1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6 * Copyright (c) 2000, BSDi
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice unmodified, this list of conditions, and the following
14 *    disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32#include "opt_acpi.h"
33#include "opt_iommu.h"
34#include "opt_bus.h"
35
36#include <sys/param.h>
37#include <sys/conf.h>
38#include <sys/endian.h>
39#include <sys/eventhandler.h>
40#include <sys/fcntl.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/linker.h>
44#include <sys/malloc.h>
45#include <sys/module.h>
46#include <sys/queue.h>
47#include <sys/sbuf.h>
48#include <sys/sysctl.h>
49#include <sys/systm.h>
50#include <sys/taskqueue.h>
51#include <sys/tree.h>
52
53#include <vm/vm.h>
54#include <vm/pmap.h>
55#include <vm/vm_extern.h>
56
57#include <sys/bus.h>
58#include <machine/bus.h>
59#include <sys/rman.h>
60#include <machine/resource.h>
61#include <machine/stdarg.h>
62
63#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
64#include <machine/intr_machdep.h>
65#endif
66
67#include <sys/pciio.h>
68#include <dev/pci/pcireg.h>
69#include <dev/pci/pcivar.h>
70#include <dev/pci/pci_private.h>
71
72#ifdef PCI_IOV
73#include <sys/nv.h>
74#include <dev/pci/pci_iov_private.h>
75#endif
76
77#include <dev/usb/controller/xhcireg.h>
78#include <dev/usb/controller/ehcireg.h>
79#include <dev/usb/controller/ohcireg.h>
80#include <dev/usb/controller/uhcireg.h>
81
82#include <dev/iommu/iommu.h>
83
84#include "pcib_if.h"
85#include "pci_if.h"
86
87#define	PCIR_IS_BIOS(cfg, reg)						\
88	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
89	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
90
91static device_probe_t	pci_probe;
92
93static bus_reset_post_t pci_reset_post;
94static bus_reset_prepare_t pci_reset_prepare;
95static bus_reset_child_t pci_reset_child;
96static bus_hint_device_unit_t pci_hint_device_unit;
97static bus_remap_intr_t pci_remap_intr_method;
98
99static pci_get_id_t	pci_get_id_method;
100
101static int		pci_has_quirk(uint32_t devid, int quirk);
102static pci_addr_t	pci_mapbase(uint64_t mapreg);
103static const char	*pci_maptype(uint64_t mapreg);
104static int		pci_maprange(uint64_t mapreg);
105static pci_addr_t	pci_rombase(uint64_t mapreg);
106static int		pci_romsize(uint64_t testval);
107static void		pci_fixancient(pcicfgregs *cfg);
108static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
109
110static int		pci_porten(device_t dev);
111static int		pci_memen(device_t dev);
112static void		pci_assign_interrupt(device_t bus, device_t dev,
113			    int force_route);
114static int		pci_add_map(device_t bus, device_t dev, int reg,
115			    struct resource_list *rl, int force, int prefetch);
116static void		pci_load_vendor_data(void);
117static int		pci_describe_parse_line(char **ptr, int *vendor,
118			    int *device, char **desc);
119static char		*pci_describe_device(device_t dev);
120static int		pci_modevent(module_t mod, int what, void *arg);
121static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
122			    pcicfgregs *cfg);
123static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
124static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
125			    int reg, uint32_t *data);
126#if 0
127static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
128			    int reg, uint32_t data);
129#endif
130static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
131static void		pci_mask_msix(device_t dev, u_int index);
132static void		pci_unmask_msix(device_t dev, u_int index);
133static int		pci_msi_blacklisted(void);
134static int		pci_msix_blacklisted(void);
135static void		pci_resume_msi(device_t dev);
136static void		pci_resume_msix(device_t dev);
137static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
138    int b, int s, int f, uint16_t vid, uint16_t did);
139
140static device_method_t pci_methods[] = {
141	/* Device interface */
142	DEVMETHOD(device_probe,		pci_probe),
143	DEVMETHOD(device_attach,	pci_attach),
144	DEVMETHOD(device_detach,	pci_detach),
145	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
146	DEVMETHOD(device_suspend,	bus_generic_suspend),
147	DEVMETHOD(device_resume,	pci_resume),
148
149	/* Bus interface */
150	DEVMETHOD(bus_print_child,	pci_print_child),
151	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
152	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
153	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
154	DEVMETHOD(bus_driver_added,	pci_driver_added),
155	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
156	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
157	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
158	DEVMETHOD(bus_reset_post,	pci_reset_post),
159	DEVMETHOD(bus_reset_child,	pci_reset_child),
160
161	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
162	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
163	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
164	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
165	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
166	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
167#ifdef PCI_IOV
168	DEVMETHOD(bus_adjust_resource,	pci_adjust_resource),
169#else
170	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
171#endif
172	DEVMETHOD(bus_release_resource,	pci_release_resource),
173	DEVMETHOD(bus_activate_resource, pci_activate_resource),
174	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
175#ifdef PCI_IOV
176	DEVMETHOD(bus_map_resource,	pci_map_resource),
177	DEVMETHOD(bus_unmap_resource,	pci_unmap_resource),
178#endif
179	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
180	DEVMETHOD(bus_child_detached,	pci_child_detached),
181	DEVMETHOD(bus_child_pnpinfo,	pci_child_pnpinfo_method),
182	DEVMETHOD(bus_child_location,	pci_child_location_method),
183	DEVMETHOD(bus_get_device_path,	pci_get_device_path_method),
184	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
185	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
186	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
187	DEVMETHOD(bus_resume_child,	pci_resume_child),
188	DEVMETHOD(bus_rescan,		pci_rescan_method),
189
190	/* PCI interface */
191	DEVMETHOD(pci_read_config,	pci_read_config_method),
192	DEVMETHOD(pci_write_config,	pci_write_config_method),
193	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
194	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
195	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
196	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
197	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
198	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
199	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
200	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
201	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
202	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
203	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
204	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
205	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
206	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
207	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
208	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
209	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
210	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
211	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
212	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
213	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
214	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
215	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
216	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
217	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
218	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
219	DEVMETHOD(pci_get_id,		pci_get_id_method),
220	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
221	DEVMETHOD(pci_child_added,	pci_child_added_method),
222#ifdef PCI_IOV
223	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
224	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
225	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
226#endif
227
228	DEVMETHOD_END
229};
230
231DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
232
233EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS);
234MODULE_VERSION(pci, 1);
235
236static char	*pci_vendordata;
237static size_t	pci_vendordata_size;
238
239struct pci_quirk {
240	uint32_t devid;	/* Vendor/device of the card */
241	int	type;
242#define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
243#define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
244#define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
245#define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
246#define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
247#define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
248#define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
249	int	arg1;
250	int	arg2;
251};
252
253static const struct pci_quirk pci_quirks[] = {
254	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
255	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
256	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
257	/* As does the Serverworks OSB4 (the SMBus mapping register) */
258	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
259
260	/*
261	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
262	 * or the CMIC-SL (AKA ServerWorks GC_LE).
263	 */
264	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
265	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
266
267	/*
268	 * MSI doesn't work on earlier Intel chipsets including
269	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
270	 */
271	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
272	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
273	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
274	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
275	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
276	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
277	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
278
279	/*
280	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
281	 * bridge.
282	 */
283	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
284
285	/*
286	 * Some virtualization environments emulate an older chipset
287	 * but support MSI just fine.  QEMU uses the Intel 82440.
288	 */
289	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
290
291	/*
292	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
293	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
294	 * It prevents us from attaching hpet(4) when the bit is unset.
295	 * Note this quirk only affects SB600 revision A13 and earlier.
296	 * For SB600 A21 and later, firmware must set the bit to hide it.
297	 * For SB700 and later, it is unused and hardcoded to zero.
298	 */
299	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
300
301	/*
302	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
303	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
304	 * of the command register is set.
305	 */
306	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
307	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
308	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
309	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
310	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
311
312	/*
313	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
314	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
315	 */
316	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
317	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
318	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
319	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
320	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
321	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
322
323	/*
324	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
325	 * expected place.
326	 */
327	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
328	{ 0 }
329};
330
331/* map register information */
332#define	PCI_MAPMEM	0x01	/* memory map */
333#define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
334#define	PCI_MAPPORT	0x04	/* port map */
335
336struct devlist pci_devq;
337uint32_t pci_generation;
338uint32_t pci_numdevs = 0;
339static int pcie_chipset, pcix_chipset;
340
341/* sysctl vars */
342SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
343    "PCI bus tuning parameters");
344
345static int pci_enable_io_modes = 1;
346SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
347    &pci_enable_io_modes, 1,
348    "Enable I/O and memory bits in the config register.  Some BIOSes do not"
349    " enable these bits correctly.  We'd like to do this all the time, but"
350    " there are some peripherals that this causes problems with.");
351
352static int pci_do_realloc_bars = 1;
353SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
354    &pci_do_realloc_bars, 0,
355    "Attempt to allocate a new range for any BARs whose original "
356    "firmware-assigned ranges fail to allocate during the initial device scan.");
357
358static int pci_do_power_nodriver = 0;
359SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
360    &pci_do_power_nodriver, 0,
361    "Place a function into D3 state when no driver attaches to it.  0 means"
362    " disable.  1 means conservatively place devices into D3 state.  2 means"
363    " aggressively place devices into D3 state.  3 means put absolutely"
364    " everything in D3 state.");
365
366int pci_do_power_resume = 1;
367SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
368    &pci_do_power_resume, 1,
369  "Transition from D3 -> D0 on resume.");
370
371int pci_do_power_suspend = 1;
372SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
373    &pci_do_power_suspend, 1,
374  "Transition from D0 -> D3 on suspend.");
375
376static int pci_do_msi = 1;
377SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
378    "Enable support for MSI interrupts");
379
380static int pci_do_msix = 1;
381SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
382    "Enable support for MSI-X interrupts");
383
384static int pci_msix_rewrite_table = 0;
385SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
386    &pci_msix_rewrite_table, 0,
387    "Rewrite entire MSI-X table when updating MSI-X entries");
388
389static int pci_honor_msi_blacklist = 1;
390SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
391    &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
392
393#if defined(__i386__) || defined(__amd64__)
394static int pci_usb_takeover = 1;
395#else
396static int pci_usb_takeover = 0;
397#endif
398SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
399    &pci_usb_takeover, 1,
400    "Enable early takeover of USB controllers. Disable this if you depend on"
401    " BIOS emulation of USB devices, that is you use USB devices (like"
402    " keyboard or mouse) but do not load USB drivers");
403
404static int pci_clear_bars;
405SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
406    "Ignore firmware-assigned resources for BARs.");
407
408#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
409static int pci_clear_buses;
410SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
411    "Ignore firmware-assigned bus numbers.");
412#endif
413
414static int pci_enable_ari = 1;
415SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
416    0, "Enable support for PCIe Alternative RID Interpretation");
417
418int pci_enable_aspm = 1;
419SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
420    0, "Enable support for PCIe Active State Power Management");
421
422static int pci_clear_aer_on_attach = 0;
423SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
424    &pci_clear_aer_on_attach, 0,
425    "Clear port and device AER state on driver attach");
426
427static bool pci_enable_mps_tune = true;
428SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN,
429    &pci_enable_mps_tune, 1,
430    "Enable tuning of MPS(maximum payload size)." );
431
432static int
433pci_has_quirk(uint32_t devid, int quirk)
434{
435	const struct pci_quirk *q;
436
437	for (q = &pci_quirks[0]; q->devid; q++) {
438		if (q->devid == devid && q->type == quirk)
439			return (1);
440	}
441	return (0);
442}
443
444/* Find a device_t by bus/slot/function in domain 0 */
445
446device_t
447pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
448{
449
450	return (pci_find_dbsf(0, bus, slot, func));
451}
452
453/* Find a device_t by domain/bus/slot/function */
454
455device_t
456pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
457{
458	struct pci_devinfo *dinfo = NULL;
459
460	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
461		if ((dinfo->cfg.domain == domain) &&
462		    (dinfo->cfg.bus == bus) &&
463		    (dinfo->cfg.slot == slot) &&
464		    (dinfo->cfg.func == func)) {
465			break;
466		}
467	}
468
469	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
470}
471
472/* Find a device_t by vendor/device ID */
473
474device_t
475pci_find_device(uint16_t vendor, uint16_t device)
476{
477	struct pci_devinfo *dinfo;
478
479	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
480		if ((dinfo->cfg.vendor == vendor) &&
481		    (dinfo->cfg.device == device)) {
482			return (dinfo->cfg.dev);
483		}
484	}
485
486	return (NULL);
487}
488
489device_t
490pci_find_class(uint8_t class, uint8_t subclass)
491{
492	struct pci_devinfo *dinfo;
493
494	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
495		if (dinfo->cfg.baseclass == class &&
496		    dinfo->cfg.subclass == subclass) {
497			return (dinfo->cfg.dev);
498		}
499	}
500
501	return (NULL);
502}
503
504device_t
505pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
506{
507	struct pci_devinfo *dinfo;
508	bool found = false;
509
510	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
511		if (from != NULL && found == false) {
512			if (from != dinfo->cfg.dev)
513				continue;
514			found = true;
515			continue;
516		}
517		if (dinfo->cfg.baseclass == class &&
518		    dinfo->cfg.subclass == subclass) {
519			return (dinfo->cfg.dev);
520		}
521	}
522
523	return (NULL);
524}
525
526static int
527pci_printf(pcicfgregs *cfg, const char *fmt, ...)
528{
529	va_list ap;
530	int retval;
531
532	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
533	    cfg->func);
534	va_start(ap, fmt);
535	retval += vprintf(fmt, ap);
536	va_end(ap);
537	return (retval);
538}
539
540/* return base address of memory or port map */
541
542static pci_addr_t
543pci_mapbase(uint64_t mapreg)
544{
545
546	if (PCI_BAR_MEM(mapreg))
547		return (mapreg & PCIM_BAR_MEM_BASE);
548	else
549		return (mapreg & PCIM_BAR_IO_BASE);
550}
551
552/* return map type of memory or port map */
553
554static const char *
555pci_maptype(uint64_t mapreg)
556{
557
558	if (PCI_BAR_IO(mapreg))
559		return ("I/O Port");
560	if (mapreg & PCIM_BAR_MEM_PREFETCH)
561		return ("Prefetchable Memory");
562	return ("Memory");
563}
564
565/* return log2 of map size decoded for memory or port map */
566
567int
568pci_mapsize(uint64_t testval)
569{
570	int ln2size;
571
572	testval = pci_mapbase(testval);
573	ln2size = 0;
574	if (testval != 0) {
575		while ((testval & 1) == 0)
576		{
577			ln2size++;
578			testval >>= 1;
579		}
580	}
581	return (ln2size);
582}
583
584/* return base address of device ROM */
585
586static pci_addr_t
587pci_rombase(uint64_t mapreg)
588{
589
590	return (mapreg & PCIM_BIOS_ADDR_MASK);
591}
592
593/* return log2 of map size decided for device ROM */
594
595static int
596pci_romsize(uint64_t testval)
597{
598	int ln2size;
599
600	testval = pci_rombase(testval);
601	ln2size = 0;
602	if (testval != 0) {
603		while ((testval & 1) == 0)
604		{
605			ln2size++;
606			testval >>= 1;
607		}
608	}
609	return (ln2size);
610}
611
612/* return log2 of address range supported by map register */
613
614static int
615pci_maprange(uint64_t mapreg)
616{
617	int ln2range = 0;
618
619	if (PCI_BAR_IO(mapreg))
620		ln2range = 32;
621	else
622		switch (mapreg & PCIM_BAR_MEM_TYPE) {
623		case PCIM_BAR_MEM_32:
624			ln2range = 32;
625			break;
626		case PCIM_BAR_MEM_1MB:
627			ln2range = 20;
628			break;
629		case PCIM_BAR_MEM_64:
630			ln2range = 64;
631			break;
632		}
633	return (ln2range);
634}
635
636/* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
637
638static void
639pci_fixancient(pcicfgregs *cfg)
640{
641	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
642		return;
643
644	/* PCI to PCI bridges use header type 1 */
645	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
646		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
647}
648
649/* extract header type specific config data */
650
651static void
652pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
653{
654#define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
655	switch (cfg->hdrtype & PCIM_HDRTYPE) {
656	case PCIM_HDRTYPE_NORMAL:
657		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
658		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
659		cfg->mingnt         = REG(PCIR_MINGNT, 1);
660		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
661		cfg->nummaps	    = PCI_MAXMAPS_0;
662		break;
663	case PCIM_HDRTYPE_BRIDGE:
664		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
665		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
666		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
667		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
668		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
669		cfg->nummaps	    = PCI_MAXMAPS_1;
670		break;
671	case PCIM_HDRTYPE_CARDBUS:
672		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
673		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
674		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
675		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
676		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
677		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
678		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
679		cfg->nummaps	    = PCI_MAXMAPS_2;
680		break;
681	}
682#undef REG
683}
684
685/* read configuration header into pcicfgregs structure */
686struct pci_devinfo *
687pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
688{
689#define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
690	uint16_t vid, did;
691
692	vid = REG(PCIR_VENDOR, 2);
693	if (vid == PCIV_INVALID)
694		return (NULL);
695
696	did = REG(PCIR_DEVICE, 2);
697
698	return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
699}
700
701struct pci_devinfo *
702pci_alloc_devinfo_method(device_t dev)
703{
704
705	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
706	    M_WAITOK | M_ZERO));
707}
708
709static struct pci_devinfo *
710pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
711    uint16_t vid, uint16_t did)
712{
713	struct pci_devinfo *devlist_entry;
714	pcicfgregs *cfg;
715
716	devlist_entry = PCI_ALLOC_DEVINFO(bus);
717
718	cfg = &devlist_entry->cfg;
719
720	cfg->domain		= d;
721	cfg->bus		= b;
722	cfg->slot		= s;
723	cfg->func		= f;
724	cfg->vendor		= vid;
725	cfg->device		= did;
726	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
727	cfg->statreg		= REG(PCIR_STATUS, 2);
728	cfg->baseclass		= REG(PCIR_CLASS, 1);
729	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
730	cfg->progif		= REG(PCIR_PROGIF, 1);
731	cfg->revid		= REG(PCIR_REVID, 1);
732	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
733	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
734	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
735	cfg->intpin		= REG(PCIR_INTPIN, 1);
736	cfg->intline		= REG(PCIR_INTLINE, 1);
737
738	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
739	cfg->hdrtype		&= ~PCIM_MFDEV;
740	STAILQ_INIT(&cfg->maps);
741
742	cfg->iov		= NULL;
743
744	pci_fixancient(cfg);
745	pci_hdrtypedata(pcib, b, s, f, cfg);
746
747	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
748		pci_read_cap(pcib, cfg);
749
750	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
751
752	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
753	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
754	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
755	devlist_entry->conf.pc_sel.pc_func = cfg->func;
756	devlist_entry->conf.pc_hdr = cfg->hdrtype;
757
758	devlist_entry->conf.pc_subvendor = cfg->subvendor;
759	devlist_entry->conf.pc_subdevice = cfg->subdevice;
760	devlist_entry->conf.pc_vendor = cfg->vendor;
761	devlist_entry->conf.pc_device = cfg->device;
762
763	devlist_entry->conf.pc_class = cfg->baseclass;
764	devlist_entry->conf.pc_subclass = cfg->subclass;
765	devlist_entry->conf.pc_progif = cfg->progif;
766	devlist_entry->conf.pc_revid = cfg->revid;
767
768	pci_numdevs++;
769	pci_generation++;
770
771	return (devlist_entry);
772}
773#undef REG
774
775static void
776pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
777{
778#define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
779    cfg->ea.ea_location + (n), w)
780	int num_ent;
781	int ptr;
782	int a, b;
783	uint32_t val;
784	int ent_size;
785	uint32_t dw[4];
786	uint64_t base, max_offset;
787	struct pci_ea_entry *eae;
788
789	if (cfg->ea.ea_location == 0)
790		return;
791
792	STAILQ_INIT(&cfg->ea.ea_entries);
793
794	/* Determine the number of entries */
795	num_ent = REG(PCIR_EA_NUM_ENT, 2);
796	num_ent &= PCIM_EA_NUM_ENT_MASK;
797
798	/* Find the first entry to care of */
799	ptr = PCIR_EA_FIRST_ENT;
800
801	/* Skip DWORD 2 for type 1 functions */
802	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
803		ptr += 4;
804
805	for (a = 0; a < num_ent; a++) {
806		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
807		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
808
809		/* Read a number of dwords in the entry */
810		val = REG(ptr, 4);
811		ptr += 4;
812		ent_size = (val & PCIM_EA_ES);
813
814		for (b = 0; b < ent_size; b++) {
815			dw[b] = REG(ptr, 4);
816			ptr += 4;
817		}
818
819		eae->eae_flags = val;
820		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
821
822		base = dw[0] & PCIM_EA_FIELD_MASK;
823		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
824		b = 2;
825		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
826			base |= (uint64_t)dw[b] << 32UL;
827			b++;
828		}
829		if (((dw[1] & PCIM_EA_IS_64) != 0)
830		    && (b < ent_size)) {
831			max_offset |= (uint64_t)dw[b] << 32UL;
832			b++;
833		}
834
835		eae->eae_base = base;
836		eae->eae_max_offset = max_offset;
837
838		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
839
840		if (bootverbose) {
841			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
842			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
843			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
844		}
845	}
846}
847#undef REG
848
849static void
850pci_read_cap(device_t pcib, pcicfgregs *cfg)
851{
852#define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
853#define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
854#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
855	uint64_t addr;
856#endif
857	uint32_t val;
858	int	ptr, nextptr, ptrptr;
859
860	switch (cfg->hdrtype & PCIM_HDRTYPE) {
861	case PCIM_HDRTYPE_NORMAL:
862	case PCIM_HDRTYPE_BRIDGE:
863		ptrptr = PCIR_CAP_PTR;
864		break;
865	case PCIM_HDRTYPE_CARDBUS:
866		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
867		break;
868	default:
869		return;		/* no extended capabilities support */
870	}
871	nextptr = REG(ptrptr, 1);	/* sanity check? */
872
873	/*
874	 * Read capability entries.
875	 */
876	while (nextptr != 0) {
877		/* Sanity check */
878		if (nextptr > 255) {
879			printf("illegal PCI extended capability offset %d\n",
880			    nextptr);
881			return;
882		}
883		/* Find the next entry */
884		ptr = nextptr;
885		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
886
887		/* Process this entry */
888		switch (REG(ptr + PCICAP_ID, 1)) {
889		case PCIY_PMG:		/* PCI power management */
890			if (cfg->pp.pp_cap == 0) {
891				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
892				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
893				cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
894				if ((nextptr - ptr) > PCIR_POWER_DATA)
895					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
896			}
897			break;
898		case PCIY_HT:		/* HyperTransport */
899			/* Determine HT-specific capability type. */
900			val = REG(ptr + PCIR_HT_COMMAND, 2);
901
902			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
903				cfg->ht.ht_slave = ptr;
904
905#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
906			switch (val & PCIM_HTCMD_CAP_MASK) {
907			case PCIM_HTCAP_MSI_MAPPING:
908				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
909					/* Sanity check the mapping window. */
910					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
911					    4);
912					addr <<= 32;
913					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
914					    4);
915					if (addr != MSI_INTEL_ADDR_BASE)
916						device_printf(pcib,
917	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
918						    cfg->domain, cfg->bus,
919						    cfg->slot, cfg->func,
920						    (long long)addr);
921				} else
922					addr = MSI_INTEL_ADDR_BASE;
923
924				cfg->ht.ht_msimap = ptr;
925				cfg->ht.ht_msictrl = val;
926				cfg->ht.ht_msiaddr = addr;
927				break;
928			}
929#endif
930			break;
931		case PCIY_MSI:		/* PCI MSI */
932			cfg->msi.msi_location = ptr;
933			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
934			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
935						     PCIM_MSICTRL_MMC_MASK)>>1);
936			break;
937		case PCIY_MSIX:		/* PCI MSI-X */
938			cfg->msix.msix_location = ptr;
939			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
940			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
941			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
942			val = REG(ptr + PCIR_MSIX_TABLE, 4);
943			cfg->msix.msix_table_bar = PCIR_BAR(val &
944			    PCIM_MSIX_BIR_MASK);
945			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
946			val = REG(ptr + PCIR_MSIX_PBA, 4);
947			cfg->msix.msix_pba_bar = PCIR_BAR(val &
948			    PCIM_MSIX_BIR_MASK);
949			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
950			break;
951		case PCIY_VPD:		/* PCI Vital Product Data */
952			cfg->vpd.vpd_reg = ptr;
953			break;
954		case PCIY_SUBVENDOR:
955			/* Should always be true. */
956			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
957			    PCIM_HDRTYPE_BRIDGE) {
958				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
959				cfg->subvendor = val & 0xffff;
960				cfg->subdevice = val >> 16;
961			}
962			break;
963		case PCIY_PCIX:		/* PCI-X */
964			/*
965			 * Assume we have a PCI-X chipset if we have
966			 * at least one PCI-PCI bridge with a PCI-X
967			 * capability.  Note that some systems with
968			 * PCI-express or HT chipsets might match on
969			 * this check as well.
