1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2016, 2024 by Delphix. All rights reserved.
24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26 * Copyright 2023 RackTop Systems, Inc.
27 */
28
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/txg.h>
32#include <sys/vdev_impl.h>
33#include <sys/vdev_trim.h>
34#include <sys/metaslab_impl.h>
35#include <sys/dsl_synctask.h>
36#include <sys/zap.h>
37#include <sys/dmu_tx.h>
38#include <sys/arc_impl.h>
39
40/*
41 * TRIM is a feature which is used to notify a SSD that some previously
42 * written space is no longer allocated by the pool.  This is useful because
43 * writes to a SSD must be performed to blocks which have first been erased.
44 * Ensuring the SSD always has a supply of erased blocks for new writes
45 * helps prevent the performance from deteriorating.
46 *
47 * There are two supported TRIM methods; manual and automatic.
48 *
49 * Manual TRIM:
50 *
51 * A manual TRIM is initiated by running the 'zpool trim' command.  A single
52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53 * managing that vdev TRIM process.  This involves iterating over all the
54 * metaslabs, calculating the unallocated space ranges, and then issuing the
55 * required TRIM I/Os.
56 *
57 * While a metaslab is being actively trimmed it is not eligible to perform
58 * new allocations.  After traversing all of the metaslabs the thread is
59 * terminated.  Finally, both the requested options and current progress of
60 * the TRIM are regularly written to the pool.  This allows the TRIM to be
61 * suspended and resumed as needed.
62 *
63 * Automatic TRIM:
64 *
65 * An automatic TRIM is enabled by setting the 'autotrim' pool property
66 * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
67 * top-level (not leaf) vdev in the pool.  These threads perform the same
68 * core TRIM process as a manual TRIM, but with a few key differences.
69 *
70 * 1) Automatic TRIM happens continuously in the background and operates
71 *    solely on recently freed blocks (ms_trim not ms_allocatable).
72 *
73 * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
74 *    the benefit of simplifying the threading model, it makes it easier
75 *    to coordinate administrative commands, and it ensures only a single
76 *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
77 *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78 *    children.
79 *
80 * 3) There is no automatic TRIM progress information stored on disk, nor
81 *    is it reported by 'zpool status'.
82 *
83 * While the automatic TRIM process is highly effective it is more likely
84 * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86 * TRIM and are skipped.  This means small amounts of freed space may not
87 * be automatically trimmed.
88 *
89 * Furthermore, devices with attached hot spares and devices being actively
90 * replaced are skipped.  This is done to avoid adding additional stress to
91 * a potentially unhealthy device and to minimize the required rebuild time.
92 *
93 * For this reason it may be beneficial to occasionally manually TRIM a pool
94 * even when automatic TRIM is enabled.
95 */
96
97/*
98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99 */
100static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
101
102/*
103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104 */
105static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
106
107/*
108 * Skip uninitialized metaslabs during the TRIM process.  This option is
109 * useful for pools constructed from large thinly-provisioned devices where
110 * TRIM operations are slow.  As a pool ages an increasing fraction of
111 * the pools metaslabs will be initialized progressively degrading the
112 * usefulness of this option.  This setting is stored when starting a
113 * manual TRIM and will persist for the duration of the requested TRIM.
114 */
115unsigned int zfs_trim_metaslab_skip = 0;
116
117/*
118 * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
119 * concurrent TRIM I/Os issued to the device is controlled by the
120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121 */
122static unsigned int zfs_trim_queue_limit = 10;
123
124/*
125 * The minimum number of transaction groups between automatic trims of a
126 * metaslab.  This setting represents a trade-off between issuing more
127 * efficient TRIM operations, by allowing them to be aggregated longer,
128 * and issuing them promptly so the trimmed space is available.  Note
129 * that this value is a minimum; metaslabs can be trimmed less frequently
130 * when there are a large number of ranges which need to be trimmed.
131 *
132 * Increasing this value will allow frees to be aggregated for a longer
133 * time.  This can result is larger TRIM operations, and increased memory
134 * usage in order to track the ranges to be trimmed.  Decreasing this value
135 * has the opposite effect.  The default value of 32 was determined though
136 * testing to be a reasonable compromise.
137 */
138static unsigned int zfs_trim_txg_batch = 32;
139
140/*
141 * The trim_args are a control structure which describe how a leaf vdev
142 * should be trimmed.  The core elements are the vdev, the metaslab being
143 * trimmed and a range tree containing the extents to TRIM.  All provided
144 * ranges must be within the metaslab.
145 */
146typedef struct trim_args {
147	/*
148	 * These fields are set by the caller of vdev_trim_ranges().
149	 */
150	vdev_t		*trim_vdev;		/* Leaf vdev to TRIM */
151	metaslab_t	*trim_msp;		/* Disabled metaslab */
152	range_tree_t	*trim_tree;		/* TRIM ranges (in metaslab) */
153	trim_type_t	trim_type;		/* Manual or auto TRIM */
154	uint64_t	trim_extent_bytes_max;	/* Maximum TRIM I/O size */
155	uint64_t	trim_extent_bytes_min;	/* Minimum TRIM I/O size */
156	enum trim_flag	trim_flags;		/* TRIM flags (secure) */
157
158	/*
159	 * These fields are updated by vdev_trim_ranges().
160	 */
161	hrtime_t	trim_start_time;	/* Start time */
162	uint64_t	trim_bytes_done;	/* Bytes trimmed */
163} trim_args_t;
164
165/*
166 * Determines whether a vdev_trim_thread() should be stopped.
167 */
168static boolean_t
169vdev_trim_should_stop(vdev_t *vd)
170{
171	return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172	    vd->vdev_detached || vd->vdev_top->vdev_removing ||
173	    vd->vdev_top->vdev_rz_expanding);
174}
175
176/*
177 * Determines whether a vdev_autotrim_thread() should be stopped.
178 */
179static boolean_t
180vdev_autotrim_should_stop(vdev_t *tvd)
181{
182	return (tvd->vdev_autotrim_exit_wanted ||
183	    !vdev_writeable(tvd) || tvd->vdev_removing ||
184	    tvd->vdev_rz_expanding ||
185	    spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
186}
187
188/*
189 * Wait for given number of kicks, return true if the wait is aborted due to
190 * vdev_autotrim_exit_wanted.
191 */
192static boolean_t
193vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
194{
195	mutex_enter(&vd->vdev_autotrim_lock);
196	for (int i = 0; i < num_of_kick; i++) {
197		if (vd->vdev_autotrim_exit_wanted)
198			break;
199		cv_wait_idle(&vd->vdev_autotrim_kick_cv,
200		    &vd->vdev_autotrim_lock);
201	}
202	boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
203	mutex_exit(&vd->vdev_autotrim_lock);
204
205	return (exit_wanted);
206}
207
208/*
209 * The sync task for updating the on-disk state of a manual TRIM.  This
210 * is scheduled by vdev_trim_change_state().
211 */
212static void
213vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
214{
215	/*
216	 * We pass in the guid instead of the vdev_t since the vdev may
217	 * have been freed prior to the sync task being processed.  This
218	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
219	 * stop the trimming thread, schedule the sync task, and free
220	 * the vdev. Later when the scheduled sync task is invoked, it would
221	 * find that the vdev has been freed.
