1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <sys/cdefs.h>
38#include "opt_ddb.h"
39#include "opt_ktrace.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/sysproto.h>
44#include <sys/capsicum.h>
45#include <sys/eventhandler.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/procdesc.h>
53#include <sys/jail.h>
54#include <sys/tty.h>
55#include <sys/wait.h>
56#include <sys/vmmeter.h>
57#include <sys/vnode.h>
58#include <sys/racct.h>
59#include <sys/resourcevar.h>
60#include <sys/sbuf.h>
61#include <sys/signalvar.h>
62#include <sys/sched.h>
63#include <sys/sx.h>
64#include <sys/syscallsubr.h>
65#include <sys/sysctl.h>
66#include <sys/syslog.h>
67#include <sys/ptrace.h>
68#include <sys/acct.h>		/* for acct_process() function prototype */
69#include <sys/filedesc.h>
70#include <sys/sdt.h>
71#include <sys/shm.h>
72#include <sys/sem.h>
73#include <sys/sysent.h>
74#include <sys/timers.h>
75#include <sys/umtxvar.h>
76#ifdef KTRACE
77#include <sys/ktrace.h>
78#endif
79
80#include <security/audit/audit.h>
81#include <security/mac/mac_framework.h>
82
83#include <vm/vm.h>
84#include <vm/vm_extern.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/uma.h>
90
91#ifdef KDTRACE_HOOKS
92#include <sys/dtrace_bsd.h>
93dtrace_execexit_func_t	dtrace_fasttrap_exit;
94#endif
95
96SDT_PROVIDER_DECLARE(proc);
97SDT_PROBE_DEFINE1(proc, , , exit, "int");
98
99static int kern_kill_on_dbg_exit = 1;
100SYSCTL_INT(_kern, OID_AUTO, kill_on_debugger_exit, CTLFLAG_RWTUN,
101    &kern_kill_on_dbg_exit, 0,
102    "Kill ptraced processes when debugger exits");
103
104static bool kern_wait_dequeue_sigchld = 1;
105SYSCTL_BOOL(_kern, OID_AUTO, wait_dequeue_sigchld, CTLFLAG_RWTUN,
106    &kern_wait_dequeue_sigchld, 0,
107    "Dequeue SIGCHLD on wait(2) for live process");
108
109struct proc *
110proc_realparent(struct proc *child)
111{
112	struct proc *p, *parent;
113
114	sx_assert(&proctree_lock, SX_LOCKED);
115	if ((child->p_treeflag & P_TREE_ORPHANED) == 0)
116		return (child->p_pptr->p_pid == child->p_oppid ?
117		    child->p_pptr : child->p_reaper);
118	for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
119		/* Cannot use LIST_PREV(), since the list head is not known. */
120		p = __containerof(p->p_orphan.le_prev, struct proc,
121		    p_orphan.le_next);
122		KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
123		    ("missing P_ORPHAN %p", p));
124	}
125	parent = __containerof(p->p_orphan.le_prev, struct proc,
126	    p_orphans.lh_first);
127	return (parent);
128}
129
130void
131reaper_abandon_children(struct proc *p, bool exiting)
132{
133	struct proc *p1, *p2, *ptmp;
134
135	sx_assert(&proctree_lock, SX_XLOCKED);
136	KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
137	if ((p->p_treeflag & P_TREE_REAPER) == 0)
138		return;
139	p1 = p->p_reaper;
140	LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
141		LIST_REMOVE(p2, p_reapsibling);
142		p2->p_reaper = p1;
143		p2->p_reapsubtree = p->p_reapsubtree;
144		LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
145		if (exiting && p2->p_pptr == p) {
146			PROC_LOCK(p2);
147			proc_reparent(p2, p1, true);
148			PROC_UNLOCK(p2);
149		}
150	}
151	KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
152	p->p_treeflag &= ~P_TREE_REAPER;
153}
154
155static void
156reaper_clear(struct proc *p)
157{
158	struct proc *p1;
159	bool clear;
160
161	sx_assert(&proctree_lock, SX_LOCKED);
162	LIST_REMOVE(p, p_reapsibling);
163	if (p->p_reapsubtree == 1)
164		return;
165	clear = true;
166	LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) {
167		if (p1->p_reapsubtree == p->p_reapsubtree) {
168			clear = false;
169			break;
170		}
171	}
172	if (clear)
173		proc_id_clear(PROC_ID_REAP, p->p_reapsubtree);
174}
175
176void
177proc_clear_orphan(struct proc *p)
178{
179	struct proc *p1;
180
181	sx_assert(&proctree_lock, SA_XLOCKED);
182	if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
183		return;
184	if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
185		p1 = LIST_NEXT(p, p_orphan);
186		if (p1 != NULL)
187			p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
188		p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
189	}
190	LIST_REMOVE(p, p_orphan);
191	p->p_treeflag &= ~P_TREE_ORPHANED;
192}
193
194void
195exit_onexit(struct proc *p)
196{
197	MPASS(p->p_numthreads == 1);
198	umtx_thread_exit(FIRST_THREAD_IN_PROC(p));
199}
200
201/*
202 * exit -- death of process.
203 */
204int
205sys_exit(struct thread *td, struct exit_args *uap)
206{
207
208	exit1(td, uap->rval, 0);
209	__unreachable();
210}
211
212void
213proc_set_p2_wexit(struct proc *p)
214{
215	PROC_LOCK_ASSERT(p, MA_OWNED);
216	p->p_flag2 |= P2_WEXIT;
217}
218
219/*
220 * Exit: deallocate address space and other resources, change proc state to
221 * zombie, and unlink proc from allproc and parent's lists.  Save exit status
222 * and rusage for wait().  Check for child processes and orphan them.
