1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2018 Intel Corporation.
23 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/spa.h>
28#include <sys/spa_impl.h>
29#include <sys/vdev_impl.h>
30#include <sys/vdev_draid.h>
31#include <sys/vdev_raidz.h>
32#include <sys/vdev_rebuild.h>
33#include <sys/abd.h>
34#include <sys/zio.h>
35#include <sys/nvpair.h>
36#include <sys/zio_checksum.h>
37#include <sys/fs/zfs.h>
38#include <sys/fm/fs/zfs.h>
39#include <zfs_fletcher.h>
40
41#ifdef ZFS_DEBUG
42#include <sys/vdev.h>	/* For vdev_xlate() in vdev_draid_io_verify() */
43#endif
44
45/*
46 * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
47 * comprised of multiple raidz redundancy groups which are spread over the
48 * dRAID children. To ensure an even distribution, and avoid hot spots, a
49 * permutation mapping is applied to the order of the dRAID children.
50 * This mixing effectively distributes the parity columns evenly over all
51 * of the disks in the dRAID.
52 *
53 * This is beneficial because it means when resilvering all of the disks
54 * can participate thereby increasing the available IOPs and bandwidth.
55 * Furthermore, by reserving a small fraction of each child's total capacity
56 * virtual distributed spare disks can be created. These spares similarly
57 * benefit from the performance gains of spanning all of the children. The
58 * consequence of which is that resilvering to a distributed spare can
59 * substantially reduce the time required to restore full parity to pool
60 * with a failed disks.
61 *
62 * === dRAID group layout ===
63 *
64 * First, let's define a "row" in the configuration to be a 16M chunk from
65 * each physical drive at the same offset. This is the minimum allowable
66 * size since it must be possible to store a full 16M block when there is
67 * only a single data column. Next, we define a "group" to be a set of
68 * sequential disks containing both the parity and data columns. We allow
69 * groups to span multiple rows in order to align any group size to any
70 * number of physical drives. Finally, a "slice" is comprised of the rows
71 * which contain the target number of groups. The permutation mappings
72 * are applied in a round robin fashion to each slice.
73 *
74 * Given D+P drives in a group (including parity drives) and C-S physical
75 * drives (not including the spare drives), we can distribute the groups
76 * across R rows without remainder by selecting the least common multiple
77 * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
78 *
79 * In the example below, there are C=14 physical drives in the configuration
80 * with S=2 drives worth of spare capacity. Each group has a width of 9
81 * which includes D=8 data and P=1 parity drive. There are 4 groups and
82 * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
83 * size is 576M (144M * 4). When allocating from a dRAID each group is
84 * filled before moving on to the next as show in slice0 below.
85 *
86 *             data disks (8 data + 1 parity)          spares (2)
87 *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
88 *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
89 *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
90 *  |  |              group 0              |  group 1..|       |
91 *  |  +-----------------------------------+-----------+-------|
92 *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
93 *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
94 *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
95 *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
96 *  s  +-----------------------+-----------------------+-------+
97 *  l  |       ..group 1       |        group 2..      |       |
98 *  i  +-----------------------+-----------------------+-------+
99 *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
100 *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
101 *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
102 *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
103 *  |  +-----------+-----------+-----------------------+-------+
104 *  |  |..group 2  |            group 3                |       |
105 *  |  +-----------+-----------+-----------------------+-------+
106 *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
107 *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
108 *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
109 *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
110 *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
111 *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
112 *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
113 *  l  |              group 4              |  group 5..|       | row 3
114 *  i  +-----------------------+-----------+-----------+-------|
115 *  c  |       ..group 5       |        group 6..      |       | row 4
116 *  e  +-----------+-----------+-----------------------+-------+
117 *  1  |..group 6  |            group 7                |       | row 5
118 *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
119 *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
120 *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
121 *  l  |              group 8              |  group 9..|       | row 6
122 *  i  +-----------------------------------------------+-------|
123 *  c  |       ..group 9       |        group 10..     |       | row 7
124 *  e  +-----------------------+-----------------------+-------+
125 *  2  |..group 10 |            group 11               |       | row 8
126 *     +-----------+-----------------------------------+-------+
127 *
128 * This layout has several advantages over requiring that each row contain
129 * a whole number of groups.
130 *
131 * 1. The group count is not a relevant parameter when defining a dRAID
132 *    layout. Only the group width is needed, and *all* groups will have
133 *    the desired size.
134 *
135 * 2. All possible group widths (<= physical disk count) can be supported.
136 *
137 * 3. The logic within vdev_draid.c is simplified when the group width is
138 *    the same for all groups (although some of the logic around computing
139 *    permutation numbers and drive offsets is more complicated).
140 *
141 * N.B. The following array describes all valid dRAID permutation maps.
142 * Each row is used to generate a permutation map for a different number
143 * of children from a unique seed. The seeds were generated and carefully
144 * evaluated by the 'draid' utility in order to provide balanced mappings.
145 * In addition to the seed a checksum of the in-memory mapping is stored
146 * for verification.
147 *
148 * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
149 * with a given permutation map) is the ratio of the amounts of I/O that will
150 * be sent to the least and most busy disks when resilvering. The average
151 * imbalance ratio (of a given number of disks and permutation map) is the
152 * average of the ratios of all possible single and double disk failures.
153 *
154 * In order to achieve a low imbalance ratio the number of permutations in
155 * the mapping must be significantly larger than the number of children.
156 * For dRAID the number of permutations has been limited to 512 to minimize
157 * the map size. This does result in a gradually increasing imbalance ratio
158 * as seen in the table below. Increasing the number of permutations for
159 * larger child counts would reduce the imbalance ratio. However, in practice
160 * when there are a large number of children each child is responsible for
161 * fewer total IOs so it's less of a concern.
162 *
163 * Note these values are hard coded and must never be changed.  Existing
164 * pools depend on the same mapping always being generated in order to
165 * read and write from the correct locations.  Any change would make
166 * existing pools completely inaccessible.
167 */
168static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
169	{   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },	/* 1.000 */
170	{   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },	/* 1.000 */
171	{   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },	/* 1.000 */
172	{   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },	/* 1.010 */
173	{   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },	/* 1.031 */
174	{   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },	/* 1.043 */
175	{   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },	/* 1.059 */
176	{   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },	/* 1.056 */
177	{  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },	/* 1.072 */
178	{  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },	/* 1.083 */
179	{  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },	/* 1.097 */
180	{  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },	/* 1.100 */
181	{  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },	/* 1.121 */
182	{  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },	/* 1.103 */
183	{  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },	/* 1.111 */
184	{  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },	/* 1.133 */
185	{  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },	/* 1.131 */
186	{  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },	/* 1.130 */
187	{  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },	/* 1.141 */
188	{  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },	/* 1.139 */
189	{  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },	/* 1.150 */
190	{  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },	/* 1.174 */
191	{  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },	/* 1.168 */
192	{  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },	/* 1.180 */
193	{  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },	/* 1.226 */
194	{  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },	/* 1.228 */
195	{  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },	/* 1.217 */
196	{  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },	/* 1.239 */
197	{  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },	/* 1.238 */
198	{  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },	/* 1.273 */
199	{  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },	/* 1.191 */
200	{  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },	/* 1.199 */
201	{  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },	/* 1.195 */
202	{  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },	/* 1.201 */
203	{  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },	/* 1.194 */
204	{  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },	/* 1.237 */
205	{  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },	/* 1.242 */
206	{  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },	/* 1.231 */
207	{  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },	/* 1.233 */
208	{  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },	/* 1.271 */
209	{  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },	/* 1.263 */
210	{  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },	/* 1.270 */
211	{  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },	/* 1.281 */
212	{  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },	/* 1.282 */
213	{  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },	/* 1.286 */
214	{  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },	/* 1.329 */
215	{  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },	/* 1.286 */
216	{  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },	/* 1.322 */
217	{  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },	/* 1.335 */
218	{  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },	/* 1.305 */
219	{  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },	/* 1.330 */
220	{  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },	/* 1.365 */
221	{  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },	/* 1.334 */
222	{  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },	/* 1.364 */
223	{  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },	/* 1.374 */
224	{  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },	/* 1.363 */
225	{  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },	/* 1.401 */
226	{  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },	/* 1.392 */
227	{  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },	/* 1.360 */
228	{  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },	/* 1.396 */
229	{  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },	/* 1.453 */
230	{  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },	/* 1.437 */
231	{  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },	/* 1.402 */
232	{  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },	/* 1.459 */
233	{  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },	/* 1.423 */
234	{  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },	/* 1.447 */
235	{  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },	/* 1.450 */
236	{  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },	/* 1.455 */
237	{  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },	/* 1.463 */
238	{  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },	/* 1.463 */
239	{  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },	/* 1.452 */
240	{  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },	/* 1.498 */
241	{  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },	/* 1.526 */
242	{  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },	/* 1.491 */
243	{  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },	/* 1.470 */
244	{  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },	/* 1.527 */
245	{  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },	/* 1.509 */
246	{  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },	/* 1.569 */
247	{  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },	/* 1.555 */
248	{  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },	/* 1.509 */
249	{  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },	/* 1.596 */
250	{  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },	/* 1.568 */
251	{  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },	/* 1.541 */
252	{  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },	/* 1.623 */
253	{  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },	/* 1.620 */
254	{  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },	/* 1.597 */
255	{  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },	/* 1.575 */
256	{  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },	/* 1.627 */
257	{  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },	/* 1.596 */
258	{  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },	/* 1.622 */
259	{  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },	/* 1.695 */
260	{  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },	/* 1.605 */
261	{  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },	/* 1.625 */
262	{  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },	/* 1.687 */
263	{  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },	/* 1.621 */
264	{  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },	/* 1.699 */
265	{  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },	/* 1.688 */
266	{  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },	/* 1.642 */
267	{ 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },	/* 1.683 */
268	{ 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },	/* 1.755 */
269	{ 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },	/* 1.692 */
270	{ 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },	/* 1.747 */
271	{ 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },	/* 1.751 */
272	{ 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },	/* 1.751 */
273	{ 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },	/* 1.726 */
274	{ 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },	/* 1.788 */
275	{ 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },	/* 1.740 */
276	{ 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },	/* 1.780 */
277	{ 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },	/* 1.836 */
278	{ 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },	/* 1.778 */
279	{ 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },	/* 1.831 */
280	{ 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },	/* 1.825 */
281	{ 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },	/* 1.826 */
282	{ 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },	/* 1.843 */
283	{ 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },	/* 1.826 */
284	{ 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },	/* 1.803 */
285	{ 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },	/* 1.857 */
286	{ 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },	/* 1.877 */
287	{ 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },	/* 1.849 */
288	{ 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },	/* 1.867 */
289	{ 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },	/* 1.978 */
290	{ 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },	/* 1.947 */
291	{ 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },	/* 1.865 */
292	{ 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },	/* 1.881 */
293	{ 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },	/* 1.882 */
294	{ 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },	/* 1.867 */
295	{ 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },	/* 1.972 */
296	{ 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },	/* 1.896 */
297	{ 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },	/* 1.965 */
