mtx_assert(&ts->ts_lock, MA_OWNED);
746	if (owner)
747		MPASS(owner->td_proc->p_magic == P_MAGIC);
748	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
749
750	/*
751	 * If the lock does not already have a turnstile, use this thread's
752	 * turnstile.  Otherwise insert the current thread into the
753	 * turnstile already in use by this lock.
754	 */
755	tc = TC_LOOKUP(ts->ts_lockobj);
756	mtx_assert(&tc->tc_lock, MA_OWNED);
757	if (ts == td->td_turnstile) {
758#ifdef TURNSTILE_PROFILING
759		tc->tc_depth++;
760		if (tc->tc_depth > tc->tc_max_depth) {
761			tc->tc_max_depth = tc->tc_depth;
762			if (tc->tc_max_depth > turnstile_max_depth)
763				turnstile_max_depth = tc->tc_max_depth;
764		}
765#endif
766		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
767		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
768		    ("thread's turnstile has pending threads"));
769		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
770		    ("thread's turnstile has exclusive waiters"));
771		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
772		    ("thread's turnstile has shared waiters"));
773		KASSERT(LIST_EMPTY(&ts->ts_free),
774		    ("thread's turnstile has a non-empty free list"));
775		MPASS(ts->ts_lockobj != NULL);
776		mtx_lock_spin(&td_contested_lock);
777		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
778		turnstile_setowner(ts, owner);
779		mtx_unlock_spin(&td_contested_lock);
780	} else {
781		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
782			if (td1->td_priority > td->td_priority)
783				break;
784		mtx_lock_spin(&td_contested_lock);
785		if (td1 != NULL)
786			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
787		else
788			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
789		MPASS(owner == ts->ts_owner);
790		mtx_unlock_spin(&td_contested_lock);
791		MPASS(td->td_turnstile != NULL);
792		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
793	}
794	thread_lock(td);
795	thread_lock_set(td, &ts->ts_lock);
796	td->td_turnstile = NULL;
797
798	/* Save who we are blocked on and switch. */
799	lock = ts->ts_lockobj;
800	td->td_tsqueue = queue;
801	td->td_blocked = ts;
802	td->td_lockname = lock->lo_name;
803	td->td_blktick = ticks;
804	TD_SET_LOCK(td);
805	mtx_unlock_spin(&tc->tc_lock);
806	propagate_priority(td);
807
808	if (LOCK_LOG_TEST(lock, 0))
809		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
810		    td->td_tid, lock, lock->lo_name);
811
812	SDT_PROBE0(sched, , , sleep);
813
814	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
815	mi_switch(SW_VOL | SWT_TURNSTILE);
816
817	if (LOCK_LOG_TEST(lock, 0))
818		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
819		    __func__, td->td_tid, lock, lock->lo_name);
820}
821
822/*
823 * Pick the highest priority thread on this turnstile and put it on the
824 * pending list.  This must be called with the turnstile chain locked.
825 */
826int
827turnstile_signal(struct turnstile *ts, int queue)
828{
829	struct turnstile_chain *tc __unused;
830	struct thread *td;
831	int empty;
832
833	MPASS(ts != NULL);
834	mtx_assert(&ts->ts_lock, MA_OWNED);
835	MPASS(curthread->td_proc->p_magic == P_MAGIC);
836	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
837	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
838
839	/*
840	 * Pick the highest priority thread blocked on this lock and
841	 * move it to the pending list.
842	 */
843	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
844	MPASS(td->td_proc->p_magic == P_MAGIC);
845	mtx_lock_spin(&td_contested_lock);
846	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
847	mtx_unlock_spin(&td_contested_lock);
848	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
849
850	/*
851	 * If the turnstile is now empty, remove it from its chain and
852	 * give it to the about-to-be-woken thread.  Otherwise take a
853	 * turnstile from the free list and give it to the thread.
854	 */
855	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
856	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
857	if (empty) {
858		tc = TC_LOOKUP(ts->ts_lockobj);
859		mtx_assert(&tc->tc_lock, MA_OWNED);
860		MPASS(LIST_EMPTY(&ts->ts_free));
861#ifdef TURNSTILE_PROFILING
862		tc->tc_depth--;
863#endif
864	} else
865		ts = LIST_FIRST(&ts->ts_free);
866	MPASS(ts != NULL);
867	LIST_REMOVE(ts, ts_hash);
868	td->td_turnstile = ts;
869
870	return (empty);
871}
872
873/*
874 * Put all blocked threads on the pending list.  This must be called with
875 * the turnstile chain locked.
