1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32#include <sys/cdefs.h>
33#include "opt_ktrace.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/limits.h>
38#include <sys/clock.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/sysproto.h>
42#include <sys/resourcevar.h>
43#include <sys/signalvar.h>
44#include <sys/kernel.h>
45#include <sys/sleepqueue.h>
46#include <sys/syscallsubr.h>
47#include <sys/sysctl.h>
48#include <sys/priv.h>
49#include <sys/proc.h>
50#include <sys/posix4.h>
51#include <sys/time.h>
52#include <sys/timers.h>
53#include <sys/timetc.h>
54#include <sys/vnode.h>
55#ifdef KTRACE
56#include <sys/ktrace.h>
57#endif
58
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#include <vm/uma.h>
62
63#define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
64#define CPUCLOCK_BIT		0x80000000
65#define CPUCLOCK_PROCESS_BIT	0x40000000
66#define CPUCLOCK_ID_MASK	(~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
67#define MAKE_THREAD_CPUCLOCK(tid)	(CPUCLOCK_BIT|(tid))
68#define MAKE_PROCESS_CPUCLOCK(pid)	\
69	(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
70
71#define NS_PER_SEC	1000000000
72
73static struct kclock	posix_clocks[MAX_CLOCKS];
74static uma_zone_t	itimer_zone = NULL;
75
76/*
77 * Time of day and interval timer support.
78 *
79 * These routines provide the kernel entry points to get and set
80 * the time-of-day and per-process interval timers.  Subroutines
81 * here provide support for adding and subtracting timeval structures
82 * and decrementing interval timers, optionally reloading the interval
83 * timers when they expire.
84 */
85
86static int	settime(struct thread *, struct timeval *);
87static void	timevalfix(struct timeval *);
88static int	user_clock_nanosleep(struct thread *td, clockid_t clock_id,
89		    int flags, const struct timespec *ua_rqtp,
90		    struct timespec *ua_rmtp);
91
92static void	itimer_start(void);
93static int	itimer_init(void *, int, int);
94static void	itimer_fini(void *, int);
95static void	itimer_enter(struct itimer *);
96static void	itimer_leave(struct itimer *);
97static struct itimer *itimer_find(struct proc *, int);
98static void	itimers_alloc(struct proc *);
99static int	realtimer_create(struct itimer *);
100static int	realtimer_gettime(struct itimer *, struct itimerspec *);
101static int	realtimer_settime(struct itimer *, int,
102			struct itimerspec *, struct itimerspec *);
103static int	realtimer_delete(struct itimer *);
104static void	realtimer_clocktime(clockid_t, struct timespec *);
105static void	realtimer_expire(void *);
106static void	realtimer_expire_l(struct itimer *it, bool proc_locked);
107
108static void	realitexpire(void *arg);
109
110static int	register_posix_clock(int, const struct kclock *);
111static void	itimer_fire(struct itimer *it);
112static int	itimespecfix(struct timespec *ts);
113
114#define CLOCK_CALL(clock, call, arglist)		\
115	((*posix_clocks[clock].call) arglist)
116
117SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
118
119static int
120settime(struct thread *td, struct timeval *tv)
121{
122	struct timeval delta, tv1, tv2;
123	static struct timeval maxtime, laststep;
124	struct timespec ts;
125
126	microtime(&tv1);
127	delta = *tv;
128	timevalsub(&delta, &tv1);
129
130	/*
131	 * If the system is secure, we do not allow the time to be
132	 * set to a value earlier than 1 second less than the highest
133	 * time we have yet seen. The worst a miscreant can do in
134	 * this circumstance is "freeze" time. He couldn't go
135	 * back to the past.
136	 *
137	 * We similarly do not allow the clock to be stepped more
138	 * than one second, nor more than once per second. This allows
139	 * a miscreant to make the clock march double-time, but no worse.
140	 */
141	if (securelevel_gt(td->td_ucred, 1) != 0) {
142		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
143			/*
144			 * Update maxtime to latest time we've seen.
145			 */
146			if (tv1.tv_sec > maxtime.tv_sec)
147				maxtime = tv1;
148			tv2 = *tv;
149			timevalsub(&tv2, &maxtime);
150			if (tv2.tv_sec < -1) {
151				tv->tv_sec = maxtime.tv_sec - 1;
152				printf("Time adjustment clamped to -1 second\n");
153			}
154		} else {
155			if (tv1.tv_sec == laststep.tv_sec)
156				return (EPERM);
157			if (delta.tv_sec > 1) {
158				tv->tv_sec = tv1.tv_sec + 1;
159				printf("Time adjustment clamped to +1 second\n");
160			}
161			laststep = *tv;
162		}
163	}
164
165	ts.tv_sec = tv->tv_sec;
166	ts.tv_nsec = tv->tv_usec * 1000;
167	tc_setclock(&ts);
168	resettodr();
169	return (0);
170}
171
172#ifndef _SYS_SYSPROTO_H_
173struct clock_getcpuclockid2_args {
174	id_t id;
175	int which,
176	clockid_t *clock_id;
177};
178#endif
179/* ARGSUSED */
180int
181sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
182{
183	clockid_t clk_id;
184	int error;
185
186	error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
187	if (error == 0)
188		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
189	return (error);
190}
191
192int
193kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
194    clockid_t *clk_id)
195{
196	struct proc *p;
197	pid_t pid;
198	lwpid_t tid;
199	int error;
200
201	switch (which) {
202	case CPUCLOCK_WHICH_PID:
203		if (id != 0) {
204			error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
205			if (error != 0)
206				return (error);
207			PROC_UNLOCK(p);
208			pid = id;
209		} else {
210			pid = td->td_proc->p_pid;
211		}
212		*clk_id = MAKE_PROCESS_CPUCLOCK(pid);
213		return (0);
214	case CPUCLOCK_WHICH_TID:
215		tid = id == 0 ? td->td_tid : id;
216		*clk_id = MAKE_THREAD_CPUCLOCK(tid);
217		return (0);
218	default:
219		return (EINVAL);
220	}
221}
222
223#ifndef _SYS_SYSPROTO_H_
224struct clock_gettime_args {
225	clockid_t clock_id;
226	struct	timespec *tp;
227};
228#endif
229/* ARGSUSED */
230int
231sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