970			 */
971			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
972			    PCIM_HDRTYPE_BRIDGE)
973				pcix_chipset = 1;
974			cfg->pcix.pcix_location = ptr;
975			break;
976		case PCIY_EXPRESS:	/* PCI-express */
977			/*
978			 * Assume we have a PCI-express chipset if we have
979			 * at least one PCI-express device.
980			 */
981			pcie_chipset = 1;
982			cfg->pcie.pcie_location = ptr;
983			val = REG(ptr + PCIER_FLAGS, 2);
984			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
985			break;
986		case PCIY_EA:		/* Enhanced Allocation */
987			cfg->ea.ea_location = ptr;
988			pci_ea_fill_info(pcib, cfg);
989			break;
990		default:
991			break;
992		}
993	}
994
995#if defined(__powerpc__)
996	/*
997	 * Enable the MSI mapping window for all HyperTransport
998	 * slaves.  PCI-PCI bridges have their windows enabled via
999	 * PCIB_MAP_MSI().
1000	 */
1001	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
1002	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
1003		device_printf(pcib,
1004	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
1005		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
1006		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1007		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
1008		     2);
1009	}
1010#endif
1011/* REG and WREG use carry through to next functions */
1012}
1013
1014/*
1015 * PCI Vital Product Data
1016 */
1017
1018#define	PCI_VPD_TIMEOUT		1000000
1019
1020static int
1021pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1022{
1023	int count = PCI_VPD_TIMEOUT;
1024
1025	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1026
1027	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1028
1029	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1030		if (--count < 0)
1031			return (ENXIO);
1032		DELAY(1);	/* limit looping */
1033	}
1034	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1035
1036	return (0);
1037}
1038
1039#if 0
1040static int
1041pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1042{
1043	int count = PCI_VPD_TIMEOUT;
1044
1045	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1046
1047	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1048	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1049	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1050		if (--count < 0)
1051			return (ENXIO);
1052		DELAY(1);	/* limit looping */
1053	}
1054
1055	return (0);
1056}
1057#endif
1058
1059#undef PCI_VPD_TIMEOUT
1060
1061struct vpd_readstate {
1062	device_t	pcib;
1063	pcicfgregs	*cfg;
1064	uint32_t	val;
1065	int		bytesinval;
1066	int		off;
1067	uint8_t		cksum;
1068};
1069
1070/* return 0 and one byte in *data if no read error, -1 else */
1071static int
1072vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1073{
1074	uint32_t reg;
1075	uint8_t byte;
1076
1077	if (vrs->bytesinval == 0) {
1078		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1079			return (-1);
1080		vrs->val = le32toh(reg);
1081		vrs->off += 4;
1082		byte = vrs->val & 0xff;
1083		vrs->bytesinval = 3;
1084	} else {
1085		vrs->val = vrs->val >> 8;
1086		byte = vrs->val & 0xff;
1087		vrs->bytesinval--;
1088	}
1089
1090	vrs->cksum += byte;
1091	*data = byte;
1092	return (0);
1093}
1094
1095/* return 0 on match, -1 and "unget" byte on no match */
1096static int
1097vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected)
1098{
1099	uint8_t data;
1100
1101	if (vpd_nextbyte(vrs, &data) != 0)
1102		return (-1);
1103
1104	if (data == expected)
1105		return (0);
1106
1107	vrs->cksum -= data;
1108	vrs->val = (vrs->val << 8) + data;
1109	vrs->bytesinval++;
1110	return (-1);
1111}
1112
1113/* return size if tag matches, -1 on no match, -2 on read error */
1114static int
1115vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag)
1116{
1117	uint8_t byte1, byte2;
1118
1119	if (vpd_expectbyte(vrs, vpd_tag) != 0)
1120		return (-1);
1121
1122	if ((vpd_tag & 0x80) == 0)
1123		return (vpd_tag & 0x07);
1124
1125	if (vpd_nextbyte(vrs, &byte1) != 0)
1126		return (-2);
1127	if (vpd_nextbyte(vrs, &byte2) != 0)
1128		return (-2);
1129
1130	return ((byte2 << 8) + byte1);
1131}
1132
1133/* (re)allocate buffer in multiples of 8 elements */
1134static void*
1135alloc_buffer(void* buffer, size_t element_size, int needed)
1136{
1137	int alloc, new_alloc;
1138
1139	alloc = roundup2(needed, 8);
1140	new_alloc = roundup2(needed + 1, 8);
1141	if (alloc != new_alloc) {
1142		buffer = reallocf(buffer,
1143		    new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO);
1144	}
1145
1146	return (buffer);
1147}
1148
1149/* read VPD keyword and return element size, return -1 on read error */
1150static int
1151vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2])
1152{
1153	uint8_t data;
1154
1155	if (vpd_nextbyte(vrs, &keyword[0]) != 0)
1156		return (-1);
1157	if (vpd_nextbyte(vrs, &keyword[1]) != 0)
1158		return (-1);
1159	if (vpd_nextbyte(vrs, &data) != 0)
1160		return (-1);
1161
1162	return (data);
1163}
1164
1165/* read VPD data element of given size into allocated buffer */
1166static char *
1167vpd_read_value(struct vpd_readstate *vrs, int size)
1168{
1169	int i;
1170	char char1;
1171	char *value;
1172
1173	value = malloc(size + 1, M_DEVBUF, M_WAITOK);
1174	for (i = 0; i < size; i++) {
1175		if (vpd_nextbyte(vrs, &char1) != 0) {
1176			free(value, M_DEVBUF);
1177			return (NULL);
1178		}
1179		value[i] = char1;
1180	}
1181	value[size] = '\0';
1182
1183	return (value);
1184}
1185
1186/* read VPD into *keyword and *value, return length of data element */
1187static int
1188vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen)
1189{
1190	int len;
1191
1192	len = vpd_read_elem_head(vrs, keyword);
1193	if (len > maxlen)
1194		return (-1);
1195	*value = vpd_read_value(vrs, len);
1196
1197	return (len);
1198}
1199
1200/* subtract all data following first byte from checksum of RV element */
1201static void
1202vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len)
1203{
1204	int i;
1205	uint8_t fixup;
1206
1207	fixup = 0;
1208	for (i = 1; i < len; i++)
1209		fixup += rvstring[i];
1210	vrs->cksum -= fixup;
1211}
1212
1213/* fetch one read-only element and return size of heading + data */
1214static size_t
1215next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize)
1216{
1217	struct pcicfg_vpd *vpd;
1218	pcicfgregs *cfg;
1219	struct vpd_readonly *vpd_ros;
1220	int len;
1221
1222	cfg = vrs->cfg;
1223	vpd = &cfg->vpd;
1224
1225	if (maxsize < 3)
1226		return (-1);
1227	vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt);
1228	vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt];
1229	maxsize -= 3;
1230	len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize);
1231	if (vpd_ros->value == NULL)
1232		return (-1);
1233	vpd_ros->len = len;
1234	if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') {
1235		vpd_fixup_cksum(vrs, vpd_ros->value, len);
1236		if (vrs->cksum != 0) {
1237			pci_printf(cfg,
1238			    "invalid VPD checksum %#hhx\n", vrs->cksum);
1239			return (-1);
1240		}
1241	}
1242	vpd->vpd_rocnt++;
1243
1244	return (len + 3);
1245}
1246
1247/* fetch one writable element and return size of heading + data */
1248static size_t
1249next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize)
1250{
1251	struct pcicfg_vpd *vpd;
1252	pcicfgregs *cfg;
1253	struct vpd_write *vpd_w;
1254	int len;
1255
1256	cfg = vrs->cfg;
1257	vpd = &cfg->vpd;
1258
1259	if (maxsize < 3)
1260		return (-1);
1261	vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt);
1262	if (vpd->vpd_w == NULL) {
1263		pci_printf(cfg, "out of memory");
1264		return (-1);
1265	}
1266	vpd_w = &vpd->vpd_w[vpd->vpd_wcnt];
1267	maxsize -= 3;
1268	vpd_w->start = vrs->off + 3 - vrs->bytesinval;
1269	len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize);
1270	if (vpd_w->value == NULL)
1271		return (-1);
1272	vpd_w->len = len;
1273	vpd->vpd_wcnt++;
1274
1275	return (len + 3);
1276}
1277
1278/* free all memory allocated for VPD data */
1279static void
1280vpd_free(struct pcicfg_vpd *vpd)
1281{
1282	int i;
1283
1284	free(vpd->vpd_ident, M_DEVBUF);
1285	for (i = 0; i < vpd->vpd_rocnt; i++)
1286		free(vpd->vpd_ros[i].value, M_DEVBUF);
1287	free(vpd->vpd_ros, M_DEVBUF);
1288	vpd->vpd_rocnt = 0;
1289	for (i = 0; i < vpd->vpd_wcnt; i++)
1290		free(vpd->vpd_w[i].value, M_DEVBUF);
1291	free(vpd->vpd_w, M_DEVBUF);
1292	vpd->vpd_wcnt = 0;
1293}
1294
1295#define VPD_TAG_END	((0x0f << 3) | 0)	/* small tag, len == 0 */
1296#define VPD_TAG_IDENT	(0x02 | 0x80)		/* large tag */
1297#define VPD_TAG_RO	(0x10 | 0x80)		/* large tag */
1298#define VPD_TAG_RW	(0x11 | 0x80)		/* large tag */
1299
1300static int
1301pci_parse_vpd(device_t pcib, pcicfgregs *cfg)
1302{
1303	struct vpd_readstate vrs;
1304	int cksumvalid;
1305	int size, elem_size;
1306
1307	/* init vpd reader */
1308	vrs.bytesinval = 0;
1309	vrs.off = 0;
1310	vrs.pcib = pcib;
1311	vrs.cfg = cfg;
1312	vrs.cksum = 0;
1313
1314	/* read VPD ident element - mandatory */
1315	size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT);
1316	if (size <= 0) {
1317		pci_printf(cfg, "no VPD ident found\n");
1318		return (0);
1319	}
1320	cfg->vpd.vpd_ident = vpd_read_value(&vrs, size);
1321	if (cfg->vpd.vpd_ident == NULL) {
1322		pci_printf(cfg, "error accessing VPD ident data\n");
1323		return (0);
1324	}
1325
1326	/* read VPD RO elements - mandatory */
1327	size = vpd_read_tag_size(&vrs, VPD_TAG_RO);
1328	if (size <= 0) {
1329		pci_printf(cfg, "no read-only VPD data found\n");
1330		return (0);
1331	}
1332	while (size > 0) {
1333		elem_size = next_vpd_ro_elem(&vrs, size);
1334		if (elem_size < 0) {
1335			pci_printf(cfg, "error accessing read-only VPD data\n");
1336			return (-1);
1337		}
1338		size -= elem_size;
1339	}
1340	cksumvalid = (vrs.cksum == 0);
1341	if (!cksumvalid)
1342		return (-1);
1343
1344	/* read VPD RW elements - optional */
1345	size = vpd_read_tag_size(&vrs, VPD_TAG_RW);
1346	if (size == -2)
1347		return (-1);
1348	while (size > 0) {
1349		elem_size = next_vpd_rw_elem(&vrs, size);
1350		if (elem_size < 0) {
1351			pci_printf(cfg, "error accessing writeable VPD data\n");
1352			return (-1);
1353		}
1354		size -= elem_size;
1355	}
1356
1357	/* read empty END tag - mandatory */
1358	size = vpd_read_tag_size(&vrs, VPD_TAG_END);
1359	if (size != 0) {
1360		pci_printf(cfg, "No valid VPD end tag found\n");
1361	}
1362	return (0);
1363}
1364
1365static void
1366pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1367{
1368	int status;
1369
1370	status = pci_parse_vpd(pcib, cfg);
1371	if (status < 0)
1372		vpd_free(&cfg->vpd);
1373	cfg->vpd.vpd_cached = 1;
1374#undef REG
1375#undef WREG
1376}
1377
1378int
1379pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1380{
1381	struct pci_devinfo *dinfo = device_get_ivars(child);
1382	pcicfgregs *cfg = &dinfo->cfg;
1383
1384	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1385		pci_read_vpd(device_get_parent(dev), cfg);
1386
1387	*identptr = cfg->vpd.vpd_ident;
1388
1389	if (*identptr == NULL)
1390		return (ENXIO);
1391
1392	return (0);
1393}
1394
1395int
1396pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1397	const char **vptr)
1398{
1399	struct pci_devinfo *dinfo = device_get_ivars(child);
1400	pcicfgregs *cfg = &dinfo->cfg;
1401	int i;
1402
1403	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1404		pci_read_vpd(device_get_parent(dev), cfg);
1405
1406	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1407		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1408		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1409			*vptr = cfg->vpd.vpd_ros[i].value;
1410			return (0);
1411		}
1412
1413	*vptr = NULL;
1414	return (ENXIO);
1415}
1416
1417struct pcicfg_vpd *
1418pci_fetch_vpd_list(device_t dev)
1419{
1420	struct pci_devinfo *dinfo = device_get_ivars(dev);
1421	pcicfgregs *cfg = &dinfo->cfg;
1422
1423	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1424		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1425	return (&cfg->vpd);
1426}
1427
1428/*
1429 * Find the requested HyperTransport capability and return the offset
1430 * in configuration space via the pointer provided.  The function
1431 * returns 0 on success and an error code otherwise.
1432 */
1433int
1434pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1435{
1436	int ptr, error;
1437	uint16_t val;
1438
1439	error = pci_find_cap(child, PCIY_HT, &ptr);
1440	if (error)
1441		return (error);
1442
1443	/*
1444	 * Traverse the capabilities list checking each HT capability
1445	 * to see if it matches the requested HT capability.
1446	 */
1447	for (;;) {
1448		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1449		if (capability == PCIM_HTCAP_SLAVE ||
1450		    capability == PCIM_HTCAP_HOST)
1451			val &= 0xe000;
1452		else
1453			val &= PCIM_HTCMD_CAP_MASK;
1454		if (val == capability) {
1455			if (capreg != NULL)
1456				*capreg = ptr;
1457			return (0);
1458		}
1459
1460		/* Skip to the next HT capability. */
1461		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1462			break;
1463	}
1464
1465	return (ENOENT);
1466}
1467
1468/*
1469 * Find the next requested HyperTransport capability after start and return
1470 * the offset in configuration space via the pointer provided.  The function
1471 * returns 0 on success and an error code otherwise.
1472 */
1473int
1474pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1475    int start, int *capreg)
1476{
1477	int ptr;
1478	uint16_t val;
1479
1480	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1481	    ("start capability is not HyperTransport capability"));
1482	ptr = start;
1483
1484	/*
1485	 * Traverse the capabilities list checking each HT capability
1486	 * to see if it matches the requested HT capability.
1487	 */
1488	for (;;) {
1489		/* Skip to the next HT capability. */
1490		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1491			break;
1492
1493		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1494		if (capability == PCIM_HTCAP_SLAVE ||
1495		    capability == PCIM_HTCAP_HOST)
1496			val &= 0xe000;
1497		else
1498			val &= PCIM_HTCMD_CAP_MASK;
1499		if (val == capability) {
1500			if (capreg != NULL)
1501				*capreg = ptr;
1502			return (0);
1503		}
1504	}
1505
1506	return (ENOENT);
1507}
1508
1509/*
1510 * Find the requested capability and return the offset in
1511 * configuration space via the pointer provided.  The function returns
1512 * 0 on success and an error code otherwise.
1513 */
1514int
1515pci_find_cap_method(device_t dev, device_t child, int capability,
1516    int *capreg)
1517{
1518	struct pci_devinfo *dinfo = device_get_ivars(child);
1519	pcicfgregs *cfg = &dinfo->cfg;
1520	uint32_t status;
1521	uint8_t ptr;
1522
1523	/*
1524	 * Check the CAP_LIST bit of the PCI status register first.
1525	 */
1526	status = pci_read_config(child, PCIR_STATUS, 2);
1527	if (!(status & PCIM_STATUS_CAPPRESENT))
1528		return (ENXIO);
1529
1530	/*
1531	 * Determine the start pointer of the capabilities list.
1532	 */
1533	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1534	case PCIM_HDRTYPE_NORMAL:
1535	case PCIM_HDRTYPE_BRIDGE:
1536		ptr = PCIR_CAP_PTR;
1537		break;
1538	case PCIM_HDRTYPE_CARDBUS:
1539		ptr = PCIR_CAP_PTR_2;
1540		break;
1541	default:
1542		/* XXX: panic? */
1543		return (ENXIO);		/* no extended capabilities support */
1544	}
1545	ptr = pci_read_config(child, ptr, 1);
1546
1547	/*
1548	 * Traverse the capabilities list.
1549	 */
1550	while (ptr != 0) {
1551		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1552			if (capreg != NULL)
1553				*capreg = ptr;
1554			return (0);
1555		}
1556		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1557	}
1558
1559	return (ENOENT);
1560}
1561
1562/*
1563 * Find the next requested capability after start and return the offset in
1564 * configuration space via the pointer provided.  The function returns
1565 * 0 on success and an error code otherwise.
1566 */
1567int
1568pci_find_next_cap_method(device_t dev, device_t child, int capability,
1569    int start, int *capreg)
1570{
1571	uint8_t ptr;
1572
1573	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1574	    ("start capability is not expected capability"));
1575
1576	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1577	while (ptr != 0) {
1578		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1579			if (capreg != NULL)
1580				*capreg = ptr;
1581			return (0);
1582		}
1583		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1584	}
1585
1586	return (ENOENT);
1587}
1588
1589/*
1590 * Find the requested extended capability and return the offset in
1591 * configuration space via the pointer provided.  The function returns
1592 * 0 on success and an error code otherwise.
1593 */
1594int
1595pci_find_extcap_method(device_t dev, device_t child, int capability,
1596    int *capreg)
1597{
1598	struct pci_devinfo *dinfo = device_get_ivars(child);
1599	pcicfgregs *cfg = &dinfo->cfg;
1600	uint32_t ecap;
1601	uint16_t ptr;
1602
1603	/* Only supported for PCI-express devices. */
1604	if (cfg->pcie.pcie_location == 0)
1605		return (ENXIO);
1606
1607	ptr = PCIR_EXTCAP;
1608	ecap = pci_read_config(child, ptr, 4);
1609	if (ecap == 0xffffffff || ecap == 0)
1610		return (ENOENT);
1611	for (;;) {
1612		if (PCI_EXTCAP_ID(ecap) == capability) {
1613			if (capreg != NULL)
1614				*capreg = ptr;
1615			return (0);
1616		}
1617		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1618		if (ptr == 0)
1619			break;
1620		ecap = pci_read_config(child, ptr, 4);
1621	}
1622
1623	return (ENOENT);
1624}
1625
1626/*
1627 * Find the next requested extended capability after start and return the
1628 * offset in configuration space via the pointer provided.  The function
1629 * returns 0 on success and an error code otherwise.
1630 */
1631int
1632pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1633    int start, int *capreg)
1634{
1635	struct pci_devinfo *dinfo = device_get_ivars(child);
1636	pcicfgregs *cfg = &dinfo->cfg;
1637	uint32_t ecap;
1638	uint16_t ptr;
1639
1640	/* Only supported for PCI-express devices. */
1641	if (cfg->pcie.pcie_location == 0)
1642		return (ENXIO);
1643
1644	ecap = pci_read_config(child, start, 4);
1645	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1646	    ("start extended capability is not expected capability"));
1647	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1648	while (ptr != 0) {
1649		ecap = pci_read_config(child, ptr, 4);
1650		if (PCI_EXTCAP_ID(ecap) == capability) {
1651			if (capreg != NULL)
1652				*capreg = ptr;
1653			return (0);
1654		}
1655		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1656	}
1657
1658	return (ENOENT);
1659}
1660
1661/*
1662 * Support for MSI-X message interrupts.
1663 */
1664static void
1665pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1666{
1667	struct pci_devinfo *dinfo = device_get_ivars(dev);
1668	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1669	uint32_t offset;
1670
1671	KASSERT(msix->msix_table_len > index, ("bogus index"));
1672	offset = msix->msix_table_offset + index * 16;
1673	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1674	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1675	bus_write_4(msix->msix_table_res, offset + 8, data);
1676}
1677
1678void
1679pci_enable_msix_method(device_t dev, device_t child, u_int index,
1680    uint64_t address, uint32_t data)
1681{
1682
1683	if (pci_msix_rewrite_table) {
1684		struct pci_devinfo *dinfo = device_get_ivars(child);
1685		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1686
1687		/*
1688		 * Some VM hosts require MSIX to be disabled in the
1689		 * control register before updating the MSIX table
1690		 * entries are allowed. It is not enough to only
1691		 * disable MSIX while updating a single entry. MSIX
1692		 * must be disabled while updating all entries in the
1693		 * table.
1694		 */
1695		pci_write_config(child,
1696		    msix->msix_location + PCIR_MSIX_CTRL,
1697		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1698		pci_resume_msix(child);
1699	} else
1700		pci_write_msix_entry(child, index, address, data);
1701
1702	/* Enable MSI -> HT mapping. */
1703	pci_ht_map_msi(child, address);
1704}
1705
1706void
1707pci_mask_msix(device_t dev, u_int index)
1708{
1709	struct pci_devinfo *dinfo = device_get_ivars(dev);
1710	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1711	uint32_t offset, val;
1712
1713	KASSERT(msix->msix_msgnum > index, ("bogus index"));
1714	offset = msix->msix_table_offset + index * 16 + 12;
1715	val = bus_read_4(msix->msix_table_res, offset);
1716	val |= PCIM_MSIX_VCTRL_MASK;
1717
1718	/*
1719	 * Some devices (e.g. Samsung PM961) do not support reads of this
1720	 * register, so always write the new value.
1721	 */
1722	bus_write_4(msix->msix_table_res, offset, val);
1723}
1724
1725void
1726pci_unmask_msix(device_t dev, u_int index)
1727{
1728	struct pci_devinfo *dinfo = device_get_ivars(dev);
1729	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1730	uint32_t offset, val;
1731
1732	KASSERT(msix->msix_table_len > index, ("bogus index"));
1733	offset = msix->msix_table_offset + index * 16 + 12;
1734	val = bus_read_4(msix->msix_table_res, offset);
1735	val &= ~PCIM_MSIX_VCTRL_MASK;
1736
1737	/*
1738	 * Some devices (e.g. Samsung PM961) do not support reads of this
1739	 * register, so always write the new value.
1740	 */
1741	bus_write_4(msix->msix_table_res, offset, val);
1742}
1743
1744int
1745pci_pending_msix(device_t dev, u_int index)
1746{
1747	struct pci_devinfo *dinfo = device_get_ivars(dev);
1748	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1749	uint32_t offset, bit;
1750
1751	KASSERT(msix->msix_table_len > index, ("bogus index"));
1752	offset = msix->msix_pba_offset + (index / 32) * 4;
1753	bit = 1 << index % 32;
1754	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1755}
1756
1757/*
1758 * Restore MSI-X registers and table during resume.  If MSI-X is
1759 * enabled then walk the virtual table to restore the actual MSI-X
1760 * table.
