1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process depends on being able to identify portions
10 *      of the input text which are identical to earlier input (within a
11 *      sliding window trailing behind the input currently being processed).
12 *
13 *      The most straightforward technique turns out to be the fastest for
14 *      most input files: try all possible matches and select the longest.
15 *      The key feature of this algorithm is that insertions into the string
16 *      dictionary are very simple and thus fast, and deletions are avoided
17 *      completely. Insertions are performed at each input character, whereas
18 *      string matches are performed only when the previous match ends. So it
19 *      is preferable to spend more time in matches to allow very fast string
20 *      insertions and avoid deletions. The matching algorithm for small
21 *      strings is inspired from that of Rabin & Karp. A brute force approach
22 *      is used to find longer strings when a small match has been found.
23 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 *      (by Leonid Broukhis).
25 *         A previous version of this file used a more sophisticated algorithm
26 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27 *      time, but has a larger average cost, uses more memory and is patented.
28 *      However the F&G algorithm may be faster for some highly redundant
29 *      files if the parameter max_chain_length (described below) is too large.
30 *
31 *  ACKNOWLEDGEMENTS
32 *
33 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 *      I found it in 'freeze' written by Leonid Broukhis.
35 *      Thanks to many people for bug reports and testing.
36 *
37 *  REFERENCES
38 *
39 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 *      Available in http://tools.ietf.org/html/rfc1951
41 *
42 *      A description of the Rabin and Karp algorithm is given in the book
43 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 *      Fiala,E.R., and Greene,D.H.
46 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
53
54const char deflate_copyright[] =
55   " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
56/*
57  If you use the zlib library in a product, an acknowledgment is welcome
58  in the documentation of your product. If for some reason you cannot
59  include such an acknowledgment, I would appreciate that you keep this
60  copyright string in the executable of your product.
61 */
62
63typedef enum {
64    need_more,      /* block not completed, need more input or more output */
65    block_done,     /* block flush performed */
66    finish_started, /* finish started, need only more output at next deflate */
67    finish_done     /* finish done, accept no more input or output */
68} block_state;
69
70typedef block_state (*compress_func)(deflate_state *s, int flush);
71/* Compression function. Returns the block state after the call. */
72
73local block_state deflate_stored(deflate_state *s, int flush);
74local block_state deflate_fast(deflate_state *s, int flush);
75#ifndef FASTEST
76local block_state deflate_slow(deflate_state *s, int flush);
77#endif
78local block_state deflate_rle(deflate_state *s, int flush);
79local block_state deflate_huff(deflate_state *s, int flush);
80
81/* ===========================================================================
82 * Local data
83 */
84
85#define NIL 0
86/* Tail of hash chains */
87
88#ifndef TOO_FAR
89#  define TOO_FAR 4096
90#endif
91/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93/* Values for max_lazy_match, good_match and max_chain_length, depending on
94 * the desired pack level (0..9). The values given below have been tuned to
95 * exclude worst case performance for pathological files. Better values may be
96 * found for specific files.
97 */
98typedef struct config_s {
99   ush good_length; /* reduce lazy search above this match length */
100   ush max_lazy;    /* do not perform lazy search above this match length */
101   ush nice_length; /* quit search above this match length */
102   ush max_chain;
103   compress_func func;
104} config;
105
106#ifdef FASTEST
107local const config configuration_table[2] = {
108/*      good lazy nice chain */
109/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
110/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
111#else
112local const config configuration_table[10] = {
113/*      good lazy nice chain */
114/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
115/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
116/* 2 */ {4,    5, 16,    8, deflate_fast},
117/* 3 */ {4,    6, 32,   32, deflate_fast},
118
119/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
120/* 5 */ {8,   16, 32,   32, deflate_slow},
121/* 6 */ {8,   16, 128, 128, deflate_slow},
122/* 7 */ {8,   32, 128, 256, deflate_slow},
123/* 8 */ {32, 128, 258, 1024, deflate_slow},
124/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125#endif
126
127/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129 * meaning.
130 */
131
132/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135/* ===========================================================================
136 * Update a hash value with the given input byte
137 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
138 *    characters, so that a running hash key can be computed from the previous
139 *    key instead of complete recalculation each time.
140 */
141#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144/* ===========================================================================
145 * Insert string str in the dictionary and set match_head to the previous head
146 * of the hash chain (the most recent string with same hash key). Return
147 * the previous length of the hash chain.
148 * If this file is compiled with -DFASTEST, the compression level is forced
149 * to 1, and no hash chains are maintained.
150 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
151 *    characters and the first MIN_MATCH bytes of str are valid (except for
152 *    the last MIN_MATCH-1 bytes of the input file).
153 */
154#ifdef FASTEST
155#define INSERT_STRING(s, str, match_head) \
156   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157    match_head = s->head[s->ins_h], \
158    s->head[s->ins_h] = (Pos)(str))
159#else
160#define INSERT_STRING(s, str, match_head) \
161   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163    s->head[s->ins_h] = (Pos)(str))
164#endif
165
166/* ===========================================================================
167 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168 * prev[] will be initialized on the fly.
169 */
170#define CLEAR_HASH(s) \
171    do { \
172        s->head[s->hash_size - 1] = NIL; \
173        zmemzero((Bytef *)s->head, \
174                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175    } while (0)
176
177/* ===========================================================================
178 * Slide the hash table when sliding the window down (could be avoided with 32
179 * bit values at the expense of memory usage). We slide even when level == 0 to
180 * keep the hash table consistent if we switch back to level > 0 later.
181 */
182#if defined(__has_feature)
183#  if __has_feature(memory_sanitizer)
184     __attribute__((no_sanitize("memory")))
185#  endif
186#endif
187local void slide_hash(deflate_state *s) {
188    unsigned n, m;
189    Posf *p;
190    uInt wsize = s->w_size;
191
192    n = s->hash_size;
193    p = &s->head[n];
194    do {
195        m = *--p;
196        *p = (Pos)(m >= wsize ? m - wsize : NIL);
197    } while (--n);
198    n = wsize;
199#ifndef FASTEST
200    p = &s->prev[n];
201    do {
202        m = *--p;
203        *p = (Pos)(m >= wsize ? m - wsize : NIL);
204        /* If n is not on any hash chain, prev[n] is garbage but
205         * its value will never be used.
206         */
207    } while (--n);
208#endif
209}
210
211/* ===========================================================================
212 * Read a new buffer from the current input stream, update the adler32
213 * and total number of bytes read.  All deflate() input goes through
214 * this function so some applications may wish to modify it to avoid
215 * allocating a large strm->next_in buffer and copying from it.
216 * (See also flush_pending()).
217 */
218local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
219    unsigned len = strm->avail_in;
220
221    if (len > size) len = size;
222    if (len == 0) return 0;
223
224    strm->avail_in  -= len;
225
226    zmemcpy(buf, strm->next_in, len);
227    if (strm->state->wrap == 1) {
228        strm->adler = adler32(strm->adler, buf, len);
229    }
230#ifdef GZIP
231    else if (strm->state->wrap == 2) {
232        strm->adler = crc32(strm->adler, buf, len);
233    }
234#endif
235    strm->next_in  += len;
236    strm->total_in += len;
237
238    return len;
239}
240
241/* ===========================================================================
242 * Fill the window when the lookahead becomes insufficient.
243 * Updates strstart and lookahead.
244 *
245 * IN assertion: lookahead < MIN_LOOKAHEAD
246 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
247 *    At least one byte has been read, or avail_in == 0; reads are
248 *    performed for at least two bytes (required for the zip translate_eol
249 *    option -- not supported here).
250 */
251local void fill_window(deflate_state *s) {
252    unsigned n;
253    unsigned more;    /* Amount of free space at the end of the window. */
254    uInt wsize = s->w_size;
255
256    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
257
258    do {
259        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
260
261        /* Deal with !@#$% 64K limit: */
262        if (sizeof(int) <= 2) {
263            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
264                more = wsize;
265
266            } else if (more == (unsigned)(-1)) {
267                /* Very unlikely, but possible on 16 bit machine if
268                 * strstart == 0 && lookahead == 1 (input done a byte at time)
269                 */
270                more--;
271            }
272        }
273
274        /* If the window is almost full and there is insufficient lookahead,
275         * move the upper half to the lower one to make room in the upper half.
276         */
277        if (s->strstart >= wsize + MAX_DIST(s)) {
278
279            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
280            s->match_start -= wsize;
281            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
282            s->block_start -= (long) wsize;
283            if (s->insert > s->strstart)
284                s->insert = s->strstart;
285            slide_hash(s);
286            more += wsize;
287        }
288        if (s->strm->avail_in == 0) break;
289
290        /* If there was no sliding:
291         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
292         *    more == window_size - lookahead - strstart
293         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
294         * => more >= window_size - 2*WSIZE + 2
295         * In the BIG_MEM or MMAP case (not yet supported),
296         *   window_size == input_size + MIN_LOOKAHEAD  &&
297         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
298         * Otherwise, window_size == 2*WSIZE so more >= 2.
