1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5 *	The Regents of the University of California.
6 * (c) UNIX System Laboratories, Inc.
7 * Copyright (c) 2000-2001 Robert N. M. Watson.
8 * All rights reserved.
9 *
10 * All or some portions of this file are derived from material licensed
11 * to the University of California by American Telephone and Telegraph
12 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13 * the permission of UNIX System Laboratories, Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 */
39
40/*
41 * System calls related to processes and protection
42 */
43
44#include <sys/cdefs.h>
45#include "opt_inet.h"
46#include "opt_inet6.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/acct.h>
51#include <sys/kdb.h>
52#include <sys/kernel.h>
53#include <sys/lock.h>
54#include <sys/loginclass.h>
55#include <sys/malloc.h>
56#include <sys/mutex.h>
57#include <sys/ptrace.h>
58#include <sys/refcount.h>
59#include <sys/sx.h>
60#include <sys/priv.h>
61#include <sys/proc.h>
62#ifdef COMPAT_43
63#include <sys/sysent.h>
64#endif
65#include <sys/sysproto.h>
66#include <sys/jail.h>
67#include <sys/racct.h>
68#include <sys/rctl.h>
69#include <sys/resourcevar.h>
70#include <sys/socket.h>
71#include <sys/socketvar.h>
72#include <sys/syscallsubr.h>
73#include <sys/sysctl.h>
74
75#include <vm/uma.h>
76
77#ifdef REGRESSION
78FEATURE(regression,
79    "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
80#endif
81
82#include <security/audit/audit.h>
83#include <security/mac/mac_framework.h>
84
85static MALLOC_DEFINE(M_CRED, "cred", "credentials");
86
87SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
88    "BSD security policy");
89
90static void crfree_final(struct ucred *cr);
91static void crsetgroups_locked(struct ucred *cr, int ngrp,
92    gid_t *groups);
93
94static int cr_canseeotheruids(struct ucred *u1, struct ucred *u2);
95static int cr_canseeothergids(struct ucred *u1, struct ucred *u2);
96static int cr_canseejailproc(struct ucred *u1, struct ucred *u2);
97
98#ifndef _SYS_SYSPROTO_H_
99struct getpid_args {
100	int	dummy;
101};
102#endif
103/* ARGSUSED */
104int
105sys_getpid(struct thread *td, struct getpid_args *uap)
106{
107	struct proc *p = td->td_proc;
108
109	td->td_retval[0] = p->p_pid;
110#if defined(COMPAT_43)
111	if (SV_PROC_FLAG(p, SV_AOUT))
112		td->td_retval[1] = kern_getppid(td);
113#endif
114	return (0);
115}
116
117#ifndef _SYS_SYSPROTO_H_
118struct getppid_args {
119        int     dummy;
120};
121#endif
122/* ARGSUSED */
123int
124sys_getppid(struct thread *td, struct getppid_args *uap)
125{
126
127	td->td_retval[0] = kern_getppid(td);
128	return (0);
129}
130
131int
132kern_getppid(struct thread *td)
133{
134	struct proc *p = td->td_proc;
135
136	return (p->p_oppid);
137}
138
139/*
140 * Get process group ID; note that POSIX getpgrp takes no parameter.
141 */
142#ifndef _SYS_SYSPROTO_H_
143struct getpgrp_args {
144        int     dummy;
145};
146#endif
147int
148sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
149{
150	struct proc *p = td->td_proc;
151
152	PROC_LOCK(p);
153	td->td_retval[0] = p->p_pgrp->pg_id;
154	PROC_UNLOCK(p);
155	return (0);
156}
157
158/* Get an arbitrary pid's process group id */
159#ifndef _SYS_SYSPROTO_H_
160struct getpgid_args {
161	pid_t	pid;
162};
163#endif
164int
165sys_getpgid(struct thread *td, struct getpgid_args *uap)
166{
167	struct proc *p;
168	int error;
169
170	if (uap->pid == 0) {
171		p = td->td_proc;
172		PROC_LOCK(p);
173	} else {
174		p = pfind(uap->pid);
175		if (p == NULL)
176			return (ESRCH);
177		error = p_cansee(td, p);
178		if (error) {
179			PROC_UNLOCK(p);
180			return (error);
181		}
182	}
183	td->td_retval[0] = p->p_pgrp->pg_id;
184	PROC_UNLOCK(p);
185	return (0);
186}
187
188/*
189 * Get an arbitrary pid's session id.
190 */
191#ifndef _SYS_SYSPROTO_H_
192struct getsid_args {
193	pid_t	pid;
194};
195#endif
196int
197sys_getsid(struct thread *td, struct getsid_args *uap)
198{
199
200	return (kern_getsid(td, uap->pid));
201}
202
203int
204kern_getsid(struct thread *td, pid_t pid)
205{
206	struct proc *p;
207	int error;
208
209	if (pid == 0) {
210		p = td->td_proc;
211		PROC_LOCK(p);
212	} else {
213		p = pfind(pid);
214		if (p == NULL)
215			return (ESRCH);
216		error = p_cansee(td, p);
217		if (error) {
218			PROC_UNLOCK(p);
219			return (error);
220		}
221	}
222	td->td_retval[0] = p->p_session->s_sid;
223	PROC_UNLOCK(p);
224	return (0);
225}
226
227#ifndef _SYS_SYSPROTO_H_
228struct getuid_args {
229        int     dummy;
230};
231#endif
232/* ARGSUSED */
233int
234sys_getuid(struct thread *td, struct getuid_args *uap)
235{
236
237	td->td_retval[0] = td->td_ucred->cr_ruid;
238#if defined(COMPAT_43)
239	td->td_retval[1] = td->td_ucred->cr_uid;
240#endif
241	return (0);
242}
243
244#ifndef _SYS_SYSPROTO_H_
245struct geteuid_args {
246        int     dummy;
247};
248#endif
249/* ARGSUSED */
250int
251sys_geteuid(struct thread *td, struct geteuid_args *uap)
252{
253
254	td->td_retval[0] = td->td_ucred->cr_uid;
255	return (0);
256}
257
258#ifndef _SYS_SYSPROTO_H_
259struct getgid_args {
260        int     dummy;
261};
262#endif
263/* ARGSUSED */
264int
265sys_getgid(struct thread *td, struct getgid_args *uap)
266{
267
268	td->td_retval[0] = td->td_ucred->cr_rgid;
269#if defined(COMPAT_43)
270	td->td_retval[1] = td->td_ucred->cr_groups[0];
271#endif
272	return (0);
273}
274
275/*
276 * Get effective group ID.  The "egid" is groups[0], and could be obtained
277 * via getgroups.  This syscall exists because it is somewhat painful to do
278 * correctly in a library function.