222	 */
223	uint64_t guid = *(uint64_t *)arg;
224	uint64_t txg = dmu_tx_get_txg(tx);
225	kmem_free(arg, sizeof (uint64_t));
226
227	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
228	if (vd == NULL || vd->vdev_top->vdev_removing ||
229	    !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
230		return;
231
232	uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
233	vd->vdev_trim_offset[txg & TXG_MASK] = 0;
234
235	VERIFY3U(vd->vdev_leaf_zap, !=, 0);
236
237	objset_t *mos = vd->vdev_spa->spa_meta_objset;
238
239	if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
240
241		if (vd->vdev_trim_last_offset == UINT64_MAX)
242			last_offset = 0;
243
244		vd->vdev_trim_last_offset = last_offset;
245		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
246		    VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
247		    sizeof (last_offset), 1, &last_offset, tx));
248	}
249
250	if (vd->vdev_trim_action_time > 0) {
251		uint64_t val = (uint64_t)vd->vdev_trim_action_time;
252		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
253		    VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
254		    1, &val, tx));
255	}
256
257	if (vd->vdev_trim_rate > 0) {
258		uint64_t rate = (uint64_t)vd->vdev_trim_rate;
259
260		if (rate == UINT64_MAX)
261			rate = 0;
262
263		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
264		    VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
265	}
266
267	uint64_t partial = vd->vdev_trim_partial;
268	if (partial == UINT64_MAX)
269		partial = 0;
270
271	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
272	    sizeof (partial), 1, &partial, tx));
273
274	uint64_t secure = vd->vdev_trim_secure;
275	if (secure == UINT64_MAX)
276		secure = 0;
277
278	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
279	    sizeof (secure), 1, &secure, tx));
280
281
282	uint64_t trim_state = vd->vdev_trim_state;
283	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
284	    sizeof (trim_state), 1, &trim_state, tx));
285}
286
287/*
288 * Update the on-disk state of a manual TRIM.  This is called to request
289 * that a TRIM be started/suspended/canceled, or to change one of the
290 * TRIM options (partial, secure, rate).
291 */
292static void
293vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
294    uint64_t rate, boolean_t partial, boolean_t secure)
295{
296	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
297	spa_t *spa = vd->vdev_spa;
298
299	if (new_state == vd->vdev_trim_state)
300		return;
301
302	/*
303	 * Copy the vd's guid, this will be freed by the sync task.
304	 */
305	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
306	*guid = vd->vdev_guid;
307
308	/*
309	 * If we're suspending, then preserve the original start time.
310	 */
311	if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
312		vd->vdev_trim_action_time = gethrestime_sec();
313	}
314
315	/*
316	 * If we're activating, then preserve the requested rate and trim
317	 * method.  Setting the last offset and rate to UINT64_MAX is used
318	 * as a sentinel to indicate they should be reset to default values.
319	 */
320	if (new_state == VDEV_TRIM_ACTIVE) {
321		if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
322		    vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
323			vd->vdev_trim_last_offset = UINT64_MAX;
324			vd->vdev_trim_rate = UINT64_MAX;
325			vd->vdev_trim_partial = UINT64_MAX;
326			vd->vdev_trim_secure = UINT64_MAX;
327		}
328
329		if (rate != 0)
330			vd->vdev_trim_rate = rate;
331
332		if (partial != 0)
333			vd->vdev_trim_partial = partial;
334
335		if (secure != 0)
336			vd->vdev_trim_secure = secure;
337	}
338
339	vdev_trim_state_t old_state = vd->vdev_trim_state;
340	boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
341	vd->vdev_trim_state = new_state;
342
343	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
344	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
345	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
346	    guid, tx);
347
348	switch (new_state) {
349	case VDEV_TRIM_ACTIVE:
350		spa_event_notify(spa, vd, NULL,
351		    resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
352		spa_history_log_internal(spa, "trim", tx,
353		    "vdev=%s activated", vd->vdev_path);
354		break;
355	case VDEV_TRIM_SUSPENDED:
356		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
357		spa_history_log_internal(spa, "trim", tx,
358		    "vdev=%s suspended", vd->vdev_path);
359		break;
360	case VDEV_TRIM_CANCELED:
361		if (old_state == VDEV_TRIM_ACTIVE ||
362		    old_state == VDEV_TRIM_SUSPENDED) {
363			spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
364			spa_history_log_internal(spa, "trim", tx,
365			    "vdev=%s canceled", vd->vdev_path);
366		}
367		break;
368	case VDEV_TRIM_COMPLETE:
369		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
370		spa_history_log_internal(spa, "trim", tx,
371		    "vdev=%s complete", vd->vdev_path);
372		break;
373	default:
374		panic("invalid state %llu", (unsigned long long)new_state);
375	}
376
377	dmu_tx_commit(tx);
378
379	if (new_state != VDEV_TRIM_ACTIVE)
380		spa_notify_waiters(spa);
381}
382
383/*
384 * The zio_done_func_t done callback for each manual TRIM issued.  It is
385 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
386 * and limiting the number of in flight TRIM I/Os.
387 */
388static void
389vdev_trim_cb(zio_t *zio)
390{
391	vdev_t *vd = zio->io_vd;
392
393	mutex_enter(&vd->vdev_trim_io_lock);
394	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
395		/*
396		 * The I/O failed because the vdev was unavailable; roll the
397		 * last offset back. (This works because spa_sync waits on
398		 * spa_txg_zio before it runs sync tasks.)
399		 */
400		uint64_t *offset =
401		    &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
402		*offset = MIN(*offset, zio->io_offset);
403	} else {
404		if (zio->io_error != 0) {
405			vd->vdev_stat.vs_trim_errors++;
406			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
407			    0, 0, 0, 0, 1, zio->io_orig_size);
408		} else {
409			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
410			    1, zio->io_orig_size, 0, 0, 0, 0);
411		}
412
413		vd->vdev_trim_bytes_done += zio->io_orig_size;
414	}
415
416	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
417	vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
418	cv_broadcast(&vd->vdev_trim_io_cv);
419	mutex_exit(&vd->vdev_trim_io_lock);
420
421	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
422}
423
424/*
425 * The zio_done_func_t done callback for each automatic TRIM issued.  It
426 * is responsible for updating the TRIM stats and limiting the number of
427 * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
428 * never reissued on failure.
429 */
430static void
431vdev_autotrim_cb(zio_t *zio)
432{
433	vdev_t *vd = zio->io_vd;
434
435	mutex_enter(&vd->vdev_trim_io_lock);
436
437	if (zio->io_error != 0) {
438		vd->vdev_stat.vs_trim_errors++;
439		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
440		    0, 0, 0, 0, 1, zio->io_orig_size);
441	} else {
442		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
443		    1, zio->io_orig_size, 0, 0, 0, 0);
444	}
445
446	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
447	vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
448	cv_broadcast(&vd->vdev_trim_io_cv);
449	mutex_exit(&vd->vdev_trim_io_lock);
450
451	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
452}
453
454/*
455 * The zio_done_func_t done callback for each TRIM issued via
456 * vdev_trim_simple(). It is responsible for updating the TRIM stats and
457 * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
458 * effort and are never reissued on failure.