299         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
300         */
301        Assert(more >= 2, "more < 2");
302
303        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
304        s->lookahead += n;
305
306        /* Initialize the hash value now that we have some input: */
307        if (s->lookahead + s->insert >= MIN_MATCH) {
308            uInt str = s->strstart - s->insert;
309            s->ins_h = s->window[str];
310            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
311#if MIN_MATCH != 3
312            Call UPDATE_HASH() MIN_MATCH-3 more times
313#endif
314            while (s->insert) {
315                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
316#ifndef FASTEST
317                s->prev[str & s->w_mask] = s->head[s->ins_h];
318#endif
319                s->head[s->ins_h] = (Pos)str;
320                str++;
321                s->insert--;
322                if (s->lookahead + s->insert < MIN_MATCH)
323                    break;
324            }
325        }
326        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
327         * but this is not important since only literal bytes will be emitted.
328         */
329
330    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
331
332    /* If the WIN_INIT bytes after the end of the current data have never been
333     * written, then zero those bytes in order to avoid memory check reports of
334     * the use of uninitialized (or uninitialised as Julian writes) bytes by
335     * the longest match routines.  Update the high water mark for the next
336     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
337     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
338     */
339    if (s->high_water < s->window_size) {
340        ulg curr = s->strstart + (ulg)(s->lookahead);
341        ulg init;
342
343        if (s->high_water < curr) {
344            /* Previous high water mark below current data -- zero WIN_INIT
345             * bytes or up to end of window, whichever is less.
346             */
347            init = s->window_size - curr;
348            if (init > WIN_INIT)
349                init = WIN_INIT;
350            zmemzero(s->window + curr, (unsigned)init);
351            s->high_water = curr + init;
352        }
353        else if (s->high_water < (ulg)curr + WIN_INIT) {
354            /* High water mark at or above current data, but below current data
355             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
356             * to end of window, whichever is less.
357             */
358            init = (ulg)curr + WIN_INIT - s->high_water;
359            if (init > s->window_size - s->high_water)
360                init = s->window_size - s->high_water;
361            zmemzero(s->window + s->high_water, (unsigned)init);
362            s->high_water += init;
363        }
364    }
365
366    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
367           "not enough room for search");
368}
369
370/* ========================================================================= */
371int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
372                         int stream_size) {
373    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
374                         Z_DEFAULT_STRATEGY, version, stream_size);
375    /* To do: ignore strm->next_in if we use it as window */
376}
377
378/* ========================================================================= */
379int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
380                          int windowBits, int memLevel, int strategy,
381                          const char *version, int stream_size) {
382    deflate_state *s;
383    int wrap = 1;
384    static const char my_version[] = ZLIB_VERSION;
385
386    if (version == Z_NULL || version[0] != my_version[0] ||
387        stream_size != sizeof(z_stream)) {
388        return Z_VERSION_ERROR;
389    }
390    if (strm == Z_NULL) return Z_STREAM_ERROR;
391
392    strm->msg = Z_NULL;
393    if (strm->zalloc == (alloc_func)0) {
394#if defined(Z_SOLO) && !defined(_KERNEL)
395        return Z_STREAM_ERROR;
396#else
397        strm->zalloc = zcalloc;
398        strm->opaque = (voidpf)0;
399#endif
400    }
401    if (strm->zfree == (free_func)0)
402#if defined(Z_SOLO) && !defined(_KERNEL)
403        return Z_STREAM_ERROR;
404#else
405        strm->zfree = zcfree;
406#endif
407
408#ifdef FASTEST
409    if (level != 0) level = 1;
410#else
411    if (level == Z_DEFAULT_COMPRESSION) level = 6;
412#endif
413
414    if (windowBits < 0) { /* suppress zlib wrapper */
415        wrap = 0;
416        if (windowBits < -15)
417            return Z_STREAM_ERROR;
418        windowBits = -windowBits;
419    }
420#ifdef GZIP
421    else if (windowBits > 15) {
422        wrap = 2;       /* write gzip wrapper instead */
423        windowBits -= 16;
424    }
425#endif
426    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
427        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
428        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
429        return Z_STREAM_ERROR;
430    }
431    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
432    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
433    if (s == Z_NULL) return Z_MEM_ERROR;
434    strm->state = (struct internal_state FAR *)s;
435    s->strm = strm;
436    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
437
438    s->wrap = wrap;
439    s->gzhead = Z_NULL;
440    s->w_bits = (uInt)windowBits;
441    s->w_size = 1 << s->w_bits;
442    s->w_mask = s->w_size - 1;
443
444    s->hash_bits = (uInt)memLevel + 7;
445    s->hash_size = 1 << s->hash_bits;
446    s->hash_mask = s->hash_size - 1;
447    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
448
449    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
450    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
451    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
452
453    s->high_water = 0;      /* nothing written to s->window yet */
454
455    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
456
457    /* We overlay pending_buf and sym_buf. This works since the average size
458     * for length/distance pairs over any compressed block is assured to be 31
459     * bits or less.
460     *
461     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
462     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
463     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
464     * possible fixed-codes length/distance pair is then 31 bits total.
465     *
466     * sym_buf starts one-fourth of the way into pending_buf. So there are
467     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
468     * in sym_buf is three bytes -- two for the distance and one for the
469     * literal/length. As each symbol is consumed, the pointer to the next
470     * sym_buf value to read moves forward three bytes. From that symbol, up to
471     * 31 bits are written to pending_buf. The closest the written pending_buf
472     * bits gets to the next sym_buf symbol to read is just before the last
473     * code is written. At that time, 31*(n - 2) bits have been written, just
474     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
475     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
476     * symbols are written.) The closest the writing gets to what is unread is
477     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
478     * can range from 128 to 32768.
479     *
480     * Therefore, at a minimum, there are 142 bits of space between what is
481     * written and what is read in the overlain buffers, so the symbols cannot
482     * be overwritten by the compressed data. That space is actually 139 bits,
483     * due to the three-bit fixed-code block header.
484     *
485     * That covers the case where either Z_FIXED is specified, forcing fixed
486     * codes, or when the use of fixed codes is chosen, because that choice
487     * results in a smaller compressed block than dynamic codes. That latter
488     * condition then assures that the above analysis also covers all dynamic
489     * blocks. A dynamic-code block will only be chosen to be emitted if it has
490     * fewer bits than a fixed-code block would for the same set of symbols.
491     * Therefore its average symbol length is assured to be less than 31. So
492     * the compressed data for a dynamic block also cannot overwrite the
493     * symbols from which it is being constructed.
494     */
495
496    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
497    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
498
499    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
500        s->pending_buf == Z_NULL) {
501        s->status = FINISH_STATE;
502        strm->msg = ERR_MSG(Z_MEM_ERROR);
503        deflateEnd (strm);
504        return Z_MEM_ERROR;
505    }
506#ifdef LIT_MEM
507    s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
508    s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
509    s->sym_end = s->lit_bufsize - 1;
510#else
511    s->sym_buf = s->pending_buf + s->lit_bufsize;
512    s->sym_end = (s->lit_bufsize - 1) * 3;
513#endif
514    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
515     * on 16 bit machines and because stored blocks are restricted to
516     * 64K-1 bytes.