279 */
280#ifndef _SYS_SYSPROTO_H_
281struct getegid_args {
282        int     dummy;
283};
284#endif
285/* ARGSUSED */
286int
287sys_getegid(struct thread *td, struct getegid_args *uap)
288{
289
290	td->td_retval[0] = td->td_ucred->cr_groups[0];
291	return (0);
292}
293
294#ifndef _SYS_SYSPROTO_H_
295struct getgroups_args {
296	int	gidsetsize;
297	gid_t	*gidset;
298};
299#endif
300int
301sys_getgroups(struct thread *td, struct getgroups_args *uap)
302{
303	struct ucred *cred;
304	int ngrp, error;
305
306	cred = td->td_ucred;
307	ngrp = cred->cr_ngroups;
308
309	if (uap->gidsetsize == 0) {
310		error = 0;
311		goto out;
312	}
313	if (uap->gidsetsize < ngrp)
314		return (EINVAL);
315
316	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
317out:
318	td->td_retval[0] = ngrp;
319	return (error);
320}
321
322#ifndef _SYS_SYSPROTO_H_
323struct setsid_args {
324        int     dummy;
325};
326#endif
327/* ARGSUSED */
328int
329sys_setsid(struct thread *td, struct setsid_args *uap)
330{
331	struct pgrp *pgrp;
332	int error;
333	struct proc *p = td->td_proc;
334	struct pgrp *newpgrp;
335	struct session *newsess;
336
337	pgrp = NULL;
338
339	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
340	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
341
342again:
343	error = 0;
344	sx_xlock(&proctree_lock);
345
346	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
347		if (pgrp != NULL)
348			PGRP_UNLOCK(pgrp);
349		error = EPERM;
350	} else {
351		error = enterpgrp(p, p->p_pid, newpgrp, newsess);
352		if (error == ERESTART)
353			goto again;
354		MPASS(error == 0);
355		td->td_retval[0] = p->p_pid;
356		newpgrp = NULL;
357		newsess = NULL;
358	}
359
360	sx_xunlock(&proctree_lock);
361
362	uma_zfree(pgrp_zone, newpgrp);
363	free(newsess, M_SESSION);
364
365	return (error);
366}
367
368/*
369 * set process group (setpgid/old setpgrp)
370 *
371 * caller does setpgid(targpid, targpgid)
372 *
373 * pid must be caller or child of caller (ESRCH)
374 * if a child
375 *	pid must be in same session (EPERM)
376 *	pid can't have done an exec (EACCES)
377 * if pgid != pid
378 * 	there must exist some pid in same session having pgid (EPERM)
379 * pid must not be session leader (EPERM)
380 */
381#ifndef _SYS_SYSPROTO_H_
382struct setpgid_args {
383	int	pid;		/* target process id */
384	int	pgid;		/* target pgrp id */
385};
386#endif
387/* ARGSUSED */
388int
389sys_setpgid(struct thread *td, struct setpgid_args *uap)
390{
391	struct proc *curp = td->td_proc;
392	struct proc *targp;	/* target process */
393	struct pgrp *pgrp;	/* target pgrp */
394	int error;
395	struct pgrp *newpgrp;
396
397	if (uap->pgid < 0)
398		return (EINVAL);
399
400	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
401
402again:
403	error = 0;
404
405	sx_xlock(&proctree_lock);
406	if (uap->pid != 0 && uap->pid != curp->p_pid) {
407		if ((targp = pfind(uap->pid)) == NULL) {
408			error = ESRCH;
409			goto done;
410		}
411		if (!inferior(targp)) {
412			PROC_UNLOCK(targp);
413			error = ESRCH;
414			goto done;
415		}
416		if ((error = p_cansee(td, targp))) {
417			PROC_UNLOCK(targp);
418			goto done;
419		}
420		if (targp->p_pgrp == NULL ||
421		    targp->p_session != curp->p_session) {
422			PROC_UNLOCK(targp);
423			error = EPERM;
424			goto done;
425		}
426		if (targp->p_flag & P_EXEC) {
427			PROC_UNLOCK(targp);
428			error = EACCES;
429			goto done;
430		}
431		PROC_UNLOCK(targp);
432	} else
433		targp = curp;
434	if (SESS_LEADER(targp)) {
435		error = EPERM;
436		goto done;
437	}
438	if (uap->pgid == 0)
439		uap->pgid = targp->p_pid;
440	if ((pgrp = pgfind(uap->pgid)) == NULL) {
441		if (uap->pgid == targp->p_pid) {
442			error = enterpgrp(targp, uap->pgid, newpgrp,
443			    NULL);
444			if (error == 0)
445				newpgrp = NULL;
446		} else
447			error = EPERM;
448	} else {
449		if (pgrp == targp->p_pgrp) {
450			PGRP_UNLOCK(pgrp);
451			goto done;
452		}
453		if (pgrp->pg_id != targp->p_pid &&
454		    pgrp->pg_session != curp->p_session) {
455			PGRP_UNLOCK(pgrp);
456			error = EPERM;
457			goto done;
458		}
459		PGRP_UNLOCK(pgrp);
460		error = enterthispgrp(targp, pgrp);
461	}
462done:
463	KASSERT(error == 0 || newpgrp != NULL,
464	    ("setpgid failed and newpgrp is NULL"));
465	if (error == ERESTART)
466		goto again;
467	sx_xunlock(&proctree_lock);
468	uma_zfree(pgrp_zone, newpgrp);
469	return (error);
470}
471
472/*
473 * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
474 * compatible.  It says that setting the uid/gid to euid/egid is a special
475 * case of "appropriate privilege".  Once the rules are expanded out, this
476 * basically means that setuid(nnn) sets all three id's, in all permitted
477 * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
478 * does not set the saved id - this is dangerous for traditional BSD
479 * programs.  For this reason, we *really* do not want to set
480 * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
481 */
482#define POSIX_APPENDIX_B_4_2_2
483
484#ifndef _SYS_SYSPROTO_H_
485struct setuid_args {
486	uid_t	uid;
487};
488#endif
489/* ARGSUSED */
490int
491sys_setuid(struct thread *td, struct setuid_args *uap)
492{
493	struct proc *p = td->td_proc;
494	struct ucred *newcred, *oldcred;
495	uid_t uid;
496	struct uidinfo *uip;
497	int error;
498
499	uid = uap->uid;
500	AUDIT_ARG_UID(uid);
501	newcred = crget();
502	uip = uifind(uid);
503	PROC_LOCK(p);
504	/*
505	 * Copy credentials so other references do not see our changes.
506	 */
507	oldcred = crcopysafe(p, newcred);
508
509#ifdef MAC
510	error = mac_cred_check_setuid(oldcred, uid);
511	if (error)
512		goto fail;
513#endif
514
515	/*
516	 * See if we have "permission" by POSIX 1003.1 rules.
517	 *
518	 * Note that setuid(geteuid()) is a special case of
519	 * "appropriate privileges" in appendix B.4.2.2.  We need
520	 * to use this clause to be compatible with traditional BSD
521	 * semantics.  Basically, it means that "setuid(xx)" sets all
522	 * three id's (assuming you have privs).
523	 *
524	 * Notes on the logic.  We do things in three steps.
525	 * 1: We determine if the euid is going to change, and do EPERM
526	 *    right away.  We unconditionally change the euid later if this
527	 *    test is satisfied, simplifying that part of the logic.
528	 * 2: We determine if the real and/or saved uids are going to
529	 *    change.  Determined by compile options.
530	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
531	 */
532	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
533#ifdef _POSIX_SAVED_IDS
534	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
535#endif
536#ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
537	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
538#endif
539	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
540		goto fail;
541
542#ifdef _POSIX_SAVED_IDS
543	/*
544	 * Do we have "appropriate privileges" (are we root or uid == euid)
545	 * If so, we are changing the real uid and/or saved uid.
546	 */
547	if (
548#ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
549	    uid == oldcred->cr_uid ||
550#endif
551	    /* We are using privs. */
552	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
553#endif
554	{
555		/*
556		 * Set the real uid and transfer proc count to new user.
557		 */
558		if (uid != oldcred->cr_ruid) {
559			change_ruid(newcred, uip);
560			setsugid(p);
561		}
562		/*
563		 * Set saved uid
564		 *
565		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
566		 * the security of seteuid() depends on it.  B.4.2.2 says it
567		 * is important that we should do this.
568		 */
569		if (uid != oldcred->cr_svuid) {
570			change_svuid(newcred, uid);
571			setsugid(p);
572		}
573	}
574
575	/*
576	 * In all permitted cases, we are changing the euid.
577	 */
578	if (uid != oldcred->cr_uid) {
579		change_euid(newcred, uip);
580		setsugid(p);
581	}
582	proc_set_cred(p, newcred);
583#ifdef RACCT
584	racct_proc_ucred_changed(p, oldcred, newcred);
585	crhold(newcred);
586#endif
587	PROC_UNLOCK(p);
588#ifdef RCTL
589	rctl_proc_ucred_changed(p, newcred);
590	crfree(newcred);
591#endif
592	uifree(uip);
593	crfree(oldcred);
594	return (0);
595
596fail:
597	PROC_UNLOCK(p);
598	uifree(uip);
599	crfree(newcred);
600	return (error);
601}
602
603#ifndef _SYS_SYSPROTO_H_
604struct seteuid_args {
605	uid_t	euid;
606};
607#endif
608/* ARGSUSED */
609int
610sys_seteuid(struct thread *td, struct seteuid_args *uap)
611{
612	struct proc *p = td->td_proc;
613	struct ucred *newcred, *oldcred;
614	uid_t euid;
615	struct uidinfo *euip;
616	int error;
617
618	euid = uap->euid;
619	AUDIT_ARG_EUID(euid);
620	newcred = crget();
621	euip = uifind(euid);
622	PROC_LOCK(p);
623	/*
624	 * Copy credentials so other references do not see our changes.
625	 */
626	oldcred = crcopysafe(p, newcred);
627
628#ifdef MAC
629	error = mac_cred_check_seteuid(oldcred, euid);
630	if (error)
631		goto fail;
632#endif
633
634	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
635	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
636	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
637		goto fail;
638
639	/*
640	 * Everything's okay, do it.
641	 */
642	if (oldcred->cr_uid != euid) {
643		change_euid(newcred, euip);
644		setsugid(p);
645	}
646	proc_set_cred(p, newcred);
647	PROC_UNLOCK(p);
648	uifree(euip);
649	crfree(oldcred);
650	return (0);
651
652fail:
653	PROC_UNLOCK(p);
654	uifree(euip);
655	crfree(newcred);
656	return (error);
657}
658
659#ifndef _SYS_SYSPROTO_H_
660struct setgid_args {
661	gid_t	gid;
662};
663#endif
664/* ARGSUSED */
665int
666sys_setgid(struct thread *td, struct setgid_args *uap)
667{
668	struct proc *p = td->td_proc;
669	struct ucred *newcred, *oldcred;
670	gid_t gid;
671	int error;
672
673	gid = uap->gid;
674	AUDIT_ARG_GID(gid);
675	newcred = crget();
676	PROC_LOCK(p);
677	oldcred = crcopysafe(p, newcred);
678
679#ifdef MAC
680	error = mac_cred_check_setgid(oldcred, gid);
681	if (error)
682		goto fail;
683#endif
684
685	/*
686	 * See if we have "permission" by POSIX 1003.1 rules.
