1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2024 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7/*
8 *  ALGORITHM
9 *
10 *      The "deflation" process uses several Huffman trees. The more
11 *      common source values are represented by shorter bit sequences.
12 *
13 *      Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values).  The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 *  REFERENCES
20 *
21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 *      Storer, James A.
25 *          Data Compression:  Methods and Theory, pp. 49-50.
26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27 *
28 *      Sedgewick, R.
29 *          Algorithms, p290.
30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33/* @(#) $Id$ */
34
35/* #define GEN_TREES_H */
36
37#include "deflate.h"
38
39#ifdef ZLIB_DEBUG
40#  include <ctype.h>
41#endif
42
43/* ===========================================================================
44 * Constants
45 */
46
47#define MAX_BL_BITS 7
48/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50#define END_BLOCK 256
51/* end of block literal code */
52
53#define REP_3_6      16
54/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56#define REPZ_3_10    17
57/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
59#define REPZ_11_138  18
60/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
62local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71local const uch bl_order[BL_CODES]
72   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73/* The lengths of the bit length codes are sent in order of decreasing
74 * probability, to avoid transmitting the lengths for unused bit length codes.
75 */
76
77/* ===========================================================================
78 * Local data. These are initialized only once.
79 */
80
81#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82
83#if defined(GEN_TREES_H) || !defined(STDC)
84/* non ANSI compilers may not accept trees.h */
85
86local ct_data static_ltree[L_CODES+2];
87/* The static literal tree. Since the bit lengths are imposed, there is no
88 * need for the L_CODES extra codes used during heap construction. However
89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90 * below).
91 */
92
93local ct_data static_dtree[D_CODES];
94/* The static distance tree. (Actually a trivial tree since all codes use
95 * 5 bits.)
96 */
97
98uch _dist_code[DIST_CODE_LEN];
99/* Distance codes. The first 256 values correspond to the distances
100 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101 * the 15 bit distances.
102 */
103
104uch _length_code[MAX_MATCH-MIN_MATCH+1];
105/* length code for each normalized match length (0 == MIN_MATCH) */
106
107local int base_length[LENGTH_CODES];
108/* First normalized length for each code (0 = MIN_MATCH) */
109
110local int base_dist[D_CODES];
111/* First normalized distance for each code (0 = distance of 1) */
112
113#else
114#  include "trees.h"
115#endif /* GEN_TREES_H */
116
117struct static_tree_desc_s {
118    const ct_data *static_tree;  /* static tree or NULL */
119    const intf *extra_bits;      /* extra bits for each code or NULL */
120    int     extra_base;          /* base index for extra_bits */
121    int     elems;               /* max number of elements in the tree */
122    int     max_length;          /* max bit length for the codes */
123};
124
125#ifdef NO_INIT_GLOBAL_POINTERS
126#  define TCONST
127#else
128#  define TCONST const
129#endif
130
131local TCONST static_tree_desc static_l_desc =
132{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133
134local TCONST static_tree_desc static_d_desc =
135{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
136
137local TCONST static_tree_desc static_bl_desc =
138{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
139
140/* ===========================================================================
141 * Output a short LSB first on the stream.
142 * IN assertion: there is enough room in pendingBuf.
143 */
144#define put_short(s, w) { \
145    put_byte(s, (uch)((w) & 0xff)); \
146    put_byte(s, (uch)((ush)(w) >> 8)); \
147}
148
149/* ===========================================================================
150 * Reverse the first len bits of a code, using straightforward code (a faster
151 * method would use a table)
152 * IN assertion: 1 <= len <= 15
153 */
154local unsigned bi_reverse(unsigned code, int len) {
155    register unsigned res = 0;
156    do {
157        res |= code & 1;
158        code >>= 1, res <<= 1;
159    } while (--len > 0);
160    return res >> 1;
161}
162
163/* ===========================================================================
164 * Flush the bit buffer, keeping at most 7 bits in it.