298	{ 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },	/* 1.963 */
299	{ 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },	/* 1.925 */
300	{ 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },	/* 1.862 */
301	{ 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },	/* 2.042 */
302	{ 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },	/* 1.935 */
303	{ 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },	/* 2.005 */
304	{ 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },	/* 2.041 */
305	{ 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },	/* 1.997 */
306	{ 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },	/* 1.996 */
307	{ 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },	/* 2.053 */
308	{ 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },	/* 1.971 */
309	{ 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },	/* 2.018 */
310	{ 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },	/* 1.961 */
311	{ 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },	/* 2.046 */
312	{ 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },	/* 1.968 */
313	{ 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },	/* 2.143 */
314	{ 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },	/* 2.064 */
315	{ 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },	/* 2.023 */
316	{ 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },	/* 2.136 */
317	{ 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },	/* 2.063 */
318	{ 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },	/* 1.974 */
319	{ 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },	/* 2.210 */
320	{ 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },	/* 2.006 */
321	{ 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },	/* 2.193 */
322	{ 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },	/* 2.163 */
323	{ 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },	/* 2.046 */
324	{ 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },	/* 2.084 */
325	{ 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },	/* 2.264 */
326	{ 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },	/* 2.074 */
327	{ 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },	/* 2.282 */
328	{ 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },	/* 2.148 */
329	{ 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },	/* 2.355 */
330	{ 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },	/* 2.164 */
331	{ 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },	/* 2.393 */
332	{ 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },	/* 2.178 */
333	{ 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },	/* 2.334 */
334	{ 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },	/* 2.266 */
335	{ 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },	/* 2.304 */
336	{ 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },	/* 2.218 */
337	{ 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },	/* 2.377 */
338	{ 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },	/* 2.155 */
339	{ 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },	/* 2.404 */
340	{ 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },	/* 2.205 */
341	{ 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },	/* 2.359 */
342	{ 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },	/* 2.158 */
343	{ 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },	/* 2.614 */
344	{ 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },	/* 2.239 */
345	{ 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },	/* 2.493 */
346	{ 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },	/* 2.327 */
347	{ 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },	/* 2.231 */
348	{ 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },	/* 2.237 */
349	{ 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },	/* 2.691 */
350	{ 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },	/* 2.170 */
351	{ 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },	/* 2.600 */
352	{ 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },	/* 2.391 */
353	{ 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },	/* 2.677 */
354	{ 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },	/* 2.410 */
355	{ 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },	/* 2.776 */
356	{ 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },	/* 2.266 */
357	{ 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },	/* 2.717 */
358	{ 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },	/* 2.474 */
359	{ 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },	/* 2.673 */
360	{ 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },	/* 2.420 */
361	{ 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },	/* 2.898 */
362	{ 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },	/* 2.363 */
363	{ 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },	/* 2.747 */
364	{ 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },	/* 2.531 */
365	{ 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },	/* 2.707 */
366	{ 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },	/* 2.315 */
367	{ 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },	/* 3.012 */
368	{ 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },	/* 2.378 */
369	{ 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },	/* 2.969 */
370	{ 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },	/* 2.594 */
371	{ 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },	/* 2.763 */
372	{ 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },	/* 2.457 */
373	{ 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },	/* 3.057 */
374	{ 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },	/* 2.590 */
375	{ 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },	/* 3.047 */
376	{ 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },	/* 2.676 */
377	{ 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },	/* 2.993 */
378	{ 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },	/* 2.457 */
379	{ 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },	/* 3.182 */
380	{ 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },	/* 2.563 */
381	{ 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },	/* 3.025 */
382	{ 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },	/* 2.730 */
383	{ 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },	/* 3.036 */
384	{ 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },	/* 2.722 */
385	{ 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },	/* 3.356 */
386	{ 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },	/* 2.697 */
387	{ 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },	/* 2.979 */
388	{ 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },	/* 2.858 */
389	{ 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },	/* 3.258 */
390	{ 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },	/* 2.693 */
391	{ 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },	/* 3.259 */
392	{ 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },	/* 2.733 */
393	{ 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },	/* 3.235 */
394	{ 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },	/* 2.983 */
395	{ 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },	/* 3.308 */
396	{ 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },	/* 2.715 */
397	{ 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },	/* 3.540 */
398	{ 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },	/* 2.779 */
399	{ 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },	/* 3.084 */
400	{ 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },	/* 2.987 */
401	{ 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },	/* 3.341 */
402	{ 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },	/* 2.793 */
403	{ 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },	/* 3.518 */
404	{ 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },	/* 2.962 */
405	{ 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },	/* 3.196 */
406	{ 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },	/* 2.914 */
407	{ 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },	/* 3.408 */
408	{ 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },	/* 2.903 */
409	{ 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },	/* 3.778 */
410	{ 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },	/* 3.026 */
411	{ 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },	/* 3.347 */
412	{ 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },	/* 3.212 */
413	{ 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },	/* 3.482 */
414	{ 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },	/* 3.146 */
415	{ 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },	/* 3.626 */
416	{ 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },	/* 2.952 */
417	{ 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },	/* 3.463 */
418	{ 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },	/* 3.131 */
419	{ 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },	/* 3.538 */
420	{ 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },	/* 2.974 */
421	{ 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },	/* 3.843 */
422	{ 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },	/* 3.088 */
423};
424
425/*
426 * Verify the map is valid. Each device index must appear exactly
427 * once in every row, and the permutation array checksum must match.
428 */
429static int
430verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
431    uint64_t checksum)
432{
433	int countssz = sizeof (uint16_t) * children;
434	uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
435
436	for (int i = 0; i < nperms; i++) {
437		for (int j = 0; j < children; j++) {
438			uint8_t val = perms[(i * children) + j];
439
440			if (val >= children || counts[val] != i) {
441				kmem_free(counts, countssz);
442				return (EINVAL);
443			}
444
445			counts[val]++;
446		}
447	}
448
449	if (checksum != 0) {
450		int permssz = sizeof (uint8_t) * children * nperms;
451		zio_cksum_t cksum;
452
453		fletcher_4_native_varsize(perms, permssz, &cksum);
454
455		if (checksum != cksum.zc_word[0]) {
456			kmem_free(counts, countssz);
457			return (ECKSUM);
458		}
459	}
460
461	kmem_free(counts, countssz);
462
463	return (0);
464}
465
466/*
467 * Generate the permutation array for the draid_map_t.  These maps control
468 * the placement of all data in a dRAID.  Therefore it's critical that the
469 * seed always generates the same mapping.  We provide our own pseudo-random
470 * number generator for this purpose.
471 */
472int
473vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
474{
475	VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
476	VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
477	VERIFY3U(map->dm_seed, !=, 0);
478	VERIFY3U(map->dm_nperms, !=, 0);
479	VERIFY3P(map->dm_perms, ==, NULL);
480
481#ifdef _KERNEL
482	/*
483	 * The kernel code always provides both a map_seed and checksum.
484	 * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
485	 * a zero checksum when generating new candidate maps.
486	 */
487	VERIFY3U(map->dm_checksum, !=, 0);
488#endif
489	uint64_t children = map->dm_children;
490	uint64_t nperms = map->dm_nperms;
491	int rowsz = sizeof (uint8_t) * children;
492	int permssz = rowsz * nperms;
493	uint8_t *perms;
494
495	/* Allocate the permutation array */
496	perms = vmem_alloc(permssz, KM_SLEEP);
497
498	/* Setup an initial row with a known pattern */
499	uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
500	for (int i = 0; i < children; i++)
501		initial_row[i] = i;
502
503	uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
504	uint8_t *current_row, *previous_row = initial_row;
505
506	/*
507	 * Perform a Fisher-Yates shuffle of each row using the previous
508	 * row as the starting point.  An initial_row with known pattern
509	 * is used as the input for the first row.
510	 */
511	for (int i = 0; i < nperms; i++) {
512		current_row = &perms[i * children];
513		memcpy(current_row, previous_row, rowsz);
514
515		for (int j = children - 1; j > 0; j--) {
516			uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
517			uint8_t val = current_row[j];
518			current_row[j] = current_row[k];
519			current_row[k] = val;
520		}
521
522		previous_row = current_row;
523	}
524
525	kmem_free(initial_row, rowsz);
526
527	int error = verify_perms(perms, children, nperms, map->dm_checksum);
528	if (error) {
529		vmem_free(perms, permssz);
530		return (error);
531	}
532
533	*permsp = perms;
534
535	return (0);
536}
537
538/*
539 * Lookup the fixed draid_map_t for the requested number of children.
540 */
541int
542vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
543{
544	for (int i = 0; i < VDEV_DRAID_MAX_MAPS; i++) {
545		if (draid_maps[i].dm_children == children) {
546			*mapp = &draid_maps[i];
547			return (0);
548		}
549	}
550
551	return (ENOENT);
552}
553
554/*
555 * Lookup the permutation array and iteration id for the provided offset.
556 */
557static void
558vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
559    uint8_t **base, uint64_t *iter)
560{
561	uint64_t ncols = vdc->vdc_children;
562	uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
563
564	*base = vdc->vdc_perms + (poff / ncols) * ncols;
565	*iter = poff % ncols;
566}
567
568static inline uint64_t
569vdev_draid_permute_id(vdev_draid_config_t *vdc,
570    uint8_t *base, uint64_t iter, uint64_t index)
571{
572	return ((base[index] + iter) % vdc->vdc_children);
573}
574
575/*
576 * Return the asize which is the psize rounded up to a full group width.
577 * i.e. vdev_draid_psize_to_asize().
578 */
579static uint64_t
580vdev_draid_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
581{
582	(void) txg;
583	vdev_draid_config_t *vdc = vd->vdev_tsd;
584	uint64_t ashift = vd->vdev_ashift;
585
586	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
587
588	uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
589	uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
590
591	ASSERT3U(asize, !=, 0);
592	ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
593
594	return (asize);
595}
596
597/*
598 * Deflate the asize to the psize, this includes stripping parity.
599 */
600uint64_t
601vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
602{
603	vdev_draid_config_t *vdc = vd->vdev_tsd;
604
605	ASSERT0(asize % vdc->vdc_groupwidth);
606
607	return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
608}
609
610/*
611 * Convert a logical offset to the corresponding group number.
612 */
613static uint64_t
614vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
615{
616	vdev_draid_config_t *vdc = vd->vdev_tsd;
617
618	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
619
620	return (offset / vdc->vdc_groupsz);
621}
622
623/*
624 * Convert a group number to the logical starting offset for that group.
625 */
626static uint64_t
627vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
628{
629	vdev_draid_config_t *vdc = vd->vdev_tsd;
630
631	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
632
633	return (group * vdc->vdc_groupsz);
634}
635
636/*
637 * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
638 * is calculated over all the columns, including empty zero filled sectors,
639 * and each is written to disk.  While only the data columns are needed for
640 * a normal read, all of the columns are required for reconstruction when
641 * performing a sequential resilver.
642 *
643 * For "big columns" it's sufficient to map the correct range of the zio ABD.
644 * Partial columns require allocating a gang ABD in order to zero fill the
645 * empty sectors.  When the column is empty a zero filled sector must be
646 * mapped.  In all cases the data ABDs must be the same size as the parity
647 * ABDs (e.g. rc->rc_size == parity_size).
648 */
649static void
650vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
651{
652	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
653	uint64_t parity_size = rr->rr_col[0].rc_size;
654	uint64_t abd_off = abd_offset;
655
656	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
657	ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
658
659	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
660		raidz_col_t *rc = &rr->rr_col[c];
661
662		if (rc->rc_size == 0) {
663			/* empty data column (small write), add a skip sector */
664			ASSERT3U(skip_size, ==, parity_size);
665			rc->rc_abd = abd_get_zeros(skip_size);
666		} else if (rc->rc_size == parity_size) {
667			/* this is a "big column" */
668			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
669			    zio->io_abd, abd_off, rc->rc_size);
670		} else {
671			/* short data column, add a skip sector */
672			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
673			rc->rc_abd = abd_alloc_gang();
674			abd_gang_add(rc->rc_abd, abd_get_offset_size(
675			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
676			abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
677			    B_TRUE);
678		}
679
680		ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
681
682		abd_off += rc->rc_size;
683		rc->rc_size = parity_size;
684	}
685
686	IMPLY(abd_offset != 0, abd_off == zio->io_size);
687}
688
689/*
690 * Scrub/resilver reads.  In order to store the contents of the skip sectors
691 * an additional ABD is allocated.  The columns are handled in the same way
692 * as a full stripe write except instead of using the zero ABD the newly
693 * allocated skip ABD is used to back the skip sectors.  In all cases the
694 * data ABD must be the same size as the parity ABDs.
