1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
31#include <sys/dsl_prop.h>
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
45#include <sys/vdev_impl.h>
46#include <sys/metaslab_impl.h>
47#include <sys/bptree.h>
48#include <sys/zfeature.h>
49#include <sys/zil_impl.h>
50#include <sys/dsl_userhold.h>
51#include <sys/trace_zfs.h>
52#include <sys/mmp.h>
53
54/*
55 * ZFS Write Throttle
56 * ------------------
57 *
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
67 *
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
74 *
75 * Implementation
76 *
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
84 *
85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
88 *
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92 *
93 * The delay is also calculated based on the amount of dirty data.  See the
94 * comment above dmu_tx_delay() for details.
95 */
96
97/*
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
100 * parameter.
101 */
102uint64_t zfs_dirty_data_max = 0;
103uint64_t zfs_dirty_data_max_max = 0;
104uint_t zfs_dirty_data_max_percent = 10;
105uint_t zfs_dirty_data_max_max_percent = 25;
106
107/*
108 * The upper limit of TX_WRITE log data.  Write operations are throttled
109 * when approaching the limit until log data is cleared out after txg sync.
110 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
111 */
112uint64_t zfs_wrlog_data_max = 0;
113
114/*
115 * If there's at least this much dirty data (as a percentage of
116 * zfs_dirty_data_max), push out a txg.  This should be less than
117 * zfs_vdev_async_write_active_min_dirty_percent.
118 */
119static uint_t zfs_dirty_data_sync_percent = 20;
120
121/*
122 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
123 * and delay each transaction.
124 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
125 */
126uint_t zfs_delay_min_dirty_percent = 60;
127
128/*
129 * This controls how quickly the delay approaches infinity.
130 * Larger values cause it to delay more for a given amount of dirty data.
131 * Therefore larger values will cause there to be less dirty data for a
132 * given throughput.
133 *
134 * For the smoothest delay, this value should be about 1 billion divided
135 * by the maximum number of operations per second.  This will smoothly
136 * handle between 10x and 1/10th this number.
137 *
138 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
139 * multiply in dmu_tx_delay().
140 */
141uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
142
143/*
144 * These tunables determine the behavior of how zil_itxg_clean() is
145 * called via zil_clean() in the context of spa_sync(). When an itxg
146 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
147 * If the dispatch fails, the call to zil_itxg_clean() will occur
148 * synchronously in the context of spa_sync(), which can negatively
149 * impact the performance of spa_sync() (e.g. in the case of the itxg
150 * list having a large number of itxs that needs to be cleaned).
151 *
152 * Thus, these tunables can be used to manipulate the behavior of the
153 * taskq used by zil_clean(); they determine the number of taskq entries
154 * that are pre-populated when the taskq is first created (via the
155 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
156 * taskq entries that are cached after an on-demand allocation (via the
157 * "zfs_zil_clean_taskq_maxalloc").
158 *
159 * The idea being, we want to try reasonably hard to ensure there will
160 * already be a taskq entry pre-allocated by the time that it is needed
161 * by zil_clean(). This way, we can avoid the possibility of an
162 * on-demand allocation of a new taskq entry from failing, which would
163 * result in zil_itxg_clean() being called synchronously from zil_clean()
164 * (which can adversely affect performance of spa_sync()).