232{
233	struct timespec ats;
234	int error;
235
236	error = kern_clock_gettime(td, uap->clock_id, &ats);
237	if (error == 0)
238		error = copyout(&ats, uap->tp, sizeof(ats));
239
240	return (error);
241}
242
243static inline void
244cputick2timespec(uint64_t runtime, struct timespec *ats)
245{
246	uint64_t tr;
247	tr = cpu_tickrate();
248	ats->tv_sec = runtime / tr;
249	ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr;
250}
251
252void
253kern_thread_cputime(struct thread *targettd, struct timespec *ats)
254{
255	uint64_t runtime, curtime, switchtime;
256
257	if (targettd == NULL) { /* current thread */
258		spinlock_enter();
259		switchtime = PCPU_GET(switchtime);
260		curtime = cpu_ticks();
261		runtime = curthread->td_runtime;
262		spinlock_exit();
263		runtime += curtime - switchtime;
264	} else {
265		PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED);
266		thread_lock(targettd);
267		runtime = targettd->td_runtime;
268		thread_unlock(targettd);
269	}
270	cputick2timespec(runtime, ats);
271}
272
273void
274kern_process_cputime(struct proc *targetp, struct timespec *ats)
275{
276	uint64_t runtime;
277	struct rusage ru;
278
279	PROC_LOCK_ASSERT(targetp, MA_OWNED);
280	PROC_STATLOCK(targetp);
281	rufetch(targetp, &ru);
282	runtime = targetp->p_rux.rux_runtime;
283	if (curthread->td_proc == targetp)
284		runtime += cpu_ticks() - PCPU_GET(switchtime);
285	PROC_STATUNLOCK(targetp);
286	cputick2timespec(runtime, ats);
287}
288
289static int
290get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
291{
292	struct proc *p, *p2;
293	struct thread *td2;
294	lwpid_t tid;
295	pid_t pid;
296	int error;
297
298	p = td->td_proc;
299	if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
300		tid = clock_id & CPUCLOCK_ID_MASK;
301		td2 = tdfind(tid, p->p_pid);
302		if (td2 == NULL)
303			return (EINVAL);
304		kern_thread_cputime(td2, ats);
305		PROC_UNLOCK(td2->td_proc);
306	} else {
307		pid = clock_id & CPUCLOCK_ID_MASK;
308		error = pget(pid, PGET_CANSEE, &p2);
309		if (error != 0)
310			return (EINVAL);
311		kern_process_cputime(p2, ats);
312		PROC_UNLOCK(p2);
313	}
314	return (0);
315}
316
317int
318kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
319{
320	struct timeval sys, user;
321	struct proc *p;
322
323	p = td->td_proc;
324	switch (clock_id) {
325	case CLOCK_REALTIME:		/* Default to precise. */
326	case CLOCK_REALTIME_PRECISE:
327		nanotime(ats);
328		break;
329	case CLOCK_REALTIME_FAST:
330		getnanotime(ats);
331		break;
332	case CLOCK_VIRTUAL:
333		PROC_LOCK(p);
334		PROC_STATLOCK(p);
335		calcru(p, &user, &sys);
336		PROC_STATUNLOCK(p);
337		PROC_UNLOCK(p);
338		TIMEVAL_TO_TIMESPEC(&user, ats);
339		break;
340	case CLOCK_PROF:
341		PROC_LOCK(p);
342		PROC_STATLOCK(p);
343		calcru(p, &user, &sys);
344		PROC_STATUNLOCK(p);
345		PROC_UNLOCK(p);
346		timevaladd(&user, &sys);
347		TIMEVAL_TO_TIMESPEC(&user, ats);
348		break;
349	case CLOCK_MONOTONIC:		/* Default to precise. */
350	case CLOCK_MONOTONIC_PRECISE:
351	case CLOCK_UPTIME:
352	case CLOCK_UPTIME_PRECISE:
353		nanouptime(ats);
354		break;
355	case CLOCK_UPTIME_FAST:
356	case CLOCK_MONOTONIC_FAST:
357		getnanouptime(ats);
358		break;
359	case CLOCK_SECOND:
360		ats->tv_sec = time_second;
361		ats->tv_nsec = 0;
362		break;
363	case CLOCK_THREAD_CPUTIME_ID:
364		kern_thread_cputime(NULL, ats);
365		break;
366	case CLOCK_PROCESS_CPUTIME_ID:
367		PROC_LOCK(p);
368		kern_process_cputime(p, ats);
369		PROC_UNLOCK(p);
370		break;
371	default:
372		if ((int)clock_id >= 0)
373			return (EINVAL);
374		return (get_cputime(td, clock_id, ats));
375	}
376	return (0);
377}
378
379#ifndef _SYS_SYSPROTO_H_
380struct clock_settime_args {
381	clockid_t clock_id;
382	const struct	timespec *tp;
383};
384#endif
385/* ARGSUSED */
386int
387sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
388{
389	struct timespec ats;
390	int error;
391
392	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
393		return (error);
394	return (kern_clock_settime(td, uap->clock_id, &ats));
395}
396
397static int allow_insane_settime = 0;
398SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN,
399    &allow_insane_settime, 0,
400    "do not perform possibly restrictive checks on settime(2) args");
401
402int
403kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
404{
405	struct timeval atv;
406	int error;
407
408	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
409		return (error);
410	if (clock_id != CLOCK_REALTIME)
411		return (EINVAL);
412	if (!timespecvalid_interval(ats))
413		return (EINVAL);
414	if (!allow_insane_settime &&
415	    (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 ||
416	    ats->tv_sec < utc_offset()))
417		return (EINVAL);
418	/* XXX Don't convert nsec->usec and back */
419	TIMESPEC_TO_TIMEVAL(&atv, ats);
420	error = settime(td, &atv);
421	return (error);
422}
423
424#ifndef _SYS_SYSPROTO_H_
425struct clock_getres_args {
426	clockid_t clock_id;
427	struct	timespec *tp;
428};
429#endif
430int
431sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
432{
433	struct timespec ts;
434	int error;
435
436	if (uap->tp == NULL)
437		return (0);
438
439	error = kern_clock_getres(td, uap->clock_id, &ts);
440	if (error == 0)
441		error = copyout(&ts, uap->tp, sizeof(ts));
442	return (error);
443}
444
445int
446kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
447{
448
449	ts->tv_sec = 0;
450	switch (clock_id) {
451	case CLOCK_REALTIME:
452	case CLOCK_REALTIME_FAST:
453	case CLOCK_REALTIME_PRECISE:
454	case CLOCK_MONOTONIC:
455	case CLOCK_MONOTONIC_FAST:
456	case CLOCK_MONOTONIC_PRECISE:
457	case CLOCK_UPTIME:
458	case CLOCK_UPTIME_FAST:
459	case CLOCK_UPTIME_PRECISE:
460		/*
461		 * Round up the result of the division cheaply by adding 1.
462		 * Rounding up is especially important if rounding down
463		 * would give 0.  Perfect rounding is unimportant.