165 */
166local void bi_flush(deflate_state *s) {
167    if (s->bi_valid == 16) {
168        put_short(s, s->bi_buf);
169        s->bi_buf = 0;
170        s->bi_valid = 0;
171    } else if (s->bi_valid >= 8) {
172        put_byte(s, (Byte)s->bi_buf);
173        s->bi_buf >>= 8;
174        s->bi_valid -= 8;
175    }
176}
177
178/* ===========================================================================
179 * Flush the bit buffer and align the output on a byte boundary
180 */
181local void bi_windup(deflate_state *s) {
182    if (s->bi_valid > 8) {
183        put_short(s, s->bi_buf);
184    } else if (s->bi_valid > 0) {
185        put_byte(s, (Byte)s->bi_buf);
186    }
187    s->bi_buf = 0;
188    s->bi_valid = 0;
189#ifdef ZLIB_DEBUG
190    s->bits_sent = (s->bits_sent + 7) & ~7;
191#endif
192}
193
194/* ===========================================================================
195 * Generate the codes for a given tree and bit counts (which need not be
196 * optimal).
197 * IN assertion: the array bl_count contains the bit length statistics for
198 * the given tree and the field len is set for all tree elements.
199 * OUT assertion: the field code is set for all tree elements of non
200 *     zero code length.
201 */
202local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
203    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
204    unsigned code = 0;         /* running code value */
205    int bits;                  /* bit index */
206    int n;                     /* code index */
207
208    /* The distribution counts are first used to generate the code values
209     * without bit reversal.
210     */
211    for (bits = 1; bits <= MAX_BITS; bits++) {
212        code = (code + bl_count[bits - 1]) << 1;
213        next_code[bits] = (ush)code;
214    }
215    /* Check that the bit counts in bl_count are consistent. The last code
216     * must be all ones.
217     */
218    Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
219            "inconsistent bit counts");
220    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
221
222    for (n = 0;  n <= max_code; n++) {
223        int len = tree[n].Len;
224        if (len == 0) continue;
225        /* Now reverse the bits */
226        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
227
228        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
229            n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
230    }
231}
232
233#ifdef GEN_TREES_H
234local void gen_trees_header(void);
235#endif
236
237#ifndef ZLIB_DEBUG
238#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
239   /* Send a code of the given tree. c and tree must not have side effects */
240
241#else /* !ZLIB_DEBUG */
242#  define send_code(s, c, tree) \
243     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
244       send_bits(s, tree[c].Code, tree[c].Len); }
245#endif
246
247/* ===========================================================================
248 * Send a value on a given number of bits.
249 * IN assertion: length <= 16 and value fits in length bits.
250 */
251#ifdef ZLIB_DEBUG
252local void send_bits(deflate_state *s, int value, int length) {
253    Tracevv((stderr," l %2d v %4x ", length, value));
254    Assert(length > 0 && length <= 15, "invalid length");
255    s->bits_sent += (ulg)length;
256
257    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
258     * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
259     * unused bits in value.
260     */
261    if (s->bi_valid > (int)Buf_size - length) {
262        s->bi_buf |= (ush)value << s->bi_valid;
263        put_short(s, s->bi_buf);
264        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
265        s->bi_valid += length - Buf_size;
266    } else {
267        s->bi_buf |= (ush)value << s->bi_valid;
268        s->bi_valid += length;
269    }
270}
271#else /* !ZLIB_DEBUG */
272
273#define send_bits(s, value, length) \
274{ int len = length;\
275  if (s->bi_valid > (int)Buf_size - len) {\
276    int val = (int)value;\
277    s->bi_buf |= (ush)val << s->bi_valid;\
278    put_short(s, s->bi_buf);\
279    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
280    s->bi_valid += len - Buf_size;\
281  } else {\
282    s->bi_buf |= (ush)(value) << s->bi_valid;\
283    s->bi_valid += len;\
284  }\
285}
286#endif /* ZLIB_DEBUG */
287
288
289/* the arguments must not have side effects */
290
291/* ===========================================================================
292 * Initialize the various 'constant' tables.
