1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31#include "opt_inet.h"
32#include "opt_inet6.h"
33#include "opt_kern_tls.h"
34#include "opt_ratelimit.h"
35
36#include <sys/types.h>
37#include <sys/eventhandler.h>
38#include <sys/mbuf.h>
39#include <sys/socket.h>
40#include <sys/kernel.h>
41#include <sys/ktls.h>
42#include <sys/malloc.h>
43#include <sys/msan.h>
44#include <sys/queue.h>
45#include <sys/sbuf.h>
46#include <sys/taskqueue.h>
47#include <sys/time.h>
48#include <sys/sglist.h>
49#include <sys/sysctl.h>
50#include <sys/smp.h>
51#include <sys/socketvar.h>
52#include <sys/counter.h>
53#include <net/bpf.h>
54#include <net/ethernet.h>
55#include <net/if.h>
56#include <net/if_vlan_var.h>
57#include <net/if_vxlan.h>
58#include <netinet/in.h>
59#include <netinet/ip.h>
60#include <netinet/ip6.h>
61#include <netinet/tcp.h>
62#include <netinet/udp.h>
63#include <machine/in_cksum.h>
64#include <machine/md_var.h>
65#include <vm/vm.h>
66#include <vm/pmap.h>
67#ifdef DEV_NETMAP
68#include <machine/bus.h>
69#include <sys/selinfo.h>
70#include <net/if_var.h>
71#include <net/netmap.h>
72#include <dev/netmap/netmap_kern.h>
73#endif
74
75#include "common/common.h"
76#include "common/t4_regs.h"
77#include "common/t4_regs_values.h"
78#include "common/t4_msg.h"
79#include "t4_l2t.h"
80#include "t4_mp_ring.h"
81
82#define RX_COPY_THRESHOLD MINCLSIZE
83
84/*
85 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
86 * 0-7 are valid values.
87 */
88static int fl_pktshift = 0;
89SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
90    "payload DMA offset in rx buffer (bytes)");
91
92/*
93 * Pad ethernet payload up to this boundary.
94 * -1: driver should figure out a good value.
95 *  0: disable padding.
96 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
97 */
98int fl_pad = -1;
99SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
100    "payload pad boundary (bytes)");
101
102/*
103 * Status page length.
104 * -1: driver should figure out a good value.
105 *  64 or 128 are the only other valid values.
106 */
107static int spg_len = -1;
108SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
109    "status page size (bytes)");
110
111/*
112 * Congestion drops.
113 * -1: no congestion feedback (not recommended).
114 *  0: backpressure the channel instead of dropping packets right away.
115 *  1: no backpressure, drop packets for the congested queue immediately.
116 *  2: both backpressure and drop.
117 */
118static int cong_drop = 0;
119SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
120    "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
121#ifdef TCP_OFFLOAD
122static int ofld_cong_drop = 0;
123SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
124    "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
125#endif
126
127/*
128 * Deliver multiple frames in the same free list buffer if they fit.
129 * -1: let the driver decide whether to enable buffer packing or not.
130 *  0: disable buffer packing.
131 *  1: enable buffer packing.
132 */
133static int buffer_packing = -1;
134SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
135    0, "Enable buffer packing");
136
137/*
138 * Start next frame in a packed buffer at this boundary.
139 * -1: driver should figure out a good value.
140 * T4: driver will ignore this and use the same value as fl_pad above.
141 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
142 */
143static int fl_pack = -1;
144SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
145    "payload pack boundary (bytes)");
146
147/*
148 * Largest rx cluster size that the driver is allowed to allocate.
149 */
150static int largest_rx_cluster = MJUM16BYTES;
151SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
152    &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
153
154/*
155 * Size of cluster allocation that's most likely to succeed.  The driver will
156 * fall back to this size if it fails to allocate clusters larger than this.
157 */
158static int safest_rx_cluster = PAGE_SIZE;
159SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
160    &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
161
162#ifdef RATELIMIT
163/*
164 * Knob to control TCP timestamp rewriting, and the granularity of the tick used
165 * for rewriting.  -1 and 0-3 are all valid values.
166 * -1: hardware should leave the TCP timestamps alone.
167 * 0: 1ms
168 * 1: 100us
169 * 2: 10us
170 * 3: 1us
171 */
172static int tsclk = -1;
173SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
174    "Control TCP timestamp rewriting when using pacing");
175
176static int eo_max_backlog = 1024 * 1024;
177SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
178    0, "Maximum backlog of ratelimited data per flow");
179#endif
180
181/*
182 * The interrupt holdoff timers are multiplied by this value on T6+.
183 * 1 and 3-17 (both inclusive) are legal values.
184 */
185static int tscale = 1;
186SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
187    "Interrupt holdoff timer scale on T6+");
188
189/*
190 * Number of LRO entries in the lro_ctrl structure per rx queue.
191 */
192static int lro_entries = TCP_LRO_ENTRIES;
193SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
194    "Number of LRO entries per RX queue");
195
196/*
197 * This enables presorting of frames before they're fed into tcp_lro_rx.
198 */
199static int lro_mbufs = 0;
200SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
201    "Enable presorting of LRO frames");
202
203static counter_u64_t pullups;
204SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
205    "Number of mbuf pullups performed");
206
207static counter_u64_t defrags;
208SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
209    "Number of mbuf defrags performed");
210
211static int t4_tx_coalesce = 1;
212SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
213    "tx coalescing allowed");
214
215/*
216 * The driver will make aggressive attempts at tx coalescing if it sees these
217 * many packets eligible for coalescing in quick succession, with no more than
218 * the specified gap in between the eth_tx calls that delivered the packets.
219 */
220static int t4_tx_coalesce_pkts = 32;
221SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
222    &t4_tx_coalesce_pkts, 0,
223    "# of consecutive packets (1 - 255) that will trigger tx coalescing");
224static int t4_tx_coalesce_gap = 5;
225SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
226    &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
227
228static int service_iq(struct sge_iq *, int);
229static int service_iq_fl(struct sge_iq *, int);
230static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
231static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
232    u_int);
233static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
234    int, int, int);
235static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
236static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
237    struct sge_iq *, char *);
238static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
239    struct sysctl_ctx_list *, struct sysctl_oid *);
240static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
241static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
242    struct sge_iq *);
243static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
244    struct sysctl_oid *, struct sge_fl *);
245static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
246static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
247static int alloc_fwq(struct adapter *);
248static void free_fwq(struct adapter *);
249static int alloc_ctrlq(struct adapter *, int);
250static void free_ctrlq(struct adapter *, int);
251static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
252static void free_rxq(struct vi_info *, struct sge_rxq *);
253static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
254    struct sge_rxq *);
255#ifdef TCP_OFFLOAD
256static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
257    int);
258static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
259static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
260    struct sge_ofld_rxq *);
261#endif
262static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
263static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
264#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
265static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
266#endif
267static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
268    struct sysctl_oid *);
269static void free_eq(struct adapter *, struct sge_eq *);
270static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
271    struct sysctl_oid *, struct sge_eq *);
272static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
273static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
274static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
275    struct sysctl_ctx_list *, struct sysctl_oid *);
276static void free_wrq(struct adapter *, struct sge_wrq *);
277static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
278    struct sge_wrq *);
279static int alloc_txq(struct vi_info *, struct sge_txq *, int);
280static void free_txq(struct vi_info *, struct sge_txq *);
281static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
282    struct sysctl_oid *, struct sge_txq *);
283#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
284static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
285static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
286static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
287    struct sge_ofld_txq *);
288#endif
289static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
290static inline void ring_fl_db(struct adapter *, struct sge_fl *);
291static int refill_fl(struct adapter *, struct sge_fl *, int);
292static void refill_sfl(void *);
293static int find_refill_source(struct adapter *, int, bool);
294static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
295
296static inline void get_pkt_gl(struct mbuf *, struct sglist *);
297static inline u_int txpkt_len16(u_int, const u_int);
298static inline u_int txpkt_vm_len16(u_int, const u_int);
299static inline void calculate_mbuf_len16(struct mbuf *, bool);
300static inline u_int txpkts0_len16(u_int);
301static inline u_int txpkts1_len16(void);
302static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
303static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
304    u_int);
305static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
306    struct mbuf *);
307static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
308    int, bool *);
309static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
310    int, bool *);
311static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
312static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
313static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
314static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
315static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
316static inline uint16_t read_hw_cidx(struct sge_eq *);
317static inline u_int reclaimable_tx_desc(struct sge_eq *);
318static inline u_int total_available_tx_desc(struct sge_eq *);
319static u_int reclaim_tx_descs(struct sge_txq *, u_int);
320static void tx_reclaim(void *, int);
321static __be64 get_flit(struct sglist_seg *, int, int);
322static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
323    struct mbuf *);
324static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
325    struct mbuf *);
326static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
327static void wrq_tx_drain(void *, int);
328static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
329
330static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
331#ifdef RATELIMIT
332static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
333    struct mbuf *);
334#if defined(INET) || defined(INET6)
335static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
336static int ethofld_transmit(if_t, struct mbuf *);
337#endif
338#endif
339
340static counter_u64_t extfree_refs;
341static counter_u64_t extfree_rels;
342
343an_handler_t t4_an_handler;
344fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
345cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
346cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
347cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
348cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
349cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
350cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
351
352void
353t4_register_an_handler(an_handler_t h)
354{
355	uintptr_t *loc;
356
357	MPASS(h == NULL || t4_an_handler == NULL);
358
359	loc = (uintptr_t *)&t4_an_handler;
360	atomic_store_rel_ptr(loc, (uintptr_t)h);
361}
362
363void
364t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
365{
366	uintptr_t *loc;
367
368	MPASS(type < nitems(t4_fw_msg_handler));
369	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
370	/*
371	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
372	 * handler dispatch table.  Reject any attempt to install a handler for
373	 * this subtype.
374	 */
375	MPASS(type != FW_TYPE_RSSCPL);
376	MPASS(type != FW6_TYPE_RSSCPL);
377
378	loc = (uintptr_t *)&t4_fw_msg_handler[type];
379	atomic_store_rel_ptr(loc, (uintptr_t)h);
380}
381
382void
383t4_register_cpl_handler(int opcode, cpl_handler_t h)
384{
385	uintptr_t *loc;
386
387	MPASS(opcode < nitems(t4_cpl_handler));
388	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
389
390	loc = (uintptr_t *)&t4_cpl_handler[opcode];
391	atomic_store_rel_ptr(loc, (uintptr_t)h);
392}
393
394static int
395set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
396    struct mbuf *m)
397{
398	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
399	u_int tid;
400	int cookie;
401
402	MPASS(m == NULL);
403
404	tid = GET_TID(cpl);
405	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
406		/*
407		 * The return code for filter-write is put in the CPL cookie so
408		 * we have to rely on the hardware tid (is_ftid) to determine
409		 * that this is a response to a filter.
410		 */
411		cookie = CPL_COOKIE_FILTER;
412	} else {
413		cookie = G_COOKIE(cpl->cookie);
414	}
415	MPASS(cookie > CPL_COOKIE_RESERVED);
416	MPASS(cookie < nitems(set_tcb_rpl_handlers));
417
418	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
419}
420
421static int
422l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
423    struct mbuf *m)
424{
425	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
426	unsigned int cookie;
427
428	MPASS(m == NULL);
429
430	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
431	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
432}
433
434static int
435act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
436    struct mbuf *m)
437{
438	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
439	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
440
441	MPASS(m == NULL);
442	MPASS(cookie != CPL_COOKIE_RESERVED);
443
444	return (act_open_rpl_handlers[cookie](iq, rss, m));
445}
446
447static int
448abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
449    struct mbuf *m)
450{
451	struct adapter *sc = iq->adapter;
452	u_int cookie;
453
454	MPASS(m == NULL);
455	if (is_hashfilter(sc))
456		cookie = CPL_COOKIE_HASHFILTER;
457	else
458		cookie = CPL_COOKIE_TOM;
459
460	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
461}
462
463static int
464fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
465{
466	struct adapter *sc = iq->adapter;
467	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
468	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
469	u_int cookie;
470
471	MPASS(m == NULL);
472	if (is_etid(sc, tid))
473		cookie = CPL_COOKIE_ETHOFLD;
474	else
475		cookie = CPL_COOKIE_TOM;
476
477	return (fw4_ack_handlers[cookie](iq, rss, m));
478}
479
480static void
481t4_init_shared_cpl_handlers(void)
482{
483
484	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
485	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
486	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
487	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
488	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
489}
490
491void
492t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
493{
494	uintptr_t *loc;
495
496	MPASS(opcode < nitems(t4_cpl_handler));
497	MPASS(cookie > CPL_COOKIE_RESERVED);
498	MPASS(cookie < NUM_CPL_COOKIES);
499	MPASS(t4_cpl_handler[opcode] != NULL);
500
501	switch (opcode) {
502	case CPL_SET_TCB_RPL:
503		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
504		break;
505	case CPL_L2T_WRITE_RPL:
506		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
507		break;
508	case CPL_ACT_OPEN_RPL:
509		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
510		break;
511	case CPL_ABORT_RPL_RSS:
512		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
513		break;
514	case CPL_FW4_ACK:
515		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
516		break;
517	default:
518		MPASS(0);
519		return;
520	}
521	MPASS(h == NULL || *loc == (uintptr_t)NULL);
522	atomic_store_rel_ptr(loc, (uintptr_t)h);
523}
524
525/*
526 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
527 */
528void
529t4_sge_modload(void)
530{
531
532	if (fl_pktshift < 0 || fl_pktshift > 7) {
533		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
534		    " using 0 instead.\n", fl_pktshift);
535		fl_pktshift = 0;
536	}
537
538	if (spg_len != 64 && spg_len != 128) {
539		int len;
540
541#if defined(__i386__) || defined(__amd64__)
542		len = cpu_clflush_line_size > 64 ? 128 : 64;
543#else
544		len = 64;
545#endif
546		if (spg_len != -1) {
547			printf("Invalid hw.cxgbe.spg_len value (%d),"
548			    " using %d instead.\n", spg_len, len);
549		}
550		spg_len = len;
551	}
552
553	if (cong_drop < -1 || cong_drop > 2) {
554		printf("Invalid hw.cxgbe.cong_drop value (%d),"
555		    " using 0 instead.\n", cong_drop);
556		cong_drop = 0;
557	}
558#ifdef TCP_OFFLOAD
559	if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
560		printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
561		    " using 0 instead.\n", ofld_cong_drop);
562		ofld_cong_drop = 0;
563	}
564#endif
565
566	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
567		printf("Invalid hw.cxgbe.tscale value (%d),"
568		    " using 1 instead.\n", tscale);
569		tscale = 1;
570	}
571
572	if (largest_rx_cluster != MCLBYTES &&
573	    largest_rx_cluster != MJUMPAGESIZE &&
574	    largest_rx_cluster != MJUM9BYTES &&
575	    largest_rx_cluster != MJUM16BYTES) {
576		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
577		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
578		largest_rx_cluster = MJUM16BYTES;
579	}
580
581	if (safest_rx_cluster != MCLBYTES &&
582	    safest_rx_cluster != MJUMPAGESIZE &&
583	    safest_rx_cluster != MJUM9BYTES &&
584	    safest_rx_cluster != MJUM16BYTES) {
585		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
586		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
587		safest_rx_cluster = MJUMPAGESIZE;
588	}
589
590	extfree_refs = counter_u64_alloc(M_WAITOK);
591	extfree_rels = counter_u64_alloc(M_WAITOK);
592	pullups = counter_u64_alloc(M_WAITOK);
593	defrags = counter_u64_alloc(M_WAITOK);
594	counter_u64_zero(extfree_refs);
595	counter_u64_zero(extfree_rels);
596	counter_u64_zero(pullups);
597	counter_u64_zero(defrags);
598
599	t4_init_shared_cpl_handlers();
600	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
601	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
602	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
603#ifdef RATELIMIT
604	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
605	    CPL_COOKIE_ETHOFLD);
606#endif
607	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
608	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
609}
610
611void
612t4_sge_modunload(void)
613{
614
615	counter_u64_free(extfree_refs);
616	counter_u64_free(extfree_rels);
617	counter_u64_free(pullups);
618	counter_u64_free(defrags);
619}
620
621uint64_t
622t4_sge_extfree_refs(void)
623{
624	uint64_t refs, rels;
625
626	rels = counter_u64_fetch(extfree_rels);
627	refs = counter_u64_fetch(extfree_refs);
628
629	return (refs - rels);
630}
631
632/* max 4096 */
633#define MAX_PACK_BOUNDARY 512
634
635static inline void
636setup_pad_and_pack_boundaries(struct adapter *sc)
637{
638	uint32_t v, m;
639	int pad, pack, pad_shift;
640
641	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
642	    X_INGPADBOUNDARY_SHIFT;
643	pad = fl_pad;
644	if (fl_pad < (1 << pad_shift) ||
645	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
646	    !powerof2(fl_pad)) {
647		/*
648		 * If there is any chance that we might use buffer packing and
649		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
650		 * it to the minimum allowed in all other cases.
651		 */
652		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
653
654		/*
655		 * For fl_pad = 0 we'll still write a reasonable value to the
656		 * register but all the freelists will opt out of padding.
657		 * We'll complain here only if the user tried to set it to a
658		 * value greater than 0 that was invalid.
659		 */
660		if (fl_pad > 0) {
661			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
662			    " (%d), using %d instead.\n", fl_pad, pad);
663		}
664	}
665	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
666	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
667	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
668
669	if (is_t4(sc)) {
670		if (fl_pack != -1 && fl_pack != pad) {
671			/* Complain but carry on. */
672			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
673			    " using %d instead.\n", fl_pack, pad);
674		}
675		return;
676	}
677
678	pack = fl_pack;
679	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
680	    !powerof2(fl_pack)) {
681		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
682			pack = MAX_PACK_BOUNDARY;
683		else
684			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
685		MPASS(powerof2(pack));
686		if (pack < 16)
687			pack = 16;
688		if (pack == 32)
689			pack = 64;
690		if (pack > 4096)
691			pack = 4096;
692		if (fl_pack != -1) {
693			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
694			    " (%d), using %d instead.\n", fl_pack, pack);
695		}
696	}
697	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
698	if (pack == 16)
699		v = V_INGPACKBOUNDARY(0);
700	else
701		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
702
703	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
704	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
705}
706
707/*
708 * adap->params.vpd.cclk must be set up before this is called.
709 */
710void
711t4_tweak_chip_settings(struct adapter *sc)
712{
713	int i, reg;
714	uint32_t v, m;
715	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
716	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
717	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
718	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
719	static int sw_buf_sizes[] = {
720		MCLBYTES,
721		MJUMPAGESIZE,
722		MJUM9BYTES,
723		MJUM16BYTES
724	};
725
726	KASSERT(sc->flags & MASTER_PF,
727	    ("%s: trying to change chip settings when not master.", __func__));
728
729	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
730	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
731	    V_EGRSTATUSPAGESIZE(spg_len == 128);
732	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
733
734	setup_pad_and_pack_boundaries(sc);
735
736	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
737	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
738	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
739	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
740	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
741	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
742	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
743	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
744	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
745
746	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
747	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
748	reg = A_SGE_FL_BUFFER_SIZE2;
749	for (i = 0; i < nitems(sw_buf_sizes); i++) {
750		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
751		t4_write_reg(sc, reg, sw_buf_sizes[i]);
752		reg += 4;
753		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
754		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
755		reg += 4;
756	}
757
758	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
759	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
760	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
761
762	KASSERT(intr_timer[0] <= timer_max,
763	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
764	    timer_max));
765	for (i = 1; i < nitems(intr_timer); i++) {
766		KASSERT(intr_timer[i] >= intr_timer[i - 1],
767		    ("%s: timers not listed in increasing order (%d)",
768		    __func__, i));
769
770		while (intr_timer[i] > timer_max) {
771			if (i == nitems(intr_timer) - 1) {
772				intr_timer[i] = timer_max;
773				break;
774			}
775			intr_timer[i] += intr_timer[i - 1];
776			intr_timer[i] /= 2;
777		}
778	}
779
780	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
781	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
782	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
783	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
784	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
785	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
786	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
787	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
788	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
789
790	if (chip_id(sc) >= CHELSIO_T6) {
791		m = V_TSCALE(M_TSCALE);
792		if (tscale == 1)
793			v = 0;
794		else
795			v = V_TSCALE(tscale - 2);
796		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
797
798		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
799			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
800			    V_WRTHRTHRESH(M_WRTHRTHRESH);
801			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
802			v &= ~m;
803			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
804			    V_WRTHRTHRESH(16);
805			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
806		}
807	}
808
809	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
810	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
811	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
812
813	/*
814	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
815	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
816	 * may have to deal with is MAXPHYS + 1 page.
817	 */
818	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
819	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
820
821	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
822	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
823	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
824
825	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
826	    F_RESETDDPOFFSET;
827	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
828	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
829}
830
831/*
832 * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
833 * address mut be 16B aligned.  If padding is in use the buffer's start and end
834 * need to be aligned to the pad boundary as well.  We'll just make sure that
835 * the size is a multiple of the pad boundary here, it is up to the buffer
836 * allocation code to make sure the start of the buffer is aligned.
837 */
838static inline int
839hwsz_ok(struct adapter *sc, int hwsz)
840{
841	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
842
843	return (hwsz >= 64 && (hwsz & mask) == 0);
844}
845
846/*
847 * Initialize the rx buffer sizes and figure out which zones the buffers will
848 * be allocated from.
849 */
850void
851t4_init_rx_buf_info(struct adapter *sc)
852{
853	struct sge *s = &sc->sge;
854	struct sge_params *sp = &sc->params.sge;
855	int i, j, n;
856	static int sw_buf_sizes[] = {	/* Sorted by size */
857		MCLBYTES,
858		MJUMPAGESIZE,
859		MJUM9BYTES,
860		MJUM16BYTES
861	};
862	struct rx_buf_info *rxb;
863
864	s->safe_zidx = -1;
865	rxb = &s->rx_buf_info[0];
866	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
867		rxb->size1 = sw_buf_sizes[i];
868		rxb->zone = m_getzone(rxb->size1);
869		rxb->type = m_gettype(rxb->size1);
870		rxb->size2 = 0;
871		rxb->hwidx1 = -1;
872		rxb->hwidx2 = -1;
873		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
874			int hwsize = sp->sge_fl_buffer_size[j];
875
876			if (!hwsz_ok(sc, hwsize))
877				continue;
878
879			/* hwidx for size1 */
880			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
881				rxb->hwidx1 = j;
882
883			/* hwidx for size2 (buffer packing) */
884			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
885				continue;
886			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
887			if (n == 0) {
888				rxb->hwidx2 = j;
889				rxb->size2 = hwsize;
890				break;	/* stop looking */
891			}
892			if (rxb->hwidx2 != -1) {
893				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
894				    hwsize - CL_METADATA_SIZE) {
895					rxb->hwidx2 = j;
896					rxb->size2 = hwsize;
897				}
898			} else if (n <= 2 * CL_METADATA_SIZE) {
899				rxb->hwidx2 = j;
900				rxb->size2 = hwsize;
901			}
902		}
903		if (rxb->hwidx2 != -1)
904			sc->flags |= BUF_PACKING_OK;
905		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
906			s->safe_zidx = i;
907	}
908}
909
910/*
911 * Verify some basic SGE settings for the PF and VF driver, and other
912 * miscellaneous settings for the PF driver.