695 */
696static void
697vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
698{
699	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
700	uint64_t parity_size = rr->rr_col[0].rc_size;
701	uint64_t abd_off = abd_offset;
702	uint64_t skip_off = 0;
703
704	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
705	ASSERT3P(rr->rr_abd_empty, ==, NULL);
706
707	if (rr->rr_nempty > 0) {
708		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
709		    B_FALSE);
710	}
711
712	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
713		raidz_col_t *rc = &rr->rr_col[c];
714
715		if (rc->rc_size == 0) {
716			/* empty data column (small read), add a skip sector */
717			ASSERT3U(skip_size, ==, parity_size);
718			ASSERT3U(rr->rr_nempty, !=, 0);
719			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
720			    skip_off, skip_size);
721			skip_off += skip_size;
722		} else if (rc->rc_size == parity_size) {
723			/* this is a "big column" */
724			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
725			    zio->io_abd, abd_off, rc->rc_size);
726		} else {
727			/* short data column, add a skip sector */
728			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
729			ASSERT3U(rr->rr_nempty, !=, 0);
730			rc->rc_abd = abd_alloc_gang();
731			abd_gang_add(rc->rc_abd, abd_get_offset_size(
732			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
733			abd_gang_add(rc->rc_abd, abd_get_offset_size(
734			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
735			skip_off += skip_size;
736		}
737
738		uint64_t abd_size = abd_get_size(rc->rc_abd);
739		ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
740
741		/*
742		 * Increase rc_size so the skip ABD is included in subsequent
743		 * parity calculations.
744		 */
745		abd_off += rc->rc_size;
746		rc->rc_size = abd_size;
747	}
748
749	IMPLY(abd_offset != 0, abd_off == zio->io_size);
750	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
751}
752
753/*
754 * Normal reads.  In this common case only the columns containing data
755 * are read in to the zio ABDs.  Neither the parity columns or empty skip
756 * sectors are read unless the checksum fails verification.  In which case
757 * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
758 * the raid map in order to allow reconstruction using the parity data and
759 * skip sectors.
760 */
761static void
762vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
763{
764	uint64_t abd_off = abd_offset;
765
766	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
767
768	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
769		raidz_col_t *rc = &rr->rr_col[c];
770
771		if (rc->rc_size > 0) {
772			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
773			    zio->io_abd, abd_off, rc->rc_size);
774			abd_off += rc->rc_size;
775		}
776	}
777
778	IMPLY(abd_offset != 0, abd_off == zio->io_size);
779}
780
781/*
782 * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
783 * difference is that an ABD is allocated to back skip sectors so they may
784 * be read in to memory, verified, and repaired if needed.
785 */
786void
787vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
788{
789	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
790	uint64_t parity_size = rr->rr_col[0].rc_size;
791	uint64_t skip_off = 0;
792
793	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
794	ASSERT3P(rr->rr_abd_empty, ==, NULL);
795
796	if (rr->rr_nempty > 0) {
797		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
798		    B_FALSE);
799	}
800
801	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
802		raidz_col_t *rc = &rr->rr_col[c];
803
804		if (rc->rc_size == 0) {
805			/* empty data column (small read), add a skip sector */
806			ASSERT3U(skip_size, ==, parity_size);
807			ASSERT3U(rr->rr_nempty, !=, 0);
808			ASSERT3P(rc->rc_abd, ==, NULL);
809			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
810			    skip_off, skip_size);
811			skip_off += skip_size;
812		} else if (rc->rc_size == parity_size) {
813			/* this is a "big column", nothing to add */
814			ASSERT3P(rc->rc_abd, !=, NULL);
815		} else {
816			/*
817			 * short data column, add a skip sector and clear
818			 * rc_tried to force the entire column to be re-read
819			 * thereby including the missing skip sector data
820			 * which is needed for reconstruction.
821			 */
822			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
823			ASSERT3U(rr->rr_nempty, !=, 0);
824			ASSERT3P(rc->rc_abd, !=, NULL);
825			ASSERT(!abd_is_gang(rc->rc_abd));
826			abd_t *read_abd = rc->rc_abd;
827			rc->rc_abd = abd_alloc_gang();
828			abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
829			abd_gang_add(rc->rc_abd, abd_get_offset_size(
830			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
831			skip_off += skip_size;
832			rc->rc_tried = 0;
833		}
834
835		/*
836		 * Increase rc_size so the empty ABD is included in subsequent
837		 * parity calculations.
838		 */
839		rc->rc_size = parity_size;
840	}
841
842	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
843}
844
845/*
846 * Verify that all empty sectors are zero filled before using them to
847 * calculate parity.  Otherwise, silent corruption in an empty sector will
848 * result in bad parity being generated.  That bad parity will then be
849 * considered authoritative and overwrite the good parity on disk.  This
850 * is possible because the checksum is only calculated over the data,
851 * thus it cannot be used to detect damage in empty sectors.
852 */
853int
854vdev_draid_map_verify_empty(zio_t *zio, raidz_row_t *rr)
855{
856	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
857	uint64_t parity_size = rr->rr_col[0].rc_size;
858	uint64_t skip_off = parity_size - skip_size;
859	uint64_t empty_off = 0;
860	int ret = 0;
861
862	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
863	ASSERT3P(rr->rr_abd_empty, !=, NULL);
864	ASSERT3U(rr->rr_bigcols, >, 0);
865
866	void *zero_buf = kmem_zalloc(skip_size, KM_SLEEP);
867
868	for (int c = rr->rr_bigcols; c < rr->rr_cols; c++) {
869		raidz_col_t *rc = &rr->rr_col[c];
870
871		ASSERT3P(rc->rc_abd, !=, NULL);
872		ASSERT3U(rc->rc_size, ==, parity_size);
873
874		if (abd_cmp_buf_off(rc->rc_abd, zero_buf, skip_off,
875		    skip_size) != 0) {
876			vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
877			abd_zero_off(rc->rc_abd, skip_off, skip_size);
878			rc->rc_error = SET_ERROR(ECKSUM);
879			ret++;
880		}
881
882		empty_off += skip_size;
883	}
884
885	ASSERT3U(empty_off, ==, abd_get_size(rr->rr_abd_empty));
886
887	kmem_free(zero_buf, skip_size);
888
889	return (ret);
890}
891
892/*
893 * Given a logical address within a dRAID configuration, return the physical
894 * address on the first drive in the group that this address maps to
895 * (at position 'start' in permutation number 'perm').
896 */
897static uint64_t
898vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
899    uint64_t *perm, uint64_t *start)
900{
901	vdev_draid_config_t *vdc = vd->vdev_tsd;
902
903	/* b is the dRAID (parent) sector offset. */
904	uint64_t ashift = vd->vdev_top->vdev_ashift;
905	uint64_t b_offset = logical_offset >> ashift;
906
907	/*
908	 * The height of a row in units of the vdev's minimum sector size.
909	 * This is the amount of data written to each disk of each group
910	 * in a given permutation.
911	 */
912	uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
913
914	/*
915	 * We cycle through a disk permutation every groupsz * ngroups chunk
916	 * of address space. Note that ngroups * groupsz must be a multiple
917	 * of the number of data drives (ndisks) in order to guarantee
918	 * alignment. So, for example, if our row height is 16MB, our group
919	 * size is 10, and there are 13 data drives in the draid, then ngroups
920	 * will be 13, we will change permutation every 2.08GB and each
921	 * disk will have 160MB of data per chunk.
922	 */
923	uint64_t groupwidth = vdc->vdc_groupwidth;
924	uint64_t ngroups = vdc->vdc_ngroups;
925	uint64_t ndisks = vdc->vdc_ndisks;
926
927	/*
928	 * groupstart is where the group this IO will land in "starts" in
929	 * the permutation array.
930	 */
931	uint64_t group = logical_offset / vdc->vdc_groupsz;
932	uint64_t groupstart = (group * groupwidth) % ndisks;
933	ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
934	*start = groupstart;
935
936	/* b_offset is the sector offset within a group chunk */
937	b_offset = b_offset % (rowheight_sectors * groupwidth);
938	ASSERT0(b_offset % groupwidth);
939
940	/*
941	 * Find the starting byte offset on each child vdev:
942	 * - within a permutation there are ngroups groups spread over the
943	 *   rows, where each row covers a slice portion of the disk
944	 * - each permutation has (groupwidth * ngroups) / ndisks rows
945	 * - so each permutation covers rows * slice portion of the disk
946	 * - so we need to find the row where this IO group target begins
947	 */
948	*perm = group / ngroups;
949	uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
950	    (((group % ngroups) * groupwidth) / ndisks);
951
952	return (((rowheight_sectors * row) +
953	    (b_offset / groupwidth)) << ashift);
954}
955
956static uint64_t
957vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
958    uint64_t abd_offset, uint64_t abd_size)
959{
960	vdev_t *vd = zio->io_vd;
961	vdev_draid_config_t *vdc = vd->vdev_tsd;
962	uint64_t ashift = vd->vdev_top->vdev_ashift;
963	uint64_t io_size = abd_size;
964	uint64_t io_asize = vdev_draid_asize(vd, io_size, 0);
965	uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
966	uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
967
968	/*
969	 * Limit the io_size to the space remaining in the group.  A second
970	 * row in the raidz_map_t is created for the remainder.
971	 */
972	if (io_offset + io_asize > start_offset) {
973		io_size = vdev_draid_asize_to_psize(vd,
974		    start_offset - io_offset);
975	}
976
977	/*
978	 * At most a block may span the logical end of one group and the start
979	 * of the next group. Therefore, at the end of a group the io_size must
980	 * span the group width evenly and the remainder must be aligned to the
981	 * start of the next group.
982	 */
983	IMPLY(abd_offset == 0 && io_size < zio->io_size,
984	    (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
985	IMPLY(abd_offset != 0,
986	    vdev_draid_group_to_offset(vd, group) == io_offset);
987
988	/* Lookup starting byte offset on each child vdev */
989	uint64_t groupstart, perm;
990	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
991	    io_offset, &perm, &groupstart);
992
993	/*
994	 * If there is less than groupwidth drives available after the group
995	 * start, the group is going to wrap onto the next row. 'wrap' is the
996	 * group disk number that starts on the next row.
997	 */
998	uint64_t ndisks = vdc->vdc_ndisks;
999	uint64_t groupwidth = vdc->vdc_groupwidth;
1000	uint64_t wrap = groupwidth;
1001
1002	if (groupstart + groupwidth > ndisks)
1003		wrap = ndisks - groupstart;
1004
1005	/* The io size in units of the vdev's minimum sector size. */
1006	const uint64_t psize = io_size >> ashift;
1007
1008	/*
1009	 * "Quotient": The number of data sectors for this stripe on all but
1010	 * the "big column" child vdevs that also contain "remainder" data.
1011	 */
1012	uint64_t q = psize / vdc->vdc_ndata;
1013
1014	/*
1015	 * "Remainder": The number of partial stripe data sectors in this I/O.
1016	 * This will add a sector to some, but not all, child vdevs.