293 */
294local void tr_static_init(void) {
295#if defined(GEN_TREES_H) || !defined(STDC)
296    static int static_init_done = 0;
297    int n;        /* iterates over tree elements */
298    int bits;     /* bit counter */
299    int length;   /* length value */
300    int code;     /* code value */
301    int dist;     /* distance index */
302    ush bl_count[MAX_BITS+1];
303    /* number of codes at each bit length for an optimal tree */
304
305    if (static_init_done) return;
306
307    /* For some embedded targets, global variables are not initialized: */
308#ifdef NO_INIT_GLOBAL_POINTERS
309    static_l_desc.static_tree = static_ltree;
310    static_l_desc.extra_bits = extra_lbits;
311    static_d_desc.static_tree = static_dtree;
312    static_d_desc.extra_bits = extra_dbits;
313    static_bl_desc.extra_bits = extra_blbits;
314#endif
315
316    /* Initialize the mapping length (0..255) -> length code (0..28) */
317    length = 0;
318    for (code = 0; code < LENGTH_CODES-1; code++) {
319        base_length[code] = length;
320        for (n = 0; n < (1 << extra_lbits[code]); n++) {
321            _length_code[length++] = (uch)code;
322        }
323    }
324    Assert (length == 256, "tr_static_init: length != 256");
325    /* Note that the length 255 (match length 258) can be represented
326     * in two different ways: code 284 + 5 bits or code 285, so we
327     * overwrite length_code[255] to use the best encoding:
328     */
329    _length_code[length - 1] = (uch)code;
330
331    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
332    dist = 0;
333    for (code = 0 ; code < 16; code++) {
334        base_dist[code] = dist;
335        for (n = 0; n < (1 << extra_dbits[code]); n++) {
336            _dist_code[dist++] = (uch)code;
337        }
338    }
339    Assert (dist == 256, "tr_static_init: dist != 256");
340    dist >>= 7; /* from now on, all distances are divided by 128 */
341    for ( ; code < D_CODES; code++) {
342        base_dist[code] = dist << 7;
343        for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
344            _dist_code[256 + dist++] = (uch)code;
345        }
346    }
347    Assert (dist == 256, "tr_static_init: 256 + dist != 512");
348
349    /* Construct the codes of the static literal tree */
350    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
351    n = 0;
352    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
353    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
354    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
355    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
356    /* Codes 286 and 287 do not exist, but we must include them in the
357     * tree construction to get a canonical Huffman tree (longest code
358     * all ones)
359     */
360    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
361
362    /* The static distance tree is trivial: */
363    for (n = 0; n < D_CODES; n++) {
364        static_dtree[n].Len = 5;
365        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
366    }
367    static_init_done = 1;
368
369#  ifdef GEN_TREES_H
370    gen_trees_header();
371#  endif
372#endif /* defined(GEN_TREES_H) || !defined(STDC) */
373}
374
375/* ===========================================================================
376 * Generate the file trees.h describing the static trees.
377 */
378#ifdef GEN_TREES_H
379#  ifndef ZLIB_DEBUG
380#    include <stdio.h>
381#  endif
382
383#  define SEPARATOR(i, last, width) \
384      ((i) == (last)? "\n};\n\n" :    \
385       ((i) % (width) == (width) - 1 ? ",\n" : ", "))
386
387void gen_trees_header(void) {
388    FILE *header = fopen("trees.h", "w");
389    int i;
390
391    Assert (header != NULL, "Can't open trees.h");
392    fprintf(header,
393            "/* header created automatically with -DGEN_TREES_H */\n\n");
394
395    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
396    for (i = 0; i < L_CODES+2; i++) {
397        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
398                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
399    }
400
401    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
402    for (i = 0; i < D_CODES; i++) {
403        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
404                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
405    }
406
407    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
408    for (i = 0; i < DIST_CODE_LEN; i++) {
409        fprintf(header, "%2u%s", _dist_code[i],
410                SEPARATOR(i, DIST_CODE_LEN-1, 20));
411    }
412
413    fprintf(header,
414        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
415    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
416        fprintf(header, "%2u%s", _length_code[i],
417                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
418    }
419
420    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
421    for (i = 0; i < LENGTH_CODES; i++) {
422        fprintf(header, "%1u%s", base_length[i],
423                SEPARATOR(i, LENGTH_CODES-1, 20));
424    }
425
426    fprintf(header, "local const int base_dist[D_CODES] = {\n");
427    for (i = 0; i < D_CODES; i++) {
428        fprintf(header, "%5u%s", base_dist[i],
429                SEPARATOR(i, D_CODES-1, 10));
430    }
431
432    fclose(header);
433}
434#endif /* GEN_TREES_H */
435
436/* ===========================================================================
437 * Initialize a new block.
438 */
439local void init_block(deflate_state *s) {
440    int n; /* iterates over tree elements */
441
442    /* Initialize the trees. */
443    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
444    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
445    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
446
447    s->dyn_ltree[END_BLOCK].Freq = 1;
448    s->opt_len = s->static_len = 0L;
449    s->sym_next = s->matches = 0;
450}
451
452/* ===========================================================================
453 * Initialize the tree data structures for a new zlib stream.