913 */
914int
915t4_verify_chip_settings(struct adapter *sc)
916{
917	struct sge_params *sp = &sc->params.sge;
918	uint32_t m, v, r;
919	int rc = 0;
920	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
921
922	m = F_RXPKTCPLMODE;
923	v = F_RXPKTCPLMODE;
924	r = sp->sge_control;
925	if ((r & m) != v) {
926		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
927		rc = EINVAL;
928	}
929
930	/*
931	 * If this changes then every single use of PAGE_SHIFT in the driver
932	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
933	 */
934	if (sp->page_shift != PAGE_SHIFT) {
935		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
936		rc = EINVAL;
937	}
938
939	if (sc->flags & IS_VF)
940		return (0);
941
942	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
943	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
944	if (r != v) {
945		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
946		if (sc->vres.ddp.size != 0)
947			rc = EINVAL;
948	}
949
950	m = v = F_TDDPTAGTCB;
951	r = t4_read_reg(sc, A_ULP_RX_CTL);
952	if ((r & m) != v) {
953		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
954		if (sc->vres.ddp.size != 0)
955			rc = EINVAL;
956	}
957
958	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
959	    F_RESETDDPOFFSET;
960	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
961	r = t4_read_reg(sc, A_TP_PARA_REG5);
962	if ((r & m) != v) {
963		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
964		if (sc->vres.ddp.size != 0)
965			rc = EINVAL;
966	}
967
968	return (rc);
969}
970
971int
972t4_create_dma_tag(struct adapter *sc)
973{
974	int rc;
975
976	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
977	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
978	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
979	    NULL, &sc->dmat);
980	if (rc != 0) {
981		device_printf(sc->dev,
982		    "failed to create main DMA tag: %d\n", rc);
983	}
984
985	return (rc);
986}
987
988void
989t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
990    struct sysctl_oid_list *children)
991{
992	struct sge_params *sp = &sc->params.sge;
993
994	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
995	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
996	    sysctl_bufsizes, "A", "freelist buffer sizes");
997
998	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
999	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1000
1001	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1002	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1003
1004	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1005	    NULL, sp->spg_len, "status page size (bytes)");
1006
1007	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1008	    NULL, cong_drop, "congestion drop setting");
1009#ifdef TCP_OFFLOAD
1010	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1011	    NULL, ofld_cong_drop, "congestion drop setting");
1012#endif
1013
1014	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1015	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1016}
1017
1018int
1019t4_destroy_dma_tag(struct adapter *sc)
1020{
1021	if (sc->dmat)
1022		bus_dma_tag_destroy(sc->dmat);
1023
1024	return (0);
1025}
1026
1027/*
1028 * Allocate and initialize the firmware event queue, control queues, and special
1029 * purpose rx queues owned by the adapter.
1030 *
1031 * Returns errno on failure.  Resources allocated up to that point may still be
1032 * allocated.  Caller is responsible for cleanup in case this function fails.
1033 */
1034int
1035t4_setup_adapter_queues(struct adapter *sc)
1036{
1037	int rc, i;
1038
1039	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1040
1041	/*
1042	 * Firmware event queue
1043	 */
1044	rc = alloc_fwq(sc);
1045	if (rc != 0)
1046		return (rc);
1047
1048	/*
1049	 * That's all for the VF driver.
1050	 */
1051	if (sc->flags & IS_VF)
1052		return (rc);
1053
1054	/*
1055	 * XXX: General purpose rx queues, one per port.
1056	 */
1057
1058	/*
1059	 * Control queues, one per port.
1060	 */
1061	for_each_port(sc, i) {
1062		rc = alloc_ctrlq(sc, i);
1063		if (rc != 0)
1064			return (rc);
1065	}
1066
1067	return (rc);
1068}
1069
1070/*
1071 * Idempotent
1072 */
1073int
1074t4_teardown_adapter_queues(struct adapter *sc)
1075{
1076	int i;
1077
1078	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1079
1080	if (sc->sge.ctrlq != NULL) {
1081		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1082		for_each_port(sc, i)
1083			free_ctrlq(sc, i);
1084	}
1085	free_fwq(sc);
1086
1087	return (0);
1088}
1089
1090/* Maximum payload that could arrive with a single iq descriptor. */
1091static inline int
1092max_rx_payload(struct adapter *sc, if_t ifp, const bool ofld)
1093{
1094	int maxp;
1095
1096	/* large enough even when hw VLAN extraction is disabled */
1097	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1098	    ETHER_VLAN_ENCAP_LEN + if_getmtu(ifp);
1099	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1100	    maxp < sc->params.tp.max_rx_pdu)
1101		maxp = sc->params.tp.max_rx_pdu;
1102	return (maxp);
1103}
1104
1105int
1106t4_setup_vi_queues(struct vi_info *vi)
1107{
1108	int rc = 0, i, intr_idx;
1109	struct sge_rxq *rxq;
1110	struct sge_txq *txq;
1111#ifdef TCP_OFFLOAD
1112	struct sge_ofld_rxq *ofld_rxq;
1113#endif
1114#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1115	struct sge_ofld_txq *ofld_txq;
1116#endif
1117#ifdef DEV_NETMAP
1118	int saved_idx, iqidx;
1119	struct sge_nm_rxq *nm_rxq;
1120	struct sge_nm_txq *nm_txq;
1121#endif
1122	struct adapter *sc = vi->adapter;
1123	if_t ifp = vi->ifp;
1124	int maxp;
1125
1126	/* Interrupt vector to start from (when using multiple vectors) */
1127	intr_idx = vi->first_intr;
1128
1129#ifdef DEV_NETMAP
1130	saved_idx = intr_idx;
1131	if (if_getcapabilities(ifp) & IFCAP_NETMAP) {
1132
1133		/* netmap is supported with direct interrupts only. */
1134		MPASS(!forwarding_intr_to_fwq(sc));
1135		MPASS(vi->first_intr >= 0);
1136
1137		/*
1138		 * We don't have buffers to back the netmap rx queues
1139		 * right now so we create the queues in a way that
1140		 * doesn't set off any congestion signal in the chip.
1141		 */
1142		for_each_nm_rxq(vi, i, nm_rxq) {
1143			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1144			if (rc != 0)
1145				goto done;
1146			intr_idx++;
1147		}
1148
1149		for_each_nm_txq(vi, i, nm_txq) {
1150			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1151			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1152			if (rc != 0)
1153				goto done;
1154		}
1155	}
1156
1157	/* Normal rx queues and netmap rx queues share the same interrupts. */
1158	intr_idx = saved_idx;
1159#endif
1160
1161	/*
1162	 * Allocate rx queues first because a default iqid is required when
1163	 * creating a tx queue.
1164	 */
1165	maxp = max_rx_payload(sc, ifp, false);
1166	for_each_rxq(vi, i, rxq) {
1167		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1168		if (rc != 0)
1169			goto done;
1170		if (!forwarding_intr_to_fwq(sc))
1171			intr_idx++;
1172	}
1173#ifdef DEV_NETMAP
1174	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
1175		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1176#endif
1177#ifdef TCP_OFFLOAD
1178	maxp = max_rx_payload(sc, ifp, true);
1179	for_each_ofld_rxq(vi, i, ofld_rxq) {
1180		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1181		if (rc != 0)
1182			goto done;
1183		if (!forwarding_intr_to_fwq(sc))
1184			intr_idx++;
1185	}
1186#endif
1187
1188	/*
1189	 * Now the tx queues.
1190	 */
1191	for_each_txq(vi, i, txq) {
1192		rc = alloc_txq(vi, txq, i);
1193		if (rc != 0)
1194			goto done;
1195	}
1196#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1197	for_each_ofld_txq(vi, i, ofld_txq) {
1198		rc = alloc_ofld_txq(vi, ofld_txq, i);
1199		if (rc != 0)
1200			goto done;
1201	}
1202#endif
1203done:
1204	if (rc)
1205		t4_teardown_vi_queues(vi);
1206
1207	return (rc);
1208}
1209
1210/*
1211 * Idempotent
1212 */
1213int
1214t4_teardown_vi_queues(struct vi_info *vi)
1215{
1216	int i;
1217	struct sge_rxq *rxq;
1218	struct sge_txq *txq;
1219#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1220	struct sge_ofld_txq *ofld_txq;
1221#endif
1222#ifdef TCP_OFFLOAD
1223	struct sge_ofld_rxq *ofld_rxq;
1224#endif
1225#ifdef DEV_NETMAP
1226	struct sge_nm_rxq *nm_rxq;
1227	struct sge_nm_txq *nm_txq;
1228#endif
1229
1230#ifdef DEV_NETMAP
1231	if (if_getcapabilities(vi->ifp) & IFCAP_NETMAP) {
1232		for_each_nm_txq(vi, i, nm_txq) {
1233			free_nm_txq(vi, nm_txq);
1234		}
1235
1236		for_each_nm_rxq(vi, i, nm_rxq) {
1237			free_nm_rxq(vi, nm_rxq);
1238		}
1239	}
1240#endif
1241
1242	/*
1243	 * Take down all the tx queues first, as they reference the rx queues
1244	 * (for egress updates, etc.).
1245	 */
1246
1247	for_each_txq(vi, i, txq) {
1248		free_txq(vi, txq);
1249	}
1250#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1251	for_each_ofld_txq(vi, i, ofld_txq) {
1252		free_ofld_txq(vi, ofld_txq);
1253	}
1254#endif
1255
1256	/*
1257	 * Then take down the rx queues.
1258	 */
1259
1260	for_each_rxq(vi, i, rxq) {
1261		free_rxq(vi, rxq);
1262	}
1263#ifdef TCP_OFFLOAD
1264	for_each_ofld_rxq(vi, i, ofld_rxq) {
1265		free_ofld_rxq(vi, ofld_rxq);
1266	}
1267#endif
1268
1269	return (0);
1270}
1271
1272/*
1273 * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1274 * unusual scenario.
1275 *
1276 * a) Deals with errors, if any.
1277 * b) Services firmware event queue, which is taking interrupts for all other
1278 *    queues.
1279 */
1280void
1281t4_intr_all(void *arg)
1282{
1283	struct adapter *sc = arg;
1284	struct sge_iq *fwq = &sc->sge.fwq;
1285
1286	MPASS(sc->intr_count == 1);
1287
1288	if (sc->intr_type == INTR_INTX)
1289		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1290
1291	t4_intr_err(arg);
1292	t4_intr_evt(fwq);
1293}
1294
1295/*
1296 * Interrupt handler for errors (installed directly when multiple interrupts are
1297 * being used, or called by t4_intr_all).
1298 */
1299void
1300t4_intr_err(void *arg)
1301{
1302	struct adapter *sc = arg;
1303	uint32_t v;
1304	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1305
1306	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1307		return;
1308
1309	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1310	if (v & F_PFSW) {
1311		sc->swintr++;
1312		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1313	}
1314
1315	if (t4_slow_intr_handler(sc, verbose))
1316		t4_fatal_err(sc, false);
1317}
1318
1319/*
1320 * Interrupt handler for iq-only queues.  The firmware event queue is the only
1321 * such queue right now.
1322 */
1323void
1324t4_intr_evt(void *arg)
1325{
1326	struct sge_iq *iq = arg;
1327
1328	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1329		service_iq(iq, 0);
1330		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1331	}
1332}
1333
1334/*
1335 * Interrupt handler for iq+fl queues.
1336 */
1337void
1338t4_intr(void *arg)
1339{
1340	struct sge_iq *iq = arg;
1341
1342	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1343		service_iq_fl(iq, 0);
1344		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1345	}
1346}
1347
1348#ifdef DEV_NETMAP
1349/*
1350 * Interrupt handler for netmap rx queues.
1351 */
1352void
1353t4_nm_intr(void *arg)
1354{
1355	struct sge_nm_rxq *nm_rxq = arg;
1356
1357	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1358		service_nm_rxq(nm_rxq);
1359		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1360	}
1361}
1362
1363/*
1364 * Interrupt handler for vectors shared between NIC and netmap rx queues.
1365 */
1366void
1367t4_vi_intr(void *arg)
1368{
1369	struct irq *irq = arg;
1370
1371	MPASS(irq->nm_rxq != NULL);
1372	t4_nm_intr(irq->nm_rxq);
1373
1374	MPASS(irq->rxq != NULL);
1375	t4_intr(irq->rxq);
1376}
1377#endif
1378
1379/*
1380 * Deals with interrupts on an iq-only (no freelist) queue.
1381 */
1382static int
1383service_iq(struct sge_iq *iq, int budget)
1384{
1385	struct sge_iq *q;
1386	struct adapter *sc = iq->adapter;
1387	struct iq_desc *d = &iq->desc[iq->cidx];
1388	int ndescs = 0, limit;
1389	int rsp_type;
1390	uint32_t lq;
1391	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1392
1393	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1394	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1395	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1396	    iq->flags));
1397	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1398	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1399
1400	limit = budget ? budget : iq->qsize / 16;
1401
1402	/*
1403	 * We always come back and check the descriptor ring for new indirect
1404	 * interrupts and other responses after running a single handler.
1405	 */
1406	for (;;) {
1407		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1408
1409			rmb();
1410
1411			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1412			lq = be32toh(d->rsp.pldbuflen_qid);
1413
1414			switch (rsp_type) {
1415			case X_RSPD_TYPE_FLBUF:
1416				panic("%s: data for an iq (%p) with no freelist",
1417				    __func__, iq);
1418
1419				/* NOTREACHED */
1420
1421			case X_RSPD_TYPE_CPL:
1422				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1423				    ("%s: bad opcode %02x.", __func__,
1424				    d->rss.opcode));
1425				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1426				break;
1427
1428			case X_RSPD_TYPE_INTR:
1429				/*
1430				 * There are 1K interrupt-capable queues (qids 0
1431				 * through 1023).  A response type indicating a
1432				 * forwarded interrupt with a qid >= 1K is an
1433				 * iWARP async notification.
1434				 */
1435				if (__predict_true(lq >= 1024)) {
1436					t4_an_handler(iq, &d->rsp);
1437					break;
1438				}
1439
1440				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1441				    sc->sge.iq_base];
1442				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1443				    IQS_BUSY)) {
1444					if (service_iq_fl(q, q->qsize / 16) == 0) {
1445						(void) atomic_cmpset_int(&q->state,
1446						    IQS_BUSY, IQS_IDLE);
1447					} else {
1448						STAILQ_INSERT_TAIL(&iql, q,
1449						    link);
1450					}
1451				}
1452				break;
1453
1454			default:
1455				KASSERT(0,
1456				    ("%s: illegal response type %d on iq %p",
1457				    __func__, rsp_type, iq));
1458				log(LOG_ERR,
1459				    "%s: illegal response type %d on iq %p",
1460				    device_get_nameunit(sc->dev), rsp_type, iq);
1461				break;
1462			}
1463
1464			d++;
1465			if (__predict_false(++iq->cidx == iq->sidx)) {
1466				iq->cidx = 0;
1467				iq->gen ^= F_RSPD_GEN;
1468				d = &iq->desc[0];
1469			}
1470			if (__predict_false(++ndescs == limit)) {
1471				t4_write_reg(sc, sc->sge_gts_reg,
1472				    V_CIDXINC(ndescs) |
1473				    V_INGRESSQID(iq->cntxt_id) |
1474				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1475				ndescs = 0;
1476
1477				if (budget) {
1478					return (EINPROGRESS);
1479				}
1480			}
1481		}
1482
1483		if (STAILQ_EMPTY(&iql))
1484			break;
1485
1486		/*
1487		 * Process the head only, and send it to the back of the list if
1488		 * it's still not done.
1489		 */
1490		q = STAILQ_FIRST(&iql);
1491		STAILQ_REMOVE_HEAD(&iql, link);
1492		if (service_iq_fl(q, q->qsize / 8) == 0)
1493			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1494		else
1495			STAILQ_INSERT_TAIL(&iql, q, link);
1496	}
1497
1498	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1499	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1500
1501	return (0);
1502}
1503
1504#if defined(INET) || defined(INET6)
1505static inline int
1506sort_before_lro(struct lro_ctrl *lro)
1507{
1508
1509	return (lro->lro_mbuf_max != 0);
1510}
1511#endif
1512
1513#define CGBE_SHIFT_SCALE 10
1514
1515static inline uint64_t
1516t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
1517{
1518	struct clock_sync *cur, dcur;
1519	uint64_t hw_clocks;
1520	uint64_t hw_clk_div;
1521	sbintime_t sbt_cur_to_prev, sbt;
1522	uint64_t hw_tstmp = lf & 0xfffffffffffffffULL;	/* 60b, not 64b. */
1523	seqc_t gen;
1524
1525	for (;;) {
1526		cur = &sc->cal_info[sc->cal_current];
1527		gen = seqc_read(&cur->gen);
1528		if (gen == 0)
1529			return (0);
1530		dcur = *cur;
1531		if (seqc_consistent(&cur->gen, gen))
1532			break;
1533	}
1534
1535	/*
1536	 * Our goal here is to have a result that is:
1537	 *
1538	 * (                             (cur_time - prev_time)   )
1539	 * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
1540	 * (                             (hw_cur - hw_prev)       )
1541	 *
1542	 * With the constraints that we cannot use float and we
1543	 * don't want to overflow the uint64_t numbers we are using.
1544	 */
1545	hw_clocks = hw_tstmp - dcur.hw_prev;
1546	sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
1547	hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1548	sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
1549	return (sbttons(sbt));
1550}
1551
1552static inline void
1553move_to_next_rxbuf(struct sge_fl *fl)
1554{
1555
1556	fl->rx_offset = 0;
1557	if (__predict_false((++fl->cidx & 7) == 0)) {
1558		uint16_t cidx = fl->cidx >> 3;
1559
1560		if (__predict_false(cidx == fl->sidx))
1561			fl->cidx = cidx = 0;
1562		fl->hw_cidx = cidx;
1563	}
1564}
1565
1566/*
1567 * Deals with interrupts on an iq+fl queue.
1568 */
1569static int
1570service_iq_fl(struct sge_iq *iq, int budget)
1571{
1572	struct sge_rxq *rxq = iq_to_rxq(iq);
1573	struct sge_fl *fl;
1574	struct adapter *sc = iq->adapter;
1575	struct iq_desc *d = &iq->desc[iq->cidx];
1576	int ndescs, limit;
1577	int rsp_type, starved;
1578	uint32_t lq;
1579	uint16_t fl_hw_cidx;
1580	struct mbuf *m0;
1581#if defined(INET) || defined(INET6)
1582	const struct timeval lro_timeout = {0, sc->lro_timeout};
1583	struct lro_ctrl *lro = &rxq->lro;
1584#endif
1585
1586	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1587	MPASS(iq->flags & IQ_HAS_FL);
1588
1589	ndescs = 0;
1590#if defined(INET) || defined(INET6)
1591	if (iq->flags & IQ_ADJ_CREDIT) {
1592		MPASS(sort_before_lro(lro));
1593		iq->flags &= ~IQ_ADJ_CREDIT;
1594		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1595			tcp_lro_flush_all(lro);
1596			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1597			    V_INGRESSQID((u32)iq->cntxt_id) |
1598			    V_SEINTARM(iq->intr_params));
1599			return (0);
1600		}
1601		ndescs = 1;
1602	}
1603#else
1604	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1605#endif
1606
1607	limit = budget ? budget : iq->qsize / 16;
1608	fl = &rxq->fl;
1609	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1610	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1611
1612		rmb();
1613
1614		m0 = NULL;
1615		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1616		lq = be32toh(d->rsp.pldbuflen_qid);
1617
1618		switch (rsp_type) {
1619		case X_RSPD_TYPE_FLBUF:
1620			if (lq & F_RSPD_NEWBUF) {
1621				if (fl->rx_offset > 0)
1622					move_to_next_rxbuf(fl);
1623				lq = G_RSPD_LEN(lq);
1624			}
1625			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1626				FL_LOCK(fl);
1627				refill_fl(sc, fl, 64);
1628				FL_UNLOCK(fl);
1629				fl_hw_cidx = fl->hw_cidx;
1630			}
1631
1632			if (d->rss.opcode == CPL_RX_PKT) {
1633				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1634					break;
1635				goto out;
1636			}
1637			m0 = get_fl_payload(sc, fl, lq);
1638			if (__predict_false(m0 == NULL))
1639				goto out;
1640
1641			/* fall through */
1642
1643		case X_RSPD_TYPE_CPL:
1644			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1645			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1646			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1647			break;
1648
1649		case X_RSPD_TYPE_INTR:
1650
1651			/*
1652			 * There are 1K interrupt-capable queues (qids 0
1653			 * through 1023).  A response type indicating a
1654			 * forwarded interrupt with a qid >= 1K is an
1655			 * iWARP async notification.  That is the only
1656			 * acceptable indirect interrupt on this queue.
1657			 */
1658			if (__predict_false(lq < 1024)) {
1659				panic("%s: indirect interrupt on iq_fl %p "
1660				    "with qid %u", __func__, iq, lq);
1661			}
1662
1663			t4_an_handler(iq, &d->rsp);
1664			break;
1665
1666		default:
1667			KASSERT(0, ("%s: illegal response type %d on iq %p",
1668			    __func__, rsp_type, iq));
1669			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1670			    device_get_nameunit(sc->dev), rsp_type, iq);
1671			break;
1672		}
1673
1674		d++;
1675		if (__predict_false(++iq->cidx == iq->sidx)) {
1676			iq->cidx = 0;
1677			iq->gen ^= F_RSPD_GEN;
1678			d = &iq->desc[0];
1679		}
1680		if (__predict_false(++ndescs == limit)) {
1681			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1682			    V_INGRESSQID(iq->cntxt_id) |
1683			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1684
1685#if defined(INET) || defined(INET6)
1686			if (iq->flags & IQ_LRO_ENABLED &&
1687			    !sort_before_lro(lro) &&
1688			    sc->lro_timeout != 0) {
1689				tcp_lro_flush_inactive(lro, &lro_timeout);
1690			}
1691#endif
1692			if (budget)
1693				return (EINPROGRESS);
1694			ndescs = 0;
1695		}
1696	}
1697out:
1698#if defined(INET) || defined(INET6)
1699	if (iq->flags & IQ_LRO_ENABLED) {
1700		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1701			MPASS(sort_before_lro(lro));
1702			/* hold back one credit and don't flush LRO state */
1703			iq->flags |= IQ_ADJ_CREDIT;
1704			ndescs--;
1705		} else {
1706			tcp_lro_flush_all(lro);
1707		}
1708	}
1709#endif
1710
1711	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1712	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1713
1714	FL_LOCK(fl);
1715	starved = refill_fl(sc, fl, 64);
1716	FL_UNLOCK(fl);
1717	if (__predict_false(starved != 0))
1718		add_fl_to_sfl(sc, fl);
1719
1720	return (0);
1721}
1722
1723static inline struct cluster_metadata *
1724cl_metadata(struct fl_sdesc *sd)
1725{
1726
1727	return ((void *)(sd->cl + sd->moff));
1728}
1729
1730static void
1731rxb_free(struct mbuf *m)
1732{
1733	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1734
1735	uma_zfree(clm->zone, clm->cl);
1736	counter_u64_add(extfree_rels, 1);
1737}
1738
1739/*
1740 * The mbuf returned comes from zone_muf and carries the payload in one of these
1741 * ways
1742 * a) complete frame inside the mbuf
1743 * b) m_cljset (for clusters without metadata)
1744 * d) m_extaddref (cluster with metadata)
1745 */
1746static struct mbuf *
1747get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1748    int remaining)
1749{
1750	struct mbuf *m;
1751	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1752	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1753	struct cluster_metadata *clm;
1754	int len, blen;
1755	caddr_t payload;
1756
1757	if (fl->flags & FL_BUF_PACKING) {
1758		u_int l, pad;
1759
1760		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1761		len = min(remaining, blen);
1762		payload = sd->cl + fl->rx_offset;
1763
1764		l = fr_offset + len;
1765		pad = roundup2(l, fl->buf_boundary) - l;
1766		if (fl->rx_offset + len + pad < rxb->size2)
1767			blen = len + pad;
1768		MPASS(fl->rx_offset + blen <= rxb->size2);
1769	} else {
1770		MPASS(fl->rx_offset == 0);	/* not packing */
1771		blen = rxb->size1;
1772		len = min(remaining, blen);
1773		payload = sd->cl;
1774	}
1775
1776	if (fr_offset == 0) {
1777		m = m_gethdr(M_NOWAIT, MT_DATA);
1778		if (__predict_false(m == NULL))
1779			return (NULL);
1780		m->m_pkthdr.len = remaining;
1781	} else {
1782		m = m_get(M_NOWAIT, MT_DATA);
1783		if (__predict_false(m == NULL))
1784			return (NULL);
1785	}
1786	m->m_len = len;
1787	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1788
1789	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1790		/* copy data to mbuf */
1791		bcopy(payload, mtod(m, caddr_t), len);
1792		if (fl->flags & FL_BUF_PACKING) {
1793			fl->rx_offset += blen;
1794			MPASS(fl->rx_offset <= rxb->size2);
1795			if (fl->rx_offset < rxb->size2)
1796				return (m);	/* without advancing the cidx */
1797		}
1798	} else if (fl->flags & FL_BUF_PACKING) {
1799		clm = cl_metadata(sd);
1800		if (sd->nmbuf++ == 0) {
1801			clm->refcount = 1;
1802			clm->zone = rxb->zone;
1803			clm->cl = sd->cl;
1804			counter_u64_add(extfree_refs, 1);
1805		}
1806		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1807		    NULL);
1808
1809		fl->rx_offset += blen;
1810		MPASS(fl->rx_offset <= rxb->size2);
1811		if (fl->rx_offset < rxb->size2)
1812			return (m);	/* without advancing the cidx */
1813	} else {
1814		m_cljset(m, sd->cl, rxb->type);
1815		sd->cl = NULL;	/* consumed, not a recycle candidate */
1816	}
1817
1818	move_to_next_rxbuf(fl);
1819
1820	return (m);
1821}
1822
1823static struct mbuf *
1824get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1825{
1826	struct mbuf *m0, *m, **pnext;
1827	u_int remaining;
1828
1829	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1830		M_ASSERTPKTHDR(fl->m0);
1831		MPASS(fl->m0->m_pkthdr.len == plen);
1832		MPASS(fl->remaining < plen);
1833
1834		m0 = fl->m0;
1835		pnext = fl->pnext;
1836		remaining = fl->remaining;
1837		fl->flags &= ~FL_BUF_RESUME;
1838		goto get_segment;
1839	}
1840
1841	/*
1842	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1843	 * 'len' and it may span multiple hw buffers.