223 */
224void
225exit1(struct thread *td, int rval, int signo)
226{
227	struct proc *p, *nq, *q, *t;
228	struct thread *tdt;
229	ksiginfo_t *ksi, *ksi1;
230	int signal_parent;
231
232	mtx_assert(&Giant, MA_NOTOWNED);
233	KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo));
234	TSPROCEXIT(td->td_proc->p_pid);
235
236	p = td->td_proc;
237	/*
238	 * In case we're rebooting we just let init die in order to
239	 * work around an issues where pid 1 might get a fatal signal.
240	 * For instance, if network interface serving NFS root is
241	 * going down due to reboot, page-in requests for text are
242	 * failing.
243	 */
244	if (p == initproc && rebooting == 0) {
245		printf("init died (signal %d, exit %d)\n", signo, rval);
246		panic("Going nowhere without my init!");
247	}
248
249	/*
250	 * Process deferred operations, designated with ASTF_KCLEAR.
251	 * For instance, we need to deref SU mp, since the thread does
252	 * not return to userspace, and wait for geom to stabilize.
253	 */
254	ast_kclear(td);
255
256	/*
257	 * MUST abort all other threads before proceeding past here.
258	 */
259	PROC_LOCK(p);
260	proc_set_p2_wexit(p);
261
262	/*
263	 * First check if some other thread or external request got
264	 * here before us.  If so, act appropriately: exit or suspend.
265	 * We must ensure that stop requests are handled before we set
266	 * P_WEXIT.
267	 */
268	thread_suspend_check(0);
269	while (p->p_flag & P_HADTHREADS) {
270		/*
271		 * Kill off the other threads. This requires
272		 * some co-operation from other parts of the kernel
273		 * so it may not be instantaneous.  With this state set
274		 * any thread attempting to interruptibly
275		 * sleep will return immediately with EINTR or EWOULDBLOCK
276		 * which will hopefully force them to back out to userland
277		 * freeing resources as they go.  Any thread attempting
278		 * to return to userland will thread_exit() from ast().
279		 * thread_exit() will unsuspend us when the last of the
280		 * other threads exits.
281		 * If there is already a thread singler after resumption,
282		 * calling thread_single() will fail; in that case, we just
283		 * re-check all suspension request, the thread should
284		 * either be suspended there or exit.
285		 */
286		if (!thread_single(p, SINGLE_EXIT))
287			/*
288			 * All other activity in this process is now
289			 * stopped.  Threading support has been turned
290			 * off.
291			 */
292			break;
293		/*
294		 * Recheck for new stop or suspend requests which
295		 * might appear while process lock was dropped in
296		 * thread_single().
297		 */
298		thread_suspend_check(0);
299	}
300	KASSERT(p->p_numthreads == 1,
301	    ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
302	racct_sub(p, RACCT_NTHR, 1);
303
304	/* Let event handler change exit status */
305	p->p_xexit = rval;
306	p->p_xsig = signo;
307
308	/*
309	 * Ignore any pending request to stop due to a stop signal.
310	 * Once P_WEXIT is set, future requests will be ignored as
311	 * well.
312	 */
313	p->p_flag &= ~P_STOPPED_SIG;
314	KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
315
316	/* Note that we are exiting. */
317	p->p_flag |= P_WEXIT;
318
319	/*
320	 * Wait for any processes that have a hold on our vmspace to
321	 * release their reference.
322	 */
323	while (p->p_lock > 0)
324		msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
325
326	PROC_UNLOCK(p);
327	/* Drain the limit callout while we don't have the proc locked */
328	callout_drain(&p->p_limco);
329
330#ifdef AUDIT
331	/*
332	 * The Sun BSM exit token contains two components: an exit status as
333	 * passed to exit(), and a return value to indicate what sort of exit
334	 * it was.  The exit status is WEXITSTATUS(rv), but it's not clear
335	 * what the return value is.
336	 */
337	AUDIT_ARG_EXIT(rval, 0);
338	AUDIT_SYSCALL_EXIT(0, td);
339#endif
340
341	/* Are we a task leader with peers? */
342	if (p->p_peers != NULL && p == p->p_leader) {
343		mtx_lock(&ppeers_lock);
344		q = p->p_peers;
345		while (q != NULL) {
346			PROC_LOCK(q);
347			kern_psignal(q, SIGKILL);
348			PROC_UNLOCK(q);
349			q = q->p_peers;
350		}
351		while (p->p_peers != NULL)
352			msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
353		mtx_unlock(&ppeers_lock);
354	}
355
356	itimers_exit(p);
357
358	/*
359	 * Check if any loadable modules need anything done at process exit.
360	 * E.g. SYSV IPC stuff.
361	 * Event handler could change exit status.
362	 * XXX what if one of these generates an error?
363	 */
364	EVENTHANDLER_DIRECT_INVOKE(process_exit, p);
365
366	/*
367	 * If parent is waiting for us to exit or exec,
368	 * P_PPWAIT is set; we will wakeup the parent below.
369	 */
370	PROC_LOCK(p);
371	stopprofclock(p);
372	p->p_ptevents = 0;
373
374	/*
375	 * Stop the real interval timer.  If the handler is currently
376	 * executing, prevent it from rearming itself and let it finish.
377	 */
378	if (timevalisset(&p->p_realtimer.it_value) &&
379	    callout_stop(&p->p_itcallout) == 0) {
380		timevalclear(&p->p_realtimer.it_interval);
381		PROC_UNLOCK(p);
382		callout_drain(&p->p_itcallout);
383	} else {
384		PROC_UNLOCK(p);
385	}
386
387	if (p->p_sysent->sv_onexit != NULL)
388		p->p_sysent->sv_onexit(p);
389	seltdfini(td);
390
391	/*
392	 * Reset any sigio structures pointing to us as a result of
393	 * F_SETOWN with our pid.  The P_WEXIT flag interlocks with fsetown().
394	 */
395	funsetownlst(&p->p_sigiolst);
396
397	/*
398	 * Close open files and release open-file table.
399	 * This may block!
