1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 */
35
36#include <sys/cdefs.h>
37#include "opt_inet.h"
38#include "opt_inet6.h"
39
40#include <sys/capsicum.h>
41
42/*
43 * generally, I don't like #includes inside .h files, but it seems to
44 * be the easiest way to handle the port.
45 */
46#include <sys/fail.h>
47#include <sys/hash.h>
48#include <sys/sysctl.h>
49#include <fs/nfs/nfsport.h>
50#include <netinet/in_fib.h>
51#include <netinet/if_ether.h>
52#include <netinet6/ip6_var.h>
53#include <net/if_types.h>
54#include <net/route/nhop.h>
55
56#include <fs/nfsclient/nfs_kdtrace.h>
57
58#ifdef KDTRACE_HOOKS
59dtrace_nfsclient_attrcache_flush_probe_func_t
60		dtrace_nfscl_attrcache_flush_done_probe;
61uint32_t	nfscl_attrcache_flush_done_id;
62
63dtrace_nfsclient_attrcache_get_hit_probe_func_t
64		dtrace_nfscl_attrcache_get_hit_probe;
65uint32_t	nfscl_attrcache_get_hit_id;
66
67dtrace_nfsclient_attrcache_get_miss_probe_func_t
68		dtrace_nfscl_attrcache_get_miss_probe;
69uint32_t	nfscl_attrcache_get_miss_id;
70
71dtrace_nfsclient_attrcache_load_probe_func_t
72		dtrace_nfscl_attrcache_load_done_probe;
73uint32_t	nfscl_attrcache_load_done_id;
74#endif /* !KDTRACE_HOOKS */
75
76extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
77extern struct vop_vector newnfs_vnodeops;
78extern struct vop_vector newnfs_fifoops;
79extern uma_zone_t newnfsnode_zone;
80extern uma_zone_t ncl_pbuf_zone;
81extern short nfsv4_cbport;
82extern int nfscl_enablecallb;
83extern int nfs_numnfscbd;
84extern int nfscl_inited;
85struct mtx ncl_iod_mutex;
86NFSDLOCKMUTEX;
87extern struct mtx nfsrv_dslock_mtx;
88
89extern void (*ncl_call_invalcaches)(struct vnode *);
90
91SYSCTL_DECL(_vfs_nfs);
92static int ncl_fileid_maxwarnings = 10;
93SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN,
94    &ncl_fileid_maxwarnings, 0,
95    "Limit fileid corruption warnings; 0 is off; -1 is unlimited");
96static volatile int ncl_fileid_nwarnings;
97
98static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *,
99    struct nfsvattr *);
100
101/*
102 * Comparison function for vfs_hash functions.
103 */
104int
105newnfs_vncmpf(struct vnode *vp, void *arg)
106{
107	struct nfsfh *nfhp = (struct nfsfh *)arg;
108	struct nfsnode *np = VTONFS(vp);
109
110	if (np->n_fhp->nfh_len != nfhp->nfh_len ||
111	    NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
112		return (1);
113	return (0);
114}
115
116/*
117 * Look up a vnode/nfsnode by file handle.
118 * Callers must check for mount points!!
119 * In all cases, a pointer to a
120 * nfsnode structure is returned.
121 * This variant takes a "struct nfsfh *" as second argument and uses
122 * that structure up, either by hanging off the nfsnode or FREEing it.
123 */
124int
125nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
126    struct componentname *cnp, struct thread *td, struct nfsnode **npp,
127    int lkflags)
128{
129	struct nfsnode *np, *dnp;
130	struct vnode *vp, *nvp;
131	struct nfsv4node *newd, *oldd;
132	int error;
133	u_int hash;
134	struct nfsmount *nmp;
135
136	nmp = VFSTONFS(mntp);
137	dnp = VTONFS(dvp);
138	*npp = NULL;
139
140	/*
141	 * If this is the mount point fh and NFSMNTP_FAKEROOT is set, replace
142	 * it with the fake fh.
143	 */
144	if ((nmp->nm_privflag & NFSMNTP_FAKEROOTFH) != 0 &&
145	    nmp->nm_fhsize > 0 && nmp->nm_fhsize == nfhp->nfh_len &&
146	    !NFSBCMP(nmp->nm_fh, nfhp->nfh_fh, nmp->nm_fhsize)) {
147		free(nfhp, M_NFSFH);
148		nfhp = malloc(sizeof(struct nfsfh) + NFSX_FHMAX + 1,
149		    M_NFSFH, M_WAITOK | M_ZERO);
150		nfhp->nfh_len = NFSX_FHMAX + 1;
151	}
152
153	hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
154
155	error = vfs_hash_get(mntp, hash, lkflags,
156	    td, &nvp, newnfs_vncmpf, nfhp);
157	if (error == 0 && nvp != NULL) {
158		/*
159		 * I believe there is a slight chance that vgonel() could
160		 * get called on this vnode between when NFSVOPLOCK() drops
161		 * the VI_LOCK() and vget() acquires it again, so that it
162		 * hasn't yet had v_usecount incremented. If this were to
163		 * happen, the VIRF_DOOMED flag would be set, so check for
164		 * that here. Since we now have the v_usecount incremented,
165		 * we should be ok until we vrele() it, if the VIRF_DOOMED
166		 * flag isn't set now.
167		 */
168		VI_LOCK(nvp);
169		if (VN_IS_DOOMED(nvp)) {
170			VI_UNLOCK(nvp);
171			vrele(nvp);
172			error = ENOENT;
173		} else {
174			VI_UNLOCK(nvp);
175		}
176	}
177	if (error) {
178		free(nfhp, M_NFSFH);
179		return (error);
180	}
181	if (nvp != NULL) {
182		np = VTONFS(nvp);
183		/*
184		 * For NFSv4, check to see if it is the same name and
185		 * replace the name, if it is different.