459 */
460static void
461vdev_trim_simple_cb(zio_t *zio)
462{
463	vdev_t *vd = zio->io_vd;
464
465	mutex_enter(&vd->vdev_trim_io_lock);
466
467	if (zio->io_error != 0) {
468		vd->vdev_stat.vs_trim_errors++;
469		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
470		    0, 0, 0, 0, 1, zio->io_orig_size);
471	} else {
472		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
473		    1, zio->io_orig_size, 0, 0, 0, 0);
474	}
475
476	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
477	vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
478	cv_broadcast(&vd->vdev_trim_io_cv);
479	mutex_exit(&vd->vdev_trim_io_lock);
480
481	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
482}
483/*
484 * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
485 */
486static uint64_t
487vdev_trim_calculate_rate(trim_args_t *ta)
488{
489	return (ta->trim_bytes_done * 1000 /
490	    (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
491}
492
493/*
494 * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
495 * and number of concurrent TRIM I/Os.
496 */
497static int
498vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
499{
500	vdev_t *vd = ta->trim_vdev;
501	spa_t *spa = vd->vdev_spa;
502	void *cb;
503
504	mutex_enter(&vd->vdev_trim_io_lock);
505
506	/*
507	 * Limit manual TRIM I/Os to the requested rate.  This does not
508	 * apply to automatic TRIM since no per vdev rate can be specified.
509	 */
510	if (ta->trim_type == TRIM_TYPE_MANUAL) {
511		while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
512		    vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
513			cv_timedwait_idle(&vd->vdev_trim_io_cv,
514			    &vd->vdev_trim_io_lock, ddi_get_lbolt() +
515			    MSEC_TO_TICK(10));
516		}
517	}
518	ta->trim_bytes_done += size;
519
520	/* Limit in flight trimming I/Os */
521	while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
522	    vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
523		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
524	}
525	vd->vdev_trim_inflight[ta->trim_type]++;
526	mutex_exit(&vd->vdev_trim_io_lock);
527
528	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
529	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
530	uint64_t txg = dmu_tx_get_txg(tx);
531
532	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
533	mutex_enter(&vd->vdev_trim_lock);
534
535	if (ta->trim_type == TRIM_TYPE_MANUAL &&
536	    vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
537		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
538		*guid = vd->vdev_guid;
539
540		/* This is the first write of this txg. */
541		dsl_sync_task_nowait(spa_get_dsl(spa),
542		    vdev_trim_zap_update_sync, guid, tx);
543	}
544
545	/*
546	 * We know the vdev_t will still be around since all consumers of
547	 * vdev_free must stop the trimming first.
548	 */
549	if ((ta->trim_type == TRIM_TYPE_MANUAL &&
550	    vdev_trim_should_stop(vd)) ||
551	    (ta->trim_type == TRIM_TYPE_AUTO &&
552	    vdev_autotrim_should_stop(vd->vdev_top))) {
553		mutex_enter(&vd->vdev_trim_io_lock);
554		vd->vdev_trim_inflight[ta->trim_type]--;
555		mutex_exit(&vd->vdev_trim_io_lock);
556		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
557		mutex_exit(&vd->vdev_trim_lock);
558		dmu_tx_commit(tx);
559		return (SET_ERROR(EINTR));
560	}
561	mutex_exit(&vd->vdev_trim_lock);
562
563	if (ta->trim_type == TRIM_TYPE_MANUAL)
564		vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
565
566	if (ta->trim_type == TRIM_TYPE_MANUAL) {
567		cb = vdev_trim_cb;
568	} else if (ta->trim_type == TRIM_TYPE_AUTO) {
569		cb = vdev_autotrim_cb;
570	} else {
571		cb = vdev_trim_simple_cb;
572	}
573
574	zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
575	    start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
576	    ta->trim_flags));
577	/* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
578
579	dmu_tx_commit(tx);
580
581	return (0);
582}
583
584/*
585 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
586 * Additional parameters describing how the TRIM should be performed must
587 * be set in the trim_args structure.  See the trim_args definition for
588 * additional information.
589 */
590static int
591vdev_trim_ranges(trim_args_t *ta)
592{
593	vdev_t *vd = ta->trim_vdev;
594	zfs_btree_t *t = &ta->trim_tree->rt_root;
595	zfs_btree_index_t idx;
596	uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
597	uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
598	spa_t *spa = vd->vdev_spa;
599	int error = 0;
600
601	ta->trim_start_time = gethrtime();
602	ta->trim_bytes_done = 0;
603
604	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
605	    rs = zfs_btree_next(t, &idx, &idx)) {
606		uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
607		    ta->trim_tree);
608
609		if (extent_bytes_min && size < extent_bytes_min) {
610			spa_iostats_trim_add(spa, ta->trim_type,
611			    0, 0, 1, size, 0, 0);
612			continue;
613		}
614
615		/* Split range into legally-sized physical chunks */
616		uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
617
618		for (uint64_t w = 0; w < writes_required; w++) {
619			error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
620			    rs_get_start(rs, ta->trim_tree) +
621			    (w *extent_bytes_max), MIN(size -
622			    (w * extent_bytes_max), extent_bytes_max));
623			if (error != 0) {
624				goto done;
625			}
626		}
627	}
628
629done:
630	/*
631	 * Make sure all TRIMs for this metaslab have completed before
632	 * returning. TRIM zios have lower priority over regular or syncing
633	 * zios, so all TRIM zios for this metaslab must complete before the
634	 * metaslab is re-enabled. Otherwise it's possible write zios to
635	 * this metaslab could cut ahead of still queued TRIM zios for this
636	 * metaslab causing corruption if the ranges overlap.
637	 */
638	mutex_enter(&vd->vdev_trim_io_lock);
639	while (vd->vdev_trim_inflight[0] > 0) {
640		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
641	}
642	mutex_exit(&vd->vdev_trim_io_lock);
643
644	return (error);
645}
646
647static void
648vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
649{
650	uint64_t *last_rs_end = (uint64_t *)arg;
651
652	if (physical_rs->rs_end > *last_rs_end)
653		*last_rs_end = physical_rs->rs_end;
654}
655
656static void
657vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
658{
659	vdev_t *vd = (vdev_t *)arg;
660
661	uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
662	vd->vdev_trim_bytes_est += size;
663
664	if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
665		vd->vdev_trim_bytes_done += size;
666	} else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
667	    vd->vdev_trim_last_offset <= physical_rs->rs_end) {
668		vd->vdev_trim_bytes_done +=
669		    vd->vdev_trim_last_offset - physical_rs->rs_start;
670	}
671}
672
673/*
674 * Calculates the completion percentage of a manual TRIM.
675 */
676static void
677vdev_trim_calculate_progress(vdev_t *vd)
678{
679	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
680	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
681	ASSERT(vd->vdev_leaf_zap != 0);
682
683	vd->vdev_trim_bytes_est = 0;
684	vd->vdev_trim_bytes_done = 0;
685
686	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
687		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
688		mutex_enter(&msp->ms_lock);
689
690		uint64_t ms_free = (msp->ms_size -
691		    metaslab_allocated_space(msp)) /
692		    vdev_get_ndisks(vd->vdev_top);
693
694		/*
695		 * Convert the metaslab range to a physical range
696		 * on our vdev. We use this to determine if we are
697		 * in the middle of this metaslab range.