517     */
518
519    s->level = level;
520    s->strategy = strategy;
521    s->method = (Byte)method;
522
523    return deflateReset(strm);
524}
525
526/* =========================================================================
527 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
528 */
529local int deflateStateCheck(z_streamp strm) {
530    deflate_state *s;
531    if (strm == Z_NULL ||
532        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
533        return 1;
534    s = strm->state;
535    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
536#ifdef GZIP
537                                           s->status != GZIP_STATE &&
538#endif
539                                           s->status != EXTRA_STATE &&
540                                           s->status != NAME_STATE &&
541                                           s->status != COMMENT_STATE &&
542                                           s->status != HCRC_STATE &&
543                                           s->status != BUSY_STATE &&
544                                           s->status != FINISH_STATE))
545        return 1;
546    return 0;
547}
548
549/* ========================================================================= */
550int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
551                                 uInt  dictLength) {
552    deflate_state *s;
553    uInt str, n;
554    int wrap;
555    unsigned avail;
556    z_const unsigned char *next;
557
558    if (deflateStateCheck(strm) || dictionary == Z_NULL)
559        return Z_STREAM_ERROR;
560    s = strm->state;
561    wrap = s->wrap;
562    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
563        return Z_STREAM_ERROR;
564
565    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
566    if (wrap == 1)
567        strm->adler = adler32(strm->adler, dictionary, dictLength);
568    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
569
570    /* if dictionary would fill window, just replace the history */
571    if (dictLength >= s->w_size) {
572        if (wrap == 0) {            /* already empty otherwise */
573            CLEAR_HASH(s);
574            s->strstart = 0;
575            s->block_start = 0L;
576            s->insert = 0;
577        }
578        dictionary += dictLength - s->w_size;  /* use the tail */
579        dictLength = s->w_size;
580    }
581
582    /* insert dictionary into window and hash */
583    avail = strm->avail_in;
584    next = strm->next_in;
585    strm->avail_in = dictLength;
586    strm->next_in = (z_const Bytef *)dictionary;
587    fill_window(s);
588    while (s->lookahead >= MIN_MATCH) {
589        str = s->strstart;
590        n = s->lookahead - (MIN_MATCH-1);
591        do {
592            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
593#ifndef FASTEST
594            s->prev[str & s->w_mask] = s->head[s->ins_h];
595#endif
596            s->head[s->ins_h] = (Pos)str;
597            str++;
598        } while (--n);
599        s->strstart = str;
600        s->lookahead = MIN_MATCH-1;
601        fill_window(s);
602    }
603    s->strstart += s->lookahead;
604    s->block_start = (long)s->strstart;
605    s->insert = s->lookahead;
606    s->lookahead = 0;
607    s->match_length = s->prev_length = MIN_MATCH-1;
608    s->match_available = 0;
609    strm->next_in = next;
610    strm->avail_in = avail;
611    s->wrap = wrap;
612    return Z_OK;
613}
614
615/* ========================================================================= */
616int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
617                                 uInt *dictLength) {
618    deflate_state *s;
619    uInt len;
620
621    if (deflateStateCheck(strm))
622        return Z_STREAM_ERROR;
623    s = strm->state;
624    len = s->strstart + s->lookahead;
625    if (len > s->w_size)
626        len = s->w_size;
627    if (dictionary != Z_NULL && len)
628        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
629    if (dictLength != Z_NULL)
630        *dictLength = len;
631    return Z_OK;
632}
633
634/* ========================================================================= */
635int ZEXPORT deflateResetKeep(z_streamp strm) {
636    deflate_state *s;
637
638    if (deflateStateCheck(strm)) {
639        return Z_STREAM_ERROR;
640    }
641
642    strm->total_in = strm->total_out = 0;
643    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
644    strm->data_type = Z_UNKNOWN;
645
646    s = (deflate_state *)strm->state;
647    s->pending = 0;
648    s->pending_out = s->pending_buf;
649
650    if (s->wrap < 0) {
651        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
652    }
653    s->status =
654#ifdef GZIP
655        s->wrap == 2 ? GZIP_STATE :
656#endif
657        INIT_STATE;
658    strm->adler =
659#ifdef GZIP
660        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
661#endif
662        adler32(0L, Z_NULL, 0);
663    s->last_flush = -2;
664
665    _tr_init(s);
666
667    return Z_OK;
668}
669
670/* ===========================================================================
671 * Initialize the "longest match" routines for a new zlib stream
672 */
673local void lm_init(deflate_state *s) {
674    s->window_size = (ulg)2L*s->w_size;
675
676    CLEAR_HASH(s);
677
678    /* Set the default configuration parameters:
679     */
680    s->max_lazy_match   = configuration_table[s->level].max_lazy;
681    s->good_match       = configuration_table[s->level].good_length;
682    s->nice_match       = configuration_table[s->level].nice_length;
683    s->max_chain_length = configuration_table[s->level].max_chain;
684
685    s->strstart = 0;
686    s->block_start = 0L;
687    s->lookahead = 0;
688    s->insert = 0;
689    s->match_length = s->prev_length = MIN_MATCH-1;
690    s->match_available = 0;
691    s->ins_h = 0;
692}
693
694/* ========================================================================= */
695int ZEXPORT deflateReset(z_streamp strm) {
696    int ret;
697
698    ret = deflateResetKeep(strm);
699    if (ret == Z_OK)
700        lm_init(strm->state);
701    return ret;
702}
703
704/* ========================================================================= */
705int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
706    if (deflateStateCheck(strm) || strm->state->wrap != 2)
707        return Z_STREAM_ERROR;
708    strm->state->gzhead = head;
709    return Z_OK;
710}
711
712/* ========================================================================= */
713int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
714    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
715    if (pending != Z_NULL)
716        *pending = strm->state->pending;
717    if (bits != Z_NULL)
718        *bits = strm->state->bi_valid;
719    return Z_OK;
720}
721
722/* ========================================================================= */
723int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
724    deflate_state *s;
725    int put;
726
727    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
728    s = strm->state;
729#ifdef LIT_MEM
730    if (bits < 0 || bits > 16 ||
731        (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
732        return Z_BUF_ERROR;
733#else
734    if (bits < 0 || bits > 16 ||
735        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
736        return Z_BUF_ERROR;
737#endif
738    do {
739        put = Buf_size - s->bi_valid;
740        if (put > bits)
741            put = bits;
742        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
743        s->bi_valid += put;
744        _tr_flush_bits(s);
745        value >>= put;
746        bits -= put;
747    } while (bits);
748    return Z_OK;
749}
750
751/* ========================================================================= */
752int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
753    deflate_state *s;
754    compress_func func;
755
756    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
757    s = strm->state;
758
759#ifdef FASTEST
760    if (level != 0) level = 1;
761#else
762    if (level == Z_DEFAULT_COMPRESSION) level = 6;
763#endif
764    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
765        return Z_STREAM_ERROR;
766    }
767    func = configuration_table[s->level].func;
768
769    if ((strategy != s->strategy || func != configuration_table[level].func) &&
770        s->last_flush != -2) {
771        /* Flush the last buffer: */
772        int err = deflate(strm, Z_BLOCK);
773        if (err == Z_STREAM_ERROR)
774            return err;
775        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
776            return Z_BUF_ERROR;
777    }
778    if (s->level != level) {
779        if (s->level == 0 && s->matches != 0) {
780            if (s->matches == 1)
781                slide_hash(s);
782            else
783                CLEAR_HASH(s);
784            s->matches = 0;
785        }
786        s->level = level;
787        s->max_lazy_match   = configuration_table[level].max_lazy;
788        s->good_match       = configuration_table[level].good_length;
789        s->nice_match       = configuration_table[level].nice_length;
790        s->max_chain_length = configuration_table[level].max_chain;
791    }
792    s->strategy = strategy;
793    return Z_OK;
794}
795
796/* ========================================================================= */
797int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
798                        int nice_length, int max_chain) {
799    deflate_state *s;
800
801    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
802    s = strm->state;
803    s->good_match = (uInt)good_length;
804    s->max_lazy_match = (uInt)max_lazy;
805    s->nice_match = nice_length;
806    s->max_chain_length = (uInt)max_chain;
807    return Z_OK;
808}
809
810/* =========================================================================
811 * For the default windowBits of 15 and memLevel of 8, this function returns a
812 * close to exact, as well as small, upper bound on the compressed size. This
813 * is an expansion of ~0.03%, plus a small constant.
814 *
815 * For any setting other than those defaults for windowBits and memLevel, one
816 * of two worst case bounds is returned. This is at most an expansion of ~4% or
817 * ~13%, plus a small constant.
818 *
819 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
820 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
821 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
822 * expansion results from five bytes of header for each stored block.
823 *
824 * The larger expansion of 13% results from a window size less than or equal to
825 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
826 * the data being compressed may have slid out of the sliding window, impeding
827 * a stored block from being emitted. Then the only choice is a fixed or
828 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
829 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
830 * which this can occur is 255 (memLevel == 2).
831 *
832 * Shifts are used to approximate divisions, for speed.