186		 */
187		oldd = newd = NULL;
188		if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
189		    nvp->v_type == VREG &&
190		    (np->n_v4->n4_namelen != cnp->cn_namelen ||
191		     NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
192		     cnp->cn_namelen) ||
193		     dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
194		     NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
195		     dnp->n_fhp->nfh_len))) {
196		    newd = malloc(
197			sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
198			+ cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
199		    NFSLOCKNODE(np);
200		    if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
201			&& (np->n_v4->n4_namelen != cnp->cn_namelen ||
202			 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
203			 cnp->cn_namelen) ||
204			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
205			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
206			 dnp->n_fhp->nfh_len))) {
207			oldd = np->n_v4;
208			np->n_v4 = newd;
209			newd = NULL;
210			np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
211			np->n_v4->n4_namelen = cnp->cn_namelen;
212			NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
213			    dnp->n_fhp->nfh_len);
214			NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
215			    cnp->cn_namelen);
216		    }
217		    NFSUNLOCKNODE(np);
218		}
219		if (newd != NULL)
220			free(newd, M_NFSV4NODE);
221		if (oldd != NULL)
222			free(oldd, M_NFSV4NODE);
223		*npp = np;
224		free(nfhp, M_NFSFH);
225		return (0);
226	}
227	np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
228
229	error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp);
230	if (error) {
231		uma_zfree(newnfsnode_zone, np);
232		free(nfhp, M_NFSFH);
233		return (error);
234	}
235	vp = nvp;
236	KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
237	vp->v_data = np;
238	np->n_vnode = vp;
239	/*
240	 * Initialize the mutex even if the vnode is going to be a loser.
241	 * This simplifies the logic in reclaim, which can then unconditionally
242	 * destroy the mutex (in the case of the loser, or if hash_insert
243	 * happened to return an error no special casing is needed).
244	 */
245	mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
246	lockinit(&np->n_excl, PVFS, "nfsupg", VLKTIMEOUT, LK_NOSHARE |
247	    LK_CANRECURSE);
248
249	/*
250	 * Are we getting the root? If so, make sure the vnode flags
251	 * are correct
252	 */
253	if (nfhp->nfh_len == NFSX_FHMAX + 1 ||
254	    (nfhp->nfh_len == nmp->nm_fhsize &&
255	     !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len))) {
256		if (vp->v_type == VNON)
257			vp->v_type = VDIR;
258		vp->v_vflag |= VV_ROOT;
259	}
260
261	vp->v_vflag |= VV_VMSIZEVNLOCK;
262
263	np->n_fhp = nfhp;
264	/*
265	 * For NFSv4.0, we have to attach the directory file handle and
266	 * file name, so that Open Ops can be done later.
267	 */
268	if (NFSHASNFSV4(nmp) && !NFSHASNFSV4N(nmp)) {
269		np->n_v4 = malloc(sizeof (struct nfsv4node)
270		    + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
271		    M_WAITOK);
272		np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
273		np->n_v4->n4_namelen = cnp->cn_namelen;
274		NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
275		    dnp->n_fhp->nfh_len);
276		NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
277		    cnp->cn_namelen);
278	} else {
279		np->n_v4 = NULL;
280	}
281
282	/*
283	 * NFS supports recursive and shared locking.
284	 */
285	lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
286	VN_LOCK_AREC(vp);
287	VN_LOCK_ASHARE(vp);
288	error = insmntque(vp, mntp);
289	if (error != 0) {
290		*npp = NULL;
291		mtx_destroy(&np->n_mtx);
292		lockdestroy(&np->n_excl);
293		free(nfhp, M_NFSFH);
294		if (np->n_v4 != NULL)
295			free(np->n_v4, M_NFSV4NODE);
296		uma_zfree(newnfsnode_zone, np);
297		return (error);
298	}
299	vn_set_state(vp, VSTATE_CONSTRUCTED);
300	error = vfs_hash_insert(vp, hash, lkflags,
301	    td, &nvp, newnfs_vncmpf, nfhp);
302	if (error)
303		return (error);
304	if (nvp != NULL) {
305		*npp = VTONFS(nvp);
306		/* vfs_hash_insert() vput()'s the losing vnode */
307		return (0);
308	}
309	*npp = np;
310
311	return (0);
312}
313
314/*
315 * Another variant of nfs_nget(). This one is only used by reopen. It
316 * takes almost the same args as nfs_nget(), but only succeeds if an entry
317 * exists in the cache. (Since files should already be "open" with a
318 * vnode ref cnt on the node when reopen calls this, it should always
319 * succeed.)
320 * Also, don't get a vnode lock, since it may already be locked by some
321 * other process that is handling it. This is ok, since all other threads
322 * on the client are blocked by the nfsc_lock being exclusively held by the
323 * caller of this function.
324 */
325int
326nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
327    struct thread *td, struct nfsnode **npp)
328{
329	struct vnode *nvp;
330	u_int hash;
331	struct nfsfh *nfhp;
332	int error;
333
334	*npp = NULL;
335	/* For forced dismounts, just return error. */
336	if (NFSCL_FORCEDISM(mntp))
337		return (EINTR);
338	nfhp = malloc(sizeof (struct nfsfh) + fhsize,
339	    M_NFSFH, M_WAITOK);
340	bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
341	nfhp->nfh_len = fhsize;
342
343	hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
344
345	/*
346	 * First, try to get the vnode locked, but don't block for the lock.
347	 */
348	error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
349	    newnfs_vncmpf, nfhp);
350	if (error == 0 && nvp != NULL) {
351		NFSVOPUNLOCK(nvp);
352	} else if (error == EBUSY) {
353		/*
354		 * It is safe so long as a vflush() with
355		 * FORCECLOSE has not been done. Since the Renew thread is
356		 * stopped and the MNTK_UNMOUNTF flag is set before doing
357		 * a vflush() with FORCECLOSE, we should be ok here.