687	 *
688	 * Note that setgid(getegid()) is a special case of
689	 * "appropriate privileges" in appendix B.4.2.2.  We need
690	 * to use this clause to be compatible with traditional BSD
691	 * semantics.  Basically, it means that "setgid(xx)" sets all
692	 * three id's (assuming you have privs).
693	 *
694	 * For notes on the logic here, see setuid() above.
695	 */
696	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
697#ifdef _POSIX_SAVED_IDS
698	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
699#endif
700#ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
701	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
702#endif
703	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
704		goto fail;
705
706#ifdef _POSIX_SAVED_IDS
707	/*
708	 * Do we have "appropriate privileges" (are we root or gid == egid)
709	 * If so, we are changing the real uid and saved gid.
710	 */
711	if (
712#ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
713	    gid == oldcred->cr_groups[0] ||
714#endif
715	    /* We are using privs. */
716	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
717#endif
718	{
719		/*
720		 * Set real gid
721		 */
722		if (oldcred->cr_rgid != gid) {
723			change_rgid(newcred, gid);
724			setsugid(p);
725		}
726		/*
727		 * Set saved gid
728		 *
729		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
730		 * the security of setegid() depends on it.  B.4.2.2 says it
731		 * is important that we should do this.
732		 */
733		if (oldcred->cr_svgid != gid) {
734			change_svgid(newcred, gid);
735			setsugid(p);
736		}
737	}
738	/*
739	 * In all cases permitted cases, we are changing the egid.
740	 * Copy credentials so other references do not see our changes.
741	 */
742	if (oldcred->cr_groups[0] != gid) {
743		change_egid(newcred, gid);
744		setsugid(p);
745	}
746	proc_set_cred(p, newcred);
747	PROC_UNLOCK(p);
748	crfree(oldcred);
749	return (0);
750
751fail:
752	PROC_UNLOCK(p);
753	crfree(newcred);
754	return (error);
755}
756
757#ifndef _SYS_SYSPROTO_H_
758struct setegid_args {
759	gid_t	egid;
760};
761#endif
762/* ARGSUSED */
763int
764sys_setegid(struct thread *td, struct setegid_args *uap)
765{
766	struct proc *p = td->td_proc;
767	struct ucred *newcred, *oldcred;
768	gid_t egid;
769	int error;
770
771	egid = uap->egid;
772	AUDIT_ARG_EGID(egid);
773	newcred = crget();
774	PROC_LOCK(p);
775	oldcred = crcopysafe(p, newcred);
776
777#ifdef MAC
778	error = mac_cred_check_setegid(oldcred, egid);
779	if (error)
780		goto fail;
781#endif
782
783	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
784	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
785	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
786		goto fail;
787
788	if (oldcred->cr_groups[0] != egid) {
789		change_egid(newcred, egid);
790		setsugid(p);
791	}
792	proc_set_cred(p, newcred);
793	PROC_UNLOCK(p);
794	crfree(oldcred);
795	return (0);
796
797fail:
798	PROC_UNLOCK(p);
799	crfree(newcred);
800	return (error);
801}
802
803#ifndef _SYS_SYSPROTO_H_
804struct setgroups_args {
805	int	gidsetsize;
806	gid_t	*gidset;
807};
808#endif
809/* ARGSUSED */
810int
811sys_setgroups(struct thread *td, struct setgroups_args *uap)
812{
813	gid_t smallgroups[XU_NGROUPS];
814	gid_t *groups;
815	int gidsetsize, error;
816
817	gidsetsize = uap->gidsetsize;
818	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
819		return (EINVAL);
820
821	if (gidsetsize > XU_NGROUPS)
822		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
823	else
824		groups = smallgroups;
825
826	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
827	if (error == 0)
828		error = kern_setgroups(td, gidsetsize, groups);
829
830	if (gidsetsize > XU_NGROUPS)
831		free(groups, M_TEMP);
832	return (error);
833}
834
835int
836kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
837{
838	struct proc *p = td->td_proc;
839	struct ucred *newcred, *oldcred;
840	int error;
841
842	MPASS(ngrp <= ngroups_max + 1);
843	AUDIT_ARG_GROUPSET(groups, ngrp);
844	newcred = crget();
845	crextend(newcred, ngrp);
846	PROC_LOCK(p);
847	oldcred = crcopysafe(p, newcred);
848
849#ifdef MAC
850	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
851	if (error)
852		goto fail;
853#endif
854
855	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
856	if (error)
857		goto fail;
858
859	if (ngrp == 0) {
860		/*
861		 * setgroups(0, NULL) is a legitimate way of clearing the
862		 * groups vector on non-BSD systems (which generally do not
863		 * have the egid in the groups[0]).  We risk security holes
864		 * when running non-BSD software if we do not do the same.
865		 */
866		newcred->cr_ngroups = 1;
867	} else {
868		crsetgroups_locked(newcred, ngrp, groups);
869	}
870	setsugid(p);
871	proc_set_cred(p, newcred);
872	PROC_UNLOCK(p);
873	crfree(oldcred);
874	return (0);
875
876fail:
877	PROC_UNLOCK(p);
878	crfree(newcred);
879	return (error);
880}
881
882#ifndef _SYS_SYSPROTO_H_
883struct setreuid_args {
884	uid_t	ruid;
885	uid_t	euid;
886};
887#endif
888/* ARGSUSED */
889int
890sys_setreuid(struct thread *td, struct setreuid_args *uap)
891{
892	struct proc *p = td->td_proc;
893	struct ucred *newcred, *oldcred;
894	uid_t euid, ruid;
895	struct uidinfo *euip, *ruip;
896	int error;
897
898	euid = uap->euid;
899	ruid = uap->ruid;
900	AUDIT_ARG_EUID(euid);
901	AUDIT_ARG_RUID(ruid);
902	newcred = crget();
903	euip = uifind(euid);
904	ruip = uifind(ruid);
905	PROC_LOCK(p);
906	oldcred = crcopysafe(p, newcred);
907
908#ifdef MAC
909	error = mac_cred_check_setreuid(oldcred, ruid, euid);
910	if (error)
911		goto fail;
912#endif
913
914	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
915	      ruid != oldcred->cr_svuid) ||
916	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
917	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
918	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
919		goto fail;
920
921	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
922		change_euid(newcred, euip);
923		setsugid(p);
924	}
925	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
926		change_ruid(newcred, ruip);
927		setsugid(p);
928	}
929	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
930	    newcred->cr_svuid != newcred->cr_uid) {
931		change_svuid(newcred, newcred->cr_uid);
932		setsugid(p);
933	}
934	proc_set_cred(p, newcred);
935#ifdef RACCT
936	racct_proc_ucred_changed(p, oldcred, newcred);
937	crhold(newcred);
938#endif
939	PROC_UNLOCK(p);
940#ifdef RCTL
941	rctl_proc_ucred_changed(p, newcred);
942	crfree(newcred);
943#endif
944	uifree(ruip);
945	uifree(euip);
946	crfree(oldcred);
947	return (0);
948
949fail:
950	PROC_UNLOCK(p);
951	uifree(ruip);
952	uifree(euip);
953	crfree(newcred);
954	return (error);
955}
956
957#ifndef _SYS_SYSPROTO_H_
958struct setregid_args {
959	gid_t	rgid;
960	gid_t	egid;
961};
962#endif
963/* ARGSUSED */
964int
965sys_setregid(struct thread *td, struct setregid_args *uap)
966{
967	struct proc *p = td->td_proc;
968	struct ucred *newcred, *oldcred;
969	gid_t egid, rgid;
970	int error;
971
972	egid = uap->egid;
973	rgid = uap->rgid;
974	AUDIT_ARG_EGID(egid);
975	AUDIT_ARG_RGID(rgid);
976	newcred = crget();
977	PROC_LOCK(p);
978	oldcred = crcopysafe(p, newcred);
979
980#ifdef MAC
981	error = mac_cred_check_setregid(oldcred, rgid, egid);
982	if (error)
983		goto fail;
984#endif
985
986	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
987	    rgid != oldcred->cr_svgid) ||
988	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
989	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
990	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
991		goto fail;
992
993	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
994		change_egid(newcred, egid);
995		setsugid(p);
996	}
997	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
998		change_rgid(newcred, rgid);
999		setsugid(p);
1000	}
1001	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
1002	    newcred->cr_svgid != newcred->cr_groups[0]) {
1003		change_svgid(newcred, newcred->cr_groups[0]);
1004		setsugid(p);
1005	}
1006	proc_set_cred(p, newcred);
1007	PROC_UNLOCK(p);
1008	crfree(oldcred);
1009	return (0);
1010
1011fail:
1012	PROC_UNLOCK(p);
1013	crfree(newcred);
1014	return (error);
1015}
1016
1017/*
1018 * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1019 * uid is explicit.