698		 */
699		range_seg64_t logical_rs, physical_rs, remain_rs;
700		logical_rs.rs_start = msp->ms_start;
701		logical_rs.rs_end = msp->ms_start + msp->ms_size;
702
703		/* Metaslab space after this offset has not been trimmed. */
704		vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
705		if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
706			vd->vdev_trim_bytes_est += ms_free;
707			mutex_exit(&msp->ms_lock);
708			continue;
709		}
710
711		/* Metaslab space before this offset has been trimmed */
712		uint64_t last_rs_end = physical_rs.rs_end;
713		if (!vdev_xlate_is_empty(&remain_rs)) {
714			vdev_xlate_walk(vd, &remain_rs,
715			    vdev_trim_xlate_last_rs_end, &last_rs_end);
716		}
717
718		if (vd->vdev_trim_last_offset > last_rs_end) {
719			vd->vdev_trim_bytes_done += ms_free;
720			vd->vdev_trim_bytes_est += ms_free;
721			mutex_exit(&msp->ms_lock);
722			continue;
723		}
724
725		/*
726		 * If we get here, we're in the middle of trimming this
727		 * metaslab.  Load it and walk the free tree for more
728		 * accurate progress estimation.
729		 */
730		VERIFY0(metaslab_load(msp));
731
732		range_tree_t *rt = msp->ms_allocatable;
733		zfs_btree_t *bt = &rt->rt_root;
734		zfs_btree_index_t idx;
735		for (range_seg_t *rs = zfs_btree_first(bt, &idx);
736		    rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
737			logical_rs.rs_start = rs_get_start(rs, rt);
738			logical_rs.rs_end = rs_get_end(rs, rt);
739
740			vdev_xlate_walk(vd, &logical_rs,
741			    vdev_trim_xlate_progress, vd);
742		}
743		mutex_exit(&msp->ms_lock);
744	}
745}
746
747/*
748 * Load from disk the vdev's manual TRIM information.  This includes the
749 * state, progress, and options provided when initiating the manual TRIM.
750 */
751static int
752vdev_trim_load(vdev_t *vd)
753{
754	int err = 0;
755	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
756	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
757	ASSERT(vd->vdev_leaf_zap != 0);
758
759	if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
760	    vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
761		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
762		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
763		    sizeof (vd->vdev_trim_last_offset), 1,
764		    &vd->vdev_trim_last_offset);
765		if (err == ENOENT) {
766			vd->vdev_trim_last_offset = 0;
767			err = 0;
768		}
769
770		if (err == 0) {
771			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
772			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
773			    sizeof (vd->vdev_trim_rate), 1,
774			    &vd->vdev_trim_rate);
775			if (err == ENOENT) {
776				vd->vdev_trim_rate = 0;
777				err = 0;
778			}
779		}
780
781		if (err == 0) {
782			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
783			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
784			    sizeof (vd->vdev_trim_partial), 1,
785			    &vd->vdev_trim_partial);
786			if (err == ENOENT) {
787				vd->vdev_trim_partial = 0;
788				err = 0;
789			}
790		}
791
792		if (err == 0) {
793			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
794			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
795			    sizeof (vd->vdev_trim_secure), 1,
796			    &vd->vdev_trim_secure);
797			if (err == ENOENT) {
798				vd->vdev_trim_secure = 0;
799				err = 0;
800			}
801		}
802	}
803
804	vdev_trim_calculate_progress(vd);
805
806	return (err);
807}
808
809static void
810vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
811{
812	trim_args_t *ta = arg;
813	vdev_t *vd = ta->trim_vdev;
814
815	/*
816	 * Only a manual trim will be traversing the vdev sequentially.
817	 * For an auto trim all valid ranges should be added.
818	 */
819	if (ta->trim_type == TRIM_TYPE_MANUAL) {
820
821		/* Only add segments that we have not visited yet */
822		if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
823			return;
824
825		/* Pick up where we left off mid-range. */
826		if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
827			ASSERT3U(physical_rs->rs_end, >,
828			    vd->vdev_trim_last_offset);
829			physical_rs->rs_start = vd->vdev_trim_last_offset;
830		}
831	}
832
833	ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
834
835	range_tree_add(ta->trim_tree, physical_rs->rs_start,
836	    physical_rs->rs_end - physical_rs->rs_start);
837}
838
839/*
840 * Convert the logical range into physical ranges and add them to the
841 * range tree passed in the trim_args_t.
842 */
843static void
844vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
845{
846	trim_args_t *ta = arg;
847	vdev_t *vd = ta->trim_vdev;
848	range_seg64_t logical_rs;
849	logical_rs.rs_start = start;
850	logical_rs.rs_end = start + size;
851
852	/*
853	 * Every range to be trimmed must be part of ms_allocatable.
854	 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
855	 * is always the case.
856	 */
857	if (zfs_flags & ZFS_DEBUG_TRIM) {
858		metaslab_t *msp = ta->trim_msp;
859		VERIFY0(metaslab_load(msp));
860		VERIFY3B(msp->ms_loaded, ==, B_TRUE);
861		VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
862	}
863
864	ASSERT(vd->vdev_ops->vdev_op_leaf);
865	vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
866}
867
868/*
869 * Each manual TRIM thread is responsible for trimming the unallocated
870 * space for each leaf vdev.  This is accomplished by sequentially iterating
871 * over its top-level metaslabs and issuing TRIM I/O for the space described
872 * by its ms_allocatable.  While a metaslab is undergoing trimming it is
873 * not eligible for new allocations.
874 */
875static __attribute__((noreturn)) void
876vdev_trim_thread(void *arg)
877{
878	vdev_t *vd = arg;
879	spa_t *spa = vd->vdev_spa;
880	trim_args_t ta;
881	int error = 0;
882
883	/*
884	 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
885	 * vdev_trim().  Wait for the updated values to be reflected
886	 * in the zap in order to start with the requested settings.
887	 */
888	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
889
890	ASSERT(vdev_is_concrete(vd));
891	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
892
893	vd->vdev_trim_last_offset = 0;
894	vd->vdev_trim_rate = 0;
895	vd->vdev_trim_partial = 0;
896	vd->vdev_trim_secure = 0;
897
898	VERIFY0(vdev_trim_load(vd));
899
900	ta.trim_vdev = vd;
901	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
902	ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
903	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
904	ta.trim_type = TRIM_TYPE_MANUAL;
905	ta.trim_flags = 0;
906
907	/*
908	 * When a secure TRIM has been requested infer that the intent
909	 * is that everything must be trimmed.  Override the default
910	 * minimum TRIM size to prevent ranges from being skipped.
911	 */
912	if (vd->vdev_trim_secure) {
913		ta.trim_flags |= ZIO_TRIM_SECURE;
914		ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
915	}
916
917	uint64_t ms_count = 0;
918	for (uint64_t i = 0; !vd->vdev_detached &&
919	    i < vd->vdev_top->vdev_ms_count; i++) {
920		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
921
922		/*
923		 * If we've expanded the top-level vdev or it's our
924		 * first pass, calculate our progress.