358		 */
359		if (NFSCL_FORCEDISM(mntp))
360			error = EINTR;
361		else {
362			vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp);
363			if (nvp == NULL) {
364				error = ENOENT;
365			} else if (VN_IS_DOOMED(nvp)) {
366				error = ENOENT;
367				vrele(nvp);
368			} else {
369				error = 0;
370			}
371		}
372	}
373	free(nfhp, M_NFSFH);
374	if (error)
375		return (error);
376	if (nvp != NULL) {
377		*npp = VTONFS(nvp);
378		return (0);
379	}
380	return (EINVAL);
381}
382
383static void
384nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap,
385    struct nfsvattr *newnap)
386{
387	int off;
388
389	if (ncl_fileid_maxwarnings >= 0 &&
390	    ncl_fileid_nwarnings >= ncl_fileid_maxwarnings)
391		return;
392	off = 0;
393	if (ncl_fileid_maxwarnings >= 0) {
394		if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings)
395			off = 1;
396	}
397
398	printf("newnfs: server '%s' error: fileid changed. "
399	    "fsid %jx:%jx: expected fileid %#jx, got %#jx. "
400	    "(BROKEN NFS SERVER OR MIDDLEWARE)\n",
401	    nmp->nm_com.nmcom_hostname,
402	    (uintmax_t)nmp->nm_fsid[0],
403	    (uintmax_t)nmp->nm_fsid[1],
404	    (uintmax_t)oldnap->na_fileid,
405	    (uintmax_t)newnap->na_fileid);
406
407	if (off)
408		printf("newnfs: Logged %d times about fileid corruption; "
409		    "going quiet to avoid spamming logs excessively. (Limit "
410		    "is: %d).\n", ncl_fileid_nwarnings,
411		    ncl_fileid_maxwarnings);
412}
413
414void
415ncl_copy_vattr(struct vattr *dst, struct vattr *src)
416{
417	dst->va_type = src->va_type;
418	dst->va_mode = src->va_mode;
419	dst->va_nlink = src->va_nlink;
420	dst->va_uid = src->va_uid;
421	dst->va_gid = src->va_gid;
422	dst->va_fsid = src->va_fsid;
423	dst->va_fileid = src->va_fileid;
424	dst->va_size = src->va_size;
425	dst->va_blocksize = src->va_blocksize;
426	dst->va_atime = src->va_atime;
427	dst->va_mtime = src->va_mtime;
428	dst->va_ctime = src->va_ctime;
429	dst->va_birthtime = src->va_birthtime;
430	dst->va_gen = src->va_gen;
431	dst->va_flags = src->va_flags;
432	dst->va_rdev = src->va_rdev;
433	dst->va_bytes = src->va_bytes;
434	dst->va_filerev = src->va_filerev;
435}
436
437/*
438 * Load the attribute cache (that lives in the nfsnode entry) with
439 * the attributes of the second argument and
440 * Iff vaper not NULL
441 *    copy the attributes to *vaper
442 * Similar to nfs_loadattrcache(), except the attributes are passed in
443 * instead of being parsed out of the mbuf list.
444 */
445int
446nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
447    int writeattr, int dontshrink)
448{
449	struct vnode *vp = *vpp;
450	struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
451	struct nfsnode *np;
452	struct nfsmount *nmp;
453	struct timespec mtime_save;
454	int error, force_fid_err;
455	dev_t topfsid;
456
457	error = 0;
458
459	/*
460	 * If v_type == VNON it is a new node, so fill in the v_type,
461	 * n_mtime fields. Check to see if it represents a special
462	 * device, and if so, check for a possible alias. Once the
463	 * correct vnode has been obtained, fill in the rest of the
464	 * information.
465	 */
466	np = VTONFS(vp);
467	NFSLOCKNODE(np);
468	if (vp->v_type != nvap->va_type) {
469		vp->v_type = nvap->va_type;
470		if (vp->v_type == VFIFO)
471			vp->v_op = &newnfs_fifoops;
472		np->n_mtime = nvap->va_mtime;
473	}
474	nmp = VFSTONFS(vp->v_mount);
475	vap = &np->n_vattr.na_vattr;
476	mtime_save = vap->va_mtime;
477	if (writeattr) {
478		np->n_vattr.na_filerev = nap->na_filerev;
479		np->n_vattr.na_size = nap->na_size;
480		np->n_vattr.na_mtime = nap->na_mtime;
481		np->n_vattr.na_ctime = nap->na_ctime;
482		np->n_vattr.na_btime = nap->na_btime;
483		np->n_vattr.na_fsid = nap->na_fsid;
484		np->n_vattr.na_mode = nap->na_mode;
485	} else {
486		force_fid_err = 0;
487		KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning,
488		    force_fid_err);
489		/*
490		 * BROKEN NFS SERVER OR MIDDLEWARE
491		 *
492		 * Certain NFS servers (certain old proprietary filers ca.
493		 * 2006) or broken middleboxes (e.g. WAN accelerator products)
494		 * will respond to GETATTR requests with results for a
495		 * different fileid.
496		 *
497		 * The WAN accelerator we've observed not only serves stale
498		 * cache results for a given file, it also occasionally serves
499		 * results for wholly different files.  This causes surprising
500		 * problems; for example the cached size attribute of a file
501		 * may truncate down and then back up, resulting in zero
502		 * regions in file contents read by applications.  We observed
503		 * this reliably with Clang and .c files during parallel build.
504		 * A pcap revealed packet fragmentation and GETATTR RPC
505		 * responses with wholly wrong fileids.
506		 * For the case where the file handle is a fake one
507		 * generated via the "syskrb5" mount option and
508		 * the old fileid is 2, ignore the test, since this might
509		 * be replacing the fake attributes with correct ones.
510		 */
511		if ((np->n_vattr.na_fileid != 0 &&
512		     np->n_vattr.na_fileid != nap->na_fileid &&
513		     (np->n_vattr.na_fileid != 2 || !NFSHASSYSKRB5(nmp) ||
514		      np->n_fhp->nfh_len != NFSX_FHMAX + 1)) ||
515		    force_fid_err) {
516			nfscl_warn_fileid(nmp, &np->n_vattr, nap);
517			error = EIDRM;
518			goto out;
519		}
520		NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
521		    sizeof (struct nfsvattr));
522	}
523
524	/*
525	 * For NFSv4, the server's export may be a tree of file systems
526	 * where a fileno is a unique value within each file system.
527	 * na_filesid[0,1] uniquely identify the server file system
528	 * and nm_fsid[0,1] is the value for the root file system mounted.
529	 * As such, the value of va_fsid generated by vn_fsid() represents
530	 * the root file system on the server and a different value for
531	 * va_fsid is needed for the other server file systems.  This
532	 * va_fsid is ideally unique for all of the server file systems,
533	 * so a 64bit hash on na_filesid[0,1] is calculated.
534	 * Although highly unlikely that the fnv_64_hash() will be
535	 * the same as the root, test for this case and recalculate the hash.
536	 */
537	vn_fsid(vp, vap);
538	if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
539	    (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
540	     nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
541		topfsid = vap->va_fsid;
542		vap->va_fsid = FNV1_64_INIT;
543		do {
544			vap->va_fsid = fnv_64_buf(np->n_vattr.na_filesid,
545			    sizeof(np->n_vattr.na_filesid), vap->va_fsid);
546		} while (vap->va_fsid == topfsid);
547	}
548
549	np->n_attrstamp = time_second;
550	if (vap->va_size != np->n_size) {
551		if (vap->va_type == VREG) {
552			if (dontshrink && vap->va_size < np->n_size) {
553				/*
554				 * We've been told not to shrink the file;
555				 * zero np->n_attrstamp to indicate that
556				 * the attributes are stale.