1761 */
1762static void
1763pci_resume_msix(device_t dev)
1764{
1765	struct pci_devinfo *dinfo = device_get_ivars(dev);
1766	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1767	struct msix_table_entry *mte;
1768	struct msix_vector *mv;
1769	int i;
1770
1771	if (msix->msix_alloc > 0) {
1772		/* First, mask all vectors. */
1773		for (i = 0; i < msix->msix_msgnum; i++)
1774			pci_mask_msix(dev, i);
1775
1776		/* Second, program any messages with at least one handler. */
1777		for (i = 0; i < msix->msix_table_len; i++) {
1778			mte = &msix->msix_table[i];
1779			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1780				continue;
1781			mv = &msix->msix_vectors[mte->mte_vector - 1];
1782			pci_write_msix_entry(dev, i, mv->mv_address,
1783			    mv->mv_data);
1784			pci_unmask_msix(dev, i);
1785		}
1786	}
1787	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1788	    msix->msix_ctrl, 2);
1789}
1790
1791/*
1792 * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1793 * returned in *count.  After this function returns, each message will be
1794 * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1795 */
1796int
1797pci_alloc_msix_method(device_t dev, device_t child, int *count)
1798{
1799	struct pci_devinfo *dinfo = device_get_ivars(child);
1800	pcicfgregs *cfg = &dinfo->cfg;
1801	struct resource_list_entry *rle;
1802	int actual, error, i, irq, max;
1803
1804	/* Don't let count == 0 get us into trouble. */
1805	if (*count == 0)
1806		return (EINVAL);
1807
1808	/* If rid 0 is allocated, then fail. */
1809	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1810	if (rle != NULL && rle->res != NULL)
1811		return (ENXIO);
1812
1813	/* Already have allocated messages? */
1814	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1815		return (ENXIO);
1816
1817	/* If MSI-X is blacklisted for this system, fail. */
1818	if (pci_msix_blacklisted())
1819		return (ENXIO);
1820
1821	/* MSI-X capability present? */
1822	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1823		return (ENODEV);
1824
1825	/* Make sure the appropriate BARs are mapped. */
1826	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1827	    cfg->msix.msix_table_bar);
1828	if (rle == NULL || rle->res == NULL ||
1829	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1830		return (ENXIO);
1831	cfg->msix.msix_table_res = rle->res;
1832	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1833		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1834		    cfg->msix.msix_pba_bar);
1835		if (rle == NULL || rle->res == NULL ||
1836		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1837			return (ENXIO);
1838	}
1839	cfg->msix.msix_pba_res = rle->res;
1840
1841	if (bootverbose)
1842		device_printf(child,
1843		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1844		    *count, cfg->msix.msix_msgnum);
1845	max = min(*count, cfg->msix.msix_msgnum);
1846	for (i = 0; i < max; i++) {
1847		/* Allocate a message. */
1848		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1849		if (error) {
1850			if (i == 0)
1851				return (error);
1852			break;
1853		}
1854		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1855		    irq, 1);
1856	}
1857	actual = i;
1858
1859	if (bootverbose) {
1860		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1861		if (actual == 1)
1862			device_printf(child, "using IRQ %ju for MSI-X\n",
1863			    rle->start);
1864		else {
1865			int run;
1866
1867			/*
1868			 * Be fancy and try to print contiguous runs of
1869			 * IRQ values as ranges.  'irq' is the previous IRQ.
1870			 * 'run' is true if we are in a range.
1871			 */
1872			device_printf(child, "using IRQs %ju", rle->start);
1873			irq = rle->start;
1874			run = 0;
1875			for (i = 1; i < actual; i++) {
1876				rle = resource_list_find(&dinfo->resources,
1877				    SYS_RES_IRQ, i + 1);
1878
1879				/* Still in a run? */
1880				if (rle->start == irq + 1) {
1881					run = 1;
1882					irq++;
1883					continue;
1884				}
1885
1886				/* Finish previous range. */
1887				if (run) {
1888					printf("-%d", irq);
1889					run = 0;
1890				}
1891
1892				/* Start new range. */
1893				printf(",%ju", rle->start);
1894				irq = rle->start;
1895			}
1896
1897			/* Unfinished range? */
1898			if (run)
1899				printf("-%d", irq);
1900			printf(" for MSI-X\n");
1901		}
1902	}
1903
1904	/* Mask all vectors. */
1905	for (i = 0; i < cfg->msix.msix_msgnum; i++)
1906		pci_mask_msix(child, i);
1907
1908	/* Allocate and initialize vector data and virtual table. */
1909	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1910	    M_DEVBUF, M_WAITOK | M_ZERO);
1911	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1912	    M_DEVBUF, M_WAITOK | M_ZERO);
1913	for (i = 0; i < actual; i++) {
1914		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1915		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1916		cfg->msix.msix_table[i].mte_vector = i + 1;
1917	}
1918
1919	/* Update control register to enable MSI-X. */
1920	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1921	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1922	    cfg->msix.msix_ctrl, 2);
1923
1924	/* Update counts of alloc'd messages. */
1925	cfg->msix.msix_alloc = actual;
1926	cfg->msix.msix_table_len = actual;
1927	*count = actual;
1928	return (0);
1929}
1930
1931/*
1932 * By default, pci_alloc_msix() will assign the allocated IRQ
1933 * resources consecutively to the first N messages in the MSI-X table.
1934 * However, device drivers may want to use different layouts if they
1935 * either receive fewer messages than they asked for, or they wish to
1936 * populate the MSI-X table sparsely.  This method allows the driver
1937 * to specify what layout it wants.  It must be called after a
1938 * successful pci_alloc_msix() but before any of the associated
1939 * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1940 *
1941 * The 'vectors' array contains 'count' message vectors.  The array
1942 * maps directly to the MSI-X table in that index 0 in the array
1943 * specifies the vector for the first message in the MSI-X table, etc.
1944 * The vector value in each array index can either be 0 to indicate
1945 * that no vector should be assigned to a message slot, or it can be a
1946 * number from 1 to N (where N is the count returned from a
1947 * succcessful call to pci_alloc_msix()) to indicate which message
1948 * vector (IRQ) to be used for the corresponding message.
1949 *
1950 * On successful return, each message with a non-zero vector will have
1951 * an associated SYS_RES_IRQ whose rid is equal to the array index +
1952 * 1.  Additionally, if any of the IRQs allocated via the previous
1953 * call to pci_alloc_msix() are not used in the mapping, those IRQs
1954 * will be freed back to the system automatically.
1955 *
1956 * For example, suppose a driver has a MSI-X table with 6 messages and
1957 * asks for 6 messages, but pci_alloc_msix() only returns a count of
1958 * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1959 * C.  After the call to pci_alloc_msix(), the device will be setup to
1960 * have an MSI-X table of ABC--- (where - means no vector assigned).
1961 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1962 * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1963 * be freed back to the system.  This device will also have valid
1964 * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1965 *
1966 * In any case, the SYS_RES_IRQ rid X will always map to the message
1967 * at MSI-X table index X - 1 and will only be valid if a vector is
1968 * assigned to that table entry.
1969 */
1970int
1971pci_remap_msix_method(device_t dev, device_t child, int count,
1972    const u_int *vectors)
1973{
1974	struct pci_devinfo *dinfo = device_get_ivars(child);
1975	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1976	struct resource_list_entry *rle;
1977	int i, irq, j, *used;
1978
1979	/*
1980	 * Have to have at least one message in the table but the
1981	 * table can't be bigger than the actual MSI-X table in the
1982	 * device.
1983	 */
1984	if (count == 0 || count > msix->msix_msgnum)
1985		return (EINVAL);
1986
1987	/* Sanity check the vectors. */
1988	for (i = 0; i < count; i++)
1989		if (vectors[i] > msix->msix_alloc)
1990			return (EINVAL);
1991
1992	/*
1993	 * Make sure there aren't any holes in the vectors to be used.
1994	 * It's a big pain to support it, and it doesn't really make
1995	 * sense anyway.  Also, at least one vector must be used.
1996	 */
1997	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
1998	    M_ZERO);
1999	for (i = 0; i < count; i++)
2000		if (vectors[i] != 0)
2001			used[vectors[i] - 1] = 1;
2002	for (i = 0; i < msix->msix_alloc - 1; i++)
2003		if (used[i] == 0 && used[i + 1] == 1) {
2004			free(used, M_DEVBUF);
2005			return (EINVAL);
2006		}
2007	if (used[0] != 1) {
2008		free(used, M_DEVBUF);
2009		return (EINVAL);
2010	}
2011
2012	/* Make sure none of the resources are allocated. */
2013	for (i = 0; i < msix->msix_table_len; i++) {
2014		if (msix->msix_table[i].mte_vector == 0)
2015			continue;
2016		if (msix->msix_table[i].mte_handlers > 0) {
2017			free(used, M_DEVBUF);
2018			return (EBUSY);
2019		}
2020		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2021		KASSERT(rle != NULL, ("missing resource"));
2022		if (rle->res != NULL) {
2023			free(used, M_DEVBUF);
2024			return (EBUSY);
2025		}
2026	}
2027
2028	/* Free the existing resource list entries. */
2029	for (i = 0; i < msix->msix_table_len; i++) {
2030		if (msix->msix_table[i].mte_vector == 0)
2031			continue;
2032		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2033	}
2034
2035	/*
2036	 * Build the new virtual table keeping track of which vectors are
2037	 * used.
2038	 */
2039	free(msix->msix_table, M_DEVBUF);
2040	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
2041	    M_DEVBUF, M_WAITOK | M_ZERO);
2042	for (i = 0; i < count; i++)
2043		msix->msix_table[i].mte_vector = vectors[i];
2044	msix->msix_table_len = count;
2045
2046	/* Free any unused IRQs and resize the vectors array if necessary. */
2047	j = msix->msix_alloc - 1;
2048	if (used[j] == 0) {
2049		struct msix_vector *vec;
2050
2051		while (used[j] == 0) {
2052			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2053			    msix->msix_vectors[j].mv_irq);
2054			j--;
2055		}
2056		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
2057		    M_WAITOK);
2058		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2059		    (j + 1));
2060		free(msix->msix_vectors, M_DEVBUF);
2061		msix->msix_vectors = vec;
2062		msix->msix_alloc = j + 1;
2063	}
2064	free(used, M_DEVBUF);
2065
2066	/* Map the IRQs onto the rids. */
2067	for (i = 0; i < count; i++) {
2068		if (vectors[i] == 0)
2069			continue;
2070		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2071		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2072		    irq, 1);
2073	}
2074
2075	if (bootverbose) {
2076		device_printf(child, "Remapped MSI-X IRQs as: ");
2077		for (i = 0; i < count; i++) {
2078			if (i != 0)
2079				printf(", ");
2080			if (vectors[i] == 0)
2081				printf("---");
2082			else
2083				printf("%d",
2084				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2085		}
2086		printf("\n");
2087	}
2088
2089	return (0);
2090}
2091
2092static int
2093pci_release_msix(device_t dev, device_t child)
2094{
2095	struct pci_devinfo *dinfo = device_get_ivars(child);
2096	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2097	struct resource_list_entry *rle;
2098	int i;
2099
2100	/* Do we have any messages to release? */
2101	if (msix->msix_alloc == 0)
2102		return (ENODEV);
2103
2104	/* Make sure none of the resources are allocated. */
2105	for (i = 0; i < msix->msix_table_len; i++) {
2106		if (msix->msix_table[i].mte_vector == 0)
2107			continue;
2108		if (msix->msix_table[i].mte_handlers > 0)
2109			return (EBUSY);
2110		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2111		KASSERT(rle != NULL, ("missing resource"));
2112		if (rle->res != NULL)
2113			return (EBUSY);
2114	}
2115
2116	/* Update control register to disable MSI-X. */
2117	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2118	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2119	    msix->msix_ctrl, 2);
2120
2121	/* Free the resource list entries. */
2122	for (i = 0; i < msix->msix_table_len; i++) {
2123		if (msix->msix_table[i].mte_vector == 0)
2124			continue;
2125		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2126	}
2127	free(msix->msix_table, M_DEVBUF);
2128	msix->msix_table_len = 0;
2129
2130	/* Release the IRQs. */
2131	for (i = 0; i < msix->msix_alloc; i++)
2132		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2133		    msix->msix_vectors[i].mv_irq);
2134	free(msix->msix_vectors, M_DEVBUF);
2135	msix->msix_alloc = 0;
2136	return (0);
2137}
2138
2139/*
2140 * Return the max supported MSI-X messages this device supports.
2141 * Basically, assuming the MD code can alloc messages, this function
2142 * should return the maximum value that pci_alloc_msix() can return.
2143 * Thus, it is subject to the tunables, etc.
2144 */
2145int
2146pci_msix_count_method(device_t dev, device_t child)
2147{
2148	struct pci_devinfo *dinfo = device_get_ivars(child);
2149	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2150
2151	if (pci_do_msix && msix->msix_location != 0)
2152		return (msix->msix_msgnum);
2153	return (0);
2154}
2155
2156int
2157pci_msix_pba_bar_method(device_t dev, device_t child)
2158{
2159	struct pci_devinfo *dinfo = device_get_ivars(child);
2160	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2161
2162	if (pci_do_msix && msix->msix_location != 0)
2163		return (msix->msix_pba_bar);
2164	return (-1);
2165}
2166
2167int
2168pci_msix_table_bar_method(device_t dev, device_t child)
2169{
2170	struct pci_devinfo *dinfo = device_get_ivars(child);
2171	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2172
2173	if (pci_do_msix && msix->msix_location != 0)
2174		return (msix->msix_table_bar);
2175	return (-1);
2176}
2177
2178/*
2179 * HyperTransport MSI mapping control
2180 */
2181void
2182pci_ht_map_msi(device_t dev, uint64_t addr)
2183{
2184	struct pci_devinfo *dinfo = device_get_ivars(dev);
2185	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2186
2187	if (!ht->ht_msimap)
2188		return;
2189
2190	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2191	    ht->ht_msiaddr >> 20 == addr >> 20) {
2192		/* Enable MSI -> HT mapping. */
2193		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2194		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2195		    ht->ht_msictrl, 2);
2196	}
2197
2198	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2199		/* Disable MSI -> HT mapping. */
2200		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2201		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2202		    ht->ht_msictrl, 2);
2203	}
2204}
2205
2206int
2207pci_get_relaxed_ordering_enabled(device_t dev)
2208{
2209	struct pci_devinfo *dinfo = device_get_ivars(dev);
2210	int cap;
2211	uint16_t val;
2212
2213	cap = dinfo->cfg.pcie.pcie_location;
2214	if (cap == 0)
2215		return (0);
2216	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2217	val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
2218	return (val != 0);
2219}
2220
2221int
2222pci_get_max_payload(device_t dev)
2223{
2224	struct pci_devinfo *dinfo = device_get_ivars(dev);
2225	int cap;
2226	uint16_t val;
2227
2228	cap = dinfo->cfg.pcie.pcie_location;
2229	if (cap == 0)
2230		return (0);
2231	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2232	val &= PCIEM_CTL_MAX_PAYLOAD;
2233	val >>= 5;
2234	return (1 << (val + 7));
2235}
2236
2237int
2238pci_get_max_read_req(device_t dev)
2239{
2240	struct pci_devinfo *dinfo = device_get_ivars(dev);
2241	int cap;
2242	uint16_t val;
2243
2244	cap = dinfo->cfg.pcie.pcie_location;
2245	if (cap == 0)
2246		return (0);
2247	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2248	val &= PCIEM_CTL_MAX_READ_REQUEST;
2249	val >>= 12;
2250	return (1 << (val + 7));
2251}
2252
2253int
2254pci_set_max_read_req(device_t dev, int size)
2255{
2256	struct pci_devinfo *dinfo = device_get_ivars(dev);
2257	int cap;
2258	uint16_t val;
2259
2260	cap = dinfo->cfg.pcie.pcie_location;
2261	if (cap == 0)
2262		return (0);
2263	if (size < 128)
2264		size = 128;
2265	if (size > 4096)
2266		size = 4096;
2267	size = (1 << (fls(size) - 1));
2268	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2269	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2270	val |= (fls(size) - 8) << 12;
2271	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2272	return (size);
2273}
2274
2275uint32_t
2276pcie_read_config(device_t dev, int reg, int width)
2277{
2278	struct pci_devinfo *dinfo = device_get_ivars(dev);
2279	int cap;
2280
2281	cap = dinfo->cfg.pcie.pcie_location;
2282	if (cap == 0) {
2283		if (width == 2)
2284			return (0xffff);
2285		return (0xffffffff);
2286	}
2287
2288	return (pci_read_config(dev, cap + reg, width));
2289}
2290
2291void
2292pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2293{
2294	struct pci_devinfo *dinfo = device_get_ivars(dev);
2295	int cap;
2296
2297	cap = dinfo->cfg.pcie.pcie_location;
2298	if (cap == 0)
2299		return;
2300	pci_write_config(dev, cap + reg, value, width);
2301}
2302
2303/*
2304 * Adjusts a PCI-e capability register by clearing the bits in mask
2305 * and setting the bits in (value & mask).  Bits not set in mask are
2306 * not adjusted.
2307 *
2308 * Returns the old value on success or all ones on failure.
2309 */
2310uint32_t
2311pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2312    int width)
2313{
2314	struct pci_devinfo *dinfo = device_get_ivars(dev);
2315	uint32_t old, new;
2316	int cap;
2317
2318	cap = dinfo->cfg.pcie.pcie_location;
2319	if (cap == 0) {
2320		if (width == 2)
2321			return (0xffff);
2322		return (0xffffffff);
2323	}
2324
2325	old = pci_read_config(dev, cap + reg, width);
2326	new = old & ~mask;
2327	new |= (value & mask);
2328	pci_write_config(dev, cap + reg, new, width);
2329	return (old);
2330}
2331
2332/*
2333 * Support for MSI message signalled interrupts.
2334 */
2335void
2336pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2337    uint16_t data)
2338{
2339	struct pci_devinfo *dinfo = device_get_ivars(child);
2340	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2341
2342	/* Write data and address values. */
2343	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2344	    address & 0xffffffff, 4);
2345	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2346		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2347		    address >> 32, 4);
2348		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2349		    data, 2);
2350	} else
2351		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2352		    2);
2353
2354	/* Enable MSI in the control register. */
2355	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2356	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2357	    msi->msi_ctrl, 2);
2358
2359	/* Enable MSI -> HT mapping. */
2360	pci_ht_map_msi(child, address);
2361}
2362
2363void
2364pci_disable_msi_method(device_t dev, device_t child)
2365{
2366	struct pci_devinfo *dinfo = device_get_ivars(child);
2367	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2368
2369	/* Disable MSI -> HT mapping. */
2370	pci_ht_map_msi(child, 0);
2371
2372	/* Disable MSI in the control register. */
2373	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2374	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2375	    msi->msi_ctrl, 2);
2376}
2377
2378/*
2379 * Restore MSI registers during resume.  If MSI is enabled then
2380 * restore the data and address registers in addition to the control
2381 * register.
2382 */
2383static void
2384pci_resume_msi(device_t dev)
2385{
2386	struct pci_devinfo *dinfo = device_get_ivars(dev);
2387	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2388	uint64_t address;
2389	uint16_t data;
2390
2391	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2392		address = msi->msi_addr;
2393		data = msi->msi_data;
2394		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2395		    address & 0xffffffff, 4);
2396		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2397			pci_write_config(dev, msi->msi_location +
2398			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2399			pci_write_config(dev, msi->msi_location +
2400			    PCIR_MSI_DATA_64BIT, data, 2);
2401		} else
2402			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2403			    data, 2);
2404	}
2405	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2406	    2);
2407}
2408
2409static int
2410pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2411{
2412	struct pci_devinfo *dinfo = device_get_ivars(dev);
2413	pcicfgregs *cfg = &dinfo->cfg;
2414	struct resource_list_entry *rle;
2415	struct msix_table_entry *mte;
2416	struct msix_vector *mv;
2417	uint64_t addr;
2418	uint32_t data;
2419	int error, i, j;
2420
2421	/*
2422	 * Handle MSI first.  We try to find this IRQ among our list
2423	 * of MSI IRQs.  If we find it, we request updated address and
2424	 * data registers and apply the results.
2425	 */
2426	if (cfg->msi.msi_alloc > 0) {
2427		/* If we don't have any active handlers, nothing to do. */
2428		if (cfg->msi.msi_handlers == 0)
2429			return (0);
2430		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2431			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2432			    i + 1);
2433			if (rle->start == irq) {
2434				error = PCIB_MAP_MSI(device_get_parent(bus),
2435				    dev, irq, &addr, &data);
2436				if (error)
2437					return (error);
2438				pci_disable_msi(dev);
2439				dinfo->cfg.msi.msi_addr = addr;
2440				dinfo->cfg.msi.msi_data = data;
2441				pci_enable_msi(dev, addr, data);
2442				return (0);
2443			}
2444		}
2445		return (ENOENT);
2446	}
2447
2448	/*
2449	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2450	 * we request the updated mapping info.  If that works, we go
2451	 * through all the slots that use this IRQ and update them.
2452	 */
2453	if (cfg->msix.msix_alloc > 0) {
2454		bool found = false;
2455
2456		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2457			mv = &cfg->msix.msix_vectors[i];
2458			if (mv->mv_irq == irq) {
2459				error = PCIB_MAP_MSI(device_get_parent(bus),
2460				    dev, irq, &addr, &data);
2461				if (error)
2462					return (error);
2463				mv->mv_address = addr;
2464				mv->mv_data = data;
2465				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2466					mte = &cfg->msix.msix_table[j];
2467					if (mte->mte_vector != i + 1)
2468						continue;
2469					if (mte->mte_handlers == 0)
2470						continue;
2471					pci_mask_msix(dev, j);
2472					pci_enable_msix(dev, j, addr, data);
2473					pci_unmask_msix(dev, j);
2474				}
2475				found = true;
2476			}
2477		}
2478		return (found ? 0 : ENOENT);
2479	}
2480
2481	return (ENOENT);
2482}
2483
2484/*
2485 * Returns true if the specified device is blacklisted because MSI
2486 * doesn't work.
2487 */
2488int
2489pci_msi_device_blacklisted(device_t dev)
2490{
2491
2492	if (!pci_honor_msi_blacklist)
2493		return (0);
2494
2495	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2496}
2497
2498/*
2499 * Determine if MSI is blacklisted globally on this system.  Currently,
2500 * we just check for blacklisted chipsets as represented by the
2501 * host-PCI bridge at device 0:0:0.  In the future, it may become
2502 * necessary to check other system attributes, such as the kenv values
2503 * that give the motherboard manufacturer and model number.
2504 */
2505static int
2506pci_msi_blacklisted(void)
2507{
2508	device_t dev;
2509
2510	if (!pci_honor_msi_blacklist)
2511		return (0);
2512
2513	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2514	if (!(pcie_chipset || pcix_chipset)) {
2515		if (vm_guest != VM_GUEST_NO) {
2516			/*
2517			 * Whitelist older chipsets in virtual
2518			 * machines known to support MSI.
2519			 */
2520			dev = pci_find_bsf(0, 0, 0);
2521			if (dev != NULL)
2522				return (!pci_has_quirk(pci_get_devid(dev),
2523					PCI_QUIRK_ENABLE_MSI_VM));
2524		}
2525		return (1);
2526	}
2527
2528	dev = pci_find_bsf(0, 0, 0);
2529	if (dev != NULL)
2530		return (pci_msi_device_blacklisted(dev));
2531	return (0);
2532}
2533
2534/*
2535 * Returns true if the specified device is blacklisted because MSI-X
2536 * doesn't work.  Note that this assumes that if MSI doesn't work,
2537 * MSI-X doesn't either.
2538 */
2539int
2540pci_msix_device_blacklisted(device_t dev)
2541{
2542
2543	if (!pci_honor_msi_blacklist)
2544		return (0);
2545
2546	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2547		return (1);
2548
2549	return (pci_msi_device_blacklisted(dev));
2550}
2551
2552/*
2553 * Determine if MSI-X is blacklisted globally on this system.  If MSI
2554 * is blacklisted, assume that MSI-X is as well.  Check for additional
2555 * chipsets where MSI works but MSI-X does not.
2556 */
2557static int
2558pci_msix_blacklisted(void)
2559{
2560	device_t dev;
2561
2562	if (!pci_honor_msi_blacklist)
2563		return (0);
2564
2565	dev = pci_find_bsf(0, 0, 0);
2566	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2567	    PCI_QUIRK_DISABLE_MSIX))
2568		return (1);
2569
2570	return (pci_msi_blacklisted());
2571}
2572
2573/*
2574 * Attempt to allocate *count MSI messages.  The actual number allocated is
2575 * returned in *count.  After this function returns, each message will be
2576 * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2577 */
2578int
2579pci_alloc_msi_method(device_t dev, device_t child, int *count)
2580{
2581	struct pci_devinfo *dinfo = device_get_ivars(child);
2582	pcicfgregs *cfg = &dinfo->cfg;
2583	struct resource_list_entry *rle;
2584	int actual, error, i, irqs[32];
2585	uint16_t ctrl;
2586
2587	/* Don't let count == 0 get us into trouble. */
2588	if (*count == 0)
2589		return (EINVAL);
2590
2591	/* If rid 0 is allocated, then fail. */
2592	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2593	if (rle != NULL && rle->res != NULL)
2594		return (ENXIO);
2595
2596	/* Already have allocated messages? */
2597	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2598		return (ENXIO);
2599
2600	/* If MSI is blacklisted for this system, fail. */
2601	if (pci_msi_blacklisted())
2602		return (ENXIO);
2603
2604	/* MSI capability present? */
2605	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2606		return (ENODEV);
2607
2608	if (bootverbose)
2609		device_printf(child,
2610		    "attempting to allocate %d MSI vectors (%d supported)\n",
2611		    *count, cfg->msi.msi_msgnum);
2612
2613	/* Don't ask for more than the device supports. */
2614	actual = min(*count, cfg->msi.msi_msgnum);
2615
2616	/* Don't ask for more than 32 messages. */
2617	actual = min(actual, 32);
2618
2619	/* MSI requires power of 2 number of messages. */
2620	if (!powerof2(actual))
2621		return (EINVAL);
2622
2623	for (;;) {
2624		/* Try to allocate N messages. */
2625		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2626		    actual, irqs);
2627		if (error == 0)
2628			break;
2629		if (actual == 1)
2630			return (error);
2631
2632		/* Try N / 2. */
2633		actual >>= 1;
2634	}
2635
2636	/*
2637	 * We now have N actual messages mapped onto SYS_RES_IRQ
2638	 * resources in the irqs[] array, so add new resources
2639	 * starting at rid 1.