464		 */
465		ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1;
466		break;
467	case CLOCK_VIRTUAL:
468	case CLOCK_PROF:
469		/* Accurately round up here because we can do so cheaply. */
470		ts->tv_nsec = howmany(NS_PER_SEC, hz);
471		break;
472	case CLOCK_SECOND:
473		ts->tv_sec = 1;
474		ts->tv_nsec = 0;
475		break;
476	case CLOCK_THREAD_CPUTIME_ID:
477	case CLOCK_PROCESS_CPUTIME_ID:
478	cputime:
479		ts->tv_nsec = 1000000000 / cpu_tickrate() + 1;
480		break;
481	default:
482		if ((int)clock_id < 0)
483			goto cputime;
484		return (EINVAL);
485	}
486	return (0);
487}
488
489int
490kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
491{
492
493	return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
494	    rmt));
495}
496
497static uint8_t nanowait[MAXCPU];
498
499int
500kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
501    const struct timespec *rqt, struct timespec *rmt)
502{
503	struct timespec ts, now;
504	sbintime_t sbt, sbtt, prec, tmp;
505	time_t over;
506	int error;
507	bool is_abs_real;
508
509	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC)
510		return (EINVAL);
511	if ((flags & ~TIMER_ABSTIME) != 0)
512		return (EINVAL);
513	switch (clock_id) {
514	case CLOCK_REALTIME:
515	case CLOCK_REALTIME_PRECISE:
516	case CLOCK_REALTIME_FAST:
517	case CLOCK_SECOND:
518		is_abs_real = (flags & TIMER_ABSTIME) != 0;
519		break;
520	case CLOCK_MONOTONIC:
521	case CLOCK_MONOTONIC_PRECISE:
522	case CLOCK_MONOTONIC_FAST:
523	case CLOCK_UPTIME:
524	case CLOCK_UPTIME_PRECISE:
525	case CLOCK_UPTIME_FAST:
526		is_abs_real = false;
527		break;
528	case CLOCK_VIRTUAL:
529	case CLOCK_PROF:
530	case CLOCK_PROCESS_CPUTIME_ID:
531		return (ENOTSUP);
532	case CLOCK_THREAD_CPUTIME_ID:
533	default:
534		return (EINVAL);
535	}
536	do {
537		ts = *rqt;
538		if ((flags & TIMER_ABSTIME) != 0) {
539			if (is_abs_real)
540				td->td_rtcgen =
541				    atomic_load_acq_int(&rtc_generation);
542			error = kern_clock_gettime(td, clock_id, &now);
543			KASSERT(error == 0, ("kern_clock_gettime: %d", error));
544			timespecsub(&ts, &now, &ts);
545		}
546		if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
547			error = EWOULDBLOCK;
548			break;
549		}
550		if (ts.tv_sec > INT32_MAX / 2) {
551			over = ts.tv_sec - INT32_MAX / 2;
552			ts.tv_sec -= over;
553		} else
554			over = 0;
555		tmp = tstosbt(ts);
556		prec = tmp;
557		prec >>= tc_precexp;
558		if (TIMESEL(&sbt, tmp))
559			sbt += tc_tick_sbt;
560		sbt += tmp;
561		error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
562		    sbt, prec, C_ABSOLUTE);
563	} while (error == 0 && is_abs_real && td->td_rtcgen == 0);
564	td->td_rtcgen = 0;
565	if (error != EWOULDBLOCK) {
566		if (TIMESEL(&sbtt, tmp))
567			sbtt += tc_tick_sbt;
568		if (sbtt >= sbt)
569			return (0);
570		if (error == ERESTART)
571			error = EINTR;
572		if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
573			ts = sbttots(sbt - sbtt);
574			ts.tv_sec += over;
575			if (ts.tv_sec < 0)
576				timespecclear(&ts);
577			*rmt = ts;
578		}
579		return (error);
580	}
581	return (0);
582}
583
584#ifndef _SYS_SYSPROTO_H_
585struct nanosleep_args {
586	struct	timespec *rqtp;
587	struct	timespec *rmtp;
588};
589#endif
590/* ARGSUSED */
591int
592sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
593{
594
595	return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
596	    uap->rqtp, uap->rmtp));
597}
598
599#ifndef _SYS_SYSPROTO_H_
600struct clock_nanosleep_args {
601	clockid_t clock_id;
602	int 	  flags;
603	struct	timespec *rqtp;
604	struct	timespec *rmtp;
605};
606#endif
607/* ARGSUSED */
608int
609sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
610{
611	int error;
612
613	error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
614	    uap->rmtp);
615	return (kern_posix_error(td, error));
616}
617
618static int
619user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
620    const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
621{
622	struct timespec rmt, rqt;
623	int error, error2;
624
625	error = copyin(ua_rqtp, &rqt, sizeof(rqt));
626	if (error)
627		return (error);
628	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
629	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
630		error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
631		if (error2 != 0)
632			error = error2;
633	}
634	return (error);
635}
636
637#ifndef _SYS_SYSPROTO_H_
638struct gettimeofday_args {
639	struct	timeval *tp;
640	struct	timezone *tzp;
641};
642#endif
643/* ARGSUSED */
644int
645sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
646{
647	struct timeval atv;
648	struct timezone rtz;
649	int error = 0;
650
651	if (uap->tp) {
652		microtime(&atv);
653		error = copyout(&atv, uap->tp, sizeof (atv));
654	}
655	if (error == 0 && uap->tzp != NULL) {
656		rtz.tz_minuteswest = 0;
657		rtz.tz_dsttime = 0;
658		error = copyout(&rtz, uap->tzp, sizeof (rtz));
659	}
660	return (error);
661}
662
663#ifndef _SYS_SYSPROTO_H_
664struct settimeofday_args {
665	struct	timeval *tv;
666	struct	timezone *tzp;
667};
668#endif
669/* ARGSUSED */
670int
671sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
672{
673	struct timeval atv, *tvp;
674	struct timezone atz, *tzp;
675	int error;
676
677	if (uap->tv) {
678		error = copyin(uap->tv, &atv, sizeof(atv));
679		if (error)
680			return (error);
681		tvp = &atv;
682	} else
683		tvp = NULL;
684	if (uap->tzp) {
685		error = copyin(uap->tzp, &atz, sizeof(atz));
686		if (error)
687			return (error);
688		tzp = &atz;
689	} else
690		tzp = NULL;
691	return (kern_settimeofday(td, tvp, tzp));
692}
693
694int
695kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
696{
697	int error;
698
699	error = priv_check(td, PRIV_SETTIMEOFDAY);
700	if (error)
701		return (error);
702	/* Verify all parameters before changing time. */
703	if (tv) {
704		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
705		    tv->tv_sec < 0)
706			return (EINVAL);
707		error = settime(td, tv);
708	}
709	return (error);
710}
711
712/*
713 * Get value of an interval timer.  The process virtual and profiling virtual
714 * time timers are kept in the p_stats area, since they can be swapped out.
715 * These are kept internally in the way they are specified externally: in
716 * time until they expire.