557				 */
558				vap->va_size = np->n_size;
559				np->n_attrstamp = 0;
560				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
561			} else if (np->n_flag & NMODIFIED) {
562				/*
563				 * We've modified the file: Use the larger
564				 * of our size, and the server's size.
565				 */
566				if (vap->va_size < np->n_size) {
567					vap->va_size = np->n_size;
568				} else {
569					np->n_size = vap->va_size;
570					np->n_flag |= NSIZECHANGED;
571				}
572			} else {
573				np->n_size = vap->va_size;
574				np->n_flag |= NSIZECHANGED;
575			}
576		} else {
577			np->n_size = vap->va_size;
578		}
579	}
580	/*
581	 * The following checks are added to prevent a race between (say)
582	 * a READDIR+ and a WRITE.
583	 * READDIR+, WRITE requests sent out.
584	 * READDIR+ resp, WRITE resp received on client.
585	 * However, the WRITE resp was handled before the READDIR+ resp
586	 * causing the post op attrs from the write to be loaded first
587	 * and the attrs from the READDIR+ to be loaded later. If this
588	 * happens, we have stale attrs loaded into the attrcache.
589	 * We detect this by for the mtime moving back. We invalidate the
590	 * attrcache when this happens.
591	 */
592	if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
593		/* Size changed or mtime went backwards */
594		np->n_attrstamp = 0;
595		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
596	}
597	if (vaper != NULL) {
598		ncl_copy_vattr(vaper, vap);
599		if (np->n_flag & NCHG) {
600			if (np->n_flag & NACC)
601				vaper->va_atime = np->n_atim;
602			if (np->n_flag & NUPD)
603				vaper->va_mtime = np->n_mtim;
604		}
605	}
606
607out:
608#ifdef KDTRACE_HOOKS
609	if (np->n_attrstamp != 0)
610		KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error);
611#endif
612	(void)ncl_pager_setsize(vp, NULL);
613	return (error);
614}
615
616/*
617 * Call vnode_pager_setsize() if the size of the node changed, as
618 * recorded in nfsnode vs. v_object, or delay the call if notifying
619 * the pager is not possible at the moment.
620 *
621 * If nsizep is non-NULL, the call is delayed and the new node size is
622 * provided.  Caller should itself call vnode_pager_setsize() if
623 * function returned true.  If nsizep is NULL, function tries to call
624 * vnode_pager_setsize() itself if needed and possible, and the nfs
625 * node is unlocked unconditionally, the return value is not useful.
626 */
627bool
628ncl_pager_setsize(struct vnode *vp, u_quad_t *nsizep)
629{
630	struct nfsnode *np;
631	vm_object_t object;
632	struct vattr *vap;
633	u_quad_t nsize;
634	bool setnsize;
635
636	np = VTONFS(vp);
637	NFSASSERTNODE(np);
638
639	vap = &np->n_vattr.na_vattr;
640	nsize = vap->va_size;
641	object = vp->v_object;
642	setnsize = false;
643
644	if (object != NULL && nsize != object->un_pager.vnp.vnp_size) {
645		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
646		    (curthread->td_pflags2 & TDP2_SBPAGES) == 0)
647			setnsize = true;
648		else
649			np->n_flag |= NVNSETSZSKIP;
650	}
651	if (nsizep == NULL) {
652		NFSUNLOCKNODE(np);
653		if (setnsize)
654			vnode_pager_setsize(vp, nsize);
655		setnsize = false;
656	} else {
657		*nsizep = nsize;
658	}
659	return (setnsize);
660}
661
662/*
663 * Fill in the client id name. For these bytes:
664 * 1 - they must be unique
665 * 2 - they should be persistent across client reboots
666 * 1 is more critical than 2
667 * Use the mount point's unique id plus either the uuid or, if that
668 * isn't set, random junk.
669 */
670void
671nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
672{
673	int uuidlen;
674
675	/*
676	 * First, put in the 64bit mount point identifier.
677	 */
678	if (idlen >= sizeof (u_int64_t)) {
679		NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
680		cp += sizeof (u_int64_t);
681		idlen -= sizeof (u_int64_t);
682	}
683
684	/*
685	 * If uuid is non-zero length, use it.
686	 */
687	uuidlen = strlen(uuid);
688	if (uuidlen > 0 && idlen >= uuidlen) {
689		NFSBCOPY(uuid, cp, uuidlen);
690		cp += uuidlen;
691		idlen -= uuidlen;
692	}
693
694	/*
695	 * This only normally happens if the uuid isn't set.
696	 */
697	while (idlen > 0) {
698		*cp++ = (u_int8_t)(arc4random() % 256);
699		idlen--;
700	}
701}
702
703/*
704 * Fill in a lock owner name. For now, pid + the process's creation time.
705 */
706void
707nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
708{
709	union {
710		u_int32_t	lval;
711		u_int8_t	cval[4];
712	} tl;
713	struct proc *p;
714
715	if (id == NULL) {
716		/* Return the single open_owner of all 0 bytes. */
717		bzero(cp, NFSV4CL_LOCKNAMELEN);
718		return;
719	}
720	if ((flags & F_POSIX) != 0) {
721		p = (struct proc *)id;
722		tl.lval = p->p_pid;
723		*cp++ = tl.cval[0];
724		*cp++ = tl.cval[1];
725		*cp++ = tl.cval[2];
726		*cp++ = tl.cval[3];
727		tl.lval = p->p_stats->p_start.tv_sec;
728		*cp++ = tl.cval[0];
729		*cp++ = tl.cval[1];
730		*cp++ = tl.cval[2];
731		*cp++ = tl.cval[3];
732		tl.lval = p->p_stats->p_start.tv_usec;
733		*cp++ = tl.cval[0];
734		*cp++ = tl.cval[1];
735		*cp++ = tl.cval[2];
736		*cp = tl.cval[3];
737	} else if ((flags & F_FLOCK) != 0) {
738		bcopy(&id, cp, sizeof(id));
739		bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
740	} else {
741		printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
742		bzero(cp, NFSV4CL_LOCKNAMELEN);
743	}
744}
745
746/*
747 * Find the parent process for the thread passed in as an argument.
748 * If none exists, return NULL, otherwise return a thread for the parent.
749 * (Can be any of the threads, since it is only used for td->td_proc.)