2640	 */
2641	for (i = 0; i < actual; i++)
2642		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2643		    irqs[i], irqs[i], 1);
2644
2645	if (bootverbose) {
2646		if (actual == 1)
2647			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2648		else {
2649			int run;
2650
2651			/*
2652			 * Be fancy and try to print contiguous runs
2653			 * of IRQ values as ranges.  'run' is true if
2654			 * we are in a range.
2655			 */
2656			device_printf(child, "using IRQs %d", irqs[0]);
2657			run = 0;
2658			for (i = 1; i < actual; i++) {
2659				/* Still in a run? */
2660				if (irqs[i] == irqs[i - 1] + 1) {
2661					run = 1;
2662					continue;
2663				}
2664
2665				/* Finish previous range. */
2666				if (run) {
2667					printf("-%d", irqs[i - 1]);
2668					run = 0;
2669				}
2670
2671				/* Start new range. */
2672				printf(",%d", irqs[i]);
2673			}
2674
2675			/* Unfinished range? */
2676			if (run)
2677				printf("-%d", irqs[actual - 1]);
2678			printf(" for MSI\n");
2679		}
2680	}
2681
2682	/* Update control register with actual count. */
2683	ctrl = cfg->msi.msi_ctrl;
2684	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2685	ctrl |= (ffs(actual) - 1) << 4;
2686	cfg->msi.msi_ctrl = ctrl;
2687	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2688
2689	/* Update counts of alloc'd messages. */
2690	cfg->msi.msi_alloc = actual;
2691	cfg->msi.msi_handlers = 0;
2692	*count = actual;
2693	return (0);
2694}
2695
2696/* Release the MSI messages associated with this device. */
2697int
2698pci_release_msi_method(device_t dev, device_t child)
2699{
2700	struct pci_devinfo *dinfo = device_get_ivars(child);
2701	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2702	struct resource_list_entry *rle;
2703	int error, i, irqs[32];
2704
2705	/* Try MSI-X first. */
2706	error = pci_release_msix(dev, child);
2707	if (error != ENODEV)
2708		return (error);
2709
2710	/* Do we have any messages to release? */
2711	if (msi->msi_alloc == 0)
2712		return (ENODEV);
2713	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2714
2715	/* Make sure none of the resources are allocated. */
2716	if (msi->msi_handlers > 0)
2717		return (EBUSY);
2718	for (i = 0; i < msi->msi_alloc; i++) {
2719		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2720		KASSERT(rle != NULL, ("missing MSI resource"));
2721		if (rle->res != NULL)
2722			return (EBUSY);
2723		irqs[i] = rle->start;
2724	}
2725
2726	/* Update control register with 0 count. */
2727	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2728	    ("%s: MSI still enabled", __func__));
2729	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2730	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2731	    msi->msi_ctrl, 2);
2732
2733	/* Release the messages. */
2734	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2735	for (i = 0; i < msi->msi_alloc; i++)
2736		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2737
2738	/* Update alloc count. */
2739	msi->msi_alloc = 0;
2740	msi->msi_addr = 0;
2741	msi->msi_data = 0;
2742	return (0);
2743}
2744
2745/*
2746 * Return the max supported MSI messages this device supports.
2747 * Basically, assuming the MD code can alloc messages, this function
2748 * should return the maximum value that pci_alloc_msi() can return.
2749 * Thus, it is subject to the tunables, etc.
2750 */
2751int
2752pci_msi_count_method(device_t dev, device_t child)
2753{
2754	struct pci_devinfo *dinfo = device_get_ivars(child);
2755	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2756
2757	if (pci_do_msi && msi->msi_location != 0)
2758		return (msi->msi_msgnum);
2759	return (0);
2760}
2761
2762/* free pcicfgregs structure and all depending data structures */
2763
2764int
2765pci_freecfg(struct pci_devinfo *dinfo)
2766{
2767	struct devlist *devlist_head;
2768	struct pci_map *pm, *next;
2769
2770	devlist_head = &pci_devq;
2771
2772	if (dinfo->cfg.vpd.vpd_reg)
2773		vpd_free(&dinfo->cfg.vpd);
2774
2775	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2776		free(pm, M_DEVBUF);
2777	}
2778	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2779	free(dinfo, M_DEVBUF);
2780
2781	/* increment the generation count */
2782	pci_generation++;
2783
2784	/* we're losing one device */
2785	pci_numdevs--;
2786	return (0);
2787}
2788
2789/*
2790 * PCI power manangement
2791 */
2792int
2793pci_set_powerstate_method(device_t dev, device_t child, int state)
2794{
2795	struct pci_devinfo *dinfo = device_get_ivars(child);
2796	pcicfgregs *cfg = &dinfo->cfg;
2797	uint16_t status;
2798	int oldstate, highest, delay;
2799
2800	if (cfg->pp.pp_cap == 0)
2801		return (EOPNOTSUPP);
2802
2803	/*
2804	 * Optimize a no state change request away.  While it would be OK to
2805	 * write to the hardware in theory, some devices have shown odd
2806	 * behavior when going from D3 -> D3.
2807	 */
2808	oldstate = pci_get_powerstate(child);
2809	if (oldstate == state)
2810		return (0);
2811
2812	/*
2813	 * The PCI power management specification states that after a state
2814	 * transition between PCI power states, system software must
2815	 * guarantee a minimal delay before the function accesses the device.
2816	 * Compute the worst case delay that we need to guarantee before we
2817	 * access the device.  Many devices will be responsive much more
2818	 * quickly than this delay, but there are some that don't respond
2819	 * instantly to state changes.  Transitions to/from D3 state require
2820	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2821	 * is done below with DELAY rather than a sleeper function because
2822	 * this function can be called from contexts where we cannot sleep.
2823	 */
2824	highest = (oldstate > state) ? oldstate : state;
2825	if (highest == PCI_POWERSTATE_D3)
2826	    delay = 10000;
2827	else if (highest == PCI_POWERSTATE_D2)
2828	    delay = 200;
2829	else
2830	    delay = 0;
2831	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2832	    & ~PCIM_PSTAT_DMASK;
2833	switch (state) {
2834	case PCI_POWERSTATE_D0:
2835		status |= PCIM_PSTAT_D0;
2836		break;
2837	case PCI_POWERSTATE_D1:
2838		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2839			return (EOPNOTSUPP);
2840		status |= PCIM_PSTAT_D1;
2841		break;
2842	case PCI_POWERSTATE_D2:
2843		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2844			return (EOPNOTSUPP);
2845		status |= PCIM_PSTAT_D2;
2846		break;
2847	case PCI_POWERSTATE_D3:
2848		status |= PCIM_PSTAT_D3;
2849		break;
2850	default:
2851		return (EINVAL);
2852	}
2853
2854	if (bootverbose)
2855		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2856		    state);
2857
2858	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2859	if (delay)
2860		DELAY(delay);
2861	return (0);
2862}
2863
2864int
2865pci_get_powerstate_method(device_t dev, device_t child)
2866{
2867	struct pci_devinfo *dinfo = device_get_ivars(child);
2868	pcicfgregs *cfg = &dinfo->cfg;
2869	uint16_t status;
2870	int result;
2871
2872	if (cfg->pp.pp_cap != 0) {
2873		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2874		switch (status & PCIM_PSTAT_DMASK) {
2875		case PCIM_PSTAT_D0:
2876			result = PCI_POWERSTATE_D0;
2877			break;
2878		case PCIM_PSTAT_D1:
2879			result = PCI_POWERSTATE_D1;
2880			break;
2881		case PCIM_PSTAT_D2:
2882			result = PCI_POWERSTATE_D2;
2883			break;
2884		case PCIM_PSTAT_D3:
2885			result = PCI_POWERSTATE_D3;
2886			break;
2887		default:
2888			result = PCI_POWERSTATE_UNKNOWN;
2889			break;
2890		}
2891	} else {
2892		/* No support, device is always at D0 */
2893		result = PCI_POWERSTATE_D0;
2894	}
2895	return (result);
2896}
2897
2898/*
2899 * Some convenience functions for PCI device drivers.
2900 */
2901
2902static __inline void
2903pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2904{
2905	uint16_t	command;
2906
2907	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2908	command |= bit;
2909	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2910}
2911
2912static __inline void
2913pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2914{
2915	uint16_t	command;
2916
2917	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2918	command &= ~bit;
2919	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2920}
2921
2922int
2923pci_enable_busmaster_method(device_t dev, device_t child)
2924{
2925	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2926	return (0);
2927}
2928
2929int
2930pci_disable_busmaster_method(device_t dev, device_t child)
2931{
2932	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2933	return (0);
2934}
2935
2936int
2937pci_enable_io_method(device_t dev, device_t child, int space)
2938{
2939	uint16_t bit;
2940
2941	switch(space) {
2942	case SYS_RES_IOPORT:
2943		bit = PCIM_CMD_PORTEN;
2944		break;
2945	case SYS_RES_MEMORY:
2946		bit = PCIM_CMD_MEMEN;
2947		break;
2948	default:
2949		return (EINVAL);
2950	}
2951	pci_set_command_bit(dev, child, bit);
2952	return (0);
2953}
2954
2955int
2956pci_disable_io_method(device_t dev, device_t child, int space)
2957{
2958	uint16_t bit;
2959
2960	switch(space) {
2961	case SYS_RES_IOPORT:
2962		bit = PCIM_CMD_PORTEN;
2963		break;
2964	case SYS_RES_MEMORY:
2965		bit = PCIM_CMD_MEMEN;
2966		break;
2967	default:
2968		return (EINVAL);
2969	}
2970	pci_clear_command_bit(dev, child, bit);
2971	return (0);
2972}
2973
2974/*
2975 * New style pci driver.  Parent device is either a pci-host-bridge or a
2976 * pci-pci-bridge.  Both kinds are represented by instances of pcib.
2977 */
2978
2979void
2980pci_print_verbose(struct pci_devinfo *dinfo)
2981{
2982
2983	if (bootverbose) {
2984		pcicfgregs *cfg = &dinfo->cfg;
2985
2986		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2987		    cfg->vendor, cfg->device, cfg->revid);
2988		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2989		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
2990		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2991		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2992		    cfg->mfdev);
2993		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2994		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2995		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2996		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2997		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2998		if (cfg->intpin > 0)
2999			printf("\tintpin=%c, irq=%d\n",
3000			    cfg->intpin +'a' -1, cfg->intline);
3001		if (cfg->pp.pp_cap) {
3002			uint16_t status;
3003
3004			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
3005			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
3006			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
3007			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
3008			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
3009			    status & PCIM_PSTAT_DMASK);
3010		}
3011		if (cfg->msi.msi_location) {
3012			int ctrl;
3013
3014			ctrl = cfg->msi.msi_ctrl;
3015			printf("\tMSI supports %d message%s%s%s\n",
3016			    cfg->msi.msi_msgnum,
3017			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
3018			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
3019			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
3020		}
3021		if (cfg->msix.msix_location) {
3022			printf("\tMSI-X supports %d message%s ",
3023			    cfg->msix.msix_msgnum,
3024			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
3025			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
3026				printf("in map 0x%x\n",
3027				    cfg->msix.msix_table_bar);
3028			else
3029				printf("in maps 0x%x and 0x%x\n",
3030				    cfg->msix.msix_table_bar,
3031				    cfg->msix.msix_pba_bar);
3032		}
3033	}
3034}
3035
3036static int
3037pci_porten(device_t dev)
3038{
3039	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3040}
3041
3042static int
3043pci_memen(device_t dev)
3044{
3045	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3046}
3047
3048void
3049pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3050    int *bar64)
3051{
3052	struct pci_devinfo *dinfo;
3053	pci_addr_t map, testval;
3054	int ln2range;
3055	uint16_t cmd;
3056
3057	/*
3058	 * The device ROM BAR is special.  It is always a 32-bit
3059	 * memory BAR.  Bit 0 is special and should not be set when
3060	 * sizing the BAR.
3061	 */
3062	dinfo = device_get_ivars(dev);
3063	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3064		map = pci_read_config(dev, reg, 4);
3065		pci_write_config(dev, reg, 0xfffffffe, 4);
3066		testval = pci_read_config(dev, reg, 4);
3067		pci_write_config(dev, reg, map, 4);
3068		*mapp = map;
3069		*testvalp = testval;
3070		if (bar64 != NULL)
3071			*bar64 = 0;
3072		return;
3073	}
3074
3075	map = pci_read_config(dev, reg, 4);
3076	ln2range = pci_maprange(map);
3077	if (ln2range == 64)
3078		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3079
3080	/*
3081	 * Disable decoding via the command register before
3082	 * determining the BAR's length since we will be placing it in
3083	 * a weird state.
3084	 */
3085	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3086	pci_write_config(dev, PCIR_COMMAND,
3087	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3088
3089	/*
3090	 * Determine the BAR's length by writing all 1's.  The bottom
3091	 * log_2(size) bits of the BAR will stick as 0 when we read
3092	 * the value back.
3093	 *
3094	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3095	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3096	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3097	 *
3098	 * Writes to both registers must be performed before attempting to
3099	 * read back the size value.
3100	 */
3101	testval = 0;
3102	pci_write_config(dev, reg, 0xffffffff, 4);
3103	if (ln2range == 64) {
3104		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3105		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3106	}
3107	testval |= pci_read_config(dev, reg, 4);
3108
3109	/*
3110	 * Restore the original value of the BAR.  We may have reprogrammed
3111	 * the BAR of the low-level console device and when booting verbose,
3112	 * we need the console device addressable.
3113	 */
3114	pci_write_config(dev, reg, map, 4);
3115	if (ln2range == 64)
3116		pci_write_config(dev, reg + 4, map >> 32, 4);
3117	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3118
3119	*mapp = map;
3120	*testvalp = testval;
3121	if (bar64 != NULL)
3122		*bar64 = (ln2range == 64);
3123}
3124
3125static void
3126pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3127{
3128	struct pci_devinfo *dinfo;
3129	int ln2range;
3130
3131	/* The device ROM BAR is always a 32-bit memory BAR. */
3132	dinfo = device_get_ivars(dev);
3133	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3134		ln2range = 32;
3135	else
3136		ln2range = pci_maprange(pm->pm_value);
3137	pci_write_config(dev, pm->pm_reg, base, 4);
3138	if (ln2range == 64)
3139		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3140	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3141	if (ln2range == 64)
3142		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3143		    pm->pm_reg + 4, 4) << 32;
3144}
3145
3146struct pci_map *
3147pci_find_bar(device_t dev, int reg)
3148{
3149	struct pci_devinfo *dinfo;
3150	struct pci_map *pm;
3151
3152	dinfo = device_get_ivars(dev);
3153	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3154		if (pm->pm_reg == reg)
3155			return (pm);
3156	}
3157	return (NULL);
3158}
3159
3160struct pci_map *
3161pci_first_bar(device_t dev)
3162{
3163	struct pci_devinfo *dinfo;
3164
3165	dinfo = device_get_ivars(dev);
3166	return (STAILQ_FIRST(&dinfo->cfg.maps));
3167}
3168
3169struct pci_map *
3170pci_next_bar(struct pci_map *pm)
3171{
3172	return (STAILQ_NEXT(pm, pm_link));
3173}
3174
3175int
3176pci_bar_enabled(device_t dev, struct pci_map *pm)
3177{
3178	struct pci_devinfo *dinfo;
3179	uint16_t cmd;
3180
3181	dinfo = device_get_ivars(dev);
3182	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3183	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3184		return (0);
3185#ifdef PCI_IOV
3186	if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
3187		struct pcicfg_iov *iov;
3188
3189		iov = dinfo->cfg.iov;
3190		cmd = pci_read_config(iov->iov_pf,
3191		    iov->iov_pos + PCIR_SRIOV_CTL, 2);
3192		return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
3193	}
3194#endif
3195	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3196	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3197		return ((cmd & PCIM_CMD_MEMEN) != 0);
3198	else
3199		return ((cmd & PCIM_CMD_PORTEN) != 0);
3200}
3201
3202struct pci_map *
3203pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3204{
3205	struct pci_devinfo *dinfo;
3206	struct pci_map *pm, *prev;
3207
3208	dinfo = device_get_ivars(dev);
3209	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3210	pm->pm_reg = reg;
3211	pm->pm_value = value;
3212	pm->pm_size = size;
3213	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3214		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3215		    reg));
3216		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3217		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3218			break;
3219	}
3220	if (prev != NULL)
3221		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3222	else
3223		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3224	return (pm);
3225}
3226
3227static void
3228pci_restore_bars(device_t dev)
3229{
3230	struct pci_devinfo *dinfo;
3231	struct pci_map *pm;
3232	int ln2range;
3233
3234	dinfo = device_get_ivars(dev);
3235	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3236		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3237			ln2range = 32;
3238		else
3239			ln2range = pci_maprange(pm->pm_value);
3240		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3241		if (ln2range == 64)
3242			pci_write_config(dev, pm->pm_reg + 4,
3243			    pm->pm_value >> 32, 4);
3244	}
3245}
3246
3247/*
3248 * Add a resource based on a pci map register. Return 1 if the map
3249 * register is a 32bit map register or 2 if it is a 64bit register.
3250 */
3251static int
3252pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3253    int force, int prefetch)
3254{
3255	struct pci_map *pm;
3256	pci_addr_t base, map, testval;
3257	pci_addr_t start, end, count;
3258	int barlen, basezero, flags, maprange, mapsize, type;
3259	uint16_t cmd;
3260	struct resource *res;
3261
3262	/*
3263	 * The BAR may already exist if the device is a CardBus card
3264	 * whose CIS is stored in this BAR.
3265	 */
3266	pm = pci_find_bar(dev, reg);
3267	if (pm != NULL) {
3268		maprange = pci_maprange(pm->pm_value);
3269		barlen = maprange == 64 ? 2 : 1;
3270		return (barlen);
3271	}
3272
3273	pci_read_bar(dev, reg, &map, &testval, NULL);
3274	if (PCI_BAR_MEM(map)) {
3275		type = SYS_RES_MEMORY;
3276		if (map & PCIM_BAR_MEM_PREFETCH)
3277			prefetch = 1;
3278	} else
3279		type = SYS_RES_IOPORT;
3280	mapsize = pci_mapsize(testval);
3281	base = pci_mapbase(map);
3282#ifdef __PCI_BAR_ZERO_VALID
3283	basezero = 0;
3284#else
3285	basezero = base == 0;
3286#endif
3287	maprange = pci_maprange(map);
3288	barlen = maprange == 64 ? 2 : 1;
3289
3290	/*
3291	 * For I/O registers, if bottom bit is set, and the next bit up
3292	 * isn't clear, we know we have a BAR that doesn't conform to the
3293	 * spec, so ignore it.  Also, sanity check the size of the data
3294	 * areas to the type of memory involved.  Memory must be at least
3295	 * 16 bytes in size, while I/O ranges must be at least 4.
3296	 */
3297	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3298		return (barlen);
3299	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3300	    (type == SYS_RES_IOPORT && mapsize < 2))
3301		return (barlen);
3302
3303	/* Save a record of this BAR. */
3304	pm = pci_add_bar(dev, reg, map, mapsize);
3305	if (bootverbose) {
3306		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3307		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3308		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3309			printf(", port disabled\n");
3310		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3311			printf(", memory disabled\n");
3312		else
3313			printf(", enabled\n");
3314	}
3315
3316	/*
3317	 * If base is 0, then we have problems if this architecture does
3318	 * not allow that.  It is best to ignore such entries for the
3319	 * moment.  These will be allocated later if the driver specifically
3320	 * requests them.  However, some removable buses look better when
3321	 * all resources are allocated, so allow '0' to be overridden.
3322	 *
3323	 * Similarly treat maps whose values is the same as the test value
3324	 * read back.  These maps have had all f's written to them by the
3325	 * BIOS in an attempt to disable the resources.
3326	 */
3327	if (!force && (basezero || map == testval))
3328		return (barlen);
3329	if ((u_long)base != base) {
3330		device_printf(bus,
3331		    "pci%d:%d:%d:%d bar %#x too many address bits",
3332		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3333		    pci_get_function(dev), reg);
3334		return (barlen);
3335	}
3336
3337	/*
3338	 * This code theoretically does the right thing, but has
3339	 * undesirable side effects in some cases where peripherals
3340	 * respond oddly to having these bits enabled.  Let the user
3341	 * be able to turn them off (since pci_enable_io_modes is 1 by
3342	 * default).
3343	 */
3344	if (pci_enable_io_modes) {
3345		/* Turn on resources that have been left off by a lazy BIOS */
3346		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3347			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3348			cmd |= PCIM_CMD_PORTEN;
3349			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3350		}
3351		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3352			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3353			cmd |= PCIM_CMD_MEMEN;
3354			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3355		}
3356	} else {
3357		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3358			return (barlen);
3359		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3360			return (barlen);
3361	}
3362
3363	count = (pci_addr_t)1 << mapsize;
3364	flags = RF_ALIGNMENT_LOG2(mapsize);
3365	if (prefetch)
3366		flags |= RF_PREFETCHABLE;
3367	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3368		start = 0;	/* Let the parent decide. */
3369		end = ~0;
3370	} else {
3371		start = base;
3372		end = base + count - 1;
3373	}
3374	resource_list_add(rl, type, reg, start, end, count);
3375
3376	/*
3377	 * Try to allocate the resource for this BAR from our parent
3378	 * so that this resource range is already reserved.  The
3379	 * driver for this device will later inherit this resource in
3380	 * pci_alloc_resource().
3381	 */
3382	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3383	    flags);
3384	if ((pci_do_realloc_bars
3385		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3386	    && res == NULL && (start != 0 || end != ~0)) {
3387		/*
3388		 * If the allocation fails, try to allocate a resource for
3389		 * this BAR using any available range.  The firmware felt
3390		 * it was important enough to assign a resource, so don't
3391		 * disable decoding if we can help it.
3392		 */
3393		resource_list_delete(rl, type, reg);
3394		resource_list_add(rl, type, reg, 0, ~0, count);
3395		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3396		    count, flags);
3397	}
3398	if (res == NULL) {
3399		/*
3400		 * If the allocation fails, delete the resource list entry
3401		 * and disable decoding for this device.
3402		 *
3403		 * If the driver requests this resource in the future,
3404		 * pci_reserve_map() will try to allocate a fresh
3405		 * resource range.
3406		 */
3407		resource_list_delete(rl, type, reg);
3408		pci_disable_io(dev, type);
3409		if (bootverbose)
3410			device_printf(bus,
3411			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3412			    pci_get_domain(dev), pci_get_bus(dev),
3413			    pci_get_slot(dev), pci_get_function(dev), reg);
3414	} else {
3415		start = rman_get_start(res);
3416		pci_write_bar(dev, pm, start);
3417	}
3418	return (barlen);
3419}
3420
3421/*
3422 * For ATA devices we need to decide early what addressing mode to use.
3423 * Legacy demands that the primary and secondary ATA ports sits on the
3424 * same addresses that old ISA hardware did. This dictates that we use
3425 * those addresses and ignore the BAR's if we cannot set PCI native
3426 * addressing mode.
3427 */
3428static void
3429pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3430    uint32_t prefetchmask)
3431{
3432	int rid, type, progif;
3433#if 0
3434	/* if this device supports PCI native addressing use it */
3435	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3436	if ((progif & 0x8a) == 0x8a) {
3437		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3438		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3439			printf("Trying ATA native PCI addressing mode\n");
3440			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3441		}
3442	}
3443#endif
3444	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3445	type = SYS_RES_IOPORT;
3446	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3447		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3448		    prefetchmask & (1 << 0));
3449		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3450		    prefetchmask & (1 << 1));
3451	} else {
3452		rid = PCIR_BAR(0);
3453		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3454		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3455		    0x1f7, 8, 0);
3456		rid = PCIR_BAR(1);
3457		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3458		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3459		    0x3f6, 1, 0);
3460	}
3461	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3462		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3463		    prefetchmask & (1 << 2));
3464		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3465		    prefetchmask & (1 << 3));
3466	} else {
3467		rid = PCIR_BAR(2);
3468		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3469		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3470		    0x177, 8, 0);
3471		rid = PCIR_BAR(3);
3472		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3473		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3474		    0x376, 1, 0);
3475	}
3476	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3477	    prefetchmask & (1 << 4));
3478	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3479	    prefetchmask & (1 << 5));
3480}
3481
3482static void
3483pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3484{
3485	struct pci_devinfo *dinfo = device_get_ivars(dev);
3486	pcicfgregs *cfg = &dinfo->cfg;
3487	char tunable_name[64];
3488	int irq;
3489
3490	/* Has to have an intpin to have an interrupt. */
3491	if (cfg->intpin == 0)
3492		return;
3493
3494	/* Let the user override the IRQ with a tunable. */
3495	irq = PCI_INVALID_IRQ;
3496	snprintf(tunable_name, sizeof(tunable_name),
3497	    "hw.pci%d.%d.%d.INT%c.irq",
3498	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3499	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3500		irq = PCI_INVALID_IRQ;
3501
3502	/*
3503	 * If we didn't get an IRQ via the tunable, then we either use the
3504	 * IRQ value in the intline register or we ask the bus to route an
3505	 * interrupt for us.  If force_route is true, then we only use the
3506	 * value in the intline register if the bus was unable to assign an
3507	 * IRQ.