833 */
834uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
835    deflate_state *s;
836    uLong fixedlen, storelen, wraplen;
837
838    /* upper bound for fixed blocks with 9-bit literals and length 255
839       (memLevel == 2, which is the lowest that may not use stored blocks) --
840       ~13% overhead plus a small constant */
841    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
842               (sourceLen >> 9) + 4;
843
844    /* upper bound for stored blocks with length 127 (memLevel == 1) --
845       ~4% overhead plus a small constant */
846    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
847               (sourceLen >> 11) + 7;
848
849    /* if can't get parameters, return larger bound plus a zlib wrapper */
850    if (deflateStateCheck(strm))
851        return (fixedlen > storelen ? fixedlen : storelen) + 6;
852
853    /* compute wrapper length */
854    s = strm->state;
855    switch (s->wrap) {
856    case 0:                                 /* raw deflate */
857        wraplen = 0;
858        break;
859    case 1:                                 /* zlib wrapper */
860        wraplen = 6 + (s->strstart ? 4 : 0);
861        break;
862#ifdef GZIP
863    case 2:                                 /* gzip wrapper */
864        wraplen = 18;
865        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
866            Bytef *str;
867            if (s->gzhead->extra != Z_NULL)
868                wraplen += 2 + s->gzhead->extra_len;
869            str = s->gzhead->name;
870            if (str != Z_NULL)
871                do {
872                    wraplen++;
873                } while (*str++);
874            str = s->gzhead->comment;
875            if (str != Z_NULL)
876                do {
877                    wraplen++;
878                } while (*str++);
879            if (s->gzhead->hcrc)
880                wraplen += 2;
881        }
882        break;
883#endif
884    default:                                /* for compiler happiness */
885        wraplen = 6;
886    }
887
888    /* if not default parameters, return one of the conservative bounds */
889    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
890        return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
891               wraplen;
892
893    /* default settings: return tight bound for that case -- ~0.03% overhead
894       plus a small constant */
895    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
896           (sourceLen >> 25) + 13 - 6 + wraplen;
897}
898
899/* =========================================================================
900 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
901 * IN assertion: the stream state is correct and there is enough room in
902 * pending_buf.
903 */
904local void putShortMSB(deflate_state *s, uInt b) {
905    put_byte(s, (Byte)(b >> 8));
906    put_byte(s, (Byte)(b & 0xff));
907}
908
909/* =========================================================================
910 * Flush as much pending output as possible. All deflate() output, except for
911 * some deflate_stored() output, goes through this function so some
912 * applications may wish to modify it to avoid allocating a large
913 * strm->next_out buffer and copying into it. (See also read_buf()).
914 */
915local void flush_pending(z_streamp strm) {
916    unsigned len;
917    deflate_state *s = strm->state;
918
919    _tr_flush_bits(s);
920    len = s->pending;
921    if (len > strm->avail_out) len = strm->avail_out;
922    if (len == 0) return;
923
924    zmemcpy(strm->next_out, s->pending_out, len);
925    strm->next_out  += len;
926    s->pending_out  += len;
927    strm->total_out += len;
928    strm->avail_out -= len;
929    s->pending      -= len;
930    if (s->pending == 0) {
931        s->pending_out = s->pending_buf;
932    }
933}
934
935/* ===========================================================================
936 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
937 */
938#define HCRC_UPDATE(beg) \
939    do { \
940        if (s->gzhead->hcrc && s->pending > (beg)) \
941            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
942                                s->pending - (beg)); \
943    } while (0)
944
945/* ========================================================================= */
946int ZEXPORT deflate(z_streamp strm, int flush) {
947    int old_flush; /* value of flush param for previous deflate call */
948    deflate_state *s;
949
950    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
951        return Z_STREAM_ERROR;
952    }
953    s = strm->state;
954
955    if (strm->next_out == Z_NULL ||
956        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
957        (s->status == FINISH_STATE && flush != Z_FINISH)) {
958        ERR_RETURN(strm, Z_STREAM_ERROR);
959    }
960    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
961
962    old_flush = s->last_flush;
963    s->last_flush = flush;
964
965    /* Flush as much pending output as possible */
966    if (s->pending != 0) {
967        flush_pending(strm);
968        if (strm->avail_out == 0) {
969            /* Since avail_out is 0, deflate will be called again with
970             * more output space, but possibly with both pending and
971             * avail_in equal to zero. There won't be anything to do,
972             * but this is not an error situation so make sure we
973             * return OK instead of BUF_ERROR at next call of deflate:
974             */
975            s->last_flush = -1;
976            return Z_OK;
977        }
978
979    /* Make sure there is something to do and avoid duplicate consecutive
980     * flushes. For repeated and useless calls with Z_FINISH, we keep
981     * returning Z_STREAM_END instead of Z_BUF_ERROR.
982     */
983    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
984               flush != Z_FINISH) {
985        ERR_RETURN(strm, Z_BUF_ERROR);
986    }
987
988    /* User must not provide more input after the first FINISH: */
989    if (s->status == FINISH_STATE && strm->avail_in != 0) {
990        ERR_RETURN(strm, Z_BUF_ERROR);
991    }
992
993    /* Write the header */
994    if (s->status == INIT_STATE && s->wrap == 0)
995        s->status = BUSY_STATE;
996    if (s->status == INIT_STATE) {
997        /* zlib header */
998        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
999        uInt level_flags;
1000
1001        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1002            level_flags = 0;
1003        else if (s->level < 6)
1004            level_flags = 1;
1005        else if (s->level == 6)
1006            level_flags = 2;
1007        else
1008            level_flags = 3;
1009        header |= (level_flags << 6);
1010        if (s->strstart != 0) header |= PRESET_DICT;
1011        header += 31 - (header % 31);
1012
1013        putShortMSB(s, header);
1014
1015        /* Save the adler32 of the preset dictionary: */
1016        if (s->strstart != 0) {
1017            putShortMSB(s, (uInt)(strm->adler >> 16));
1018            putShortMSB(s, (uInt)(strm->adler & 0xffff));
1019        }
1020        strm->adler = adler32(0L, Z_NULL, 0);
1021        s->status = BUSY_STATE;
1022
1023        /* Compression must start with an empty pending buffer */
1024        flush_pending(strm);
1025        if (s->pending != 0) {
1026            s->last_flush = -1;
1027            return Z_OK;
1028        }
1029    }
1030#ifdef GZIP
1031    if (s->status == GZIP_STATE) {
1032        /* gzip header */
1033        strm->adler = crc32(0L, Z_NULL, 0);
1034        put_byte(s, 31);
1035        put_byte(s, 139);
1036        put_byte(s, 8);
1037        if (s->gzhead == Z_NULL) {
1038            put_byte(s, 0);
1039            put_byte(s, 0);
1040            put_byte(s, 0);
1041            put_byte(s, 0);
1042            put_byte(s, 0);
1043            put_byte(s, s->level == 9 ? 2 :
1044                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1045                      4 : 0));
1046            put_byte(s, OS_CODE);
1047            s->status = BUSY_STATE;
1048
1049            /* Compression must start with an empty pending buffer */
1050            flush_pending(strm);
1051            if (s->pending != 0) {
1052                s->last_flush = -1;
1053                return Z_OK;
1054            }
1055        }
1056        else {
1057            put_byte(s, (s->gzhead->text ? 1 : 0) +
1058                     (s->gzhead->hcrc ? 2 : 0) +
1059                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
1060                     (s->gzhead->name == Z_NULL ? 0 : 8) +
1061                     (s->gzhead->comment == Z_NULL ? 0 : 16)
1062                     );
1063            put_byte(s, (Byte)(s->gzhead->time & 0xff));
1064            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1065            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1066            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1067            put_byte(s, s->level == 9 ? 2 :
1068                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1069                      4 : 0));
1070            put_byte(s, s->gzhead->os & 0xff);
1071            if (s->gzhead->extra != Z_NULL) {
1072                put_byte(s, s->gzhead->extra_len & 0xff);
1073                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1074            }
1075            if (s->gzhead->hcrc)
1076                strm->adler = crc32(strm->adler, s->pending_buf,
1077                                    s->pending);
1078            s->gzindex = 0;
1079            s->status = EXTRA_STATE;
1080        }
1081    }
1082    if (s->status == EXTRA_STATE) {
1083        if (s->gzhead->extra != Z_NULL) {
1084            ulg beg = s->pending;   /* start of bytes to update crc */
1085            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1086            while (s->pending + left > s->pending_buf_size) {
1087                uInt copy = s->pending_buf_size - s->pending;
1088                zmemcpy(s->pending_buf + s->pending,
1089                        s->gzhead->extra + s->gzindex, copy);
1090                s->pending = s->pending_buf_size;
1091                HCRC_UPDATE(beg);
1092                s->gzindex += copy;
1093                flush_pending(strm);
1094                if (s->pending != 0) {
1095                    s->last_flush = -1;
1096                    return Z_OK;
1097                }
1098                beg = 0;
1099                left -= copy;
1100            }
1101            zmemcpy(s->pending_buf + s->pending,
1102                    s->gzhead->extra + s->gzindex, left);
1103            s->pending += left;
1104            HCRC_UPDATE(beg);
1105            s->gzindex = 0;
1106        }
1107        s->status = NAME_STATE;
1108    }
1109    if (s->status == NAME_STATE) {
1110        if (s->gzhead->name != Z_NULL) {
1111            ulg beg = s->pending;   /* start of bytes to update crc */
1112            int val;
1113            do {
1114                if (s->pending == s->pending_buf_size) {
1115                    HCRC_UPDATE(beg);
1116                    flush_pending(strm);
1117                    if (s->pending != 0) {
1118                        s->last_flush = -1;
1119                        return Z_OK;
1120                    }
1121                    beg = 0;
1122                }
1123                val = s->gzhead->name[s->gzindex++];
1124                put_byte(s, val);
1125            } while (val != 0);
1126            HCRC_UPDATE(beg);
1127            s->gzindex = 0;
1128        }
1129        s->status = COMMENT_STATE;
1130    }
1131    if (s->status == COMMENT_STATE) {
1132        if (s->gzhead->comment != Z_NULL) {
1133            ulg beg = s->pending;   /* start of bytes to update crc */
1134            int val;
1135            do {
1136                if (s->pending == s->pending_buf_size) {
1137                    HCRC_UPDATE(beg);
1138                    flush_pending(strm);
1139                    if (s->pending != 0) {
1140                        s->last_flush = -1;
1141                        return Z_OK;
1142                    }
1143                    beg = 0;
1144                }
1145                val = s->gzhead->comment[s->gzindex++];
1146                put_byte(s, val);
1147            } while (val != 0);
1148            HCRC_UPDATE(beg);
1149        }
1150        s->status = HCRC_STATE;
1151    }
1152    if (s->status == HCRC_STATE) {
1153        if (s->gzhead->hcrc) {
1154            if (s->pending + 2 > s->pending_buf_size) {
1155                flush_pending(strm);
1156                if (s->pending != 0) {
1157                    s->last_flush = -1;
1158                    return Z_OK;
1159                }
1160            }
1161            put_byte(s, (Byte)(strm->adler & 0xff));
1162            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1163            strm->adler = crc32(0L, Z_NULL, 0);
1164        }
1165        s->status = BUSY_STATE;
1166
1167        /* Compression must start with an empty pending buffer */
1168        flush_pending(strm);
1169        if (s->pending != 0) {
1170            s->last_flush = -1;
1171            return Z_OK;
1172        }
1173    }
1174#endif
1175
1176    /* Start a new block or continue the current one.