454 */
455void ZLIB_INTERNAL _tr_init(deflate_state *s) {
456    tr_static_init();
457
458    s->l_desc.dyn_tree = s->dyn_ltree;
459    s->l_desc.stat_desc = &static_l_desc;
460
461    s->d_desc.dyn_tree = s->dyn_dtree;
462    s->d_desc.stat_desc = &static_d_desc;
463
464    s->bl_desc.dyn_tree = s->bl_tree;
465    s->bl_desc.stat_desc = &static_bl_desc;
466
467    s->bi_buf = 0;
468    s->bi_valid = 0;
469#ifdef ZLIB_DEBUG
470    s->compressed_len = 0L;
471    s->bits_sent = 0L;
472#endif
473
474    /* Initialize the first block of the first file: */
475    init_block(s);
476}
477
478#define SMALLEST 1
479/* Index within the heap array of least frequent node in the Huffman tree */
480
481
482/* ===========================================================================
483 * Remove the smallest element from the heap and recreate the heap with
484 * one less element. Updates heap and heap_len.
485 */
486#define pqremove(s, tree, top) \
487{\
488    top = s->heap[SMALLEST]; \
489    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
490    pqdownheap(s, tree, SMALLEST); \
491}
492
493/* ===========================================================================
494 * Compares to subtrees, using the tree depth as tie breaker when
495 * the subtrees have equal frequency. This minimizes the worst case length.
496 */
497#define smaller(tree, n, m, depth) \
498   (tree[n].Freq < tree[m].Freq || \
499   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
500
501/* ===========================================================================
502 * Restore the heap property by moving down the tree starting at node k,
503 * exchanging a node with the smallest of its two sons if necessary, stopping
504 * when the heap property is re-established (each father smaller than its
505 * two sons).
506 */
507local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
508    int v = s->heap[k];
509    int j = k << 1;  /* left son of k */
510    while (j <= s->heap_len) {
511        /* Set j to the smallest of the two sons: */
512        if (j < s->heap_len &&
513            smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
514            j++;
515        }
516        /* Exit if v is smaller than both sons */
517        if (smaller(tree, v, s->heap[j], s->depth)) break;
518
519        /* Exchange v with the smallest son */
520        s->heap[k] = s->heap[j];  k = j;
521
522        /* And continue down the tree, setting j to the left son of k */
523        j <<= 1;
524    }
525    s->heap[k] = v;
526}
527
528/* ===========================================================================
529 * Compute the optimal bit lengths for a tree and update the total bit length
530 * for the current block.
531 * IN assertion: the fields freq and dad are set, heap[heap_max] and
532 *    above are the tree nodes sorted by increasing frequency.
533 * OUT assertions: the field len is set to the optimal bit length, the
534 *     array bl_count contains the frequencies for each bit length.
535 *     The length opt_len is updated; static_len is also updated if stree is
536 *     not null.
537 */
538local void gen_bitlen(deflate_state *s, tree_desc *desc) {
539    ct_data *tree        = desc->dyn_tree;
540    int max_code         = desc->max_code;
541    const ct_data *stree = desc->stat_desc->static_tree;
542    const intf *extra    = desc->stat_desc->extra_bits;
543    int base             = desc->stat_desc->extra_base;
544    int max_length       = desc->stat_desc->max_length;
545    int h;              /* heap index */
546    int n, m;           /* iterate over the tree elements */
547    int bits;           /* bit length */
548    int xbits;          /* extra bits */
549    ush f;              /* frequency */
550    int overflow = 0;   /* number of elements with bit length too large */
551
552    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
553
554    /* In a first pass, compute the optimal bit lengths (which may
555     * overflow in the case of the bit length tree).
556     */
557    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
558
559    for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
560        n = s->heap[h];
561        bits = tree[tree[n].Dad].Len + 1;
562        if (bits > max_length) bits = max_length, overflow++;
563        tree[n].Len = (ush)bits;
564        /* We overwrite tree[n].Dad which is no longer needed */
565
566        if (n > max_code) continue; /* not a leaf node */
567
568        s->bl_count[bits]++;
569        xbits = 0;
570        if (n >= base) xbits = extra[n - base];
571        f = tree[n].Freq;
572        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
573        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
574    }
575    if (overflow == 0) return;
576
577    Tracev((stderr,"\nbit length overflow\n"));
578    /* This happens for example on obj2 and pic of the Calgary corpus */
579
580    /* Find the first bit length which could increase: */
581    do {
582        bits = max_length - 1;
583        while (s->bl_count[bits] == 0) bits--;
584        s->bl_count[bits]--;        /* move one leaf down the tree */
585        s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
586        s->bl_count[max_length]--;
587        /* The brother of the overflow item also moves one step up,
588         * but this does not affect bl_count[max_length]
589         */
590        overflow -= 2;
591    } while (overflow > 0);
592
593    /* Now recompute all bit lengths, scanning in increasing frequency.