1017	 */
1018	uint64_t r = psize - q * vdc->vdc_ndata;
1019
1020	/* The number of "big columns" - those which contain remainder data. */
1021	uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
1022	ASSERT3U(bc, <, groupwidth);
1023
1024	/* The total number of data and parity sectors for this I/O. */
1025	uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
1026
1027	ASSERT3U(vdc->vdc_nparity, >, 0);
1028
1029	raidz_row_t *rr = vdev_raidz_row_alloc(groupwidth);
1030	rr->rr_bigcols = bc;
1031	rr->rr_firstdatacol = vdc->vdc_nparity;
1032#ifdef ZFS_DEBUG
1033	rr->rr_offset = io_offset;
1034	rr->rr_size = io_size;
1035#endif
1036	*rrp = rr;
1037
1038	uint8_t *base;
1039	uint64_t iter, asize = 0;
1040	vdev_draid_get_perm(vdc, perm, &base, &iter);
1041	for (uint64_t i = 0; i < groupwidth; i++) {
1042		raidz_col_t *rc = &rr->rr_col[i];
1043		uint64_t c = (groupstart + i) % ndisks;
1044
1045		/* increment the offset if we wrap to the next row */
1046		if (i == wrap)
1047			physical_offset += VDEV_DRAID_ROWHEIGHT;
1048
1049		rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
1050		rc->rc_offset = physical_offset;
1051
1052		if (q == 0 && i >= bc)
1053			rc->rc_size = 0;
1054		else if (i < bc)
1055			rc->rc_size = (q + 1) << ashift;
1056		else
1057			rc->rc_size = q << ashift;
1058
1059		asize += rc->rc_size;
1060	}
1061
1062	ASSERT3U(asize, ==, tot << ashift);
1063	rr->rr_nempty = roundup(tot, groupwidth) - tot;
1064	IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
1065
1066	/* Allocate buffers for the parity columns */
1067	for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
1068		raidz_col_t *rc = &rr->rr_col[c];
1069		rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
1070	}
1071
1072	/*
1073	 * Map buffers for data columns and allocate/map buffers for skip
1074	 * sectors.  There are three distinct cases for dRAID which are
1075	 * required to support sequential rebuild.
1076	 */
1077	if (zio->io_type == ZIO_TYPE_WRITE) {
1078		vdev_draid_map_alloc_write(zio, abd_offset, rr);
1079	} else if ((rr->rr_nempty > 0) &&
1080	    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1081		vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
1082	} else {
1083		ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1084		vdev_draid_map_alloc_read(zio, abd_offset, rr);
1085	}
1086
1087	return (io_size);
1088}
1089
1090/*
1091 * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
1092 * calculations for dRAID are identical to raidz however there are a few
1093 * differences in the layout.
1094 *
1095 * - dRAID always allocates a full stripe width. Any extra sectors due
1096 *   this padding are zero filled and written to disk. They will be read
1097 *   back during a scrub or repair operation since they are included in
1098 *   the parity calculation. This property enables sequential resilvering.
1099 *
1100 * - When the block at the logical offset spans redundancy groups then two
1101 *   rows are allocated in the raidz_map_t. One row resides at the end of
1102 *   the first group and the other at the start of the following group.
1103 */
1104static raidz_map_t *
1105vdev_draid_map_alloc(zio_t *zio)
1106{
1107	raidz_row_t *rr[2];
1108	uint64_t abd_offset = 0;
1109	uint64_t abd_size = zio->io_size;
1110	uint64_t io_offset = zio->io_offset;
1111	uint64_t size;
1112	int nrows = 1;
1113
1114	size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
1115	    abd_offset, abd_size);
1116	if (size < abd_size) {
1117		vdev_t *vd = zio->io_vd;
1118
1119		io_offset += vdev_draid_asize(vd, size, 0);
1120		abd_offset += size;
1121		abd_size -= size;
1122		nrows++;
1123
1124		ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
1125		    vd, vdev_draid_offset_to_group(vd, io_offset)));
1126		ASSERT3U(abd_offset, <, zio->io_size);
1127		ASSERT3U(abd_size, !=, 0);
1128
1129		size = vdev_draid_map_alloc_row(zio, &rr[1],
1130		    io_offset, abd_offset, abd_size);
1131		VERIFY3U(size, ==, abd_size);
1132	}
1133
1134	raidz_map_t *rm;
1135	rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
1136	rm->rm_ops = vdev_raidz_math_get_ops();
1137	rm->rm_nrows = nrows;
1138	rm->rm_row[0] = rr[0];
1139	if (nrows == 2)
1140		rm->rm_row[1] = rr[1];
1141	return (rm);
1142}
1143
1144/*
1145 * Given an offset into a dRAID return the next group width aligned offset
1146 * which can be used to start an allocation.
1147 */
1148static uint64_t
1149vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
1150{
1151	vdev_draid_config_t *vdc = vd->vdev_tsd;
1152
1153	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1154
1155	return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
1156}
1157
1158/*
1159 * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
1160 * rounded down to the last full slice.  So each child must provide at least
1161 * 1 / (children - nspares) of its asize.
1162 */
1163static uint64_t
1164vdev_draid_min_asize(vdev_t *vd)
1165{
1166	vdev_draid_config_t *vdc = vd->vdev_tsd;
1167
1168	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1169
1170	return (VDEV_DRAID_REFLOW_RESERVE +
1171	    (vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
1172}
1173
1174/*
1175 * When using dRAID the minimum allocation size is determined by the number
1176 * of data disks in the redundancy group.  Full stripes are always used.
1177 */
1178static uint64_t
1179vdev_draid_min_alloc(vdev_t *vd)
1180{
1181	vdev_draid_config_t *vdc = vd->vdev_tsd;
1182
1183	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1184
1185	return (vdc->vdc_ndata << vd->vdev_ashift);
1186}
1187
1188/*
1189 * Returns true if the txg range does not exist on any leaf vdev.
1190 *
1191 * A dRAID spare does not fit into the DTL model. While it has child vdevs
1192 * there is no redundancy among them, and the effective child vdev is
1193 * determined by offset. Essentially we do a vdev_dtl_reassess() on the
1194 * fly by replacing a dRAID spare with the child vdev under the offset.
1195 * Note that it is a recursive process because the child vdev can be
1196 * another dRAID spare and so on.
1197 */
1198boolean_t
1199vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1200    uint64_t size)
1201{
1202	if (vd->vdev_ops == &vdev_spare_ops ||
1203	    vd->vdev_ops == &vdev_replacing_ops) {
1204		/*
1205		 * Check all of the readable children, if any child
1206		 * contains the txg range the data it is not missing.
1207		 */
1208		for (int c = 0; c < vd->vdev_children; c++) {
1209			vdev_t *cvd = vd->vdev_child[c];
1210
1211			if (!vdev_readable(cvd))
1212				continue;
1213
1214			if (!vdev_draid_missing(cvd, physical_offset,
1215			    txg, size))
1216				return (B_FALSE);
1217		}
1218
1219		return (B_TRUE);
1220	}
1221
1222	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1223		/*
1224		 * When sequentially resilvering we don't have a proper
1225		 * txg range so instead we must presume all txgs are
1226		 * missing on this vdev until the resilver completes.
1227		 */
1228		if (vd->vdev_rebuild_txg != 0)
1229			return (B_TRUE);
1230
1231		/*
1232		 * DTL_MISSING is set for all prior txgs when a resilver
1233		 * is started in spa_vdev_attach().
1234		 */
1235		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1236			return (B_TRUE);
1237
1238		/*
1239		 * Consult the DTL on the relevant vdev. Either a vdev
1240		 * leaf or spare/replace mirror child may be returned so
1241		 * we must recursively call vdev_draid_missing_impl().
1242		 */
1243		vd = vdev_draid_spare_get_child(vd, physical_offset);
1244		if (vd == NULL)
1245			return (B_TRUE);
1246
1247		return (vdev_draid_missing(vd, physical_offset,
1248		    txg, size));
1249	}
1250
1251	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1252}
1253
1254/*
1255 * Returns true if the txg is only partially replicated on the leaf vdevs.
1256 */
1257static boolean_t
1258vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1259    uint64_t size)
1260{
1261	if (vd->vdev_ops == &vdev_spare_ops ||
1262	    vd->vdev_ops == &vdev_replacing_ops) {
1263		/*
1264		 * Check all of the readable children, if any child is
1265		 * missing the txg range then it is partially replicated.
1266		 */
1267		for (int c = 0; c < vd->vdev_children; c++) {
1268			vdev_t *cvd = vd->vdev_child[c];
1269
1270			if (!vdev_readable(cvd))
1271				continue;
1272
1273			if (vdev_draid_partial(cvd, physical_offset, txg, size))
1274				return (B_TRUE);
1275		}
1276
1277		return (B_FALSE);
1278	}
1279
1280	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1281		/*
1282		 * When sequentially resilvering we don't have a proper
1283		 * txg range so instead we must presume all txgs are
1284		 * missing on this vdev until the resilver completes.
1285		 */
1286		if (vd->vdev_rebuild_txg != 0)
1287			return (B_TRUE);
1288
1289		/*
1290		 * DTL_MISSING is set for all prior txgs when a resilver
1291		 * is started in spa_vdev_attach().
1292		 */
1293		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1294			return (B_TRUE);
1295
1296		/*
1297		 * Consult the DTL on the relevant vdev. Either a vdev
1298		 * leaf or spare/replace mirror child may be returned so
1299		 * we must recursively call vdev_draid_missing_impl().
1300		 */
1301		vd = vdev_draid_spare_get_child(vd, physical_offset);
1302		if (vd == NULL)
1303			return (B_TRUE);
1304
1305		return (vdev_draid_partial(vd, physical_offset, txg, size));
1306	}
1307
1308	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1309}
1310
1311/*
1312 * Determine if the vdev is readable at the given offset.
1313 */
1314boolean_t
1315vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
1316{
1317	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1318		vd = vdev_draid_spare_get_child(vd, physical_offset);
1319		if (vd == NULL)
1320			return (B_FALSE);
1321	}
1322
1323	if (vd->vdev_ops == &vdev_spare_ops ||
1324	    vd->vdev_ops == &vdev_replacing_ops) {
1325
1326		for (int c = 0; c < vd->vdev_children; c++) {
1327			vdev_t *cvd = vd->vdev_child[c];
1328
1329			if (!vdev_readable(cvd))
1330				continue;
1331
1332			if (vdev_draid_readable(cvd, physical_offset))
1333				return (B_TRUE);
1334		}
1335
1336		return (B_FALSE);
1337	}
1338
1339	return (vdev_readable(vd));
1340}
1341
1342/*
1343 * Returns the first distributed spare found under the provided vdev tree.
1344 */
1345static vdev_t *
1346vdev_draid_find_spare(vdev_t *vd)
1347{
1348	if (vd->vdev_ops == &vdev_draid_spare_ops)
1349		return (vd);
1350
1351	for (int c = 0; c < vd->vdev_children; c++) {
1352		vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
1353		if (svd != NULL)
1354			return (svd);
1355	}
1356
1357	return (NULL);
1358}
1359
1360/*
1361 * Returns B_TRUE if the passed in vdev is currently "faulted".
1362 * Faulted, in this context, means that the vdev represents a
1363 * replacing or sparing vdev tree.
1364 */
1365static boolean_t
1366vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
1367{
1368	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1369		vd = vdev_draid_spare_get_child(vd, physical_offset);
1370		if (vd == NULL)
1371			return (B_FALSE);
1372
1373		/*
1374		 * After resolving the distributed spare to a leaf vdev
1375		 * check the parent to determine if it's "faulted".