876 */
877void
878turnstile_broadcast(struct turnstile *ts, int queue)
879{
880	struct turnstile_chain *tc __unused;
881	struct turnstile *ts1;
882	struct thread *td;
883
884	MPASS(ts != NULL);
885	mtx_assert(&ts->ts_lock, MA_OWNED);
886	MPASS(curthread->td_proc->p_magic == P_MAGIC);
887	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
888	/*
889	 * We must have the chain locked so that we can remove the empty
890	 * turnstile from the hash queue.
891	 */
892	tc = TC_LOOKUP(ts->ts_lockobj);
893	mtx_assert(&tc->tc_lock, MA_OWNED);
894	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
895
896	/*
897	 * Transfer the blocked list to the pending list.
898	 */
899	mtx_lock_spin(&td_contested_lock);
900	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
901	mtx_unlock_spin(&td_contested_lock);
902
903	/*
904	 * Give a turnstile to each thread.  The last thread gets
905	 * this turnstile if the turnstile is empty.
906	 */
907	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
908		if (LIST_EMPTY(&ts->ts_free)) {
909			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
910			ts1 = ts;
911#ifdef TURNSTILE_PROFILING
912			tc->tc_depth--;
913#endif
914		} else
915			ts1 = LIST_FIRST(&ts->ts_free);
916		MPASS(ts1 != NULL);
917		LIST_REMOVE(ts1, ts_hash);
918		td->td_turnstile = ts1;
919	}
920}
921
922static u_char
923turnstile_calc_unlend_prio_locked(struct thread *td)
924{
925	struct turnstile *nts;
926	u_char cp, pri;
927
928	THREAD_LOCK_ASSERT(td, MA_OWNED);
929	mtx_assert(&td_contested_lock, MA_OWNED);
930
931	pri = PRI_MAX;
932	LIST_FOREACH(nts, &td->td_contested, ts_link) {
933		cp = turnstile_first_waiter(nts)->td_priority;
934		if (cp < pri)
935			pri = cp;
936	}
937	return (pri);
938}
939
940/*
941 * Wakeup all threads on the pending list and adjust the priority of the
942 * current thread appropriately.  This must be called with the turnstile
943 * chain locked.
944 */
945void
946turnstile_unpend(struct turnstile *ts)
947{
948	TAILQ_HEAD( ,thread) pending_threads;
949	struct thread *td;
950	u_char pri;
951
952	MPASS(ts != NULL);
953	mtx_assert(&ts->ts_lock, MA_OWNED);
954	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
955	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
956
957	/*
958	 * Move the list of pending threads out of the turnstile and
959	 * into a local variable.
960	 */
961	TAILQ_INIT(&pending_threads);
962	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
963#ifdef INVARIANTS
964	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
965	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
966		ts->ts_lockobj = NULL;
967#endif
968	/*
969	 * Adjust the priority of curthread based on other contested
970	 * locks it owns.  Don't lower the priority below the base
971	 * priority however.
972	 */
973	td = curthread;
974	thread_lock(td);
975	mtx_lock_spin(&td_contested_lock);
976	/*
977	 * Remove the turnstile from this thread's list of contested locks
978	 * since this thread doesn't own it anymore.  New threads will
979	 * not be blocking on the turnstile until it is claimed by a new
980	 * owner.  There might not be a current owner if this is a shared
981	 * lock.
982	 */
983	if (ts->ts_owner != NULL) {
984		ts->ts_owner = NULL;
985		LIST_REMOVE(ts, ts_link);
986	}
987	pri = turnstile_calc_unlend_prio_locked(td);
988	mtx_unlock_spin(&td_contested_lock);
989	sched_unlend_prio(td, pri);
990	thread_unlock(td);
991	/*
992	 * Wake up all the pending threads.  If a thread is not blocked
993	 * on a lock, then it is currently executing on another CPU in
994	 * turnstile_wait() or sitting on a run queue waiting to resume
995	 * in turnstile_wait().  Set a flag to force it to try to acquire
996	 * the lock again instead of blocking.
997	 */
998	while (!TAILQ_EMPTY(&pending_threads)) {
999		td = TAILQ_FIRST(&pending_threads);
1000		TAILQ_REMOVE(&pending_threads, td, td_lockq);
1001		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
1002		thread_lock_block_wait(td);
1003		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
1004		MPASS(td->td_proc->p_magic == P_MAGIC);
1005		MPASS(TD_ON_LOCK(td));
1006		TD_CLR_LOCK(td);
1007		MPASS(TD_CAN_RUN(td));
1008		td->td_blocked = NULL;
1009		td->td_lockname = NULL;
1010		td->td_blktick = 0;
1011#ifdef INVARIANTS
1012		td->td_tsqueue = 0xff;
1013#endif
1014		sched_add(td, SRQ_HOLD | SRQ_BORING);
1015	}
1016	mtx_unlock_spin(&ts->ts_lock);
1017}
1018
1019/*
1020 * Give up ownership of a turnstile.  This must be called with the
1021 * turnstile chain locked.