1844	 */
1845
1846	m0 = get_scatter_segment(sc, fl, 0, plen);
1847	if (m0 == NULL)
1848		return (NULL);
1849	remaining = plen - m0->m_len;
1850	pnext = &m0->m_next;
1851	while (remaining > 0) {
1852get_segment:
1853		MPASS(fl->rx_offset == 0);
1854		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1855		if (__predict_false(m == NULL)) {
1856			fl->m0 = m0;
1857			fl->pnext = pnext;
1858			fl->remaining = remaining;
1859			fl->flags |= FL_BUF_RESUME;
1860			return (NULL);
1861		}
1862		*pnext = m;
1863		pnext = &m->m_next;
1864		remaining -= m->m_len;
1865	}
1866	*pnext = NULL;
1867
1868	M_ASSERTPKTHDR(m0);
1869	return (m0);
1870}
1871
1872static int
1873skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1874    int remaining)
1875{
1876	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1877	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1878	int len, blen;
1879
1880	if (fl->flags & FL_BUF_PACKING) {
1881		u_int l, pad;
1882
1883		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1884		len = min(remaining, blen);
1885
1886		l = fr_offset + len;
1887		pad = roundup2(l, fl->buf_boundary) - l;
1888		if (fl->rx_offset + len + pad < rxb->size2)
1889			blen = len + pad;
1890		fl->rx_offset += blen;
1891		MPASS(fl->rx_offset <= rxb->size2);
1892		if (fl->rx_offset < rxb->size2)
1893			return (len);	/* without advancing the cidx */
1894	} else {
1895		MPASS(fl->rx_offset == 0);	/* not packing */
1896		blen = rxb->size1;
1897		len = min(remaining, blen);
1898	}
1899	move_to_next_rxbuf(fl);
1900	return (len);
1901}
1902
1903static inline void
1904skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1905{
1906	int remaining, fr_offset, len;
1907
1908	fr_offset = 0;
1909	remaining = plen;
1910	while (remaining > 0) {
1911		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1912		fr_offset += len;
1913		remaining -= len;
1914	}
1915}
1916
1917static inline int
1918get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1919{
1920	int len;
1921	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1922	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1923
1924	if (fl->flags & FL_BUF_PACKING)
1925		len = rxb->size2 - fl->rx_offset;
1926	else
1927		len = rxb->size1;
1928
1929	return (min(plen, len));
1930}
1931
1932static int
1933eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1934    u_int plen)
1935{
1936	struct mbuf *m0;
1937	if_t ifp = rxq->ifp;
1938	struct sge_fl *fl = &rxq->fl;
1939	struct vi_info *vi = if_getsoftc(ifp);
1940	const struct cpl_rx_pkt *cpl;
1941#if defined(INET) || defined(INET6)
1942	struct lro_ctrl *lro = &rxq->lro;
1943#endif
1944	uint16_t err_vec, tnl_type, tnlhdr_len;
1945	static const int sw_hashtype[4][2] = {
1946		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1947		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1948		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1949		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1950	};
1951	static const int sw_csum_flags[2][2] = {
1952		{
1953			/* IP, inner IP */
1954			CSUM_ENCAP_VXLAN |
1955			    CSUM_L3_CALC | CSUM_L3_VALID |
1956			    CSUM_L4_CALC | CSUM_L4_VALID |
1957			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1958			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1959
1960			/* IP, inner IP6 */
1961			CSUM_ENCAP_VXLAN |
1962			    CSUM_L3_CALC | CSUM_L3_VALID |
1963			    CSUM_L4_CALC | CSUM_L4_VALID |
1964			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1965		},
1966		{
1967			/* IP6, inner IP */
1968			CSUM_ENCAP_VXLAN |
1969			    CSUM_L4_CALC | CSUM_L4_VALID |
1970			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1971			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1972
1973			/* IP6, inner IP6 */
1974			CSUM_ENCAP_VXLAN |
1975			    CSUM_L4_CALC | CSUM_L4_VALID |
1976			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1977		},
1978	};
1979
1980	MPASS(plen > sc->params.sge.fl_pktshift);
1981	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1982	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1983		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1984		caddr_t frame;
1985		int rc, slen;
1986
1987		slen = get_segment_len(sc, fl, plen) -
1988		    sc->params.sge.fl_pktshift;
1989		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
1990		CURVNET_SET_QUIET(if_getvnet(ifp));
1991		rc = pfil_mem_in(vi->pfil, frame, slen, ifp, &m0);
1992		CURVNET_RESTORE();
1993		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
1994			skip_fl_payload(sc, fl, plen);
1995			return (0);
1996		}
1997		if (rc == PFIL_REALLOCED) {
1998			skip_fl_payload(sc, fl, plen);
1999			goto have_mbuf;
2000		}
2001	}
2002
2003	m0 = get_fl_payload(sc, fl, plen);
2004	if (__predict_false(m0 == NULL))
2005		return (ENOMEM);
2006
2007	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2008	m0->m_len -= sc->params.sge.fl_pktshift;
2009	m0->m_data += sc->params.sge.fl_pktshift;
2010
2011have_mbuf:
2012	m0->m_pkthdr.rcvif = ifp;
2013	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2014	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2015
2016	cpl = (const void *)(&d->rss + 1);
2017	if (sc->params.tp.rx_pkt_encap) {
2018		const uint16_t ev = be16toh(cpl->err_vec);
2019
2020		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2021		tnl_type = G_T6_RX_TNL_TYPE(ev);
2022		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2023	} else {
2024		err_vec = be16toh(cpl->err_vec);
2025		tnl_type = 0;
2026		tnlhdr_len = 0;
2027	}
2028	if (cpl->csum_calc && err_vec == 0) {
2029		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2030
2031		/* checksum(s) calculated and found to be correct. */
2032
2033		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2034		    (cpl->l2info & htobe32(F_RXF_IP6)));
2035		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2036		if (tnl_type == 0) {
2037			if (!ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM) {
2038				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2039				    CSUM_L3_VALID | CSUM_L4_CALC |
2040				    CSUM_L4_VALID;
2041			} else if (ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM_IPV6) {
2042				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2043				    CSUM_L4_VALID;
2044			}
2045			rxq->rxcsum++;
2046		} else {
2047			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2048
2049			M_HASHTYPE_SETINNER(m0);
2050			if (__predict_false(cpl->ip_frag)) {
2051				/*
2052				 * csum_data is for the inner frame (which is an
2053				 * IP fragment) and is not 0xffff.  There is no
2054				 * way to pass the inner csum_data to the stack.
2055				 * We don't want the stack to use the inner
2056				 * csum_data to validate the outer frame or it
2057				 * will get rejected.  So we fix csum_data here
2058				 * and let sw do the checksum of inner IP
2059				 * fragments.
2060				 *
2061				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2062				 * Maybe stuff it into rcv_tstmp?
2063				 */
2064				m0->m_pkthdr.csum_data = 0xffff;
2065				if (ipv6) {
2066					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2067					    CSUM_L4_VALID;
2068				} else {
2069					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2070					    CSUM_L3_VALID | CSUM_L4_CALC |
2071					    CSUM_L4_VALID;
2072				}
2073			} else {
2074				int outer_ipv6;
2075
2076				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2077
2078				outer_ipv6 = tnlhdr_len >=
2079				    sizeof(struct ether_header) +
2080				    sizeof(struct ip6_hdr);
2081				m0->m_pkthdr.csum_flags =
2082				    sw_csum_flags[outer_ipv6][ipv6];
2083			}
2084			rxq->vxlan_rxcsum++;
2085		}
2086	}
2087
2088	if (cpl->vlan_ex) {
2089		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2090		m0->m_flags |= M_VLANTAG;
2091		rxq->vlan_extraction++;
2092	}
2093
2094	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2095		/*
2096		 * Fill up rcv_tstmp but do not set M_TSTMP as
2097		 * long as we get a non-zero back from t4_tstmp_to_ns().
2098		 */
2099		m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2100		    be64toh(d->rsp.u.last_flit));
2101		if (m0->m_pkthdr.rcv_tstmp != 0)
2102			m0->m_flags |= M_TSTMP;
2103	}
2104
2105#ifdef NUMA
2106	m0->m_pkthdr.numa_domain = if_getnumadomain(ifp);
2107#endif
2108#if defined(INET) || defined(INET6)
2109	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2110	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2111	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2112		if (sort_before_lro(lro)) {
2113			tcp_lro_queue_mbuf(lro, m0);
2114			return (0); /* queued for sort, then LRO */
2115		}
2116		if (tcp_lro_rx(lro, m0, 0) == 0)
2117			return (0); /* queued for LRO */
2118	}
2119#endif
2120	if_input(ifp, m0);
2121
2122	return (0);
2123}
2124
2125/*
2126 * Must drain the wrq or make sure that someone else will.
2127 */
2128static void
2129wrq_tx_drain(void *arg, int n)
2130{
2131	struct sge_wrq *wrq = arg;
2132	struct sge_eq *eq = &wrq->eq;
2133
2134	EQ_LOCK(eq);
2135	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2136		drain_wrq_wr_list(wrq->adapter, wrq);
2137	EQ_UNLOCK(eq);
2138}
2139
2140static void
2141drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2142{
2143	struct sge_eq *eq = &wrq->eq;
2144	u_int available, dbdiff;	/* # of hardware descriptors */
2145	u_int n;
2146	struct wrqe *wr;
2147	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2148
2149	EQ_LOCK_ASSERT_OWNED(eq);
2150	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2151	wr = STAILQ_FIRST(&wrq->wr_list);
2152	MPASS(wr != NULL);	/* Must be called with something useful to do */
2153	MPASS(eq->pidx == eq->dbidx);
2154	dbdiff = 0;
2155
2156	do {
2157		eq->cidx = read_hw_cidx(eq);
2158		if (eq->pidx == eq->cidx)
2159			available = eq->sidx - 1;
2160		else
2161			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2162
2163		MPASS(wr->wrq == wrq);
2164		n = howmany(wr->wr_len, EQ_ESIZE);
2165		if (available < n)
2166			break;
2167
2168		dst = (void *)&eq->desc[eq->pidx];
2169		if (__predict_true(eq->sidx - eq->pidx > n)) {
2170			/* Won't wrap, won't end exactly at the status page. */
2171			bcopy(&wr->wr[0], dst, wr->wr_len);
2172			eq->pidx += n;
2173		} else {
2174			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2175
2176			bcopy(&wr->wr[0], dst, first_portion);
2177			if (wr->wr_len > first_portion) {
2178				bcopy(&wr->wr[first_portion], &eq->desc[0],
2179				    wr->wr_len - first_portion);
2180			}
2181			eq->pidx = n - (eq->sidx - eq->pidx);
2182		}
2183		wrq->tx_wrs_copied++;
2184
2185		if (available < eq->sidx / 4 &&
2186		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2187				/*
2188				 * XXX: This is not 100% reliable with some
2189				 * types of WRs.  But this is a very unusual
2190				 * situation for an ofld/ctrl queue anyway.
2191				 */
2192			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2193			    F_FW_WR_EQUEQ);
2194		}
2195
2196		dbdiff += n;
2197		if (dbdiff >= 16) {
2198			ring_eq_db(sc, eq, dbdiff);
2199			dbdiff = 0;
2200		}
2201
2202		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2203		free_wrqe(wr);
2204		MPASS(wrq->nwr_pending > 0);
2205		wrq->nwr_pending--;
2206		MPASS(wrq->ndesc_needed >= n);
2207		wrq->ndesc_needed -= n;
2208	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2209
2210	if (dbdiff)
2211		ring_eq_db(sc, eq, dbdiff);
2212}
2213
2214/*
2215 * Doesn't fail.  Holds on to work requests it can't send right away.
2216 */
2217void
2218t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2219{
2220#ifdef INVARIANTS
2221	struct sge_eq *eq = &wrq->eq;
2222#endif
2223
2224	EQ_LOCK_ASSERT_OWNED(eq);
2225	MPASS(wr != NULL);
2226	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2227	MPASS((wr->wr_len & 0x7) == 0);
2228
2229	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2230	wrq->nwr_pending++;
2231	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2232
2233	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2234		return;	/* commit_wrq_wr will drain wr_list as well. */
2235
2236	drain_wrq_wr_list(sc, wrq);
2237
2238	/* Doorbell must have caught up to the pidx. */
2239	MPASS(eq->pidx == eq->dbidx);
2240}
2241
2242void
2243t4_update_fl_bufsize(if_t ifp)
2244{
2245	struct vi_info *vi = if_getsoftc(ifp);
2246	struct adapter *sc = vi->adapter;
2247	struct sge_rxq *rxq;
2248#ifdef TCP_OFFLOAD
2249	struct sge_ofld_rxq *ofld_rxq;
2250#endif
2251	struct sge_fl *fl;
2252	int i, maxp;
2253
2254	maxp = max_rx_payload(sc, ifp, false);
2255	for_each_rxq(vi, i, rxq) {
2256		fl = &rxq->fl;
2257
2258		FL_LOCK(fl);
2259		fl->zidx = find_refill_source(sc, maxp,
2260		    fl->flags & FL_BUF_PACKING);
2261		FL_UNLOCK(fl);
2262	}
2263#ifdef TCP_OFFLOAD
2264	maxp = max_rx_payload(sc, ifp, true);
2265	for_each_ofld_rxq(vi, i, ofld_rxq) {
2266		fl = &ofld_rxq->fl;
2267
2268		FL_LOCK(fl);
2269		fl->zidx = find_refill_source(sc, maxp,
2270		    fl->flags & FL_BUF_PACKING);
2271		FL_UNLOCK(fl);
2272	}
2273#endif
2274}
2275
2276#ifdef RATELIMIT
2277static inline int
2278mbuf_eo_nsegs(struct mbuf *m)
2279{
2280
2281	M_ASSERTPKTHDR(m);
2282	return (m->m_pkthdr.PH_loc.eight[1]);
2283}
2284
2285#if defined(INET) || defined(INET6)
2286static inline void
2287set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2288{
2289
2290	M_ASSERTPKTHDR(m);
2291	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2292}
2293#endif
2294
2295static inline int
2296mbuf_eo_len16(struct mbuf *m)
2297{
2298	int n;
2299
2300	M_ASSERTPKTHDR(m);
2301	n = m->m_pkthdr.PH_loc.eight[2];
2302	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2303
2304	return (n);
2305}
2306
2307#if defined(INET) || defined(INET6)
2308static inline void
2309set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2310{
2311
2312	M_ASSERTPKTHDR(m);
2313	m->m_pkthdr.PH_loc.eight[2] = len16;
2314}
2315#endif
2316
2317static inline int
2318mbuf_eo_tsclk_tsoff(struct mbuf *m)
2319{
2320
2321	M_ASSERTPKTHDR(m);
2322	return (m->m_pkthdr.PH_loc.eight[3]);
2323}
2324
2325#if defined(INET) || defined(INET6)
2326static inline void
2327set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2328{
2329
2330	M_ASSERTPKTHDR(m);
2331	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2332}
2333#endif
2334
2335static inline int
2336needs_eo(struct m_snd_tag *mst)
2337{
2338
2339	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2340}
2341#endif
2342
2343/*
2344 * Try to allocate an mbuf to contain a raw work request.  To make it
2345 * easy to construct the work request, don't allocate a chain but a
2346 * single mbuf.
2347 */
2348struct mbuf *
2349alloc_wr_mbuf(int len, int how)
2350{
2351	struct mbuf *m;
2352
2353	if (len <= MHLEN)
2354		m = m_gethdr(how, MT_DATA);
2355	else if (len <= MCLBYTES)
2356		m = m_getcl(how, MT_DATA, M_PKTHDR);
2357	else
2358		m = NULL;
2359	if (m == NULL)
2360		return (NULL);
2361	m->m_pkthdr.len = len;
2362	m->m_len = len;
2363	set_mbuf_cflags(m, MC_RAW_WR);
2364	set_mbuf_len16(m, howmany(len, 16));
2365	return (m);
2366}
2367
2368static inline bool
2369needs_hwcsum(struct mbuf *m)
2370{
2371	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2372	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2373	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2374	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2375	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2376
2377	M_ASSERTPKTHDR(m);
2378
2379	return (m->m_pkthdr.csum_flags & csum_flags);
2380}
2381
2382static inline bool
2383needs_tso(struct mbuf *m)
2384{
2385	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2386	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2387
2388	M_ASSERTPKTHDR(m);
2389
2390	return (m->m_pkthdr.csum_flags & csum_flags);
2391}
2392
2393static inline bool
2394needs_vxlan_csum(struct mbuf *m)
2395{
2396
2397	M_ASSERTPKTHDR(m);
2398
2399	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2400}
2401
2402static inline bool
2403needs_vxlan_tso(struct mbuf *m)
2404{
2405	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2406	    CSUM_INNER_IP6_TSO;
2407
2408	M_ASSERTPKTHDR(m);
2409
2410	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2411	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2412}
2413
2414#if defined(INET) || defined(INET6)
2415static inline bool
2416needs_inner_tcp_csum(struct mbuf *m)
2417{
2418	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2419
2420	M_ASSERTPKTHDR(m);
2421
2422	return (m->m_pkthdr.csum_flags & csum_flags);
2423}
2424#endif
2425
2426static inline bool
2427needs_l3_csum(struct mbuf *m)
2428{
2429	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2430	    CSUM_INNER_IP_TSO;
2431
2432	M_ASSERTPKTHDR(m);
2433
2434	return (m->m_pkthdr.csum_flags & csum_flags);
2435}
2436
2437static inline bool
2438needs_outer_tcp_csum(struct mbuf *m)
2439{
2440	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2441	    CSUM_IP6_TSO;
2442
2443	M_ASSERTPKTHDR(m);
2444
2445	return (m->m_pkthdr.csum_flags & csum_flags);
2446}
2447
2448#ifdef RATELIMIT
2449static inline bool
2450needs_outer_l4_csum(struct mbuf *m)
2451{
2452	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2453	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2454
2455	M_ASSERTPKTHDR(m);
2456
2457	return (m->m_pkthdr.csum_flags & csum_flags);
2458}
2459
2460static inline bool
2461needs_outer_udp_csum(struct mbuf *m)
2462{
2463	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2464
2465	M_ASSERTPKTHDR(m);
2466
2467	return (m->m_pkthdr.csum_flags & csum_flags);
2468}
2469#endif
2470
2471static inline bool
2472needs_vlan_insertion(struct mbuf *m)
2473{
2474
2475	M_ASSERTPKTHDR(m);
2476
2477	return (m->m_flags & M_VLANTAG);
2478}
2479
2480#if defined(INET) || defined(INET6)
2481static void *
2482m_advance(struct mbuf **pm, int *poffset, int len)
2483{
2484	struct mbuf *m = *pm;
2485	int offset = *poffset;
2486	uintptr_t p = 0;
2487
2488	MPASS(len > 0);
2489
2490	for (;;) {
2491		if (offset + len < m->m_len) {
2492			offset += len;
2493			p = mtod(m, uintptr_t) + offset;
2494			break;
2495		}
2496		len -= m->m_len - offset;
2497		m = m->m_next;
2498		offset = 0;
2499		MPASS(m != NULL);
2500	}
2501	*poffset = offset;
2502	*pm = m;
2503	return ((void *)p);
2504}
2505#endif
2506
2507static inline int
2508count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2509{
2510	vm_paddr_t paddr;
2511	int i, len, off, pglen, pgoff, seglen, segoff;
2512	int nsegs = 0;
2513
2514	M_ASSERTEXTPG(m);
2515	off = mtod(m, vm_offset_t);
2516	len = m->m_len;
2517	off += skip;
2518	len -= skip;
2519
2520	if (m->m_epg_hdrlen != 0) {
2521		if (off >= m->m_epg_hdrlen) {
2522			off -= m->m_epg_hdrlen;
2523		} else {
2524			seglen = m->m_epg_hdrlen - off;
2525			segoff = off;
2526			seglen = min(seglen, len);
2527			off = 0;
2528			len -= seglen;
2529			paddr = pmap_kextract(
2530			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2531			if (*nextaddr != paddr)
2532				nsegs++;
2533			*nextaddr = paddr + seglen;
2534		}
2535	}
2536	pgoff = m->m_epg_1st_off;
2537	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2538		pglen = m_epg_pagelen(m, i, pgoff);
2539		if (off >= pglen) {
2540			off -= pglen;
2541			pgoff = 0;
2542			continue;
2543		}
2544		seglen = pglen - off;
2545		segoff = pgoff + off;
2546		off = 0;
2547		seglen = min(seglen, len);
2548		len -= seglen;
2549		paddr = m->m_epg_pa[i] + segoff;
2550		if (*nextaddr != paddr)
2551			nsegs++;
2552		*nextaddr = paddr + seglen;
2553		pgoff = 0;
2554	};
2555	if (len != 0) {
2556		seglen = min(len, m->m_epg_trllen - off);
2557		len -= seglen;
2558		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2559		if (*nextaddr != paddr)
2560			nsegs++;
2561		*nextaddr = paddr + seglen;
2562	}
2563
2564	return (nsegs);
2565}
2566
2567
2568/*
2569 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2570 * must have at least one mbuf that's not empty.  It is possible for this
2571 * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2572 */
2573static inline int
2574count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2575{
2576	vm_paddr_t nextaddr, paddr;
2577	vm_offset_t va;
2578	int len, nsegs;
2579
2580	M_ASSERTPKTHDR(m);
2581	MPASS(m->m_pkthdr.len > 0);
2582	MPASS(m->m_pkthdr.len >= skip);
2583
2584	nsegs = 0;
2585	nextaddr = 0;
2586	for (; m; m = m->m_next) {
2587		len = m->m_len;
2588		if (__predict_false(len == 0))
2589			continue;
2590		if (skip >= len) {
2591			skip -= len;
2592			continue;
2593		}
2594		if ((m->m_flags & M_EXTPG) != 0) {
2595			*cflags |= MC_NOMAP;
2596			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2597			skip = 0;
2598			continue;
2599		}
2600		va = mtod(m, vm_offset_t) + skip;
2601		len -= skip;
2602		skip = 0;
2603		paddr = pmap_kextract(va);
2604		nsegs += sglist_count((void *)(uintptr_t)va, len);
2605		if (paddr == nextaddr)
2606			nsegs--;
2607		nextaddr = pmap_kextract(va + len - 1) + 1;
2608	}
2609
2610	return (nsegs);
2611}
2612
2613/*
2614 * The maximum number of segments that can fit in a WR.