594     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
595     * lengths instead of fixing only the wrong ones. This idea is taken
596     * from 'ar' written by Haruhiko Okumura.)
597     */
598    for (bits = max_length; bits != 0; bits--) {
599        n = s->bl_count[bits];
600        while (n != 0) {
601            m = s->heap[--h];
602            if (m > max_code) continue;
603            if ((unsigned) tree[m].Len != (unsigned) bits) {
604                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
605                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
606                tree[m].Len = (ush)bits;
607            }
608            n--;
609        }
610    }
611}
612
613#ifdef DUMP_BL_TREE
614#  include <stdio.h>
615#endif
616
617/* ===========================================================================
618 * Construct one Huffman tree and assigns the code bit strings and lengths.
619 * Update the total bit length for the current block.
620 * IN assertion: the field freq is set for all tree elements.
621 * OUT assertions: the fields len and code are set to the optimal bit length
622 *     and corresponding code. The length opt_len is updated; static_len is
623 *     also updated if stree is not null. The field max_code is set.
624 */
625local void build_tree(deflate_state *s, tree_desc *desc) {
626    ct_data *tree         = desc->dyn_tree;
627    const ct_data *stree  = desc->stat_desc->static_tree;
628    int elems             = desc->stat_desc->elems;
629    int n, m;          /* iterate over heap elements */
630    int max_code = -1; /* largest code with non zero frequency */
631    int node;          /* new node being created */
632
633    /* Construct the initial heap, with least frequent element in
634     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
635     * heap[0] is not used.
636     */
637    s->heap_len = 0, s->heap_max = HEAP_SIZE;
638
639    for (n = 0; n < elems; n++) {
640        if (tree[n].Freq != 0) {
641            s->heap[++(s->heap_len)] = max_code = n;
642            s->depth[n] = 0;
643        } else {
644            tree[n].Len = 0;
645        }
646    }
647
648    /* The pkzip format requires that at least one distance code exists,
649     * and that at least one bit should be sent even if there is only one
650     * possible code. So to avoid special checks later on we force at least
651     * two codes of non zero frequency.
652     */
653    while (s->heap_len < 2) {
654        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655        tree[node].Freq = 1;
656        s->depth[node] = 0;
657        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658        /* node is 0 or 1 so it does not have extra bits */
659    }
660    desc->max_code = max_code;
661
662    /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
663     * establish sub-heaps of increasing lengths:
664     */
665    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666
667    /* Construct the Huffman tree by repeatedly combining the least two
668     * frequent nodes.
669     */
670    node = elems;              /* next internal node of the tree */
671    do {
672        pqremove(s, tree, n);  /* n = node of least frequency */
673        m = s->heap[SMALLEST]; /* m = node of next least frequency */
674
675        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676        s->heap[--(s->heap_max)] = m;
677
678        /* Create a new node father of n and m */
679        tree[node].Freq = tree[n].Freq + tree[m].Freq;
680        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
681                                s->depth[n] : s->depth[m]) + 1);
682        tree[n].Dad = tree[m].Dad = (ush)node;
683#ifdef DUMP_BL_TREE
684        if (tree == s->bl_tree) {
685            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
686                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
687        }
688#endif
689        /* and insert the new node in the heap */
690        s->heap[SMALLEST] = node++;
691        pqdownheap(s, tree, SMALLEST);
692
693    } while (s->heap_len >= 2);
694
695    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
696
697    /* At this point, the fields freq and dad are set. We can now
698     * generate the bit lengths.
699     */
700    gen_bitlen(s, (tree_desc *)desc);
701
702    /* The field len is now set, we can generate the bit codes */
703    gen_codes ((ct_data *)tree, max_code, s->bl_count);
704}
705
706/* ===========================================================================
707 * Scan a literal or distance tree to determine the frequencies of the codes
708 * in the bit length tree.