400	 */
401	pdescfree(td);
402	fdescfree(td);
403
404	/*
405	 * Remove ourself from our leader's peer list and wake our leader.
406	 */
407	if (p->p_leader->p_peers != NULL) {
408		mtx_lock(&ppeers_lock);
409		if (p->p_leader->p_peers != NULL) {
410			q = p->p_leader;
411			while (q->p_peers != p)
412				q = q->p_peers;
413			q->p_peers = p->p_peers;
414			wakeup(p->p_leader);
415		}
416		mtx_unlock(&ppeers_lock);
417	}
418
419	exec_free_abi_mappings(p);
420	vmspace_exit(td);
421	(void)acct_process(td);
422
423#ifdef KTRACE
424	ktrprocexit(td);
425#endif
426	/*
427	 * Release reference to text vnode etc
428	 */
429	if (p->p_textvp != NULL) {
430		vrele(p->p_textvp);
431		p->p_textvp = NULL;
432	}
433	if (p->p_textdvp != NULL) {
434		vrele(p->p_textdvp);
435		p->p_textdvp = NULL;
436	}
437	if (p->p_binname != NULL) {
438		free(p->p_binname, M_PARGS);
439		p->p_binname = NULL;
440	}
441
442	/*
443	 * Release our limits structure.
444	 */
445	lim_free(p->p_limit);
446	p->p_limit = NULL;
447
448	tidhash_remove(td);
449
450	/*
451	 * Call machine-dependent code to release any
452	 * machine-dependent resources other than the address space.
453	 * The address space is released by "vmspace_exitfree(p)" in
454	 * vm_waitproc().
455	 */
456	cpu_exit(td);
457
458	WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
459
460	/*
461	 * Remove from allproc. It still sits in the hash.
462	 */
463	sx_xlock(&allproc_lock);
464	LIST_REMOVE(p, p_list);
465
466#ifdef DDB
467	/*
468	 * Used by ddb's 'ps' command to find this process via the
469	 * pidhash.
470	 */
471	p->p_list.le_prev = NULL;
472#endif
473	prison_proc_unlink(p->p_ucred->cr_prison, p);
474	sx_xunlock(&allproc_lock);
475
476	sx_xlock(&proctree_lock);
477	if ((p->p_flag & (P_TRACED | P_PPWAIT | P_PPTRACE)) != 0) {
478		PROC_LOCK(p);
479		p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
480		PROC_UNLOCK(p);
481	}
482
483	/*
484	 * killjobc() might drop and re-acquire proctree_lock to
485	 * revoke control tty if exiting process was a session leader.
486	 */
487	killjobc();
488
489	/*
490	 * Reparent all children processes:
491	 * - traced ones to the original parent (or init if we are that parent)
492	 * - the rest to init
493	 */
494	q = LIST_FIRST(&p->p_children);
495	if (q != NULL)		/* only need this if any child is S_ZOMB */
496		wakeup(q->p_reaper);
497	for (; q != NULL; q = nq) {
498		nq = LIST_NEXT(q, p_sibling);
499		ksi = ksiginfo_alloc(M_WAITOK);
500		PROC_LOCK(q);
501		q->p_sigparent = SIGCHLD;
502
503		if ((q->p_flag & P_TRACED) == 0) {
504			proc_reparent(q, q->p_reaper, true);
505			if (q->p_state == PRS_ZOMBIE) {
506				/*
507				 * Inform reaper about the reparented
508				 * zombie, since wait(2) has something
509				 * new to report.  Guarantee queueing
510				 * of the SIGCHLD signal, similar to
511				 * the _exit() behaviour, by providing
512				 * our ksiginfo.  Ksi is freed by the
513				 * signal delivery.
514				 */
515				if (q->p_ksi == NULL) {
516					ksi1 = NULL;
517				} else {
518					ksiginfo_copy(q->p_ksi, ksi);
519					ksi->ksi_flags |= KSI_INS;
520					ksi1 = ksi;
521					ksi = NULL;
522				}
523				PROC_LOCK(q->p_reaper);
524				pksignal(q->p_reaper, SIGCHLD, ksi1);
525				PROC_UNLOCK(q->p_reaper);
526			} else if (q->p_pdeathsig > 0) {
527				/*
528				 * The child asked to received a signal
529				 * when we exit.
530				 */
531				kern_psignal(q, q->p_pdeathsig);
532			}
533		} else {
534			/*
535			 * Traced processes are killed by default
536			 * since their existence means someone is
537			 * screwing up.
538			 */
539			t = proc_realparent(q);
540			if (t == p) {
541				proc_reparent(q, q->p_reaper, true);
542			} else {
543				PROC_LOCK(t);
544				proc_reparent(q, t, true);
545				PROC_UNLOCK(t);
546			}
547			/*
548			 * Since q was found on our children list, the
549			 * proc_reparent() call moved q to the orphan
550			 * list due to present P_TRACED flag. Clear
551			 * orphan link for q now while q is locked.
552			 */
553			proc_clear_orphan(q);
554			q->p_flag &= ~P_TRACED;
555			q->p_flag2 &= ~P2_PTRACE_FSTP;
556			q->p_ptevents = 0;
557			p->p_xthread = NULL;
558			FOREACH_THREAD_IN_PROC(q, tdt) {
559				tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG |
560				    TDB_FSTP);
561				tdt->td_xsig = 0;
562			}
563			if (kern_kill_on_dbg_exit) {
564				q->p_flag &= ~P_STOPPED_TRACE;
565				kern_psignal(q, SIGKILL);
566			} else if ((q->p_flag & (P_STOPPED_TRACE |
567			    P_STOPPED_SIG)) != 0) {
568				sigqueue_delete_proc(q, SIGTRAP);
569				ptrace_unsuspend(q);
570			}
571		}
572		PROC_UNLOCK(q);
573		if (ksi != NULL)
574			ksiginfo_free(ksi);
575	}
576
577	/*
578	 * Also get rid of our orphans.