2615 */
2616static int
2617max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2618{
2619
2620	if (vm_wr) {
2621		if (needs_tso(m))
2622			return (TX_SGL_SEGS_VM_TSO);
2623		return (TX_SGL_SEGS_VM);
2624	}
2625
2626	if (needs_tso(m)) {
2627		if (needs_vxlan_tso(m))
2628			return (TX_SGL_SEGS_VXLAN_TSO);
2629		else
2630			return (TX_SGL_SEGS_TSO);
2631	}
2632
2633	return (TX_SGL_SEGS);
2634}
2635
2636static struct timeval txerr_ratecheck = {0};
2637static const struct timeval txerr_interval = {3, 0};
2638
2639/*
2640 * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2641 * a) caller can assume it's been freed if this function returns with an error.
2642 * b) it may get defragged up if the gather list is too long for the hardware.
2643 */
2644int
2645parse_pkt(struct mbuf **mp, bool vm_wr)
2646{
2647	struct mbuf *m0 = *mp, *m;
2648	int rc, nsegs, defragged = 0;
2649	struct ether_header *eh;
2650#ifdef INET
2651	void *l3hdr;
2652#endif
2653#if defined(INET) || defined(INET6)
2654	int offset;
2655	struct tcphdr *tcp;
2656#endif
2657#if defined(KERN_TLS) || defined(RATELIMIT)
2658	struct m_snd_tag *mst;
2659#endif
2660	uint16_t eh_type;
2661	uint8_t cflags;
2662
2663	cflags = 0;
2664	M_ASSERTPKTHDR(m0);
2665	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2666		rc = EINVAL;
2667fail:
2668		m_freem(m0);
2669		*mp = NULL;
2670		return (rc);
2671	}
2672restart:
2673	/*
2674	 * First count the number of gather list segments in the payload.
2675	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2676	 */
2677	M_ASSERTPKTHDR(m0);
2678	MPASS(m0->m_pkthdr.len > 0);
2679	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2680#if defined(KERN_TLS) || defined(RATELIMIT)
2681	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2682		mst = m0->m_pkthdr.snd_tag;
2683	else
2684		mst = NULL;
2685#endif
2686#ifdef KERN_TLS
2687	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2688		cflags |= MC_TLS;
2689		set_mbuf_cflags(m0, cflags);
2690		rc = t6_ktls_parse_pkt(m0);
2691		if (rc != 0)
2692			goto fail;
2693		return (EINPROGRESS);
2694	}
2695#endif
2696	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2697		if (defragged++ > 0) {
2698			rc = EFBIG;
2699			goto fail;
2700		}
2701		counter_u64_add(defrags, 1);
2702		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2703			rc = ENOMEM;
2704			goto fail;
2705		}
2706		*mp = m0 = m;	/* update caller's copy after defrag */
2707		goto restart;
2708	}
2709
2710	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2711	    !(cflags & MC_NOMAP))) {
2712		counter_u64_add(pullups, 1);
2713		m0 = m_pullup(m0, m0->m_pkthdr.len);
2714		if (m0 == NULL) {
2715			/* Should have left well enough alone. */
2716			rc = EFBIG;
2717			goto fail;
2718		}
2719		*mp = m0;	/* update caller's copy after pullup */
2720		goto restart;
2721	}
2722	set_mbuf_nsegs(m0, nsegs);
2723	set_mbuf_cflags(m0, cflags);
2724	calculate_mbuf_len16(m0, vm_wr);
2725
2726#ifdef RATELIMIT
2727	/*
2728	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2729	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2730	 * all the right things.
2731	 */
2732	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2733		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2734		m0->m_pkthdr.snd_tag = NULL;
2735		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2736		mst = NULL;
2737	}
2738#endif
2739
2740	if (!needs_hwcsum(m0)
2741#ifdef RATELIMIT
2742		 && !needs_eo(mst)
2743#endif
2744	)
2745		return (0);
2746
2747	m = m0;
2748	eh = mtod(m, struct ether_header *);
2749	eh_type = ntohs(eh->ether_type);
2750	if (eh_type == ETHERTYPE_VLAN) {
2751		struct ether_vlan_header *evh = (void *)eh;
2752
2753		eh_type = ntohs(evh->evl_proto);
2754		m0->m_pkthdr.l2hlen = sizeof(*evh);
2755	} else
2756		m0->m_pkthdr.l2hlen = sizeof(*eh);
2757
2758#if defined(INET) || defined(INET6)
2759	offset = 0;
2760#ifdef INET
2761	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2762#else
2763	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2764#endif
2765#endif
2766
2767	switch (eh_type) {
2768#ifdef INET6
2769	case ETHERTYPE_IPV6:
2770		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2771		break;
2772#endif
2773#ifdef INET
2774	case ETHERTYPE_IP:
2775	{
2776		struct ip *ip = l3hdr;
2777
2778		if (needs_vxlan_csum(m0)) {
2779			/* Driver will do the outer IP hdr checksum. */
2780			ip->ip_sum = 0;
2781			if (needs_vxlan_tso(m0)) {
2782				const uint16_t ipl = ip->ip_len;
2783
2784				ip->ip_len = 0;
2785				ip->ip_sum = ~in_cksum_hdr(ip);
2786				ip->ip_len = ipl;
2787			} else
2788				ip->ip_sum = in_cksum_hdr(ip);
2789		}
2790		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2791		break;
2792	}
2793#endif
2794	default:
2795		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2796			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2797			    "if_cxgbe must be compiled with the same "
2798			    "INET/INET6 options as the kernel.\n", __func__,
2799			    eh_type);
2800		}
2801		rc = EINVAL;
2802		goto fail;
2803	}
2804
2805#if defined(INET) || defined(INET6)
2806	if (needs_vxlan_csum(m0)) {
2807		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2808		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2809
2810		/* Inner headers. */
2811		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2812		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2813		eh_type = ntohs(eh->ether_type);
2814		if (eh_type == ETHERTYPE_VLAN) {
2815			struct ether_vlan_header *evh = (void *)eh;
2816
2817			eh_type = ntohs(evh->evl_proto);
2818			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2819		} else
2820			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2821#ifdef INET
2822		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2823#else
2824		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2825#endif
2826
2827		switch (eh_type) {
2828#ifdef INET6
2829		case ETHERTYPE_IPV6:
2830			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2831			break;
2832#endif
2833#ifdef INET
2834		case ETHERTYPE_IP:
2835		{
2836			struct ip *ip = l3hdr;
2837
2838			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2839			break;
2840		}
2841#endif
2842		default:
2843			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2844				log(LOG_ERR, "%s: VXLAN hw offload requested"
2845				    "with unknown ethertype 0x%04x.  if_cxgbe "
2846				    "must be compiled with the same INET/INET6 "
2847				    "options as the kernel.\n", __func__,
2848				    eh_type);
2849			}
2850			rc = EINVAL;
2851			goto fail;
2852		}
2853		if (needs_inner_tcp_csum(m0)) {
2854			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2855			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2856		}
2857		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2858		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2859		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2860		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2861		    CSUM_ENCAP_VXLAN;
2862	}
2863
2864	if (needs_outer_tcp_csum(m0)) {
2865		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2866		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2867#ifdef RATELIMIT
2868		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2869			set_mbuf_eo_tsclk_tsoff(m0,
2870			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2871			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2872		} else
2873			set_mbuf_eo_tsclk_tsoff(m0, 0);
2874	} else if (needs_outer_udp_csum(m0)) {
2875		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2876#endif
2877	}
2878#ifdef RATELIMIT
2879	if (needs_eo(mst)) {
2880		u_int immhdrs;
2881
2882		/* EO WRs have the headers in the WR and not the GL. */
2883		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2884		    m0->m_pkthdr.l4hlen;
2885		cflags = 0;
2886		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2887		MPASS(cflags == mbuf_cflags(m0));
2888		set_mbuf_eo_nsegs(m0, nsegs);
2889		set_mbuf_eo_len16(m0,
2890		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2891		rc = ethofld_transmit(mst->ifp, m0);
2892		if (rc != 0)
2893			goto fail;
2894		return (EINPROGRESS);
2895	}
2896#endif
2897#endif
2898	MPASS(m0 == *mp);
2899	return (0);
2900}
2901
2902void *
2903start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2904{
2905	struct sge_eq *eq = &wrq->eq;
2906	struct adapter *sc = wrq->adapter;
2907	int ndesc, available;
2908	struct wrqe *wr;
2909	void *w;
2910
2911	MPASS(len16 > 0);
2912	ndesc = tx_len16_to_desc(len16);
2913	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2914
2915	EQ_LOCK(eq);
2916
2917	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2918		drain_wrq_wr_list(sc, wrq);
2919
2920	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2921slowpath:
2922		EQ_UNLOCK(eq);
2923		wr = alloc_wrqe(len16 * 16, wrq);
2924		if (__predict_false(wr == NULL))
2925			return (NULL);
2926		cookie->pidx = -1;
2927		cookie->ndesc = ndesc;
2928		return (&wr->wr);
2929	}
2930
2931	eq->cidx = read_hw_cidx(eq);
2932	if (eq->pidx == eq->cidx)
2933		available = eq->sidx - 1;
2934	else
2935		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2936	if (available < ndesc)
2937		goto slowpath;
2938
2939	cookie->pidx = eq->pidx;
2940	cookie->ndesc = ndesc;
2941	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2942
2943	w = &eq->desc[eq->pidx];
2944	IDXINCR(eq->pidx, ndesc, eq->sidx);
2945	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2946		w = &wrq->ss[0];
2947		wrq->ss_pidx = cookie->pidx;
2948		wrq->ss_len = len16 * 16;
2949	}
2950
2951	EQ_UNLOCK(eq);
2952
2953	return (w);
2954}
2955
2956void
2957commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2958{
2959	struct sge_eq *eq = &wrq->eq;
2960	struct adapter *sc = wrq->adapter;
2961	int ndesc, pidx;
2962	struct wrq_cookie *prev, *next;
2963
2964	if (cookie->pidx == -1) {
2965		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2966
2967		t4_wrq_tx(sc, wr);
2968		return;
2969	}
2970
2971	if (__predict_false(w == &wrq->ss[0])) {
2972		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2973
2974		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2975		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2976		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2977		wrq->tx_wrs_ss++;
2978	} else
2979		wrq->tx_wrs_direct++;
2980
2981	EQ_LOCK(eq);
2982	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2983	pidx = cookie->pidx;
2984	MPASS(pidx >= 0 && pidx < eq->sidx);
2985	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2986	next = TAILQ_NEXT(cookie, link);
2987	if (prev == NULL) {
2988		MPASS(pidx == eq->dbidx);
2989		if (next == NULL || ndesc >= 16) {
2990			int available;
2991			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2992
2993			/*
2994			 * Note that the WR via which we'll request tx updates
2995			 * is at pidx and not eq->pidx, which has moved on
2996			 * already.
2997			 */
2998			dst = (void *)&eq->desc[pidx];
2999			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3000			if (available < eq->sidx / 4 &&
3001			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3002				/*
3003				 * XXX: This is not 100% reliable with some
3004				 * types of WRs.  But this is a very unusual
3005				 * situation for an ofld/ctrl queue anyway.
3006				 */
3007				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3008				    F_FW_WR_EQUEQ);
3009			}
3010
3011			ring_eq_db(wrq->adapter, eq, ndesc);
3012		} else {
3013			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3014			next->pidx = pidx;
3015			next->ndesc += ndesc;
3016		}
3017	} else {
3018		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3019		prev->ndesc += ndesc;
3020	}
3021	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3022
3023	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3024		drain_wrq_wr_list(sc, wrq);
3025
3026#ifdef INVARIANTS
3027	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3028		/* Doorbell must have caught up to the pidx. */
3029		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3030	}
3031#endif
3032	EQ_UNLOCK(eq);
3033}
3034
3035static u_int
3036can_resume_eth_tx(struct mp_ring *r)
3037{
3038	struct sge_eq *eq = r->cookie;
3039
3040	return (total_available_tx_desc(eq) > eq->sidx / 8);
3041}
3042
3043static inline bool
3044cannot_use_txpkts(struct mbuf *m)
3045{
3046	/* maybe put a GL limit too, to avoid silliness? */
3047
3048	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3049}
3050
3051static inline int
3052discard_tx(struct sge_eq *eq)
3053{
3054
3055	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3056}
3057
3058static inline int
3059wr_can_update_eq(void *p)
3060{
3061	struct fw_eth_tx_pkts_wr *wr = p;
3062
3063	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3064	case FW_ULPTX_WR:
3065	case FW_ETH_TX_PKT_WR:
3066	case FW_ETH_TX_PKTS_WR:
3067	case FW_ETH_TX_PKTS2_WR:
3068	case FW_ETH_TX_PKT_VM_WR:
3069	case FW_ETH_TX_PKTS_VM_WR:
3070		return (1);
3071	default:
3072		return (0);
3073	}
3074}
3075
3076static inline void
3077set_txupdate_flags(struct sge_txq *txq, u_int avail,
3078    struct fw_eth_tx_pkt_wr *wr)
3079{
3080	struct sge_eq *eq = &txq->eq;
3081	struct txpkts *txp = &txq->txp;
3082
3083	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3084	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3085		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3086		eq->equeqidx = eq->pidx;
3087	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3088		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3089		eq->equeqidx = eq->pidx;
3090	}
3091}
3092
3093#if defined(__i386__) || defined(__amd64__)
3094extern uint64_t tsc_freq;
3095#endif
3096
3097static inline bool
3098record_eth_tx_time(struct sge_txq *txq)
3099{
3100	const uint64_t cycles = get_cyclecount();
3101	const uint64_t last_tx = txq->last_tx;
3102#if defined(__i386__) || defined(__amd64__)
3103	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3104#else
3105	const uint64_t itg = 0;
3106#endif
3107
3108	MPASS(cycles >= last_tx);
3109	txq->last_tx = cycles;
3110	return (cycles - last_tx < itg);
3111}
3112
3113/*
3114 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3115 * be consumed.  Return the actual number consumed.  0 indicates a stall.
3116 */
3117static u_int
3118eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3119{
3120	struct sge_txq *txq = r->cookie;
3121	if_t ifp = txq->ifp;
3122	struct sge_eq *eq = &txq->eq;
3123	struct txpkts *txp = &txq->txp;
3124	struct vi_info *vi = if_getsoftc(ifp);
3125	struct adapter *sc = vi->adapter;
3126	u_int total, remaining;		/* # of packets */
3127	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3128	int i, rc;
3129	struct mbuf *m0;
3130	bool snd, recent_tx;
3131	void *wr;	/* start of the last WR written to the ring */
3132
3133	TXQ_LOCK_ASSERT_OWNED(txq);
3134	recent_tx = record_eth_tx_time(txq);
3135
3136	remaining = IDXDIFF(pidx, cidx, r->size);
3137	if (__predict_false(discard_tx(eq))) {
3138		for (i = 0; i < txp->npkt; i++)
3139			m_freem(txp->mb[i]);
3140		txp->npkt = 0;
3141		while (cidx != pidx) {
3142			m0 = r->items[cidx];
3143			m_freem(m0);
3144			if (++cidx == r->size)
3145				cidx = 0;
3146		}
3147		reclaim_tx_descs(txq, eq->sidx);
3148		*coalescing = false;
3149		return (remaining);	/* emptied */
3150	}
3151
3152	/* How many hardware descriptors do we have readily available. */
3153	if (eq->pidx == eq->cidx)
3154		avail = eq->sidx - 1;
3155	else
3156		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3157
3158	total = 0;
3159	if (remaining == 0) {
3160		txp->score = 0;
3161		txq->txpkts_flush++;
3162		goto send_txpkts;
3163	}
3164
3165	dbdiff = 0;
3166	MPASS(remaining > 0);
3167	while (remaining > 0) {
3168		m0 = r->items[cidx];
3169		M_ASSERTPKTHDR(m0);
3170		MPASS(m0->m_nextpkt == NULL);
3171
3172		if (avail < 2 * SGE_MAX_WR_NDESC)
3173			avail += reclaim_tx_descs(txq, 64);
3174
3175		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3176			goto skip_coalescing;
3177		if (cannot_use_txpkts(m0))
3178			txp->score = 0;
3179		else if (recent_tx) {
3180			if (++txp->score == 0)
3181				txp->score = UINT8_MAX;
3182		} else
3183			txp->score = 1;
3184		if (txp->npkt > 0 || remaining > 1 ||
3185		    txp->score >= t4_tx_coalesce_pkts ||
3186		    atomic_load_int(&txq->eq.equiq) != 0) {
3187			if (vi->flags & TX_USES_VM_WR)
3188				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3189			else
3190				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3191		} else {
3192			snd = false;
3193			rc = EINVAL;
3194		}
3195		if (snd) {
3196			MPASS(txp->npkt > 0);
3197			for (i = 0; i < txp->npkt; i++)
3198				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3199			if (txp->npkt > 1) {
3200				MPASS(avail >= tx_len16_to_desc(txp->len16));
3201				if (vi->flags & TX_USES_VM_WR)
3202					n = write_txpkts_vm_wr(sc, txq);
3203				else
3204					n = write_txpkts_wr(sc, txq);
3205			} else {
3206				MPASS(avail >=
3207				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3208				if (vi->flags & TX_USES_VM_WR)
3209					n = write_txpkt_vm_wr(sc, txq,
3210					    txp->mb[0]);
3211				else
3212					n = write_txpkt_wr(sc, txq, txp->mb[0],
3213					    avail);
3214			}
3215			MPASS(n <= SGE_MAX_WR_NDESC);
3216			avail -= n;
3217			dbdiff += n;
3218			wr = &eq->desc[eq->pidx];
3219			IDXINCR(eq->pidx, n, eq->sidx);
3220			txp->npkt = 0;	/* emptied */
3221		}
3222		if (rc == 0) {
3223			/* m0 was coalesced into txq->txpkts. */
3224			goto next_mbuf;
3225		}
3226		if (rc == EAGAIN) {
3227			/*
3228			 * m0 is suitable for tx coalescing but could not be
3229			 * combined with the existing txq->txpkts, which has now
3230			 * been transmitted.  Start a new txpkts with m0.
3231			 */
3232			MPASS(snd);
3233			MPASS(txp->npkt == 0);
3234			continue;
3235		}
3236
3237		MPASS(rc != 0 && rc != EAGAIN);
3238		MPASS(txp->npkt == 0);
3239skip_coalescing:
3240		n = tx_len16_to_desc(mbuf_len16(m0));
3241		if (__predict_false(avail < n)) {
3242			avail += reclaim_tx_descs(txq, min(n, 32));
3243			if (avail < n)
3244				break;	/* out of descriptors */
3245		}
3246
3247		wr = &eq->desc[eq->pidx];
3248		if (mbuf_cflags(m0) & MC_RAW_WR) {
3249			n = write_raw_wr(txq, wr, m0, avail);
3250#ifdef KERN_TLS
3251		} else if (mbuf_cflags(m0) & MC_TLS) {
3252			ETHER_BPF_MTAP(ifp, m0);
3253			n = t6_ktls_write_wr(txq, wr, m0, avail);
3254#endif
3255		} else {
3256			ETHER_BPF_MTAP(ifp, m0);
3257			if (vi->flags & TX_USES_VM_WR)
3258				n = write_txpkt_vm_wr(sc, txq, m0);
3259			else
3260				n = write_txpkt_wr(sc, txq, m0, avail);
3261		}
3262		MPASS(n >= 1 && n <= avail);
3263		if (!(mbuf_cflags(m0) & MC_TLS))
3264			MPASS(n <= SGE_MAX_WR_NDESC);
3265
3266		avail -= n;
3267		dbdiff += n;
3268		IDXINCR(eq->pidx, n, eq->sidx);
3269
3270		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3271			if (wr_can_update_eq(wr))
3272				set_txupdate_flags(txq, avail, wr);
3273			ring_eq_db(sc, eq, dbdiff);
3274			avail += reclaim_tx_descs(txq, 32);
3275			dbdiff = 0;
3276		}
3277next_mbuf:
3278		total++;
3279		remaining--;
3280		if (__predict_false(++cidx == r->size))
3281			cidx = 0;
3282	}
3283	if (dbdiff != 0) {
3284		if (wr_can_update_eq(wr))
3285			set_txupdate_flags(txq, avail, wr);
3286		ring_eq_db(sc, eq, dbdiff);
3287		reclaim_tx_descs(txq, 32);
3288	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3289	    atomic_load_int(&txq->eq.equiq) == 0) {
3290		/*
3291		 * If nothing was submitted to the chip for tx (it was coalesced
3292		 * into txpkts instead) and there is no tx update outstanding
3293		 * then we need to send txpkts now.
3294		 */
3295send_txpkts:
3296		MPASS(txp->npkt > 0);
3297		for (i = 0; i < txp->npkt; i++)
3298			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3299		if (txp->npkt > 1) {
3300			MPASS(avail >= tx_len16_to_desc(txp->len16));
3301			if (vi->flags & TX_USES_VM_WR)
3302				n = write_txpkts_vm_wr(sc, txq);
3303			else
3304				n = write_txpkts_wr(sc, txq);
3305		} else {
3306			MPASS(avail >=
3307			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3308			if (vi->flags & TX_USES_VM_WR)
3309				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3310			else
3311				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3312		}
3313		MPASS(n <= SGE_MAX_WR_NDESC);
3314		wr = &eq->desc[eq->pidx];
3315		IDXINCR(eq->pidx, n, eq->sidx);
3316		txp->npkt = 0;	/* emptied */
3317
3318		MPASS(wr_can_update_eq(wr));
3319		set_txupdate_flags(txq, avail - n, wr);
3320		ring_eq_db(sc, eq, n);
3321		reclaim_tx_descs(txq, 32);
3322	}
3323	*coalescing = txp->npkt > 0;
3324
3325	return (total);
3326}
3327
3328static inline void
3329init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3330    int qsize, int intr_idx, int cong, int qtype)
3331{
3332
3333	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3334	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3335	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3336	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3337	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3338	    ("%s: bad intr_idx %d", __func__, intr_idx));
3339	KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3340	    qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3341
3342	iq->flags = 0;
3343	iq->state = IQS_DISABLED;
3344	iq->adapter = sc;
3345	iq->qtype = qtype;
3346	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3347	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3348	if (pktc_idx >= 0) {
3349		iq->intr_params |= F_QINTR_CNT_EN;
3350		iq->intr_pktc_idx = pktc_idx;
3351	}
3352	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3353	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3354	iq->intr_idx = intr_idx;
3355	iq->cong_drop = cong;
3356}
3357
3358static inline void
3359init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3360{
3361	struct sge_params *sp = &sc->params.sge;
3362
3363	fl->qsize = qsize;
3364	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3365	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3366	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3367	if (sc->flags & BUF_PACKING_OK &&
3368	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3369	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3370		fl->flags |= FL_BUF_PACKING;
3371	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3372	fl->safe_zidx = sc->sge.safe_zidx;
3373	if (fl->flags & FL_BUF_PACKING) {
3374		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3375		fl->buf_boundary = sp->pack_boundary;
3376	} else {
3377		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3378		fl->buf_boundary = 16;
3379	}
3380	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3381		fl->buf_boundary = sp->pad_boundary;
3382}
3383
3384static inline void
3385init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3386    uint8_t port_id, struct sge_iq *iq, char *name)
3387{
3388	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3389	    ("%s: bad qtype %d", __func__, eqtype));
3390
3391	eq->type = eqtype;
3392	eq->port_id = port_id;
3393	eq->tx_chan = sc->port[port_id]->tx_chan;
3394	eq->iq = iq;
3395	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3396	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3397	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3398}
3399
3400int
3401alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3402    bus_dmamap_t *map, bus_addr_t *pa, void **va)
3403{
3404	int rc;
3405
3406	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3407	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3408	if (rc != 0) {
3409		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3410		goto done;
3411	}
3412
3413	rc = bus_dmamem_alloc(*tag, va,
3414	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3415	if (rc != 0) {
3416		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3417		goto done;
3418	}
3419
3420	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3421	if (rc != 0) {
3422		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3423		goto done;
3424	}
3425done:
3426	if (rc)
3427		free_ring(sc, *tag, *map, *pa, *va);
3428
3429	return (rc);
3430}
3431
3432int
3433free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3434    bus_addr_t pa, void *va)
3435{
3436	if (pa)
3437		bus_dmamap_unload(tag, map);
3438	if (va)
3439		bus_dmamem_free(tag, va, map);
3440	if (tag)
3441		bus_dma_tag_destroy(tag);
3442
3443	return (0);
3444}
3445
3446/*
3447 * Allocates the software resources (mainly memory and sysctl nodes) for an
3448 * ingress queue and an optional freelist.