165 *
166 * Additionally, the number of threads used by the taskq can be
167 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
168 */
169static int zfs_zil_clean_taskq_nthr_pct = 100;
170static int zfs_zil_clean_taskq_minalloc = 1024;
171static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
172
173int
174dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
175{
176	uint64_t obj;
177	int err;
178
179	err = zap_lookup(dp->dp_meta_objset,
180	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
181	    name, sizeof (obj), 1, &obj);
182	if (err)
183		return (err);
184
185	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
186}
187
188static dsl_pool_t *
189dsl_pool_open_impl(spa_t *spa, uint64_t txg)
190{
191	dsl_pool_t *dp;
192	blkptr_t *bp = spa_get_rootblkptr(spa);
193
194	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
195	dp->dp_spa = spa;
196	dp->dp_meta_rootbp = *bp;
197	rrw_init(&dp->dp_config_rwlock, B_TRUE);
198	txg_init(dp, txg);
199	mmp_init(spa);
200
201	txg_list_create(&dp->dp_dirty_datasets, spa,
202	    offsetof(dsl_dataset_t, ds_dirty_link));
203	txg_list_create(&dp->dp_dirty_zilogs, spa,
204	    offsetof(zilog_t, zl_dirty_link));
205	txg_list_create(&dp->dp_dirty_dirs, spa,
206	    offsetof(dsl_dir_t, dd_dirty_link));
207	txg_list_create(&dp->dp_sync_tasks, spa,
208	    offsetof(dsl_sync_task_t, dst_node));
209	txg_list_create(&dp->dp_early_sync_tasks, spa,
210	    offsetof(dsl_sync_task_t, dst_node));
211
212	dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq");
213
214	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
215	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
216	    zfs_zil_clean_taskq_minalloc,
217	    zfs_zil_clean_taskq_maxalloc,
218	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
219
220	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
221	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
222
223	aggsum_init(&dp->dp_wrlog_total, 0);
224	for (int i = 0; i < TXG_SIZE; i++) {
225		aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
226	}
227
228	dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
229	    boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
230	    TASKQ_THREADS_CPU_PCT);
231	dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
232	    100, defclsyspri, boot_ncpus, INT_MAX,
233	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
234
235	return (dp);
236}
237
238int
239dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
240{
241	int err;
242	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
243
244	/*
245	 * Initialize the caller's dsl_pool_t structure before we actually open
246	 * the meta objset.  This is done because a self-healing write zio may
247	 * be issued as part of dmu_objset_open_impl() and the spa needs its
248	 * dsl_pool_t initialized in order to handle the write.
249	 */
250	*dpp = dp;
251
252	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
253	    &dp->dp_meta_objset);
254	if (err != 0) {
255		dsl_pool_close(dp);
256		*dpp = NULL;
257	}
258
259	return (err);
260}
261
262int
263dsl_pool_open(dsl_pool_t *dp)
264{
265	int err;
266	dsl_dir_t *dd;
267	dsl_dataset_t *ds;
268	uint64_t obj;
269
270	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
271	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
273	    &dp->dp_root_dir_obj);
274	if (err)
275		goto out;
276
277	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
278	    NULL, dp, &dp->dp_root_dir);
279	if (err)
280		goto out;
281
282	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
283	if (err)
284		goto out;
285
286	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
287		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
288		if (err)
289			goto out;
290		err = dsl_dataset_hold_obj(dp,
291		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
292		if (err == 0) {
293			err = dsl_dataset_hold_obj(dp,
294			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
295			    &dp->dp_origin_snap);
296			dsl_dataset_rele(ds, FTAG);
297		}
298		dsl_dir_rele(dd, dp);
299		if (err)
300			goto out;
301	}
302
303	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
304		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
305		    &dp->dp_free_dir);
306		if (err)
307			goto out;
308
309		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
310		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
311		if (err)
312			goto out;
313		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
314		    dp->dp_meta_objset, obj));
315	}
316
317	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
318		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
319		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
320		if (err == 0) {
321			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
322			    dp->dp_meta_objset, obj));
323		} else if (err == ENOENT) {
324			/*
325			 * We might not have created the remap bpobj yet.
326			 */
327		} else {
328			goto out;
329		}
330	}
331
332	/*
333	 * Note: errors ignored, because the these special dirs, used for
334	 * space accounting, are only created on demand.
335	 */
336	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
337	    &dp->dp_leak_dir);
338
339	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
340		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
341		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
342		    &dp->dp_bptree_obj);
343		if (err != 0)
344			goto out;
345	}
346
347	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
348		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
349		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
350		    &dp->dp_empty_bpobj);
351		if (err != 0)
352			goto out;
353	}
354
355	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
356	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
357	    &dp->dp_tmp_userrefs_obj);
358	if (err == ENOENT)
359		err = 0;
360	if (err)
361		goto out;
362
363	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
364
365out:
366	rrw_exit(&dp->dp_config_rwlock, FTAG);
367	return (err);
368}
369
370void
371dsl_pool_close(dsl_pool_t *dp)
372{
373	/*
374	 * Drop our references from dsl_pool_open().
375	 *
376	 * Since we held the origin_snap from "syncing" context (which
377	 * includes pool-opening context), it actually only got a "ref"
378	 * and not a hold, so just drop that here.