750 */
751NFSPROC_T *
752nfscl_getparent(struct thread *td)
753{
754	struct proc *p;
755	struct thread *ptd;
756
757	if (td == NULL)
758		return (NULL);
759	p = td->td_proc;
760	if (p->p_pid == 0)
761		return (NULL);
762	p = p->p_pptr;
763	if (p == NULL)
764		return (NULL);
765	ptd = TAILQ_FIRST(&p->p_threads);
766	return (ptd);
767}
768
769/*
770 * Start up the renew kernel thread.
771 */
772static void
773start_nfscl(void *arg)
774{
775	struct nfsclclient *clp;
776	struct thread *td;
777
778	clp = (struct nfsclclient *)arg;
779	td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
780	nfscl_renewthread(clp, td);
781	kproc_exit(0);
782}
783
784void
785nfscl_start_renewthread(struct nfsclclient *clp)
786{
787
788	kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
789	    "nfscl");
790}
791
792/*
793 * Handle wcc_data.
794 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
795 * as the first Op after PutFH.
796 * (For NFSv4, the postop attributes are after the Op, so they can't be
797 *  parsed here. A separate call to nfscl_postop_attr() is required.)
798 */
799int
800nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
801    struct nfsvattr *nap, int *flagp, int *wccflagp, uint64_t *repsizep)
802{
803	u_int32_t *tl;
804	struct nfsnode *np = VTONFS(vp);
805	struct nfsvattr nfsva;
806	int error = 0;
807
808	if (wccflagp != NULL)
809		*wccflagp = 0;
810	if (nd->nd_flag & ND_NFSV3) {
811		*flagp = 0;
812		NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
813		if (*tl == newnfs_true) {
814			NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
815			if (wccflagp != NULL) {
816				NFSLOCKNODE(np);
817				*wccflagp = (np->n_mtime.tv_sec ==
818				    fxdr_unsigned(u_int32_t, *(tl + 2)) &&
819				    np->n_mtime.tv_nsec ==
820				    fxdr_unsigned(u_int32_t, *(tl + 3)));
821				NFSUNLOCKNODE(np);
822			}
823		}
824		error = nfscl_postop_attr(nd, nap, flagp);
825		if (wccflagp != NULL && *flagp == 0)
826			*wccflagp = 0;
827	} else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
828	    == (ND_NFSV4 | ND_V4WCCATTR)) {
829		error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
830		    NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
831		    NULL, NULL, NULL, NULL, NULL);
832		if (error)
833			return (error);
834		/*
835		 * Get rid of Op# and status for next op.
836		 */
837		NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
838		if (*++tl)
839			nd->nd_flag |= ND_NOMOREDATA;
840		if (repsizep != NULL)
841			*repsizep = nfsva.na_size;
842		if (wccflagp != NULL &&
843		    nfsva.na_vattr.va_mtime.tv_sec != 0) {
844			NFSLOCKNODE(np);
845			*wccflagp = (np->n_mtime.tv_sec ==
846			    nfsva.na_vattr.va_mtime.tv_sec &&
847			    np->n_mtime.tv_nsec ==
848			    nfsva.na_vattr.va_mtime.tv_sec);
849			NFSUNLOCKNODE(np);
850		}
851	}
852nfsmout:
853	return (error);
854}
855
856/*
857 * Get postop attributes.
858 */
859int
860nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp)
861{
862	u_int32_t *tl;
863	int error = 0;
864
865	*retp = 0;
866	if (nd->nd_flag & ND_NOMOREDATA)
867		return (error);
868	if (nd->nd_flag & ND_NFSV3) {
869		NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
870		*retp = fxdr_unsigned(int, *tl);
871	} else if (nd->nd_flag & ND_NFSV4) {
872		/*
873		 * For NFSv4, the postop attr are at the end, so no point
874		 * in looking if nd_repstat != 0.
875		 */
876		if (!nd->nd_repstat) {
877			NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
878			if (*(tl + 1))
879				/* should never happen since nd_repstat != 0 */
880				nd->nd_flag |= ND_NOMOREDATA;
881			else
882				*retp = 1;
883		}
884	} else if (!nd->nd_repstat) {
885		/* For NFSv2, the attributes are here iff nd_repstat == 0 */
886		*retp = 1;
887	}
888	if (*retp) {
889		error = nfsm_loadattr(nd, nap);
890		if (error)
891			*retp = 0;
892	}
893nfsmout:
894	return (error);
895}
896
897/*
898 * nfscl_request() - mostly a wrapper for newnfs_request().
899 */
900int
901nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
902    struct ucred *cred)
903{
904	int ret, vers;
905	struct nfsmount *nmp;
906
907	nmp = VFSTONFS(vp->v_mount);
908	if (nd->nd_flag & ND_NFSV4)
909		vers = NFS_VER4;
910	else if (nd->nd_flag & ND_NFSV3)
911		vers = NFS_VER3;
912	else
913		vers = NFS_VER2;
914	ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
915		NFS_PROG, vers, NULL, 1, NULL, NULL);
916	return (ret);
917}
918
919/*
920 * fill in this bsden's variant of statfs using nfsstatfs.
921 */
922void
923nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
924{
925	struct statfs *sbp = (struct statfs *)statfs;
926
927	if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
928		sbp->f_bsize = NFS_FABLKSIZE;
929		sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
930		sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
931		/*
932		 * Although sf_abytes is uint64_t and f_bavail is int64_t,
933		 * the value after dividing by NFS_FABLKSIZE is small
934		 * enough that it will fit in 63bits, so it is ok to
935		 * assign it to f_bavail without fear that it will become
936		 * negative.
937		 */
938		sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
939		sbp->f_files = sfp->sf_tfiles;
940		/* Since f_ffree is int64_t, clip it to 63bits. */
941		if (sfp->sf_ffiles > INT64_MAX)
942			sbp->f_ffree = INT64_MAX;
943		else
944			sbp->f_ffree = sfp->sf_ffiles;
945	} else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
946		/*
947		 * The type casts to (int32_t) ensure that this code is
948		 * compatible with the old NFS client, in that it will
949		 * propagate bit31 to the high order bits. This may or may
950		 * not be correct for NFSv2, but since it is a legacy
951		 * environment, I'd rather retain backwards compatibility.
952		 */
953		sbp->f_bsize = (int32_t)sfp->sf_bsize;
954		sbp->f_blocks = (int32_t)sfp->sf_blocks;
955		sbp->f_bfree = (int32_t)sfp->sf_bfree;
956		sbp->f_bavail = (int32_t)sfp->sf_bavail;
957		sbp->f_files = 0;
958		sbp->f_ffree = 0;
959	}
960}
961
962/*
963 * Use the fsinfo stuff to update the mount point.