1177     */
1178    if (strm->avail_in != 0 || s->lookahead != 0 ||
1179        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1180        block_state bstate;
1181
1182        bstate = s->level == 0 ? deflate_stored(s, flush) :
1183                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1184                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1185                 (*(configuration_table[s->level].func))(s, flush);
1186
1187        if (bstate == finish_started || bstate == finish_done) {
1188            s->status = FINISH_STATE;
1189        }
1190        if (bstate == need_more || bstate == finish_started) {
1191            if (strm->avail_out == 0) {
1192                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1193            }
1194            return Z_OK;
1195            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1196             * of deflate should use the same flush parameter to make sure
1197             * that the flush is complete. So we don't have to output an
1198             * empty block here, this will be done at next call. This also
1199             * ensures that for a very small output buffer, we emit at most
1200             * one empty block.
1201             */
1202        }
1203        if (bstate == block_done) {
1204            if (flush == Z_PARTIAL_FLUSH) {
1205                _tr_align(s);
1206            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1207                _tr_stored_block(s, (char*)0, 0L, 0);
1208                /* For a full flush, this empty block will be recognized
1209                 * as a special marker by inflate_sync().
1210                 */
1211                if (flush == Z_FULL_FLUSH) {
1212                    CLEAR_HASH(s);             /* forget history */
1213                    if (s->lookahead == 0) {
1214                        s->strstart = 0;
1215                        s->block_start = 0L;
1216                        s->insert = 0;
1217                    }
1218                }
1219            }
1220            flush_pending(strm);
1221            if (strm->avail_out == 0) {
1222              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1223              return Z_OK;
1224            }
1225        }
1226    }
1227
1228    if (flush != Z_FINISH) return Z_OK;
1229    if (s->wrap <= 0) return Z_STREAM_END;
1230
1231    /* Write the trailer */
1232#ifdef GZIP
1233    if (s->wrap == 2) {
1234        put_byte(s, (Byte)(strm->adler & 0xff));
1235        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1236        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1237        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1238        put_byte(s, (Byte)(strm->total_in & 0xff));
1239        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1240        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1241        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1242    }
1243    else
1244#endif
1245    {
1246        putShortMSB(s, (uInt)(strm->adler >> 16));
1247        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1248    }
1249    flush_pending(strm);
1250    /* If avail_out is zero, the application will call deflate again
1251     * to flush the rest.
1252     */
1253    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1254    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1255}
1256
1257/* ========================================================================= */
1258int ZEXPORT deflateEnd(z_streamp strm) {
1259    int status;
1260
1261    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1262
1263    status = strm->state->status;
1264
1265    /* Deallocate in reverse order of allocations: */
1266    TRY_FREE(strm, strm->state->pending_buf);
1267    TRY_FREE(strm, strm->state->head);
1268    TRY_FREE(strm, strm->state->prev);
1269    TRY_FREE(strm, strm->state->window);
1270
1271    ZFREE(strm, strm->state);
1272    strm->state = Z_NULL;
1273
1274    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1275}
1276
1277/* =========================================================================
1278 * Copy the source state to the destination state.
1279 * To simplify the source, this is not supported for 16-bit MSDOS (which
1280 * doesn't have enough memory anyway to duplicate compression states).
1281 */
1282int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1283#ifdef MAXSEG_64K
1284    (void)dest;
1285    (void)source;
1286    return Z_STREAM_ERROR;
1287#else
1288    deflate_state *ds;
1289    deflate_state *ss;
1290
1291
1292    if (deflateStateCheck(source) || dest == Z_NULL) {
1293        return Z_STREAM_ERROR;
1294    }
1295
1296    ss = source->state;
1297
1298    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1299
1300    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1301    if (ds == Z_NULL) return Z_MEM_ERROR;
1302    dest->state = (struct internal_state FAR *) ds;
1303    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1304    ds->strm = dest;
1305
1306    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1307    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1308    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1309    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1310
1311    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1312        ds->pending_buf == Z_NULL) {
1313        deflateEnd (dest);
1314        return Z_MEM_ERROR;
1315    }
1316    /* following zmemcpy do not work for 16-bit MSDOS */
1317    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1318    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1319    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1320    zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1321
1322    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1323#ifdef LIT_MEM
1324    ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1325    ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1326#else
1327    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1328#endif
1329
1330    ds->l_desc.dyn_tree = ds->dyn_ltree;
1331    ds->d_desc.dyn_tree = ds->dyn_dtree;
1332    ds->bl_desc.dyn_tree = ds->bl_tree;
1333
1334    return Z_OK;
1335#endif /* MAXSEG_64K */
1336}
1337
1338#ifndef FASTEST
1339/* ===========================================================================
1340 * Set match_start to the longest match starting at the given string and
1341 * return its length. Matches shorter or equal to prev_length are discarded,
1342 * in which case the result is equal to prev_length and match_start is
1343 * garbage.
1344 * IN assertions: cur_match is the head of the hash chain for the current
1345 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1346 * OUT assertion: the match length is not greater than s->lookahead.
1347 */
1348local uInt longest_match(deflate_state *s, IPos cur_match) {
1349    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1350    register Bytef *scan = s->window + s->strstart; /* current string */
1351    register Bytef *match;                      /* matched string */
1352    register int len;                           /* length of current match */
1353    int best_len = (int)s->prev_length;         /* best match length so far */
1354    int nice_match = s->nice_match;             /* stop if match long enough */
1355    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1356        s->strstart - (IPos)MAX_DIST(s) : NIL;
1357    /* Stop when cur_match becomes <= limit. To simplify the code,
1358     * we prevent matches with the string of window index 0.
1359     */
1360    Posf *prev = s->prev;
1361    uInt wmask = s->w_mask;
1362
1363#ifdef UNALIGNED_OK
1364    /* Compare two bytes at a time. Note: this is not always beneficial.
1365     * Try with and without -DUNALIGNED_OK to check.
1366     */
1367    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1368    register ush scan_start = *(ushf*)scan;
1369    register ush scan_end   = *(ushf*)(scan + best_len - 1);
1370#else
1371    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1372    register Byte scan_end1  = scan[best_len - 1];
1373    register Byte scan_end   = scan[best_len];
1374#endif
1375
1376    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1377     * It is easy to get rid of this optimization if necessary.
1378     */
1379    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1380
1381    /* Do not waste too much time if we already have a good match: */
1382    if (s->prev_length >= s->good_match) {
1383        chain_length >>= 2;
1384    }
1385    /* Do not look for matches beyond the end of the input. This is necessary
1386     * to make deflate deterministic.