1020 */
1021#ifndef _SYS_SYSPROTO_H_
1022struct setresuid_args {
1023	uid_t	ruid;
1024	uid_t	euid;
1025	uid_t	suid;
1026};
1027#endif
1028/* ARGSUSED */
1029int
1030sys_setresuid(struct thread *td, struct setresuid_args *uap)
1031{
1032	struct proc *p = td->td_proc;
1033	struct ucred *newcred, *oldcred;
1034	uid_t euid, ruid, suid;
1035	struct uidinfo *euip, *ruip;
1036	int error;
1037
1038	euid = uap->euid;
1039	ruid = uap->ruid;
1040	suid = uap->suid;
1041	AUDIT_ARG_EUID(euid);
1042	AUDIT_ARG_RUID(ruid);
1043	AUDIT_ARG_SUID(suid);
1044	newcred = crget();
1045	euip = uifind(euid);
1046	ruip = uifind(ruid);
1047	PROC_LOCK(p);
1048	oldcred = crcopysafe(p, newcred);
1049
1050#ifdef MAC
1051	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1052	if (error)
1053		goto fail;
1054#endif
1055
1056	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1057	     ruid != oldcred->cr_svuid &&
1058	      ruid != oldcred->cr_uid) ||
1059	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1060	    euid != oldcred->cr_svuid &&
1061	      euid != oldcred->cr_uid) ||
1062	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1063	    suid != oldcred->cr_svuid &&
1064	      suid != oldcred->cr_uid)) &&
1065	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1066		goto fail;
1067
1068	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1069		change_euid(newcred, euip);
1070		setsugid(p);
1071	}
1072	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1073		change_ruid(newcred, ruip);
1074		setsugid(p);
1075	}
1076	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1077		change_svuid(newcred, suid);
1078		setsugid(p);
1079	}
1080	proc_set_cred(p, newcred);
1081#ifdef RACCT
1082	racct_proc_ucred_changed(p, oldcred, newcred);
1083	crhold(newcred);
1084#endif
1085	PROC_UNLOCK(p);
1086#ifdef RCTL
1087	rctl_proc_ucred_changed(p, newcred);
1088	crfree(newcred);
1089#endif
1090	uifree(ruip);
1091	uifree(euip);
1092	crfree(oldcred);
1093	return (0);
1094
1095fail:
1096	PROC_UNLOCK(p);
1097	uifree(ruip);
1098	uifree(euip);
1099	crfree(newcred);
1100	return (error);
1101
1102}
1103
1104/*
1105 * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1106 * gid is explicit.
1107 */
1108#ifndef _SYS_SYSPROTO_H_
1109struct setresgid_args {
1110	gid_t	rgid;
1111	gid_t	egid;
1112	gid_t	sgid;
1113};
1114#endif
1115/* ARGSUSED */
1116int
1117sys_setresgid(struct thread *td, struct setresgid_args *uap)
1118{
1119	struct proc *p = td->td_proc;
1120	struct ucred *newcred, *oldcred;
1121	gid_t egid, rgid, sgid;
1122	int error;
1123
1124	egid = uap->egid;
1125	rgid = uap->rgid;
1126	sgid = uap->sgid;
1127	AUDIT_ARG_EGID(egid);
1128	AUDIT_ARG_RGID(rgid);
1129	AUDIT_ARG_SGID(sgid);
1130	newcred = crget();
1131	PROC_LOCK(p);
1132	oldcred = crcopysafe(p, newcred);
1133
1134#ifdef MAC
1135	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1136	if (error)
1137		goto fail;
1138#endif
1139
1140	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1141	      rgid != oldcred->cr_svgid &&
1142	      rgid != oldcred->cr_groups[0]) ||
1143	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1144	      egid != oldcred->cr_svgid &&
1145	      egid != oldcred->cr_groups[0]) ||
1146	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1147	      sgid != oldcred->cr_svgid &&
1148	      sgid != oldcred->cr_groups[0])) &&
1149	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1150		goto fail;
1151
1152	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1153		change_egid(newcred, egid);
1154		setsugid(p);
1155	}
1156	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1157		change_rgid(newcred, rgid);
1158		setsugid(p);
1159	}
1160	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1161		change_svgid(newcred, sgid);
1162		setsugid(p);
1163	}
1164	proc_set_cred(p, newcred);
1165	PROC_UNLOCK(p);
1166	crfree(oldcred);
1167	return (0);
1168
1169fail:
1170	PROC_UNLOCK(p);
1171	crfree(newcred);
1172	return (error);
1173}
1174
1175#ifndef _SYS_SYSPROTO_H_
1176struct getresuid_args {
1177	uid_t	*ruid;
1178	uid_t	*euid;
1179	uid_t	*suid;
1180};
1181#endif
1182/* ARGSUSED */
1183int
1184sys_getresuid(struct thread *td, struct getresuid_args *uap)
1185{
1186	struct ucred *cred;
1187	int error1 = 0, error2 = 0, error3 = 0;
1188
1189	cred = td->td_ucred;
1190	if (uap->ruid)
1191		error1 = copyout(&cred->cr_ruid,
1192		    uap->ruid, sizeof(cred->cr_ruid));
1193	if (uap->euid)
1194		error2 = copyout(&cred->cr_uid,
1195		    uap->euid, sizeof(cred->cr_uid));
1196	if (uap->suid)
1197		error3 = copyout(&cred->cr_svuid,
1198		    uap->suid, sizeof(cred->cr_svuid));
1199	return (error1 ? error1 : error2 ? error2 : error3);
1200}
1201
1202#ifndef _SYS_SYSPROTO_H_
1203struct getresgid_args {
1204	gid_t	*rgid;
1205	gid_t	*egid;
1206	gid_t	*sgid;
1207};
1208#endif
1209/* ARGSUSED */
1210int
1211sys_getresgid(struct thread *td, struct getresgid_args *uap)
1212{
1213	struct ucred *cred;
1214	int error1 = 0, error2 = 0, error3 = 0;
1215
1216	cred = td->td_ucred;
1217	if (uap->rgid)
1218		error1 = copyout(&cred->cr_rgid,
1219		    uap->rgid, sizeof(cred->cr_rgid));
1220	if (uap->egid)
1221		error2 = copyout(&cred->cr_groups[0],
1222		    uap->egid, sizeof(cred->cr_groups[0]));
1223	if (uap->sgid)
1224		error3 = copyout(&cred->cr_svgid,
1225		    uap->sgid, sizeof(cred->cr_svgid));
1226	return (error1 ? error1 : error2 ? error2 : error3);
1227}
1228
1229#ifndef _SYS_SYSPROTO_H_
1230struct issetugid_args {
1231	int dummy;
1232};
1233#endif
1234/* ARGSUSED */
1235int
1236sys_issetugid(struct thread *td, struct issetugid_args *uap)
1237{
1238	struct proc *p = td->td_proc;
1239
1240	/*
1241	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1242	 * we use P_SUGID because we consider changing the owners as
1243	 * "tainting" as well.
1244	 * This is significant for procs that start as root and "become"
1245	 * a user without an exec - programs cannot know *everything*
1246	 * that libc *might* have put in their data segment.
1247	 */
1248	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1249	return (0);
1250}
1251
1252int
1253sys___setugid(struct thread *td, struct __setugid_args *uap)
1254{
1255#ifdef REGRESSION
1256	struct proc *p;
1257
1258	p = td->td_proc;
1259	switch (uap->flag) {
1260	case 0:
1261		PROC_LOCK(p);
1262		p->p_flag &= ~P_SUGID;
1263		PROC_UNLOCK(p);
1264		return (0);
1265	case 1:
1266		PROC_LOCK(p);
1267		p->p_flag |= P_SUGID;
1268		PROC_UNLOCK(p);
1269		return (0);
1270	default:
1271		return (EINVAL);
1272	}
1273#else /* !REGRESSION */
1274
1275	return (ENOSYS);
1276#endif /* REGRESSION */
1277}
1278
1279/*
1280 * Returns whether gid designates a supplementary group in cred.
1281 */
1282static bool
1283supplementary_group_member(gid_t gid, struct ucred *cred)
1284{
1285	int l, h, m;
1286
1287	/*
1288	 * Perform a binary search of the supplemental groups.  This is possible
1289	 * because we sort the groups in crsetgroups().
1290	 */
1291	l = 1;
1292	h = cred->cr_ngroups;
1293
1294	while (l < h) {
1295		m = l + (h - l) / 2;
1296		if (cred->cr_groups[m] < gid)
1297			l = m + 1;
1298		else
1299			h = m;
1300	}
1301
1302	return (l < cred->cr_ngroups && cred->cr_groups[l] == gid);
1303}
1304
1305/*
1306 * Check if gid is a member of the (effective) group set (i.e., effective and
1307 * supplementary groups).
1308 */
1309bool
1310groupmember(gid_t gid, struct ucred *cred)
1311{
1312
1313	if (gid == cred->cr_groups[0])
1314		return (true);
1315
1316	return (supplementary_group_member(gid, cred));
1317}
1318
1319/*
1320 * Check if gid is a member of the real group set (i.e., real and supplementary
1321 * groups).