3508	 */
3509	if (!PCI_INTERRUPT_VALID(irq)) {
3510		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3511			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3512		if (!PCI_INTERRUPT_VALID(irq))
3513			irq = cfg->intline;
3514	}
3515
3516	/* If after all that we don't have an IRQ, just bail. */
3517	if (!PCI_INTERRUPT_VALID(irq))
3518		return;
3519
3520	/* Update the config register if it changed. */
3521	if (irq != cfg->intline) {
3522		cfg->intline = irq;
3523		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3524	}
3525
3526	/* Add this IRQ as rid 0 interrupt resource. */
3527	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3528}
3529
3530/* Perform early OHCI takeover from SMM. */
3531static void
3532ohci_early_takeover(device_t self)
3533{
3534	struct resource *res;
3535	uint32_t ctl;
3536	int rid;
3537	int i;
3538
3539	rid = PCIR_BAR(0);
3540	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3541	if (res == NULL)
3542		return;
3543
3544	ctl = bus_read_4(res, OHCI_CONTROL);
3545	if (ctl & OHCI_IR) {
3546		if (bootverbose)
3547			printf("ohci early: "
3548			    "SMM active, request owner change\n");
3549		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3550		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3551			DELAY(1000);
3552			ctl = bus_read_4(res, OHCI_CONTROL);
3553		}
3554		if (ctl & OHCI_IR) {
3555			if (bootverbose)
3556				printf("ohci early: "
3557				    "SMM does not respond, resetting\n");
3558			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3559		}
3560		/* Disable interrupts */
3561		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3562	}
3563
3564	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3565}
3566
3567/* Perform early UHCI takeover from SMM. */
3568static void
3569uhci_early_takeover(device_t self)
3570{
3571	struct resource *res;
3572	int rid;
3573
3574	/*
3575	 * Set the PIRQD enable bit and switch off all the others. We don't
3576	 * want legacy support to interfere with us XXX Does this also mean
3577	 * that the BIOS won't touch the keyboard anymore if it is connected
3578	 * to the ports of the root hub?
3579	 */
3580	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3581
3582	/* Disable interrupts */
3583	rid = PCI_UHCI_BASE_REG;
3584	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3585	if (res != NULL) {
3586		bus_write_2(res, UHCI_INTR, 0);
3587		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3588	}
3589}
3590
3591/* Perform early EHCI takeover from SMM. */
3592static void
3593ehci_early_takeover(device_t self)
3594{
3595	struct resource *res;
3596	uint32_t cparams;
3597	uint32_t eec;
3598	uint8_t eecp;
3599	uint8_t bios_sem;
3600	uint8_t offs;
3601	int rid;
3602	int i;
3603
3604	rid = PCIR_BAR(0);
3605	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3606	if (res == NULL)
3607		return;
3608
3609	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3610
3611	/* Synchronise with the BIOS if it owns the controller. */
3612	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3613	    eecp = EHCI_EECP_NEXT(eec)) {
3614		eec = pci_read_config(self, eecp, 4);
3615		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3616			continue;
3617		}
3618		bios_sem = pci_read_config(self, eecp +
3619		    EHCI_LEGSUP_BIOS_SEM, 1);
3620		if (bios_sem == 0) {
3621			continue;
3622		}
3623		if (bootverbose)
3624			printf("ehci early: "
3625			    "SMM active, request owner change\n");
3626
3627		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3628
3629		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3630			DELAY(1000);
3631			bios_sem = pci_read_config(self, eecp +
3632			    EHCI_LEGSUP_BIOS_SEM, 1);
3633		}
3634
3635		if (bios_sem != 0) {
3636			if (bootverbose)
3637				printf("ehci early: "
3638				    "SMM does not respond\n");
3639		}
3640		/* Disable interrupts */
3641		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3642		bus_write_4(res, offs + EHCI_USBINTR, 0);
3643	}
3644	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3645}
3646
3647/* Perform early XHCI takeover from SMM. */
3648static void
3649xhci_early_takeover(device_t self)
3650{
3651	struct resource *res;
3652	uint32_t cparams;
3653	uint32_t eec;
3654	uint8_t eecp;
3655	uint8_t bios_sem;
3656	uint8_t offs;
3657	int rid;
3658	int i;
3659
3660	rid = PCIR_BAR(0);
3661	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3662	if (res == NULL)
3663		return;
3664
3665	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3666
3667	eec = -1;
3668
3669	/* Synchronise with the BIOS if it owns the controller. */
3670	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3671	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3672		eec = bus_read_4(res, eecp);
3673
3674		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3675			continue;
3676
3677		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3678		if (bios_sem == 0)
3679			continue;
3680
3681		if (bootverbose)
3682			printf("xhci early: "
3683			    "SMM active, request owner change\n");
3684
3685		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3686
3687		/* wait a maximum of 5 second */
3688
3689		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3690			DELAY(1000);
3691			bios_sem = bus_read_1(res, eecp +
3692			    XHCI_XECP_BIOS_SEM);
3693		}
3694
3695		if (bios_sem != 0) {
3696			if (bootverbose)
3697				printf("xhci early: "
3698				    "SMM does not respond\n");
3699		}
3700
3701		/* Disable interrupts */
3702		offs = bus_read_1(res, XHCI_CAPLENGTH);
3703		bus_write_4(res, offs + XHCI_USBCMD, 0);
3704		bus_read_4(res, offs + XHCI_USBSTS);
3705	}
3706	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3707}
3708
3709#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
3710static void
3711pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3712    struct resource_list *rl)
3713{
3714	struct resource *res;
3715	char *cp;
3716	rman_res_t start, end, count;
3717	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3718
3719	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3720	case PCIM_HDRTYPE_BRIDGE:
3721		sec_reg = PCIR_SECBUS_1;
3722		sub_reg = PCIR_SUBBUS_1;
3723		break;
3724	case PCIM_HDRTYPE_CARDBUS:
3725		sec_reg = PCIR_SECBUS_2;
3726		sub_reg = PCIR_SUBBUS_2;
3727		break;
3728	default:
3729		return;
3730	}
3731
3732	/*
3733	 * If the existing bus range is valid, attempt to reserve it
3734	 * from our parent.  If this fails for any reason, clear the
3735	 * secbus and subbus registers.
3736	 *
3737	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3738	 * This would at least preserve the existing sec_bus if it is
3739	 * valid.
3740	 */
3741	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3742	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3743
3744	/* Quirk handling. */
3745	switch (pci_get_devid(dev)) {
3746	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3747		sup_bus = pci_read_config(dev, 0x41, 1);
3748		if (sup_bus != 0xff) {
3749			sec_bus = sup_bus + 1;
3750			sub_bus = sup_bus + 1;
3751			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3752			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3753		}
3754		break;
3755
3756	case 0x00dd10de:
3757		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3758		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3759			break;
3760		if (strncmp(cp, "Compal", 6) != 0) {
3761			freeenv(cp);
3762			break;
3763		}
3764		freeenv(cp);
3765		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3766			break;
3767		if (strncmp(cp, "08A0", 4) != 0) {
3768			freeenv(cp);
3769			break;
3770		}
3771		freeenv(cp);
3772		if (sub_bus < 0xa) {
3773			sub_bus = 0xa;
3774			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3775		}
3776		break;
3777	}
3778
3779	if (bootverbose)
3780		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3781	if (sec_bus > 0 && sub_bus >= sec_bus) {
3782		start = sec_bus;
3783		end = sub_bus;
3784		count = end - start + 1;
3785
3786		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3787
3788		/*
3789		 * If requested, clear secondary bus registers in
3790		 * bridge devices to force a complete renumbering
3791		 * rather than reserving the existing range.  However,
3792		 * preserve the existing size.
3793		 */
3794		if (pci_clear_buses)
3795			goto clear;
3796
3797		rid = 0;
3798		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3799		    start, end, count, 0);
3800		if (res != NULL)
3801			return;
3802
3803		if (bootverbose)
3804			device_printf(bus,
3805			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3806			    pci_get_domain(dev), pci_get_bus(dev),
3807			    pci_get_slot(dev), pci_get_function(dev));
3808	}
3809
3810clear:
3811	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3812	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3813}
3814
3815static struct resource *
3816pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3817    rman_res_t end, rman_res_t count, u_int flags)
3818{
3819	struct pci_devinfo *dinfo;
3820	pcicfgregs *cfg;
3821	struct resource_list *rl;
3822	struct resource *res;
3823	int sec_reg, sub_reg;
3824
3825	dinfo = device_get_ivars(child);
3826	cfg = &dinfo->cfg;
3827	rl = &dinfo->resources;
3828	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3829	case PCIM_HDRTYPE_BRIDGE:
3830		sec_reg = PCIR_SECBUS_1;
3831		sub_reg = PCIR_SUBBUS_1;
3832		break;
3833	case PCIM_HDRTYPE_CARDBUS:
3834		sec_reg = PCIR_SECBUS_2;
3835		sub_reg = PCIR_SUBBUS_2;
3836		break;
3837	default:
3838		return (NULL);
3839	}
3840
3841	if (*rid != 0)
3842		return (NULL);
3843
3844	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3845		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3846	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3847		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3848		    start, end, count, flags & ~RF_ACTIVE);
3849		if (res == NULL) {
3850			resource_list_delete(rl, PCI_RES_BUS, *rid);
3851			device_printf(child, "allocating %ju bus%s failed\n",
3852			    count, count == 1 ? "" : "es");
3853			return (NULL);
3854		}
3855		if (bootverbose)
3856			device_printf(child,
3857			    "Lazy allocation of %ju bus%s at %ju\n", count,
3858			    count == 1 ? "" : "es", rman_get_start(res));
3859		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3860		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3861	}
3862	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3863	    end, count, flags));
3864}
3865#endif
3866
3867static int
3868pci_ea_bei_to_rid(device_t dev, int bei)
3869{
3870#ifdef PCI_IOV
3871	struct pci_devinfo *dinfo;
3872	int iov_pos;
3873	struct pcicfg_iov *iov;
3874
3875	dinfo = device_get_ivars(dev);
3876	iov = dinfo->cfg.iov;
3877	if (iov != NULL)
3878		iov_pos = iov->iov_pos;
3879	else
3880		iov_pos = 0;
3881#endif
3882
3883	/* Check if matches BAR */
3884	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3885	    (bei <= PCIM_EA_BEI_BAR_5))
3886		return (PCIR_BAR(bei));
3887
3888	/* Check ROM */
3889	if (bei == PCIM_EA_BEI_ROM)
3890		return (PCIR_BIOS);
3891
3892#ifdef PCI_IOV
3893	/* Check if matches VF_BAR */
3894	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3895	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3896		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3897		    iov_pos);
3898#endif
3899
3900	return (-1);
3901}
3902
3903int
3904pci_ea_is_enabled(device_t dev, int rid)
3905{
3906	struct pci_ea_entry *ea;
3907	struct pci_devinfo *dinfo;
3908
3909	dinfo = device_get_ivars(dev);
3910
3911	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3912		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3913			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3914	}
3915
3916	return (0);
3917}
3918
3919void
3920pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
3921{
3922	struct pci_ea_entry *ea;
3923	struct pci_devinfo *dinfo;
3924	pci_addr_t start, end, count;
3925	struct resource_list *rl;
3926	int type, flags, rid;
3927	struct resource *res;
3928	uint32_t tmp;
3929#ifdef PCI_IOV
3930	struct pcicfg_iov *iov;
3931#endif
3932
3933	dinfo = device_get_ivars(dev);
3934	rl = &dinfo->resources;
3935	flags = 0;
3936
3937#ifdef PCI_IOV
3938	iov = dinfo->cfg.iov;
3939#endif
3940
3941	if (dinfo->cfg.ea.ea_location == 0)
3942		return;
3943
3944	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3945		/*
3946		 * TODO: Ignore EA-BAR if is not enabled.
3947		 *   Currently the EA implementation supports
3948		 *   only situation, where EA structure contains
3949		 *   predefined entries. In case they are not enabled
3950		 *   leave them unallocated and proceed with
3951		 *   a legacy-BAR mechanism.
3952		 */
3953		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
3954			continue;
3955
3956		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
3957		case PCIM_EA_P_MEM_PREFETCH:
3958		case PCIM_EA_P_VF_MEM_PREFETCH:
3959			flags = RF_PREFETCHABLE;
3960			/* FALLTHROUGH */
3961		case PCIM_EA_P_VF_MEM:
3962		case PCIM_EA_P_MEM:
3963			type = SYS_RES_MEMORY;
3964			break;
3965		case PCIM_EA_P_IO:
3966			type = SYS_RES_IOPORT;
3967			break;
3968		default:
3969			continue;
3970		}
3971
3972		if (alloc_iov != 0) {
3973#ifdef PCI_IOV
3974			/* Allocating IOV, confirm BEI matches */
3975			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
3976			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
3977				continue;
3978#else
3979			continue;
3980#endif
3981		} else {
3982			/* Allocating BAR, confirm BEI matches */
3983			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
3984			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
3985			    (ea->eae_bei != PCIM_EA_BEI_ROM))
3986				continue;
3987		}
3988
3989		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
3990		if (rid < 0)
3991			continue;
3992
3993		/* Skip resources already allocated by EA */
3994		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
3995		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
3996			continue;
3997
3998		start = ea->eae_base;
3999		count = ea->eae_max_offset + 1;
4000#ifdef PCI_IOV
4001		if (iov != NULL)
4002			count = count * iov->iov_num_vfs;
4003#endif
4004		end = start + count - 1;
4005		if (count == 0)
4006			continue;
4007
4008		resource_list_add(rl, type, rid, start, end, count);
4009		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
4010		    flags);
4011		if (res == NULL) {
4012			resource_list_delete(rl, type, rid);
4013
4014			/*
4015			 * Failed to allocate using EA, disable entry.
4016			 * Another attempt to allocation will be performed
4017			 * further, but this time using legacy BAR registers
4018			 */
4019			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
4020			tmp &= ~PCIM_EA_ENABLE;
4021			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
4022
4023			/*
4024			 * Disabling entry might fail in case it is hardwired.
4025			 * Read flags again to match current status.
4026			 */
4027			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
4028
4029			continue;
4030		}
4031
4032		/* As per specification, fill BAR with zeros */
4033		pci_write_config(dev, rid, 0, 4);
4034	}
4035}
4036
4037void
4038pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
4039{
4040	struct pci_devinfo *dinfo;
4041	pcicfgregs *cfg;
4042	struct resource_list *rl;
4043	const struct pci_quirk *q;
4044	uint32_t devid;
4045	int i;
4046
4047	dinfo = device_get_ivars(dev);
4048	cfg = &dinfo->cfg;
4049	rl = &dinfo->resources;
4050	devid = (cfg->device << 16) | cfg->vendor;
4051
4052	/* Allocate resources using Enhanced Allocation */
4053	pci_add_resources_ea(bus, dev, 0);
4054
4055	/* ATA devices needs special map treatment */
4056	if ((pci_get_class(dev) == PCIC_STORAGE) &&
4057	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4058	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4059	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4060	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
4061		pci_ata_maps(bus, dev, rl, force, prefetchmask);
4062	else
4063		for (i = 0; i < cfg->nummaps;) {
4064			/* Skip resources already managed by EA */
4065			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4066			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4067			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4068				i++;
4069				continue;
4070			}
4071
4072			/*
4073			 * Skip quirked resources.
4074			 */
4075			for (q = &pci_quirks[0]; q->devid != 0; q++)
4076				if (q->devid == devid &&
4077				    q->type == PCI_QUIRK_UNMAP_REG &&
4078				    q->arg1 == PCIR_BAR(i))
4079					break;
4080			if (q->devid != 0) {
4081				i++;
4082				continue;
4083			}
4084			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4085			    prefetchmask & (1 << i));
4086		}
4087
4088	/*
4089	 * Add additional, quirked resources.
4090	 */
4091	for (q = &pci_quirks[0]; q->devid != 0; q++)
4092		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4093			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4094
4095	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4096#ifdef __PCI_REROUTE_INTERRUPT
4097		/*
4098		 * Try to re-route interrupts. Sometimes the BIOS or
4099		 * firmware may leave bogus values in these registers.
4100		 * If the re-route fails, then just stick with what we
4101		 * have.
4102		 */
4103		pci_assign_interrupt(bus, dev, 1);
4104#else
4105		pci_assign_interrupt(bus, dev, 0);
4106#endif
4107	}
4108
4109	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4110	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4111		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4112			xhci_early_takeover(dev);
4113		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4114			ehci_early_takeover(dev);
4115		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4116			ohci_early_takeover(dev);
4117		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4118			uhci_early_takeover(dev);
4119	}
4120
4121#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
4122	/*
4123	 * Reserve resources for secondary bus ranges behind bridge
4124	 * devices.
4125	 */
4126	pci_reserve_secbus(bus, dev, cfg, rl);
4127#endif
4128}
4129
4130static struct pci_devinfo *
4131pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4132    int slot, int func)
4133{
4134	struct pci_devinfo *dinfo;
4135
4136	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4137	if (dinfo != NULL)
4138		pci_add_child(dev, dinfo);
4139
4140	return (dinfo);
4141}
4142
4143void
4144pci_add_children(device_t dev, int domain, int busno)
4145{
4146#define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4147	device_t pcib = device_get_parent(dev);
4148	struct pci_devinfo *dinfo;
4149	int maxslots;
4150	int s, f, pcifunchigh;
4151	uint8_t hdrtype;
4152	int first_func;
4153
4154	/*
4155	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4156	 * enable ARI.  We must enable ARI before detecting the rest of the
4157	 * functions on this bus as ARI changes the set of slots and functions
4158	 * that are legal on this bus.
4159	 */
4160	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4161	if (dinfo != NULL && pci_enable_ari)
4162		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4163
4164	/*
4165	 * Start looking for new devices on slot 0 at function 1 because we
4166	 * just identified the device at slot 0, function 0.
4167	 */
4168	first_func = 1;
4169
4170	maxslots = PCIB_MAXSLOTS(pcib);
4171	for (s = 0; s <= maxslots; s++, first_func = 0) {
4172		pcifunchigh = 0;
4173		f = 0;
4174		DELAY(1);
4175
4176		/* If function 0 is not present, skip to the next slot. */
4177		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4178			continue;
4179		hdrtype = REG(PCIR_HDRTYPE, 1);
4180		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4181			continue;
4182		if (hdrtype & PCIM_MFDEV)
4183			pcifunchigh = PCIB_MAXFUNCS(pcib);
4184		for (f = first_func; f <= pcifunchigh; f++)
4185			pci_identify_function(pcib, dev, domain, busno, s, f);
4186	}
4187#undef REG
4188}
4189
4190int
4191pci_rescan_method(device_t dev)
4192{
4193#define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4194	device_t pcib = device_get_parent(dev);
4195	device_t child, *devlist, *unchanged;
4196	int devcount, error, i, j, maxslots, oldcount;
4197	int busno, domain, s, f, pcifunchigh;
4198	uint8_t hdrtype;
4199
4200	/* No need to check for ARI on a rescan. */
4201	error = device_get_children(dev, &devlist, &devcount);
4202	if (error)
4203		return (error);
4204	if (devcount != 0) {
4205		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4206		    M_NOWAIT | M_ZERO);
4207		if (unchanged == NULL) {
4208			free(devlist, M_TEMP);
4209			return (ENOMEM);
4210		}
4211	} else
4212		unchanged = NULL;
4213
4214	domain = pcib_get_domain(dev);
4215	busno = pcib_get_bus(dev);
4216	maxslots = PCIB_MAXSLOTS(pcib);
4217	for (s = 0; s <= maxslots; s++) {
4218		/* If function 0 is not present, skip to the next slot. */
4219		f = 0;
4220		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4221			continue;
4222		pcifunchigh = 0;
4223		hdrtype = REG(PCIR_HDRTYPE, 1);
4224		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4225			continue;
4226		if (hdrtype & PCIM_MFDEV)
4227			pcifunchigh = PCIB_MAXFUNCS(pcib);
4228		for (f = 0; f <= pcifunchigh; f++) {
4229			if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4230				continue;
4231
4232			/*
4233			 * Found a valid function.  Check if a
4234			 * device_t for this device already exists.
4235			 */
4236			for (i = 0; i < devcount; i++) {
4237				child = devlist[i];
4238				if (child == NULL)
4239					continue;
4240				if (pci_get_slot(child) == s &&
4241				    pci_get_function(child) == f) {
4242					unchanged[i] = child;
4243					goto next_func;
4244				}
4245			}
4246
4247			pci_identify_function(pcib, dev, domain, busno, s, f);
4248		next_func:;
4249		}
4250	}
4251
4252	/* Remove devices that are no longer present. */
4253	for (i = 0; i < devcount; i++) {
4254		if (unchanged[i] != NULL)
4255			continue;
4256		device_delete_child(dev, devlist[i]);
4257	}
4258
4259	free(devlist, M_TEMP);
4260	oldcount = devcount;
4261
4262	/* Try to attach the devices just added. */
4263	error = device_get_children(dev, &devlist, &devcount);
4264	if (error) {
4265		free(unchanged, M_TEMP);
4266		return (error);
4267	}
4268
4269	for (i = 0; i < devcount; i++) {
4270		for (j = 0; j < oldcount; j++) {
4271			if (devlist[i] == unchanged[j])
4272				goto next_device;
4273		}
4274
4275		device_probe_and_attach(devlist[i]);
4276	next_device:;
4277	}
4278
4279	free(unchanged, M_TEMP);
4280	free(devlist, M_TEMP);
4281	return (0);
4282#undef REG
4283}
4284
4285#ifdef PCI_IOV
4286device_t
4287pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4288    uint16_t did)
4289{
4290	struct pci_devinfo *vf_dinfo;
4291	device_t pcib;
4292	int busno, slot, func;
4293
4294	pcib = device_get_parent(bus);
4295
4296	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4297
4298	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4299	    slot, func, vid, did);
4300
4301	vf_dinfo->cfg.flags |= PCICFG_VF;
4302	pci_add_child(bus, vf_dinfo);
4303
4304	return (vf_dinfo->cfg.dev);
4305}
4306
4307device_t
4308pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4309    uint16_t vid, uint16_t did)
4310{
4311
4312	return (pci_add_iov_child(bus, pf, rid, vid, did));
4313}
4314#endif
4315
4316/*
4317 * For PCIe device set Max_Payload_Size to match PCIe root's.
4318 */
4319static void
4320pcie_setup_mps(device_t dev)
4321{
4322	struct pci_devinfo *dinfo = device_get_ivars(dev);
4323	device_t root;
4324	uint16_t rmps, mmps, mps;
4325
4326	if (dinfo->cfg.pcie.pcie_location == 0)
4327		return;
4328	root = pci_find_pcie_root_port(dev);
4329	if (root == NULL)
4330		return;
4331	/* Check whether the MPS is already configured. */
4332	rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
4333	    PCIEM_CTL_MAX_PAYLOAD;
4334	mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
4335	    PCIEM_CTL_MAX_PAYLOAD;
4336	if (mps == rmps)
4337		return;
4338	/* Check whether the device is capable of the root's MPS. */
4339	mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
4340	    PCIEM_CAP_MAX_PAYLOAD) << 5;
4341	if (rmps > mmps) {
4342		/*
4343		 * The device is unable to handle root's MPS.  Limit root.
4344		 * XXX: We should traverse through all the tree, applying
4345		 * it to all the devices.