3449 *
3450 * Sets IQ_SW_ALLOCATED and returns 0 on success.
3451 */
3452static int
3453alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3454    struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3455{
3456	int rc;
3457	size_t len;
3458	struct adapter *sc = vi->adapter;
3459
3460	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3461
3462	len = iq->qsize * IQ_ESIZE;
3463	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3464	    (void **)&iq->desc);
3465	if (rc != 0)
3466		return (rc);
3467
3468	if (fl) {
3469		len = fl->qsize * EQ_ESIZE;
3470		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3471		    &fl->ba, (void **)&fl->desc);
3472		if (rc) {
3473			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3474			    iq->desc);
3475			return (rc);
3476		}
3477
3478		/* Allocate space for one software descriptor per buffer. */
3479		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3480		    M_CXGBE, M_ZERO | M_WAITOK);
3481
3482		add_fl_sysctls(sc, ctx, oid, fl);
3483		iq->flags |= IQ_HAS_FL;
3484	}
3485	add_iq_sysctls(ctx, oid, iq);
3486	iq->flags |= IQ_SW_ALLOCATED;
3487
3488	return (0);
3489}
3490
3491/*
3492 * Frees all software resources (memory and locks) associated with an ingress
3493 * queue and an optional freelist.
3494 */
3495static void
3496free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3497{
3498	MPASS(iq->flags & IQ_SW_ALLOCATED);
3499
3500	if (fl) {
3501		MPASS(iq->flags & IQ_HAS_FL);
3502		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3503		free_fl_buffers(sc, fl);
3504		free(fl->sdesc, M_CXGBE);
3505		mtx_destroy(&fl->fl_lock);
3506		bzero(fl, sizeof(*fl));
3507	}
3508	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3509	bzero(iq, sizeof(*iq));
3510}
3511
3512/*
3513 * Allocates a hardware ingress queue and an optional freelist that will be
3514 * associated with it.
3515 *
3516 * Returns errno on failure.  Resources allocated up to that point may still be
3517 * allocated.  Caller is responsible for cleanup in case this function fails.
3518 */
3519static int
3520alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3521{
3522	int rc, cntxt_id, cong_map;
3523	struct fw_iq_cmd c;
3524	struct adapter *sc = vi->adapter;
3525	struct port_info *pi = vi->pi;
3526	__be32 v = 0;
3527
3528	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3529
3530	bzero(&c, sizeof(c));
3531	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3532	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3533	    V_FW_IQ_CMD_VFN(0));
3534
3535	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3536	    FW_LEN16(c));
3537
3538	/* Special handling for firmware event queue */
3539	if (iq == &sc->sge.fwq)
3540		v |= F_FW_IQ_CMD_IQASYNCH;
3541
3542	if (iq->intr_idx < 0) {
3543		/* Forwarded interrupts, all headed to fwq */
3544		v |= F_FW_IQ_CMD_IQANDST;
3545		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3546	} else {
3547		KASSERT(iq->intr_idx < sc->intr_count,
3548		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3549		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3550	}
3551
3552	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3553	c.type_to_iqandstindex = htobe32(v |
3554	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3555	    V_FW_IQ_CMD_VIID(vi->viid) |
3556	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3557	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3558	    F_FW_IQ_CMD_IQGTSMODE |
3559	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3560	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3561	c.iqsize = htobe16(iq->qsize);
3562	c.iqaddr = htobe64(iq->ba);
3563	c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3564	if (iq->cong_drop != -1) {
3565		cong_map = iq->qtype == IQ_ETH ? pi->rx_e_chan_map : 0;
3566		c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3567	}
3568
3569	if (fl) {
3570		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3571		c.iqns_to_fl0congen |=
3572		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3573			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3574			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3575			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3576			    0));
3577		if (iq->cong_drop != -1) {
3578			c.iqns_to_fl0congen |=
3579				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3580				    F_FW_IQ_CMD_FL0CONGCIF |
3581				    F_FW_IQ_CMD_FL0CONGEN);
3582		}
3583		c.fl0dcaen_to_fl0cidxfthresh =
3584		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3585			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3586			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3587			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3588		c.fl0size = htobe16(fl->qsize);
3589		c.fl0addr = htobe64(fl->ba);
3590	}
3591
3592	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3593	if (rc != 0) {
3594		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3595		return (rc);
3596	}
3597
3598	iq->cidx = 0;
3599	iq->gen = F_RSPD_GEN;
3600	iq->cntxt_id = be16toh(c.iqid);
3601	iq->abs_id = be16toh(c.physiqid);
3602
3603	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3604	if (cntxt_id >= sc->sge.iqmap_sz) {
3605		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3606		    cntxt_id, sc->sge.iqmap_sz - 1);
3607	}
3608	sc->sge.iqmap[cntxt_id] = iq;
3609
3610	if (fl) {
3611		u_int qid;
3612#ifdef INVARIANTS
3613		int i;
3614
3615		MPASS(!(fl->flags & FL_BUF_RESUME));
3616		for (i = 0; i < fl->sidx * 8; i++)
3617			MPASS(fl->sdesc[i].cl == NULL);
3618#endif
3619		fl->cntxt_id = be16toh(c.fl0id);
3620		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3621		fl->rx_offset = 0;
3622		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3623
3624		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3625		if (cntxt_id >= sc->sge.eqmap_sz) {
3626			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3627			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3628		}
3629		sc->sge.eqmap[cntxt_id] = (void *)fl;
3630
3631		qid = fl->cntxt_id;
3632		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3633			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3634			uint32_t mask = (1 << s_qpp) - 1;
3635			volatile uint8_t *udb;
3636
3637			udb = sc->udbs_base + UDBS_DB_OFFSET;
3638			udb += (qid >> s_qpp) << PAGE_SHIFT;
3639			qid &= mask;
3640			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3641				udb += qid << UDBS_SEG_SHIFT;
3642				qid = 0;
3643			}
3644			fl->udb = (volatile void *)udb;
3645		}
3646		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3647
3648		FL_LOCK(fl);
3649		/* Enough to make sure the SGE doesn't think it's starved */
3650		refill_fl(sc, fl, fl->lowat);
3651		FL_UNLOCK(fl);
3652	}
3653
3654	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3655	    iq->cong_drop != -1) {
3656		t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3657		    cong_map);
3658	}
3659
3660	/* Enable IQ interrupts */
3661	atomic_store_rel_int(&iq->state, IQS_IDLE);
3662	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3663	    V_INGRESSQID(iq->cntxt_id));
3664
3665	iq->flags |= IQ_HW_ALLOCATED;
3666
3667	return (0);
3668}
3669
3670static int
3671free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3672{
3673	int rc;
3674
3675	MPASS(iq->flags & IQ_HW_ALLOCATED);
3676	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3677	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3678	if (rc != 0) {
3679		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3680		return (rc);
3681	}
3682	iq->flags &= ~IQ_HW_ALLOCATED;
3683
3684	return (0);
3685}
3686
3687static void
3688add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3689    struct sge_iq *iq)
3690{
3691	struct sysctl_oid_list *children;
3692
3693	if (ctx == NULL || oid == NULL)
3694		return;
3695
3696	children = SYSCTL_CHILDREN(oid);
3697	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3698	    "bus address of descriptor ring");
3699	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3700	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3701	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3702	    &iq->abs_id, 0, "absolute id of the queue");
3703	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3704	    &iq->cntxt_id, 0, "SGE context id of the queue");
3705	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3706	    0, "consumer index");
3707}
3708
3709static void
3710add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3711    struct sysctl_oid *oid, struct sge_fl *fl)
3712{
3713	struct sysctl_oid_list *children;
3714
3715	if (ctx == NULL || oid == NULL)
3716		return;
3717
3718	children = SYSCTL_CHILDREN(oid);
3719	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3720	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3721	children = SYSCTL_CHILDREN(oid);
3722
3723	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3724	    &fl->ba, "bus address of descriptor ring");
3725	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3726	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3727	    "desc ring size in bytes");
3728	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3729	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3730	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3731	    fl_pad ? 1 : 0, "padding enabled");
3732	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3733	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3734	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3735	    0, "consumer index");
3736	if (fl->flags & FL_BUF_PACKING) {
3737		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3738		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3739	}
3740	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3741	    0, "producer index");
3742	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3743	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3744	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3745	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3746	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3747	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3748}
3749
3750/*
3751 * Idempotent.
3752 */
3753static int
3754alloc_fwq(struct adapter *sc)
3755{
3756	int rc, intr_idx;
3757	struct sge_iq *fwq = &sc->sge.fwq;
3758	struct vi_info *vi = &sc->port[0]->vi[0];
3759
3760	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3761		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3762
3763		if (sc->flags & IS_VF)
3764			intr_idx = 0;
3765		else
3766			intr_idx = sc->intr_count > 1 ? 1 : 0;
3767		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3768		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3769		if (rc != 0) {
3770			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3771			return (rc);
3772		}
3773		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3774	}
3775
3776	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3777		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3778
3779		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3780		if (rc != 0) {
3781			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3782			return (rc);
3783		}
3784		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3785	}
3786
3787	return (0);
3788}
3789
3790/*
3791 * Idempotent.
3792 */
3793static void
3794free_fwq(struct adapter *sc)
3795{
3796	struct sge_iq *fwq = &sc->sge.fwq;
3797
3798	if (fwq->flags & IQ_HW_ALLOCATED) {
3799		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3800		free_iq_fl_hwq(sc, fwq, NULL);
3801		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3802	}
3803
3804	if (fwq->flags & IQ_SW_ALLOCATED) {
3805		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3806		free_iq_fl(sc, fwq, NULL);
3807		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3808	}
3809}
3810
3811/*
3812 * Idempotent.
3813 */
3814static int
3815alloc_ctrlq(struct adapter *sc, int idx)
3816{
3817	int rc;
3818	char name[16];
3819	struct sysctl_oid *oid;
3820	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3821
3822	MPASS(idx < sc->params.nports);
3823
3824	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3825		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3826
3827		snprintf(name, sizeof(name), "%d", idx);
3828		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3829		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3830		    "ctrl queue");
3831
3832		snprintf(name, sizeof(name), "%s ctrlq%d",
3833		    device_get_nameunit(sc->dev), idx);
3834		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, idx,
3835		    &sc->sge.fwq, name);
3836		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3837		if (rc != 0) {
3838			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3839			sysctl_remove_oid(oid, 1, 1);
3840			return (rc);
3841		}
3842		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3843	}
3844
3845	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3846		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3847
3848		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
3849		if (rc != 0) {
3850			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3851			return (rc);
3852		}
3853		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3854	}
3855
3856	return (0);
3857}
3858
3859/*
3860 * Idempotent.
3861 */
3862static void
3863free_ctrlq(struct adapter *sc, int idx)
3864{
3865	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3866
3867	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3868		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3869		free_eq_hwq(sc, NULL, &ctrlq->eq);
3870		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3871	}
3872
3873	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3874		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3875		free_wrq(sc, ctrlq);
3876		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3877	}
3878}
3879
3880int
3881t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3882    int cong_map)
3883{
3884	const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3885	uint32_t param, val;
3886	uint16_t ch_map;
3887	int cong_mode, rc, i;
3888
3889	if (chip_id(sc) < CHELSIO_T5)
3890		return (ENOTSUP);
3891
3892	/* Convert the driver knob to the mode understood by the firmware. */
3893	switch (cong_drop) {
3894	case -1:
3895		cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3896		break;
3897	case 0:
3898		cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3899		break;
3900	case 1:
3901		cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
3902		break;
3903	case 2:
3904		cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
3905		break;
3906	default:
3907		MPASS(0);
3908		CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
3909		    cong_drop, cntxt_id);
3910		return (EINVAL);
3911	}
3912
3913	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3914	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3915	    V_FW_PARAMS_PARAM_YZ(cntxt_id);
3916	val = V_CONMCTXT_CNGTPMODE(cong_mode);
3917	if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
3918	    cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
3919		for (i = 0, ch_map = 0; i < 4; i++) {
3920			if (cong_map & (1 << i))
3921				ch_map |= 1 << (i << cng_ch_bits_log);
3922		}
3923		val |= V_CONMCTXT_CNGCHMAP(ch_map);
3924	}
3925	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3926	if (rc != 0) {
3927		CH_ERR(sc, "failed to set congestion manager context "
3928		    "for ingress queue %d: %d\n", cntxt_id, rc);
3929	}
3930
3931	return (rc);
3932}
3933
3934/*
3935 * Idempotent.
3936 */
3937static int
3938alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
3939    int maxp)
3940{
3941	int rc;
3942	struct adapter *sc = vi->adapter;
3943	if_t ifp = vi->ifp;
3944	struct sysctl_oid *oid;
3945	char name[16];
3946
3947	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
3948		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
3949#if defined(INET) || defined(INET6)
3950		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
3951		if (rc != 0)
3952			return (rc);
3953		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
3954#endif
3955		rxq->ifp = ifp;
3956
3957		snprintf(name, sizeof(name), "%d", idx);
3958		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
3959		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3960		    "rx queue");
3961
3962		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
3963		    intr_idx, cong_drop, IQ_ETH);
3964#if defined(INET) || defined(INET6)
3965		if (if_getcapenable(ifp) & IFCAP_LRO)
3966			rxq->iq.flags |= IQ_LRO_ENABLED;
3967#endif
3968		if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3969			rxq->iq.flags |= IQ_RX_TIMESTAMP;
3970		snprintf(name, sizeof(name), "%s rxq%d-fl",
3971		    device_get_nameunit(vi->dev), idx);
3972		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
3973		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
3974		if (rc != 0) {
3975			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
3976			sysctl_remove_oid(oid, 1, 1);
3977#if defined(INET) || defined(INET6)
3978			tcp_lro_free(&rxq->lro);
3979			rxq->lro.ifp = NULL;
3980#endif
3981			return (rc);
3982		}
3983		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3984		add_rxq_sysctls(&vi->ctx, oid, rxq);
3985	}
3986
3987	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
3988		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3989		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
3990		if (rc != 0) {
3991			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
3992			return (rc);
3993		}
3994		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
3995
3996		if (idx == 0)
3997			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3998		else
3999			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4000			    ("iq_base mismatch"));
4001		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4002		    ("PF with non-zero iq_base"));
4003
4004		/*
4005		 * The freelist is just barely above the starvation threshold
4006		 * right now, fill it up a bit more.
4007		 */
4008		FL_LOCK(&rxq->fl);
4009		refill_fl(sc, &rxq->fl, 128);
4010		FL_UNLOCK(&rxq->fl);
4011	}
4012
4013	return (0);
4014}
4015
4016/*
4017 * Idempotent.
4018 */
4019static void
4020free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4021{
4022	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4023		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4024		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4025		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4026	}
4027
4028	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4029		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4030#if defined(INET) || defined(INET6)
4031		tcp_lro_free(&rxq->lro);
4032#endif
4033		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4034		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4035		bzero(rxq, sizeof(*rxq));
4036	}
4037}
4038
4039static void
4040add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4041    struct sge_rxq *rxq)
4042{
4043	struct sysctl_oid_list *children;
4044
4045	if (ctx == NULL || oid == NULL)
4046		return;
4047
4048	children = SYSCTL_CHILDREN(oid);
4049#if defined(INET) || defined(INET6)
4050	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4051	    &rxq->lro.lro_queued, 0, NULL);
4052	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4053	    &rxq->lro.lro_flushed, 0, NULL);
4054#endif
4055	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4056	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4057	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4058	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4059	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4060	    &rxq->vxlan_rxcsum,
4061	    "# of times hardware assisted with inner checksum (VXLAN)");
4062}
4063
4064#ifdef TCP_OFFLOAD
4065/*
4066 * Idempotent.
4067 */
4068static int
4069alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4070    int intr_idx, int maxp)
4071{
4072	int rc;
4073	struct adapter *sc = vi->adapter;
4074	struct sysctl_oid *oid;
4075	char name[16];
4076
4077	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4078		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4079
4080		snprintf(name, sizeof(name), "%d", idx);
4081		oid = SYSCTL_ADD_NODE(&vi->ctx,
4082		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4083		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4084
4085		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4086		    vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4087		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4088		    device_get_nameunit(vi->dev), idx);
4089		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4090		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4091		    oid);
4092		if (rc != 0) {
4093			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4094			    rc);
4095			sysctl_remove_oid(oid, 1, 1);
4096			return (rc);
4097		}
4098		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4099		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4100		ofld_rxq->rx_iscsi_ddp_setup_error =
4101		    counter_u64_alloc(M_WAITOK);
4102		ofld_rxq->ddp_buffer_alloc = counter_u64_alloc(M_WAITOK);
4103		ofld_rxq->ddp_buffer_reuse = counter_u64_alloc(M_WAITOK);
4104		ofld_rxq->ddp_buffer_free = counter_u64_alloc(M_WAITOK);
4105		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4106	}
4107
4108	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4109		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4110		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4111		if (rc != 0) {
4112			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4113			    rc);
4114			return (rc);
4115		}
4116		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4117	}
4118	return (rc);
4119}
4120
4121/*
4122 * Idempotent.
4123 */
4124static void
4125free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4126{
4127	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4128		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4129		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4130		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4131	}
4132
4133	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4134		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4135		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4136		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4137		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4138		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4139		counter_u64_free(ofld_rxq->ddp_buffer_alloc);
4140		counter_u64_free(ofld_rxq->ddp_buffer_reuse);
4141		counter_u64_free(ofld_rxq->ddp_buffer_free);
4142		bzero(ofld_rxq, sizeof(*ofld_rxq));
4143	}
4144}
4145
4146static void
4147add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4148    struct sge_ofld_rxq *ofld_rxq)
4149{
4150	struct sysctl_oid_list *children;
4151
4152	if (ctx == NULL || oid == NULL)
4153		return;
4154
4155	children = SYSCTL_CHILDREN(oid);
4156	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_jobs",
4157	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_jobs, 0,
4158	    "# of aio_read(2) jobs completed via DDP");
4159	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_octets",
4160	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_octets, 0,
4161	    "# of octets placed directly for aio_read(2) jobs");
4162	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4163	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4164	    "# of TOE TLS records received");
4165	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4166	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4167	    "# of payload octets in received TOE TLS records");
4168	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4169	    "rx_toe_ddp_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_ddp_octets,
4170	    "# of payload octets received via TCP DDP");
4171	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4172	    "ddp_buffer_alloc", CTLFLAG_RD, &ofld_rxq->ddp_buffer_alloc,
4173	    "# of DDP RCV buffers allocated");
4174	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4175	    "ddp_buffer_reuse", CTLFLAG_RD, &ofld_rxq->ddp_buffer_reuse,
4176	    "# of DDP RCV buffers reused");
4177	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4178	    "ddp_buffer_free", CTLFLAG_RD, &ofld_rxq->ddp_buffer_free,
4179	    "# of DDP RCV buffers freed");
4180
4181	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4182	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4183	children = SYSCTL_CHILDREN(oid);
4184
4185	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4186	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4187	    "# of times DDP buffer was setup successfully.");
4188	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4189	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4190	    "# of times DDP buffer setup failed.");
4191	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4192	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4193	    "# of octets placed directly");
4194	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4195	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4196	    "# of PDUs with data placed directly.");
4197	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4198	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4199	    "# of data octets delivered in freelist");
4200	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4201	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4202	    "# of PDUs with data delivered in freelist");
4203	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4204	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4205	    "# of PDUs with invalid padding");
4206	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4207	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4208	    "# of PDUs with invalid header digests");
4209	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4210	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4211	    "# of PDUs with invalid data digests");
4212}
4213#endif
4214
4215/*
4216 * Returns a reasonable automatic cidx flush threshold for a given queue size.
4217 */
4218static u_int
4219qsize_to_fthresh(int qsize)
4220{
4221	u_int fthresh;
4222
4223	while (!powerof2(qsize))
4224		qsize++;
4225	fthresh = ilog2(qsize);
4226	if (fthresh > X_CIDXFLUSHTHRESH_128)
4227		fthresh = X_CIDXFLUSHTHRESH_128;
4228
4229	return (fthresh);
4230}
4231
4232static int
4233ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4234{
4235	int rc, cntxt_id;
4236	struct fw_eq_ctrl_cmd c;
4237	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4238
4239	bzero(&c, sizeof(c));
4240
4241	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4242	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4243	    V_FW_EQ_CTRL_CMD_VFN(0));
4244	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4245	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4246	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4247	c.physeqid_pkd = htobe32(0);
4248	c.fetchszm_to_iqid =
4249	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4250		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4251		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4252	c.dcaen_to_eqsize =
4253	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4254		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4255		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4256		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4257		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4258	c.eqaddr = htobe64(eq->ba);
4259
4260	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4261	if (rc != 0) {
4262		CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
4263		    eq->tx_chan, rc);
4264		return (rc);
4265	}
4266
4267	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4268	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4269	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4270	if (cntxt_id >= sc->sge.eqmap_sz)
4271	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4272		cntxt_id, sc->sge.eqmap_sz - 1);
4273	sc->sge.eqmap[cntxt_id] = eq;
4274
4275	return (rc);
4276}
4277
4278static int
4279eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4280{
4281	int rc, cntxt_id;
4282	struct fw_eq_eth_cmd c;
4283	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4284
4285	bzero(&c, sizeof(c));
4286
4287	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4288	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4289	    V_FW_EQ_ETH_CMD_VFN(0));
4290	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4291	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4292	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4293	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4294	c.fetchszm_to_iqid =
4295	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4296		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4297		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4298	c.dcaen_to_eqsize =
4299	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4300		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4301		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4302		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4303	c.eqaddr = htobe64(eq->ba);
4304
4305	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4306	if (rc != 0) {
4307		device_printf(vi->dev,
4308		    "failed to create Ethernet egress queue: %d\n", rc);
4309		return (rc);
4310	}
4311
4312	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4313	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4314	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4315	if (cntxt_id >= sc->sge.eqmap_sz)
4316	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4317		cntxt_id, sc->sge.eqmap_sz - 1);
4318	sc->sge.eqmap[cntxt_id] = eq;
4319
4320	return (rc);
4321}
4322
4323#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4324static int
4325ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4326{
4327	int rc, cntxt_id;
4328	struct fw_eq_ofld_cmd c;
4329	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4330
4331	bzero(&c, sizeof(c));
4332
4333	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4334	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4335	    V_FW_EQ_OFLD_CMD_VFN(0));
4336	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4337	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4338	c.fetchszm_to_iqid =
4339		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4340		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4341		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4342	c.dcaen_to_eqsize =
4343	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4344		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4345		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4346		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4347		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4348	c.eqaddr = htobe64(eq->ba);
4349
4350	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4351	if (rc != 0) {
4352		device_printf(vi->dev,
4353		    "failed to create egress queue for TCP offload: %d\n", rc);
4354		return (rc);
4355	}
4356
4357	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4358	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4359	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4360	if (cntxt_id >= sc->sge.eqmap_sz)
4361	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4362		cntxt_id, sc->sge.eqmap_sz - 1);
4363	sc->sge.eqmap[cntxt_id] = eq;
4364
4365	return (rc);
4366}
4367#endif
4368
4369/* SW only */
4370static int
4371alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4372    struct sysctl_oid *oid)
4373{
4374	int rc, qsize;
4375	size_t len;
4376
4377	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4378
4379	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4380	len = qsize * EQ_ESIZE;
4381	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4382	    (void **)&eq->desc);
4383	if (rc)
4384		return (rc);
4385	if (ctx != NULL && oid != NULL)
4386		add_eq_sysctls(sc, ctx, oid, eq);
4387	eq->flags |= EQ_SW_ALLOCATED;
4388
4389	return (0);
4390}
4391
4392/* SW only */
4393static void
4394free_eq(struct adapter *sc, struct sge_eq *eq)
4395{
4396	MPASS(eq->flags & EQ_SW_ALLOCATED);
4397	if (eq->type == EQ_ETH)
4398		MPASS(eq->pidx == eq->cidx);
4399
4400	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4401	mtx_destroy(&eq->eq_lock);
4402	bzero(eq, sizeof(*eq));
4403}
4404
4405static void
4406add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4407    struct sysctl_oid *oid, struct sge_eq *eq)
4408{
4409	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4410
4411	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4412	    "bus address of descriptor ring");
4413	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4414	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4415	    "desc ring size in bytes");
4416	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4417	    &eq->abs_id, 0, "absolute id of the queue");
4418	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4419	    &eq->cntxt_id, 0, "SGE context id of the queue");
4420	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4421	    0, "consumer index");
4422	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4423	    0, "producer index");
4424	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4425	    eq->sidx, "status page index");
4426}
4427
4428static int
4429alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4430{
4431	int rc;
4432
4433	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4434
4435	eq->iqid = eq->iq->cntxt_id;
4436	eq->pidx = eq->cidx = eq->dbidx = 0;
4437	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4438	eq->equeqidx = 0;
4439	eq->doorbells = sc->doorbells;
4440	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4441
4442	switch (eq->type) {
4443	case EQ_CTRL:
4444		rc = ctrl_eq_alloc(sc, eq);
4445		break;
4446
4447	case EQ_ETH:
4448		rc = eth_eq_alloc(sc, vi, eq);
4449		break;
4450
4451#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4452	case EQ_OFLD:
4453		rc = ofld_eq_alloc(sc, vi, eq);
4454		break;
4455#endif
4456
4457	default:
4458		panic("%s: invalid eq type %d.", __func__, eq->type);
4459	}
4460	if (rc != 0) {
4461		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4462		    eq->type, rc);
4463		return (rc);
4464	}
4465
4466	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4467	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4468	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4469		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4470		uint32_t mask = (1 << s_qpp) - 1;
4471		volatile uint8_t *udb;
4472
4473		udb = sc->udbs_base + UDBS_DB_OFFSET;
4474		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4475		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4476		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4477			clrbit(&eq->doorbells, DOORBELL_WCWR);
4478		else {
4479			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4480			eq->udb_qid = 0;
4481		}
4482		eq->udb = (volatile void *)udb;
4483	}
4484
4485	eq->flags |= EQ_HW_ALLOCATED;
4486	return (0);
4487}
4488
4489static int
4490free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4491{
4492	int rc;
4493
4494	MPASS(eq->flags & EQ_HW_ALLOCATED);
4495
4496	switch (eq->type) {
4497	case EQ_CTRL:
4498		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4499		break;
4500	case EQ_ETH:
4501		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4502		break;
4503#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4504	case EQ_OFLD:
4505		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4506		break;
4507#endif
4508	default:
4509		panic("%s: invalid eq type %d.", __func__, eq->type);
4510	}
4511	if (rc != 0) {
4512		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4513		return (rc);
4514	}
4515	eq->flags &= ~EQ_HW_ALLOCATED;
4516
4517	return (0);
4518}
4519
4520static int
4521alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4522    struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4523{
4524	struct sge_eq *eq = &wrq->eq;
4525	int rc;
4526
4527	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4528
4529	rc = alloc_eq(sc, eq, ctx, oid);
4530	if (rc)
4531		return (rc);
4532	MPASS(eq->flags & EQ_SW_ALLOCATED);
4533	/* Can't fail after this. */
4534
4535	wrq->adapter = sc;
4536	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4537	TAILQ_INIT(&wrq->incomplete_wrs);
4538	STAILQ_INIT(&wrq->wr_list);
4539	wrq->nwr_pending = 0;
4540	wrq->ndesc_needed = 0;
4541	add_wrq_sysctls(ctx, oid, wrq);
4542
4543	return (0);
4544}
4545
4546static void
4547free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4548{
4549	free_eq(sc, &wrq->eq);
4550	MPASS(wrq->nwr_pending == 0);
4551	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4552	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4553	bzero(wrq, sizeof(*wrq));
4554}
4555
4556static void
4557add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4558    struct sge_wrq *wrq)
4559{
4560	struct sysctl_oid_list *children;
4561
4562	if (ctx == NULL || oid == NULL)
4563		return;
4564
4565	children = SYSCTL_CHILDREN(oid);
4566	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4567	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4568	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4569	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4570	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4571	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4572}
4573
4574/*
4575 * Idempotent.