1387     */
1388    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1389
1390    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1391           "need lookahead");
1392
1393    do {
1394        Assert(cur_match < s->strstart, "no future");
1395        match = s->window + cur_match;
1396
1397        /* Skip to next match if the match length cannot increase
1398         * or if the match length is less than 2.  Note that the checks below
1399         * for insufficient lookahead only occur occasionally for performance
1400         * reasons.  Therefore uninitialized memory will be accessed, and
1401         * conditional jumps will be made that depend on those values.
1402         * However the length of the match is limited to the lookahead, so
1403         * the output of deflate is not affected by the uninitialized values.
1404         */
1405#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1406        /* This code assumes sizeof(unsigned short) == 2. Do not use
1407         * UNALIGNED_OK if your compiler uses a different size.
1408         */
1409        if (*(ushf*)(match + best_len - 1) != scan_end ||
1410            *(ushf*)match != scan_start) continue;
1411
1412        /* It is not necessary to compare scan[2] and match[2] since they are
1413         * always equal when the other bytes match, given that the hash keys
1414         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1415         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1416         * lookahead only every 4th comparison; the 128th check will be made
1417         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1418         * necessary to put more guard bytes at the end of the window, or
1419         * to check more often for insufficient lookahead.
1420         */
1421        Assert(scan[2] == match[2], "scan[2]?");
1422        scan++, match++;
1423        do {
1424        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1425                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1426                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1427                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1428                 scan < strend);
1429        /* The funny "do {}" generates better code on most compilers */
1430
1431        /* Here, scan <= window + strstart + 257 */
1432        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1433               "wild scan");
1434        if (*scan == *match) scan++;
1435
1436        len = (MAX_MATCH - 1) - (int)(strend - scan);
1437        scan = strend - (MAX_MATCH-1);
1438
1439#else /* UNALIGNED_OK */
1440
1441        if (match[best_len]     != scan_end  ||
1442            match[best_len - 1] != scan_end1 ||
1443            *match              != *scan     ||
1444            *++match            != scan[1])      continue;
1445
1446        /* The check at best_len - 1 can be removed because it will be made
1447         * again later. (This heuristic is not always a win.)
1448         * It is not necessary to compare scan[2] and match[2] since they
1449         * are always equal when the other bytes match, given that
1450         * the hash keys are equal and that HASH_BITS >= 8.
1451         */
1452        scan += 2, match++;
1453        Assert(*scan == *match, "match[2]?");
1454
1455        /* We check for insufficient lookahead only every 8th comparison;
1456         * the 256th check will be made at strstart + 258.
1457         */
1458        do {
1459        } while (*++scan == *++match && *++scan == *++match &&
1460                 *++scan == *++match && *++scan == *++match &&
1461                 *++scan == *++match && *++scan == *++match &&
1462                 *++scan == *++match && *++scan == *++match &&
1463                 scan < strend);
1464
1465        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1466               "wild scan");
1467
1468        len = MAX_MATCH - (int)(strend - scan);
1469        scan = strend - MAX_MATCH;
1470
1471#endif /* UNALIGNED_OK */
1472
1473        if (len > best_len) {
1474            s->match_start = cur_match;
1475            best_len = len;
1476            if (len >= nice_match) break;
1477#ifdef UNALIGNED_OK
1478            scan_end = *(ushf*)(scan + best_len - 1);
1479#else
1480            scan_end1  = scan[best_len - 1];
1481            scan_end   = scan[best_len];
1482#endif
1483        }
1484    } while ((cur_match = prev[cur_match & wmask]) > limit
1485             && --chain_length != 0);
1486
1487    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1488    return s->lookahead;
1489}
1490
1491#else /* FASTEST */
1492
1493/* ---------------------------------------------------------------------------
1494 * Optimized version for FASTEST only
1495 */
1496local uInt longest_match(deflate_state *s, IPos cur_match) {
1497    register Bytef *scan = s->window + s->strstart; /* current string */
1498    register Bytef *match;                       /* matched string */
1499    register int len;                           /* length of current match */
1500    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1501
1502    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1503     * It is easy to get rid of this optimization if necessary.
1504     */
1505    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1506
1507    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1508           "need lookahead");
1509
1510    Assert(cur_match < s->strstart, "no future");
1511
1512    match = s->window + cur_match;
1513
1514    /* Return failure if the match length is less than 2:
1515     */
1516    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1517
1518    /* The check at best_len - 1 can be removed because it will be made
1519     * again later. (This heuristic is not always a win.)
1520     * It is not necessary to compare scan[2] and match[2] since they
1521     * are always equal when the other bytes match, given that
1522     * the hash keys are equal and that HASH_BITS >= 8.
1523     */
1524    scan += 2, match += 2;
1525    Assert(*scan == *match, "match[2]?");
1526
1527    /* We check for insufficient lookahead only every 8th comparison;
1528     * the 256th check will be made at strstart + 258.
1529     */
1530    do {
1531    } while (*++scan == *++match && *++scan == *++match &&
1532             *++scan == *++match && *++scan == *++match &&
1533             *++scan == *++match && *++scan == *++match &&
1534             *++scan == *++match && *++scan == *++match &&
1535             scan < strend);
1536
1537    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1538
1539    len = MAX_MATCH - (int)(strend - scan);
1540
1541    if (len < MIN_MATCH) return MIN_MATCH - 1;
1542
1543    s->match_start = cur_match;
1544    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1545}
1546
1547#endif /* FASTEST */
1548
1549#ifdef ZLIB_DEBUG
1550
1551#define EQUAL 0
1552/* result of memcmp for equal strings */
1553
1554/* ===========================================================================
1555 * Check that the match at match_start is indeed a match.
1556 */
1557local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1558    /* check that the match is indeed a match */
1559    Bytef *back = s->window + (int)match, *here = s->window + start;
1560    IPos len = length;
1561    if (match == (IPos)-1) {
1562        /* match starts one byte before the current window -- just compare the
1563           subsequent length-1 bytes */
1564        back++;
1565        here++;
1566        len--;
1567    }
1568    if (zmemcmp(back, here, len) != EQUAL) {
1569        fprintf(stderr, " start %u, match %d, length %d\n",
1570                start, (int)match, length);
1571        do {
1572            fprintf(stderr, "(%02x %02x)", *back++, *here++);
1573        } while (--len != 0);
1574        z_error("invalid match");
1575    }
1576    if (z_verbose > 1) {
1577        fprintf(stderr,"\\[%d,%d]", start - match, length);
1578        do { putc(s->window[start++], stderr); } while (--length != 0);
1579    }
1580}
1581#else
1582#  define check_match(s, start, match, length)
1583#endif /* ZLIB_DEBUG */
1584
1585/* ===========================================================================
1586 * Flush the current block, with given end-of-file flag.
1587 * IN assertion: strstart is set to the end of the current match.
1588 */
1589#define FLUSH_BLOCK_ONLY(s, last) { \
1590   _tr_flush_block(s, (s->block_start >= 0L ? \
1591                   (charf *)&s->window[(unsigned)s->block_start] : \
1592                   (charf *)Z_NULL), \
1593                (ulg)((long)s->strstart - s->block_start), \
1594                (last)); \
1595   s->block_start = s->strstart; \
1596   flush_pending(s->strm); \
1597   Tracev((stderr,"[FLUSH]")); \
1598}
1599
1600/* Same but force premature exit if necessary. */
1601#define FLUSH_BLOCK(s, last) { \
1602   FLUSH_BLOCK_ONLY(s, last); \
1603   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1604}
1605
1606/* Maximum stored block length in deflate format (not including header). */
1607#define MAX_STORED 65535
1608
1609#if !defined(MIN)
1610/* Minimum of a and b. */
1611#define MIN(a, b) ((a) > (b) ? (b) : (a))
1612#endif
1613
1614/* ===========================================================================
1615 * Copy without compression as much as possible from the input stream, return
1616 * the current block state.
1617 *
1618 * In case deflateParams() is used to later switch to a non-zero compression
1619 * level, s->matches (otherwise unused when storing) keeps track of the number
1620 * of hash table slides to perform. If s->matches is 1, then one hash table
1621 * slide will be done when switching. If s->matches is 2, the maximum value
1622 * allowed here, then the hash table will be cleared, since two or more slides
1623 * is the same as a clear.
1624 *
1625 * deflate_stored() is written to minimize the number of times an input byte is
1626 * copied. It is most efficient with large input and output buffers, which
1627 * maximizes the opportunities to have a single copy from next_in to next_out.
1628 */
1629local block_state deflate_stored(deflate_state *s, int flush) {
1630    /* Smallest worthy block size when not flushing or finishing. By default
1631     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1632     * large input and output buffers, the stored block size will be larger.
1633     */
1634    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1635
1636    /* Copy as many min_block or larger stored blocks directly to next_out as
1637     * possible. If flushing, copy the remaining available input to next_out as
1638     * stored blocks, if there is enough space.