1376		 */
1377		vd = vd->vdev_parent;
1378	}
1379
1380	return (vd->vdev_ops == &vdev_replacing_ops ||
1381	    vd->vdev_ops == &vdev_spare_ops);
1382}
1383
1384/*
1385 * Determine if the dRAID block at the logical offset is degraded.
1386 * Used by sequential resilver.
1387 */
1388static boolean_t
1389vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
1390{
1391	vdev_draid_config_t *vdc = vd->vdev_tsd;
1392
1393	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1394	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1395
1396	uint64_t groupstart, perm;
1397	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1398	    offset, &perm, &groupstart);
1399
1400	uint8_t *base;
1401	uint64_t iter;
1402	vdev_draid_get_perm(vdc, perm, &base, &iter);
1403
1404	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1405		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1406		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1407		vdev_t *cvd = vd->vdev_child[cid];
1408
1409		/* Group contains a faulted vdev. */
1410		if (vdev_draid_faulted(cvd, physical_offset))
1411			return (B_TRUE);
1412
1413		/*
1414		 * Always check groups with active distributed spares
1415		 * because any vdev failure in the pool will affect them.
1416		 */
1417		if (vdev_draid_find_spare(cvd) != NULL)
1418			return (B_TRUE);
1419	}
1420
1421	return (B_FALSE);
1422}
1423
1424/*
1425 * Determine if the txg is missing.  Used by healing resilver.
1426 */
1427static boolean_t
1428vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
1429    uint64_t size)
1430{
1431	vdev_draid_config_t *vdc = vd->vdev_tsd;
1432
1433	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1434	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1435
1436	uint64_t groupstart, perm;
1437	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1438	    offset, &perm, &groupstart);
1439
1440	uint8_t *base;
1441	uint64_t iter;
1442	vdev_draid_get_perm(vdc, perm, &base, &iter);
1443
1444	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1445		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1446		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1447		vdev_t *cvd = vd->vdev_child[cid];
1448
1449		/* Transaction group is known to be partially replicated. */
1450		if (vdev_draid_partial(cvd, physical_offset, txg, size))
1451			return (B_TRUE);
1452
1453		/*
1454		 * Always check groups with active distributed spares
1455		 * because any vdev failure in the pool will affect them.
1456		 */
1457		if (vdev_draid_find_spare(cvd) != NULL)
1458			return (B_TRUE);
1459	}
1460
1461	return (B_FALSE);
1462}
1463
1464/*
1465 * Find the smallest child asize and largest sector size to calculate the
1466 * available capacity.  Distributed spares are ignored since their capacity
1467 * is also based of the minimum child size in the top-level dRAID.
1468 */
1469static void
1470vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
1471    uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
1472{
1473	uint64_t logical_ashift = 0, physical_ashift = 0;
1474	uint64_t asize = 0, max_asize = 0;
1475
1476	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1477
1478	for (int c = 0; c < vd->vdev_children; c++) {
1479		vdev_t *cvd = vd->vdev_child[c];
1480
1481		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1482			continue;
1483
1484		asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
1485		max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1486		logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
1487	}
1488	for (int c = 0; c < vd->vdev_children; c++) {
1489		vdev_t *cvd = vd->vdev_child[c];
1490
1491		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1492			continue;
1493		physical_ashift = vdev_best_ashift(logical_ashift,
1494		    physical_ashift, cvd->vdev_physical_ashift);
1495	}
1496
1497	*asizep = asize;
1498	*max_asizep = max_asize;
1499	*logical_ashiftp = logical_ashift;
1500	*physical_ashiftp = physical_ashift;
1501}
1502
1503/*
1504 * Open spare vdevs.
1505 */
1506static boolean_t
1507vdev_draid_open_spares(vdev_t *vd)
1508{
1509	return (vd->vdev_ops == &vdev_draid_spare_ops ||
1510	    vd->vdev_ops == &vdev_replacing_ops ||
1511	    vd->vdev_ops == &vdev_spare_ops);
1512}
1513
1514/*
1515 * Open all children, excluding spares.
1516 */
1517static boolean_t
1518vdev_draid_open_children(vdev_t *vd)
1519{
1520	return (!vdev_draid_open_spares(vd));
1521}
1522
1523/*
1524 * Open a top-level dRAID vdev.
1525 */
1526static int
1527vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1528    uint64_t *logical_ashift, uint64_t *physical_ashift)
1529{
1530	vdev_draid_config_t *vdc =  vd->vdev_tsd;
1531	uint64_t nparity = vdc->vdc_nparity;
1532	int open_errors = 0;
1533
1534	if (nparity > VDEV_DRAID_MAXPARITY ||
1535	    vd->vdev_children < nparity + 1) {
1536		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1537		return (SET_ERROR(EINVAL));
1538	}
1539
1540	/*
1541	 * First open the normal children then the distributed spares.  This
1542	 * ordering is important to ensure the distributed spares calculate
1543	 * the correct psize in the event that the dRAID vdevs were expanded.
1544	 */
1545	vdev_open_children_subset(vd, vdev_draid_open_children);
1546	vdev_open_children_subset(vd, vdev_draid_open_spares);
1547
1548	/* Verify enough of the children are available to continue. */
1549	for (int c = 0; c < vd->vdev_children; c++) {
1550		if (vd->vdev_child[c]->vdev_open_error != 0) {
1551			if ((++open_errors) > nparity) {
1552				vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1553				return (SET_ERROR(ENXIO));
1554			}
1555		}
1556	}
1557
1558	/*
1559	 * Allocatable capacity is the sum of the space on all children less
1560	 * the number of distributed spares rounded down to last full row
1561	 * and then to the last full group. An additional 32MB of scratch
1562	 * space is reserved at the end of each child for use by the dRAID
1563	 * expansion feature.
1564	 */
1565	uint64_t child_asize, child_max_asize;
1566	vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
1567	    logical_ashift, physical_ashift);
1568
1569	/*
1570	 * Should be unreachable since the minimum child size is 64MB, but
1571	 * we want to make sure an underflow absolutely cannot occur here.
1572	 */
1573	if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
1574	    child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
1575		return (SET_ERROR(ENXIO));
1576	}
1577
1578	child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
1579	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1580	child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
1581	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1582
1583	*asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1584	    vdc->vdc_groupsz);
1585	*max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1586	    vdc->vdc_groupsz);
1587
1588	return (0);
1589}
1590
1591/*
1592 * Close a top-level dRAID vdev.
1593 */
1594static void
1595vdev_draid_close(vdev_t *vd)
1596{
1597	for (int c = 0; c < vd->vdev_children; c++) {
1598		if (vd->vdev_child[c] != NULL)
1599			vdev_close(vd->vdev_child[c]);
1600	}
1601}
1602
1603/*
1604 * Return the maximum asize for a rebuild zio in the provided range
1605 * given the following constraints.  A dRAID chunks may not:
1606 *
1607 * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
1608 * - Span dRAID redundancy groups.
1609 */
1610static uint64_t
1611vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
1612    uint64_t max_segment)
1613{
1614	vdev_draid_config_t *vdc = vd->vdev_tsd;
1615
1616	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1617
1618	uint64_t ashift = vd->vdev_ashift;
1619	uint64_t ndata = vdc->vdc_ndata;
1620	uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
1621	    SPA_MAXBLOCKSIZE);
1622
1623	ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
1624	ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
1625
1626	/* Chunks must evenly span all data columns in the group. */
1627	psize = (((psize >> ashift) / ndata) * ndata) << ashift;
1628	uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
1629
1630	/* Reduce the chunk size to the group space remaining. */
1631	uint64_t group = vdev_draid_offset_to_group(vd, start);
1632	uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
1633	chunk_size = MIN(chunk_size, left);
1634
1635	ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
1636	ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
1637	    vdev_draid_offset_to_group(vd, start + chunk_size - 1));
1638
1639	return (chunk_size);
1640}
1641
1642/*
1643 * Align the start of the metaslab to the group width and slightly reduce
1644 * its size to a multiple of the group width.  Since full stripe writes are
1645 * required by dRAID this space is unallocable.  Furthermore, aligning the
1646 * metaslab start is important for vdev initialize and TRIM which both operate
1647 * on metaslab boundaries which vdev_xlate() expects to be aligned.
1648 */
1649static void
1650vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
1651{
1652	vdev_draid_config_t *vdc = vd->vdev_tsd;
1653
1654	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1655
1656	uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
1657	uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
1658	uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
1659
1660	*ms_start = astart;
1661	*ms_size = asize;
1662
1663	ASSERT0(*ms_start % sz);
1664	ASSERT0(*ms_size % sz);
1665}
1666
1667/*
1668 * Add virtual dRAID spares to the list of valid spares. In order to accomplish
1669 * this the existing array must be freed and reallocated with the additional
1670 * entries.
1671 */
1672int
1673vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
1674    uint64_t next_vdev_id)
1675{
1676	uint64_t draid_nspares = 0;
1677	uint64_t ndraid = 0;
1678	int error;
1679
1680	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1681		vdev_t *cvd = vd->vdev_child[i];
1682
1683		if (cvd->vdev_ops == &vdev_draid_ops) {
1684			vdev_draid_config_t *vdc = cvd->vdev_tsd;
1685			draid_nspares += vdc->vdc_nspares;
1686			ndraid++;
1687		}
1688	}
1689
1690	if (draid_nspares == 0) {
1691		*ndraidp = ndraid;
1692		return (0);
1693	}
1694
1695	nvlist_t **old_spares, **new_spares;
1696	uint_t old_nspares;
1697	error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1698	    &old_spares, &old_nspares);
1699	if (error)
1700		old_nspares = 0;
1701
1702	/* Allocate memory and copy of the existing spares. */
1703	new_spares = kmem_alloc(sizeof (nvlist_t *) *
1704	    (draid_nspares + old_nspares), KM_SLEEP);
1705	for (uint_t i = 0; i < old_nspares; i++)
1706		new_spares[i] = fnvlist_dup(old_spares[i]);
1707
1708	/* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
1709	uint64_t n = old_nspares;
1710	for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
1711		vdev_t *cvd = vd->vdev_child[vdev_id];
1712		char path[64];
1713
1714		if (cvd->vdev_ops != &vdev_draid_ops)
1715			continue;
1716
1717		vdev_draid_config_t *vdc = cvd->vdev_tsd;
1718		uint64_t nspares = vdc->vdc_nspares;
1719		uint64_t nparity = vdc->vdc_nparity;
1720
1721		for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
1722			memset(path, 0, sizeof (path));
1723			(void) snprintf(path, sizeof (path) - 1,
1724			    "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
1725			    (u_longlong_t)nparity,
1726			    (u_longlong_t)next_vdev_id + vdev_id,
1727			    (u_longlong_t)spare_id);
1728
1729			nvlist_t *spare = fnvlist_alloc();
1730			fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
1731			fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
1732			    VDEV_TYPE_DRAID_SPARE);
1733			fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
1734			    cvd->vdev_guid);
1735			fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
1736			    spare_id);
1737			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
1738			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
1739			fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
1740			fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
1741			    cvd->vdev_ashift);
1742
1743			new_spares[n] = spare;
1744			n++;
1745		}
1746	}
1747
1748	if (n > 0) {
1749		(void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
1750		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1751		    (const nvlist_t **)new_spares, n);
1752	}
1753
1754	for (int i = 0; i < n; i++)
1755		nvlist_free(new_spares[i]);
1756
1757	kmem_free(new_spares, sizeof (*new_spares) * n);
1758	*ndraidp = ndraid;
1759
1760	return (0);
1761}
1762
1763/*
1764 * Determine if any portion of the provided block resides on a child vdev
1765 * with a dirty DTL and therefore needs to be resilvered.