4576 */
4577static int
4578alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4579{
4580	int rc, iqidx;
4581	struct port_info *pi = vi->pi;
4582	struct adapter *sc = vi->adapter;
4583	struct sge_eq *eq = &txq->eq;
4584	struct txpkts *txp;
4585	char name[16];
4586	struct sysctl_oid *oid;
4587
4588	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4589		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4590
4591		snprintf(name, sizeof(name), "%d", idx);
4592		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4593		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4594		    "tx queue");
4595
4596		iqidx = vi->first_rxq + (idx % vi->nrxq);
4597		snprintf(name, sizeof(name), "%s txq%d",
4598		    device_get_nameunit(vi->dev), idx);
4599		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->port_id,
4600		    &sc->sge.rxq[iqidx].iq, name);
4601
4602		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4603		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4604		if (rc != 0) {
4605			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4606			    idx, rc);
4607failed:
4608			sysctl_remove_oid(oid, 1, 1);
4609			return (rc);
4610		}
4611
4612		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4613		if (rc) {
4614			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4615			mp_ring_free(txq->r);
4616			goto failed;
4617		}
4618		MPASS(eq->flags & EQ_SW_ALLOCATED);
4619		/* Can't fail after this point. */
4620
4621		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4622		txq->ifp = vi->ifp;
4623		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4624		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4625		    M_ZERO | M_WAITOK);
4626
4627		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4628	}
4629
4630	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4631		MPASS(eq->flags & EQ_SW_ALLOCATED);
4632		rc = alloc_eq_hwq(sc, vi, eq);
4633		if (rc != 0) {
4634			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4635			return (rc);
4636		}
4637		MPASS(eq->flags & EQ_HW_ALLOCATED);
4638		/* Can't fail after this point. */
4639
4640		if (idx == 0)
4641			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4642		else
4643			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4644			    ("eq_base mismatch"));
4645		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4646		    ("PF with non-zero eq_base"));
4647
4648		txp = &txq->txp;
4649		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4650		txq->txp.max_npkt = min(nitems(txp->mb),
4651		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4652		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4653			txq->txp.max_npkt--;
4654
4655		if (vi->flags & TX_USES_VM_WR)
4656			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4657			    V_TXPKT_INTF(pi->tx_chan));
4658		else
4659			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4660			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4661			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4662
4663		txq->tc_idx = -1;
4664	}
4665
4666	return (0);
4667}
4668
4669/*
4670 * Idempotent.
4671 */
4672static void
4673free_txq(struct vi_info *vi, struct sge_txq *txq)
4674{
4675	struct adapter *sc = vi->adapter;
4676	struct sge_eq *eq = &txq->eq;
4677
4678	if (eq->flags & EQ_HW_ALLOCATED) {
4679		MPASS(eq->flags & EQ_SW_ALLOCATED);
4680		free_eq_hwq(sc, NULL, eq);
4681		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4682	}
4683
4684	if (eq->flags & EQ_SW_ALLOCATED) {
4685		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4686		sglist_free(txq->gl);
4687		free(txq->sdesc, M_CXGBE);
4688		mp_ring_free(txq->r);
4689		free_eq(sc, eq);
4690		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4691		bzero(txq, sizeof(*txq));
4692	}
4693}
4694
4695static void
4696add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4697    struct sysctl_oid *oid, struct sge_txq *txq)
4698{
4699	struct adapter *sc;
4700	struct sysctl_oid_list *children;
4701
4702	if (ctx == NULL || oid == NULL)
4703		return;
4704
4705	sc = vi->adapter;
4706	children = SYSCTL_CHILDREN(oid);
4707
4708	mp_ring_sysctls(txq->r, ctx, children);
4709
4710	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4711	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4712	    sysctl_tc, "I", "traffic class (-1 means none)");
4713
4714	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4715	    &txq->txcsum, "# of times hardware assisted with checksum");
4716	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4717	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4718	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4719	    &txq->tso_wrs, "# of TSO work requests");
4720	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4721	    &txq->imm_wrs, "# of work requests with immediate data");
4722	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4723	    &txq->sgl_wrs, "# of work requests with direct SGL");
4724	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4725	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4726	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4727	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4728	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4729	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4730	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4731	    &txq->txpkts0_pkts,
4732	    "# of frames tx'd using type0 txpkts work requests");
4733	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4734	    &txq->txpkts1_pkts,
4735	    "# of frames tx'd using type1 txpkts work requests");
4736	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4737	    &txq->txpkts_flush,
4738	    "# of times txpkts had to be flushed out by an egress-update");
4739	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4740	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4741	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4742	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4743	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4744	    &txq->vxlan_txcsum,
4745	    "# of times hardware assisted with inner checksums (VXLAN)");
4746
4747#ifdef KERN_TLS
4748	if (is_ktls(sc)) {
4749		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4750		    CTLFLAG_RD, &txq->kern_tls_records,
4751		    "# of NIC TLS records transmitted");
4752		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4753		    CTLFLAG_RD, &txq->kern_tls_short,
4754		    "# of short NIC TLS records transmitted");
4755		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4756		    CTLFLAG_RD, &txq->kern_tls_partial,
4757		    "# of partial NIC TLS records transmitted");
4758		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4759		    CTLFLAG_RD, &txq->kern_tls_full,
4760		    "# of full NIC TLS records transmitted");
4761		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4762		    CTLFLAG_RD, &txq->kern_tls_octets,
4763		    "# of payload octets in transmitted NIC TLS records");
4764		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4765		    CTLFLAG_RD, &txq->kern_tls_waste,
4766		    "# of octets DMAd but not transmitted in NIC TLS records");
4767		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
4768		    CTLFLAG_RD, &txq->kern_tls_options,
4769		    "# of NIC TLS options-only packets transmitted");
4770		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4771		    CTLFLAG_RD, &txq->kern_tls_header,
4772		    "# of NIC TLS header-only packets transmitted");
4773		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
4774		    CTLFLAG_RD, &txq->kern_tls_fin,
4775		    "# of NIC TLS FIN-only packets transmitted");
4776		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4777		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4778		    "# of NIC TLS padded FIN packets on short TLS records");
4779		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4780		    CTLFLAG_RD, &txq->kern_tls_cbc,
4781		    "# of NIC TLS sessions using AES-CBC");
4782		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4783		    CTLFLAG_RD, &txq->kern_tls_gcm,
4784		    "# of NIC TLS sessions using AES-GCM");
4785	}
4786#endif
4787}
4788
4789#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4790/*
4791 * Idempotent.
4792 */
4793static int
4794alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4795{
4796	struct sysctl_oid *oid;
4797	struct port_info *pi = vi->pi;
4798	struct adapter *sc = vi->adapter;
4799	struct sge_eq *eq = &ofld_txq->wrq.eq;
4800	int rc, iqidx;
4801	char name[16];
4802
4803	MPASS(idx >= 0);
4804	MPASS(idx < vi->nofldtxq);
4805
4806	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4807		snprintf(name, sizeof(name), "%d", idx);
4808		oid = SYSCTL_ADD_NODE(&vi->ctx,
4809		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4810		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4811
4812		snprintf(name, sizeof(name), "%s ofld_txq%d",
4813		    device_get_nameunit(vi->dev), idx);
4814		if (vi->nofldrxq > 0) {
4815			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4816			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
4817			    &sc->sge.ofld_rxq[iqidx].iq, name);
4818		} else {
4819			iqidx = vi->first_rxq + (idx % vi->nrxq);
4820			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
4821			    &sc->sge.rxq[iqidx].iq, name);
4822		}
4823
4824		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4825		if (rc != 0) {
4826			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4827			    rc);
4828			sysctl_remove_oid(oid, 1, 1);
4829			return (rc);
4830		}
4831		MPASS(eq->flags & EQ_SW_ALLOCATED);
4832		/* Can't fail after this point. */
4833
4834		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4835		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4836		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
4837		ofld_txq->tx_aio_jobs = counter_u64_alloc(M_WAITOK);
4838		ofld_txq->tx_aio_octets = counter_u64_alloc(M_WAITOK);
4839		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4840		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4841		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4842	}
4843
4844	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4845		rc = alloc_eq_hwq(sc, vi, eq);
4846		if (rc != 0) {
4847			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4848			    rc);
4849			return (rc);
4850		}
4851		MPASS(eq->flags & EQ_HW_ALLOCATED);
4852	}
4853
4854	return (0);
4855}
4856
4857/*
4858 * Idempotent.
4859 */
4860static void
4861free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4862{
4863	struct adapter *sc = vi->adapter;
4864	struct sge_eq *eq = &ofld_txq->wrq.eq;
4865
4866	if (eq->flags & EQ_HW_ALLOCATED) {
4867		MPASS(eq->flags & EQ_SW_ALLOCATED);
4868		free_eq_hwq(sc, NULL, eq);
4869		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4870	}
4871
4872	if (eq->flags & EQ_SW_ALLOCATED) {
4873		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4874		counter_u64_free(ofld_txq->tx_iscsi_pdus);
4875		counter_u64_free(ofld_txq->tx_iscsi_octets);
4876		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
4877		counter_u64_free(ofld_txq->tx_aio_jobs);
4878		counter_u64_free(ofld_txq->tx_aio_octets);
4879		counter_u64_free(ofld_txq->tx_toe_tls_records);
4880		counter_u64_free(ofld_txq->tx_toe_tls_octets);
4881		free_wrq(sc, &ofld_txq->wrq);
4882		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4883		bzero(ofld_txq, sizeof(*ofld_txq));
4884	}
4885}
4886
4887static void
4888add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4889    struct sge_ofld_txq *ofld_txq)
4890{
4891	struct sysctl_oid_list *children;
4892
4893	if (ctx == NULL || oid == NULL)
4894		return;
4895
4896	children = SYSCTL_CHILDREN(oid);
4897	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
4898	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
4899	    "# of iSCSI PDUs transmitted");
4900	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
4901	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
4902	    "# of payload octets in transmitted iSCSI PDUs");
4903	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
4904	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
4905	    "# of iSCSI segmentation offload work requests");
4906	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_jobs",
4907	    CTLFLAG_RD, &ofld_txq->tx_aio_jobs,
4908	    "# of zero-copy aio_write(2) jobs transmitted");
4909	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_octets",
4910	    CTLFLAG_RD, &ofld_txq->tx_aio_octets,
4911	    "# of payload octets in transmitted zero-copy aio_write(2) jobs");
4912	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
4913	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
4914	    "# of TOE TLS records transmitted");
4915	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
4916	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
4917	    "# of payload octets in transmitted TOE TLS records");
4918}
4919#endif
4920
4921static void
4922oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4923{
4924	bus_addr_t *ba = arg;
4925
4926	KASSERT(nseg == 1,
4927	    ("%s meant for single segment mappings only.", __func__));
4928
4929	*ba = error ? 0 : segs->ds_addr;
4930}
4931
4932static inline void
4933ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4934{
4935	uint32_t n, v;
4936
4937	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4938	MPASS(n > 0);
4939
4940	wmb();
4941	v = fl->dbval | V_PIDX(n);
4942	if (fl->udb)
4943		*fl->udb = htole32(v);
4944	else
4945		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4946	IDXINCR(fl->dbidx, n, fl->sidx);
4947}
4948
4949/*
4950 * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4951 * recycled do not count towards this allocation budget.
4952 *
4953 * Returns non-zero to indicate that this freelist should be added to the list
4954 * of starving freelists.
4955 */
4956static int
4957refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4958{
4959	__be64 *d;
4960	struct fl_sdesc *sd;
4961	uintptr_t pa;
4962	caddr_t cl;
4963	struct rx_buf_info *rxb;
4964	struct cluster_metadata *clm;
4965	uint16_t max_pidx, zidx = fl->zidx;
4966	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4967
4968	FL_LOCK_ASSERT_OWNED(fl);
4969
4970	/*
4971	 * We always stop at the beginning of the hardware descriptor that's just
4972	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4973	 * which would mean an empty freelist to the chip.
4974	 */
4975	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4976	if (fl->pidx == max_pidx * 8)
4977		return (0);
4978
4979	d = &fl->desc[fl->pidx];
4980	sd = &fl->sdesc[fl->pidx];
4981	rxb = &sc->sge.rx_buf_info[zidx];
4982
4983	while (n > 0) {
4984
4985		if (sd->cl != NULL) {
4986
4987			if (sd->nmbuf == 0) {
4988				/*
4989				 * Fast recycle without involving any atomics on
4990				 * the cluster's metadata (if the cluster has
4991				 * metadata).  This happens when all frames
4992				 * received in the cluster were small enough to
4993				 * fit within a single mbuf each.
4994				 */
4995				fl->cl_fast_recycled++;
4996				goto recycled;
4997			}
4998
4999			/*
5000			 * Cluster is guaranteed to have metadata.  Clusters
5001			 * without metadata always take the fast recycle path
5002			 * when they're recycled.
5003			 */
5004			clm = cl_metadata(sd);
5005			MPASS(clm != NULL);
5006
5007			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5008				fl->cl_recycled++;
5009				counter_u64_add(extfree_rels, 1);
5010				goto recycled;
5011			}
5012			sd->cl = NULL;	/* gave up my reference */
5013		}
5014		MPASS(sd->cl == NULL);
5015		cl = uma_zalloc(rxb->zone, M_NOWAIT);
5016		if (__predict_false(cl == NULL)) {
5017			if (zidx != fl->safe_zidx) {
5018				zidx = fl->safe_zidx;
5019				rxb = &sc->sge.rx_buf_info[zidx];
5020				cl = uma_zalloc(rxb->zone, M_NOWAIT);
5021			}
5022			if (cl == NULL)
5023				break;
5024		}
5025		fl->cl_allocated++;
5026		n--;
5027
5028		pa = pmap_kextract((vm_offset_t)cl);
5029		sd->cl = cl;
5030		sd->zidx = zidx;
5031
5032		if (fl->flags & FL_BUF_PACKING) {
5033			*d = htobe64(pa | rxb->hwidx2);
5034			sd->moff = rxb->size2;
5035		} else {
5036			*d = htobe64(pa | rxb->hwidx1);
5037			sd->moff = 0;
5038		}
5039recycled:
5040		sd->nmbuf = 0;
5041		d++;
5042		sd++;
5043		if (__predict_false((++fl->pidx & 7) == 0)) {
5044			uint16_t pidx = fl->pidx >> 3;
5045
5046			if (__predict_false(pidx == fl->sidx)) {
5047				fl->pidx = 0;
5048				pidx = 0;
5049				sd = fl->sdesc;
5050				d = fl->desc;
5051			}
5052			if (n < 8 || pidx == max_pidx)
5053				break;
5054
5055			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5056				ring_fl_db(sc, fl);
5057		}
5058	}
5059
5060	if ((fl->pidx >> 3) != fl->dbidx)
5061		ring_fl_db(sc, fl);
5062
5063	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5064}
5065
5066/*
5067 * Attempt to refill all starving freelists.
5068 */
5069static void
5070refill_sfl(void *arg)
5071{
5072	struct adapter *sc = arg;
5073	struct sge_fl *fl, *fl_temp;
5074
5075	mtx_assert(&sc->sfl_lock, MA_OWNED);
5076	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5077		FL_LOCK(fl);
5078		refill_fl(sc, fl, 64);
5079		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5080			TAILQ_REMOVE(&sc->sfl, fl, link);
5081			fl->flags &= ~FL_STARVING;
5082		}
5083		FL_UNLOCK(fl);
5084	}
5085
5086	if (!TAILQ_EMPTY(&sc->sfl))
5087		callout_schedule(&sc->sfl_callout, hz / 5);
5088}
5089
5090/*
5091 * Release the driver's reference on all buffers in the given freelist.  Buffers
5092 * with kernel references cannot be freed and will prevent the driver from being
5093 * unloaded safely.
5094 */
5095void
5096free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5097{
5098	struct fl_sdesc *sd;
5099	struct cluster_metadata *clm;
5100	int i;
5101
5102	sd = fl->sdesc;
5103	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5104		if (sd->cl == NULL)
5105			continue;
5106
5107		if (sd->nmbuf == 0)
5108			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5109		else if (fl->flags & FL_BUF_PACKING) {
5110			clm = cl_metadata(sd);
5111			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5112				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5113				    sd->cl);
5114				counter_u64_add(extfree_rels, 1);
5115			}
5116		}
5117		sd->cl = NULL;
5118	}
5119
5120	if (fl->flags & FL_BUF_RESUME) {
5121		m_freem(fl->m0);
5122		fl->flags &= ~FL_BUF_RESUME;
5123	}
5124}
5125
5126static inline void
5127get_pkt_gl(struct mbuf *m, struct sglist *gl)
5128{
5129	int rc;
5130
5131	M_ASSERTPKTHDR(m);
5132
5133	sglist_reset(gl);
5134	rc = sglist_append_mbuf(gl, m);
5135	if (__predict_false(rc != 0)) {
5136		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5137		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5138	}
5139
5140	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5141	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5142	    mbuf_nsegs(m), gl->sg_nseg));
5143#if 0	/* vm_wr not readily available here. */
5144	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5145	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5146		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5147#endif
5148}
5149
5150/*
5151 * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5152 */
5153static inline u_int
5154txpkt_len16(u_int nsegs, const u_int extra)
5155{
5156	u_int n;
5157
5158	MPASS(nsegs > 0);
5159
5160	nsegs--; /* first segment is part of ulptx_sgl */
5161	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5162	    sizeof(struct cpl_tx_pkt_core) +
5163	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5164
5165	return (howmany(n, 16));
5166}
5167
5168/*
5169 * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5170 * request header.
5171 */
5172static inline u_int
5173txpkt_vm_len16(u_int nsegs, const u_int extra)
5174{
5175	u_int n;
5176
5177	MPASS(nsegs > 0);
5178
5179	nsegs--; /* first segment is part of ulptx_sgl */
5180	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5181	    sizeof(struct cpl_tx_pkt_core) +
5182	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5183
5184	return (howmany(n, 16));
5185}
5186
5187static inline void
5188calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5189{
5190	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5191	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5192
5193	if (vm_wr) {
5194		if (needs_tso(m))
5195			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5196		else
5197			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5198		return;
5199	}
5200
5201	if (needs_tso(m)) {
5202		if (needs_vxlan_tso(m))
5203			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5204		else
5205			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5206	} else
5207		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5208}
5209
5210/*
5211 * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5212 * request header.
5213 */
5214static inline u_int
5215txpkts0_len16(u_int nsegs)
5216{
5217	u_int n;
5218
5219	MPASS(nsegs > 0);
5220
5221	nsegs--; /* first segment is part of ulptx_sgl */
5222	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5223	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5224	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5225
5226	return (howmany(n, 16));
5227}
5228
5229/*
5230 * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5231 * request header.
5232 */
5233static inline u_int
5234txpkts1_len16(void)
5235{
5236	u_int n;
5237
5238	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5239
5240	return (howmany(n, 16));
5241}
5242
5243static inline u_int
5244imm_payload(u_int ndesc)
5245{
5246	u_int n;
5247
5248	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5249	    sizeof(struct cpl_tx_pkt_core);
5250
5251	return (n);
5252}
5253
5254static inline uint64_t
5255csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5256{
5257	uint64_t ctrl;
5258	int csum_type, l2hlen, l3hlen;
5259	int x, y;
5260	static const int csum_types[3][2] = {
5261		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5262		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5263		{TX_CSUM_IP, 0}
5264	};
5265
5266	M_ASSERTPKTHDR(m);
5267
5268	if (!needs_hwcsum(m))
5269		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5270
5271	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5272	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5273
5274	if (needs_vxlan_csum(m)) {
5275		MPASS(m->m_pkthdr.l4hlen > 0);
5276		MPASS(m->m_pkthdr.l5hlen > 0);
5277		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5278		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5279
5280		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5281		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5282		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5283		l3hlen = m->m_pkthdr.inner_l3hlen;
5284	} else {
5285		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5286		l3hlen = m->m_pkthdr.l3hlen;
5287	}
5288
5289	ctrl = 0;
5290	if (!needs_l3_csum(m))
5291		ctrl |= F_TXPKT_IPCSUM_DIS;
5292
5293	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5294	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5295		x = 0;	/* TCP */
5296	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5297	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5298		x = 1;	/* UDP */
5299	else
5300		x = 2;
5301
5302	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5303	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5304		y = 0;	/* IPv4 */
5305	else {
5306		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5307		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5308		y = 1;	/* IPv6 */
5309	}
5310	/*
5311	 * needs_hwcsum returned true earlier so there must be some kind of
5312	 * checksum to calculate.