1639     */
1640    unsigned len, left, have, last = 0;
1641    unsigned used = s->strm->avail_in;
1642    do {
1643        /* Set len to the maximum size block that we can copy directly with the
1644         * available input data and output space. Set left to how much of that
1645         * would be copied from what's left in the window.
1646         */
1647        len = MAX_STORED;       /* maximum deflate stored block length */
1648        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1649        if (s->strm->avail_out < have)          /* need room for header */
1650            break;
1651            /* maximum stored block length that will fit in avail_out: */
1652        have = s->strm->avail_out - have;
1653        left = s->strstart - s->block_start;    /* bytes left in window */
1654        if (len > (ulg)left + s->strm->avail_in)
1655            len = left + s->strm->avail_in;     /* limit len to the input */
1656        if (len > have)
1657            len = have;                         /* limit len to the output */
1658
1659        /* If the stored block would be less than min_block in length, or if
1660         * unable to copy all of the available input when flushing, then try
1661         * copying to the window and the pending buffer instead. Also don't
1662         * write an empty block when flushing -- deflate() does that.
1663         */
1664        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1665                                flush == Z_NO_FLUSH ||
1666                                len != left + s->strm->avail_in))
1667            break;
1668
1669        /* Make a dummy stored block in pending to get the header bytes,
1670         * including any pending bits. This also updates the debugging counts.
1671         */
1672        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1673        _tr_stored_block(s, (char *)0, 0L, last);
1674
1675        /* Replace the lengths in the dummy stored block with len. */
1676        s->pending_buf[s->pending - 4] = len;
1677        s->pending_buf[s->pending - 3] = len >> 8;
1678        s->pending_buf[s->pending - 2] = ~len;
1679        s->pending_buf[s->pending - 1] = ~len >> 8;
1680
1681        /* Write the stored block header bytes. */
1682        flush_pending(s->strm);
1683
1684#ifdef ZLIB_DEBUG
1685        /* Update debugging counts for the data about to be copied. */
1686        s->compressed_len += len << 3;
1687        s->bits_sent += len << 3;
1688#endif
1689
1690        /* Copy uncompressed bytes from the window to next_out. */
1691        if (left) {
1692            if (left > len)
1693                left = len;
1694            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1695            s->strm->next_out += left;
1696            s->strm->avail_out -= left;
1697            s->strm->total_out += left;
1698            s->block_start += left;
1699            len -= left;
1700        }
1701
1702        /* Copy uncompressed bytes directly from next_in to next_out, updating
1703         * the check value.
1704         */
1705        if (len) {
1706            read_buf(s->strm, s->strm->next_out, len);
1707            s->strm->next_out += len;
1708            s->strm->avail_out -= len;
1709            s->strm->total_out += len;
1710        }
1711    } while (last == 0);
1712
1713    /* Update the sliding window with the last s->w_size bytes of the copied
1714     * data, or append all of the copied data to the existing window if less
1715     * than s->w_size bytes were copied. Also update the number of bytes to
1716     * insert in the hash tables, in the event that deflateParams() switches to
1717     * a non-zero compression level.
1718     */
1719    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1720    if (used) {
1721        /* If any input was used, then no unused input remains in the window,
1722         * therefore s->block_start == s->strstart.
1723         */
1724        if (used >= s->w_size) {    /* supplant the previous history */
1725            s->matches = 2;         /* clear hash */
1726            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1727            s->strstart = s->w_size;
1728            s->insert = s->strstart;
1729        }
1730        else {
1731            if (s->window_size - s->strstart <= used) {
1732                /* Slide the window down. */
1733                s->strstart -= s->w_size;
1734                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1735                if (s->matches < 2)
1736                    s->matches++;   /* add a pending slide_hash() */
1737                if (s->insert > s->strstart)
1738                    s->insert = s->strstart;
1739            }
1740            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1741            s->strstart += used;
1742            s->insert += MIN(used, s->w_size - s->insert);
1743        }
1744        s->block_start = s->strstart;
1745    }
1746    if (s->high_water < s->strstart)
1747        s->high_water = s->strstart;
1748
1749    /* If the last block was written to next_out, then done. */
1750    if (last)
1751        return finish_done;
1752
1753    /* If flushing and all input has been consumed, then done. */
1754    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1755        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1756        return block_done;
1757
1758    /* Fill the window with any remaining input. */
1759    have = s->window_size - s->strstart;
1760    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1761        /* Slide the window down. */
1762        s->block_start -= s->w_size;
1763        s->strstart -= s->w_size;
1764        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1765        if (s->matches < 2)
1766            s->matches++;           /* add a pending slide_hash() */
1767        have += s->w_size;          /* more space now */
1768        if (s->insert > s->strstart)
1769            s->insert = s->strstart;
1770    }
1771    if (have > s->strm->avail_in)
1772        have = s->strm->avail_in;
1773    if (have) {
1774        read_buf(s->strm, s->window + s->strstart, have);
1775        s->strstart += have;
1776        s->insert += MIN(have, s->w_size - s->insert);
1777    }
1778    if (s->high_water < s->strstart)
1779        s->high_water = s->strstart;
1780
1781    /* There was not enough avail_out to write a complete worthy or flushed
1782     * stored block to next_out. Write a stored block to pending instead, if we
1783     * have enough input for a worthy block, or if flushing and there is enough
1784     * room for the remaining input as a stored block in the pending buffer.
1785     */
1786    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1787        /* maximum stored block length that will fit in pending: */
1788    have = MIN(s->pending_buf_size - have, MAX_STORED);
1789    min_block = MIN(have, s->w_size);
1790    left = s->strstart - s->block_start;
1791    if (left >= min_block ||
1792        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1793         s->strm->avail_in == 0 && left <= have)) {
1794        len = MIN(left, have);
1795        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1796               len == left ? 1 : 0;
1797        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1798        s->block_start += len;
1799        flush_pending(s->strm);
1800    }
1801
1802    /* We've done all we can with the available input and output. */
1803    return last ? finish_started : need_more;
1804}
1805
1806/* ===========================================================================
1807 * Compress as much as possible from the input stream, return the current
1808 * block state.
1809 * This function does not perform lazy evaluation of matches and inserts
1810 * new strings in the dictionary only for unmatched strings or for short
1811 * matches. It is used only for the fast compression options.
1812 */
1813local block_state deflate_fast(deflate_state *s, int flush) {
1814    IPos hash_head;       /* head of the hash chain */
1815    int bflush;           /* set if current block must be flushed */
1816
1817    for (;;) {
1818        /* Make sure that we always have enough lookahead, except
1819         * at the end of the input file. We need MAX_MATCH bytes
1820         * for the next match, plus MIN_MATCH bytes to insert the
1821         * string following the next match.
1822         */
1823        if (s->lookahead < MIN_LOOKAHEAD) {
1824            fill_window(s);
1825            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1826                return need_more;
1827            }
1828            if (s->lookahead == 0) break; /* flush the current block */
1829        }
1830
1831        /* Insert the string window[strstart .. strstart + 2] in the
1832         * dictionary, and set hash_head to the head of the hash chain:
1833         */
1834        hash_head = NIL;
1835        if (s->lookahead >= MIN_MATCH) {
1836            INSERT_STRING(s, s->strstart, hash_head);
1837        }
1838
1839        /* Find the longest match, discarding those <= prev_length.
1840         * At this point we have always match_length < MIN_MATCH
1841         */
1842        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1843            /* To simplify the code, we prevent matches with the string
1844             * of window index 0 (in particular we have to avoid a match
1845             * of the string with itself at the start of the input file).
1846             */
1847            s->match_length = longest_match (s, hash_head);
1848            /* longest_match() sets match_start */
1849        }
1850        if (s->match_length >= MIN_MATCH) {
1851            check_match(s, s->strstart, s->match_start, s->match_length);
1852
1853            _tr_tally_dist(s, s->strstart - s->match_start,
1854                           s->match_length - MIN_MATCH, bflush);
1855
1856            s->lookahead -= s->match_length;
1857
1858            /* Insert new strings in the hash table only if the match length
1859             * is not too large. This saves time but degrades compression.
1860             */
1861#ifndef FASTEST
1862            if (s->match_length <= s->max_insert_length &&
1863                s->lookahead >= MIN_MATCH) {
1864                s->match_length--; /* string at strstart already in table */
1865                do {
1866                    s->strstart++;
1867                    INSERT_STRING(s, s->strstart, hash_head);
1868                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1869                     * always MIN_MATCH bytes ahead.
1870                     */
1871                } while (--s->match_length != 0);
1872                s->strstart++;
1873            } else
1874#endif
1875            {
1876                s->strstart += s->match_length;
1877                s->match_length = 0;
1878                s->ins_h = s->window[s->strstart];
1879                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1880#if MIN_MATCH != 3
1881                Call UPDATE_HASH() MIN_MATCH-3 more times
1882#endif
1883                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1884                 * matter since it will be recomputed at next deflate call.