1322 */
1323bool
1324realgroupmember(gid_t gid, struct ucred *cred)
1325{
1326	if (gid == cred->cr_rgid)
1327		return (true);
1328
1329	return (supplementary_group_member(gid, cred));
1330}
1331
1332/*
1333 * Test the active securelevel against a given level.  securelevel_gt()
1334 * implements (securelevel > level).  securelevel_ge() implements
1335 * (securelevel >= level).  Note that the logic is inverted -- these
1336 * functions return EPERM on "success" and 0 on "failure".
1337 *
1338 * Due to care taken when setting the securelevel, we know that no jail will
1339 * be less secure that its parent (or the physical system), so it is sufficient
1340 * to test the current jail only.
1341 *
1342 * XXXRW: Possibly since this has to do with privilege, it should move to
1343 * kern_priv.c.
1344 */
1345int
1346securelevel_gt(struct ucred *cr, int level)
1347{
1348
1349	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1350}
1351
1352int
1353securelevel_ge(struct ucred *cr, int level)
1354{
1355
1356	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1357}
1358
1359/*
1360 * 'see_other_uids' determines whether or not visibility of processes
1361 * and sockets with credentials holding different real uids is possible
1362 * using a variety of system MIBs.
1363 * XXX: data declarations should be together near the beginning of the file.
1364 */
1365static int	see_other_uids = 1;
1366SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1367    &see_other_uids, 0,
1368    "Unprivileged processes may see subjects/objects with different real uid");
1369
1370/*-
1371 * Determine if u1 "can see" the subject specified by u2, according to the
1372 * 'see_other_uids' policy.
1373 * Returns: 0 for permitted, ESRCH otherwise
1374 * Locks: none
1375 * References: *u1 and *u2 must not change during the call
1376 *             u1 may equal u2, in which case only one reference is required
1377 */
1378static int
1379cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1380{
1381
1382	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1383		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1384			return (ESRCH);
1385	}
1386	return (0);
1387}
1388
1389/*
1390 * 'see_other_gids' determines whether or not visibility of processes
1391 * and sockets with credentials holding different real gids is possible
1392 * using a variety of system MIBs.
1393 * XXX: data declarations should be together near the beginning of the file.
1394 */
1395static int	see_other_gids = 1;
1396SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1397    &see_other_gids, 0,
1398    "Unprivileged processes may see subjects/objects with different real gid");
1399
1400/*
1401 * Determine if u1 can "see" the subject specified by u2, according to the
1402 * 'see_other_gids' policy.
1403 * Returns: 0 for permitted, ESRCH otherwise
1404 * Locks: none
1405 * References: *u1 and *u2 must not change during the call
1406 *             u1 may equal u2, in which case only one reference is required
1407 */
1408static int
1409cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1410{
1411	if (!see_other_gids) {
1412		if (realgroupmember(u1->cr_rgid, u2))
1413			return (0);
1414
1415		for (int i = 1; i < u1->cr_ngroups; i++)
1416			if (realgroupmember(u1->cr_groups[i], u2))
1417				return (0);
1418
1419		if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
1420			return (ESRCH);
1421	}
1422
1423	return (0);
1424}
1425
1426/*
1427 * 'see_jail_proc' determines whether or not visibility of processes and
1428 * sockets with credentials holding different jail ids is possible using a
1429 * variety of system MIBs.
1430 *
1431 * XXX: data declarations should be together near the beginning of the file.
1432 */
1433
1434static int	see_jail_proc = 1;
1435SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1436    &see_jail_proc, 0,
1437    "Unprivileged processes may see subjects/objects with different jail ids");
1438
1439/*-
1440 * Determine if u1 "can see" the subject specified by u2, according to the
1441 * 'see_jail_proc' policy.
1442 * Returns: 0 for permitted, ESRCH otherwise
1443 * Locks: none
1444 * References: *u1 and *u2 must not change during the call
1445 *             u1 may equal u2, in which case only one reference is required
1446 */
1447static int
1448cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1449{
1450	if (see_jail_proc || /* Policy deactivated. */
1451	    u1->cr_prison == u2->cr_prison || /* Same jail. */
1452	    priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */
1453		return (0);
1454
1455	return (ESRCH);
1456}
1457
1458/*
1459 * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_*
1460 * policies.  Determines if u1 "can see" u2 according to these policies.
1461 * Returns: 0 for permitted, ESRCH otherwise
1462 */
1463int
1464cr_bsd_visible(struct ucred *u1, struct ucred *u2)
1465{
1466	int error;
1467
1468	error = cr_canseeotheruids(u1, u2);
1469	if (error != 0)
1470		return (error);
1471	error = cr_canseeothergids(u1, u2);
1472	if (error != 0)
1473		return (error);
1474	error = cr_canseejailproc(u1, u2);
1475	if (error != 0)
1476		return (error);
1477	return (0);
1478}
1479
1480/*-
1481 * Determine if u1 "can see" the subject specified by u2.
1482 * Returns: 0 for permitted, an errno value otherwise
1483 * Locks: none
1484 * References: *u1 and *u2 must not change during the call
1485 *             u1 may equal u2, in which case only one reference is required
1486 */
1487int
1488cr_cansee(struct ucred *u1, struct ucred *u2)
1489{
1490	int error;
1491
1492	if ((error = prison_check(u1, u2)))
1493		return (error);
1494#ifdef MAC
1495	if ((error = mac_cred_check_visible(u1, u2)))
1496		return (error);
1497#endif
1498	if ((error = cr_bsd_visible(u1, u2)))
1499		return (error);
1500	return (0);
1501}
1502
1503/*-
1504 * Determine if td "can see" the subject specified by p.
1505 * Returns: 0 for permitted, an errno value otherwise
1506 * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1507 *        should be curthread.
1508 * References: td and p must be valid for the lifetime of the call
1509 */
1510int
1511p_cansee(struct thread *td, struct proc *p)
1512{
1513	/* Wrap cr_cansee() for all functionality. */
1514	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1515	PROC_LOCK_ASSERT(p, MA_OWNED);
1516
1517	if (td->td_proc == p)
1518		return (0);
1519	return (cr_cansee(td->td_ucred, p->p_ucred));
1520}
1521
1522/*
1523 * 'conservative_signals' prevents the delivery of a broad class of
1524 * signals by unprivileged processes to processes that have changed their
1525 * credentials since the last invocation of execve().  This can prevent
1526 * the leakage of cached information or retained privileges as a result
1527 * of a common class of signal-related vulnerabilities.  However, this
1528 * may interfere with some applications that expect to be able to
1529 * deliver these signals to peer processes after having given up
1530 * privilege.
1531 */
1532static int	conservative_signals = 1;
1533SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1534    &conservative_signals, 0, "Unprivileged processes prevented from "
1535    "sending certain signals to processes whose credentials have changed");
1536/*-
1537 * Determine whether cred may deliver the specified signal to proc.
1538 * Returns: 0 for permitted, an errno value otherwise.
1539 * Locks: A lock must be held for proc.
1540 * References: cred and proc must be valid for the lifetime of the call.
1541 */
1542int
1543cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1544{
1545	int error;
1546
1547	PROC_LOCK_ASSERT(proc, MA_OWNED);
1548	/*
1549	 * Jail semantics limit the scope of signalling to proc in the
1550	 * same jail as cred, if cred is in jail.
1551	 */
1552	error = prison_check(cred, proc->p_ucred);
1553	if (error)
1554		return (error);
1555#ifdef MAC
1556	if ((error = mac_proc_check_signal(cred, proc, signum)))
1557		return (error);
1558#endif
1559	if ((error = cr_bsd_visible(cred, proc->p_ucred)))
1560		return (error);
1561
1562	/*
1563	 * UNIX signal semantics depend on the status of the P_SUGID
1564	 * bit on the target process.  If the bit is set, then additional
1565	 * restrictions are placed on the set of available signals.
1566	 */
1567	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1568		switch (signum) {
1569		case 0:
1570		case SIGKILL:
1571		case SIGINT:
1572		case SIGTERM:
1573		case SIGALRM:
1574		case SIGSTOP:
1575		case SIGTTIN:
1576		case SIGTTOU:
1577		case SIGTSTP:
1578		case SIGHUP:
1579		case SIGUSR1:
1580		case SIGUSR2:
1581			/*
1582			 * Generally, permit job and terminal control
1583			 * signals.
1584			 */
1585			break;
1586		default:
1587			/* Not permitted without privilege. */
1588			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
1589			if (error)
1590				return (error);
1591		}
1592	}
1593
1594	/*
1595	 * Generally, the target credential's ruid or svuid must match the
1596	 * subject credential's ruid or euid.
1597	 */
1598	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1599	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1600	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1601	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1602		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
1603		if (error)
1604			return (error);
1605	}
1606
1607	return (0);
1608}
1609
1610/*-
1611 * Determine whether td may deliver the specified signal to p.