4346		 */
4347		pcie_adjust_config(root, PCIER_DEVICE_CTL,
4348		    PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
4349	} else {
4350		pcie_adjust_config(dev, PCIER_DEVICE_CTL,
4351		    PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
4352	}
4353}
4354
4355static void
4356pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4357{
4358	int aer;
4359	uint32_t r;
4360	uint16_t r2;
4361
4362	if (dinfo->cfg.pcie.pcie_location != 0 &&
4363	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4364		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4365		    PCIER_ROOT_CTL, 2);
4366		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4367		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4368		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4369		    PCIER_ROOT_CTL, r2, 2);
4370	}
4371	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4372		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4373		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4374		if (r != 0 && bootverbose) {
4375			pci_printf(&dinfo->cfg,
4376			    "clearing AER UC 0x%08x -> 0x%08x\n",
4377			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4378			    4));
4379		}
4380
4381		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4382		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4383		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4384		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4385		    PCIM_AER_UC_POISONED_TLP |
4386		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4387		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4388		    PCIM_AER_UC_COMPLETER_ABORT |
4389		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4390		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4391		    PCIM_AER_UC_MALFORMED_TLP |
4392		    PCIM_AER_UC_ECRC_ERROR |
4393		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4394		    PCIM_AER_UC_ACS_VIOLATION |
4395		    PCIM_AER_UC_INTERNAL_ERROR |
4396		    PCIM_AER_UC_MC_BLOCKED_TLP |
4397		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4398		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4399		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4400
4401		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4402		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4403		if (r != 0 && bootverbose) {
4404			pci_printf(&dinfo->cfg,
4405			    "clearing AER COR 0x%08x -> 0x%08x\n",
4406			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4407			    4));
4408		}
4409
4410		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4411		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4412		    PCIM_AER_COR_BAD_TLP |
4413		    PCIM_AER_COR_BAD_DLLP |
4414		    PCIM_AER_COR_REPLAY_ROLLOVER |
4415		    PCIM_AER_COR_REPLAY_TIMEOUT |
4416		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4417		    PCIM_AER_COR_INTERNAL_ERROR |
4418		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4419		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4420
4421		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4422		    PCIER_DEVICE_CTL, 2);
4423		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4424		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4425		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4426		    PCIER_DEVICE_CTL, r, 2);
4427	}
4428}
4429
4430void
4431pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4432{
4433	device_t dev;
4434
4435	dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1);
4436	device_set_ivars(dev, dinfo);
4437	resource_list_init(&dinfo->resources);
4438	pci_cfg_save(dev, dinfo, 0);
4439	pci_cfg_restore(dev, dinfo);
4440	pci_print_verbose(dinfo);
4441	pci_add_resources(bus, dev, 0, 0);
4442	if (pci_enable_mps_tune)
4443		pcie_setup_mps(dev);
4444	pci_child_added(dinfo->cfg.dev);
4445
4446	if (pci_clear_aer_on_attach)
4447		pci_add_child_clear_aer(dev, dinfo);
4448
4449	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4450}
4451
4452void
4453pci_child_added_method(device_t dev, device_t child)
4454{
4455
4456}
4457
4458static int
4459pci_probe(device_t dev)
4460{
4461
4462	device_set_desc(dev, "PCI bus");
4463
4464	/* Allow other subclasses to override this driver. */
4465	return (BUS_PROBE_GENERIC);
4466}
4467
4468int
4469pci_attach_common(device_t dev)
4470{
4471	struct pci_softc *sc;
4472	int busno, domain;
4473#ifdef PCI_RES_BUS
4474	int rid;
4475#endif
4476
4477	sc = device_get_softc(dev);
4478	domain = pcib_get_domain(dev);
4479	busno = pcib_get_bus(dev);
4480#ifdef PCI_RES_BUS
4481	rid = 0;
4482	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4483	    1, 0);
4484	if (sc->sc_bus == NULL) {
4485		device_printf(dev, "failed to allocate bus number\n");
4486		return (ENXIO);
4487	}
4488#endif
4489	if (bootverbose)
4490		device_printf(dev, "domain=%d, physical bus=%d\n",
4491		    domain, busno);
4492	sc->sc_dma_tag = bus_get_dma_tag(dev);
4493	return (0);
4494}
4495
4496int
4497pci_attach(device_t dev)
4498{
4499	int busno, domain, error;
4500
4501	error = pci_attach_common(dev);
4502	if (error)
4503		return (error);
4504
4505	/*
4506	 * Since there can be multiple independently numbered PCI
4507	 * buses on systems with multiple PCI domains, we can't use
4508	 * the unit number to decide which bus we are probing. We ask
4509	 * the parent pcib what our domain and bus numbers are.
4510	 */
4511	domain = pcib_get_domain(dev);
4512	busno = pcib_get_bus(dev);
4513	pci_add_children(dev, domain, busno);
4514	return (bus_generic_attach(dev));
4515}
4516
4517int
4518pci_detach(device_t dev)
4519{
4520#ifdef PCI_RES_BUS
4521	struct pci_softc *sc;
4522#endif
4523	int error;
4524
4525	error = bus_generic_detach(dev);
4526	if (error)
4527		return (error);
4528#ifdef PCI_RES_BUS
4529	sc = device_get_softc(dev);
4530	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4531	if (error)
4532		return (error);
4533#endif
4534	return (device_delete_children(dev));
4535}
4536
4537static void
4538pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4539{
4540	int line, unit;
4541	const char *at;
4542	char me1[24], me2[32];
4543	uint8_t b, s, f;
4544	uint32_t d;
4545	device_location_cache_t *cache;
4546
4547	d = pci_get_domain(child);
4548	b = pci_get_bus(child);
4549	s = pci_get_slot(child);
4550	f = pci_get_function(child);
4551	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4552	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4553	line = 0;
4554	cache = dev_wired_cache_init();
4555	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4556		resource_string_value(name, unit, "at", &at);
4557		if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) {
4558			*unitp = unit;
4559			break;
4560		}
4561		if (dev_wired_cache_match(cache, child, at)) {
4562			*unitp = unit;
4563			break;
4564		}
4565	}
4566	dev_wired_cache_fini(cache);
4567}
4568
4569static void
4570pci_set_power_child(device_t dev, device_t child, int state)
4571{
4572	device_t pcib;
4573	int dstate;
4574
4575	/*
4576	 * Set the device to the given state.  If the firmware suggests
4577	 * a different power state, use it instead.  If power management
4578	 * is not present, the firmware is responsible for managing
4579	 * device power.  Skip children who aren't attached since they
4580	 * are handled separately.
4581	 */
4582	pcib = device_get_parent(dev);
4583	dstate = state;
4584	if (device_is_attached(child) &&
4585	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4586		pci_set_powerstate(child, dstate);
4587}
4588
4589int
4590pci_suspend_child(device_t dev, device_t child)
4591{
4592	struct pci_devinfo *dinfo;
4593	struct resource_list_entry *rle;
4594	int error;
4595
4596	dinfo = device_get_ivars(child);
4597
4598	/*
4599	 * Save the PCI configuration space for the child and set the
4600	 * device in the appropriate power state for this sleep state.
4601	 */
4602	pci_cfg_save(child, dinfo, 0);
4603
4604	/* Suspend devices before potentially powering them down. */
4605	error = bus_generic_suspend_child(dev, child);
4606
4607	if (error)
4608		return (error);
4609
4610	if (pci_do_power_suspend) {
4611		/*
4612		 * Make sure this device's interrupt handler is not invoked
4613		 * in the case the device uses a shared interrupt that can
4614		 * be raised by some other device.
4615		 * This is applicable only to regular (legacy) PCI interrupts
4616		 * as MSI/MSI-X interrupts are never shared.
4617		 */
4618		rle = resource_list_find(&dinfo->resources,
4619		    SYS_RES_IRQ, 0);
4620		if (rle != NULL && rle->res != NULL)
4621			(void)bus_suspend_intr(child, rle->res);
4622		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4623	}
4624
4625	return (0);
4626}
4627
4628int
4629pci_resume_child(device_t dev, device_t child)
4630{
4631	struct pci_devinfo *dinfo;
4632	struct resource_list_entry *rle;
4633
4634	if (pci_do_power_resume)
4635		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4636
4637	dinfo = device_get_ivars(child);
4638	pci_cfg_restore(child, dinfo);
4639	if (!device_is_attached(child))
4640		pci_cfg_save(child, dinfo, 1);
4641
4642	bus_generic_resume_child(dev, child);
4643
4644	/*
4645	 * Allow interrupts only after fully resuming the driver and hardware.
4646	 */
4647	if (pci_do_power_suspend) {
4648		/* See pci_suspend_child for details. */
4649		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4650		if (rle != NULL && rle->res != NULL)
4651			(void)bus_resume_intr(child, rle->res);
4652	}
4653
4654	return (0);
4655}
4656
4657int
4658pci_resume(device_t dev)
4659{
4660	device_t child, *devlist;
4661	int error, i, numdevs;
4662
4663	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4664		return (error);
4665
4666	/*
4667	 * Resume critical devices first, then everything else later.
4668	 */
4669	for (i = 0; i < numdevs; i++) {
4670		child = devlist[i];
4671		switch (pci_get_class(child)) {
4672		case PCIC_DISPLAY:
4673		case PCIC_MEMORY:
4674		case PCIC_BRIDGE:
4675		case PCIC_BASEPERIPH:
4676			BUS_RESUME_CHILD(dev, child);
4677			break;
4678		}
4679	}
4680	for (i = 0; i < numdevs; i++) {
4681		child = devlist[i];
4682		switch (pci_get_class(child)) {
4683		case PCIC_DISPLAY:
4684		case PCIC_MEMORY:
4685		case PCIC_BRIDGE:
4686		case PCIC_BASEPERIPH:
4687			break;
4688		default:
4689			BUS_RESUME_CHILD(dev, child);
4690		}
4691	}
4692	free(devlist, M_TEMP);
4693	return (0);
4694}
4695
4696static void
4697pci_load_vendor_data(void)
4698{
4699	caddr_t data;
4700	void *ptr;
4701	size_t sz;
4702
4703	data = preload_search_by_type("pci_vendor_data");
4704	if (data != NULL) {
4705		ptr = preload_fetch_addr(data);
4706		sz = preload_fetch_size(data);
4707		if (ptr != NULL && sz != 0) {
4708			pci_vendordata = ptr;
4709			pci_vendordata_size = sz;
4710			/* terminate the database */
4711			pci_vendordata[pci_vendordata_size] = '\n';
4712		}
4713	}
4714}
4715
4716void
4717pci_driver_added(device_t dev, driver_t *driver)
4718{
4719	int numdevs;
4720	device_t *devlist;
4721	device_t child;
4722	struct pci_devinfo *dinfo;
4723	int i;
4724
4725	if (bootverbose)
4726		device_printf(dev, "driver added\n");
4727	DEVICE_IDENTIFY(driver, dev);
4728	if (device_get_children(dev, &devlist, &numdevs) != 0)
4729		return;
4730	for (i = 0; i < numdevs; i++) {
4731		child = devlist[i];
4732		if (device_get_state(child) != DS_NOTPRESENT)
4733			continue;
4734		dinfo = device_get_ivars(child);
4735		pci_print_verbose(dinfo);
4736		if (bootverbose)
4737			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4738		pci_cfg_restore(child, dinfo);
4739		if (device_probe_and_attach(child) != 0)
4740			pci_child_detached(dev, child);
4741	}
4742	free(devlist, M_TEMP);
4743}
4744
4745int
4746pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4747    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4748{
4749	struct pci_devinfo *dinfo;
4750	struct msix_table_entry *mte;
4751	struct msix_vector *mv;
4752	uint64_t addr;
4753	uint32_t data;
4754	void *cookie;
4755	int error, rid;
4756
4757	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4758	    arg, &cookie);
4759	if (error)
4760		return (error);
4761
4762	/* If this is not a direct child, just bail out. */
4763	if (device_get_parent(child) != dev) {
4764		*cookiep = cookie;
4765		return(0);
4766	}
4767
4768	rid = rman_get_rid(irq);
4769	if (rid == 0) {
4770		/* Make sure that INTx is enabled */
4771		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4772	} else {
4773		/*
4774		 * Check to see if the interrupt is MSI or MSI-X.
4775		 * Ask our parent to map the MSI and give
4776		 * us the address and data register values.
4777		 * If we fail for some reason, teardown the
4778		 * interrupt handler.
4779		 */
4780		dinfo = device_get_ivars(child);
4781		if (dinfo->cfg.msi.msi_alloc > 0) {
4782			if (dinfo->cfg.msi.msi_addr == 0) {
4783				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4784			    ("MSI has handlers, but vectors not mapped"));
4785				error = PCIB_MAP_MSI(device_get_parent(dev),
4786				    child, rman_get_start(irq), &addr, &data);
4787				if (error)
4788					goto bad;
4789				dinfo->cfg.msi.msi_addr = addr;
4790				dinfo->cfg.msi.msi_data = data;
4791			}
4792			if (dinfo->cfg.msi.msi_handlers == 0)
4793				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4794				    dinfo->cfg.msi.msi_data);
4795			dinfo->cfg.msi.msi_handlers++;
4796		} else {
4797			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4798			    ("No MSI or MSI-X interrupts allocated"));
4799			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4800			    ("MSI-X index too high"));
4801			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4802			KASSERT(mte->mte_vector != 0, ("no message vector"));
4803			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4804			KASSERT(mv->mv_irq == rman_get_start(irq),
4805			    ("IRQ mismatch"));
4806			if (mv->mv_address == 0) {
4807				KASSERT(mte->mte_handlers == 0,
4808		    ("MSI-X table entry has handlers, but vector not mapped"));
4809				error = PCIB_MAP_MSI(device_get_parent(dev),
4810				    child, rman_get_start(irq), &addr, &data);
4811				if (error)
4812					goto bad;
4813				mv->mv_address = addr;
4814				mv->mv_data = data;
4815			}
4816
4817			/*
4818			 * The MSIX table entry must be made valid by
4819			 * incrementing the mte_handlers before
4820			 * calling pci_enable_msix() and
4821			 * pci_resume_msix(). Else the MSIX rewrite
4822			 * table quirk will not work as expected.
4823			 */
4824			mte->mte_handlers++;
4825			if (mte->mte_handlers == 1) {
4826				pci_enable_msix(child, rid - 1, mv->mv_address,
4827				    mv->mv_data);
4828				pci_unmask_msix(child, rid - 1);
4829			}
4830		}
4831
4832		/*
4833		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4834		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4835		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4836		 */
4837		if (!pci_has_quirk(pci_get_devid(child),
4838		    PCI_QUIRK_MSI_INTX_BUG))
4839			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4840		else
4841			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4842	bad:
4843		if (error) {
4844			(void)bus_generic_teardown_intr(dev, child, irq,
4845			    cookie);
4846			return (error);
4847		}
4848	}
4849	*cookiep = cookie;
4850	return (0);
4851}
4852
4853int
4854pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4855    void *cookie)
4856{
4857	struct msix_table_entry *mte;
4858	struct resource_list_entry *rle;
4859	struct pci_devinfo *dinfo;
4860	int error, rid;
4861
4862	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4863		return (EINVAL);
4864
4865	/* If this isn't a direct child, just bail out */
4866	if (device_get_parent(child) != dev)
4867		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4868
4869	rid = rman_get_rid(irq);
4870	if (rid == 0) {
4871		/* Mask INTx */
4872		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4873	} else {
4874		/*
4875		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4876		 * decrement the appropriate handlers count and mask the
4877		 * MSI-X message, or disable MSI messages if the count
4878		 * drops to 0.
4879		 */
4880		dinfo = device_get_ivars(child);
4881		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4882		if (rle->res != irq)
4883			return (EINVAL);
4884		if (dinfo->cfg.msi.msi_alloc > 0) {
4885			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4886			    ("MSI-X index too high"));
4887			if (dinfo->cfg.msi.msi_handlers == 0)
4888				return (EINVAL);
4889			dinfo->cfg.msi.msi_handlers--;
4890			if (dinfo->cfg.msi.msi_handlers == 0)
4891				pci_disable_msi(child);
4892		} else {
4893			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4894			    ("No MSI or MSI-X interrupts allocated"));
4895			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4896			    ("MSI-X index too high"));
4897			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4898			if (mte->mte_handlers == 0)
4899				return (EINVAL);
4900			mte->mte_handlers--;
4901			if (mte->mte_handlers == 0)
4902				pci_mask_msix(child, rid - 1);
4903		}
4904	}
4905	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4906	if (rid > 0)
4907		KASSERT(error == 0,
4908		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4909	return (error);
4910}
4911
4912int
4913pci_print_child(device_t dev, device_t child)
4914{
4915	struct pci_devinfo *dinfo;
4916	struct resource_list *rl;
4917	int retval = 0;
4918
4919	dinfo = device_get_ivars(child);
4920	rl = &dinfo->resources;
4921
4922	retval += bus_print_child_header(dev, child);
4923
4924	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4925	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4926	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4927	if (device_get_flags(dev))
4928		retval += printf(" flags %#x", device_get_flags(dev));
4929
4930	retval += printf(" at device %d.%d", pci_get_slot(child),
4931	    pci_get_function(child));
4932
4933	retval += bus_print_child_domain(dev, child);
4934	retval += bus_print_child_footer(dev, child);
4935
4936	return (retval);
4937}
4938
4939static const struct
4940{
4941	int		class;
4942	int		subclass;
4943	int		report; /* 0 = bootverbose, 1 = always */
4944	const char	*desc;
4945} pci_nomatch_tab[] = {
4946	{PCIC_OLD,		-1,			1, "old"},
4947	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
4948	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
4949	{PCIC_STORAGE,		-1,			1, "mass storage"},
4950	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
4951	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
4952	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
4953	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
4954	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
4955	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
4956	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
4957	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
4958	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
4959	{PCIC_NETWORK,		-1,			1, "network"},
4960	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
4961	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
4962	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
4963	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
4964	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
4965	{PCIC_DISPLAY,		-1,			1, "display"},
4966	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
4967	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
4968	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
4969	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
4970	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
4971	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
4972	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
4973	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
4974	{PCIC_MEMORY,		-1,			1, "memory"},
4975	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
4976	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
4977	{PCIC_BRIDGE,		-1,			1, "bridge"},
4978	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
4979	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
4980	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
4981	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
4982	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
4983	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
4984	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
4985	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
4986	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
4987	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
4988	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
4989	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
4990	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
4991	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
4992	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
4993	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
4994	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
4995	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
4996	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
4997	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
4998	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
4999	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
5000	{PCIC_INPUTDEV,		-1,			1, "input device"},
5001	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
5002	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
5003	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
5004	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
5005	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
5006	{PCIC_DOCKING,		-1,			1, "docking station"},
5007	{PCIC_PROCESSOR,	-1,			1, "processor"},
5008	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
5009	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
5010	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
5011	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
5012	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
5013	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
5014	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
5015	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
5016	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
5017	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
5018	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
5019	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
5020	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
5021	{PCIC_SATCOM,		-1,			1, "satellite communication"},
5022	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
5023	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
5024	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
5025	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
5026	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
5027	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
5028	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
5029	{PCIC_DASP,		-1,			0, "dasp"},
5030	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
5031	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
5032	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
5033	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
5034	{PCIC_INSTRUMENT,	-1,			0, "non-essential instrumentation"},
5035	{0, 0, 0,		NULL}
5036};
5037
5038void
5039pci_probe_nomatch(device_t dev, device_t child)
5040{
5041	int i, report;
5042	const char *cp, *scp;
5043	char *device;
5044
5045	/*
5046	 * Look for a listing for this device in a loaded device database.
5047	 */
5048	report = 1;
5049	if ((device = pci_describe_device(child)) != NULL) {
5050		device_printf(dev, "<%s>", device);
5051		free(device, M_DEVBUF);
5052	} else {
5053		/*
5054		 * Scan the class/subclass descriptions for a general
5055		 * description.
5056		 */
5057		cp = "unknown";
5058		scp = NULL;
5059		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
5060			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
5061				if (pci_nomatch_tab[i].subclass == -1) {
5062					cp = pci_nomatch_tab[i].desc;
5063					report = pci_nomatch_tab[i].report;
5064				} else if (pci_nomatch_tab[i].subclass ==
5065				    pci_get_subclass(child)) {
5066					scp = pci_nomatch_tab[i].desc;
5067					report = pci_nomatch_tab[i].report;
5068				}
5069			}
5070		}
5071		if (report || bootverbose) {
5072			device_printf(dev, "<%s%s%s>",
5073			    cp ? cp : "",
5074			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
5075			    scp ? scp : "");
5076		}
5077	}
5078	if (report || bootverbose) {
5079		printf(" at device %d.%d (no driver attached)\n",
5080		    pci_get_slot(child), pci_get_function(child));
5081	}
5082	pci_cfg_save(child, device_get_ivars(child), 1);
5083}
5084
5085void
5086pci_child_detached(device_t dev, device_t child)
5087{
5088	struct pci_devinfo *dinfo;
5089	struct resource_list *rl;
5090
5091	dinfo = device_get_ivars(child);
5092	rl = &dinfo->resources;
5093
5094	/*
5095	 * Have to deallocate IRQs before releasing any MSI messages and
5096	 * have to release MSI messages before deallocating any memory
5097	 * BARs.
5098	 */
5099	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
5100		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
5101	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
5102		if (dinfo->cfg.msi.msi_alloc != 0)
5103			pci_printf(&dinfo->cfg, "Device leaked %d MSI "
5104			    "vectors\n", dinfo->cfg.msi.msi_alloc);
5105		else
5106			pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
5107			    "vectors\n", dinfo->cfg.msix.msix_alloc);
5108		(void)pci_release_msi(child);
5109	}
5110	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
5111		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
5112	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
5113		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
5114#ifdef PCI_RES_BUS
5115	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5116		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5117#endif
5118
5119	pci_cfg_save(child, dinfo, 1);
5120}
5121
5122/*
5123 * Parse the PCI device database, if loaded, and return a pointer to a
5124 * description of the device.
5125 *
5126 * The database is flat text formatted as follows:
5127 *
5128 * Any line not in a valid format is ignored.
5129 * Lines are terminated with newline '\n' characters.
5130 *
5131 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5132 * the vendor name.
5133 *
5134 * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5135 * - devices cannot be listed without a corresponding VENDOR line.
5136 * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5137 * another TAB, then the device name.
5138 */
5139
5140/*
5141 * Assuming (ptr) points to the beginning of a line in the database,
5142 * return the vendor or device and description of the next entry.
5143 * The value of (vendor) or (device) inappropriate for the entry type
5144 * is set to -1.  Returns nonzero at the end of the database.
5145 *
5146 * Note that this is slightly unrobust in the face of corrupt data;
5147 * we attempt to safeguard against this by spamming the end of the
5148 * database with a newline when we initialise.
5149 */
5150static int
5151pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5152{
5153	char	*cp = *ptr;
5154	int	left;
5155
5156	*device = -1;
5157	*vendor = -1;
5158	**desc = '\0';
5159	for (;;) {
5160		left = pci_vendordata_size - (cp - pci_vendordata);
5161		if (left <= 0) {
5162			*ptr = cp;
5163			return(1);
5164		}
5165
5166		/* vendor entry? */
5167		if (*cp != '\t' &&
5168		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5169			break;
5170		/* device entry? */
5171		if (*cp == '\t' &&
5172		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5173			break;
5174
5175		/* skip to next line */
5176		while (*cp != '\n' && left > 0) {
5177			cp++;
5178			left--;
5179		}
5180		if (*cp == '\n') {
5181			cp++;
5182			left--;
5183		}
5184	}
5185	/* skip to next line */
5186	while (*cp != '\n' && left > 0) {
5187		cp++;
5188		left--;
5189	}
5190	if (*cp == '\n' && left > 0)
5191		cp++;
5192	*ptr = cp;
5193	return(0);
5194}
5195
5196static char *
5197pci_describe_device(device_t dev)
5198{
5199	int	vendor, device;
5200	char	*desc, *vp, *dp, *line;
5201
5202	desc = vp = dp = NULL;
5203
5204	/*
5205	 * If we have no vendor data, we can't do anything.
5206	 */
5207	if (pci_vendordata == NULL)
5208		goto out;
5209
5210	/*
5211	 * Scan the vendor data looking for this device
5212	 */
5213	line = pci_vendordata;
5214	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5215		goto out;
5216	for (;;) {
5217		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5218			goto out;
5219		if (vendor == pci_get_vendor(dev))
5220			break;
5221	}
5222	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5223		goto out;
5224	for (;;) {
5225		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5226			*dp = 0;
5227			break;
5228		}
5229		if (vendor != -1) {
5230			*dp = 0;
5231			break;
5232		}
5233		if (device == pci_get_device(dev))
5234			break;
5235	}
5236	if (dp[0] == '\0')
5237		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5238	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5239	    NULL)
5240		sprintf(desc, "%s, %s", vp, dp);
5241out:
5242	if (vp != NULL)
5243		free(vp, M_DEVBUF);
5244	if (dp != NULL)
5245		free(dp, M_DEVBUF);
5246	return(desc);
5247}
5248
5249int
5250pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5251{
5252	struct pci_devinfo *dinfo;
5253	pcicfgregs *cfg;
5254
5255	dinfo = device_get_ivars(child);
5256	cfg = &dinfo->cfg;
5257
5258	switch (which) {
5259	case PCI_IVAR_ETHADDR:
5260		/*
5261		 * The generic accessor doesn't deal with failure, so
5262		 * we set the return value, then return an error.