709 */
710local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
711    int n;                     /* iterates over all tree elements */
712    int prevlen = -1;          /* last emitted length */
713    int curlen;                /* length of current code */
714    int nextlen = tree[0].Len; /* length of next code */
715    int count = 0;             /* repeat count of the current code */
716    int max_count = 7;         /* max repeat count */
717    int min_count = 4;         /* min repeat count */
718
719    if (nextlen == 0) max_count = 138, min_count = 3;
720    tree[max_code + 1].Len = (ush)0xffff; /* guard */
721
722    for (n = 0; n <= max_code; n++) {
723        curlen = nextlen; nextlen = tree[n + 1].Len;
724        if (++count < max_count && curlen == nextlen) {
725            continue;
726        } else if (count < min_count) {
727            s->bl_tree[curlen].Freq += count;
728        } else if (curlen != 0) {
729            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
730            s->bl_tree[REP_3_6].Freq++;
731        } else if (count <= 10) {
732            s->bl_tree[REPZ_3_10].Freq++;
733        } else {
734            s->bl_tree[REPZ_11_138].Freq++;
735        }
736        count = 0; prevlen = curlen;
737        if (nextlen == 0) {
738            max_count = 138, min_count = 3;
739        } else if (curlen == nextlen) {
740            max_count = 6, min_count = 3;
741        } else {
742            max_count = 7, min_count = 4;
743        }
744    }
745}
746
747/* ===========================================================================
748 * Send a literal or distance tree in compressed form, using the codes in
749 * bl_tree.
750 */
751local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
752    int n;                     /* iterates over all tree elements */
753    int prevlen = -1;          /* last emitted length */
754    int curlen;                /* length of current code */
755    int nextlen = tree[0].Len; /* length of next code */
756    int count = 0;             /* repeat count of the current code */
757    int max_count = 7;         /* max repeat count */
758    int min_count = 4;         /* min repeat count */
759
760    /* tree[max_code + 1].Len = -1; */  /* guard already set */
761    if (nextlen == 0) max_count = 138, min_count = 3;
762
763    for (n = 0; n <= max_code; n++) {
764        curlen = nextlen; nextlen = tree[n + 1].Len;
765        if (++count < max_count && curlen == nextlen) {
766            continue;
767        } else if (count < min_count) {
768            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
769
770        } else if (curlen != 0) {
771            if (curlen != prevlen) {
772                send_code(s, curlen, s->bl_tree); count--;
773            }
774            Assert(count >= 3 && count <= 6, " 3_6?");
775            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
776
777        } else if (count <= 10) {
778            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
779
780        } else {
781            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
782        }
783        count = 0; prevlen = curlen;
784        if (nextlen == 0) {
785            max_count = 138, min_count = 3;
786        } else if (curlen == nextlen) {
787            max_count = 6, min_count = 3;
788        } else {
789            max_count = 7, min_count = 4;
790        }
791    }
792}
793
794/* ===========================================================================
795 * Construct the Huffman tree for the bit lengths and return the index in
796 * bl_order of the last bit length code to send.
797 */
798local int build_bl_tree(deflate_state *s) {
799    int max_blindex;  /* index of last bit length code of non zero freq */
800
801    /* Determine the bit length frequencies for literal and distance trees */
802    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
803    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
804
805    /* Build the bit length tree: */
806    build_tree(s, (tree_desc *)(&(s->bl_desc)));
807    /* opt_len now includes the length of the tree representations, except the
808     * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
809     */
810
811    /* Determine the number of bit length codes to send. The pkzip format
812     * requires that at least 4 bit length codes be sent. (appnote.txt says
813     * 3 but the actual value used is 4.)
814     */
815    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
816        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
817    }
818    /* Update opt_len to include the bit length tree and counts */
819    s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
820    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
821            s->opt_len, s->static_len));
822
823    return max_blindex;
824}
825
826/* ===========================================================================
827 * Send the header for a block using dynamic Huffman trees: the counts, the
828 * lengths of the bit length codes, the literal tree and the distance tree.
829 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
830 */
831local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
832                          int blcodes) {
833    int rank;                    /* index in bl_order */
834
835    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
836    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
837            "too many codes");
838    Tracev((stderr, "\nbl counts: "));
839    send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
840    send_bits(s, dcodes - 1,   5);
841    send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
842    for (rank = 0; rank < blcodes; rank++) {
843        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
844        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
845    }
846    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
847
848    send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
849    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
850
851    send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
852    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
853}
854
855/* ===========================================================================
856 * Send a stored block
857 */
858void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
859                                    ulg stored_len, int last) {
860    send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
861    bi_windup(s);        /* align on byte boundary */
862    put_short(s, (ush)stored_len);
863    put_short(s, (ush)~stored_len);
864    if (stored_len)
865        zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
866    s->pending += stored_len;
867#ifdef ZLIB_DEBUG
868    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
869    s->compressed_len += (stored_len + 4) << 3;
870    s->bits_sent += 2*16;
871    s->bits_sent += stored_len << 3;
872#endif
873}
874
875/* ===========================================================================
876 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
877 */
878void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
879    bi_flush(s);
880}
881
882/* ===========================================================================
883 * Send one empty static block to give enough lookahead for inflate.