579	 */
580	while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
581		PROC_LOCK(q);
582		KASSERT(q->p_oppid == p->p_pid,
583		    ("orphan %p of %p has unexpected oppid %d", q, p,
584		    q->p_oppid));
585		q->p_oppid = q->p_reaper->p_pid;
586
587		/*
588		 * If we are the real parent of this process
589		 * but it has been reparented to a debugger, then
590		 * check if it asked for a signal when we exit.
591		 */
592		if (q->p_pdeathsig > 0)
593			kern_psignal(q, q->p_pdeathsig);
594		CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
595		    q->p_pid);
596		proc_clear_orphan(q);
597		PROC_UNLOCK(q);
598	}
599
600#ifdef KDTRACE_HOOKS
601	if (SDT_PROBES_ENABLED()) {
602		int reason = CLD_EXITED;
603		if (WCOREDUMP(signo))
604			reason = CLD_DUMPED;
605		else if (WIFSIGNALED(signo))
606			reason = CLD_KILLED;
607		SDT_PROBE1(proc, , , exit, reason);
608	}
609#endif
610
611	/* Save exit status. */
612	PROC_LOCK(p);
613	p->p_xthread = td;
614
615	if (p->p_sysent->sv_ontdexit != NULL)
616		p->p_sysent->sv_ontdexit(td);
617
618#ifdef KDTRACE_HOOKS
619	/*
620	 * Tell the DTrace fasttrap provider about the exit if it
621	 * has declared an interest.
622	 */
623	if (dtrace_fasttrap_exit)
624		dtrace_fasttrap_exit(p);
625#endif
626
627	/*
628	 * Notify interested parties of our demise.
629	 */
630	KNOTE_LOCKED(p->p_klist, NOTE_EXIT);
631
632	/*
633	 * If this is a process with a descriptor, we may not need to deliver
634	 * a signal to the parent.  proctree_lock is held over
635	 * procdesc_exit() to serialize concurrent calls to close() and
636	 * exit().
637	 */
638	signal_parent = 0;
639	if (p->p_procdesc == NULL || procdesc_exit(p)) {
640		/*
641		 * Notify parent that we're gone.  If parent has the
642		 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
643		 * notify process 1 instead (and hope it will handle this
644		 * situation).
645		 */
646		PROC_LOCK(p->p_pptr);
647		mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
648		if (p->p_pptr->p_sigacts->ps_flag &
649		    (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
650			struct proc *pp;
651
652			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
653			pp = p->p_pptr;
654			PROC_UNLOCK(pp);
655			proc_reparent(p, p->p_reaper, true);
656			p->p_sigparent = SIGCHLD;
657			PROC_LOCK(p->p_pptr);
658
659			/*
660			 * Notify parent, so in case he was wait(2)ing or
661			 * executing waitpid(2) with our pid, he will
662			 * continue.
663			 */
664			wakeup(pp);
665		} else
666			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
667
668		if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) {
669			signal_parent = 1;
670		} else if (p->p_sigparent != 0) {
671			if (p->p_sigparent == SIGCHLD) {
672				signal_parent = 1;
673			} else { /* LINUX thread */
674				signal_parent = 2;
675			}
676		}
677	} else
678		PROC_LOCK(p->p_pptr);
679	sx_xunlock(&proctree_lock);
680
681	if (signal_parent == 1) {
682		childproc_exited(p);
683	} else if (signal_parent == 2) {
684		kern_psignal(p->p_pptr, p->p_sigparent);
685	}
686
687	/* Tell the prison that we are gone. */
688	prison_proc_free(p->p_ucred->cr_prison);
689
690	/*
691	 * The state PRS_ZOMBIE prevents other processes from sending
692	 * signal to the process, to avoid memory leak, we free memory
693	 * for signal queue at the time when the state is set.
694	 */
695	sigqueue_flush(&p->p_sigqueue);
696	sigqueue_flush(&td->td_sigqueue);
697
698	/*
699	 * We have to wait until after acquiring all locks before
700	 * changing p_state.  We need to avoid all possible context
701	 * switches (including ones from blocking on a mutex) while
702	 * marked as a zombie.  We also have to set the zombie state
703	 * before we release the parent process' proc lock to avoid
704	 * a lost wakeup.  So, we first call wakeup, then we grab the
705	 * sched lock, update the state, and release the parent process'
706	 * proc lock.
707	 */
708	wakeup(p->p_pptr);
709	cv_broadcast(&p->p_pwait);
710	sched_exit(p->p_pptr, td);
711	PROC_SLOCK(p);
712	p->p_state = PRS_ZOMBIE;
713	PROC_UNLOCK(p->p_pptr);
714
715	/*
716	 * Save our children's rusage information in our exit rusage.
717	 */
718	PROC_STATLOCK(p);
719	ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
720	PROC_STATUNLOCK(p);
721
722	/*
723	 * Make sure the scheduler takes this thread out of its tables etc.
724	 * This will also release this thread's reference to the ucred.
725	 * Other thread parts to release include pcb bits and such.
726	 */
727	thread_exit();
728}
729
730#ifndef _SYS_SYSPROTO_H_
731struct abort2_args {
732	char *why;
733	int nargs;
734	void **args;
735};
736#endif
737
738int
739sys_abort2(struct thread *td, struct abort2_args *uap)
740{
741	void *uargs[16];
742	void **uargsp;
743	int error, nargs;
744
745	nargs = uap->nargs;
746	if (nargs < 0 || nargs > nitems(uargs))
747		nargs = -1;
748	uargsp = NULL;
749	if (nargs > 0) {
750		if (uap->args != NULL) {
751			error = copyin(uap->args, uargs,
752			    nargs * sizeof(void *));
753			if (error != 0)
754				nargs = -1;
755			else
756				uargsp = uargs;
757		} else
758			nargs = -1;
759	}
760	return (kern_abort2(td, uap->why, nargs, uargsp));
761}
762
763/*
764 * kern_abort2()
765 * Arguments:
766 *  why - user pointer to why
767 *  nargs - number of arguments copied or -1 if an error occurred in copying
768 *  args - pointer to an array of pointers in kernel format
769 */
770int
771kern_abort2(struct thread *td, const char *why, int nargs, void **uargs)
772{
773	struct proc *p = td->td_proc;
774	struct sbuf *sb;
775	int error, i, sig;
776
777	/*
778	 * Do it right now so we can log either proper call of abort2(), or
779	 * note, that invalid argument was passed. 512 is big enough to
780	 * handle 16 arguments' descriptions with additional comments.