5263		 */
5264		*((uint8_t **) result) = NULL;
5265		return (EINVAL);
5266	case PCI_IVAR_SUBVENDOR:
5267		*result = cfg->subvendor;
5268		break;
5269	case PCI_IVAR_SUBDEVICE:
5270		*result = cfg->subdevice;
5271		break;
5272	case PCI_IVAR_VENDOR:
5273		*result = cfg->vendor;
5274		break;
5275	case PCI_IVAR_DEVICE:
5276		*result = cfg->device;
5277		break;
5278	case PCI_IVAR_DEVID:
5279		*result = (cfg->device << 16) | cfg->vendor;
5280		break;
5281	case PCI_IVAR_CLASS:
5282		*result = cfg->baseclass;
5283		break;
5284	case PCI_IVAR_SUBCLASS:
5285		*result = cfg->subclass;
5286		break;
5287	case PCI_IVAR_PROGIF:
5288		*result = cfg->progif;
5289		break;
5290	case PCI_IVAR_REVID:
5291		*result = cfg->revid;
5292		break;
5293	case PCI_IVAR_INTPIN:
5294		*result = cfg->intpin;
5295		break;
5296	case PCI_IVAR_IRQ:
5297		*result = cfg->intline;
5298		break;
5299	case PCI_IVAR_DOMAIN:
5300		*result = cfg->domain;
5301		break;
5302	case PCI_IVAR_BUS:
5303		*result = cfg->bus;
5304		break;
5305	case PCI_IVAR_SLOT:
5306		*result = cfg->slot;
5307		break;
5308	case PCI_IVAR_FUNCTION:
5309		*result = cfg->func;
5310		break;
5311	case PCI_IVAR_CMDREG:
5312		*result = cfg->cmdreg;
5313		break;
5314	case PCI_IVAR_CACHELNSZ:
5315		*result = cfg->cachelnsz;
5316		break;
5317	case PCI_IVAR_MINGNT:
5318		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5319			*result = -1;
5320			return (EINVAL);
5321		}
5322		*result = cfg->mingnt;
5323		break;
5324	case PCI_IVAR_MAXLAT:
5325		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5326			*result = -1;
5327			return (EINVAL);
5328		}
5329		*result = cfg->maxlat;
5330		break;
5331	case PCI_IVAR_LATTIMER:
5332		*result = cfg->lattimer;
5333		break;
5334	default:
5335		return (ENOENT);
5336	}
5337	return (0);
5338}
5339
5340int
5341pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5342{
5343	struct pci_devinfo *dinfo;
5344
5345	dinfo = device_get_ivars(child);
5346
5347	switch (which) {
5348	case PCI_IVAR_INTPIN:
5349		dinfo->cfg.intpin = value;
5350		return (0);
5351	case PCI_IVAR_ETHADDR:
5352	case PCI_IVAR_SUBVENDOR:
5353	case PCI_IVAR_SUBDEVICE:
5354	case PCI_IVAR_VENDOR:
5355	case PCI_IVAR_DEVICE:
5356	case PCI_IVAR_DEVID:
5357	case PCI_IVAR_CLASS:
5358	case PCI_IVAR_SUBCLASS:
5359	case PCI_IVAR_PROGIF:
5360	case PCI_IVAR_REVID:
5361	case PCI_IVAR_IRQ:
5362	case PCI_IVAR_DOMAIN:
5363	case PCI_IVAR_BUS:
5364	case PCI_IVAR_SLOT:
5365	case PCI_IVAR_FUNCTION:
5366		return (EINVAL);	/* disallow for now */
5367
5368	default:
5369		return (ENOENT);
5370	}
5371}
5372
5373#include "opt_ddb.h"
5374#ifdef DDB
5375#include <ddb/ddb.h>
5376#include <sys/cons.h>
5377
5378/*
5379 * List resources based on pci map registers, used for within ddb
5380 */
5381
5382DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE)
5383{
5384	struct pci_devinfo *dinfo;
5385	struct devlist *devlist_head;
5386	struct pci_conf *p;
5387	const char *name;
5388	int i, error, none_count;
5389
5390	none_count = 0;
5391	/* get the head of the device queue */
5392	devlist_head = &pci_devq;
5393
5394	/*
5395	 * Go through the list of devices and print out devices
5396	 */
5397	for (error = 0, i = 0,
5398	     dinfo = STAILQ_FIRST(devlist_head);
5399	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5400	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5401		/* Populate pd_name and pd_unit */
5402		name = NULL;
5403		if (dinfo->cfg.dev)
5404			name = device_get_name(dinfo->cfg.dev);
5405
5406		p = &dinfo->conf;
5407		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5408			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5409			(name && *name) ? name : "none",
5410			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5411			none_count++,
5412			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5413			p->pc_sel.pc_func, (p->pc_class << 16) |
5414			(p->pc_subclass << 8) | p->pc_progif,
5415			(p->pc_subdevice << 16) | p->pc_subvendor,
5416			(p->pc_device << 16) | p->pc_vendor,
5417			p->pc_revid, p->pc_hdr);
5418	}
5419}
5420#endif /* DDB */
5421
5422struct resource *
5423pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5424    rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5425    u_int flags)
5426{
5427	struct pci_devinfo *dinfo = device_get_ivars(child);
5428	struct resource_list *rl = &dinfo->resources;
5429	struct resource *res;
5430	struct pci_map *pm;
5431	uint16_t cmd;
5432	pci_addr_t map, testval;
5433	int mapsize;
5434
5435	res = NULL;
5436
5437	/* If rid is managed by EA, ignore it */
5438	if (pci_ea_is_enabled(child, *rid))
5439		goto out;
5440
5441	pm = pci_find_bar(child, *rid);
5442	if (pm != NULL) {
5443		/* This is a BAR that we failed to allocate earlier. */
5444		mapsize = pm->pm_size;
5445		map = pm->pm_value;
5446	} else {
5447		/*
5448		 * Weed out the bogons, and figure out how large the
5449		 * BAR/map is.  BARs that read back 0 here are bogus
5450		 * and unimplemented.  Note: atapci in legacy mode are
5451		 * special and handled elsewhere in the code.  If you
5452		 * have a atapci device in legacy mode and it fails
5453		 * here, that other code is broken.
5454		 */
5455		pci_read_bar(child, *rid, &map, &testval, NULL);
5456
5457		/*
5458		 * Determine the size of the BAR and ignore BARs with a size
5459		 * of 0.  Device ROM BARs use a different mask value.
5460		 */
5461		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5462			mapsize = pci_romsize(testval);
5463		else
5464			mapsize = pci_mapsize(testval);
5465		if (mapsize == 0)
5466			goto out;
5467		pm = pci_add_bar(child, *rid, map, mapsize);
5468	}
5469
5470	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5471		if (type != SYS_RES_MEMORY) {
5472			if (bootverbose)
5473				device_printf(dev,
5474				    "child %s requested type %d for rid %#x,"
5475				    " but the BAR says it is an memio\n",
5476				    device_get_nameunit(child), type, *rid);
5477			goto out;
5478		}
5479	} else {
5480		if (type != SYS_RES_IOPORT) {
5481			if (bootverbose)
5482				device_printf(dev,
5483				    "child %s requested type %d for rid %#x,"
5484				    " but the BAR says it is an ioport\n",
5485				    device_get_nameunit(child), type, *rid);
5486			goto out;
5487		}
5488	}
5489
5490	/*
5491	 * For real BARs, we need to override the size that
5492	 * the driver requests, because that's what the BAR
5493	 * actually uses and we would otherwise have a
5494	 * situation where we might allocate the excess to
5495	 * another driver, which won't work.
5496	 */
5497	count = ((pci_addr_t)1 << mapsize) * num;
5498	if (RF_ALIGNMENT(flags) < mapsize)
5499		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5500	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5501		flags |= RF_PREFETCHABLE;
5502
5503	/*
5504	 * Allocate enough resource, and then write back the
5505	 * appropriate BAR for that resource.
5506	 */
5507	resource_list_add(rl, type, *rid, start, end, count);
5508	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5509	    count, flags & ~RF_ACTIVE);
5510	if (res == NULL) {
5511		resource_list_delete(rl, type, *rid);
5512		device_printf(child,
5513		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5514		    count, *rid, type, start, end);
5515		goto out;
5516	}
5517	if (bootverbose)
5518		device_printf(child,
5519		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5520		    count, *rid, type, rman_get_start(res));
5521
5522	/* Disable decoding via the CMD register before updating the BAR */
5523	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5524	pci_write_config(child, PCIR_COMMAND,
5525	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5526
5527	map = rman_get_start(res);
5528	pci_write_bar(child, pm, map);
5529
5530	/* Restore the original value of the CMD register */
5531	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5532out:
5533	return (res);
5534}
5535
5536struct resource *
5537pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5538    rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5539    u_int flags)
5540{
5541	struct pci_devinfo *dinfo;
5542	struct resource_list *rl;
5543	struct resource_list_entry *rle;
5544	struct resource *res;
5545	pcicfgregs *cfg;
5546
5547	/*
5548	 * Perform lazy resource allocation
5549	 */
5550	dinfo = device_get_ivars(child);
5551	rl = &dinfo->resources;
5552	cfg = &dinfo->cfg;
5553	switch (type) {
5554#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
5555	case PCI_RES_BUS:
5556		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5557		    flags));
5558#endif
5559	case SYS_RES_IRQ:
5560		/*
5561		 * Can't alloc legacy interrupt once MSI messages have
5562		 * been allocated.
5563		 */
5564		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5565		    cfg->msix.msix_alloc > 0))
5566			return (NULL);
5567
5568		/*
5569		 * If the child device doesn't have an interrupt
5570		 * routed and is deserving of an interrupt, try to
5571		 * assign it one.
5572		 */
5573		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5574		    (cfg->intpin != 0))
5575			pci_assign_interrupt(dev, child, 0);
5576		break;
5577	case SYS_RES_IOPORT:
5578	case SYS_RES_MEMORY:
5579#ifdef NEW_PCIB
5580		/*
5581		 * PCI-PCI bridge I/O window resources are not BARs.
5582		 * For those allocations just pass the request up the
5583		 * tree.
5584		 */
5585		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5586			switch (*rid) {
5587			case PCIR_IOBASEL_1:
5588			case PCIR_MEMBASE_1:
5589			case PCIR_PMBASEL_1:
5590				/*
5591				 * XXX: Should we bother creating a resource
5592				 * list entry?
5593				 */
5594				return (bus_generic_alloc_resource(dev, child,
5595				    type, rid, start, end, count, flags));
5596			}
5597		}
5598#endif
5599		/* Reserve resources for this BAR if needed. */
5600		rle = resource_list_find(rl, type, *rid);
5601		if (rle == NULL) {
5602			res = pci_reserve_map(dev, child, type, rid, start, end,
5603			    count, num, flags);
5604			if (res == NULL)
5605				return (NULL);
5606		}
5607	}
5608	return (resource_list_alloc(rl, dev, child, type, rid,
5609	    start, end, count, flags));
5610}
5611
5612struct resource *
5613pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5614    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5615{
5616#ifdef PCI_IOV
5617	struct pci_devinfo *dinfo;
5618#endif
5619
5620	if (device_get_parent(child) != dev)
5621		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5622		    type, rid, start, end, count, flags));
5623
5624#ifdef PCI_IOV
5625	dinfo = device_get_ivars(child);
5626	if (dinfo->cfg.flags & PCICFG_VF) {
5627		switch (type) {
5628		/* VFs can't have I/O BARs. */
5629		case SYS_RES_IOPORT:
5630			return (NULL);
5631		case SYS_RES_MEMORY:
5632			return (pci_vf_alloc_mem_resource(dev, child, rid,
5633			    start, end, count, flags));
5634		}
5635
5636		/* Fall through for other types of resource allocations. */
5637	}
5638#endif
5639
5640	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5641	    count, 1, flags));
5642}
5643
5644int
5645pci_release_resource(device_t dev, device_t child, struct resource *r)
5646{
5647	struct pci_devinfo *dinfo;
5648	struct resource_list *rl;
5649	pcicfgregs *cfg __unused;
5650
5651	if (device_get_parent(child) != dev)
5652		return (bus_generic_release_resource(dev, child, r));
5653
5654	dinfo = device_get_ivars(child);
5655	cfg = &dinfo->cfg;
5656
5657#ifdef PCI_IOV
5658	if (cfg->flags & PCICFG_VF) {
5659		switch (rman_get_type(r)) {
5660		/* VFs can't have I/O BARs. */
5661		case SYS_RES_IOPORT:
5662			return (EDOOFUS);
5663		case SYS_RES_MEMORY:
5664			return (pci_vf_release_mem_resource(dev, child, r));
5665		}
5666
5667		/* Fall through for other types of resource allocations. */
5668	}
5669#endif
5670
5671#ifdef NEW_PCIB
5672	/*
5673	 * PCI-PCI bridge I/O window resources are not BARs.  For
5674	 * those allocations just pass the request up the tree.
5675	 */
5676	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5677	    (rman_get_type(r) == SYS_RES_IOPORT ||
5678	    rman_get_type(r) == SYS_RES_MEMORY)) {
5679		switch (rman_get_rid(r)) {
5680		case PCIR_IOBASEL_1:
5681		case PCIR_MEMBASE_1:
5682		case PCIR_PMBASEL_1:
5683			return (bus_generic_release_resource(dev, child, r));
5684		}
5685	}
5686#endif
5687
5688	rl = &dinfo->resources;
5689	return (resource_list_release(rl, dev, child, r));
5690}
5691
5692int
5693pci_activate_resource(device_t dev, device_t child, struct resource *r)
5694{
5695	struct pci_devinfo *dinfo;
5696	int error, rid, type;
5697
5698	if (device_get_parent(child) != dev)
5699		return (bus_generic_activate_resource(dev, child, r));
5700
5701	dinfo = device_get_ivars(child);
5702#ifdef PCI_IOV
5703	if (dinfo->cfg.flags & PCICFG_VF) {
5704		switch (rman_get_type(r)) {
5705		/* VFs can't have I/O BARs. */
5706		case SYS_RES_IOPORT:
5707			error = EINVAL;
5708			break;
5709		case SYS_RES_MEMORY:
5710			error = pci_vf_activate_mem_resource(dev, child, r);
5711			break;
5712		default:
5713			error = bus_generic_activate_resource(dev, child, r);
5714			break;
5715		}
5716	} else
5717#endif
5718		error = bus_generic_activate_resource(dev, child, r);
5719	if (error)
5720		return (error);
5721
5722	rid = rman_get_rid(r);
5723	type = rman_get_type(r);
5724
5725	/* Device ROMs need their decoding explicitly enabled. */
5726	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5727		pci_write_bar(child, pci_find_bar(child, rid),
5728		    rman_get_start(r) | PCIM_BIOS_ENABLE);
5729
5730	/* Enable decoding in the command register when activating BARs. */
5731	switch (type) {
5732	case SYS_RES_IOPORT:
5733	case SYS_RES_MEMORY:
5734		error = PCI_ENABLE_IO(dev, child, type);
5735		break;
5736	}
5737	return (error);
5738}
5739
5740int
5741pci_deactivate_resource(device_t dev, device_t child, struct resource *r)
5742{
5743	struct pci_devinfo *dinfo;
5744	int error, rid, type;
5745
5746	if (device_get_parent(child) != dev)
5747		return (bus_generic_deactivate_resource(dev, child, r));
5748
5749	dinfo = device_get_ivars(child);
5750#ifdef PCI_IOV
5751	if (dinfo->cfg.flags & PCICFG_VF) {
5752		switch (rman_get_type(r)) {
5753		/* VFs can't have I/O BARs. */
5754		case SYS_RES_IOPORT:
5755			error = EINVAL;
5756			break;
5757		case SYS_RES_MEMORY:
5758			error = pci_vf_deactivate_mem_resource(dev, child, r);
5759			break;
5760		default:
5761			error = bus_generic_deactivate_resource(dev, child, r);
5762			break;
5763		}
5764	} else
5765#endif
5766		error = bus_generic_deactivate_resource(dev, child, r);
5767	if (error)
5768		return (error);
5769
5770	/* Disable decoding for device ROMs. */
5771	rid = rman_get_rid(r);
5772	type = rman_get_type(r);
5773	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5774		pci_write_bar(child, pci_find_bar(child, rid),
5775		    rman_get_start(r));
5776	return (0);
5777}
5778
5779#ifdef PCI_IOV
5780int
5781pci_adjust_resource(device_t dev, device_t child, struct resource *r,
5782    rman_res_t start, rman_res_t end)
5783{
5784	struct pci_devinfo *dinfo;
5785
5786	if (device_get_parent(child) != dev)
5787		return (bus_generic_adjust_resource(dev, child, r, start,
5788		    end));
5789
5790	dinfo = device_get_ivars(child);
5791	if (dinfo->cfg.flags & PCICFG_VF) {
5792		switch (rman_get_type(r)) {
5793		/* VFs can't have I/O BARs. */
5794		case SYS_RES_IOPORT:
5795			return (EINVAL);
5796		case SYS_RES_MEMORY:
5797			return (pci_vf_adjust_mem_resource(dev, child, r,
5798			    start, end));
5799		}
5800
5801		/* Fall through for other types of resource allocations. */
5802	}
5803
5804	return (bus_generic_adjust_resource(dev, child, r, start, end));
5805}
5806
5807int
5808pci_map_resource(device_t dev, device_t child, struct resource *r,
5809    struct resource_map_request *argsp, struct resource_map *map)
5810{
5811	struct pci_devinfo *dinfo;
5812
5813	if (device_get_parent(child) != dev)
5814		return (bus_generic_map_resource(dev, child, r, argsp,
5815		    map));
5816
5817	dinfo = device_get_ivars(child);
5818	if (dinfo->cfg.flags & PCICFG_VF) {
5819		switch (rman_get_type(r)) {
5820		/* VFs can't have I/O BARs. */
5821		case SYS_RES_IOPORT:
5822			return (EINVAL);
5823		case SYS_RES_MEMORY:
5824			return (pci_vf_map_mem_resource(dev, child, r, argsp,
5825			    map));
5826		}
5827
5828		/* Fall through for other types of resource allocations. */
5829	}
5830
5831	return (bus_generic_map_resource(dev, child, r, argsp, map));
5832}
5833
5834int
5835pci_unmap_resource(device_t dev, device_t child, struct resource *r,
5836    struct resource_map *map)
5837{
5838	struct pci_devinfo *dinfo;
5839
5840	if (device_get_parent(child) != dev)
5841		return (bus_generic_unmap_resource(dev, child, r, map));
5842
5843	dinfo = device_get_ivars(child);
5844	if (dinfo->cfg.flags & PCICFG_VF) {
5845		switch (rman_get_type(r)) {
5846		/* VFs can't have I/O BARs. */
5847		case SYS_RES_IOPORT:
5848			return (EINVAL);
5849		case SYS_RES_MEMORY:
5850			return (pci_vf_unmap_mem_resource(dev, child, r, map));
5851		}
5852
5853		/* Fall through for other types of resource allocations. */
5854	}
5855
5856	return (bus_generic_unmap_resource(dev, child, r, map));
5857}
5858#endif
5859
5860void
5861pci_child_deleted(device_t dev, device_t child)
5862{
5863	struct resource_list_entry *rle;
5864	struct resource_list *rl;
5865	struct pci_devinfo *dinfo;
5866
5867	dinfo = device_get_ivars(child);
5868	rl = &dinfo->resources;
5869
5870	EVENTHANDLER_INVOKE(pci_delete_device, child);
5871
5872	/* Turn off access to resources we're about to free */
5873	if (bus_child_present(child) != 0) {
5874		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5875		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5876
5877		pci_disable_busmaster(child);
5878	}
5879
5880	/* Free all allocated resources */
5881	STAILQ_FOREACH(rle, rl, link) {
5882		if (rle->res) {
5883			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5884			    resource_list_busy(rl, rle->type, rle->rid)) {
5885				pci_printf(&dinfo->cfg,
5886				    "Resource still owned, oops. "
5887				    "(type=%d, rid=%d, addr=%lx)\n",
5888				    rle->type, rle->rid,
5889				    rman_get_start(rle->res));
5890				bus_release_resource(child, rle->type, rle->rid,
5891				    rle->res);
5892			}
5893			resource_list_unreserve(rl, dev, child, rle->type,
5894			    rle->rid);
5895		}
5896	}
5897	resource_list_free(rl);
5898
5899	pci_freecfg(dinfo);
5900}
5901
5902void
5903pci_delete_resource(device_t dev, device_t child, int type, int rid)
5904{
5905	struct pci_devinfo *dinfo;
5906	struct resource_list *rl;
5907	struct resource_list_entry *rle;
5908
5909	if (device_get_parent(child) != dev)
5910		return;
5911
5912	dinfo = device_get_ivars(child);
5913	rl = &dinfo->resources;
5914	rle = resource_list_find(rl, type, rid);
5915	if (rle == NULL)
5916		return;
5917
5918	if (rle->res) {
5919		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5920		    resource_list_busy(rl, type, rid)) {
5921			device_printf(dev, "delete_resource: "
5922			    "Resource still owned by child, oops. "
5923			    "(type=%d, rid=%d, addr=%jx)\n",
5924			    type, rid, rman_get_start(rle->res));
5925			return;
5926		}
5927		resource_list_unreserve(rl, dev, child, type, rid);
5928	}
5929	resource_list_delete(rl, type, rid);
5930}
5931
5932struct resource_list *
5933pci_get_resource_list (device_t dev, device_t child)
5934{
5935	struct pci_devinfo *dinfo = device_get_ivars(child);
5936
5937	return (&dinfo->resources);
5938}
5939
5940#ifdef IOMMU
5941bus_dma_tag_t
5942pci_get_dma_tag(device_t bus, device_t dev)
5943{
5944	bus_dma_tag_t tag;
5945	struct pci_softc *sc;
5946
5947	if (device_get_parent(dev) == bus) {
5948		/* try iommu and return if it works */
5949		tag = iommu_get_dma_tag(bus, dev);
5950	} else
5951		tag = NULL;
5952	if (tag == NULL) {
5953		sc = device_get_softc(bus);
5954		tag = sc->sc_dma_tag;
5955	}
5956	return (tag);
5957}
5958#else
5959bus_dma_tag_t
5960pci_get_dma_tag(device_t bus, device_t dev)
5961{
5962	struct pci_softc *sc = device_get_softc(bus);
5963
5964	return (sc->sc_dma_tag);
5965}
5966#endif
5967
5968uint32_t
5969pci_read_config_method(device_t dev, device_t child, int reg, int width)
5970{
5971	struct pci_devinfo *dinfo = device_get_ivars(child);
5972	pcicfgregs *cfg = &dinfo->cfg;
5973
5974#ifdef PCI_IOV
5975	/*
5976	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
5977	 * emulate them here.
5978	 */
5979	if (cfg->flags & PCICFG_VF) {
5980		if (reg == PCIR_VENDOR) {
5981			switch (width) {
5982			case 4:
5983				return (cfg->device << 16 | cfg->vendor);
5984			case 2:
5985				return (cfg->vendor);
5986			case 1:
5987				return (cfg->vendor & 0xff);
5988			default:
5989				return (0xffffffff);
5990			}
5991		} else if (reg == PCIR_DEVICE) {
5992			switch (width) {
5993			/* Note that an unaligned 4-byte read is an error. */
5994			case 2:
5995				return (cfg->device);
5996			case 1:
5997				return (cfg->device & 0xff);
5998			default:
5999				return (0xffffffff);
6000			}
6001		}
6002	}
6003#endif
6004
6005	return (PCIB_READ_CONFIG(device_get_parent(dev),
6006	    cfg->bus, cfg->slot, cfg->func, reg, width));
6007}
6008
6009void
6010pci_write_config_method(device_t dev, device_t child, int reg,
6011    uint32_t val, int width)
6012{
6013	struct pci_devinfo *dinfo = device_get_ivars(child);
6014	pcicfgregs *cfg = &dinfo->cfg;
6015
6016	PCIB_WRITE_CONFIG(device_get_parent(dev),
6017	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
6018}
6019
6020int
6021pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
6022{
6023
6024	sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
6025	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
6026	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
6027	return (0);
6028}
6029
6030int
6031pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
6032{
6033	struct pci_devinfo *dinfo;
6034	pcicfgregs *cfg;
6035
6036	dinfo = device_get_ivars(child);
6037	cfg = &dinfo->cfg;
6038	sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
6039	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
6040	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
6041	    cfg->progif);
6042	return (0);
6043}
6044
6045int
6046pci_get_device_path_method(device_t bus, device_t child, const char *locator,
6047    struct sbuf *sb)
6048{
6049	device_t parent = device_get_parent(bus);
6050	int rv;
6051
6052	if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
6053		rv = bus_generic_get_device_path(parent, bus, locator, sb);
6054		if (rv == 0) {
6055			sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child),
6056			    pci_get_function(child));
6057		}
6058		return (0);
6059	}
6060	return (bus_generic_get_device_path(bus, child, locator, sb));
6061}
6062
6063int
6064pci_assign_interrupt_method(device_t dev, device_t child)
6065{
6066	struct pci_devinfo *dinfo = device_get_ivars(child);
6067	pcicfgregs *cfg = &dinfo->cfg;
6068
6069	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
6070	    cfg->intpin));
6071}
6072
6073static void
6074pci_lookup(void *arg, const char *name, device_t *dev)
6075{
6076	long val;
6077	char *end;
6078	int domain, bus, slot, func;
6079
6080	if (*dev != NULL)
6081		return;
6082
6083	/*
6084	 * Accept pciconf-style selectors of either pciD:B:S:F or
6085	 * pciB:S:F.  In the latter case, the domain is assumed to
6086	 * be zero.