1612 * Returns: 0 for permitted, an errno value otherwise
1613 * Locks: Sufficient locks to protect various components of td and p
1614 *        must be held.  td must be curthread, and a lock must be
1615 *        held for p.
1616 * References: td and p must be valid for the lifetime of the call
1617 */
1618int
1619p_cansignal(struct thread *td, struct proc *p, int signum)
1620{
1621
1622	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1623	PROC_LOCK_ASSERT(p, MA_OWNED);
1624	if (td->td_proc == p)
1625		return (0);
1626
1627	/*
1628	 * UNIX signalling semantics require that processes in the same
1629	 * session always be able to deliver SIGCONT to one another,
1630	 * overriding the remaining protections.
1631	 */
1632	/* XXX: This will require an additional lock of some sort. */
1633	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1634		return (0);
1635	/*
1636	 * Some compat layers use SIGTHR and higher signals for
1637	 * communication between different kernel threads of the same
1638	 * process, so that they expect that it's always possible to
1639	 * deliver them, even for suid applications where cr_cansignal() can
1640	 * deny such ability for security consideration.  It should be
1641	 * pretty safe to do since the only way to create two processes
1642	 * with the same p_leader is via rfork(2).
1643	 */
1644	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1645	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1646		return (0);
1647
1648	return (cr_cansignal(td->td_ucred, p, signum));
1649}
1650
1651/*-
1652 * Determine whether td may reschedule p.
1653 * Returns: 0 for permitted, an errno value otherwise
1654 * Locks: Sufficient locks to protect various components of td and p
1655 *        must be held.  td must be curthread, and a lock must
1656 *        be held for p.
1657 * References: td and p must be valid for the lifetime of the call
1658 */
1659int
1660p_cansched(struct thread *td, struct proc *p)
1661{
1662	int error;
1663
1664	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1665	PROC_LOCK_ASSERT(p, MA_OWNED);
1666	if (td->td_proc == p)
1667		return (0);
1668	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1669		return (error);
1670#ifdef MAC
1671	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1672		return (error);
1673#endif
1674	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1675		return (error);
1676
1677	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1678	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1679		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1680		if (error)
1681			return (error);
1682	}
1683	return (0);
1684}
1685
1686/*
1687 * Handle getting or setting the prison's unprivileged_proc_debug
1688 * value.
1689 */
1690static int
1691sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
1692{
1693	int error, val;
1694
1695	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
1696	error = sysctl_handle_int(oidp, &val, 0, req);
1697	if (error != 0 || req->newptr == NULL)
1698		return (error);
1699	if (val != 0 && val != 1)
1700		return (EINVAL);
1701	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
1702	return (0);
1703}
1704
1705/*
1706 * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1707 * unprivileged inter-process debugging services, including some procfs
1708 * functionality, ptrace(), and ktrace().  In the past, inter-process
1709 * debugging has been involved in a variety of security problems, and sites
1710 * not requiring the service might choose to disable it when hardening
1711 * systems.
1712 */
1713SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
1714    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
1715    CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
1716    "Unprivileged processes may use process debugging facilities");
1717
1718/*-
1719 * Determine whether td may debug p.
1720 * Returns: 0 for permitted, an errno value otherwise
1721 * Locks: Sufficient locks to protect various components of td and p
1722 *        must be held.  td must be curthread, and a lock must
1723 *        be held for p.
1724 * References: td and p must be valid for the lifetime of the call
1725 */
1726int
1727p_candebug(struct thread *td, struct proc *p)
1728{
1729	int error, grpsubset, i, uidsubset;
1730
1731	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1732	PROC_LOCK_ASSERT(p, MA_OWNED);
1733	if (td->td_proc == p)
1734		return (0);
1735	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
1736		return (error);
1737	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1738		return (error);
1739#ifdef MAC
1740	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1741		return (error);
1742#endif
1743	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1744		return (error);
1745
1746	/*
1747	 * Is p's group set a subset of td's effective group set?  This
1748	 * includes p's egid, group access list, rgid, and svgid.
1749	 */
1750	grpsubset = 1;
1751	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1752		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1753			grpsubset = 0;
1754			break;
1755		}
1756	}
1757	grpsubset = grpsubset &&
1758	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1759	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1760
1761	/*
1762	 * Are the uids present in p's credential equal to td's
1763	 * effective uid?  This includes p's euid, svuid, and ruid.
1764	 */
1765	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1766	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1767	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1768
1769	/*
1770	 * If p's gids aren't a subset, or the uids aren't a subset,
1771	 * or the credential has changed, require appropriate privilege
1772	 * for td to debug p.
1773	 */
1774	if (!grpsubset || !uidsubset) {
1775		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1776		if (error)
1777			return (error);
1778	}
1779
1780	/*
1781	 * Has the credential of the process changed since the last exec()?
1782	 */
1783	if ((p->p_flag & P_SUGID) != 0) {
1784		error = priv_check(td, PRIV_DEBUG_SUGID);
1785		if (error)
1786			return (error);
1787	}
1788
1789	/* Can't trace init when securelevel > 0. */
1790	if (p == initproc) {
1791		error = securelevel_gt(td->td_ucred, 0);
1792		if (error)
1793			return (error);
1794	}
1795
1796	/*
1797	 * Can't trace a process that's currently exec'ing.
1798	 *
1799	 * XXX: Note, this is not a security policy decision, it's a
1800	 * basic correctness/functionality decision.  Therefore, this check
1801	 * should be moved to the caller's of p_candebug().
1802	 */
1803	if ((p->p_flag & P_INEXEC) != 0)
1804		return (EBUSY);
1805
1806	/* Denied explicitly */
1807	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1808		error = priv_check(td, PRIV_DEBUG_DENIED);
1809		if (error != 0)
1810			return (error);
1811	}
1812
1813	return (0);
1814}
1815
1816/*-
1817 * Determine whether the subject represented by cred can "see" a socket.
1818 * Returns: 0 for permitted, ENOENT otherwise.
1819 */
1820int
1821cr_canseesocket(struct ucred *cred, struct socket *so)
1822{
1823	int error;
1824
1825	error = prison_check(cred, so->so_cred);
1826	if (error)
1827		return (ENOENT);
1828#ifdef MAC
1829	error = mac_socket_check_visible(cred, so);
1830	if (error)
1831		return (error);
1832#endif
1833	if (cr_bsd_visible(cred, so->so_cred))
1834		return (ENOENT);
1835
1836	return (0);
1837}
1838
1839/*-
1840 * Determine whether td can wait for the exit of p.
1841 * Returns: 0 for permitted, an errno value otherwise
1842 * Locks: Sufficient locks to protect various components of td and p
1843 *        must be held.  td must be curthread, and a lock must
1844 *        be held for p.
1845 * References: td and p must be valid for the lifetime of the call
1846
1847 */
1848int
1849p_canwait(struct thread *td, struct proc *p)
1850{
1851	int error;
1852
1853	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1854	PROC_LOCK_ASSERT(p, MA_OWNED);
1855	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1856		return (error);
1857#ifdef MAC
1858	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1859		return (error);
1860#endif
1861#if 0
1862	/* XXXMAC: This could have odd effects on some shells. */
1863	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1864		return (error);
1865#endif
1866
1867	return (0);
1868}
1869
1870/*
1871 * Credential management.
1872 *
1873 * struct ucred objects are rarely allocated but gain and lose references all
1874 * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
1875 * a significant source of cache-line ping ponging. Common cases are worked
1876 * around by modifying thread-local counter instead if the cred to operate on
1877 * matches td_realucred.
1878 *
1879 * The counter is split into 2 parts:
1880 * - cr_users -- total count of all struct proc and struct thread objects
1881 *   which have given cred in p_ucred and td_ucred respectively
1882 * - cr_ref -- the actual ref count, only valid if cr_users == 0
1883 *
1884 * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
1885 * the count reaches 0 the object is freeable.
1886 * If users > 0 and curthread->td_realucred == cred, then updates are performed
1887 * against td_ucredref.
1888 * In other cases updates are performed against cr_ref.
1889 *
1890 * Changing td_realucred into something else decrements cr_users and transfers
1891 * accumulated updates.