1022 */
1023void
1024turnstile_disown(struct turnstile *ts)
1025{
1026	struct thread *td;
1027	u_char pri;
1028
1029	MPASS(ts != NULL);
1030	mtx_assert(&ts->ts_lock, MA_OWNED);
1031	MPASS(ts->ts_owner == curthread);
1032	MPASS(TAILQ_EMPTY(&ts->ts_pending));
1033	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
1034	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
1035
1036	/*
1037	 * Remove the turnstile from this thread's list of contested locks
1038	 * since this thread doesn't own it anymore.  New threads will
1039	 * not be blocking on the turnstile until it is claimed by a new
1040	 * owner.
1041	 */
1042	mtx_lock_spin(&td_contested_lock);
1043	ts->ts_owner = NULL;
1044	LIST_REMOVE(ts, ts_link);
1045	mtx_unlock_spin(&td_contested_lock);
1046
1047	/*
1048	 * Adjust the priority of curthread based on other contested
1049	 * locks it owns.  Don't lower the priority below the base
1050	 * priority however.
1051	 */
1052	td = curthread;
1053	thread_lock(td);
1054	mtx_unlock_spin(&ts->ts_lock);
1055	mtx_lock_spin(&td_contested_lock);
1056	pri = turnstile_calc_unlend_prio_locked(td);
1057	mtx_unlock_spin(&td_contested_lock);
1058	sched_unlend_prio(td, pri);
1059	thread_unlock(td);
1060}
1061
1062/*
1063 * Return the first thread in a turnstile.
1064 */
1065struct thread *
1066turnstile_head(struct turnstile *ts, int queue)
1067{
1068#ifdef INVARIANTS
1069
1070	MPASS(ts != NULL);
1071	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1072	mtx_assert(&ts->ts_lock, MA_OWNED);
1073#endif
1074	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1075}
1076
1077/*
1078 * Returns true if a sub-queue of a turnstile is empty.
1079 */
1080int
1081turnstile_empty(struct turnstile *ts, int queue)
1082{
1083#ifdef INVARIANTS
1084
1085	MPASS(ts != NULL);
1086	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1087	mtx_assert(&ts->ts_lock, MA_OWNED);
1088#endif
1089	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1090}
1091
1092#ifdef DDB
1093static void
1094print_thread(struct thread *td, const char *prefix)
1095{
1096
1097	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1098	    td->td_proc->p_pid, td->td_name);
1099}
1100
1101static void
1102print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1103{
1104	struct thread *td;
1105
1106	db_printf("%s:\n", header);
1107	if (TAILQ_EMPTY(queue)) {
1108		db_printf("%sempty\n", prefix);
1109		return;
1110	}
1111	TAILQ_FOREACH(td, queue, td_lockq) {
1112		print_thread(td, prefix);
1113	}
1114}
1115
1116DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1117{
1118	struct turnstile_chain *tc;
1119	struct turnstile *ts;
1120	struct lock_object *lock;
1121	int i;
1122
1123	if (!have_addr)
1124		return;
1125
1126	/*
1127	 * First, see if there is an active turnstile for the lock indicated
1128	 * by the address.
1129	 */
1130	lock = (struct lock_object *)addr;
1131	tc = TC_LOOKUP(lock);
1132	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1133		if (ts->ts_lockobj == lock)
1134			goto found;
1135
1136	/*
1137	 * Second, see if there is an active turnstile at the address
1138	 * indicated.
1139	 */
1140	for (i = 0; i < TC_TABLESIZE; i++)
1141		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1142			if (ts == (struct turnstile *)addr)
1143				goto found;
1144		}
1145
1146	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1147	return;
1148found:
1149	lock = ts->ts_lockobj;
1150	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1151	    lock->lo_name);
1152	if (ts->ts_owner)
1153		print_thread(ts->ts_owner, "Lock Owner: ");
1154	else
1155		db_printf("Lock Owner: none\n");
1156	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1157	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1158	    "\t");
1159	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1160
1161}
1162
1163/*
1164 * Show all the threads a particular thread is waiting on based on
1165 * non-spin locks.
1166 */
1167static void
1168print_lockchain(struct thread *td, const char *prefix)
1169{
1170	struct lock_object *lock;
1171	struct lock_class *class;
1172	struct turnstile *ts;
1173	struct thread *owner;
1174
1175	/*
1176	 * Follow the chain.  We keep walking as long as the thread is
1177	 * blocked on a lock that has an owner.