925		 */
926		if (vd->vdev_top->vdev_ms_count != ms_count) {
927			vdev_trim_calculate_progress(vd);
928			ms_count = vd->vdev_top->vdev_ms_count;
929		}
930
931		spa_config_exit(spa, SCL_CONFIG, FTAG);
932		metaslab_disable(msp);
933		mutex_enter(&msp->ms_lock);
934		VERIFY0(metaslab_load(msp));
935
936		/*
937		 * If a partial TRIM was requested skip metaslabs which have
938		 * never been initialized and thus have never been written.
939		 */
940		if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
941			mutex_exit(&msp->ms_lock);
942			metaslab_enable(msp, B_FALSE, B_FALSE);
943			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
944			vdev_trim_calculate_progress(vd);
945			continue;
946		}
947
948		ta.trim_msp = msp;
949		range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
950		range_tree_vacate(msp->ms_trim, NULL, NULL);
951		mutex_exit(&msp->ms_lock);
952
953		error = vdev_trim_ranges(&ta);
954		metaslab_enable(msp, B_TRUE, B_FALSE);
955		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
956
957		range_tree_vacate(ta.trim_tree, NULL, NULL);
958		if (error != 0)
959			break;
960	}
961
962	spa_config_exit(spa, SCL_CONFIG, FTAG);
963
964	range_tree_destroy(ta.trim_tree);
965
966	mutex_enter(&vd->vdev_trim_lock);
967	if (!vd->vdev_trim_exit_wanted) {
968		if (vdev_writeable(vd)) {
969			vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
970			    vd->vdev_trim_rate, vd->vdev_trim_partial,
971			    vd->vdev_trim_secure);
972		} else if (vd->vdev_faulted) {
973			vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
974			    vd->vdev_trim_rate, vd->vdev_trim_partial,
975			    vd->vdev_trim_secure);
976		}
977	}
978	ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
979
980	/*
981	 * Drop the vdev_trim_lock while we sync out the txg since it's
982	 * possible that a device might be trying to come online and must
983	 * check to see if it needs to restart a trim. That thread will be
984	 * holding the spa_config_lock which would prevent the txg_wait_synced
985	 * from completing.
986	 */
987	mutex_exit(&vd->vdev_trim_lock);
988	txg_wait_synced(spa_get_dsl(spa), 0);
989	mutex_enter(&vd->vdev_trim_lock);
990
991	vd->vdev_trim_thread = NULL;
992	cv_broadcast(&vd->vdev_trim_cv);
993	mutex_exit(&vd->vdev_trim_lock);
994
995	thread_exit();
996}
997
998/*
999 * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
1000 * the vdev_t must be a leaf and cannot already be manually trimming.
1001 */
1002void
1003vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1004{
1005	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1006	ASSERT(vd->vdev_ops->vdev_op_leaf);
1007	ASSERT(vdev_is_concrete(vd));
1008	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1009	ASSERT(!vd->vdev_detached);
1010	ASSERT(!vd->vdev_trim_exit_wanted);
1011	ASSERT(!vd->vdev_top->vdev_removing);
1012	ASSERT(!vd->vdev_rz_expanding);
1013
1014	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1015	vd->vdev_trim_thread = thread_create(NULL, 0,
1016	    vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1017}
1018
1019/*
1020 * Wait for the trimming thread to be terminated (canceled or stopped).
1021 */
1022static void
1023vdev_trim_stop_wait_impl(vdev_t *vd)
1024{
1025	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1026
1027	while (vd->vdev_trim_thread != NULL)
1028		cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1029
1030	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1031	vd->vdev_trim_exit_wanted = B_FALSE;
1032}
1033
1034/*
1035 * Wait for vdev trim threads which were listed to cleanly exit.
1036 */
1037void
1038vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1039{
1040	(void) spa;
1041	vdev_t *vd;
1042
1043	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1044	    spa->spa_export_thread == curthread);
1045
1046	while ((vd = list_remove_head(vd_list)) != NULL) {
1047		mutex_enter(&vd->vdev_trim_lock);
1048		vdev_trim_stop_wait_impl(vd);
1049		mutex_exit(&vd->vdev_trim_lock);
1050	}
1051}
1052
1053/*
1054 * Stop trimming a device, with the resultant trimming state being tgt_state.
1055 * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1056 * provided the stopping vdev is inserted in to the list.  Callers are then
1057 * required to call vdev_trim_stop_wait() to block for all the trim threads
1058 * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1059 * the spa config, as the trimming thread may try to enter the config as a
1060 * reader before exiting.
1061 */
1062void
1063vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1064{
1065	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1066	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1067	ASSERT(vd->vdev_ops->vdev_op_leaf);
1068	ASSERT(vdev_is_concrete(vd));
1069
1070	/*
1071	 * Allow cancel requests to proceed even if the trim thread has
1072	 * stopped.
1073	 */
1074	if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1075		return;
1076
1077	vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1078	vd->vdev_trim_exit_wanted = B_TRUE;
1079
1080	if (vd_list == NULL) {
1081		vdev_trim_stop_wait_impl(vd);
1082	} else {
1083		ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1084		    vd->vdev_spa->spa_export_thread == curthread);
1085		list_insert_tail(vd_list, vd);
1086	}
1087}
1088
1089/*
1090 * Requests that all listed vdevs stop trimming.
1091 */
1092static void
1093vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1094    list_t *vd_list)
1095{
1096	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1097		mutex_enter(&vd->vdev_trim_lock);
1098		vdev_trim_stop(vd, tgt_state, vd_list);
1099		mutex_exit(&vd->vdev_trim_lock);
1100		return;
1101	}
1102
1103	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1104		vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1105		    vd_list);
1106	}
1107}
1108
1109/*
1110 * Convenience function to stop trimming of a vdev tree and set all trim
1111 * thread pointers to NULL.
1112 */
1113void
1114vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1115{
1116	spa_t *spa = vd->vdev_spa;
1117	list_t vd_list;
1118	vdev_t *vd_l2cache;
1119
1120	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1121	    spa->spa_export_thread == curthread);
1122
1123	list_create(&vd_list, sizeof (vdev_t),
1124	    offsetof(vdev_t, vdev_trim_node));
1125
1126	vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1127
1128	/*
1129	 * Iterate over cache devices and request stop trimming the
1130	 * whole device in case we export the pool or remove the cache
1131	 * device prematurely.
1132	 */
1133	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1134		vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1135		vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1136	}
1137
1138	vdev_trim_stop_wait(spa, &vd_list);
1139
1140	if (vd->vdev_spa->spa_sync_on) {
1141		/* Make sure that our state has been synced to disk */
1142		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1143	}
1144
1145	list_destroy(&vd_list);
1146}
1147
1148/*
1149 * Conditionally restarts a manual TRIM given its on-disk state.