1892 */
1893struct ucred *
1894crcowget(struct ucred *cr)
1895{
1896
1897	mtx_lock(&cr->cr_mtx);
1898	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1899	    __func__, cr->cr_users, cr));
1900	cr->cr_users++;
1901	cr->cr_ref++;
1902	mtx_unlock(&cr->cr_mtx);
1903	return (cr);
1904}
1905
1906static struct ucred *
1907crunuse(struct thread *td)
1908{
1909	struct ucred *cr, *crold;
1910
1911	MPASS(td->td_realucred == td->td_ucred);
1912	cr = td->td_realucred;
1913	mtx_lock(&cr->cr_mtx);
1914	cr->cr_ref += td->td_ucredref;
1915	td->td_ucredref = 0;
1916	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1917	    __func__, cr->cr_users, cr));
1918	cr->cr_users--;
1919	if (cr->cr_users == 0) {
1920		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
1921		    __func__, cr->cr_ref, cr));
1922		crold = cr;
1923	} else {
1924		cr->cr_ref--;
1925		crold = NULL;
1926	}
1927	mtx_unlock(&cr->cr_mtx);
1928	td->td_realucred = NULL;
1929	return (crold);
1930}
1931
1932static void
1933crunusebatch(struct ucred *cr, int users, int ref)
1934{
1935
1936	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
1937	    __func__, users, cr));
1938	mtx_lock(&cr->cr_mtx);
1939	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
1940	    __func__, cr->cr_users, users, cr));
1941	cr->cr_users -= users;
1942	cr->cr_ref += ref;
1943	cr->cr_ref -= users;
1944	if (cr->cr_users > 0) {
1945		mtx_unlock(&cr->cr_mtx);
1946		return;
1947	}
1948	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
1949	    __func__, cr->cr_ref, cr));
1950	if (cr->cr_ref > 0) {
1951		mtx_unlock(&cr->cr_mtx);
1952		return;
1953	}
1954	crfree_final(cr);
1955}
1956
1957void
1958crcowfree(struct thread *td)
1959{
1960	struct ucred *cr;
1961
1962	cr = crunuse(td);
1963	if (cr != NULL)
1964		crfree(cr);
1965}
1966
1967struct ucred *
1968crcowsync(void)
1969{
1970	struct thread *td;
1971	struct proc *p;
1972	struct ucred *crnew, *crold;
1973
1974	td = curthread;
1975	p = td->td_proc;
1976	PROC_LOCK_ASSERT(p, MA_OWNED);
1977
1978	MPASS(td->td_realucred == td->td_ucred);
1979	if (td->td_realucred == p->p_ucred)
1980		return (NULL);
1981
1982	crnew = crcowget(p->p_ucred);
1983	crold = crunuse(td);
1984	td->td_realucred = crnew;
1985	td->td_ucred = td->td_realucred;
1986	return (crold);
1987}
1988
1989/*
1990 * Batching.
1991 */
1992void
1993credbatch_add(struct credbatch *crb, struct thread *td)
1994{
1995	struct ucred *cr;
1996
1997	MPASS(td->td_realucred != NULL);
1998	MPASS(td->td_realucred == td->td_ucred);
1999	MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
2000	cr = td->td_realucred;
2001	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2002	    __func__, cr->cr_users, cr));
2003	if (crb->cred != cr) {
2004		if (crb->users > 0) {
2005			MPASS(crb->cred != NULL);
2006			crunusebatch(crb->cred, crb->users, crb->ref);
2007			crb->users = 0;
2008			crb->ref = 0;
2009		}
2010	}
2011	crb->cred = cr;
2012	crb->users++;
2013	crb->ref += td->td_ucredref;
2014	td->td_ucredref = 0;
2015	td->td_realucred = NULL;
2016}
2017
2018void
2019credbatch_final(struct credbatch *crb)
2020{
2021
2022	MPASS(crb->cred != NULL);
2023	MPASS(crb->users > 0);
2024	crunusebatch(crb->cred, crb->users, crb->ref);
2025}
2026
2027/*
2028 * Allocate a zeroed cred structure.
2029 */
2030struct ucred *
2031crget(void)
2032{
2033	struct ucred *cr;
2034
2035	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
2036	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
2037	cr->cr_ref = 1;
2038#ifdef AUDIT
2039	audit_cred_init(cr);
2040#endif
2041#ifdef MAC
2042	mac_cred_init(cr);
2043#endif
2044	cr->cr_groups = cr->cr_smallgroups;
2045	cr->cr_agroups =
2046	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
2047	return (cr);
2048}
2049
2050/*
2051 * Claim another reference to a ucred structure.
2052 */
2053struct ucred *
2054crhold(struct ucred *cr)
2055{
2056	struct thread *td;
2057
2058	td = curthread;
2059	if (__predict_true(td->td_realucred == cr)) {
2060		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2061		    __func__, cr->cr_users, cr));
2062		td->td_ucredref++;
2063		return (cr);
2064	}
2065	mtx_lock(&cr->cr_mtx);
2066	cr->cr_ref++;
2067	mtx_unlock(&cr->cr_mtx);
2068	return (cr);
2069}
2070
2071/*
2072 * Free a cred structure.  Throws away space when ref count gets to 0.
2073 */
2074void
2075crfree(struct ucred *cr)
2076{
2077	struct thread *td;
2078
2079	td = curthread;
2080	if (__predict_true(td->td_realucred == cr)) {
2081		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2082		    __func__, cr->cr_users, cr));
2083		td->td_ucredref--;
2084		return;
2085	}
2086	mtx_lock(&cr->cr_mtx);
2087	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2088	    __func__, cr->cr_users, cr));
2089	cr->cr_ref--;
2090	if (cr->cr_users > 0) {
2091		mtx_unlock(&cr->cr_mtx);
2092		return;
2093	}
2094	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2095	    __func__, cr->cr_ref, cr));
2096	if (cr->cr_ref > 0) {
2097		mtx_unlock(&cr->cr_mtx);
2098		return;
2099	}
2100	crfree_final(cr);
2101}
2102
2103static void
2104crfree_final(struct ucred *cr)
2105{
2106
2107	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2108	    __func__, cr->cr_users, cr));
2109	KASSERT(cr->cr_ref == 0, ("%s: ref %ld not == 0 on cred %p",
2110	    __func__, cr->cr_ref, cr));
2111
2112	/*
2113	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2114	 * credential, but don't allocate a uidinfo structure.
2115	 */
2116	if (cr->cr_uidinfo != NULL)
2117		uifree(cr->cr_uidinfo);
2118	if (cr->cr_ruidinfo != NULL)
2119		uifree(cr->cr_ruidinfo);
2120	if (cr->cr_prison != NULL)
2121		prison_free(cr->cr_prison);
2122	if (cr->cr_loginclass != NULL)
2123		loginclass_free(cr->cr_loginclass);
2124#ifdef AUDIT
2125	audit_cred_destroy(cr);
2126#endif
2127#ifdef MAC
2128	mac_cred_destroy(cr);
2129#endif
2130	mtx_destroy(&cr->cr_mtx);
2131	if (cr->cr_groups != cr->cr_smallgroups)
2132		free(cr->cr_groups, M_CRED);
2133	free(cr, M_CRED);
2134}
2135
2136/*
2137 * Copy a ucred's contents from a template.  Does not block.
2138 */
2139void
2140crcopy(struct ucred *dest, struct ucred *src)
2141{
2142
2143	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
2144	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2145	    (unsigned)((caddr_t)&src->cr_endcopy -
2146		(caddr_t)&src->cr_startcopy));
2147	dest->cr_flags = src->cr_flags;
2148	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2149	uihold(dest->cr_uidinfo);
2150	uihold(dest->cr_ruidinfo);
2151	prison_hold(dest->cr_prison);
2152	loginclass_hold(dest->cr_loginclass);
2153#ifdef AUDIT
2154	audit_cred_copy(src, dest);
2155#endif
2156#ifdef MAC
2157	mac_cred_copy(src, dest);
2158#endif
2159}
2160
2161/*
2162 * Dup cred struct to a new held one.
2163 */
2164struct ucred *
2165crdup(struct ucred *cr)
2166{
2167	struct ucred *newcr;
2168
2169	newcr = crget();
2170	crcopy(newcr, cr);
2171	return (newcr);
2172}
2173
2174/*
2175 * Fill in a struct xucred based on a struct ucred.
2176 */
2177void
2178cru2x(struct ucred *cr, struct xucred *xcr)
2179{
2180	int ngroups;
2181
2182	bzero(xcr, sizeof(*xcr));
2183	xcr->cr_version = XUCRED_VERSION;
2184	xcr->cr_uid = cr->cr_uid;
2185
2186	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
2187	xcr->cr_ngroups = ngroups;
2188	bcopy(cr->cr_groups, xcr->cr_groups,
2189	    ngroups * sizeof(*cr->cr_groups));
2190}
2191
2192void
2193cru2xt(struct thread *td, struct xucred *xcr)
2194{
2195
2196	cru2x(td->td_ucred, xcr);
2197	xcr->cr_pid = td->td_proc->p_pid;
2198}
2199
2200/*
2201 * Change process credentials.
2202 * Callers are responsible for providing the reference for passed credentials
2203 * and for freeing old ones.
2204 *
2205 * Process has to be locked except when it does not have credentials (as it
2206 * should not be visible just yet) or when newcred is NULL (as this can be
2207 * only used when the process is about to be freed, at which point it should
2208 * not be visible anymore).