717 *
718 * The real time interval timer is kept in the process table slot for the
719 * process, and its value (it_value) is kept as an absolute time rather than
720 * as a delta, so that it is easy to keep periodic real-time signals from
721 * drifting.
722 *
723 * Virtual time timers are processed in the hardclock() routine of
724 * kern_clock.c.  The real time timer is processed by a timeout routine,
725 * called from the softclock() routine.  Since a callout may be delayed in
726 * real time due to interrupt processing in the system, it is possible for
727 * the real time timeout routine (realitexpire, given below), to be delayed
728 * in real time past when it is supposed to occur.  It does not suffice,
729 * therefore, to reload the real timer .it_value from the real time timers
730 * .it_interval.  Rather, we compute the next time in absolute time the timer
731 * should go off.
732 */
733#ifndef _SYS_SYSPROTO_H_
734struct getitimer_args {
735	u_int	which;
736	struct	itimerval *itv;
737};
738#endif
739int
740sys_getitimer(struct thread *td, struct getitimer_args *uap)
741{
742	struct itimerval aitv;
743	int error;
744
745	error = kern_getitimer(td, uap->which, &aitv);
746	if (error != 0)
747		return (error);
748	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
749}
750
751int
752kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
753{
754	struct proc *p = td->td_proc;
755	struct timeval ctv;
756
757	if (which > ITIMER_PROF)
758		return (EINVAL);
759
760	if (which == ITIMER_REAL) {
761		/*
762		 * Convert from absolute to relative time in .it_value
763		 * part of real time timer.  If time for real time timer
764		 * has passed return 0, else return difference between
765		 * current time and time for the timer to go off.
766		 */
767		PROC_LOCK(p);
768		*aitv = p->p_realtimer;
769		PROC_UNLOCK(p);
770		if (timevalisset(&aitv->it_value)) {
771			microuptime(&ctv);
772			if (timevalcmp(&aitv->it_value, &ctv, <))
773				timevalclear(&aitv->it_value);
774			else
775				timevalsub(&aitv->it_value, &ctv);
776		}
777	} else {
778		PROC_ITIMLOCK(p);
779		*aitv = p->p_stats->p_timer[which];
780		PROC_ITIMUNLOCK(p);
781	}
782#ifdef KTRACE
783	if (KTRPOINT(td, KTR_STRUCT))
784		ktritimerval(aitv);
785#endif
786	return (0);
787}
788
789#ifndef _SYS_SYSPROTO_H_
790struct setitimer_args {
791	u_int	which;
792	struct	itimerval *itv, *oitv;
793};
794#endif
795int
796sys_setitimer(struct thread *td, struct setitimer_args *uap)
797{
798	struct itimerval aitv, oitv;
799	int error;
800
801	if (uap->itv == NULL) {
802		uap->itv = uap->oitv;
803		return (sys_getitimer(td, (struct getitimer_args *)uap));
804	}
805
806	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
807		return (error);
808	error = kern_setitimer(td, uap->which, &aitv, &oitv);
809	if (error != 0 || uap->oitv == NULL)
810		return (error);
811	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
812}
813
814int
815kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
816    struct itimerval *oitv)
817{
818	struct proc *p = td->td_proc;
819	struct timeval ctv;
820	sbintime_t sbt, pr;
821
822	if (aitv == NULL)
823		return (kern_getitimer(td, which, oitv));
824
825	if (which > ITIMER_PROF)
826		return (EINVAL);
827#ifdef KTRACE
828	if (KTRPOINT(td, KTR_STRUCT))
829		ktritimerval(aitv);
830#endif
831	if (itimerfix(&aitv->it_value) ||
832	    aitv->it_value.tv_sec > INT32_MAX / 2)
833		return (EINVAL);
834	if (!timevalisset(&aitv->it_value))
835		timevalclear(&aitv->it_interval);
836	else if (itimerfix(&aitv->it_interval) ||
837	    aitv->it_interval.tv_sec > INT32_MAX / 2)
838		return (EINVAL);
839
840	if (which == ITIMER_REAL) {
841		PROC_LOCK(p);
842		if (timevalisset(&p->p_realtimer.it_value))
843			callout_stop(&p->p_itcallout);
844		microuptime(&ctv);
845		if (timevalisset(&aitv->it_value)) {
846			pr = tvtosbt(aitv->it_value) >> tc_precexp;
847			timevaladd(&aitv->it_value, &ctv);
848			sbt = tvtosbt(aitv->it_value);
849			callout_reset_sbt(&p->p_itcallout, sbt, pr,
850			    realitexpire, p, C_ABSOLUTE);
851		}
852		*oitv = p->p_realtimer;
853		p->p_realtimer = *aitv;
854		PROC_UNLOCK(p);
855		if (timevalisset(&oitv->it_value)) {
856			if (timevalcmp(&oitv->it_value, &ctv, <))
857				timevalclear(&oitv->it_value);
858			else
859				timevalsub(&oitv->it_value, &ctv);
860		}
861	} else {
862		if (aitv->it_interval.tv_sec == 0 &&
863		    aitv->it_interval.tv_usec != 0 &&
864		    aitv->it_interval.tv_usec < tick)
865			aitv->it_interval.tv_usec = tick;
866		if (aitv->it_value.tv_sec == 0 &&
867		    aitv->it_value.tv_usec != 0 &&
868		    aitv->it_value.tv_usec < tick)
869			aitv->it_value.tv_usec = tick;
870		PROC_ITIMLOCK(p);
871		*oitv = p->p_stats->p_timer[which];
872		p->p_stats->p_timer[which] = *aitv;
873		PROC_ITIMUNLOCK(p);
874	}
875#ifdef KTRACE
876	if (KTRPOINT(td, KTR_STRUCT))
877		ktritimerval(oitv);
878#endif
879	return (0);
880}
881
882static void
883realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp)
884{
885	sbintime_t prec;
886
887	prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp;
888	callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
889	    prec >> tc_precexp, realitexpire, p, C_ABSOLUTE);
890}
891
892void
893itimer_proc_continue(struct proc *p)
894{
895	struct timeval ctv;
896	struct itimer *it;
897	int id;
898
899	PROC_LOCK_ASSERT(p, MA_OWNED);
900
901	if ((p->p_flag2 & P2_ITSTOPPED) != 0) {
902		p->p_flag2 &= ~P2_ITSTOPPED;
903		microuptime(&ctv);
904		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=))
905			realitexpire(p);
906		else
907			realitexpire_reset_callout(p, NULL);
908	}
909
910	if (p->p_itimers != NULL) {
911		for (id = 3; id < TIMER_MAX; id++) {
912			it = p->p_itimers->its_timers[id];
913			if (it == NULL)
914				continue;
915			if ((it->it_flags & ITF_PSTOPPED) != 0) {
916				ITIMER_LOCK(it);
917				if ((it->it_flags & ITF_PSTOPPED) != 0) {
918					it->it_flags &= ~ITF_PSTOPPED;
919					if ((it->it_flags & ITF_DELETING) == 0)
920						realtimer_expire_l(it, true);
921				}
922				ITIMER_UNLOCK(it);
923			}
924		}
925	}
926}
927
928/*
929 * Real interval timer expired:
930 * send process whose timer expired an alarm signal.