1766 */
1767static boolean_t
1768vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
1769    uint64_t phys_birth)
1770{
1771	uint64_t offset = DVA_GET_OFFSET(dva);
1772	uint64_t asize = vdev_draid_asize(vd, psize, 0);
1773
1774	if (phys_birth == TXG_UNKNOWN) {
1775		/*
1776		 * Sequential resilver.  There is no meaningful phys_birth
1777		 * for this block, we can only determine if block resides
1778		 * in a degraded group in which case it must be resilvered.
1779		 */
1780		ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
1781		    vdev_draid_offset_to_group(vd, offset + asize - 1));
1782
1783		return (vdev_draid_group_degraded(vd, offset));
1784	} else {
1785		/*
1786		 * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
1787		 * as are blocks in non-degraded groups.
1788		 */
1789		if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
1790			return (B_FALSE);
1791
1792		if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
1793			return (B_TRUE);
1794
1795		/* The block may span groups in which case check both. */
1796		if (vdev_draid_offset_to_group(vd, offset) !=
1797		    vdev_draid_offset_to_group(vd, offset + asize - 1)) {
1798			if (vdev_draid_group_missing(vd,
1799			    offset + asize, phys_birth, 1))
1800				return (B_TRUE);
1801		}
1802
1803		return (B_FALSE);
1804	}
1805}
1806
1807static boolean_t
1808vdev_draid_rebuilding(vdev_t *vd)
1809{
1810	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
1811		return (B_TRUE);
1812
1813	for (int i = 0; i < vd->vdev_children; i++) {
1814		if (vdev_draid_rebuilding(vd->vdev_child[i])) {
1815			return (B_TRUE);
1816		}
1817	}
1818
1819	return (B_FALSE);
1820}
1821
1822static void
1823vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
1824{
1825#ifdef ZFS_DEBUG
1826	range_seg64_t logical_rs, physical_rs, remain_rs;
1827	logical_rs.rs_start = rr->rr_offset;
1828	logical_rs.rs_end = logical_rs.rs_start +
1829	    vdev_draid_asize(vd, rr->rr_size, 0);
1830
1831	raidz_col_t *rc = &rr->rr_col[col];
1832	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1833
1834	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
1835	ASSERT(vdev_xlate_is_empty(&remain_rs));
1836	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1837	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1838	ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
1839#endif
1840}
1841
1842/*
1843 * For write operations:
1844 * 1. Generate the parity data
1845 * 2. Create child zio write operations to each column's vdev, for both
1846 *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
1847 *    if a skip sector needs to be added to a column.
1848 */
1849static void
1850vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
1851{
1852	vdev_t *vd = zio->io_vd;
1853	raidz_map_t *rm = zio->io_vsd;
1854
1855	vdev_raidz_generate_parity_row(rm, rr);
1856
1857	for (int c = 0; c < rr->rr_cols; c++) {
1858		raidz_col_t *rc = &rr->rr_col[c];
1859
1860		/*
1861		 * Empty columns are zero filled and included in the parity
1862		 * calculation and therefore must be written.
1863		 */
1864		ASSERT3U(rc->rc_size, !=, 0);
1865
1866		/* Verify physical to logical translation */
1867		vdev_draid_io_verify(vd, rr, c);
1868
1869		zio_nowait(zio_vdev_child_io(zio, NULL,
1870		    vd->vdev_child[rc->rc_devidx], rc->rc_offset,
1871		    rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
1872		    0, vdev_raidz_child_done, rc));
1873	}
1874}
1875
1876/*
1877 * For read operations:
1878 * 1. The vdev_draid_map_alloc() function will create a minimal raidz
1879 *    mapping for the read based on the zio->io_flags.  There are two
1880 *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
1881 * 2. Create the zio read operations.  This will include all parity
1882 *    columns and skip sectors for a scrub/resilver.
1883 */
1884static void
1885vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
1886{
1887	vdev_t *vd = zio->io_vd;
1888
1889	/* Sequential rebuild must do IO at redundancy group boundary. */
1890	IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
1891
1892	/*
1893	 * Iterate over the columns in reverse order so that we hit the parity
1894	 * last.  Any errors along the way will force us to read the parity.
1895	 * For scrub/resilver IOs which verify skip sectors, a gang ABD will
1896	 * have been allocated to store them and rc->rc_size is increased.
1897	 */
1898	for (int c = rr->rr_cols - 1; c >= 0; c--) {
1899		raidz_col_t *rc = &rr->rr_col[c];
1900		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1901
1902		if (!vdev_draid_readable(cvd, rc->rc_offset)) {
1903			if (c >= rr->rr_firstdatacol)
1904				rr->rr_missingdata++;
1905			else
1906				rr->rr_missingparity++;
1907			rc->rc_error = SET_ERROR(ENXIO);
1908			rc->rc_tried = 1;
1909			rc->rc_skipped = 1;
1910			continue;
1911		}
1912
1913		if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
1914			if (c >= rr->rr_firstdatacol)
1915				rr->rr_missingdata++;
1916			else
1917				rr->rr_missingparity++;
1918			rc->rc_error = SET_ERROR(ESTALE);
1919			rc->rc_skipped = 1;
1920			continue;
1921		}
1922
1923		/*
1924		 * Empty columns may be read during vdev_draid_io_done().
1925		 * Only skip them after the readable and missing checks
1926		 * verify they are available.
1927		 */
1928		if (rc->rc_size == 0) {
1929			rc->rc_skipped = 1;
1930			continue;
1931		}
1932
1933		if (zio->io_flags & ZIO_FLAG_RESILVER) {
1934			vdev_t *svd;
1935
1936			/*
1937			 * Sequential rebuilds need to always consider the data
1938			 * on the child being rebuilt to be stale.  This is
1939			 * important when all columns are available to aid
1940			 * known reconstruction in identifing which columns
1941			 * contain incorrect data.
1942			 *
1943			 * Furthermore, all repairs need to be constrained to
1944			 * the devices being rebuilt because without a checksum
1945			 * we cannot verify the data is actually correct and
1946			 * performing an incorrect repair could result in
1947			 * locking in damage and making the data unrecoverable.
1948			 */
1949			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
1950				if (vdev_draid_rebuilding(cvd)) {
1951					if (c >= rr->rr_firstdatacol)
1952						rr->rr_missingdata++;
1953					else
1954						rr->rr_missingparity++;
1955					rc->rc_error = SET_ERROR(ESTALE);
1956					rc->rc_skipped = 1;
1957					rc->rc_allow_repair = 1;
1958					continue;
1959				} else {
1960					rc->rc_allow_repair = 0;
1961				}
1962			} else {
1963				rc->rc_allow_repair = 1;
1964			}
1965
1966			/*
1967			 * If this child is a distributed spare then the
1968			 * offset might reside on the vdev being replaced.
1969			 * In which case this data must be written to the
1970			 * new device.  Failure to do so would result in
1971			 * checksum errors when the old device is detached
1972			 * and the pool is scrubbed.
1973			 */
1974			if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
1975				svd = vdev_draid_spare_get_child(svd,
1976				    rc->rc_offset);
1977				if (svd && (svd->vdev_ops == &vdev_spare_ops ||
1978				    svd->vdev_ops == &vdev_replacing_ops)) {
1979					rc->rc_force_repair = 1;
1980
1981					if (vdev_draid_rebuilding(svd))
1982						rc->rc_allow_repair = 1;
1983				}
1984			}
1985
1986			/*
1987			 * Always issue a repair IO to this child when its
1988			 * a spare or replacing vdev with an active rebuild.
1989			 */
1990			if ((cvd->vdev_ops == &vdev_spare_ops ||
1991			    cvd->vdev_ops == &vdev_replacing_ops) &&
1992			    vdev_draid_rebuilding(cvd)) {
1993				rc->rc_force_repair = 1;
1994				rc->rc_allow_repair = 1;
1995			}
1996		}
1997	}
1998
1999	/*
2000	 * Either a parity or data column is missing this means a repair
2001	 * may be attempted by vdev_draid_io_done().  Expand the raid map
2002	 * to read in empty columns which are needed along with the parity
2003	 * during reconstruction.
2004	 */
2005	if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
2006	    rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
2007		vdev_draid_map_alloc_empty(zio, rr);
2008	}
2009
2010	for (int c = rr->rr_cols - 1; c >= 0; c--) {
2011		raidz_col_t *rc = &rr->rr_col[c];
2012		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2013
2014		if (rc->rc_error || rc->rc_size == 0)
2015			continue;
2016
2017		if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
2018		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
2019			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2020			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2021			    zio->io_type, zio->io_priority, 0,
2022			    vdev_raidz_child_done, rc));
2023		}
2024	}
2025}
2026
2027/*
2028 * Start an IO operation to a dRAID vdev.
2029 */
2030static void
2031vdev_draid_io_start(zio_t *zio)
2032{
2033	vdev_t *vd __maybe_unused = zio->io_vd;
2034
2035	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2036	ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
2037
2038	raidz_map_t *rm = vdev_draid_map_alloc(zio);
2039	zio->io_vsd = rm;
2040	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
2041
2042	if (zio->io_type == ZIO_TYPE_WRITE) {
2043		for (int i = 0; i < rm->rm_nrows; i++) {
2044			vdev_draid_io_start_write(zio, rm->rm_row[i]);
2045		}
2046	} else {
2047		ASSERT(zio->io_type == ZIO_TYPE_READ);
2048
2049		for (int i = 0; i < rm->rm_nrows; i++) {
2050			vdev_draid_io_start_read(zio, rm->rm_row[i]);
2051		}
2052	}
2053
2054	zio_execute(zio);
2055}
2056
2057/*
2058 * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
2059 * to dRAID since the layout is fully described by the raidz_map_t.
2060 */
2061static void
2062vdev_draid_io_done(zio_t *zio)
2063{
2064	vdev_raidz_io_done(zio);
2065}
2066
2067static void
2068vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
2069{
2070	vdev_draid_config_t *vdc = vd->vdev_tsd;
2071	ASSERT(vd->vdev_ops == &vdev_draid_ops);
2072
2073	if (faulted > vdc->vdc_nparity)
2074		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2075		    VDEV_AUX_NO_REPLICAS);
2076	else if (degraded + faulted != 0)
2077		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2078	else
2079		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2080}
2081
2082static void
2083vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
2084    range_seg64_t *physical_rs, range_seg64_t *remain_rs)
2085{
2086	vdev_t *raidvd = cvd->vdev_parent;
2087	ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
2088
2089	vdev_draid_config_t *vdc = raidvd->vdev_tsd;
2090	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2091
2092	/* Make sure the offsets are block-aligned */
2093	ASSERT0(logical_rs->rs_start % (1 << ashift));
2094	ASSERT0(logical_rs->rs_end % (1 << ashift));
2095
2096	uint64_t logical_start = logical_rs->rs_start;
2097	uint64_t logical_end = logical_rs->rs_end;
2098
2099	/*
2100	 * Unaligned ranges must be skipped. All metaslabs are correctly
2101	 * aligned so this should not happen, but this case is handled in
2102	 * case it's needed by future callers.
2103	 */
2104	uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
2105	if (astart != logical_start) {
2106		physical_rs->rs_start = logical_start;
2107		physical_rs->rs_end = logical_start;
2108		remain_rs->rs_start = MIN(astart, logical_end);
2109		remain_rs->rs_end = logical_end;
2110		return;
2111	}
2112
2113	/*
2114	 * Unlike with mirrors and raidz a dRAID logical range can map
2115	 * to multiple non-contiguous physical ranges. This is handled by
2116	 * limiting the size of the logical range to a single group and
2117	 * setting the remain argument such that it describes the remaining
2118	 * unmapped logical range. This is stricter than absolutely
2119	 * necessary but helps simplify the logic below.