6087	 */
6088	if (strncmp(name, "pci", 3) != 0)
6089		return;
6090	val = strtol(name + 3, &end, 10);
6091	if (val < 0 || val > INT_MAX || *end != ':')
6092		return;
6093	domain = val;
6094	val = strtol(end + 1, &end, 10);
6095	if (val < 0 || val > INT_MAX || *end != ':')
6096		return;
6097	bus = val;
6098	val = strtol(end + 1, &end, 10);
6099	if (val < 0 || val > INT_MAX)
6100		return;
6101	slot = val;
6102	if (*end == ':') {
6103		val = strtol(end + 1, &end, 10);
6104		if (val < 0 || val > INT_MAX || *end != '\0')
6105			return;
6106		func = val;
6107	} else if (*end == '\0') {
6108		func = slot;
6109		slot = bus;
6110		bus = domain;
6111		domain = 0;
6112	} else
6113		return;
6114
6115	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
6116	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
6117		return;
6118
6119	*dev = pci_find_dbsf(domain, bus, slot, func);
6120}
6121
6122static int
6123pci_modevent(module_t mod, int what, void *arg)
6124{
6125	static struct cdev *pci_cdev;
6126	static eventhandler_tag tag;
6127
6128	switch (what) {
6129	case MOD_LOAD:
6130		STAILQ_INIT(&pci_devq);
6131		pci_generation = 0;
6132		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
6133		    "pci");
6134		pci_load_vendor_data();
6135		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
6136		    1000);
6137		break;
6138
6139	case MOD_UNLOAD:
6140		if (tag != NULL)
6141			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
6142		destroy_dev(pci_cdev);
6143		break;
6144	}
6145
6146	return (0);
6147}
6148
6149static void
6150pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
6151{
6152#define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
6153	struct pcicfg_pcie *cfg;
6154	int version, pos;
6155
6156	cfg = &dinfo->cfg.pcie;
6157	pos = cfg->pcie_location;
6158
6159	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6160
6161	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
6162
6163	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6164	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6165	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6166		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
6167
6168	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6169	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6170	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6171		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
6172
6173	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6174	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6175		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
6176
6177	if (version > 1) {
6178		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
6179		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
6180		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
6181	}
6182#undef WREG
6183}
6184
6185static void
6186pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
6187{
6188	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
6189	    dinfo->cfg.pcix.pcix_command,  2);
6190}
6191
6192void
6193pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
6194{
6195
6196	/*
6197	 * Restore the device to full power mode.  We must do this
6198	 * before we restore the registers because moving from D3 to
6199	 * D0 will cause the chip's BARs and some other registers to
6200	 * be reset to some unknown power on reset values.  Cut down
6201	 * the noise on boot by doing nothing if we are already in
6202	 * state D0.
6203	 */
6204	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
6205		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6206	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
6207	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
6208	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
6209	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
6210	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
6211	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
6212	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6213	case PCIM_HDRTYPE_NORMAL:
6214		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
6215		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
6216		break;
6217	case PCIM_HDRTYPE_BRIDGE:
6218		pci_write_config(dev, PCIR_SECLAT_1,
6219		    dinfo->cfg.bridge.br_seclat, 1);
6220		pci_write_config(dev, PCIR_SUBBUS_1,
6221		    dinfo->cfg.bridge.br_subbus, 1);
6222		pci_write_config(dev, PCIR_SECBUS_1,
6223		    dinfo->cfg.bridge.br_secbus, 1);
6224		pci_write_config(dev, PCIR_PRIBUS_1,
6225		    dinfo->cfg.bridge.br_pribus, 1);
6226		pci_write_config(dev, PCIR_BRIDGECTL_1,
6227		    dinfo->cfg.bridge.br_control, 2);
6228		break;
6229	case PCIM_HDRTYPE_CARDBUS:
6230		pci_write_config(dev, PCIR_SECLAT_2,
6231		    dinfo->cfg.bridge.br_seclat, 1);
6232		pci_write_config(dev, PCIR_SUBBUS_2,
6233		    dinfo->cfg.bridge.br_subbus, 1);
6234		pci_write_config(dev, PCIR_SECBUS_2,
6235		    dinfo->cfg.bridge.br_secbus, 1);
6236		pci_write_config(dev, PCIR_PRIBUS_2,
6237		    dinfo->cfg.bridge.br_pribus, 1);
6238		pci_write_config(dev, PCIR_BRIDGECTL_2,
6239		    dinfo->cfg.bridge.br_control, 2);
6240		break;
6241	}
6242	pci_restore_bars(dev);
6243
6244	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
6245		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
6246
6247	/*
6248	 * Restore extended capabilities for PCI-Express and PCI-X
6249	 */
6250	if (dinfo->cfg.pcie.pcie_location != 0)
6251		pci_cfg_restore_pcie(dev, dinfo);
6252	if (dinfo->cfg.pcix.pcix_location != 0)
6253		pci_cfg_restore_pcix(dev, dinfo);
6254
6255	/* Restore MSI and MSI-X configurations if they are present. */
6256	if (dinfo->cfg.msi.msi_location != 0)
6257		pci_resume_msi(dev);
6258	if (dinfo->cfg.msix.msix_location != 0)
6259		pci_resume_msix(dev);
6260
6261#ifdef PCI_IOV
6262	if (dinfo->cfg.iov != NULL)
6263		pci_iov_cfg_restore(dev, dinfo);
6264#endif
6265}
6266
6267static void
6268pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6269{
6270#define	RREG(n)	pci_read_config(dev, pos + (n), 2)
6271	struct pcicfg_pcie *cfg;
6272	int version, pos;
6273
6274	cfg = &dinfo->cfg.pcie;
6275	pos = cfg->pcie_location;
6276
6277	cfg->pcie_flags = RREG(PCIER_FLAGS);
6278
6279	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6280
6281	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6282
6283	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6284	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6285	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6286		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6287
6288	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6289	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6290	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6291		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6292
6293	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6294	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6295		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6296
6297	if (version > 1) {
6298		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6299		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6300		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6301	}
6302#undef RREG
6303}
6304
6305static void
6306pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6307{
6308	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6309	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6310}
6311
6312void
6313pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6314{
6315	uint32_t cls;
6316	int ps;
6317
6318	/*
6319	 * Some drivers apparently write to these registers w/o updating our
6320	 * cached copy.  No harm happens if we update the copy, so do so here
6321	 * so we can restore them.  The COMMAND register is modified by the
6322	 * bus w/o updating the cache.  This should represent the normally
6323	 * writable portion of the 'defined' part of type 0/1/2 headers.
6324	 */
6325	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6326	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6327	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6328	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6329	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6330	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6331	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6332	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6333	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6334	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6335	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6336	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6337	case PCIM_HDRTYPE_NORMAL:
6338		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6339		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6340		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6341		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6342		break;
6343	case PCIM_HDRTYPE_BRIDGE:
6344		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6345		    PCIR_SECLAT_1, 1);
6346		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6347		    PCIR_SUBBUS_1, 1);
6348		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6349		    PCIR_SECBUS_1, 1);
6350		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6351		    PCIR_PRIBUS_1, 1);
6352		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6353		    PCIR_BRIDGECTL_1, 2);
6354		break;
6355	case PCIM_HDRTYPE_CARDBUS:
6356		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6357		    PCIR_SECLAT_2, 1);
6358		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6359		    PCIR_SUBBUS_2, 1);
6360		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6361		    PCIR_SECBUS_2, 1);
6362		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6363		    PCIR_PRIBUS_2, 1);
6364		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6365		    PCIR_BRIDGECTL_2, 2);
6366		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6367		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6368		break;
6369	}
6370
6371	if (dinfo->cfg.pcie.pcie_location != 0)
6372		pci_cfg_save_pcie(dev, dinfo);
6373
6374	if (dinfo->cfg.pcix.pcix_location != 0)
6375		pci_cfg_save_pcix(dev, dinfo);
6376
6377#ifdef PCI_IOV
6378	if (dinfo->cfg.iov != NULL)
6379		pci_iov_cfg_save(dev, dinfo);
6380#endif
6381
6382	/*
6383	 * don't set the state for display devices, base peripherals and
6384	 * memory devices since bad things happen when they are powered down.
6385	 * We should (a) have drivers that can easily detach and (b) use
6386	 * generic drivers for these devices so that some device actually
6387	 * attaches.  We need to make sure that when we implement (a) we don't
6388	 * power the device down on a reattach.
6389	 */
6390	cls = pci_get_class(dev);
6391	if (!setstate)
6392		return;
6393	switch (pci_do_power_nodriver)
6394	{
6395		case 0:		/* NO powerdown at all */
6396			return;
6397		case 1:		/* Conservative about what to power down */
6398			if (cls == PCIC_STORAGE)
6399				return;
6400			/*FALLTHROUGH*/
6401		case 2:		/* Aggressive about what to power down */
6402			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6403			    cls == PCIC_BASEPERIPH)
6404				return;
6405			/*FALLTHROUGH*/
6406		case 3:		/* Power down everything */
6407			break;
6408	}
6409	/*
6410	 * PCI spec says we can only go into D3 state from D0 state.
6411	 * Transition from D[12] into D0 before going to D3 state.
6412	 */
6413	ps = pci_get_powerstate(dev);
6414	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6415		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6416	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6417		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6418}
6419
6420/* Wrapper APIs suitable for device driver use. */
6421void
6422pci_save_state(device_t dev)
6423{
6424	struct pci_devinfo *dinfo;
6425
6426	dinfo = device_get_ivars(dev);
6427	pci_cfg_save(dev, dinfo, 0);
6428}
6429
6430void
6431pci_restore_state(device_t dev)
6432{
6433	struct pci_devinfo *dinfo;
6434
6435	dinfo = device_get_ivars(dev);
6436	pci_cfg_restore(dev, dinfo);
6437}
6438
6439static int
6440pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6441    uintptr_t *id)
6442{
6443
6444	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6445}
6446
6447/* Find the upstream port of a given PCI device in a root complex. */
6448device_t
6449pci_find_pcie_root_port(device_t dev)
6450{
6451	struct pci_devinfo *dinfo;
6452	devclass_t pci_class;
6453	device_t pcib, bus;
6454
6455	pci_class = devclass_find("pci");
6456	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6457	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6458
6459	/*
6460	 * Walk the bridge hierarchy until we find a PCI-e root
6461	 * port or a non-PCI device.
6462	 */
6463	for (;;) {
6464		bus = device_get_parent(dev);
6465		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6466		    device_get_nameunit(dev)));
6467
6468		pcib = device_get_parent(bus);
6469		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6470		    device_get_nameunit(bus)));
6471
6472		/*
6473		 * pcib's parent must be a PCI bus for this to be a
6474		 * PCI-PCI bridge.
6475		 */
6476		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6477			return (NULL);
6478
6479		dinfo = device_get_ivars(pcib);
6480		if (dinfo->cfg.pcie.pcie_location != 0 &&
6481		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6482			return (pcib);
6483
6484		dev = pcib;
6485	}
6486}
6487
6488/*
6489 * Wait for pending transactions to complete on a PCI-express function.
6490 *
6491 * The maximum delay is specified in milliseconds in max_delay.  Note
6492 * that this function may sleep.
6493 *
6494 * Returns true if the function is idle and false if the timeout is
6495 * exceeded.  If dev is not a PCI-express function, this returns true.
6496 */
6497bool
6498pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6499{
6500	struct pci_devinfo *dinfo = device_get_ivars(dev);
6501	uint16_t sta;
6502	int cap;
6503
6504	cap = dinfo->cfg.pcie.pcie_location;
6505	if (cap == 0)
6506		return (true);
6507
6508	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6509	while (sta & PCIEM_STA_TRANSACTION_PND) {
6510		if (max_delay == 0)
6511			return (false);
6512
6513		/* Poll once every 100 milliseconds up to the timeout. */
6514		if (max_delay > 100) {
6515			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6516			max_delay -= 100;
6517		} else {
6518			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6519			    C_HARDCLOCK);
6520			max_delay = 0;
6521		}
6522		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6523	}
6524
6525	return (true);
6526}
6527
6528/*
6529 * Determine the maximum Completion Timeout in microseconds.
6530 *
6531 * For non-PCI-express functions this returns 0.
6532 */
6533int
6534pcie_get_max_completion_timeout(device_t dev)
6535{
6536	struct pci_devinfo *dinfo = device_get_ivars(dev);
6537	int cap;
6538
6539	cap = dinfo->cfg.pcie.pcie_location;
6540	if (cap == 0)
6541		return (0);
6542
6543	/*
6544	 * Functions using the 1.x spec use the default timeout range of
6545	 * 50 microseconds to 50 milliseconds.  Functions that do not
6546	 * support programmable timeouts also use this range.
6547	 */
6548	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6549	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6550	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6551		return (50 * 1000);
6552
6553	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6554	    PCIEM_CTL2_COMP_TIMO_VAL) {
6555	case PCIEM_CTL2_COMP_TIMO_100US:
6556		return (100);
6557	case PCIEM_CTL2_COMP_TIMO_10MS:
6558		return (10 * 1000);
6559	case PCIEM_CTL2_COMP_TIMO_55MS:
6560		return (55 * 1000);
6561	case PCIEM_CTL2_COMP_TIMO_210MS:
6562		return (210 * 1000);
6563	case PCIEM_CTL2_COMP_TIMO_900MS:
6564		return (900 * 1000);
6565	case PCIEM_CTL2_COMP_TIMO_3500MS:
6566		return (3500 * 1000);
6567	case PCIEM_CTL2_COMP_TIMO_13S:
6568		return (13 * 1000 * 1000);
6569	case PCIEM_CTL2_COMP_TIMO_64S:
6570		return (64 * 1000 * 1000);
6571	default:
6572		return (50 * 1000);
6573	}
6574}
6575
6576void
6577pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6578{
6579	struct pci_devinfo *dinfo = device_get_ivars(dev);
6580	const char *s;
6581	int aer;
6582	uint32_t r, r1;
6583	uint16_t rs;
6584
6585	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6586		s = "Correctable";
6587	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6588		s = "Uncorrectable (Non-Fatal)";
6589	else
6590		s = "Uncorrectable (Fatal)";
6591	device_printf(dev, "%s PCIe error reported by APEI\n", s);
6592	if (aerp) {
6593		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6594			r = le32dec(aerp + PCIR_AER_COR_STATUS);
6595			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6596		} else {
6597			r = le32dec(aerp + PCIR_AER_UC_STATUS);
6598			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6599		}
6600		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6601		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6602			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6603			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6604			printf(" severity 0x%08x first %d\n",
6605			    r, rs & 0x1f);
6606		} else
6607			printf("\n");
6608	}
6609
6610	/* As kind of recovery just report and clear the error statuses. */
6611	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6612		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6613		if (r != 0) {
6614			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6615			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6616		}
6617
6618		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6619		if (r != 0) {
6620			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6621			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6622		}
6623	}
6624	if (dinfo->cfg.pcie.pcie_location != 0) {
6625		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6626		    PCIER_DEVICE_STA, 2);
6627		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6628		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6629		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6630			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6631			    PCIER_DEVICE_STA, rs, 2);
6632			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6633		}
6634	}
6635}
6636
6637/*
6638 * Perform a Function Level Reset (FLR) on a device.
6639 *
6640 * This function first waits for any pending transactions to complete
6641 * within the timeout specified by max_delay.  If transactions are
6642 * still pending, the function will return false without attempting a
6643 * reset.
6644 *
6645 * If dev is not a PCI-express function or does not support FLR, this
6646 * function returns false.
6647 *
6648 * Note that no registers are saved or restored.  The caller is
6649 * responsible for saving and restoring any registers including
6650 * PCI-standard registers via pci_save_state() and
6651 * pci_restore_state().
6652 */
6653bool
6654pcie_flr(device_t dev, u_int max_delay, bool force)
6655{
6656	struct pci_devinfo *dinfo = device_get_ivars(dev);
6657	uint16_t cmd, ctl;
6658	int compl_delay;
6659	int cap;
6660
6661	cap = dinfo->cfg.pcie.pcie_location;
6662	if (cap == 0)
6663		return (false);
6664
6665	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6666		return (false);
6667
6668	/*
6669	 * Disable busmastering to prevent generation of new
6670	 * transactions while waiting for the device to go idle.  If
6671	 * the idle timeout fails, the command register is restored
6672	 * which will re-enable busmastering.
6673	 */
6674	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6675	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6676	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6677		if (!force) {
6678			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6679			return (false);
6680		}
6681		pci_printf(&dinfo->cfg,
6682		    "Resetting with transactions pending after %d ms\n",
6683		    max_delay);
6684
6685		/*
6686		 * Extend the post-FLR delay to cover the maximum
6687		 * Completion Timeout delay of anything in flight
6688		 * during the FLR delay.  Enforce a minimum delay of
6689		 * at least 10ms.
6690		 */
6691		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6692		if (compl_delay < 10)
6693			compl_delay = 10;
6694	} else
6695		compl_delay = 0;
6696
6697	/* Initiate the reset. */
6698	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6699	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6700	    PCIEM_CTL_INITIATE_FLR, 2);
6701
6702	/* Wait for 100ms. */
6703	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6704
6705	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6706	    PCIEM_STA_TRANSACTION_PND)
6707		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6708	return (true);
6709}
6710
6711/*
6712 * Attempt a power-management reset by cycling the device in/out of D3
6713 * state.  PCI spec says we can only go into D3 state from D0 state.
6714 * Transition from D[12] into D0 before going to D3 state.
6715 */
6716int
6717pci_power_reset(device_t dev)
6718{
6719	int ps;
6720
6721	ps = pci_get_powerstate(dev);
6722	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6723		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6724	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6725	pci_set_powerstate(dev, ps);
6726	return (0);
6727}
6728
6729/*
6730 * Try link drop and retrain of the downstream port of upstream
6731 * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6732 * cause Conventional Hot reset of the device in the slot.
6733 * Alternative, for PCIe, could be the secondary bus reset initiatied
6734 * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6735 */
6736int
6737pcie_link_reset(device_t port, int pcie_location)
6738{
6739	uint16_t v;
6740
6741	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6742	v |= PCIEM_LINK_CTL_LINK_DIS;
6743	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6744	pause_sbt("pcier1", mstosbt(20), 0, 0);
6745	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6746	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6747	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6748	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6749	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6750	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6751}
6752
6753static int
6754pci_reset_post(device_t dev, device_t child)
6755{
6756
6757	if (dev == device_get_parent(child))
6758		pci_restore_state(child);
6759	return (0);
6760}
6761
6762static int
6763pci_reset_prepare(device_t dev, device_t child)
6764{
6765
6766	if (dev == device_get_parent(child))
6767		pci_save_state(child);
6768	return (0);
6769}
6770
6771static int
6772pci_reset_child(device_t dev, device_t child, int flags)
6773{
6774	int error;
6775
6776	if (dev == NULL || device_get_parent(child) != dev)
6777		return (0);
6778	if ((flags & DEVF_RESET_DETACH) != 0) {
6779		error = device_get_state(child) == DS_ATTACHED ?
6780		    device_detach(child) : 0;
6781	} else {
6782		error = BUS_SUSPEND_CHILD(dev, child);
6783	}
6784	if (error == 0) {
6785		if (!pcie_flr(child, 1000, false)) {
6786			error = BUS_RESET_PREPARE(dev, child);
6787			if (error == 0)
6788				pci_power_reset(child);
6789			BUS_RESET_POST(dev, child);
6790		}
6791		if ((flags & DEVF_RESET_DETACH) != 0)
6792			device_probe_and_attach(child);
6793		else
6794			BUS_RESUME_CHILD(dev, child);
6795	}
6796	return (error);
6797}
6798
6799const struct pci_device_table *
6800pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6801{
6802	bool match;
6803	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6804
6805	vendor = pci_get_vendor(child);
6806	device = pci_get_device(child);
6807	subvendor = pci_get_subvendor(child);
6808	subdevice = pci_get_subdevice(child);
6809	class = pci_get_class(child);
6810	subclass = pci_get_subclass(child);
6811	revid = pci_get_revid(child);
6812	while (nelt-- > 0) {
6813		match = true;
6814		if (id->match_flag_vendor)
6815			match &= vendor == id->vendor;
6816		if (id->match_flag_device)
6817			match &= device == id->device;
6818		if (id->match_flag_subvendor)
6819			match &= subvendor == id->subvendor;
6820		if (id->match_flag_subdevice)
6821			match &= subdevice == id->subdevice;
6822		if (id->match_flag_class)
6823			match &= class == id->class_id;
6824		if (id->match_flag_subclass)
6825			match &= subclass == id->subclass;
6826		if (id->match_flag_revid)
6827			match &= revid == id->revid;
6828		if (match)
6829			return (id);
6830		id++;
6831	}
6832	return (NULL);
6833}
6834
6835static void
6836pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6837{
6838	const char *dev_name;
6839	device_t dev;
6840
6841	dev = dinfo->cfg.dev;
6842	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6843	    dinfo->cfg.slot, dinfo->cfg.func);
6844	dev_name = device_get_name(dev);
6845	if (dev_name != NULL)
6846		printf(" (%s%d)", dev_name, device_get_unit(dev));
6847}
6848
6849void
6850pci_print_faulted_dev(void)
6851{
6852	struct pci_devinfo *dinfo;
6853	device_t dev;
6854	int aer, i;
6855	uint32_t r1, r2;
6856	uint16_t status;
6857
6858	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6859		dev = dinfo->cfg.dev;
6860		status = pci_read_config(dev, PCIR_STATUS, 2);
6861		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6862		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6863		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6864		if (status != 0) {
6865			pci_print_faulted_dev_name(dinfo);
6866			printf(" error 0x%04x\n", status);
6867		}
6868		if (dinfo->cfg.pcie.pcie_location != 0) {
6869			status = pci_read_config(dev,
6870			    dinfo->cfg.pcie.pcie_location +
6871			    PCIER_DEVICE_STA, 2);
6872			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6873			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6874			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6875				pci_print_faulted_dev_name(dinfo);
6876				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6877				    pci_read_config(dev,
6878				    dinfo->cfg.pcie.pcie_location +
6879				    PCIER_DEVICE_CTL, 2),
6880				    status);
6881			}
6882		}
6883		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6884			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6885			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6886			if (r1 != 0 || r2 != 0) {
6887				pci_print_faulted_dev_name(dinfo);
6888				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6889				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6890				    r1, pci_read_config(dev, aer +
6891				    PCIR_AER_UC_MASK, 4),
6892				    pci_read_config(dev, aer +
6893				    PCIR_AER_UC_SEVERITY, 4),
6894				    r2, pci_read_config(dev, aer +
6895				    PCIR_AER_COR_MASK, 4),
6896				    pci_read_config(dev, aer +
6897				    PCIR_AER_CAP_CONTROL, 4));
6898				for (i = 0; i < 4; i++) {
6899					r1 = pci_read_config(dev, aer +
6900					    PCIR_AER_HEADER_LOG + i * 4, 4);
6901					printf("    HL%d: 0x%08x\n", i, r1);
6902				}
6903			}
6904		}
6905	}
6906}
6907
6908#ifdef DDB
6909DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE)
6910{
6911
6912	pci_print_faulted_dev();
6913}
6914
6915static void
6916db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6917{
6918	device_t dev;
6919	int aer;
6920	uint32_t r;
6921
6922	dev = dinfo->cfg.dev;
6923	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6924	    PCIER_DEVICE_STA, 2);
6925	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6926	    PCIER_DEVICE_STA, r, 2);
6927
6928	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6929		return;
6930	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6931	if (r != 0)
6932		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6933	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6934	if (r != 0)
6935		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6936}
6937
6938DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE)
6939{
6940	struct pci_devinfo *dinfo;
6941	device_t dev;
6942	uint16_t status, status1;
6943
6944	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6945		dev = dinfo->cfg.dev;
6946		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
6947		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6948		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6949		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6950		if (status1 != 0) {
6951			status &= ~status1;
6952			pci_write_config(dev, PCIR_STATUS, status, 2);
6953		}
6954		if (dinfo->cfg.pcie.pcie_location != 0)
6955			db_clear_pcie_errors(dinfo);
6956	}
6957}
6958#endif
6959