931 * If time is not set up to reload, then just return.
932 * Else compute next time timer should go off which is > current time.
933 * This is where delay in processing this timeout causes multiple
934 * SIGALRM calls to be compressed into one.
935 * tvtohz() always adds 1 to allow for the time until the next clock
936 * interrupt being strictly less than 1 clock tick, but we don't want
937 * that here since we want to appear to be in sync with the clock
938 * interrupt even when we're delayed.
939 */
940static void
941realitexpire(void *arg)
942{
943	struct proc *p;
944	struct timeval ctv;
945	sbintime_t isbt;
946
947	p = (struct proc *)arg;
948	kern_psignal(p, SIGALRM);
949	if (!timevalisset(&p->p_realtimer.it_interval)) {
950		timevalclear(&p->p_realtimer.it_value);
951		return;
952	}
953
954	isbt = tvtosbt(p->p_realtimer.it_interval);
955	if (isbt >= sbt_timethreshold)
956		getmicrouptime(&ctv);
957	else
958		microuptime(&ctv);
959	do {
960		timevaladd(&p->p_realtimer.it_value,
961		    &p->p_realtimer.it_interval);
962	} while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
963
964	if (P_SHOULDSTOP(p) || P_KILLED(p)) {
965		p->p_flag2 |= P2_ITSTOPPED;
966		return;
967	}
968
969	p->p_flag2 &= ~P2_ITSTOPPED;
970	realitexpire_reset_callout(p, &isbt);
971}
972
973/*
974 * Check that a proposed value to load into the .it_value or
975 * .it_interval part of an interval timer is acceptable, and
976 * fix it to have at least minimal value (i.e. if it is less
977 * than the resolution of the clock, round it up.)
978 */
979int
980itimerfix(struct timeval *tv)
981{
982
983	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
984		return (EINVAL);
985	if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
986	    tv->tv_usec < (u_int)tick / 16)
987		tv->tv_usec = (u_int)tick / 16;
988	return (0);
989}
990
991/*
992 * Decrement an interval timer by a specified number
993 * of microseconds, which must be less than a second,
994 * i.e. < 1000000.  If the timer expires, then reload
995 * it.  In this case, carry over (usec - old value) to
996 * reduce the value reloaded into the timer so that
997 * the timer does not drift.  This routine assumes
998 * that it is called in a context where the timers
999 * on which it is operating cannot change in value.
1000 */
1001int
1002itimerdecr(struct itimerval *itp, int usec)
1003{
1004
1005	if (itp->it_value.tv_usec < usec) {
1006		if (itp->it_value.tv_sec == 0) {
1007			/* expired, and already in next interval */
1008			usec -= itp->it_value.tv_usec;
1009			goto expire;
1010		}
1011		itp->it_value.tv_usec += 1000000;
1012		itp->it_value.tv_sec--;
1013	}
1014	itp->it_value.tv_usec -= usec;
1015	usec = 0;
1016	if (timevalisset(&itp->it_value))
1017		return (1);
1018	/* expired, exactly at end of interval */
1019expire:
1020	if (timevalisset(&itp->it_interval)) {
1021		itp->it_value = itp->it_interval;
1022		itp->it_value.tv_usec -= usec;
1023		if (itp->it_value.tv_usec < 0) {
1024			itp->it_value.tv_usec += 1000000;
1025			itp->it_value.tv_sec--;
1026		}
1027	} else
1028		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1029	return (0);
1030}
1031
1032/*
1033 * Add and subtract routines for timevals.
1034 * N.B.: subtract routine doesn't deal with
1035 * results which are before the beginning,
1036 * it just gets very confused in this case.
1037 * Caveat emptor.
1038 */
1039void
1040timevaladd(struct timeval *t1, const struct timeval *t2)
1041{
1042
1043	t1->tv_sec += t2->tv_sec;
1044	t1->tv_usec += t2->tv_usec;
1045	timevalfix(t1);
1046}
1047
1048void
1049timevalsub(struct timeval *t1, const struct timeval *t2)
1050{
1051
1052	t1->tv_sec -= t2->tv_sec;
1053	t1->tv_usec -= t2->tv_usec;
1054	timevalfix(t1);
1055}
1056
1057static void
1058timevalfix(struct timeval *t1)
1059{
1060
1061	if (t1->tv_usec < 0) {
1062		t1->tv_sec--;
1063		t1->tv_usec += 1000000;
1064	}
1065	if (t1->tv_usec >= 1000000) {
1066		t1->tv_sec++;
1067		t1->tv_usec -= 1000000;
1068	}
1069}
1070
1071/*
1072 * ratecheck(): simple time-based rate-limit checking.
1073 */
1074int
1075ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1076{
1077	struct timeval tv, delta;
1078	int rv = 0;
1079
1080	getmicrouptime(&tv);		/* NB: 10ms precision */
1081	delta = tv;
1082	timevalsub(&delta, lasttime);
1083
1084	/*
1085	 * check for 0,0 is so that the message will be seen at least once,
1086	 * even if interval is huge.
1087	 */
1088	if (timevalcmp(&delta, mininterval, >=) ||
1089	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1090		*lasttime = tv;
1091		rv = 1;
1092	}
1093
1094	return (rv);
1095}
1096
1097/*
1098 * eventratecheck(): events per second limitation.
1099 *
1100 * Return 0 if the limit is to be enforced (e.g. the caller
1101 * should ignore the event because of the rate limitation).
1102 *
1103 * maxeps of 0 always causes zero to be returned.  maxeps of -1
1104 * always causes 1 to be returned; this effectively defeats rate
1105 * limiting.
1106 *
1107 * Note that we maintain the struct timeval for compatibility
1108 * with other bsd systems.  We reuse the storage and just monitor
1109 * clock ticks for minimal overhead.
1110 */
1111int
1112eventratecheck(struct timeval *lasttime, int *cureps, int maxeps)
1113{
1114	int now;
1115
1116	/*
1117	 * Reset the last time and counter if this is the first call
1118	 * or more than a second has passed since the last update of
1119	 * lasttime.