964 */
965void
966nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
967{
968
969	if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
970	    fsp->fs_wtpref >= NFS_FABLKSIZE)
971		nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
972		    ~(NFS_FABLKSIZE - 1);
973	if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
974		nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
975		if (nmp->nm_wsize == 0)
976			nmp->nm_wsize = fsp->fs_wtmax;
977	}
978	if (nmp->nm_wsize < NFS_FABLKSIZE)
979		nmp->nm_wsize = NFS_FABLKSIZE;
980	if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
981	    fsp->fs_rtpref >= NFS_FABLKSIZE)
982		nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
983		    ~(NFS_FABLKSIZE - 1);
984	if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
985		nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
986		if (nmp->nm_rsize == 0)
987			nmp->nm_rsize = fsp->fs_rtmax;
988	}
989	if (nmp->nm_rsize < NFS_FABLKSIZE)
990		nmp->nm_rsize = NFS_FABLKSIZE;
991	if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
992	    && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
993		nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
994		    ~(NFS_DIRBLKSIZ - 1);
995	if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
996		nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
997		if (nmp->nm_readdirsize == 0)
998			nmp->nm_readdirsize = fsp->fs_rtmax;
999	}
1000	if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
1001		nmp->nm_readdirsize = NFS_DIRBLKSIZ;
1002	if (fsp->fs_maxfilesize > 0 &&
1003	    fsp->fs_maxfilesize < nmp->nm_maxfilesize)
1004		nmp->nm_maxfilesize = fsp->fs_maxfilesize;
1005	nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
1006	nmp->nm_state |= NFSSTA_GOTFSINFO;
1007}
1008
1009/*
1010 * Lookups source address which should be used to communicate with
1011 * @nmp and stores it inside @pdst.
1012 *
1013 * Returns 0 on success.
1014 */
1015u_int8_t *
1016nfscl_getmyip(struct nfsmount *nmp, struct in6_addr *paddr, int *isinet6p)
1017{
1018#if defined(INET6) || defined(INET)
1019	int fibnum;
1020
1021	fibnum = curthread->td_proc->p_fibnum;
1022#endif
1023#ifdef INET
1024	if (nmp->nm_nam->sa_family == AF_INET) {
1025		struct epoch_tracker et;
1026		struct nhop_object *nh;
1027		struct sockaddr_in *sin;
1028		struct in_addr addr = {};
1029
1030		sin = (struct sockaddr_in *)nmp->nm_nam;
1031		NET_EPOCH_ENTER(et);
1032		CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
1033		nh = fib4_lookup(fibnum, sin->sin_addr, 0, NHR_NONE, 0);
1034		if (nh != NULL) {
1035			addr = IA_SIN(ifatoia(nh->nh_ifa))->sin_addr;
1036			if (IN_LOOPBACK(ntohl(addr.s_addr))) {
1037				/* Ignore loopback addresses */
1038				nh = NULL;
1039			}
1040		}
1041		CURVNET_RESTORE();
1042		NET_EPOCH_EXIT(et);
1043
1044		if (nh == NULL)
1045			return (NULL);
1046		*isinet6p = 0;
1047		*((struct in_addr *)paddr) = addr;
1048
1049		return (u_int8_t *)paddr;
1050	}
1051#endif
1052#ifdef INET6
1053	if (nmp->nm_nam->sa_family == AF_INET6) {
1054		struct epoch_tracker et;
1055		struct sockaddr_in6 *sin6;
1056		int error;
1057
1058		sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
1059
1060		NET_EPOCH_ENTER(et);
1061		CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
1062		error = in6_selectsrc_addr(fibnum, &sin6->sin6_addr,
1063		    sin6->sin6_scope_id, NULL, paddr, NULL);
1064		CURVNET_RESTORE();
1065		NET_EPOCH_EXIT(et);
1066		if (error != 0)
1067			return (NULL);
1068
1069		if (IN6_IS_ADDR_LOOPBACK(paddr))
1070			return (NULL);
1071
1072		/* Scope is embedded in */
1073		*isinet6p = 1;
1074
1075		return (u_int8_t *)paddr;
1076	}
1077#endif
1078	return (NULL);
1079}
1080
1081/*
1082 * Copy NFS uid, gids from the cred structure.
1083 */
1084void
1085newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
1086{
1087	int i;
1088
1089	KASSERT(cr->cr_ngroups >= 0,
1090	    ("newnfs_copyincred: negative cr_ngroups"));
1091	nfscr->nfsc_uid = cr->cr_uid;
1092	nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
1093	for (i = 0; i < nfscr->nfsc_ngroups; i++)
1094		nfscr->nfsc_groups[i] = cr->cr_groups[i];
1095}
1096
1097/*
1098 * Do any client specific initialization.
1099 */
1100void
1101nfscl_init(void)
1102{
1103	static int inited = 0;
1104
1105	if (inited)
1106		return;
1107	inited = 1;
1108	nfscl_inited = 1;
1109	ncl_pbuf_zone = pbuf_zsecond_create("nfspbuf", nswbuf / 2);
1110}
1111
1112/*
1113 * Check each of the attributes to be set, to ensure they aren't already
1114 * the correct value. Disable setting ones already correct.
1115 */
1116int
1117nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
1118{
1119
1120	if (vap->va_mode != (mode_t)VNOVAL) {
1121		if (vap->va_mode == nvap->na_mode)
1122			vap->va_mode = (mode_t)VNOVAL;
1123	}
1124	if (vap->va_uid != (uid_t)VNOVAL) {
1125		if (vap->va_uid == nvap->na_uid)
1126			vap->va_uid = (uid_t)VNOVAL;
1127	}
1128	if (vap->va_gid != (gid_t)VNOVAL) {
1129		if (vap->va_gid == nvap->na_gid)
1130			vap->va_gid = (gid_t)VNOVAL;
1131	}
1132	if (vap->va_size != VNOVAL) {
1133		if (vap->va_size == nvap->na_size)
1134			vap->va_size = VNOVAL;
1135	}
1136
1137	/*
1138	 * We are normally called with only a partially initialized
1139	 * VAP.  Since the NFSv3 spec says that server may use the
1140	 * file attributes to store the verifier, the spec requires
1141	 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1142	 * in atime, but we can't really assume that all servers will
1143	 * so we ensure that our SETATTR sets both atime and mtime.