2120	 */
2121	uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
2122	uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
2123	if (logical_end > nextstart)
2124		logical_end = nextstart;
2125
2126	/* Find the starting offset for each vdev in the group */
2127	uint64_t perm, groupstart;
2128	uint64_t start = vdev_draid_logical_to_physical(raidvd,
2129	    logical_start, &perm, &groupstart);
2130	uint64_t end = start;
2131
2132	uint8_t *base;
2133	uint64_t iter, id;
2134	vdev_draid_get_perm(vdc, perm, &base, &iter);
2135
2136	/*
2137	 * Check if the passed child falls within the group.  If it does
2138	 * update the start and end to reflect the physical range.
2139	 * Otherwise, leave them unmodified which will result in an empty
2140	 * (zero-length) physical range being returned.
2141	 */
2142	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
2143		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
2144
2145		if (c == 0 && i != 0) {
2146			/* the group wrapped, increment the start */
2147			start += VDEV_DRAID_ROWHEIGHT;
2148			end = start;
2149		}
2150
2151		id = vdev_draid_permute_id(vdc, base, iter, c);
2152		if (id == cvd->vdev_id) {
2153			uint64_t b_size = (logical_end >> ashift) -
2154			    (logical_start >> ashift);
2155			ASSERT3U(b_size, >, 0);
2156			end = start + ((((b_size - 1) /
2157			    vdc->vdc_groupwidth) + 1) << ashift);
2158			break;
2159		}
2160	}
2161	physical_rs->rs_start = start;
2162	physical_rs->rs_end = end;
2163
2164	/*
2165	 * Only top-level vdevs are allowed to set remain_rs because
2166	 * when .vdev_op_xlate() is called for their children the full
2167	 * logical range is not provided by vdev_xlate().
2168	 */
2169	remain_rs->rs_start = logical_end;
2170	remain_rs->rs_end = logical_rs->rs_end;
2171
2172	ASSERT3U(physical_rs->rs_start, <=, logical_start);
2173	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
2174	    logical_end - logical_start);
2175}
2176
2177/*
2178 * Add dRAID specific fields to the config nvlist.
2179 */
2180static void
2181vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
2182{
2183	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2184	vdev_draid_config_t *vdc = vd->vdev_tsd;
2185
2186	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
2187	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
2188	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
2189	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
2190}
2191
2192/*
2193 * Initialize private dRAID specific fields from the nvlist.
2194 */
2195static int
2196vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
2197{
2198	(void) spa;
2199	uint64_t ndata, nparity, nspares, ngroups;
2200	int error;
2201
2202	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
2203		return (SET_ERROR(EINVAL));
2204
2205	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
2206	    nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
2207		return (SET_ERROR(EINVAL));
2208	}
2209
2210	uint_t children;
2211	nvlist_t **child;
2212	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2213	    &child, &children) != 0 || children == 0 ||
2214	    children > VDEV_DRAID_MAX_CHILDREN) {
2215		return (SET_ERROR(EINVAL));
2216	}
2217
2218	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
2219	    nspares > 100 || nspares > (children - (ndata + nparity))) {
2220		return (SET_ERROR(EINVAL));
2221	}
2222
2223	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
2224	    ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
2225		return (SET_ERROR(EINVAL));
2226	}
2227
2228	/*
2229	 * Validate the minimum number of children exist per group for the
2230	 * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
2231	 */
2232	if (children < (ndata + nparity + nspares))
2233		return (SET_ERROR(EINVAL));
2234
2235	/*
2236	 * Create the dRAID configuration using the pool nvlist configuration
2237	 * and the fixed mapping for the correct number of children.
2238	 */
2239	vdev_draid_config_t *vdc;
2240	const draid_map_t *map;
2241
2242	error = vdev_draid_lookup_map(children, &map);
2243	if (error)
2244		return (SET_ERROR(EINVAL));
2245
2246	vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
2247	vdc->vdc_ndata = ndata;
2248	vdc->vdc_nparity = nparity;
2249	vdc->vdc_nspares = nspares;
2250	vdc->vdc_children = children;
2251	vdc->vdc_ngroups = ngroups;
2252	vdc->vdc_nperms = map->dm_nperms;
2253
2254	error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
2255	if (error) {
2256		kmem_free(vdc, sizeof (*vdc));
2257		return (SET_ERROR(EINVAL));
2258	}
2259
2260	/*
2261	 * Derived constants.
2262	 */
2263	vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
2264	vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
2265	vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
2266	vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
2267	    vdc->vdc_ndisks;
2268
2269	ASSERT3U(vdc->vdc_groupwidth, >=, 2);
2270	ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
2271	ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
2272	ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
2273	ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
2274	ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
2275	    vdc->vdc_ndisks, ==, 0);
2276
2277	*tsd = vdc;
2278
2279	return (0);
2280}
2281
2282static void
2283vdev_draid_fini(vdev_t *vd)
2284{
2285	vdev_draid_config_t *vdc = vd->vdev_tsd;
2286
2287	vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
2288	    vdc->vdc_children * vdc->vdc_nperms);
2289	kmem_free(vdc, sizeof (*vdc));
2290}
2291
2292static uint64_t
2293vdev_draid_nparity(vdev_t *vd)
2294{
2295	vdev_draid_config_t *vdc = vd->vdev_tsd;
2296
2297	return (vdc->vdc_nparity);
2298}
2299
2300static uint64_t
2301vdev_draid_ndisks(vdev_t *vd)
2302{
2303	vdev_draid_config_t *vdc = vd->vdev_tsd;
2304
2305	return (vdc->vdc_ndisks);
2306}
2307
2308vdev_ops_t vdev_draid_ops = {
2309	.vdev_op_init = vdev_draid_init,
2310	.vdev_op_fini = vdev_draid_fini,
2311	.vdev_op_open = vdev_draid_open,
2312	.vdev_op_close = vdev_draid_close,
2313	.vdev_op_asize = vdev_draid_asize,
2314	.vdev_op_min_asize = vdev_draid_min_asize,
2315	.vdev_op_min_alloc = vdev_draid_min_alloc,
2316	.vdev_op_io_start = vdev_draid_io_start,
2317	.vdev_op_io_done = vdev_draid_io_done,
2318	.vdev_op_state_change = vdev_draid_state_change,
2319	.vdev_op_need_resilver = vdev_draid_need_resilver,
2320	.vdev_op_hold = NULL,
2321	.vdev_op_rele = NULL,
2322	.vdev_op_remap = NULL,
2323	.vdev_op_xlate = vdev_draid_xlate,
2324	.vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
2325	.vdev_op_metaslab_init = vdev_draid_metaslab_init,
2326	.vdev_op_config_generate = vdev_draid_config_generate,
2327	.vdev_op_nparity = vdev_draid_nparity,
2328	.vdev_op_ndisks = vdev_draid_ndisks,
2329	.vdev_op_type = VDEV_TYPE_DRAID,
2330	.vdev_op_leaf = B_FALSE,
2331};
2332
2333
2334/*
2335 * A dRAID distributed spare is a virtual leaf vdev which is included in the
2336 * parent dRAID configuration.  The last N columns of the dRAID permutation
2337 * table are used to determine on which dRAID children a specific offset
2338 * should be written.  These spare leaf vdevs can only be used to replace
2339 * faulted children in the same dRAID configuration.
2340 */
2341
2342/*
2343 * Distributed spare state.  All fields are set when the distributed spare is
2344 * first opened and are immutable.
2345 */
2346typedef struct {
2347	vdev_t *vds_draid_vdev;		/* top-level parent dRAID vdev */
2348	uint64_t vds_top_guid;		/* top-level parent dRAID guid */
2349	uint64_t vds_spare_id;		/* spare id (0 - vdc->vdc_nspares-1) */
2350} vdev_draid_spare_t;
2351
2352/*
2353 * Returns the parent dRAID vdev to which the distributed spare belongs.
2354 * This may be safely called even when the vdev is not open.
2355 */
2356vdev_t *
2357vdev_draid_spare_get_parent(vdev_t *vd)
2358{
2359	vdev_draid_spare_t *vds = vd->vdev_tsd;
2360
2361	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2362
2363	if (vds->vds_draid_vdev != NULL)
2364		return (vds->vds_draid_vdev);
2365
2366	return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
2367	    vds->vds_top_guid));
2368}
2369
2370/*
2371 * A dRAID space is active when it's the child of a vdev using the
2372 * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
2373 */
2374static boolean_t
2375vdev_draid_spare_is_active(vdev_t *vd)
2376{
2377	vdev_t *pvd = vd->vdev_parent;
2378
2379	if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
2380	    pvd->vdev_ops == &vdev_replacing_ops ||
2381	    pvd->vdev_ops == &vdev_draid_ops)) {
2382		return (B_TRUE);
2383	} else {
2384		return (B_FALSE);
2385	}
2386}
2387
2388/*
2389 * Given a dRAID distribute spare vdev, returns the physical child vdev
2390 * on which the provided offset resides.  This may involve recursing through
2391 * multiple layers of distributed spares.  Note that offset is relative to
2392 * this vdev.
2393 */
2394vdev_t *
2395vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
2396{
2397	vdev_draid_spare_t *vds = vd->vdev_tsd;
2398
2399	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2400
2401	/* The vdev is closed */
2402	if (vds->vds_draid_vdev == NULL)
2403		return (NULL);
2404
2405	vdev_t *tvd = vds->vds_draid_vdev;
2406	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2407
2408	ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
2409	ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
2410
2411	uint8_t *base;
2412	uint64_t iter;
2413	uint64_t perm = physical_offset / vdc->vdc_devslicesz;
2414
2415	vdev_draid_get_perm(vdc, perm, &base, &iter);
2416
2417	uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
2418	    (tvd->vdev_children - 1) - vds->vds_spare_id);
2419	vdev_t *cvd = tvd->vdev_child[cid];
2420
2421	if (cvd->vdev_ops == &vdev_draid_spare_ops)
2422		return (vdev_draid_spare_get_child(cvd, physical_offset));
2423
2424	return (cvd);
2425}
2426
2427static void
2428vdev_draid_spare_close(vdev_t *vd)
2429{
2430	vdev_draid_spare_t *vds = vd->vdev_tsd;
2431	vds->vds_draid_vdev = NULL;
2432}
2433
2434/*
2435 * Opening a dRAID spare device is done by looking up the associated dRAID
2436 * top-level vdev guid from the spare configuration.
2437 */
2438static int
2439vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
2440    uint64_t *logical_ashift, uint64_t *physical_ashift)
2441{
2442	vdev_draid_spare_t *vds = vd->vdev_tsd;
2443	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2444	uint64_t asize, max_asize;
2445
2446	vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
2447	if (tvd == NULL) {
2448		/*
2449		 * When spa_vdev_add() is labeling new spares the
2450		 * associated dRAID is not attached to the root vdev
2451		 * nor does this spare have a parent.  Simulate a valid
2452		 * device in order to allow the label to be initialized
2453		 * and the distributed spare added to the configuration.
2454		 */
2455		if (vd->vdev_parent == NULL) {
2456			*psize = *max_psize = SPA_MINDEVSIZE;
2457			*logical_ashift = *physical_ashift = ASHIFT_MIN;
2458			return (0);
2459		}
2460
2461		return (SET_ERROR(EINVAL));
2462	}
2463
2464	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2465	if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
2466		return (SET_ERROR(EINVAL));
2467
2468	if (vds->vds_spare_id >= vdc->vdc_nspares)
2469		return (SET_ERROR(EINVAL));
2470
2471	/*
2472	 * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
2473	 * because the caller may be vdev_draid_open() in which case the
2474	 * values are stale as they haven't yet been updated by vdev_open().