1120	 */
1121	now = ticks;
1122	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1123		lasttime->tv_sec = now;
1124		*cureps = 1;
1125		return (maxeps != 0);
1126	} else {
1127		(*cureps)++;		/* NB: ignore potential overflow */
1128		return (maxeps < 0 || *cureps <= maxeps);
1129	}
1130}
1131
1132static void
1133itimer_start(void)
1134{
1135	static const struct kclock rt_clock = {
1136		.timer_create  = realtimer_create,
1137		.timer_delete  = realtimer_delete,
1138		.timer_settime = realtimer_settime,
1139		.timer_gettime = realtimer_gettime,
1140	};
1141
1142	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1143		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1144	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
1145	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1146	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1147	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1148	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1149}
1150
1151static int
1152register_posix_clock(int clockid, const struct kclock *clk)
1153{
1154	if ((unsigned)clockid >= MAX_CLOCKS) {
1155		printf("%s: invalid clockid\n", __func__);
1156		return (0);
1157	}
1158	posix_clocks[clockid] = *clk;
1159	return (1);
1160}
1161
1162static int
1163itimer_init(void *mem, int size, int flags)
1164{
1165	struct itimer *it;
1166
1167	it = (struct itimer *)mem;
1168	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1169	return (0);
1170}
1171
1172static void
1173itimer_fini(void *mem, int size)
1174{
1175	struct itimer *it;
1176
1177	it = (struct itimer *)mem;
1178	mtx_destroy(&it->it_mtx);
1179}
1180
1181static void
1182itimer_enter(struct itimer *it)
1183{
1184
1185	mtx_assert(&it->it_mtx, MA_OWNED);
1186	it->it_usecount++;
1187}
1188
1189static void
1190itimer_leave(struct itimer *it)
1191{
1192
1193	mtx_assert(&it->it_mtx, MA_OWNED);
1194	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1195
1196	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1197		wakeup(it);
1198}
1199
1200#ifndef _SYS_SYSPROTO_H_
1201struct ktimer_create_args {
1202	clockid_t clock_id;
1203	struct sigevent * evp;
1204	int * timerid;
1205};
1206#endif
1207int
1208sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1209{
1210	struct sigevent *evp, ev;
1211	int id;
1212	int error;
1213
1214	if (uap->evp == NULL) {
1215		evp = NULL;
1216	} else {
1217		error = copyin(uap->evp, &ev, sizeof(ev));
1218		if (error != 0)
1219			return (error);
1220		evp = &ev;
1221	}
1222	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1223	if (error == 0) {
1224		error = copyout(&id, uap->timerid, sizeof(int));
1225		if (error != 0)
1226			kern_ktimer_delete(td, id);
1227	}
1228	return (error);
1229}
1230
1231int
1232kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1233    int *timerid, int preset_id)
1234{
1235	struct proc *p = td->td_proc;
1236	struct itimer *it;
1237	int id;
1238	int error;
1239
1240	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1241		return (EINVAL);
1242
1243	if (posix_clocks[clock_id].timer_create == NULL)
1244		return (EINVAL);
1245
1246	if (evp != NULL) {
1247		if (evp->sigev_notify != SIGEV_NONE &&
1248		    evp->sigev_notify != SIGEV_SIGNAL &&
1249		    evp->sigev_notify != SIGEV_THREAD_ID)
1250			return (EINVAL);
1251		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1252		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1253			!_SIG_VALID(evp->sigev_signo))
1254			return (EINVAL);
1255	}
1256
1257	if (p->p_itimers == NULL)
1258		itimers_alloc(p);
1259
1260	it = uma_zalloc(itimer_zone, M_WAITOK);
1261	it->it_flags = 0;
1262	it->it_usecount = 0;
1263	timespecclear(&it->it_time.it_value);
1264	timespecclear(&it->it_time.it_interval);
1265	it->it_overrun = 0;
1266	it->it_overrun_last = 0;
1267	it->it_clockid = clock_id;
1268	it->it_proc = p;
1269	ksiginfo_init(&it->it_ksi);
1270	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1271	error = CLOCK_CALL(clock_id, timer_create, (it));
1272	if (error != 0)
1273		goto out;
1274
1275	PROC_LOCK(p);
1276	if (preset_id != -1) {
1277		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1278		id = preset_id;
1279		if (p->p_itimers->its_timers[id] != NULL) {
1280			PROC_UNLOCK(p);
1281			error = 0;
1282			goto out;
1283		}
1284	} else {
1285		/*
1286		 * Find a free timer slot, skipping those reserved
1287		 * for setitimer().
1288		 */
1289		for (id = 3; id < TIMER_MAX; id++)
1290			if (p->p_itimers->its_timers[id] == NULL)
1291				break;
1292		if (id == TIMER_MAX) {
1293			PROC_UNLOCK(p);
1294			error = EAGAIN;
1295			goto out;
1296		}
1297	}
1298	p->p_itimers->its_timers[id] = it;
1299	if (evp != NULL)
1300		it->it_sigev = *evp;
1301	else {
1302		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1303		switch (clock_id) {
1304		default:
1305		case CLOCK_REALTIME:
1306			it->it_sigev.sigev_signo = SIGALRM;
1307			break;
1308		case CLOCK_VIRTUAL:
1309 			it->it_sigev.sigev_signo = SIGVTALRM;
1310			break;
1311		case CLOCK_PROF:
1312			it->it_sigev.sigev_signo = SIGPROF;
1313			break;
1314		}
1315		it->it_sigev.sigev_value.sival_int = id;
1316	}
1317
1318	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1319	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1320		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1321		it->it_ksi.ksi_code = SI_TIMER;
1322		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1323		it->it_ksi.ksi_timerid = id;
1324	}
1325	PROC_UNLOCK(p);
1326	*timerid = id;
1327	return (0);
1328
1329out:
1330	ITIMER_LOCK(it);
1331	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1332	ITIMER_UNLOCK(it);
1333	uma_zfree(itimer_zone, it);
1334	return (error);
1335}
1336
1337#ifndef _SYS_SYSPROTO_H_
1338struct ktimer_delete_args {
1339	int timerid;
1340};
1341#endif
1342int
1343sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1344{
1345
1346	return (kern_ktimer_delete(td, uap->timerid));
1347}
1348
1349static struct itimer *
1350itimer_find(struct proc *p, int timerid)
1351{
1352	struct itimer *it;
1353
1354	PROC_LOCK_ASSERT(p, MA_OWNED);
1355	if ((p->p_itimers == NULL) ||