379	 */
380	if (dp->dp_origin_snap != NULL)
381		dsl_dataset_rele(dp->dp_origin_snap, dp);
382	if (dp->dp_mos_dir != NULL)
383		dsl_dir_rele(dp->dp_mos_dir, dp);
384	if (dp->dp_free_dir != NULL)
385		dsl_dir_rele(dp->dp_free_dir, dp);
386	if (dp->dp_leak_dir != NULL)
387		dsl_dir_rele(dp->dp_leak_dir, dp);
388	if (dp->dp_root_dir != NULL)
389		dsl_dir_rele(dp->dp_root_dir, dp);
390
391	bpobj_close(&dp->dp_free_bpobj);
392	bpobj_close(&dp->dp_obsolete_bpobj);
393
394	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
395	if (dp->dp_meta_objset != NULL)
396		dmu_objset_evict(dp->dp_meta_objset);
397
398	txg_list_destroy(&dp->dp_dirty_datasets);
399	txg_list_destroy(&dp->dp_dirty_zilogs);
400	txg_list_destroy(&dp->dp_sync_tasks);
401	txg_list_destroy(&dp->dp_early_sync_tasks);
402	txg_list_destroy(&dp->dp_dirty_dirs);
403
404	taskq_destroy(dp->dp_zil_clean_taskq);
405	spa_sync_tq_destroy(dp->dp_spa);
406
407	/*
408	 * We can't set retry to TRUE since we're explicitly specifying
409	 * a spa to flush. This is good enough; any missed buffers for
410	 * this spa won't cause trouble, and they'll eventually fall
411	 * out of the ARC just like any other unused buffer.
412	 */
413	arc_flush(dp->dp_spa, FALSE);
414
415	mmp_fini(dp->dp_spa);
416	txg_fini(dp);
417	dsl_scan_fini(dp);
418	dmu_buf_user_evict_wait();
419
420	rrw_destroy(&dp->dp_config_rwlock);
421	mutex_destroy(&dp->dp_lock);
422	cv_destroy(&dp->dp_spaceavail_cv);
423
424	ASSERT0(aggsum_value(&dp->dp_wrlog_total));
425	aggsum_fini(&dp->dp_wrlog_total);
426	for (int i = 0; i < TXG_SIZE; i++) {
427		ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
428		aggsum_fini(&dp->dp_wrlog_pertxg[i]);
429	}
430
431	taskq_destroy(dp->dp_unlinked_drain_taskq);
432	taskq_destroy(dp->dp_zrele_taskq);
433	if (dp->dp_blkstats != NULL)
434		vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
435	kmem_free(dp, sizeof (dsl_pool_t));
436}
437
438void
439dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
440{
441	uint64_t obj;
442	/*
443	 * Currently, we only create the obsolete_bpobj where there are
444	 * indirect vdevs with referenced mappings.
445	 */
446	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
447	/* create and open the obsolete_bpobj */
448	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
449	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
450	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
451	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
452	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
453}
454
455void
456dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
457{
458	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
459	VERIFY0(zap_remove(dp->dp_meta_objset,
460	    DMU_POOL_DIRECTORY_OBJECT,
461	    DMU_POOL_OBSOLETE_BPOBJ, tx));
462	bpobj_free(dp->dp_meta_objset,
463	    dp->dp_obsolete_bpobj.bpo_object, tx);
464	bpobj_close(&dp->dp_obsolete_bpobj);
465}
466
467dsl_pool_t *
468dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
469    dsl_crypto_params_t *dcp, uint64_t txg)
470{
471	int err;
472	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
473	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
474#ifdef _KERNEL
475	objset_t *os;
476#else
477	objset_t *os __attribute__((unused));
478#endif
479	dsl_dataset_t *ds;
480	uint64_t obj;
481
482	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
483
484	/* create and open the MOS (meta-objset) */
485	dp->dp_meta_objset = dmu_objset_create_impl(spa,
486	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
487	spa->spa_meta_objset = dp->dp_meta_objset;
488
489	/* create the pool directory */
490	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
491	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
492	ASSERT0(err);
493
494	/* Initialize scan structures */
495	VERIFY0(dsl_scan_init(dp, txg));
496
497	/* create and open the root dir */
498	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
499	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
500	    NULL, dp, &dp->dp_root_dir));
501
502	/* create and open the meta-objset dir */
503	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
504	VERIFY0(dsl_pool_open_special_dir(dp,
505	    MOS_DIR_NAME, &dp->dp_mos_dir));
506
507	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
508		/* create and open the free dir */
509		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
510		    FREE_DIR_NAME, tx);
511		VERIFY0(dsl_pool_open_special_dir(dp,
512		    FREE_DIR_NAME, &dp->dp_free_dir));
513
514		/* create and open the free_bplist */
515		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
516		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
517		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
518		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
519		    dp->dp_meta_objset, obj));
520	}
521
522	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
523		dsl_pool_create_origin(dp, tx);
524
525	/*
526	 * Some features may be needed when creating the root dataset, so we
527	 * create the feature objects here.