781	 */
782	sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
783	sbuf_clear(sb);
784	sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
785	    p->p_comm, p->p_pid, td->td_ucred->cr_uid);
786	/*
787	 * Since we can't return from abort2(), send SIGKILL in cases, where
788	 * abort2() was called improperly
789	 */
790	sig = SIGKILL;
791	/* Prevent from DoSes from user-space. */
792	if (nargs == -1)
793		goto out;
794	KASSERT(nargs >= 0 && nargs <= 16, ("called with too many args (%d)",
795	    nargs));
796	/*
797	 * Limit size of 'reason' string to 128. Will fit even when
798	 * maximal number of arguments was chosen to be logged.
799	 */
800	if (why != NULL) {
801		error = sbuf_copyin(sb, why, 128);
802		if (error < 0)
803			goto out;
804	} else {
805		sbuf_cat(sb, "(null)");
806	}
807	if (nargs > 0) {
808		sbuf_putc(sb, '(');
809		for (i = 0;i < nargs; i++)
810			sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
811		sbuf_putc(sb, ')');
812	}
813	/*
814	 * Final stage: arguments were proper, string has been
815	 * successfully copied from userspace, and copying pointers
816	 * from user-space succeed.
817	 */
818	sig = SIGABRT;
819out:
820	if (sig == SIGKILL) {
821		sbuf_trim(sb);
822		sbuf_cat(sb, " (Reason text inaccessible)");
823	}
824	sbuf_cat(sb, "\n");
825	sbuf_finish(sb);
826	log(LOG_INFO, "%s", sbuf_data(sb));
827	sbuf_delete(sb);
828	PROC_LOCK(p);
829	sigexit(td, sig);
830	/* NOTREACHED */
831}
832
833#ifdef COMPAT_43
834/*
835 * The dirty work is handled by kern_wait().
836 */
837int
838owait(struct thread *td, struct owait_args *uap __unused)
839{
840	int error, status;
841
842	error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
843	if (error == 0)
844		td->td_retval[1] = status;
845	return (error);
846}
847#endif /* COMPAT_43 */
848
849/*
850 * The dirty work is handled by kern_wait().
851 */
852int
853sys_wait4(struct thread *td, struct wait4_args *uap)
854{
855	struct rusage ru, *rup;
856	int error, status;
857
858	if (uap->rusage != NULL)
859		rup = &ru;
860	else
861		rup = NULL;
862	error = kern_wait(td, uap->pid, &status, uap->options, rup);
863	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
864		error = copyout(&status, uap->status, sizeof(status));
865	if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0)
866		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
867	return (error);
868}
869
870int
871sys_wait6(struct thread *td, struct wait6_args *uap)
872{
873	struct __wrusage wru, *wrup;
874	siginfo_t si, *sip;
875	idtype_t idtype;
876	id_t id;
877	int error, status;
878
879	idtype = uap->idtype;
880	id = uap->id;
881
882	if (uap->wrusage != NULL)
883		wrup = &wru;
884	else
885		wrup = NULL;
886
887	if (uap->info != NULL) {
888		sip = &si;
889		bzero(sip, sizeof(*sip));
890	} else
891		sip = NULL;
892
893	/*
894	 *  We expect all callers of wait6() to know about WEXITED and
895	 *  WTRAPPED.
896	 */
897	error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
898
899	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
900		error = copyout(&status, uap->status, sizeof(status));
901	if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0)
902		error = copyout(&wru, uap->wrusage, sizeof(wru));
903	if (uap->info != NULL && error == 0)
904		error = copyout(&si, uap->info, sizeof(si));
905	return (error);
906}
907
908/*
909 * Reap the remains of a zombie process and optionally return status and
910 * rusage.  Asserts and will release both the proctree_lock and the process
911 * lock as part of its work.
912 */
913void
914proc_reap(struct thread *td, struct proc *p, int *status, int options)
915{
916	struct proc *q, *t;
917
918	sx_assert(&proctree_lock, SA_XLOCKED);
919	PROC_LOCK_ASSERT(p, MA_OWNED);
920	KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
921
922	mtx_spin_wait_unlocked(&p->p_slock);
923
924	q = td->td_proc;
925
926	if (status)
927		*status = KW_EXITCODE(p->p_xexit, p->p_xsig);
928	if (options & WNOWAIT) {
929		/*
930		 *  Only poll, returning the status.  Caller does not wish to
931		 * release the proc struct just yet.
932		 */
933		PROC_UNLOCK(p);
934		sx_xunlock(&proctree_lock);
935		return;
936	}
937
938	PROC_LOCK(q);
939	sigqueue_take(p->p_ksi);
940	PROC_UNLOCK(q);
941
942	/*
943	 * If we got the child via a ptrace 'attach', we need to give it back
944	 * to the old parent.
945	 */
946	if (p->p_oppid != p->p_pptr->p_pid) {
947		PROC_UNLOCK(p);
948		t = proc_realparent(p);
949		PROC_LOCK(t);
950		PROC_LOCK(p);
951		CTR2(KTR_PTRACE,
952		    "wait: traced child %d moved back to parent %d", p->p_pid,
953		    t->p_pid);
954		proc_reparent(p, t, false);
955		PROC_UNLOCK(p);
956		pksignal(t, SIGCHLD, p->p_ksi);
957		wakeup(t);
958		cv_broadcast(&p->p_pwait);
959		PROC_UNLOCK(t);
960		sx_xunlock(&proctree_lock);
961		return;
962	}
963	PROC_UNLOCK(p);
964
965	/*
966	 * Remove other references to this process to ensure we have an
967	 * exclusive reference.