1356	    (timerid < 0) || (timerid >= TIMER_MAX) ||
1357	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1358		return (NULL);
1359	}
1360	ITIMER_LOCK(it);
1361	if ((it->it_flags & ITF_DELETING) != 0) {
1362		ITIMER_UNLOCK(it);
1363		it = NULL;
1364	}
1365	return (it);
1366}
1367
1368int
1369kern_ktimer_delete(struct thread *td, int timerid)
1370{
1371	struct proc *p = td->td_proc;
1372	struct itimer *it;
1373
1374	PROC_LOCK(p);
1375	it = itimer_find(p, timerid);
1376	if (it == NULL) {
1377		PROC_UNLOCK(p);
1378		return (EINVAL);
1379	}
1380	PROC_UNLOCK(p);
1381
1382	it->it_flags |= ITF_DELETING;
1383	while (it->it_usecount > 0) {
1384		it->it_flags |= ITF_WANTED;
1385		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1386	}
1387	it->it_flags &= ~ITF_WANTED;
1388	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1389	ITIMER_UNLOCK(it);
1390
1391	PROC_LOCK(p);
1392	if (KSI_ONQ(&it->it_ksi))
1393		sigqueue_take(&it->it_ksi);
1394	p->p_itimers->its_timers[timerid] = NULL;
1395	PROC_UNLOCK(p);
1396	uma_zfree(itimer_zone, it);
1397	return (0);
1398}
1399
1400#ifndef _SYS_SYSPROTO_H_
1401struct ktimer_settime_args {
1402	int timerid;
1403	int flags;
1404	const struct itimerspec * value;
1405	struct itimerspec * ovalue;
1406};
1407#endif
1408int
1409sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1410{
1411	struct itimerspec val, oval, *ovalp;
1412	int error;
1413
1414	error = copyin(uap->value, &val, sizeof(val));
1415	if (error != 0)
1416		return (error);
1417	ovalp = uap->ovalue != NULL ? &oval : NULL;
1418	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1419	if (error == 0 && uap->ovalue != NULL)
1420		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1421	return (error);
1422}
1423
1424int
1425kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1426    struct itimerspec *val, struct itimerspec *oval)
1427{
1428	struct proc *p;
1429	struct itimer *it;
1430	int error;
1431
1432	p = td->td_proc;
1433	PROC_LOCK(p);
1434	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1435		PROC_UNLOCK(p);
1436		error = EINVAL;
1437	} else {
1438		PROC_UNLOCK(p);
1439		itimer_enter(it);
1440		error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1441		    flags, val, oval));
1442		itimer_leave(it);
1443		ITIMER_UNLOCK(it);
1444	}
1445	return (error);
1446}
1447
1448#ifndef _SYS_SYSPROTO_H_
1449struct ktimer_gettime_args {
1450	int timerid;
1451	struct itimerspec * value;
1452};
1453#endif
1454int
1455sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1456{
1457	struct itimerspec val;
1458	int error;
1459
1460	error = kern_ktimer_gettime(td, uap->timerid, &val);
1461	if (error == 0)
1462		error = copyout(&val, uap->value, sizeof(val));
1463	return (error);
1464}
1465
1466int
1467kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1468{
1469	struct proc *p;
1470	struct itimer *it;
1471	int error;
1472
1473	p = td->td_proc;
1474	PROC_LOCK(p);
1475	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1476		PROC_UNLOCK(p);
1477		error = EINVAL;
1478	} else {
1479		PROC_UNLOCK(p);
1480		itimer_enter(it);
1481		error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1482		itimer_leave(it);
1483		ITIMER_UNLOCK(it);
1484	}
1485	return (error);
1486}
1487
1488#ifndef _SYS_SYSPROTO_H_
1489struct timer_getoverrun_args {
1490	int timerid;
1491};
1492#endif
1493int
1494sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1495{
1496
1497	return (kern_ktimer_getoverrun(td, uap->timerid));
1498}
1499
1500int
1501kern_ktimer_getoverrun(struct thread *td, int timer_id)
1502{
1503	struct proc *p = td->td_proc;
1504	struct itimer *it;
1505	int error ;
1506
1507	PROC_LOCK(p);
1508	if (timer_id < 3 ||
1509	    (it = itimer_find(p, timer_id)) == NULL) {
1510		PROC_UNLOCK(p);
1511		error = EINVAL;
1512	} else {
1513		td->td_retval[0] = it->it_overrun_last;
1514		ITIMER_UNLOCK(it);
1515		PROC_UNLOCK(p);
1516		error = 0;
1517	}
1518	return (error);
1519}
1520
1521static int
1522realtimer_create(struct itimer *it)
1523{
1524	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1525	return (0);
1526}
1527
1528static int
1529realtimer_delete(struct itimer *it)
1530{
1531	mtx_assert(&it->it_mtx, MA_OWNED);
1532
1533	/*
1534	 * clear timer's value and interval to tell realtimer_expire
1535	 * to not rearm the timer.
1536	 */
1537	timespecclear(&it->it_time.it_value);
1538	timespecclear(&it->it_time.it_interval);
1539	ITIMER_UNLOCK(it);
1540	callout_drain(&it->it_callout);
1541	ITIMER_LOCK(it);
1542	return (0);
1543}
1544
1545static int
1546realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1547{
1548	struct timespec cts;
1549
1550	mtx_assert(&it->it_mtx, MA_OWNED);
1551
1552	realtimer_clocktime(it->it_clockid, &cts);
1553	*ovalue = it->it_time;
1554	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1555		timespecsub(&ovalue->it_value, &cts, &ovalue->it_value);
1556		if (ovalue->it_value.tv_sec < 0 ||
1557		    (ovalue->it_value.tv_sec == 0 &&
1558		     ovalue->it_value.tv_nsec == 0)) {
1559			ovalue->it_value.tv_sec  = 0;
1560			ovalue->it_value.tv_nsec = 1;
1561		}
1562	}
1563	return (0);
1564}
1565
1566static int
1567realtimer_settime(struct itimer *it, int flags, struct itimerspec *value,
1568    struct itimerspec *ovalue)
1569{
1570	struct timespec cts, ts;
1571	struct timeval tv;
1572	struct itimerspec val;
1573
1574	mtx_assert(&it->it_mtx, MA_OWNED);
1575
1576	val = *value;
1577	if (itimespecfix(&val.it_value))
1578		return (EINVAL);
1579
1580	if (timespecisset(&val.it_value)) {
1581		if (itimespecfix(&val.it_interval))
1582			return (EINVAL);
1583	} else {
1584		timespecclear(&val.it_interval);
1585	}
1586
1587	if (ovalue != NULL)
1588		realtimer_gettime(it, ovalue);
1589
1590	it->it_time = val;
1591	if (timespecisset(&val.it_value)) {
1592		realtimer_clocktime(it->it_clockid, &cts);
1593		ts = val.it_value;
1594		if ((flags & TIMER_ABSTIME) == 0) {
1595			/* Convert to absolute time. */
1596			timespecadd(&it->it_time.it_value, &cts,
1597			    &it->it_time.it_value);
1598		} else {
1599			timespecsub(&ts, &cts, &ts);
1600			/*
1601			 * We don't care if ts is negative, tztohz will
1602			 * fix it.