2475	 * To avoid this always recalculate the dRAID asize and max_asize.
2476	 */
2477	vdev_draid_calculate_asize(tvd, &asize, &max_asize,
2478	    logical_ashift, physical_ashift);
2479
2480	*psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2481	*max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2482
2483	vds->vds_draid_vdev = tvd;
2484
2485	return (0);
2486}
2487
2488/*
2489 * Completed distributed spare IO.  Store the result in the parent zio
2490 * as if it had performed the operation itself.  Only the first error is
2491 * preserved if there are multiple errors.
2492 */
2493static void
2494vdev_draid_spare_child_done(zio_t *zio)
2495{
2496	zio_t *pio = zio->io_private;
2497
2498	/*
2499	 * IOs are issued to non-writable vdevs in order to keep their
2500	 * DTLs accurate.  However, we don't want to propagate the
2501	 * error in to the distributed spare's DTL.  When resilvering
2502	 * vdev_draid_need_resilver() will consult the relevant DTL
2503	 * to determine if the data is missing and must be repaired.
2504	 */
2505	if (!vdev_writeable(zio->io_vd))
2506		return;
2507
2508	if (pio->io_error == 0)
2509		pio->io_error = zio->io_error;
2510}
2511
2512/*
2513 * Returns a valid label nvlist for the distributed spare vdev.  This is
2514 * used to bypass the IO pipeline to avoid the complexity of constructing
2515 * a complete label with valid checksum to return when read.
2516 */
2517nvlist_t *
2518vdev_draid_read_config_spare(vdev_t *vd)
2519{
2520	spa_t *spa = vd->vdev_spa;
2521	spa_aux_vdev_t *sav = &spa->spa_spares;
2522	uint64_t guid = vd->vdev_guid;
2523
2524	nvlist_t *nv = fnvlist_alloc();
2525	fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
2526	fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
2527	fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
2528	fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
2529	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
2530	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
2531	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
2532	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
2533	    vdev_draid_spare_is_active(vd) ?
2534	    POOL_STATE_ACTIVE : POOL_STATE_SPARE);
2535
2536	/* Set the vdev guid based on the vdev list in sav_count. */
2537	for (int i = 0; i < sav->sav_count; i++) {
2538		if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
2539		    strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
2540			guid = sav->sav_vdevs[i]->vdev_guid;
2541			break;
2542		}
2543	}
2544
2545	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
2546
2547	return (nv);
2548}
2549
2550/*
2551 * Handle any flush requested of the distributed spare. All children must be
2552 * flushed.
2553 */
2554static int
2555vdev_draid_spare_flush(zio_t *zio)
2556{
2557	vdev_t *vd = zio->io_vd;
2558	int error = 0;
2559
2560	for (int c = 0; c < vd->vdev_children; c++) {
2561		zio_nowait(zio_vdev_child_io(zio, NULL,
2562		    vd->vdev_child[c], zio->io_offset, zio->io_abd,
2563		    zio->io_size, zio->io_type, zio->io_priority, 0,
2564		    vdev_draid_spare_child_done, zio));
2565	}
2566
2567	return (error);
2568}
2569
2570/*
2571 * Initiate an IO to the distributed spare.  For normal IOs this entails using
2572 * the zio->io_offset and permutation table to calculate which child dRAID vdev
2573 * is responsible for the data.  Then passing along the zio to that child to
2574 * perform the actual IO.  The label ranges are not stored on disk and require
2575 * some special handling which is described below.
2576 */
2577static void
2578vdev_draid_spare_io_start(zio_t *zio)
2579{
2580	vdev_t *cvd = NULL, *vd = zio->io_vd;
2581	vdev_draid_spare_t *vds = vd->vdev_tsd;
2582	uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
2583
2584	/*
2585	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
2586	 * Nothing to be done here but return failure.
2587	 */
2588	if (vds == NULL) {
2589		zio->io_error = ENXIO;
2590		zio_interrupt(zio);
2591		return;
2592	}
2593
2594	switch (zio->io_type) {
2595	case ZIO_TYPE_FLUSH:
2596		zio->io_error = vdev_draid_spare_flush(zio);
2597		break;
2598
2599	case ZIO_TYPE_WRITE:
2600		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2601			/*
2602			 * Accept probe IOs and config writers to simulate the
2603			 * existence of an on disk label.  vdev_label_sync(),
2604			 * vdev_uberblock_sync() and vdev_copy_uberblocks()
2605			 * skip the distributed spares.  This only leaves
2606			 * vdev_label_init() which is allowed to succeed to
2607			 * avoid adding special cases the function.
2608			 */
2609			if (zio->io_flags & ZIO_FLAG_PROBE ||
2610			    zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
2611				zio->io_error = 0;
2612			} else {
2613				zio->io_error = SET_ERROR(EIO);
2614			}
2615		} else {
2616			cvd = vdev_draid_spare_get_child(vd, offset);
2617
2618			if (cvd == NULL) {
2619				zio->io_error = SET_ERROR(ENXIO);
2620			} else {
2621				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2622				    offset, zio->io_abd, zio->io_size,
2623				    zio->io_type, zio->io_priority, 0,
2624				    vdev_draid_spare_child_done, zio));
2625			}
2626		}
2627		break;
2628
2629	case ZIO_TYPE_READ:
2630		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2631			/*
2632			 * Accept probe IOs to simulate the existence of a
2633			 * label.  vdev_label_read_config() bypasses the
2634			 * pipeline to read the label configuration and
2635			 * vdev_uberblock_load() skips distributed spares
2636			 * when attempting to locate the best uberblock.
2637			 */
2638			if (zio->io_flags & ZIO_FLAG_PROBE) {
2639				zio->io_error = 0;
2640			} else {
2641				zio->io_error = SET_ERROR(EIO);
2642			}
2643		} else {
2644			cvd = vdev_draid_spare_get_child(vd, offset);
2645
2646			if (cvd == NULL || !vdev_readable(cvd)) {
2647				zio->io_error = SET_ERROR(ENXIO);
2648			} else {
2649				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2650				    offset, zio->io_abd, zio->io_size,
2651				    zio->io_type, zio->io_priority, 0,
2652				    vdev_draid_spare_child_done, zio));
2653			}
2654		}
2655		break;
2656
2657	case ZIO_TYPE_TRIM:
2658		/* The vdev label ranges are never trimmed */
2659		ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
2660
2661		cvd = vdev_draid_spare_get_child(vd, offset);
2662
2663		if (cvd == NULL || !cvd->vdev_has_trim) {
2664			zio->io_error = SET_ERROR(ENXIO);
2665		} else {
2666			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2667			    offset, zio->io_abd, zio->io_size,
2668			    zio->io_type, zio->io_priority, 0,
2669			    vdev_draid_spare_child_done, zio));
2670		}
2671		break;
2672
2673	default:
2674		zio->io_error = SET_ERROR(ENOTSUP);
2675		break;
2676	}
2677
2678	zio_execute(zio);
2679}
2680
2681static void
2682vdev_draid_spare_io_done(zio_t *zio)
2683{
2684	(void) zio;
2685}
2686
2687/*
2688 * Lookup the full spare config in spa->spa_spares.sav_config and
2689 * return the top_guid and spare_id for the named spare.
2690 */
2691static int
2692vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
2693    uint64_t *spare_idp)
2694{
2695	nvlist_t **spares;
2696	uint_t nspares;
2697	int error;
2698
2699	if ((spa->spa_spares.sav_config == NULL) ||
2700	    (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2701	    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
2702		return (SET_ERROR(ENOENT));
2703	}
2704
2705	const char *spare_name;
2706	error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
2707	if (error != 0)
2708		return (SET_ERROR(EINVAL));
2709
2710	for (int i = 0; i < nspares; i++) {
2711		nvlist_t *spare = spares[i];
2712		uint64_t top_guid, spare_id;
2713		const char *type, *path;
2714
2715		/* Skip non-distributed spares */
2716		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
2717		if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
2718			continue;
2719
2720		/* Skip spares with the wrong name */
2721		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
2722		if (error != 0 || strcmp(path, spare_name) != 0)
2723			continue;
2724
2725		/* Found the matching spare */
2726		error = nvlist_lookup_uint64(spare,
2727		    ZPOOL_CONFIG_TOP_GUID, &top_guid);
2728		if (error == 0) {
2729			error = nvlist_lookup_uint64(spare,
2730			    ZPOOL_CONFIG_SPARE_ID, &spare_id);
2731		}
2732
2733		if (error != 0) {
2734			return (SET_ERROR(EINVAL));
2735		} else {
2736			*top_guidp = top_guid;
2737			*spare_idp = spare_id;
2738			return (0);
2739		}
2740	}
2741
2742	return (SET_ERROR(ENOENT));
2743}
2744
2745/*
2746 * Initialize private dRAID spare specific fields from the nvlist.
2747 */
2748static int
2749vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
2750{
2751	vdev_draid_spare_t *vds;
2752	uint64_t top_guid = 0;
2753	uint64_t spare_id;
2754
2755	/*
2756	 * In the normal case check the list of spares stored in the spa
2757	 * to lookup the top_guid and spare_id for provided spare config.
2758	 * When creating a new pool or adding vdevs the spare list is not
2759	 * yet populated and the values are provided in the passed config.
2760	 */
2761	if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
2762		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
2763		    &top_guid) != 0)
2764			return (SET_ERROR(EINVAL));
2765
2766		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
2767		    &spare_id) != 0)
2768			return (SET_ERROR(EINVAL));
2769	}
2770
2771	vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
2772	vds->vds_draid_vdev = NULL;
2773	vds->vds_top_guid = top_guid;
2774	vds->vds_spare_id = spare_id;
2775
2776	*tsd = vds;
2777
2778	return (0);
2779}
2780
2781static void
2782vdev_draid_spare_fini(vdev_t *vd)
2783{
2784	kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
2785}
2786
2787static void
2788vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
2789{
2790	vdev_draid_spare_t *vds = vd->vdev_tsd;
2791
2792	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2793
2794	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
2795	fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
2796}
2797
2798vdev_ops_t vdev_draid_spare_ops = {
2799	.vdev_op_init = vdev_draid_spare_init,
2800	.vdev_op_fini = vdev_draid_spare_fini,
2801	.vdev_op_open = vdev_draid_spare_open,
2802	.vdev_op_close = vdev_draid_spare_close,
2803	.vdev_op_asize = vdev_default_asize,
2804	.vdev_op_min_asize = vdev_default_min_asize,
2805	.vdev_op_min_alloc = NULL,
2806	.vdev_op_io_start = vdev_draid_spare_io_start,
2807	.vdev_op_io_done = vdev_draid_spare_io_done,
2808	.vdev_op_state_change = NULL,
2809	.vdev_op_need_resilver = NULL,
2810	.vdev_op_hold = NULL,
2811	.vdev_op_rele = NULL,
2812	.vdev_op_remap = NULL,
2813	.vdev_op_xlate = vdev_default_xlate,
2814	.vdev_op_rebuild_asize = NULL,
2815	.vdev_op_metaslab_init = NULL,
2816	.vdev_op_config_generate = vdev_draid_spare_config_generate,
2817	.vdev_op_nparity = NULL,
2818	.vdev_op_ndisks = NULL,
2819	.vdev_op_type = VDEV_TYPE_DRAID_SPARE,
2820	.vdev_op_leaf = B_TRUE,
2821};
2822