1885                 */
1886            }
1887        } else {
1888            /* No match, output a literal byte */
1889            Tracevv((stderr,"%c", s->window[s->strstart]));
1890            _tr_tally_lit(s, s->window[s->strstart], bflush);
1891            s->lookahead--;
1892            s->strstart++;
1893        }
1894        if (bflush) FLUSH_BLOCK(s, 0);
1895    }
1896    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1897    if (flush == Z_FINISH) {
1898        FLUSH_BLOCK(s, 1);
1899        return finish_done;
1900    }
1901    if (s->sym_next)
1902        FLUSH_BLOCK(s, 0);
1903    return block_done;
1904}
1905
1906#ifndef FASTEST
1907/* ===========================================================================
1908 * Same as above, but achieves better compression. We use a lazy
1909 * evaluation for matches: a match is finally adopted only if there is
1910 * no better match at the next window position.
1911 */
1912local block_state deflate_slow(deflate_state *s, int flush) {
1913    IPos hash_head;          /* head of hash chain */
1914    int bflush;              /* set if current block must be flushed */
1915
1916    /* Process the input block. */
1917    for (;;) {
1918        /* Make sure that we always have enough lookahead, except
1919         * at the end of the input file. We need MAX_MATCH bytes
1920         * for the next match, plus MIN_MATCH bytes to insert the
1921         * string following the next match.
1922         */
1923        if (s->lookahead < MIN_LOOKAHEAD) {
1924            fill_window(s);
1925            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1926                return need_more;
1927            }
1928            if (s->lookahead == 0) break; /* flush the current block */
1929        }
1930
1931        /* Insert the string window[strstart .. strstart + 2] in the
1932         * dictionary, and set hash_head to the head of the hash chain:
1933         */
1934        hash_head = NIL;
1935        if (s->lookahead >= MIN_MATCH) {
1936            INSERT_STRING(s, s->strstart, hash_head);
1937        }
1938
1939        /* Find the longest match, discarding those <= prev_length.
1940         */
1941        s->prev_length = s->match_length, s->prev_match = s->match_start;
1942        s->match_length = MIN_MATCH-1;
1943
1944        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1945            s->strstart - hash_head <= MAX_DIST(s)) {
1946            /* To simplify the code, we prevent matches with the string
1947             * of window index 0 (in particular we have to avoid a match
1948             * of the string with itself at the start of the input file).
1949             */
1950            s->match_length = longest_match (s, hash_head);
1951            /* longest_match() sets match_start */
1952
1953            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1954#if TOO_FAR <= 32767
1955                || (s->match_length == MIN_MATCH &&
1956                    s->strstart - s->match_start > TOO_FAR)
1957#endif
1958                )) {
1959
1960                /* If prev_match is also MIN_MATCH, match_start is garbage
1961                 * but we will ignore the current match anyway.
1962                 */
1963                s->match_length = MIN_MATCH-1;
1964            }
1965        }
1966        /* If there was a match at the previous step and the current
1967         * match is not better, output the previous match:
1968         */
1969        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1970            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1971            /* Do not insert strings in hash table beyond this. */
1972
1973            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1974
1975            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1976                           s->prev_length - MIN_MATCH, bflush);
1977
1978            /* Insert in hash table all strings up to the end of the match.
1979             * strstart - 1 and strstart are already inserted. If there is not
1980             * enough lookahead, the last two strings are not inserted in
1981             * the hash table.
1982             */
1983            s->lookahead -= s->prev_length - 1;
1984            s->prev_length -= 2;
1985            do {
1986                if (++s->strstart <= max_insert) {
1987                    INSERT_STRING(s, s->strstart, hash_head);
1988                }
1989            } while (--s->prev_length != 0);
1990            s->match_available = 0;
1991            s->match_length = MIN_MATCH-1;
1992            s->strstart++;
1993
1994            if (bflush) FLUSH_BLOCK(s, 0);
1995
1996        } else if (s->match_available) {
1997            /* If there was no match at the previous position, output a
1998             * single literal. If there was a match but the current match
1999             * is longer, truncate the previous match to a single literal.
2000             */
2001            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2002            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2003            if (bflush) {
2004                FLUSH_BLOCK_ONLY(s, 0);
2005            }
2006            s->strstart++;
2007            s->lookahead--;
2008            if (s->strm->avail_out == 0) return need_more;
2009        } else {
2010            /* There is no previous match to compare with, wait for
2011             * the next step to decide.
2012             */
2013            s->match_available = 1;
2014            s->strstart++;
2015            s->lookahead--;
2016        }
2017    }
2018    Assert (flush != Z_NO_FLUSH, "no flush?");
2019    if (s->match_available) {
2020        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2021        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2022        s->match_available = 0;
2023    }
2024    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2025    if (flush == Z_FINISH) {
2026        FLUSH_BLOCK(s, 1);
2027        return finish_done;
2028    }
2029    if (s->sym_next)
2030        FLUSH_BLOCK(s, 0);
2031    return block_done;
2032}
2033#endif /* FASTEST */
2034
2035/* ===========================================================================
2036 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2037 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2038 * deflate switches away from Z_RLE.)
2039 */
2040local block_state deflate_rle(deflate_state *s, int flush) {
2041    int bflush;             /* set if current block must be flushed */
2042    uInt prev;              /* byte at distance one to match */
2043    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2044
2045    for (;;) {
2046        /* Make sure that we always have enough lookahead, except
2047         * at the end of the input file. We need MAX_MATCH bytes
2048         * for the longest run, plus one for the unrolled loop.
2049         */
2050        if (s->lookahead <= MAX_MATCH) {
2051            fill_window(s);
2052            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2053                return need_more;
2054            }
2055            if (s->lookahead == 0) break; /* flush the current block */
2056        }
2057
2058        /* See how many times the previous byte repeats */
2059        s->match_length = 0;
2060        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2061            scan = s->window + s->strstart - 1;
2062            prev = *scan;
2063            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2064                strend = s->window + s->strstart + MAX_MATCH;
2065                do {
2066                } while (prev == *++scan && prev == *++scan &&
2067                         prev == *++scan && prev == *++scan &&
2068                         prev == *++scan && prev == *++scan &&
2069                         prev == *++scan && prev == *++scan &&
2070                         scan < strend);
2071                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2072                if (s->match_length > s->lookahead)
2073                    s->match_length = s->lookahead;
2074            }
2075            Assert(scan <= s->window + (uInt)(s->window_size - 1),
2076                   "wild scan");
2077        }
2078
2079        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2080        if (s->match_length >= MIN_MATCH) {
2081            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2082
2083            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2084
2085            s->lookahead -= s->match_length;
2086            s->strstart += s->match_length;
2087            s->match_length = 0;
2088        } else {
2089            /* No match, output a literal byte */
2090            Tracevv((stderr,"%c", s->window[s->strstart]));
2091            _tr_tally_lit(s, s->window[s->strstart], bflush);
2092            s->lookahead--;
2093            s->strstart++;
2094        }
2095        if (bflush) FLUSH_BLOCK(s, 0);
2096    }
2097    s->insert = 0;
2098    if (flush == Z_FINISH) {
2099        FLUSH_BLOCK(s, 1);
2100        return finish_done;
2101    }
2102    if (s->sym_next)
2103        FLUSH_BLOCK(s, 0);
2104    return block_done;
2105}
2106
2107/* ===========================================================================
2108 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2109 * (It will be regenerated if this run of deflate switches away from Huffman.)
2110 */
2111local block_state deflate_huff(deflate_state *s, int flush) {
2112    int bflush;             /* set if current block must be flushed */
2113
2114    for (;;) {
2115        /* Make sure that we have a literal to write. */
2116        if (s->lookahead == 0) {
2117            fill_window(s);
2118            if (s->lookahead == 0) {
2119                if (flush == Z_NO_FLUSH)
2120                    return need_more;
2121                break;      /* flush the current block */
2122            }
2123        }
2124
2125        /* Output a literal byte */
2126        s->match_length = 0;
2127        Tracevv((stderr,"%c", s->window[s->strstart]));
2128        _tr_tally_lit(s, s->window[s->strstart], bflush);
2129        s->lookahead--;
2130        s->strstart++;
2131        if (bflush) FLUSH_BLOCK(s, 0);
2132    }
2133    s->insert = 0;
2134    if (flush == Z_FINISH) {
2135        FLUSH_BLOCK(s, 1);
2136        return finish_done;
2137    }
2138    if (s->sym_next)
2139        FLUSH_BLOCK(s, 0);
2140    return block_done;
2141}
2142