968	 */
969	sx_xlock(PIDHASHLOCK(p->p_pid));
970	LIST_REMOVE(p, p_hash);
971	sx_xunlock(PIDHASHLOCK(p->p_pid));
972	LIST_REMOVE(p, p_sibling);
973	reaper_abandon_children(p, true);
974	reaper_clear(p);
975	PROC_LOCK(p);
976	proc_clear_orphan(p);
977	PROC_UNLOCK(p);
978	leavepgrp(p);
979	if (p->p_procdesc != NULL)
980		procdesc_reap(p);
981	sx_xunlock(&proctree_lock);
982
983	proc_id_clear(PROC_ID_PID, p->p_pid);
984
985	PROC_LOCK(p);
986	knlist_detach(p->p_klist);
987	p->p_klist = NULL;
988	PROC_UNLOCK(p);
989
990	/*
991	 * Removal from allproc list and process group list paired with
992	 * PROC_LOCK which was executed during that time should guarantee
993	 * nothing can reach this process anymore. As such further locking
994	 * is unnecessary.
995	 */
996	p->p_xexit = p->p_xsig = 0;		/* XXX: why? */
997
998	PROC_LOCK(q);
999	ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
1000	PROC_UNLOCK(q);
1001
1002	/*
1003	 * Decrement the count of procs running with this uid.
1004	 */
1005	(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1006
1007	/*
1008	 * Destroy resource accounting information associated with the process.
1009	 */
1010#ifdef RACCT
1011	if (racct_enable) {
1012		PROC_LOCK(p);
1013		racct_sub(p, RACCT_NPROC, 1);
1014		PROC_UNLOCK(p);
1015	}
1016#endif
1017	racct_proc_exit(p);
1018
1019	/*
1020	 * Free credentials, arguments, and sigacts.
1021	 */
1022	proc_unset_cred(p);
1023	pargs_drop(p->p_args);
1024	p->p_args = NULL;
1025	sigacts_free(p->p_sigacts);
1026	p->p_sigacts = NULL;
1027
1028	/*
1029	 * Do any thread-system specific cleanups.
1030	 */
1031	thread_wait(p);
1032
1033	/*
1034	 * Give vm and machine-dependent layer a chance to free anything that
1035	 * cpu_exit couldn't release while still running in process context.
1036	 */
1037	vm_waitproc(p);
1038#ifdef MAC
1039	mac_proc_destroy(p);
1040#endif
1041
1042	KASSERT(FIRST_THREAD_IN_PROC(p),
1043	    ("proc_reap: no residual thread!"));
1044	uma_zfree(proc_zone, p);
1045	atomic_add_int(&nprocs, -1);
1046}
1047
1048static int
1049proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
1050    int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
1051    int check_only)
1052{
1053	struct rusage *rup;
1054
1055	sx_assert(&proctree_lock, SA_XLOCKED);
1056
1057	PROC_LOCK(p);
1058
1059	switch (idtype) {
1060	case P_ALL:
1061		if (p->p_procdesc == NULL ||
1062		   (p->p_pptr == td->td_proc &&
1063		   (p->p_flag & P_TRACED) != 0)) {
1064			break;
1065		}
1066
1067		PROC_UNLOCK(p);
1068		return (0);
1069	case P_PID:
1070		if (p->p_pid != (pid_t)id) {
1071			PROC_UNLOCK(p);
1072			return (0);
1073		}
1074		break;
1075	case P_PGID:
1076		if (p->p_pgid != (pid_t)id) {
1077			PROC_UNLOCK(p);
1078			return (0);
1079		}
1080		break;
1081	case P_SID:
1082		if (p->p_session->s_sid != (pid_t)id) {
1083			PROC_UNLOCK(p);
1084			return (0);
1085		}
1086		break;
1087	case P_UID:
1088		if (p->p_ucred->cr_uid != (uid_t)id) {
1089			PROC_UNLOCK(p);
1090			return (0);
1091		}
1092		break;
1093	case P_GID:
1094		if (p->p_ucred->cr_gid != (gid_t)id) {
1095			PROC_UNLOCK(p);
1096			return (0);
1097		}
1098		break;
1099	case P_JAILID:
1100		if (p->p_ucred->cr_prison->pr_id != (int)id) {
1101			PROC_UNLOCK(p);
1102			return (0);
1103		}
1104		break;
1105	/*
1106	 * It seems that the thread structures get zeroed out
1107	 * at process exit.  This makes it impossible to
1108	 * support P_SETID, P_CID or P_CPUID.
1109	 */
1110	default:
1111		PROC_UNLOCK(p);
1112		return (0);
1113	}
1114
1115	if (p_canwait(td, p)) {
1116		PROC_UNLOCK(p);
1117		return (0);
1118	}
1119
1120	if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
1121		PROC_UNLOCK(p);
1122		return (0);
1123	}
1124
1125	/*
1126	 * This special case handles a kthread spawned by linux_clone
1127	 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1128	 * functions need to be able to distinguish between waiting
1129	 * on a process and waiting on a thread.  It is a thread if
1130	 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1131	 * signifies we want to wait for threads and not processes.
1132	 */
1133	if ((p->p_sigparent != SIGCHLD) ^
1134	    ((options & WLINUXCLONE) != 0)) {
1135		PROC_UNLOCK(p);
1136		return (0);
1137	}
1138
1139	if (siginfo != NULL) {
1140		bzero(siginfo, sizeof(*siginfo));
1141		siginfo->si_errno = 0;
1142
1143		/*
1144		 * SUSv4 requires that the si_signo value is always
1145		 * SIGCHLD. Obey it despite the rfork(2) interface
1146		 * allows to request other signal for child exit
1147		 * notification.