1150 */
1151void
1152vdev_trim_restart(vdev_t *vd)
1153{
1154	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1155	    vd->vdev_spa->spa_load_thread == curthread);
1156	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1157
1158	if (vd->vdev_leaf_zap != 0) {
1159		mutex_enter(&vd->vdev_trim_lock);
1160		uint64_t trim_state = VDEV_TRIM_NONE;
1161		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1162		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1163		    sizeof (trim_state), 1, &trim_state);
1164		ASSERT(err == 0 || err == ENOENT);
1165		vd->vdev_trim_state = trim_state;
1166
1167		uint64_t timestamp = 0;
1168		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1169		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1170		    sizeof (timestamp), 1, &timestamp);
1171		ASSERT(err == 0 || err == ENOENT);
1172		vd->vdev_trim_action_time = timestamp;
1173
1174		if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1175		    vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
1176			/* load progress for reporting, but don't resume */
1177			VERIFY0(vdev_trim_load(vd));
1178		} else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1179		    vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1180		    !vd->vdev_top->vdev_rz_expanding &&
1181		    vd->vdev_trim_thread == NULL) {
1182			VERIFY0(vdev_trim_load(vd));
1183			vdev_trim(vd, vd->vdev_trim_rate,
1184			    vd->vdev_trim_partial, vd->vdev_trim_secure);
1185		}
1186
1187		mutex_exit(&vd->vdev_trim_lock);
1188	}
1189
1190	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1191		vdev_trim_restart(vd->vdev_child[i]);
1192	}
1193}
1194
1195/*
1196 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1197 * every TRIM range is contained within ms_allocatable.
1198 */
1199static void
1200vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1201{
1202	trim_args_t *ta = arg;
1203	metaslab_t *msp = ta->trim_msp;
1204
1205	VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1206	VERIFY3U(msp->ms_disabled, >, 0);
1207	VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1208}
1209
1210/*
1211 * Each automatic TRIM thread is responsible for managing the trimming of a
1212 * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1213 *
1214 * N.B. This behavior is different from a manual TRIM where a thread
1215 * is created for each leaf vdev, instead of each top-level vdev.
1216 */
1217static __attribute__((noreturn)) void
1218vdev_autotrim_thread(void *arg)
1219{
1220	vdev_t *vd = arg;
1221	spa_t *spa = vd->vdev_spa;
1222	int shift = 0;
1223
1224	mutex_enter(&vd->vdev_autotrim_lock);
1225	ASSERT3P(vd->vdev_top, ==, vd);
1226	ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1227	mutex_exit(&vd->vdev_autotrim_lock);
1228	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1229
1230	while (!vdev_autotrim_should_stop(vd)) {
1231		int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1232		uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1233		uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1234
1235		/*
1236		 * All of the metaslabs are divided in to groups of size
1237		 * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1238		 * is composed of metaslabs which are spread evenly over the
1239		 * device.
1240		 *
1241		 * For example, when zfs_trim_txg_batch = 32 (default) then
1242		 * group 0 will contain metaslabs 0, 32, 64, ...;
1243		 * group 1 will contain metaslabs 1, 33, 65, ...;
1244		 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1245		 *
1246		 * On each pass through the while() loop one of these groups
1247		 * is selected.  This is accomplished by using a shift value
1248		 * to select the starting metaslab, then striding over the
1249		 * metaslabs using the zfs_trim_txg_batch size.  This is
1250		 * done to accomplish two things.
1251		 *
1252		 * 1) By dividing the metaslabs in to groups, and making sure
1253		 *    that each group takes a minimum of one txg to process.
1254		 *    Then zfs_trim_txg_batch controls the minimum number of
1255		 *    txgs which must occur before a metaslab is revisited.
1256		 *
1257		 * 2) Selecting non-consecutive metaslabs distributes the
1258		 *    TRIM commands for a group evenly over the entire device.
1259		 *    This can be advantageous for certain types of devices.
1260		 */
1261		for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1262		    i += txgs_per_trim) {
1263			metaslab_t *msp = vd->vdev_ms[i];
1264			range_tree_t *trim_tree;
1265			boolean_t issued_trim = B_FALSE;
1266			boolean_t wait_aborted = B_FALSE;
1267
1268			spa_config_exit(spa, SCL_CONFIG, FTAG);
1269			metaslab_disable(msp);
1270			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1271
1272			mutex_enter(&msp->ms_lock);
1273
1274			/*
1275			 * Skip the metaslab when it has never been allocated
1276			 * or when there are no recent frees to trim.
1277			 */
1278			if (msp->ms_sm == NULL ||
1279			    range_tree_is_empty(msp->ms_trim)) {
1280				mutex_exit(&msp->ms_lock);
1281				metaslab_enable(msp, B_FALSE, B_FALSE);
1282				continue;
1283			}
1284
1285			/*
1286			 * Skip the metaslab when it has already been disabled.
1287			 * This may happen when a manual TRIM or initialize
1288			 * operation is running concurrently.  In the case
1289			 * of a manual TRIM, the ms_trim tree will have been
1290			 * vacated.  Only ranges added after the manual TRIM
1291			 * disabled the metaslab will be included in the tree.
1292			 * These will be processed when the automatic TRIM
1293			 * next revisits this metaslab.
1294			 */
1295			if (msp->ms_disabled > 1) {
1296				mutex_exit(&msp->ms_lock);
1297				metaslab_enable(msp, B_FALSE, B_FALSE);
1298				continue;
1299			}
1300
1301			/*
1302			 * Allocate an empty range tree which is swapped in
1303			 * for the existing ms_trim tree while it is processed.
1304			 */
1305			trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1306			    0, 0);
1307			range_tree_swap(&msp->ms_trim, &trim_tree);
1308			ASSERT(range_tree_is_empty(msp->ms_trim));
1309
1310			/*
1311			 * There are two cases when constructing the per-vdev
1312			 * trim trees for a metaslab.  If the top-level vdev
1313			 * has no children then it is also a leaf and should
1314			 * be trimmed.  Otherwise our children are the leaves
1315			 * and a trim tree should be constructed for each.
1316			 */
1317			trim_args_t *tap;
1318			uint64_t children = vd->vdev_children;
1319			if (children == 0) {
1320				children = 1;
1321				tap = kmem_zalloc(sizeof (trim_args_t) *
1322				    children, KM_SLEEP);
1323				tap[0].trim_vdev = vd;
1324			} else {
1325				tap = kmem_zalloc(sizeof (trim_args_t) *
1326				    children, KM_SLEEP);
1327
1328				for (uint64_t c = 0; c < children; c++) {
1329					tap[c].trim_vdev = vd->vdev_child[c];
1330				}
1331			}
1332
1333			for (uint64_t c = 0; c < children; c++) {
1334				trim_args_t *ta = &tap[c];
1335				vdev_t *cvd = ta->trim_vdev;
1336
1337				ta->trim_msp = msp;
1338				ta->trim_extent_bytes_max = extent_bytes_max;
1339				ta->trim_extent_bytes_min = extent_bytes_min;
1340				ta->trim_type = TRIM_TYPE_AUTO;
1341				ta->trim_flags = 0;
1342
1343				if (cvd->vdev_detached ||
1344				    !vdev_writeable(cvd) ||
1345				    !cvd->vdev_has_trim ||
1346				    cvd->vdev_trim_thread != NULL) {
1347					continue;
1348				}
1349
1350				/*
1351				 * When a device has an attached hot spare, or
1352				 * is being replaced it will not be trimmed.
1353				 * This is done to avoid adding additional
1354				 * stress to a potentially unhealthy device,
1355				 * and to minimize the required rebuild time.