2209 */
2210void
2211proc_set_cred(struct proc *p, struct ucred *newcred)
2212{
2213	struct ucred *cr;
2214
2215	cr = p->p_ucred;
2216	MPASS(cr != NULL);
2217	PROC_LOCK_ASSERT(p, MA_OWNED);
2218	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2219	    __func__, newcred->cr_users, newcred));
2220	mtx_lock(&cr->cr_mtx);
2221	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2222	    __func__, cr->cr_users, cr));
2223	cr->cr_users--;
2224	mtx_unlock(&cr->cr_mtx);
2225	p->p_ucred = newcred;
2226	newcred->cr_users = 1;
2227	PROC_UPDATE_COW(p);
2228}
2229
2230void
2231proc_unset_cred(struct proc *p)
2232{
2233	struct ucred *cr;
2234
2235	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2236	cr = p->p_ucred;
2237	p->p_ucred = NULL;
2238	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2239	    __func__, cr->cr_users, cr));
2240	mtx_lock(&cr->cr_mtx);
2241	cr->cr_users--;
2242	if (cr->cr_users == 0)
2243		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
2244		    __func__, cr->cr_ref, cr));
2245	mtx_unlock(&cr->cr_mtx);
2246	crfree(cr);
2247}
2248
2249struct ucred *
2250crcopysafe(struct proc *p, struct ucred *cr)
2251{
2252	struct ucred *oldcred;
2253	int groups;
2254
2255	PROC_LOCK_ASSERT(p, MA_OWNED);
2256
2257	oldcred = p->p_ucred;
2258	while (cr->cr_agroups < oldcred->cr_agroups) {
2259		groups = oldcred->cr_agroups;
2260		PROC_UNLOCK(p);
2261		crextend(cr, groups);
2262		PROC_LOCK(p);
2263		oldcred = p->p_ucred;
2264	}
2265	crcopy(cr, oldcred);
2266
2267	return (oldcred);
2268}
2269
2270/*
2271 * Extend the passed in credential to hold n items.
2272 */
2273void
2274crextend(struct ucred *cr, int n)
2275{
2276	int cnt;
2277
2278	/* Truncate? */
2279	if (n <= cr->cr_agroups)
2280		return;
2281
2282	/*
2283	 * We extend by 2 each time since we're using a power of two
2284	 * allocator until we need enough groups to fill a page.
2285	 * Once we're allocating multiple pages, only allocate as many
2286	 * as we actually need.  The case of processes needing a
2287	 * non-power of two number of pages seems more likely than
2288	 * a real world process that adds thousands of groups one at a
2289	 * time.
2290	 */
2291	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2292		if (cr->cr_agroups == 0)
2293			cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
2294		else
2295			cnt = cr->cr_agroups * 2;
2296
2297		while (cnt < n)
2298			cnt *= 2;
2299	} else
2300		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2301
2302	/* Free the old array. */
2303	if (cr->cr_groups != cr->cr_smallgroups)
2304		free(cr->cr_groups, M_CRED);
2305
2306	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2307	cr->cr_agroups = cnt;
2308}
2309
2310/*
2311 * Copy groups in to a credential, preserving any necessary invariants.
2312 * Currently this includes the sorting of all supplemental gids.
2313 * crextend() must have been called before hand to ensure sufficient
2314 * space is available.
2315 */
2316static void
2317crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2318{
2319	int i;
2320	int j;
2321	gid_t g;
2322
2323	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2324
2325	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2326	cr->cr_ngroups = ngrp;
2327
2328	/*
2329	 * Sort all groups except cr_groups[0] to allow groupmember to
2330	 * perform a binary search.
2331	 *
2332	 * XXX: If large numbers of groups become common this should
2333	 * be replaced with shell sort like linux uses or possibly
2334	 * heap sort.
2335	 */
2336	for (i = 2; i < ngrp; i++) {
2337		g = cr->cr_groups[i];
2338		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2339			cr->cr_groups[j + 1] = cr->cr_groups[j];
2340		cr->cr_groups[j + 1] = g;
2341	}
2342}
2343
2344/*
2345 * Copy groups in to a credential after expanding it if required.
2346 * Truncate the list to (ngroups_max + 1) if it is too large.
2347 */
2348void
2349crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2350{
2351
2352	if (ngrp > ngroups_max + 1)
2353		ngrp = ngroups_max + 1;
2354
2355	crextend(cr, ngrp);
2356	crsetgroups_locked(cr, ngrp, groups);
2357}
2358
2359/*
2360 * Get login name, if available.
2361 */
2362#ifndef _SYS_SYSPROTO_H_
2363struct getlogin_args {
2364	char	*namebuf;
2365	u_int	namelen;
2366};
2367#endif
2368/* ARGSUSED */
2369int
2370sys_getlogin(struct thread *td, struct getlogin_args *uap)
2371{
2372	char login[MAXLOGNAME];
2373	struct proc *p = td->td_proc;
2374	size_t len;
2375
2376	if (uap->namelen > MAXLOGNAME)
2377		uap->namelen = MAXLOGNAME;
2378	PROC_LOCK(p);
2379	SESS_LOCK(p->p_session);
2380	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2381	SESS_UNLOCK(p->p_session);
2382	PROC_UNLOCK(p);
2383	if (len > uap->namelen)
2384		return (ERANGE);
2385	return (copyout(login, uap->namebuf, len));
2386}
2387
2388/*
2389 * Set login name.
2390 */
2391#ifndef _SYS_SYSPROTO_H_
2392struct setlogin_args {
2393	char	*namebuf;
2394};
2395#endif
2396/* ARGSUSED */
2397int
2398sys_setlogin(struct thread *td, struct setlogin_args *uap)
2399{
2400	struct proc *p = td->td_proc;
2401	int error;
2402	char logintmp[MAXLOGNAME];
2403
2404	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2405
2406	error = priv_check(td, PRIV_PROC_SETLOGIN);
2407	if (error)
2408		return (error);
2409	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2410	if (error != 0) {
2411		if (error == ENAMETOOLONG)
2412			error = EINVAL;
2413		return (error);
2414	}
2415	AUDIT_ARG_LOGIN(logintmp);
2416	PROC_LOCK(p);
2417	SESS_LOCK(p->p_session);
2418	strcpy(p->p_session->s_login, logintmp);
2419	SESS_UNLOCK(p->p_session);
2420	PROC_UNLOCK(p);
2421	return (0);
2422}
2423
2424void
2425setsugid(struct proc *p)
2426{
2427
2428	PROC_LOCK_ASSERT(p, MA_OWNED);
2429	p->p_flag |= P_SUGID;
2430}
2431
2432/*-
2433 * Change a process's effective uid.
2434 * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2435 * References: newcred must be an exclusive credential reference for the
2436 *             duration of the call.
2437 */
2438void
2439change_euid(struct ucred *newcred, struct uidinfo *euip)
2440{
2441
2442	newcred->cr_uid = euip->ui_uid;
2443	uihold(euip);
2444	uifree(newcred->cr_uidinfo);
2445	newcred->cr_uidinfo = euip;
2446}
2447
2448/*-
2449 * Change a process's effective gid.
2450 * Side effects: newcred->cr_gid will be modified.
2451 * References: newcred must be an exclusive credential reference for the
2452 *             duration of the call.
2453 */
2454void
2455change_egid(struct ucred *newcred, gid_t egid)
2456{
2457
2458	newcred->cr_groups[0] = egid;
2459}
2460
2461/*-
2462 * Change a process's real uid.
2463 * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2464 *               will be updated, and the old and new cr_ruidinfo proc
2465 *               counts will be updated.
2466 * References: newcred must be an exclusive credential reference for the
2467 *             duration of the call.
2468 */
2469void
2470change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2471{
2472
2473	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2474	newcred->cr_ruid = ruip->ui_uid;
2475	uihold(ruip);
2476	uifree(newcred->cr_ruidinfo);
2477	newcred->cr_ruidinfo = ruip;
2478	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2479}
2480
2481/*-
2482 * Change a process's real gid.
2483 * Side effects: newcred->cr_rgid will be updated.
2484 * References: newcred must be an exclusive credential reference for the
2485 *             duration of the call.
2486 */
2487void
2488change_rgid(struct ucred *newcred, gid_t rgid)
2489{
2490
2491	newcred->cr_rgid = rgid;
2492}
2493
2494/*-
2495 * Change a process's saved uid.
2496 * Side effects: newcred->cr_svuid will be updated.
2497 * References: newcred must be an exclusive credential reference for the
2498 *             duration of the call.
2499 */
2500void
2501change_svuid(struct ucred *newcred, uid_t svuid)
2502{
2503
2504	newcred->cr_svuid = svuid;
2505}
2506
2507/*-
2508 * Change a process's saved gid.
2509 * Side effects: newcred->cr_svgid will be updated.
2510 * References: newcred must be an exclusive credential reference for the
2511 *             duration of the call.
2512 */
2513void
2514change_svgid(struct ucred *newcred, gid_t svgid)
2515{
2516
2517	newcred->cr_svgid = svgid;
2518}
2519
2520bool allow_ptrace = true;
2521SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
2522    &allow_ptrace, 0,
2523    "Deny ptrace(2) use by returning ENOSYS");
2524