5313	 */
5314	csum_type = csum_types[x][y];
5315	MPASS(csum_type != 0);
5316	if (csum_type == TX_CSUM_IP)
5317		ctrl |= F_TXPKT_L4CSUM_DIS;
5318	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5319	if (chip_id(sc) <= CHELSIO_T5)
5320		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5321	else
5322		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5323
5324	return (ctrl);
5325}
5326
5327static inline void *
5328write_lso_cpl(void *cpl, struct mbuf *m0)
5329{
5330	struct cpl_tx_pkt_lso_core *lso;
5331	uint32_t ctrl;
5332
5333	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5334	    m0->m_pkthdr.l4hlen > 0,
5335	    ("%s: mbuf %p needs TSO but missing header lengths",
5336		__func__, m0));
5337
5338	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5339	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5340	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5341	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5342	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5343	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5344		ctrl |= F_LSO_IPV6;
5345
5346	lso = cpl;
5347	lso->lso_ctrl = htobe32(ctrl);
5348	lso->ipid_ofst = htobe16(0);
5349	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5350	lso->seqno_offset = htobe32(0);
5351	lso->len = htobe32(m0->m_pkthdr.len);
5352
5353	return (lso + 1);
5354}
5355
5356static void *
5357write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5358{
5359	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5360	uint32_t ctrl;
5361
5362	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5363	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5364	    m0->m_pkthdr.inner_l5hlen > 0,
5365	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5366		__func__, m0));
5367	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5368	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5369	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5370		__func__, m0));
5371
5372	/* Outer headers. */
5373	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5374	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5375	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5376		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5377	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5378	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5379	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5380		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5381	else {
5382		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5383		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5384	}
5385	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5386	tnl_lso->IpIdOffsetOut = 0;
5387	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5388		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5389		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5390		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5391			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5392			m0->m_pkthdr.l5hlen) |
5393		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5394	tnl_lso->r1 = 0;
5395
5396	/* Inner headers. */
5397	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5398	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5399	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5400	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5401	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5402		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5403	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5404	tnl_lso->IpIdOffset = 0;
5405	tnl_lso->IpIdSplit_to_Mss =
5406	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5407	tnl_lso->TCPSeqOffset = 0;
5408	tnl_lso->EthLenOffset_Size =
5409	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5410
5411	return (tnl_lso + 1);
5412}
5413
5414#define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5415
5416/*
5417 * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5418 * software descriptor, and advance the pidx.  It is guaranteed that enough
5419 * descriptors are available.
5420 *
5421 * The return value is the # of hardware descriptors used.
5422 */
5423static u_int
5424write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5425{
5426	struct sge_eq *eq;
5427	struct fw_eth_tx_pkt_vm_wr *wr;
5428	struct tx_sdesc *txsd;
5429	struct cpl_tx_pkt_core *cpl;
5430	uint32_t ctrl;	/* used in many unrelated places */
5431	uint64_t ctrl1;
5432	int len16, ndesc, pktlen;
5433	caddr_t dst;
5434
5435	TXQ_LOCK_ASSERT_OWNED(txq);
5436	M_ASSERTPKTHDR(m0);
5437
5438	len16 = mbuf_len16(m0);
5439	pktlen = m0->m_pkthdr.len;
5440	ctrl = sizeof(struct cpl_tx_pkt_core);
5441	if (needs_tso(m0))
5442		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5443	ndesc = tx_len16_to_desc(len16);
5444
5445	/* Firmware work request header */
5446	eq = &txq->eq;
5447	wr = (void *)&eq->desc[eq->pidx];
5448	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5449	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5450
5451	ctrl = V_FW_WR_LEN16(len16);
5452	wr->equiq_to_len16 = htobe32(ctrl);
5453	wr->r3[0] = 0;
5454	wr->r3[1] = 0;
5455
5456	/*
5457	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5458	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5459	 * simpler to always copy it rather than making it
5460	 * conditional.  Also, it seems that we do not have to set
5461	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5462	 */
5463	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5464
5465	if (needs_tso(m0)) {
5466		cpl = write_lso_cpl(wr + 1, m0);
5467		txq->tso_wrs++;
5468	} else
5469		cpl = (void *)(wr + 1);
5470
5471	/* Checksum offload */
5472	ctrl1 = csum_to_ctrl(sc, m0);
5473	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5474		txq->txcsum++;	/* some hardware assistance provided */
5475
5476	/* VLAN tag insertion */
5477	if (needs_vlan_insertion(m0)) {
5478		ctrl1 |= F_TXPKT_VLAN_VLD |
5479		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5480		txq->vlan_insertion++;
5481	}
5482
5483	/* CPL header */
5484	cpl->ctrl0 = txq->cpl_ctrl0;
5485	cpl->pack = 0;
5486	cpl->len = htobe16(pktlen);
5487	cpl->ctrl1 = htobe64(ctrl1);
5488
5489	/* SGL */
5490	dst = (void *)(cpl + 1);
5491
5492	/*
5493	 * A packet using TSO will use up an entire descriptor for the
5494	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5495	 * If this descriptor is the last descriptor in the ring, wrap
5496	 * around to the front of the ring explicitly for the start of
5497	 * the sgl.
5498	 */
5499	if (dst == (void *)&eq->desc[eq->sidx]) {
5500		dst = (void *)&eq->desc[0];
5501		write_gl_to_txd(txq, m0, &dst, 0);
5502	} else
5503		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5504	txq->sgl_wrs++;
5505	txq->txpkt_wrs++;
5506
5507	txsd = &txq->sdesc[eq->pidx];
5508	txsd->m = m0;
5509	txsd->desc_used = ndesc;
5510
5511	return (ndesc);
5512}
5513
5514/*
5515 * Write a raw WR to the hardware descriptors, update the software
5516 * descriptor, and advance the pidx.  It is guaranteed that enough
5517 * descriptors are available.
5518 *
5519 * The return value is the # of hardware descriptors used.
5520 */
5521static u_int
5522write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5523{
5524	struct sge_eq *eq = &txq->eq;
5525	struct tx_sdesc *txsd;
5526	struct mbuf *m;
5527	caddr_t dst;
5528	int len16, ndesc;
5529
5530	len16 = mbuf_len16(m0);
5531	ndesc = tx_len16_to_desc(len16);
5532	MPASS(ndesc <= available);
5533
5534	dst = wr;
5535	for (m = m0; m != NULL; m = m->m_next)
5536		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5537
5538	txq->raw_wrs++;
5539
5540	txsd = &txq->sdesc[eq->pidx];
5541	txsd->m = m0;
5542	txsd->desc_used = ndesc;
5543
5544	return (ndesc);
5545}
5546
5547/*
5548 * Write a txpkt WR for this packet to the hardware descriptors, update the
5549 * software descriptor, and advance the pidx.  It is guaranteed that enough
5550 * descriptors are available.
5551 *
5552 * The return value is the # of hardware descriptors used.
5553 */
5554static u_int
5555write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5556    u_int available)
5557{
5558	struct sge_eq *eq;
5559	struct fw_eth_tx_pkt_wr *wr;
5560	struct tx_sdesc *txsd;
5561	struct cpl_tx_pkt_core *cpl;
5562	uint32_t ctrl;	/* used in many unrelated places */
5563	uint64_t ctrl1;
5564	int len16, ndesc, pktlen, nsegs;
5565	caddr_t dst;
5566
5567	TXQ_LOCK_ASSERT_OWNED(txq);
5568	M_ASSERTPKTHDR(m0);
5569
5570	len16 = mbuf_len16(m0);
5571	nsegs = mbuf_nsegs(m0);
5572	pktlen = m0->m_pkthdr.len;
5573	ctrl = sizeof(struct cpl_tx_pkt_core);
5574	if (needs_tso(m0)) {
5575		if (needs_vxlan_tso(m0))
5576			ctrl += sizeof(struct cpl_tx_tnl_lso);
5577		else
5578			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5579	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5580	    available >= 2) {
5581		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5582		ctrl += pktlen;
5583		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5584		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5585		nsegs = 0;
5586	}
5587	ndesc = tx_len16_to_desc(len16);
5588	MPASS(ndesc <= available);
5589
5590	/* Firmware work request header */
5591	eq = &txq->eq;
5592	wr = (void *)&eq->desc[eq->pidx];
5593	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5594	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5595
5596	ctrl = V_FW_WR_LEN16(len16);
5597	wr->equiq_to_len16 = htobe32(ctrl);
5598	wr->r3 = 0;
5599
5600	if (needs_tso(m0)) {
5601		if (needs_vxlan_tso(m0)) {
5602			cpl = write_tnl_lso_cpl(wr + 1, m0);
5603			txq->vxlan_tso_wrs++;
5604		} else {
5605			cpl = write_lso_cpl(wr + 1, m0);
5606			txq->tso_wrs++;
5607		}
5608	} else
5609		cpl = (void *)(wr + 1);
5610
5611	/* Checksum offload */
5612	ctrl1 = csum_to_ctrl(sc, m0);
5613	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5614		/* some hardware assistance provided */
5615		if (needs_vxlan_csum(m0))
5616			txq->vxlan_txcsum++;
5617		else
5618			txq->txcsum++;
5619	}
5620
5621	/* VLAN tag insertion */
5622	if (needs_vlan_insertion(m0)) {
5623		ctrl1 |= F_TXPKT_VLAN_VLD |
5624		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5625		txq->vlan_insertion++;
5626	}
5627
5628	/* CPL header */
5629	cpl->ctrl0 = txq->cpl_ctrl0;
5630	cpl->pack = 0;
5631	cpl->len = htobe16(pktlen);
5632	cpl->ctrl1 = htobe64(ctrl1);
5633
5634	/* SGL */
5635	dst = (void *)(cpl + 1);
5636	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5637		dst = (caddr_t)&eq->desc[0];
5638	if (nsegs > 0) {
5639
5640		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5641		txq->sgl_wrs++;
5642	} else {
5643		struct mbuf *m;
5644
5645		for (m = m0; m != NULL; m = m->m_next) {
5646			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5647#ifdef INVARIANTS
5648			pktlen -= m->m_len;
5649#endif
5650		}
5651#ifdef INVARIANTS
5652		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5653#endif
5654		txq->imm_wrs++;
5655	}
5656
5657	txq->txpkt_wrs++;
5658
5659	txsd = &txq->sdesc[eq->pidx];
5660	txsd->m = m0;
5661	txsd->desc_used = ndesc;
5662
5663	return (ndesc);
5664}
5665
5666static inline bool
5667cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5668{
5669	int len;
5670
5671	MPASS(txp->npkt > 0);
5672	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5673
5674	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5675		len = VM_TX_L2HDR_LEN;
5676	else
5677		len = sizeof(struct ether_header);
5678
5679	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5680}
5681
5682static inline void
5683save_l2hdr(struct txpkts *txp, struct mbuf *m)
5684{
5685	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5686
5687	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5688}
5689
5690static int
5691add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5692    int avail, bool *send)
5693{
5694	struct txpkts *txp = &txq->txp;
5695
5696	/* Cannot have TSO and coalesce at the same time. */
5697	if (cannot_use_txpkts(m)) {
5698cannot_coalesce:
5699		*send = txp->npkt > 0;
5700		return (EINVAL);
5701	}
5702
5703	/* VF allows coalescing of type 1 (1 GL) only */
5704	if (mbuf_nsegs(m) > 1)
5705		goto cannot_coalesce;
5706
5707	*send = false;
5708	if (txp->npkt > 0) {
5709		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5710		MPASS(txp->npkt < txp->max_npkt);
5711		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5712
5713		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5714retry_after_send:
5715			*send = true;
5716			return (EAGAIN);
5717		}
5718		if (m->m_pkthdr.len + txp->plen > 65535)
5719			goto retry_after_send;
5720		if (cmp_l2hdr(txp, m))
5721			goto retry_after_send;
5722
5723		txp->len16 += txpkts1_len16();
5724		txp->plen += m->m_pkthdr.len;
5725		txp->mb[txp->npkt++] = m;
5726		if (txp->npkt == txp->max_npkt)
5727			*send = true;
5728	} else {
5729		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5730		    txpkts1_len16();
5731		if (tx_len16_to_desc(txp->len16) > avail)
5732			goto cannot_coalesce;
5733		txp->npkt = 1;
5734		txp->wr_type = 1;
5735		txp->plen = m->m_pkthdr.len;
5736		txp->mb[0] = m;
5737		save_l2hdr(txp, m);
5738	}
5739	return (0);
5740}
5741
5742static int
5743add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5744    int avail, bool *send)
5745{
5746	struct txpkts *txp = &txq->txp;
5747	int nsegs;
5748
5749	MPASS(!(sc->flags & IS_VF));
5750
5751	/* Cannot have TSO and coalesce at the same time. */
5752	if (cannot_use_txpkts(m)) {
5753cannot_coalesce:
5754		*send = txp->npkt > 0;
5755		return (EINVAL);
5756	}
5757
5758	*send = false;
5759	nsegs = mbuf_nsegs(m);
5760	if (txp->npkt == 0) {
5761		if (m->m_pkthdr.len > 65535)
5762			goto cannot_coalesce;
5763		if (nsegs > 1) {
5764			txp->wr_type = 0;
5765			txp->len16 =
5766			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5767			    txpkts0_len16(nsegs);
5768		} else {
5769			txp->wr_type = 1;
5770			txp->len16 =
5771			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5772			    txpkts1_len16();
5773		}
5774		if (tx_len16_to_desc(txp->len16) > avail)
5775			goto cannot_coalesce;
5776		txp->npkt = 1;
5777		txp->plen = m->m_pkthdr.len;
5778		txp->mb[0] = m;
5779	} else {
5780		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5781		MPASS(txp->npkt < txp->max_npkt);
5782
5783		if (m->m_pkthdr.len + txp->plen > 65535) {
5784retry_after_send:
5785			*send = true;
5786			return (EAGAIN);
5787		}
5788
5789		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5790		if (txp->wr_type == 0) {
5791			if (tx_len16_to_desc(txp->len16 +
5792			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5793				goto retry_after_send;
5794			txp->len16 += txpkts0_len16(nsegs);
5795		} else {
5796			if (nsegs != 1)
5797				goto retry_after_send;
5798			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5799			    avail)
5800				goto retry_after_send;
5801			txp->len16 += txpkts1_len16();
5802		}
5803
5804		txp->plen += m->m_pkthdr.len;
5805		txp->mb[txp->npkt++] = m;
5806		if (txp->npkt == txp->max_npkt)
5807			*send = true;
5808	}
5809	return (0);
5810}
5811
5812/*
5813 * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5814 * the software descriptor, and advance the pidx.  It is guaranteed that enough
5815 * descriptors are available.
5816 *
5817 * The return value is the # of hardware descriptors used.
5818 */
5819static u_int
5820write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5821{
5822	const struct txpkts *txp = &txq->txp;
5823	struct sge_eq *eq = &txq->eq;
5824	struct fw_eth_tx_pkts_wr *wr;
5825	struct tx_sdesc *txsd;
5826	struct cpl_tx_pkt_core *cpl;
5827	uint64_t ctrl1;
5828	int ndesc, i, checkwrap;
5829	struct mbuf *m, *last;
5830	void *flitp;
5831
5832	TXQ_LOCK_ASSERT_OWNED(txq);
5833	MPASS(txp->npkt > 0);
5834	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5835
5836	wr = (void *)&eq->desc[eq->pidx];
5837	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5838	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5839	wr->plen = htobe16(txp->plen);
5840	wr->npkt = txp->npkt;
5841	wr->r3 = 0;
5842	wr->type = txp->wr_type;
5843	flitp = wr + 1;
5844
5845	/*
5846	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5847	 * set then we know the WR is going to wrap around somewhere.  We'll
5848	 * check for that at appropriate points.
5849	 */
5850	ndesc = tx_len16_to_desc(txp->len16);
5851	last = NULL;
5852	checkwrap = eq->sidx - ndesc < eq->pidx;
5853	for (i = 0; i < txp->npkt; i++) {
5854		m = txp->mb[i];
5855		if (txp->wr_type == 0) {
5856			struct ulp_txpkt *ulpmc;
5857			struct ulptx_idata *ulpsc;
5858
5859			/* ULP master command */
5860			ulpmc = flitp;
5861			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5862			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5863			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5864
5865			/* ULP subcommand */
5866			ulpsc = (void *)(ulpmc + 1);
5867			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5868			    F_ULP_TX_SC_MORE);
5869			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5870
5871			cpl = (void *)(ulpsc + 1);
5872			if (checkwrap &&
5873			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5874				cpl = (void *)&eq->desc[0];
5875		} else {
5876			cpl = flitp;
5877		}
5878
5879		/* Checksum offload */
5880		ctrl1 = csum_to_ctrl(sc, m);
5881		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5882			/* some hardware assistance provided */
5883			if (needs_vxlan_csum(m))
5884				txq->vxlan_txcsum++;
5885			else
5886				txq->txcsum++;
5887		}
5888
5889		/* VLAN tag insertion */
5890		if (needs_vlan_insertion(m)) {
5891			ctrl1 |= F_TXPKT_VLAN_VLD |
5892			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5893			txq->vlan_insertion++;
5894		}
5895
5896		/* CPL header */
5897		cpl->ctrl0 = txq->cpl_ctrl0;
5898		cpl->pack = 0;
5899		cpl->len = htobe16(m->m_pkthdr.len);
5900		cpl->ctrl1 = htobe64(ctrl1);
5901
5902		flitp = cpl + 1;
5903		if (checkwrap &&
5904		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5905			flitp = (void *)&eq->desc[0];
5906
5907		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5908
5909		if (last != NULL)
5910			last->m_nextpkt = m;
5911		last = m;
5912	}
5913
5914	txq->sgl_wrs++;
5915	if (txp->wr_type == 0) {
5916		txq->txpkts0_pkts += txp->npkt;
5917		txq->txpkts0_wrs++;
5918	} else {
5919		txq->txpkts1_pkts += txp->npkt;
5920		txq->txpkts1_wrs++;
5921	}
5922
5923	txsd = &txq->sdesc[eq->pidx];
5924	txsd->m = txp->mb[0];
5925	txsd->desc_used = ndesc;
5926
5927	return (ndesc);
5928}
5929
5930static u_int
5931write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5932{
5933	const struct txpkts *txp = &txq->txp;
5934	struct sge_eq *eq = &txq->eq;
5935	struct fw_eth_tx_pkts_vm_wr *wr;
5936	struct tx_sdesc *txsd;
5937	struct cpl_tx_pkt_core *cpl;
5938	uint64_t ctrl1;
5939	int ndesc, i;
5940	struct mbuf *m, *last;
5941	void *flitp;
5942
5943	TXQ_LOCK_ASSERT_OWNED(txq);
5944	MPASS(txp->npkt > 0);
5945	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5946	MPASS(txp->mb[0] != NULL);
5947	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5948
5949	wr = (void *)&eq->desc[eq->pidx];
5950	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5951	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5952	wr->r3 = 0;
5953	wr->plen = htobe16(txp->plen);
5954	wr->npkt = txp->npkt;
5955	wr->r4 = 0;
5956	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5957	flitp = wr + 1;
5958
5959	/*
5960	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5961	 * the WR will take 32B so we check for the end of the descriptor ring
5962	 * before writing odd mbufs (mb[1], 3, 5, ..)
5963	 */
5964	ndesc = tx_len16_to_desc(txp->len16);
5965	last = NULL;
5966	for (i = 0; i < txp->npkt; i++) {
5967		m = txp->mb[i];
5968		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5969			flitp = &eq->desc[0];
5970		cpl = flitp;
5971
5972		/* Checksum offload */
5973		ctrl1 = csum_to_ctrl(sc, m);
5974		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5975			txq->txcsum++;	/* some hardware assistance provided */
5976
5977		/* VLAN tag insertion */
5978		if (needs_vlan_insertion(m)) {
5979			ctrl1 |= F_TXPKT_VLAN_VLD |
5980			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5981			txq->vlan_insertion++;
5982		}
5983
5984		/* CPL header */
5985		cpl->ctrl0 = txq->cpl_ctrl0;
5986		cpl->pack = 0;
5987		cpl->len = htobe16(m->m_pkthdr.len);
5988		cpl->ctrl1 = htobe64(ctrl1);
5989
5990		flitp = cpl + 1;
5991		MPASS(mbuf_nsegs(m) == 1);
5992		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5993
5994		if (last != NULL)
5995			last->m_nextpkt = m;
5996		last = m;
5997	}
5998
5999	txq->sgl_wrs++;
6000	txq->txpkts1_pkts += txp->npkt;
6001	txq->txpkts1_wrs++;
6002
6003	txsd = &txq->sdesc[eq->pidx];
6004	txsd->m = txp->mb[0];
6005	txsd->desc_used = ndesc;
6006
6007	return (ndesc);
6008}
6009
6010/*
6011 * If the SGL ends on an address that is not 16 byte aligned, this function will
6012 * add a 0 filled flit at the end.
6013 */
6014static void
6015write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
6016{
6017	struct sge_eq *eq = &txq->eq;
6018	struct sglist *gl = txq->gl;
6019	struct sglist_seg *seg;
6020	__be64 *flitp, *wrap;
6021	struct ulptx_sgl *usgl;
6022	int i, nflits, nsegs;
6023
6024	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
6025	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
6026	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6027	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6028
6029	get_pkt_gl(m, gl);
6030	nsegs = gl->sg_nseg;
6031	MPASS(nsegs > 0);
6032
6033	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6034	flitp = (__be64 *)(*to);
6035	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6036	seg = &gl->sg_segs[0];
6037	usgl = (void *)flitp;
6038
6039	/*
6040	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6041	 * ring, so we're at least 16 bytes away from the status page.  There is
6042	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6043	 */
6044
6045	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6046	    V_ULPTX_NSGE(nsegs));
6047	usgl->len0 = htobe32(seg->ss_len);
6048	usgl->addr0 = htobe64(seg->ss_paddr);
6049	seg++;
6050
6051	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6052
6053		/* Won't wrap around at all */
6054
6055		for (i = 0; i < nsegs - 1; i++, seg++) {
6056			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6057			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6058		}
6059		if (i & 1)
6060			usgl->sge[i / 2].len[1] = htobe32(0);
6061		flitp += nflits;
6062	} else {
6063
6064		/* Will wrap somewhere in the rest of the SGL */
6065
6066		/* 2 flits already written, write the rest flit by flit */
6067		flitp = (void *)(usgl + 1);
6068		for (i = 0; i < nflits - 2; i++) {
6069			if (flitp == wrap)
6070				flitp = (void *)eq->desc;
6071			*flitp++ = get_flit(seg, nsegs - 1, i);
6072		}
6073	}
6074
6075	if (nflits & 1) {
6076		MPASS(((uintptr_t)flitp) & 0xf);
6077		*flitp++ = 0;
6078	}
6079
6080	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6081	if (__predict_false(flitp == wrap))
6082		*to = (void *)eq->desc;
6083	else
6084		*to = (void *)flitp;
6085}
6086
6087static inline void
6088copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6089{
6090
6091	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6092	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6093
6094	if (__predict_true((uintptr_t)(*to) + len <=
6095	    (uintptr_t)&eq->desc[eq->sidx])) {
6096		bcopy(from, *to, len);
6097		(*to) += len;
6098	} else {
6099		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6100
6101		bcopy(from, *to, portion);
6102		from += portion;
6103		portion = len - portion;	/* remaining */
6104		bcopy(from, (void *)eq->desc, portion);
6105		(*to) = (caddr_t)eq->desc + portion;
6106	}
6107}
6108
6109static inline void
6110ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6111{
6112	u_int db;
6113
6114	MPASS(n > 0);
6115
6116	db = eq->doorbells;
6117	if (n > 1)
6118		clrbit(&db, DOORBELL_WCWR);
6119	wmb();
6120
6121	switch (ffs(db) - 1) {
6122	case DOORBELL_UDB:
6123		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6124		break;
6125
6126	case DOORBELL_WCWR: {
6127		volatile uint64_t *dst, *src;
6128		int i;
6129
6130		/*
6131		 * Queues whose 128B doorbell segment fits in the page do not
6132		 * use relative qid (udb_qid is always 0).  Only queues with
6133		 * doorbell segments can do WCWR.