1356				 */
1357				if (!cvd->vdev_ops->vdev_op_leaf)
1358					continue;
1359
1360				ta->trim_tree = range_tree_create(NULL,
1361				    RANGE_SEG64, NULL, 0, 0);
1362				range_tree_walk(trim_tree,
1363				    vdev_trim_range_add, ta);
1364			}
1365
1366			mutex_exit(&msp->ms_lock);
1367			spa_config_exit(spa, SCL_CONFIG, FTAG);
1368
1369			/*
1370			 * Issue the TRIM I/Os for all ranges covered by the
1371			 * TRIM trees.  These ranges are safe to TRIM because
1372			 * no new allocations will be performed until the call
1373			 * to metaslab_enabled() below.
1374			 */
1375			for (uint64_t c = 0; c < children; c++) {
1376				trim_args_t *ta = &tap[c];
1377
1378				/*
1379				 * Always yield to a manual TRIM if one has
1380				 * been started for the child vdev.
1381				 */
1382				if (ta->trim_tree == NULL ||
1383				    ta->trim_vdev->vdev_trim_thread != NULL) {
1384					continue;
1385				}
1386
1387				/*
1388				 * After this point metaslab_enable() must be
1389				 * called with the sync flag set.  This is done
1390				 * here because vdev_trim_ranges() is allowed
1391				 * to be interrupted (EINTR) before issuing all
1392				 * of the required TRIM I/Os.
1393				 */
1394				issued_trim = B_TRUE;
1395
1396				int error = vdev_trim_ranges(ta);
1397				if (error)
1398					break;
1399			}
1400
1401			/*
1402			 * Verify every range which was trimmed is still
1403			 * contained within the ms_allocatable tree.
1404			 */
1405			if (zfs_flags & ZFS_DEBUG_TRIM) {
1406				mutex_enter(&msp->ms_lock);
1407				VERIFY0(metaslab_load(msp));
1408				VERIFY3P(tap[0].trim_msp, ==, msp);
1409				range_tree_walk(trim_tree,
1410				    vdev_trim_range_verify, &tap[0]);
1411				mutex_exit(&msp->ms_lock);
1412			}
1413
1414			range_tree_vacate(trim_tree, NULL, NULL);
1415			range_tree_destroy(trim_tree);
1416
1417			/*
1418			 * Wait for couples of kicks, to ensure the trim io is
1419			 * synced. If the wait is aborted due to
1420			 * vdev_autotrim_exit_wanted, we need to signal
1421			 * metaslab_enable() to wait for sync.
1422			 */
1423			if (issued_trim) {
1424				wait_aborted = vdev_autotrim_wait_kick(vd,
1425				    TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1426			}
1427
1428			metaslab_enable(msp, wait_aborted, B_FALSE);
1429			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1430
1431			for (uint64_t c = 0; c < children; c++) {
1432				trim_args_t *ta = &tap[c];
1433
1434				if (ta->trim_tree == NULL)
1435					continue;
1436
1437				range_tree_vacate(ta->trim_tree, NULL, NULL);
1438				range_tree_destroy(ta->trim_tree);
1439			}
1440
1441			kmem_free(tap, sizeof (trim_args_t) * children);
1442
1443			if (vdev_autotrim_should_stop(vd))
1444				break;
1445		}
1446
1447		spa_config_exit(spa, SCL_CONFIG, FTAG);
1448
1449		vdev_autotrim_wait_kick(vd, 1);
1450
1451		shift++;
1452		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1453	}
1454
1455	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1456		vdev_t *cvd = vd->vdev_child[c];
1457		mutex_enter(&cvd->vdev_trim_io_lock);
1458
1459		while (cvd->vdev_trim_inflight[1] > 0) {
1460			cv_wait(&cvd->vdev_trim_io_cv,
1461			    &cvd->vdev_trim_io_lock);
1462		}
1463		mutex_exit(&cvd->vdev_trim_io_lock);
1464	}
1465
1466	spa_config_exit(spa, SCL_CONFIG, FTAG);
1467
1468	/*
1469	 * When exiting because the autotrim property was set to off, then
1470	 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1471	 */
1472	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1473		for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1474			metaslab_t *msp = vd->vdev_ms[i];
1475
1476			mutex_enter(&msp->ms_lock);
1477			range_tree_vacate(msp->ms_trim, NULL, NULL);
1478			mutex_exit(&msp->ms_lock);
1479		}
1480	}
1481
1482	mutex_enter(&vd->vdev_autotrim_lock);
1483	ASSERT(vd->vdev_autotrim_thread != NULL);
1484	vd->vdev_autotrim_thread = NULL;
1485	cv_broadcast(&vd->vdev_autotrim_cv);
1486	mutex_exit(&vd->vdev_autotrim_lock);
1487
1488	thread_exit();
1489}
1490
1491/*
1492 * Starts an autotrim thread, if needed, for each top-level vdev which can be
1493 * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1494 */
1495void
1496vdev_autotrim(spa_t *spa)
1497{
1498	vdev_t *root_vd = spa->spa_root_vdev;
1499
1500	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1501		vdev_t *tvd = root_vd->vdev_child[i];
1502
1503		mutex_enter(&tvd->vdev_autotrim_lock);
1504		if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1505		    tvd->vdev_autotrim_thread == NULL &&
1506		    !tvd->vdev_rz_expanding) {
1507			ASSERT3P(tvd->vdev_top, ==, tvd);
1508
1509			tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1510			    vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1511			    maxclsyspri);
1512			ASSERT(tvd->vdev_autotrim_thread != NULL);
1513		}
1514		mutex_exit(&tvd->vdev_autotrim_lock);
1515	}
1516}
1517
1518/*
1519 * Wait for the vdev_autotrim_thread associated with the passed top-level
1520 * vdev to be terminated (canceled or stopped).
1521 */
1522void
1523vdev_autotrim_stop_wait(vdev_t *tvd)
1524{
1525	mutex_enter(&tvd->vdev_autotrim_lock);
1526	if (tvd->vdev_autotrim_thread != NULL) {
1527		tvd->vdev_autotrim_exit_wanted = B_TRUE;
1528		cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1529		cv_wait(&tvd->vdev_autotrim_cv,
1530		    &tvd->vdev_autotrim_lock);
1531
1532		ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1533		tvd->vdev_autotrim_exit_wanted = B_FALSE;
1534	}
1535	mutex_exit(&tvd->vdev_autotrim_lock);
1536}
1537
1538void
1539vdev_autotrim_kick(spa_t *spa)
1540{
1541	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1542
1543	vdev_t *root_vd = spa->spa_root_vdev;
1544	vdev_t *tvd;
1545
1546	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1547		tvd = root_vd->vdev_child[i];
1548
1549		mutex_enter(&tvd->vdev_autotrim_lock);
1550		if (tvd->vdev_autotrim_thread != NULL)
1551			cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1552		mutex_exit(&tvd->vdev_autotrim_lock);
1553	}
1554}
1555
1556/*
1557 * Wait for all of the vdev_autotrim_thread associated with the pool to
1558 * be terminated (canceled or stopped).