1178	 */
1179	while (!db_pager_quit) {
1180		if (td == (void *)LK_KERNPROC) {
1181			db_printf("%sdisowned (LK_KERNPROC)\n", prefix);
1182			return;
1183		}
1184		db_printf("%sthread %d (pid %d, %s) is ", prefix, td->td_tid,
1185		    td->td_proc->p_pid, td->td_name);
1186		switch (TD_GET_STATE(td)) {
1187		case TDS_INACTIVE:
1188			db_printf("inactive\n");
1189			return;
1190		case TDS_CAN_RUN:
1191			db_printf("runnable\n");
1192			return;
1193		case TDS_RUNQ:
1194			db_printf("on a run queue\n");
1195			return;
1196		case TDS_RUNNING:
1197			db_printf("running on CPU %d\n", td->td_oncpu);
1198			return;
1199		case TDS_INHIBITED:
1200			if (TD_ON_LOCK(td)) {
1201				ts = td->td_blocked;
1202				lock = ts->ts_lockobj;
1203				class = LOCK_CLASS(lock);
1204				db_printf("blocked on lock %p (%s) \"%s\"\n",
1205				    lock, class->lc_name, lock->lo_name);
1206				if (ts->ts_owner == NULL)
1207					return;
1208				td = ts->ts_owner;
1209				break;
1210			} else if (TD_ON_SLEEPQ(td)) {
1211				if (!lockmgr_chain(td, &owner) &&
1212				    !sx_chain(td, &owner)) {
1213					db_printf("sleeping on %p \"%s\"\n",
1214					    td->td_wchan, td->td_wmesg);
1215					return;
1216				}
1217				if (owner == NULL)
1218					return;
1219				td = owner;
1220				break;
1221			}
1222			db_printf("inhibited: %s\n", KTDSTATE(td));
1223			return;
1224		default:
1225			db_printf("??? (%#x)\n", TD_GET_STATE(td));
1226			return;
1227		}
1228	}
1229}
1230
1231DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1232{
1233	struct thread *td;
1234
1235	/* Figure out which thread to start with. */
1236	if (have_addr)
1237		td = db_lookup_thread(addr, true);
1238	else
1239		td = kdb_thread;
1240
1241	print_lockchain(td, "");
1242}
1243DB_SHOW_ALIAS(sleepchain, db_show_lockchain);
1244
1245DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1246{
1247	struct thread *td;
1248	struct proc *p;
1249	int i;
1250
1251	i = 1;
1252	FOREACH_PROC_IN_SYSTEM(p) {
1253		FOREACH_THREAD_IN_PROC(p, td) {
1254			if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested))
1255			    || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) {
1256				db_printf("chain %d:\n", i++);
1257				print_lockchain(td, " ");
1258			}
1259			if (db_pager_quit)
1260				return;
1261		}
1262	}
1263}
1264DB_SHOW_ALIAS_FLAGS(allchains, db_show_allchains, DB_CMD_MEMSAFE);
1265
1266static void	print_waiters(struct turnstile *ts, int indent);
1267
1268static void
1269print_waiter(struct thread *td, int indent)
1270{
1271	struct turnstile *ts;
1272	int i;
1273
1274	if (db_pager_quit)
1275		return;
1276	for (i = 0; i < indent; i++)
1277		db_printf(" ");
1278	print_thread(td, "thread ");
1279	LIST_FOREACH(ts, &td->td_contested, ts_link)
1280		print_waiters(ts, indent + 1);
1281}
1282
1283static void
1284print_waiters(struct turnstile *ts, int indent)
1285{
1286	struct lock_object *lock;
1287	struct lock_class *class;
1288	struct thread *td;
1289	int i;
1290
1291	if (db_pager_quit)
1292		return;
1293	lock = ts->ts_lockobj;
1294	class = LOCK_CLASS(lock);
1295	for (i = 0; i < indent; i++)
1296		db_printf(" ");
1297	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1298	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1299		print_waiter(td, indent + 1);
1300	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1301		print_waiter(td, indent + 1);
1302	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1303		print_waiter(td, indent + 1);
1304}
1305
1306DB_SHOW_COMMAND(locktree, db_show_locktree)
1307{
1308	struct lock_object *lock;
1309	struct lock_class *class;
1310	struct turnstile_chain *tc;
1311	struct turnstile *ts;
1312
1313	if (!have_addr)
1314		return;
1315	lock = (struct lock_object *)addr;
1316	tc = TC_LOOKUP(lock);
1317	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1318		if (ts->ts_lockobj == lock)
1319			break;
1320	if (ts == NULL) {
1321		class = LOCK_CLASS(lock);
1322		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1323		    lock->lo_name);
1324	} else
1325		print_waiters(ts, 0);
1326}
1327#endif
1328