6134		 */
6135		KASSERT(eq->udb_qid == 0 && n == 1,
6136		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6137		    __func__, eq->doorbells, n, eq->dbidx, eq));
6138
6139		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6140		    UDBS_DB_OFFSET);
6141		i = eq->dbidx;
6142		src = (void *)&eq->desc[i];
6143		while (src != (void *)&eq->desc[i + 1])
6144			*dst++ = *src++;
6145		wmb();
6146		break;
6147	}
6148
6149	case DOORBELL_UDBWC:
6150		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6151		wmb();
6152		break;
6153
6154	case DOORBELL_KDB:
6155		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6156		    V_QID(eq->cntxt_id) | V_PIDX(n));
6157		break;
6158	}
6159
6160	IDXINCR(eq->dbidx, n, eq->sidx);
6161}
6162
6163static inline u_int
6164reclaimable_tx_desc(struct sge_eq *eq)
6165{
6166	uint16_t hw_cidx;
6167
6168	hw_cidx = read_hw_cidx(eq);
6169	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6170}
6171
6172static inline u_int
6173total_available_tx_desc(struct sge_eq *eq)
6174{
6175	uint16_t hw_cidx, pidx;
6176
6177	hw_cidx = read_hw_cidx(eq);
6178	pidx = eq->pidx;
6179
6180	if (pidx == hw_cidx)
6181		return (eq->sidx - 1);
6182	else
6183		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6184}
6185
6186static inline uint16_t
6187read_hw_cidx(struct sge_eq *eq)
6188{
6189	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6190	uint16_t cidx = spg->cidx;	/* stable snapshot */
6191
6192	return (be16toh(cidx));
6193}
6194
6195/*
6196 * Reclaim 'n' descriptors approximately.
6197 */
6198static u_int
6199reclaim_tx_descs(struct sge_txq *txq, u_int n)
6200{
6201	struct tx_sdesc *txsd;
6202	struct sge_eq *eq = &txq->eq;
6203	u_int can_reclaim, reclaimed;
6204
6205	TXQ_LOCK_ASSERT_OWNED(txq);
6206	MPASS(n > 0);
6207
6208	reclaimed = 0;
6209	can_reclaim = reclaimable_tx_desc(eq);
6210	while (can_reclaim && reclaimed < n) {
6211		int ndesc;
6212		struct mbuf *m, *nextpkt;
6213
6214		txsd = &txq->sdesc[eq->cidx];
6215		ndesc = txsd->desc_used;
6216
6217		/* Firmware doesn't return "partial" credits. */
6218		KASSERT(can_reclaim >= ndesc,
6219		    ("%s: unexpected number of credits: %d, %d",
6220		    __func__, can_reclaim, ndesc));
6221		KASSERT(ndesc != 0,
6222		    ("%s: descriptor with no credits: cidx %d",
6223		    __func__, eq->cidx));
6224
6225		for (m = txsd->m; m != NULL; m = nextpkt) {
6226			nextpkt = m->m_nextpkt;
6227			m->m_nextpkt = NULL;
6228			m_freem(m);
6229		}
6230		reclaimed += ndesc;
6231		can_reclaim -= ndesc;
6232		IDXINCR(eq->cidx, ndesc, eq->sidx);
6233	}
6234
6235	return (reclaimed);
6236}
6237
6238static void
6239tx_reclaim(void *arg, int n)
6240{
6241	struct sge_txq *txq = arg;
6242	struct sge_eq *eq = &txq->eq;
6243
6244	do {
6245		if (TXQ_TRYLOCK(txq) == 0)
6246			break;
6247		n = reclaim_tx_descs(txq, 32);
6248		if (eq->cidx == eq->pidx)
6249			eq->equeqidx = eq->pidx;
6250		TXQ_UNLOCK(txq);
6251	} while (n > 0);
6252}
6253
6254static __be64
6255get_flit(struct sglist_seg *segs, int nsegs, int idx)
6256{
6257	int i = (idx / 3) * 2;
6258
6259	switch (idx % 3) {
6260	case 0: {
6261		uint64_t rc;
6262
6263		rc = (uint64_t)segs[i].ss_len << 32;
6264		if (i + 1 < nsegs)
6265			rc |= (uint64_t)(segs[i + 1].ss_len);
6266
6267		return (htobe64(rc));
6268	}
6269	case 1:
6270		return (htobe64(segs[i].ss_paddr));
6271	case 2:
6272		return (htobe64(segs[i + 1].ss_paddr));
6273	}
6274
6275	return (0);
6276}
6277
6278static int
6279find_refill_source(struct adapter *sc, int maxp, bool packing)
6280{
6281	int i, zidx = -1;
6282	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6283
6284	if (packing) {
6285		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6286			if (rxb->hwidx2 == -1)
6287				continue;
6288			if (rxb->size1 < PAGE_SIZE &&
6289			    rxb->size1 < largest_rx_cluster)
6290				continue;
6291			if (rxb->size1 > largest_rx_cluster)
6292				break;
6293			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6294			if (rxb->size2 >= maxp)
6295				return (i);
6296			zidx = i;
6297		}
6298	} else {
6299		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6300			if (rxb->hwidx1 == -1)
6301				continue;
6302			if (rxb->size1 > largest_rx_cluster)
6303				break;
6304			if (rxb->size1 >= maxp)
6305				return (i);
6306			zidx = i;
6307		}
6308	}
6309
6310	return (zidx);
6311}
6312
6313static void
6314add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6315{
6316	mtx_lock(&sc->sfl_lock);
6317	FL_LOCK(fl);
6318	if ((fl->flags & FL_DOOMED) == 0) {
6319		fl->flags |= FL_STARVING;
6320		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6321		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6322	}
6323	FL_UNLOCK(fl);
6324	mtx_unlock(&sc->sfl_lock);
6325}
6326
6327static void
6328handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6329{
6330	struct sge_wrq *wrq = (void *)eq;
6331
6332	atomic_readandclear_int(&eq->equiq);
6333	taskqueue_enqueue(sc->tq[eq->port_id], &wrq->wrq_tx_task);
6334}
6335
6336static void
6337handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6338{
6339	struct sge_txq *txq = (void *)eq;
6340
6341	MPASS(eq->type == EQ_ETH);
6342
6343	atomic_readandclear_int(&eq->equiq);
6344	if (mp_ring_is_idle(txq->r))
6345		taskqueue_enqueue(sc->tq[eq->port_id], &txq->tx_reclaim_task);
6346	else
6347		mp_ring_check_drainage(txq->r, 64);
6348}
6349
6350static int
6351handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6352    struct mbuf *m)
6353{
6354	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6355	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6356	struct adapter *sc = iq->adapter;
6357	struct sge *s = &sc->sge;
6358	struct sge_eq *eq;
6359	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6360		&handle_wrq_egr_update, &handle_eth_egr_update,
6361		&handle_wrq_egr_update};
6362
6363	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6364	    rss->opcode));
6365
6366	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6367	(*h[eq->type])(sc, eq);
6368
6369	return (0);
6370}
6371
6372/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6373CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6374    offsetof(struct cpl_fw6_msg, data));
6375
6376static int
6377handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6378{
6379	struct adapter *sc = iq->adapter;
6380	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6381
6382	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6383	    rss->opcode));
6384
6385	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6386		const struct rss_header *rss2;
6387
6388		rss2 = (const struct rss_header *)&cpl->data[0];
6389		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6390	}
6391
6392	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6393}
6394
6395/**
6396 *	t4_handle_wrerr_rpl - process a FW work request error message
6397 *	@adap: the adapter
6398 *	@rpl: start of the FW message
6399 */
6400static int
6401t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6402{
6403	u8 opcode = *(const u8 *)rpl;
6404	const struct fw_error_cmd *e = (const void *)rpl;
6405	unsigned int i;
6406
6407	if (opcode != FW_ERROR_CMD) {
6408		log(LOG_ERR,
6409		    "%s: Received WRERR_RPL message with opcode %#x\n",
6410		    device_get_nameunit(adap->dev), opcode);
6411		return (EINVAL);
6412	}
6413	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6414	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6415	    "non-fatal");
6416	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6417	case FW_ERROR_TYPE_EXCEPTION:
6418		log(LOG_ERR, "exception info:\n");
6419		for (i = 0; i < nitems(e->u.exception.info); i++)
6420			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6421			    be32toh(e->u.exception.info[i]));
6422		log(LOG_ERR, "\n");
6423		break;
6424	case FW_ERROR_TYPE_HWMODULE:
6425		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6426		    be32toh(e->u.hwmodule.regaddr),
6427		    be32toh(e->u.hwmodule.regval));
6428		break;
6429	case FW_ERROR_TYPE_WR:
6430		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6431		    be16toh(e->u.wr.cidx),
6432		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6433		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6434		    be32toh(e->u.wr.eqid));
6435		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6436			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6437			    e->u.wr.wrhdr[i]);
6438		log(LOG_ERR, "\n");
6439		break;
6440	case FW_ERROR_TYPE_ACL:
6441		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6442		    be16toh(e->u.acl.cidx),
6443		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6444		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6445		    be32toh(e->u.acl.eqid),
6446		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6447		    "MAC");
6448		for (i = 0; i < nitems(e->u.acl.val); i++)
6449			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6450		log(LOG_ERR, "\n");
6451		break;
6452	default:
6453		log(LOG_ERR, "type %#x\n",
6454		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6455		return (EINVAL);
6456	}
6457	return (0);
6458}
6459
6460static inline bool
6461bufidx_used(struct adapter *sc, int idx)
6462{
6463	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6464	int i;
6465
6466	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6467		if (rxb->size1 > largest_rx_cluster)
6468			continue;
6469		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6470			return (true);
6471	}
6472
6473	return (false);
6474}
6475
6476static int
6477sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6478{
6479	struct adapter *sc = arg1;
6480	struct sge_params *sp = &sc->params.sge;
6481	int i, rc;
6482	struct sbuf sb;
6483	char c;
6484
6485	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6486	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6487		if (bufidx_used(sc, i))
6488			c = '*';
6489		else
6490			c = '\0';
6491
6492		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6493	}
6494	sbuf_trim(&sb);
6495	sbuf_finish(&sb);
6496	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6497	sbuf_delete(&sb);
6498	return (rc);
6499}
6500
6501#ifdef RATELIMIT
6502#if defined(INET) || defined(INET6)
6503/*
6504 * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6505 */
6506static inline u_int
6507txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6508{
6509	u_int n;
6510
6511	MPASS(immhdrs > 0);
6512
6513	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6514	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6515	if (__predict_false(nsegs == 0))
6516		goto done;
6517
6518	nsegs--; /* first segment is part of ulptx_sgl */
6519	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6520	if (tso)
6521		n += sizeof(struct cpl_tx_pkt_lso_core);
6522
6523done:
6524	return (howmany(n, 16));
6525}
6526#endif
6527
6528#define ETID_FLOWC_NPARAMS 6
6529#define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6530    ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6531#define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6532
6533#if defined(INET) || defined(INET6)
6534static int
6535send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6536    struct vi_info *vi)
6537{
6538	struct wrq_cookie cookie;
6539	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6540	struct fw_flowc_wr *flowc;
6541
6542	mtx_assert(&cst->lock, MA_OWNED);
6543	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6544	    EO_FLOWC_PENDING);
6545
6546	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6547	if (__predict_false(flowc == NULL))
6548		return (ENOMEM);
6549
6550	bzero(flowc, ETID_FLOWC_LEN);
6551	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6552	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6553	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6554	    V_FW_WR_FLOWID(cst->etid));
6555	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6556	flowc->mnemval[0].val = htobe32(pfvf);
6557	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6558	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6559	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6560	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6561	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6562	flowc->mnemval[3].val = htobe32(cst->iqid);
6563	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6564	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6565	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6566	flowc->mnemval[5].val = htobe32(cst->schedcl);
6567
6568	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6569
6570	cst->flags &= ~EO_FLOWC_PENDING;
6571	cst->flags |= EO_FLOWC_RPL_PENDING;
6572	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6573	cst->tx_credits -= ETID_FLOWC_LEN16;
6574
6575	return (0);
6576}
6577#endif
6578
6579#define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6580
6581void
6582send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6583{
6584	struct fw_flowc_wr *flowc;
6585	struct wrq_cookie cookie;
6586
6587	mtx_assert(&cst->lock, MA_OWNED);
6588
6589	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6590	if (__predict_false(flowc == NULL))
6591		CXGBE_UNIMPLEMENTED(__func__);
6592
6593	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6594	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6595	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6596	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6597	    V_FW_WR_FLOWID(cst->etid));
6598
6599	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6600
6601	cst->flags |= EO_FLUSH_RPL_PENDING;
6602	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6603	cst->tx_credits -= ETID_FLUSH_LEN16;
6604	cst->ncompl++;
6605}
6606
6607static void
6608write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6609    struct mbuf *m0, int compl)
6610{
6611	struct cpl_tx_pkt_core *cpl;
6612	uint64_t ctrl1;
6613	uint32_t ctrl;	/* used in many unrelated places */
6614	int len16, pktlen, nsegs, immhdrs;
6615	uintptr_t p;
6616	struct ulptx_sgl *usgl;
6617	struct sglist sg;
6618	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6619
6620	mtx_assert(&cst->lock, MA_OWNED);
6621	M_ASSERTPKTHDR(m0);
6622	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6623	    m0->m_pkthdr.l4hlen > 0,
6624	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6625
6626	len16 = mbuf_eo_len16(m0);
6627	nsegs = mbuf_eo_nsegs(m0);
6628	pktlen = m0->m_pkthdr.len;
6629	ctrl = sizeof(struct cpl_tx_pkt_core);
6630	if (needs_tso(m0))
6631		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6632	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6633	ctrl += immhdrs;
6634
6635	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6636	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6637	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6638	    V_FW_WR_FLOWID(cst->etid));
6639	wr->r3 = 0;
6640	if (needs_outer_udp_csum(m0)) {
6641		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6642		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6643		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6644		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6645		wr->u.udpseg.rtplen = 0;
6646		wr->u.udpseg.r4 = 0;
6647		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6648		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6649		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6650		cpl = (void *)(wr + 1);
6651	} else {
6652		MPASS(needs_outer_tcp_csum(m0));
6653		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6654		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6655		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6656		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6657		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6658		wr->u.tcpseg.r4 = 0;
6659		wr->u.tcpseg.r5 = 0;
6660		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6661
6662		if (needs_tso(m0)) {
6663			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6664
6665			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6666
6667			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6668			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6669			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6670				ETHER_HDR_LEN) >> 2) |
6671			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6672			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6673			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6674				ctrl |= F_LSO_IPV6;
6675			lso->lso_ctrl = htobe32(ctrl);
6676			lso->ipid_ofst = htobe16(0);
6677			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6678			lso->seqno_offset = htobe32(0);
6679			lso->len = htobe32(pktlen);
6680
6681			cpl = (void *)(lso + 1);
6682		} else {
6683			wr->u.tcpseg.mss = htobe16(0xffff);
6684			cpl = (void *)(wr + 1);
6685		}
6686	}
6687
6688	/* Checksum offload must be requested for ethofld. */
6689	MPASS(needs_outer_l4_csum(m0));
6690	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6691
6692	/* VLAN tag insertion */
6693	if (needs_vlan_insertion(m0)) {
6694		ctrl1 |= F_TXPKT_VLAN_VLD |
6695		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6696	}
6697
6698	/* CPL header */
6699	cpl->ctrl0 = cst->ctrl0;
6700	cpl->pack = 0;
6701	cpl->len = htobe16(pktlen);
6702	cpl->ctrl1 = htobe64(ctrl1);
6703
6704	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6705	p = (uintptr_t)(cpl + 1);
6706	m_copydata(m0, 0, immhdrs, (void *)p);
6707
6708	/* SGL */
6709	if (nsegs > 0) {
6710		int i, pad;
6711
6712		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6713		p += immhdrs;
6714		pad = 16 - (immhdrs & 0xf);
6715		bzero((void *)p, pad);
6716
6717		usgl = (void *)(p + pad);
6718		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6719		    V_ULPTX_NSGE(nsegs));
6720
6721		sglist_init(&sg, nitems(segs), segs);
6722		for (; m0 != NULL; m0 = m0->m_next) {
6723			if (__predict_false(m0->m_len == 0))
6724				continue;
6725			if (immhdrs >= m0->m_len) {
6726				immhdrs -= m0->m_len;
6727				continue;
6728			}
6729			if (m0->m_flags & M_EXTPG)
6730				sglist_append_mbuf_epg(&sg, m0,
6731				    mtod(m0, vm_offset_t), m0->m_len);
6732                        else
6733				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6734				    m0->m_len - immhdrs);
6735			immhdrs = 0;
6736		}
6737		MPASS(sg.sg_nseg == nsegs);
6738
6739		/*
6740		 * Zero pad last 8B in case the WR doesn't end on a 16B
6741		 * boundary.
6742		 */
6743		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6744
6745		usgl->len0 = htobe32(segs[0].ss_len);
6746		usgl->addr0 = htobe64(segs[0].ss_paddr);
6747		for (i = 0; i < nsegs - 1; i++) {
6748			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6749			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6750		}
6751		if (i & 1)
6752			usgl->sge[i / 2].len[1] = htobe32(0);
6753	}
6754
6755}
6756
6757static void
6758ethofld_tx(struct cxgbe_rate_tag *cst)
6759{
6760	struct mbuf *m;
6761	struct wrq_cookie cookie;
6762	int next_credits, compl;
6763	struct fw_eth_tx_eo_wr *wr;
6764
6765	mtx_assert(&cst->lock, MA_OWNED);
6766
6767	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6768		M_ASSERTPKTHDR(m);
6769
6770		/* How many len16 credits do we need to send this mbuf. */
6771		next_credits = mbuf_eo_len16(m);
6772		MPASS(next_credits > 0);
6773		if (next_credits > cst->tx_credits) {
6774			/*
6775			 * Tx will make progress eventually because there is at
6776			 * least one outstanding fw4_ack that will return
6777			 * credits and kick the tx.
6778			 */
6779			MPASS(cst->ncompl > 0);
6780			return;
6781		}
6782		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6783		if (__predict_false(wr == NULL)) {
6784			/* XXX: wishful thinking, not a real assertion. */
6785			MPASS(cst->ncompl > 0);
6786			return;
6787		}
6788		cst->tx_credits -= next_credits;
6789		cst->tx_nocompl += next_credits;
6790		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6791		ETHER_BPF_MTAP(cst->com.ifp, m);
6792		write_ethofld_wr(cst, wr, m, compl);
6793		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6794		if (compl) {
6795			cst->ncompl++;
6796			cst->tx_nocompl	= 0;
6797		}
6798		(void) mbufq_dequeue(&cst->pending_tx);
6799
6800		/*
6801		 * Drop the mbuf's reference on the tag now rather
6802		 * than waiting until m_freem().  This ensures that
6803		 * cxgbe_rate_tag_free gets called when the inp drops
6804		 * its reference on the tag and there are no more
6805		 * mbufs in the pending_tx queue and can flush any
6806		 * pending requests.  Otherwise if the last mbuf
6807		 * doesn't request a completion the etid will never be
6808		 * released.
6809		 */
6810		m->m_pkthdr.snd_tag = NULL;
6811		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6812		m_snd_tag_rele(&cst->com);
6813
6814		mbufq_enqueue(&cst->pending_fwack, m);
6815	}
6816}
6817
6818#if defined(INET) || defined(INET6)
6819static int
6820ethofld_transmit(if_t ifp, struct mbuf *m0)
6821{
6822	struct cxgbe_rate_tag *cst;
6823	int rc;
6824
6825	MPASS(m0->m_nextpkt == NULL);
6826	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6827	MPASS(m0->m_pkthdr.snd_tag != NULL);
6828	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6829
6830	mtx_lock(&cst->lock);
6831	MPASS(cst->flags & EO_SND_TAG_REF);
6832
6833	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6834		struct vi_info *vi = if_getsoftc(ifp);
6835		struct port_info *pi = vi->pi;
6836		struct adapter *sc = pi->adapter;
6837		const uint32_t rss_mask = vi->rss_size - 1;
6838		uint32_t rss_hash;
6839
6840		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6841		if (M_HASHTYPE_ISHASH(m0))
6842			rss_hash = m0->m_pkthdr.flowid;
6843		else
6844			rss_hash = arc4random();
6845		/* We assume RSS hashing */
6846		cst->iqid = vi->rss[rss_hash & rss_mask];
6847		cst->eo_txq += rss_hash % vi->nofldtxq;
6848		rc = send_etid_flowc_wr(cst, pi, vi);
6849		if (rc != 0)
6850			goto done;
6851	}
6852
6853	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6854		rc = ENOBUFS;
6855		goto done;
6856	}
6857
6858	mbufq_enqueue(&cst->pending_tx, m0);
6859	cst->plen += m0->m_pkthdr.len;
6860
6861	/*
6862	 * Hold an extra reference on the tag while generating work
6863	 * requests to ensure that we don't try to free the tag during
6864	 * ethofld_tx() in case we are sending the final mbuf after
6865	 * the inp was freed.
6866	 */
6867	m_snd_tag_ref(&cst->com);
6868	ethofld_tx(cst);
6869	mtx_unlock(&cst->lock);
6870	m_snd_tag_rele(&cst->com);
6871	return (0);
6872
6873done:
6874	mtx_unlock(&cst->lock);
6875	return (rc);
6876}
6877#endif
6878
6879static int
6880ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6881{
6882	struct adapter *sc = iq->adapter;
6883	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6884	struct mbuf *m;
6885	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6886	struct cxgbe_rate_tag *cst;
6887	uint8_t credits = cpl->credits;
6888
6889	cst = lookup_etid(sc, etid);
6890	mtx_lock(&cst->lock);
6891	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6892		MPASS(credits >= ETID_FLOWC_LEN16);
6893		credits -= ETID_FLOWC_LEN16;
6894		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6895	}
6896
6897	KASSERT(cst->ncompl > 0,
6898	    ("%s: etid %u (%p) wasn't expecting completion.",
6899	    __func__, etid, cst));
6900	cst->ncompl--;
6901
6902	while (credits > 0) {
6903		m = mbufq_dequeue(&cst->pending_fwack);
6904		if (__predict_false(m == NULL)) {
6905			/*
6906			 * The remaining credits are for the final flush that
6907			 * was issued when the tag was freed by the kernel.
6908			 */
6909			MPASS((cst->flags &
6910			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6911			    EO_FLUSH_RPL_PENDING);
6912			MPASS(credits == ETID_FLUSH_LEN16);
6913			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6914			MPASS(cst->ncompl == 0);
6915
6916			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6917			cst->tx_credits += cpl->credits;
6918			cxgbe_rate_tag_free_locked(cst);
6919			return (0);	/* cst is gone. */
6920		}
6921		KASSERT(m != NULL,
6922		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6923		    credits));
6924		KASSERT(credits >= mbuf_eo_len16(m),
6925		    ("%s: too few credits (%u, %u, %u)", __func__,
6926		    cpl->credits, credits, mbuf_eo_len16(m)));
6927		credits -= mbuf_eo_len16(m);
6928		cst->plen -= m->m_pkthdr.len;
6929		m_freem(m);
6930	}
6931
6932	cst->tx_credits += cpl->credits;
6933	MPASS(cst->tx_credits <= cst->tx_total);
6934
6935	if (cst->flags & EO_SND_TAG_REF) {
6936		/*
6937		 * As with ethofld_transmit(), hold an extra reference
6938		 * so that the tag is stable across ethold_tx().
6939		 */
6940		m_snd_tag_ref(&cst->com);
6941		m = mbufq_first(&cst->pending_tx);
6942		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6943			ethofld_tx(cst);
6944		mtx_unlock(&cst->lock);
6945		m_snd_tag_rele(&cst->com);
6946	} else {
6947		/*
6948		 * There shouldn't be any pending packets if the tag
6949		 * was freed by the kernel since any pending packet
6950		 * should hold a reference to the tag.
6951		 */
6952		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6953		mtx_unlock(&cst->lock);
6954	}
6955
6956	return (0);
6957}
6958#endif
6959