884 * This takes 10 bits, of which 7 may remain in the bit buffer.
885 */
886void ZLIB_INTERNAL _tr_align(deflate_state *s) {
887    send_bits(s, STATIC_TREES<<1, 3);
888    send_code(s, END_BLOCK, static_ltree);
889#ifdef ZLIB_DEBUG
890    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
891#endif
892    bi_flush(s);
893}
894
895/* ===========================================================================
896 * Send the block data compressed using the given Huffman trees
897 */
898local void compress_block(deflate_state *s, const ct_data *ltree,
899                          const ct_data *dtree) {
900    unsigned dist;      /* distance of matched string */
901    int lc;             /* match length or unmatched char (if dist == 0) */
902    unsigned sx = 0;    /* running index in symbol buffers */
903    unsigned code;      /* the code to send */
904    int extra;          /* number of extra bits to send */
905
906    if (s->sym_next != 0) do {
907#ifdef LIT_MEM
908        dist = s->d_buf[sx];
909        lc = s->l_buf[sx++];
910#else
911        dist = s->sym_buf[sx++] & 0xff;
912        dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
913        lc = s->sym_buf[sx++];
914#endif
915        if (dist == 0) {
916            send_code(s, lc, ltree); /* send a literal byte */
917            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
918        } else {
919            /* Here, lc is the match length - MIN_MATCH */
920            code = _length_code[lc];
921            send_code(s, code + LITERALS + 1, ltree);   /* send length code */
922            extra = extra_lbits[code];
923            if (extra != 0) {
924                lc -= base_length[code];
925                send_bits(s, lc, extra);       /* send the extra length bits */
926            }
927            dist--; /* dist is now the match distance - 1 */
928            code = d_code(dist);
929            Assert (code < D_CODES, "bad d_code");
930
931            send_code(s, code, dtree);       /* send the distance code */
932            extra = extra_dbits[code];
933            if (extra != 0) {
934                dist -= (unsigned)base_dist[code];
935                send_bits(s, dist, extra);   /* send the extra distance bits */
936            }
937        } /* literal or match pair ? */
938
939        /* Check for no overlay of pending_buf on needed symbols */
940#ifdef LIT_MEM
941        Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
942#else
943        Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
944#endif
945
946    } while (sx < s->sym_next);
947
948    send_code(s, END_BLOCK, ltree);
949}
950
951/* ===========================================================================
952 * Check if the data type is TEXT or BINARY, using the following algorithm:
953 * - TEXT if the two conditions below are satisfied:
954 *    a) There are no non-portable control characters belonging to the
955 *       "block list" (0..6, 14..25, 28..31).
956 *    b) There is at least one printable character belonging to the
957 *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
958 * - BINARY otherwise.
959 * - The following partially-portable control characters form a
960 *   "gray list" that is ignored in this detection algorithm:
961 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
962 * IN assertion: the fields Freq of dyn_ltree are set.
963 */
964local int detect_data_type(deflate_state *s) {
965    /* block_mask is the bit mask of block-listed bytes
966     * set bits 0..6, 14..25, and 28..31
967     * 0xf3ffc07f = binary 11110011111111111100000001111111
968     */
969    unsigned long block_mask = 0xf3ffc07fUL;
970    int n;
971
972    /* Check for non-textual ("block-listed") bytes. */
973    for (n = 0; n <= 31; n++, block_mask >>= 1)
974        if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
975            return Z_BINARY;
976
977    /* Check for textual ("allow-listed") bytes. */
978    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
979            || s->dyn_ltree[13].Freq != 0)
980        return Z_TEXT;
981    for (n = 32; n < LITERALS; n++)
982        if (s->dyn_ltree[n].Freq != 0)
983            return Z_TEXT;
984
985    /* There are no "block-listed" or "allow-listed" bytes:
986     * this stream either is empty or has tolerated ("gray-listed") bytes only.