1603			 */
1604		}
1605		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1606		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1607		    it);
1608	} else {
1609		callout_stop(&it->it_callout);
1610	}
1611
1612	return (0);
1613}
1614
1615static void
1616realtimer_clocktime(clockid_t id, struct timespec *ts)
1617{
1618	if (id == CLOCK_REALTIME)
1619		getnanotime(ts);
1620	else	/* CLOCK_MONOTONIC */
1621		getnanouptime(ts);
1622}
1623
1624int
1625itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1626{
1627	struct itimer *it;
1628
1629	PROC_LOCK_ASSERT(p, MA_OWNED);
1630	it = itimer_find(p, timerid);
1631	if (it != NULL) {
1632		ksi->ksi_overrun = it->it_overrun;
1633		it->it_overrun_last = it->it_overrun;
1634		it->it_overrun = 0;
1635		ITIMER_UNLOCK(it);
1636		return (0);
1637	}
1638	return (EINVAL);
1639}
1640
1641static int
1642itimespecfix(struct timespec *ts)
1643{
1644
1645	if (!timespecvalid_interval(ts))
1646		return (EINVAL);
1647	if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec)
1648		return (EINVAL);
1649	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1650		ts->tv_nsec = tick * 1000;
1651	return (0);
1652}
1653
1654#define	timespectons(tsp)			\
1655	((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec)
1656#define	timespecfromns(ns) (struct timespec){	\
1657	.tv_sec = (ns) / NS_PER_SEC,		\
1658	.tv_nsec = (ns) % NS_PER_SEC		\
1659}
1660
1661static void
1662realtimer_expire_l(struct itimer *it, bool proc_locked)
1663{
1664	struct timespec cts, ts;
1665	struct timeval tv;
1666	struct proc *p;
1667	uint64_t interval, now, overruns, value;
1668
1669	realtimer_clocktime(it->it_clockid, &cts);
1670	/* Only fire if time is reached. */
1671	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1672		if (timespecisset(&it->it_time.it_interval)) {
1673			timespecadd(&it->it_time.it_value,
1674			    &it->it_time.it_interval,
1675			    &it->it_time.it_value);
1676
1677			interval = timespectons(&it->it_time.it_interval);
1678			value = timespectons(&it->it_time.it_value);
1679			now = timespectons(&cts);
1680
1681			if (now >= value) {
1682				/*
1683				 * We missed at least one period.
1684				 */
1685				overruns = howmany(now - value + 1, interval);
1686				if (it->it_overrun + overruns >=
1687				    it->it_overrun &&
1688				    it->it_overrun + overruns <= INT_MAX) {
1689					it->it_overrun += (int)overruns;
1690				} else {
1691					it->it_overrun = INT_MAX;
1692					it->it_ksi.ksi_errno = ERANGE;
1693				}
1694				value =
1695				    now + interval - (now - value) % interval;
1696				it->it_time.it_value = timespecfromns(value);
1697			}
1698		} else {
1699			/* single shot timer ? */
1700			timespecclear(&it->it_time.it_value);
1701		}
1702
1703		p = it->it_proc;
1704		if (timespecisset(&it->it_time.it_value)) {
1705			if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1706				it->it_flags |= ITF_PSTOPPED;
1707			} else {
1708				timespecsub(&it->it_time.it_value, &cts, &ts);
1709				TIMESPEC_TO_TIMEVAL(&tv, &ts);
1710				callout_reset(&it->it_callout, tvtohz(&tv),
1711				    realtimer_expire, it);
1712			}
1713		}
1714
1715		itimer_enter(it);
1716		ITIMER_UNLOCK(it);
1717		if (proc_locked)
1718			PROC_UNLOCK(p);
1719		itimer_fire(it);
1720		if (proc_locked)
1721			PROC_LOCK(p);
1722		ITIMER_LOCK(it);
1723		itimer_leave(it);
1724	} else if (timespecisset(&it->it_time.it_value)) {
1725		p = it->it_proc;
1726		if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1727			it->it_flags |= ITF_PSTOPPED;
1728		} else {
1729			ts = it->it_time.it_value;
1730			timespecsub(&ts, &cts, &ts);
1731			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1732			callout_reset(&it->it_callout, tvtohz(&tv),
1733			    realtimer_expire, it);
1734		}
1735	}
1736}
1737
1738/* Timeout callback for realtime timer */
1739static void
1740realtimer_expire(void *arg)
1741{
1742	realtimer_expire_l(arg, false);
1743}
1744
1745static void
1746itimer_fire(struct itimer *it)
1747{
1748	struct proc *p = it->it_proc;
1749	struct thread *td;
1750
1751	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1752	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1753		if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1754			ITIMER_LOCK(it);
1755			timespecclear(&it->it_time.it_value);
1756			timespecclear(&it->it_time.it_interval);
1757			callout_stop(&it->it_callout);
1758			ITIMER_UNLOCK(it);
1759			return;
1760		}
1761		if (!KSI_ONQ(&it->it_ksi)) {
1762			it->it_ksi.ksi_errno = 0;
1763			ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1764			tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1765		} else {
1766			if (it->it_overrun < INT_MAX)
1767				it->it_overrun++;
1768			else
1769				it->it_ksi.ksi_errno = ERANGE;
1770		}
1771		PROC_UNLOCK(p);
1772	}
1773}
1774
1775static void
1776itimers_alloc(struct proc *p)
1777{
1778	struct itimers *its;
1779
1780	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1781	PROC_LOCK(p);
1782	if (p->p_itimers == NULL) {
1783		p->p_itimers = its;
1784		PROC_UNLOCK(p);
1785	}
1786	else {
1787		PROC_UNLOCK(p);
1788		free(its, M_SUBPROC);
1789	}
1790}
1791
1792/* Clean up timers when some process events are being triggered. */
1793static void
1794itimers_event_exit_exec(int start_idx, struct proc *p)
1795{
1796	struct itimers *its;
1797	struct itimer *it;
1798	int i;
1799
1800	its = p->p_itimers;
1801	if (its == NULL)
1802		return;
1803
1804	for (i = start_idx; i < TIMER_MAX; ++i) {
1805		if ((it = its->its_timers[i]) != NULL)
1806			kern_ktimer_delete(curthread, i);
1807	}
1808	if (its->its_timers[0] == NULL && its->its_timers[1] == NULL &&
1809	    its->its_timers[2] == NULL) {
1810		/* Synchronize with itimer_proc_continue(). */
1811		PROC_LOCK(p);
1812		p->p_itimers = NULL;
1813		PROC_UNLOCK(p);
1814		free(its, M_SUBPROC);
1815	}
1816}
1817
1818void
1819itimers_exec(struct proc *p)
1820{
1821	/*
1822	 * According to susv3, XSI interval timers should be inherited
1823	 * by new image.
1824	 */
1825	itimers_event_exit_exec(3, p);
1826}
1827
1828void
1829itimers_exit(struct proc *p)
1830{
1831	itimers_event_exit_exec(0, p);
1832}
1833