1148		 */
1149		siginfo->si_signo = SIGCHLD;
1150
1151		/*
1152		 *  This is still a rough estimate.  We will fix the
1153		 *  cases TRAPPED, STOPPED, and CONTINUED later.
1154		 */
1155		if (WCOREDUMP(p->p_xsig)) {
1156			siginfo->si_code = CLD_DUMPED;
1157			siginfo->si_status = WTERMSIG(p->p_xsig);
1158		} else if (WIFSIGNALED(p->p_xsig)) {
1159			siginfo->si_code = CLD_KILLED;
1160			siginfo->si_status = WTERMSIG(p->p_xsig);
1161		} else {
1162			siginfo->si_code = CLD_EXITED;
1163			siginfo->si_status = p->p_xexit;
1164		}
1165
1166		siginfo->si_pid = p->p_pid;
1167		siginfo->si_uid = p->p_ucred->cr_uid;
1168
1169		/*
1170		 * The si_addr field would be useful additional
1171		 * detail, but apparently the PC value may be lost
1172		 * when we reach this point.  bzero() above sets
1173		 * siginfo->si_addr to NULL.
1174		 */
1175	}
1176
1177	/*
1178	 * There should be no reason to limit resources usage info to
1179	 * exited processes only.  A snapshot about any resources used
1180	 * by a stopped process may be exactly what is needed.
1181	 */
1182	if (wrusage != NULL) {
1183		rup = &wrusage->wru_self;
1184		*rup = p->p_ru;
1185		PROC_STATLOCK(p);
1186		calcru(p, &rup->ru_utime, &rup->ru_stime);
1187		PROC_STATUNLOCK(p);
1188
1189		rup = &wrusage->wru_children;
1190		*rup = p->p_stats->p_cru;
1191		calccru(p, &rup->ru_utime, &rup->ru_stime);
1192	}
1193
1194	if (p->p_state == PRS_ZOMBIE && !check_only) {
1195		proc_reap(td, p, status, options);
1196		return (-1);
1197	}
1198	return (1);
1199}
1200
1201int
1202kern_wait(struct thread *td, pid_t pid, int *status, int options,
1203    struct rusage *rusage)
1204{
1205	struct __wrusage wru, *wrup;
1206	idtype_t idtype;
1207	id_t id;
1208	int ret;
1209
1210	/*
1211	 * Translate the special pid values into the (idtype, pid)
1212	 * pair for kern_wait6.  The WAIT_MYPGRP case is handled by
1213	 * kern_wait6() on its own.
1214	 */
1215	if (pid == WAIT_ANY) {
1216		idtype = P_ALL;
1217		id = 0;
1218	} else if (pid < 0) {
1219		idtype = P_PGID;
1220		id = (id_t)-pid;
1221	} else {
1222		idtype = P_PID;
1223		id = (id_t)pid;
1224	}
1225
1226	if (rusage != NULL)
1227		wrup = &wru;
1228	else
1229		wrup = NULL;
1230
1231	/*
1232	 * For backward compatibility we implicitly add flags WEXITED
1233	 * and WTRAPPED here.
1234	 */
1235	options |= WEXITED | WTRAPPED;
1236	ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
1237	if (rusage != NULL)
1238		*rusage = wru.wru_self;
1239	return (ret);
1240}
1241
1242static void
1243report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo,
1244    int *status, int options, int si_code)
1245{
1246	bool cont;
1247
1248	PROC_LOCK_ASSERT(p, MA_OWNED);
1249	sx_assert(&proctree_lock, SA_XLOCKED);
1250	MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED ||
1251	    si_code == CLD_CONTINUED);
1252
1253	cont = si_code == CLD_CONTINUED;
1254	if ((options & WNOWAIT) == 0) {
1255		if (cont)
1256			p->p_flag &= ~P_CONTINUED;
1257		else
1258			p->p_flag |= P_WAITED;
1259		if (kern_wait_dequeue_sigchld &&
1260		    (td->td_proc->p_sysent->sv_flags & SV_SIG_WAITNDQ) == 0) {
1261			PROC_LOCK(td->td_proc);
1262			sigqueue_take(p->p_ksi);
1263			PROC_UNLOCK(td->td_proc);
1264		}
1265	}
1266	sx_xunlock(&proctree_lock);
1267	if (siginfo != NULL) {
1268		siginfo->si_code = si_code;
1269		siginfo->si_status = cont ? SIGCONT : p->p_xsig;
1270	}
1271	if (status != NULL)
1272		*status = cont ? SIGCONT : W_STOPCODE(p->p_xsig);
1273	td->td_retval[0] = p->p_pid;
1274	PROC_UNLOCK(p);
1275}
1276
1277int
1278kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
1279    int options, struct __wrusage *wrusage, siginfo_t *siginfo)
1280{
1281	struct proc *p, *q;
1282	pid_t pid;
1283	int error, nfound, ret;
1284	bool report;
1285
1286	AUDIT_ARG_VALUE((int)idtype);	/* XXX - This is likely wrong! */
1287	AUDIT_ARG_PID((pid_t)id);	/* XXX - This may be wrong! */
1288	AUDIT_ARG_VALUE(options);
1289
1290	q = td->td_proc;
1291
1292	if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
1293		PROC_LOCK(q);
1294		id = (id_t)q->p_pgid;
1295		PROC_UNLOCK(q);
1296		idtype = P_PGID;
1297	}
1298
1299	/* If we don't know the option, just return. */
1300	if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
1301	    WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
1302		return (EINVAL);
1303	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1304		/*
1305		 * We will be unable to find any matching processes,
1306		 * because there are no known events to look for.
1307		 * Prefer to return error instead of blocking
1308		 * indefinitely.