987     */
988    return Z_BINARY;
989}
990
991/* ===========================================================================
992 * Determine the best encoding for the current block: dynamic trees, static
993 * trees or store, and write out the encoded block.
994 */
995void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
996                                   ulg stored_len, int last) {
997    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
998    int max_blindex = 0;  /* index of last bit length code of non zero freq */
999
1000    /* Build the Huffman trees unless a stored block is forced */
1001    if (s->level > 0) {
1002
1003        /* Check if the file is binary or text */
1004        if (s->strm->data_type == Z_UNKNOWN)
1005            s->strm->data_type = detect_data_type(s);
1006
1007        /* Construct the literal and distance trees */
1008        build_tree(s, (tree_desc *)(&(s->l_desc)));
1009        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1010                s->static_len));
1011
1012        build_tree(s, (tree_desc *)(&(s->d_desc)));
1013        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1014                s->static_len));
1015        /* At this point, opt_len and static_len are the total bit lengths of
1016         * the compressed block data, excluding the tree representations.
1017         */
1018
1019        /* Build the bit length tree for the above two trees, and get the index
1020         * in bl_order of the last bit length code to send.
1021         */
1022        max_blindex = build_bl_tree(s);
1023
1024        /* Determine the best encoding. Compute the block lengths in bytes. */
1025        opt_lenb = (s->opt_len + 3 + 7) >> 3;
1026        static_lenb = (s->static_len + 3 + 7) >> 3;
1027
1028        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1029                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1030                s->sym_next / 3));
1031
1032#ifndef FORCE_STATIC
1033        if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1034#endif
1035            opt_lenb = static_lenb;
1036
1037    } else {
1038        Assert(buf != (char*)0, "lost buf");
1039        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1040    }
1041
1042#ifdef FORCE_STORED
1043    if (buf != (char*)0) { /* force stored block */
1044#else
1045    if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1046                       /* 4: two words for the lengths */
1047#endif
1048        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1049         * Otherwise we can't have processed more than WSIZE input bytes since
1050         * the last block flush, because compression would have been
1051         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1052         * transform a block into a stored block.
1053         */
1054        _tr_stored_block(s, buf, stored_len, last);
1055
1056    } else if (static_lenb == opt_lenb) {
1057        send_bits(s, (STATIC_TREES<<1) + last, 3);
1058        compress_block(s, (const ct_data *)static_ltree,
1059                       (const ct_data *)static_dtree);
1060#ifdef ZLIB_DEBUG
1061        s->compressed_len += 3 + s->static_len;
1062#endif
1063    } else {
1064        send_bits(s, (DYN_TREES<<1) + last, 3);
1065        send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1066                       max_blindex + 1);
1067        compress_block(s, (const ct_data *)s->dyn_ltree,
1068                       (const ct_data *)s->dyn_dtree);
1069#ifdef ZLIB_DEBUG
1070        s->compressed_len += 3 + s->opt_len;
1071#endif
1072    }
1073    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1074    /* The above check is made mod 2^32, for files larger than 512 MB
1075     * and uLong implemented on 32 bits.
1076     */
1077    init_block(s);
1078
1079    if (last) {
1080        bi_windup(s);
1081#ifdef ZLIB_DEBUG
1082        s->compressed_len += 7;  /* align on byte boundary */
1083#endif
1084    }
1085    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1086           s->compressed_len - 7*last));
1087}
1088
1089/* ===========================================================================
1090 * Save the match info and tally the frequency counts. Return true if
1091 * the current block must be flushed.
1092 */
1093int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1094#ifdef LIT_MEM
1095    s->d_buf[s->sym_next] = (ush)dist;
1096    s->l_buf[s->sym_next++] = (uch)lc;
1097#else
1098    s->sym_buf[s->sym_next++] = (uch)dist;
1099    s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1100    s->sym_buf[s->sym_next++] = (uch)lc;
1101#endif
1102    if (dist == 0) {
1103        /* lc is the unmatched char */
1104        s->dyn_ltree[lc].Freq++;
1105    } else {
1106        s->matches++;
1107        /* Here, lc is the match length - MIN_MATCH */
1108        dist--;             /* dist = match distance - 1 */
1109        Assert((ush)dist < (ush)MAX_DIST(s) &&
1110               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1111               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1112
1113        s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1114        s->dyn_dtree[d_code(dist)].Freq++;
1115    }
1116    return (s->sym_next == s->sym_end);
1117}
1118