1144	 * Set the VA_UTIMES_NULL flag for this case, so that
1145	 * the server's time will be used.  This is needed to
1146	 * work around a bug in some Solaris servers, where
1147	 * setting the time TOCLIENT causes the Setattr RPC
1148	 * to return NFS_OK, but not set va_mode.
1149	 */
1150	if (vap->va_mtime.tv_sec == VNOVAL) {
1151		vfs_timestamp(&vap->va_mtime);
1152		vap->va_vaflags |= VA_UTIMES_NULL;
1153	}
1154	if (vap->va_atime.tv_sec == VNOVAL)
1155		vap->va_atime = vap->va_mtime;
1156	return (1);
1157}
1158
1159/*
1160 * Map nfsv4 errors to errno.h errors.
1161 * The uid and gid arguments are only used for NFSERR_BADOWNER and that
1162 * error should only be returned for the Open, Create and Setattr Ops.
1163 * As such, most calls can just pass in 0 for those arguments.
1164 */
1165int
1166nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
1167{
1168	struct proc *p;
1169
1170	if (error < 10000 || error >= NFSERR_STALEWRITEVERF)
1171		return (error);
1172	if (td != NULL)
1173		p = td->td_proc;
1174	else
1175		p = NULL;
1176	switch (error) {
1177	case NFSERR_BADOWNER:
1178		tprintf(p, LOG_INFO,
1179		    "No name and/or group mapping for uid,gid:(%d,%d)\n",
1180		    uid, gid);
1181		return (EPERM);
1182	case NFSERR_BADNAME:
1183	case NFSERR_BADCHAR:
1184		printf("nfsv4 char/name not handled by server\n");
1185		return (ENOENT);
1186	case NFSERR_STALECLIENTID:
1187	case NFSERR_STALESTATEID:
1188	case NFSERR_EXPIRED:
1189	case NFSERR_BADSTATEID:
1190	case NFSERR_BADSESSION:
1191		printf("nfsv4 recover err returned %d\n", error);
1192		return (EIO);
1193	case NFSERR_BADHANDLE:
1194	case NFSERR_SERVERFAULT:
1195	case NFSERR_BADTYPE:
1196	case NFSERR_FHEXPIRED:
1197	case NFSERR_RESOURCE:
1198	case NFSERR_MOVED:
1199	case NFSERR_MINORVERMISMATCH:
1200	case NFSERR_OLDSTATEID:
1201	case NFSERR_BADSEQID:
1202	case NFSERR_LEASEMOVED:
1203	case NFSERR_RECLAIMBAD:
1204	case NFSERR_BADXDR:
1205	case NFSERR_OPILLEGAL:
1206		printf("nfsv4 client/server protocol prob err=%d\n",
1207		    error);
1208		return (EIO);
1209	case NFSERR_NOFILEHANDLE:
1210		printf("nfsv4 no file handle: usually means the file "
1211		    "system is not exported on the NFSv4 server\n");
1212		return (EIO);
1213	case NFSERR_WRONGSEC:
1214		tprintf(p, LOG_INFO, "NFSv4 error WrongSec: You probably need a"
1215		    " Kerberos TGT\n");
1216		return (EIO);
1217	default:
1218		tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
1219		return (EIO);
1220	};
1221}
1222
1223/*
1224 * Check to see if the process for this owner exists. Return 1 if it doesn't
1225 * and 0 otherwise.
1226 */
1227int
1228nfscl_procdoesntexist(u_int8_t *own)
1229{
1230	union {
1231		u_int32_t	lval;
1232		u_int8_t	cval[4];
1233	} tl;
1234	struct proc *p;
1235	pid_t pid;
1236	int i, ret = 0;
1237
1238	/* For the single open_owner of all 0 bytes, just return 0. */
1239	for (i = 0; i < NFSV4CL_LOCKNAMELEN; i++)
1240		if (own[i] != 0)
1241			break;
1242	if (i == NFSV4CL_LOCKNAMELEN)
1243		return (0);
1244
1245	tl.cval[0] = *own++;
1246	tl.cval[1] = *own++;
1247	tl.cval[2] = *own++;
1248	tl.cval[3] = *own++;
1249	pid = tl.lval;
1250	p = pfind_any_locked(pid);
1251	if (p == NULL)
1252		return (1);
1253	if (p->p_stats == NULL) {
1254		PROC_UNLOCK(p);
1255		return (0);
1256	}
1257	tl.cval[0] = *own++;
1258	tl.cval[1] = *own++;
1259	tl.cval[2] = *own++;
1260	tl.cval[3] = *own++;
1261	if (tl.lval != p->p_stats->p_start.tv_sec) {
1262		ret = 1;
1263	} else {
1264		tl.cval[0] = *own++;
1265		tl.cval[1] = *own++;
1266		tl.cval[2] = *own++;
1267		tl.cval[3] = *own;
1268		if (tl.lval != p->p_stats->p_start.tv_usec)
1269			ret = 1;
1270	}
1271	PROC_UNLOCK(p);
1272	return (ret);
1273}
1274
1275/*
1276 * - nfs pseudo system call for the client
1277 */
1278/*
1279 * MPSAFE
1280 */
1281static int
1282nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
1283{
1284	struct file *fp;
1285	struct nfscbd_args nfscbdarg;
1286	struct nfsd_nfscbd_args nfscbdarg2;
1287	struct nameidata nd;
1288	struct nfscl_dumpmntopts dumpmntopts;
1289	cap_rights_t rights;
1290	char *buf;
1291	int error;
1292	struct mount *mp;
1293	struct nfsmount *nmp;
1294
1295	NFSD_CURVNET_SET(NFSD_TD_TO_VNET(td));
1296	if (uap->flag & NFSSVC_CBADDSOCK) {
1297		error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
1298		if (error)
1299			goto out;
1300		/*
1301		 * Since we don't know what rights might be required,
1302		 * pretend that we need them all. It is better to be too
1303		 * careful than too reckless.