1309		 */
1310		return (EINVAL);
1311	}
1312
1313loop:
1314	if (q->p_flag & P_STATCHILD) {
1315		PROC_LOCK(q);
1316		q->p_flag &= ~P_STATCHILD;
1317		PROC_UNLOCK(q);
1318	}
1319	sx_xlock(&proctree_lock);
1320loop_locked:
1321	nfound = 0;
1322	LIST_FOREACH(p, &q->p_children, p_sibling) {
1323		pid = p->p_pid;
1324		ret = proc_to_reap(td, p, idtype, id, status, options,
1325		    wrusage, siginfo, 0);
1326		if (ret == 0)
1327			continue;
1328		else if (ret != 1) {
1329			td->td_retval[0] = pid;
1330			return (0);
1331		}
1332
1333		nfound++;
1334		PROC_LOCK_ASSERT(p, MA_OWNED);
1335
1336		if ((options & WTRAPPED) != 0 &&
1337		    (p->p_flag & P_TRACED) != 0) {
1338			PROC_SLOCK(p);
1339			report =
1340			    ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) &&
1341			    p->p_suspcount == p->p_numthreads &&
1342			    (p->p_flag & P_WAITED) == 0);
1343			PROC_SUNLOCK(p);
1344			if (report) {
1345			CTR4(KTR_PTRACE,
1346			    "wait: returning trapped pid %d status %#x "
1347			    "(xstat %d) xthread %d",
1348			    p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig,
1349			    p->p_xthread != NULL ?
1350			    p->p_xthread->td_tid : -1);
1351				report_alive_proc(td, p, siginfo, status,
1352				    options, CLD_TRAPPED);
1353				return (0);
1354			}
1355		}
1356		if ((options & WUNTRACED) != 0 &&
1357		    (p->p_flag & P_STOPPED_SIG) != 0) {
1358			PROC_SLOCK(p);
1359			report = (p->p_suspcount == p->p_numthreads &&
1360			    ((p->p_flag & P_WAITED) == 0));
1361			PROC_SUNLOCK(p);
1362			if (report) {
1363				report_alive_proc(td, p, siginfo, status,
1364				    options, CLD_STOPPED);
1365				return (0);
1366			}
1367		}
1368		if ((options & WCONTINUED) != 0 &&
1369		    (p->p_flag & P_CONTINUED) != 0) {
1370			report_alive_proc(td, p, siginfo, status, options,
1371			    CLD_CONTINUED);
1372			return (0);
1373		}
1374		PROC_UNLOCK(p);
1375	}
1376
1377	/*
1378	 * Look in the orphans list too, to allow the parent to
1379	 * collect it's child exit status even if child is being
1380	 * debugged.
1381	 *
1382	 * Debugger detaches from the parent upon successful
1383	 * switch-over from parent to child.  At this point due to
1384	 * re-parenting the parent loses the child to debugger and a
1385	 * wait4(2) call would report that it has no children to wait
1386	 * for.  By maintaining a list of orphans we allow the parent
1387	 * to successfully wait until the child becomes a zombie.
1388	 */
1389	if (nfound == 0) {
1390		LIST_FOREACH(p, &q->p_orphans, p_orphan) {
1391			ret = proc_to_reap(td, p, idtype, id, NULL, options,
1392			    NULL, NULL, 1);
1393			if (ret != 0) {
1394				KASSERT(ret != -1, ("reaped an orphan (pid %d)",
1395				    (int)td->td_retval[0]));
1396				PROC_UNLOCK(p);
1397				nfound++;
1398				break;
1399			}
1400		}
1401	}
1402	if (nfound == 0) {
1403		sx_xunlock(&proctree_lock);
1404		return (ECHILD);
1405	}
1406	if (options & WNOHANG) {
1407		sx_xunlock(&proctree_lock);
1408		td->td_retval[0] = 0;
1409		return (0);
1410	}
1411	PROC_LOCK(q);
1412	if (q->p_flag & P_STATCHILD) {
1413		q->p_flag &= ~P_STATCHILD;
1414		PROC_UNLOCK(q);
1415		goto loop_locked;
1416	}
1417	sx_xunlock(&proctree_lock);
1418	error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0);
1419	if (error)
1420		return (error);
1421	goto loop;
1422}
1423
1424void
1425proc_add_orphan(struct proc *child, struct proc *parent)
1426{
1427
1428	sx_assert(&proctree_lock, SX_XLOCKED);
1429	KASSERT((child->p_flag & P_TRACED) != 0,
1430	    ("proc_add_orphan: not traced"));
1431
1432	if (LIST_EMPTY(&parent->p_orphans)) {
1433		child->p_treeflag |= P_TREE_FIRST_ORPHAN;
1434		LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan);
1435	} else {
1436		LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans),
1437		    child, p_orphan);
1438	}
1439	child->p_treeflag |= P_TREE_ORPHANED;
1440}
1441
1442/*
1443 * Make process 'parent' the new parent of process 'child'.
1444 * Must be called with an exclusive hold of proctree lock.
1445 */
1446void
1447proc_reparent(struct proc *child, struct proc *parent, bool set_oppid)
1448{
1449
1450	sx_assert(&proctree_lock, SX_XLOCKED);
1451	PROC_LOCK_ASSERT(child, MA_OWNED);
1452	if (child->p_pptr == parent)
1453		return;
1454
1455	PROC_LOCK(child->p_pptr);
1456	sigqueue_take(child->p_ksi);
1457	PROC_UNLOCK(child->p_pptr);
1458	LIST_REMOVE(child, p_sibling);
1459	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1460
1461	proc_clear_orphan(child);
1462	if ((child->p_flag & P_TRACED) != 0) {
1463		proc_add_orphan(child, child->p_pptr);
1464	}
1465
1466	child->p_pptr = parent;
1467	if (set_oppid)
1468		child->p_oppid = parent->p_pid;
1469}
1470