1559 */
1560void
1561vdev_autotrim_stop_all(spa_t *spa)
1562{
1563	vdev_t *root_vd = spa->spa_root_vdev;
1564
1565	for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1566		vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1567}
1568
1569/*
1570 * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1571 */
1572void
1573vdev_autotrim_restart(spa_t *spa)
1574{
1575	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1576	    spa->spa_load_thread == curthread);
1577	if (spa->spa_autotrim)
1578		vdev_autotrim(spa);
1579}
1580
1581static __attribute__((noreturn)) void
1582vdev_trim_l2arc_thread(void *arg)
1583{
1584	vdev_t		*vd = arg;
1585	spa_t		*spa = vd->vdev_spa;
1586	l2arc_dev_t	*dev = l2arc_vdev_get(vd);
1587	trim_args_t	ta = {0};
1588	range_seg64_t 	physical_rs;
1589
1590	ASSERT(vdev_is_concrete(vd));
1591	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1592
1593	vd->vdev_trim_last_offset = 0;
1594	vd->vdev_trim_rate = 0;
1595	vd->vdev_trim_partial = 0;
1596	vd->vdev_trim_secure = 0;
1597
1598	ta.trim_vdev = vd;
1599	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1600	ta.trim_type = TRIM_TYPE_MANUAL;
1601	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1602	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1603	ta.trim_flags = 0;
1604
1605	physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1606	physical_rs.rs_end = vd->vdev_trim_bytes_est =
1607	    vdev_get_min_asize(vd);
1608
1609	range_tree_add(ta.trim_tree, physical_rs.rs_start,
1610	    physical_rs.rs_end - physical_rs.rs_start);
1611
1612	mutex_enter(&vd->vdev_trim_lock);
1613	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1614	mutex_exit(&vd->vdev_trim_lock);
1615
1616	(void) vdev_trim_ranges(&ta);
1617
1618	spa_config_exit(spa, SCL_CONFIG, FTAG);
1619	mutex_enter(&vd->vdev_trim_io_lock);
1620	while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1621		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1622	}
1623	mutex_exit(&vd->vdev_trim_io_lock);
1624
1625	range_tree_vacate(ta.trim_tree, NULL, NULL);
1626	range_tree_destroy(ta.trim_tree);
1627
1628	mutex_enter(&vd->vdev_trim_lock);
1629	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1630		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1631		    vd->vdev_trim_rate, vd->vdev_trim_partial,
1632		    vd->vdev_trim_secure);
1633	}
1634	ASSERT(vd->vdev_trim_thread != NULL ||
1635	    vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1636
1637	/*
1638	 * Drop the vdev_trim_lock while we sync out the txg since it's
1639	 * possible that a device might be trying to come online and
1640	 * must check to see if it needs to restart a trim. That thread
1641	 * will be holding the spa_config_lock which would prevent the
1642	 * txg_wait_synced from completing. Same strategy as in
1643	 * vdev_trim_thread().
1644	 */
1645	mutex_exit(&vd->vdev_trim_lock);
1646	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1647	mutex_enter(&vd->vdev_trim_lock);
1648
1649	/*
1650	 * Update the header of the cache device here, before
1651	 * broadcasting vdev_trim_cv which may lead to the removal
1652	 * of the device. The same applies for setting l2ad_trim_all to
1653	 * false.
1654	 */
1655	spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1656	    RW_READER);
1657	memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1658	l2arc_dev_hdr_update(dev);
1659	spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1660
1661	vd->vdev_trim_thread = NULL;
1662	if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1663		dev->l2ad_trim_all = B_FALSE;
1664
1665	cv_broadcast(&vd->vdev_trim_cv);
1666	mutex_exit(&vd->vdev_trim_lock);
1667
1668	thread_exit();
1669}
1670
1671/*
1672 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1673 * to vd->vdev_trim_thread variable. This facilitates the management of
1674 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1675 * to a pool or pool creation or when the header of the device is invalid.
1676 */
1677void
1678vdev_trim_l2arc(spa_t *spa)
1679{
1680	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1681
1682	/*
1683	 * Locate the spa's l2arc devices and kick off TRIM threads.
1684	 */
1685	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1686		vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1687		l2arc_dev_t *dev = l2arc_vdev_get(vd);
1688
1689		if (dev == NULL || !dev->l2ad_trim_all) {
1690			/*
1691			 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1692			 * cache device was not marked for whole device TRIM
1693			 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1694			 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1695			 * l2ad_log_entries > 0).
1696			 */
1697			continue;
1698		}
1699
1700		mutex_enter(&vd->vdev_trim_lock);
1701		ASSERT(vd->vdev_ops->vdev_op_leaf);
1702		ASSERT(vdev_is_concrete(vd));
1703		ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1704		ASSERT(!vd->vdev_detached);
1705		ASSERT(!vd->vdev_trim_exit_wanted);
1706		ASSERT(!vd->vdev_top->vdev_removing);
1707		vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1708		vd->vdev_trim_thread = thread_create(NULL, 0,
1709		    vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1710		mutex_exit(&vd->vdev_trim_lock);
1711	}
1712}
1713
1714/*
1715 * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1716 * on leaf vdevs.
1717 */
1718int
1719vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1720{
1721	trim_args_t ta = {0};
1722	range_seg64_t physical_rs;
1723	int error;
1724	physical_rs.rs_start = start;
1725	physical_rs.rs_end = start + size;
1726
1727	ASSERT(vdev_is_concrete(vd));
1728	ASSERT(vd->vdev_ops->vdev_op_leaf);
1729	ASSERT(!vd->vdev_detached);
1730	ASSERT(!vd->vdev_top->vdev_removing);
1731	ASSERT(!vd->vdev_top->vdev_rz_expanding);
1732
1733	ta.trim_vdev = vd;
1734	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1735	ta.trim_type = TRIM_TYPE_SIMPLE;
1736	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1737	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1738	ta.trim_flags = 0;
1739
1740	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1741
1742	if (physical_rs.rs_end > physical_rs.rs_start) {
1743		range_tree_add(ta.trim_tree, physical_rs.rs_start,
1744		    physical_rs.rs_end - physical_rs.rs_start);
1745	} else {
1746		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1747	}
1748
1749	error = vdev_trim_ranges(&ta);
1750
1751	mutex_enter(&vd->vdev_trim_io_lock);
1752	while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1753		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1754	}
1755	mutex_exit(&vd->vdev_trim_io_lock);
1756
1757	range_tree_vacate(ta.trim_tree, NULL, NULL);
1758	range_tree_destroy(ta.trim_tree);
1759
1760	return (error);
1761}
1762
1763EXPORT_SYMBOL(vdev_trim);
1764EXPORT_SYMBOL(vdev_trim_stop);
1765EXPORT_SYMBOL(vdev_trim_stop_all);
1766EXPORT_SYMBOL(vdev_trim_stop_wait);
1767EXPORT_SYMBOL(vdev_trim_restart);
1768EXPORT_SYMBOL(vdev_autotrim);
1769EXPORT_SYMBOL(vdev_autotrim_stop_all);
1770EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1771EXPORT_SYMBOL(vdev_autotrim_restart);
1772EXPORT_SYMBOL(vdev_trim_l2arc);
1773EXPORT_SYMBOL(vdev_trim_simple);
1774
1775ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1776	"Max size of TRIM commands, larger will be split");
1777
1778ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1779	"Min size of TRIM commands, smaller will be skipped");
1780
1781ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1782	"Skip metaslabs which have never been initialized");
1783
1784ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1785	"Min number of txgs to aggregate frees before issuing TRIM");
1786
1787ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1788	"Max queued TRIMs outstanding per leaf vdev");
1789