1304		 */
1305		error = fget(td, nfscbdarg.sock,
1306		    cap_rights_init_one(&rights, CAP_SOCK_CLIENT), &fp);
1307		if (error)
1308			goto out;
1309		if (fp->f_type != DTYPE_SOCKET) {
1310			fdrop(fp, td);
1311			error = EPERM;
1312			goto out;
1313		}
1314		error = nfscbd_addsock(fp);
1315		fdrop(fp, td);
1316		if (!error && nfscl_enablecallb == 0) {
1317			nfsv4_cbport = nfscbdarg.port;
1318			nfscl_enablecallb = 1;
1319		}
1320	} else if (uap->flag & NFSSVC_NFSCBD) {
1321		if (uap->argp == NULL) {
1322			error = EINVAL;
1323			goto out;
1324		}
1325		error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
1326		    sizeof(nfscbdarg2));
1327		if (error)
1328			goto out;
1329		error = nfscbd_nfsd(td, &nfscbdarg2);
1330	} else if (uap->flag & NFSSVC_DUMPMNTOPTS) {
1331		error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts));
1332		if (error == 0 && (dumpmntopts.ndmnt_blen < 256 ||
1333		    dumpmntopts.ndmnt_blen > 1024))
1334			error = EINVAL;
1335		if (error == 0)
1336			error = nfsrv_lookupfilename(&nd,
1337			    dumpmntopts.ndmnt_fname, td);
1338		if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name,
1339		    "nfs") != 0) {
1340			vput(nd.ni_vp);
1341			error = EINVAL;
1342		}
1343		if (error == 0) {
1344			buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK |
1345			    M_ZERO);
1346			nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf,
1347			    dumpmntopts.ndmnt_blen);
1348			vput(nd.ni_vp);
1349			error = copyout(buf, dumpmntopts.ndmnt_buf,
1350			    dumpmntopts.ndmnt_blen);
1351			free(buf, M_TEMP);
1352		}
1353	} else if (uap->flag & NFSSVC_FORCEDISM) {
1354		buf = malloc(MNAMELEN + 1, M_TEMP, M_WAITOK);
1355		error = copyinstr(uap->argp, buf, MNAMELEN + 1, NULL);
1356		if (error == 0) {
1357			nmp = NULL;
1358			mtx_lock(&mountlist_mtx);
1359			TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1360				if (strcmp(mp->mnt_stat.f_mntonname, buf) ==
1361				    0 && strcmp(mp->mnt_stat.f_fstypename,
1362				    "nfs") == 0 && mp->mnt_data != NULL) {
1363					nmp = VFSTONFS(mp);
1364					NFSDDSLOCK();
1365					if (nfsv4_findmirror(nmp) != NULL) {
1366						NFSDDSUNLOCK();
1367						error = ENXIO;
1368						nmp = NULL;
1369						break;
1370					}
1371					mtx_lock(&nmp->nm_mtx);
1372					if ((nmp->nm_privflag &
1373					    NFSMNTP_FORCEDISM) == 0) {
1374						nmp->nm_privflag |=
1375						   (NFSMNTP_FORCEDISM |
1376						    NFSMNTP_CANCELRPCS);
1377						mtx_unlock(&nmp->nm_mtx);
1378					} else {
1379						mtx_unlock(&nmp->nm_mtx);
1380						nmp = NULL;
1381					}
1382					NFSDDSUNLOCK();
1383					break;
1384				}
1385			}
1386			mtx_unlock(&mountlist_mtx);
1387
1388			if (nmp != NULL) {
1389				/*
1390				 * Call newnfs_nmcancelreqs() to cause
1391				 * any RPCs in progress on the mount point to
1392				 * fail.
1393				 * This will cause any process waiting for an
1394				 * RPC to complete while holding a vnode lock
1395				 * on the mounted-on vnode (such as "df" or
1396				 * a non-forced "umount") to fail.
1397				 * This will unlock the mounted-on vnode so
1398				 * a forced dismount can succeed.
1399				 * Then clear NFSMNTP_CANCELRPCS and wakeup(),
1400				 * so that nfs_unmount() can complete.
1401				 */
1402				newnfs_nmcancelreqs(nmp);
1403				mtx_lock(&nmp->nm_mtx);
1404				nmp->nm_privflag &= ~NFSMNTP_CANCELRPCS;
1405				wakeup(nmp);
1406				mtx_unlock(&nmp->nm_mtx);
1407			} else if (error == 0)
1408				error = EINVAL;
1409		}
1410		free(buf, M_TEMP);
1411	} else {
1412		error = EINVAL;
1413	}
1414out:
1415	NFSD_CURVNET_RESTORE();
1416	return (error);
1417}
1418
1419extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
1420
1421/*
1422 * Called once to initialize data structures...
1423 */
1424static int
1425nfscl_modevent(module_t mod, int type, void *data)
1426{
1427	int error = 0;
1428	static int loaded = 0;
1429
1430	switch (type) {
1431	case MOD_LOAD:
1432		if (loaded)
1433			return (0);
1434		newnfs_portinit();
1435		mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
1436		nfscl_init();
1437		NFSD_LOCK();
1438		nfsrvd_cbinit(0);
1439		NFSD_UNLOCK();
1440		ncl_call_invalcaches = ncl_invalcaches;
1441		nfsd_call_nfscl = nfssvc_nfscl;
1442		loaded = 1;
1443		break;
1444
1445	case MOD_UNLOAD:
1446		if (nfs_numnfscbd != 0) {
1447			error = EBUSY;
1448			break;
1449		}
1450
1451		/*
1452		 * XXX: Unloading of nfscl module is unsupported.
1453		 */
1454#if 0
1455		ncl_call_invalcaches = NULL;
1456		nfsd_call_nfscl = NULL;
1457		uma_zdestroy(ncl_pbuf_zone);
1458		/* and get rid of the mutexes */
1459		mtx_destroy(&ncl_iod_mutex);
1460		loaded = 0;
1461		break;
1462#else
1463		/* FALLTHROUGH */
1464#endif
1465	default:
1466		error = EOPNOTSUPP;
1467		break;
1468	}
1469	return error;
1470}
1471static moduledata_t nfscl_mod = {
1472	"nfscl",
1473	nfscl_modevent,
1474	NULL,
1475};
1476/*
1477 * This is the main module declaration for the NFS client.  The
1478 * nfscl_modevent() function is needed to ensure that the module
1479 * cannot be unloaded, among other things.
1480 * There is also a module declaration in sys/fs/nfsclient/nfs_clvfsops.c
1481 * for the name "nfs" within the VFS_SET() macro that defines the "nfs"
1482 * file system type.
1483 */
1484DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
1485
1486/* So that loader and kldload(2) can find us, wherever we are.. */
1487MODULE_VERSION(nfscl, 1);
1488MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
1489MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
1490MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
1491MODULE_DEPEND(nfscl, xdr, 1, 1, 1);
1492