528	 */
529	if (spa_version(spa) >= SPA_VERSION_FEATURES)
530		spa_feature_create_zap_objects(spa, tx);
531
532	if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
533	    dcp->cp_crypt != ZIO_CRYPT_INHERIT)
534		spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
535
536	/* create the root dataset */
537	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
538
539	/* create the root objset */
540	VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
541	    DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
542	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
543	os = dmu_objset_create_impl(dp->dp_spa, ds,
544	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
545	rrw_exit(&ds->ds_bp_rwlock, FTAG);
546#ifdef _KERNEL
547	zfs_create_fs(os, kcred, zplprops, tx);
548#endif
549	dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
550
551	dmu_tx_commit(tx);
552
553	rrw_exit(&dp->dp_config_rwlock, FTAG);
554
555	return (dp);
556}
557
558/*
559 * Account for the meta-objset space in its placeholder dsl_dir.
560 */
561void
562dsl_pool_mos_diduse_space(dsl_pool_t *dp,
563    int64_t used, int64_t comp, int64_t uncomp)
564{
565	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
566	mutex_enter(&dp->dp_lock);
567	dp->dp_mos_used_delta += used;
568	dp->dp_mos_compressed_delta += comp;
569	dp->dp_mos_uncompressed_delta += uncomp;
570	mutex_exit(&dp->dp_lock);
571}
572
573static void
574dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
575{
576	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
577	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
578	VERIFY0(zio_wait(zio));
579	dmu_objset_sync_done(dp->dp_meta_objset, tx);
580	taskq_wait(dp->dp_sync_taskq);
581	multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
582
583	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
584	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
585}
586
587static void
588dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
589{
590	ASSERT(MUTEX_HELD(&dp->dp_lock));
591
592	if (delta < 0)
593		ASSERT3U(-delta, <=, dp->dp_dirty_total);
594
595	dp->dp_dirty_total += delta;
596
597	/*
598	 * Note: we signal even when increasing dp_dirty_total.
599	 * This ensures forward progress -- each thread wakes the next waiter.
600	 */
601	if (dp->dp_dirty_total < zfs_dirty_data_max)
602		cv_signal(&dp->dp_spaceavail_cv);
603}
604
605void
606dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
607{
608	ASSERT3S(size, >=, 0);
609
610	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
611	aggsum_add(&dp->dp_wrlog_total, size);
612
613	/* Choose a value slightly bigger than min dirty sync bytes */
614	uint64_t sync_min =
615	    zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
616	if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
617		txg_kick(dp, txg);
618}
619
620boolean_t
621dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
622{
623	uint64_t delay_min_bytes =
624	    zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
625
626	return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
627}
628
629static void
630dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
631{
632	int64_t delta;
633	delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
634	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
635	aggsum_add(&dp->dp_wrlog_total, delta);
636	/* Compact per-CPU sums after the big change. */
637	(void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
638	(void) aggsum_value(&dp->dp_wrlog_total);
639}
640
641#ifdef ZFS_DEBUG
642static boolean_t
643dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
644{
645	spa_t *spa = dp->dp_spa;
646	vdev_t *rvd = spa->spa_root_vdev;
647
648	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
649		vdev_t *vd = rvd->vdev_child[c];
650		txg_list_t *tl = &vd->vdev_ms_list;
651		metaslab_t *ms;
652
653		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
654		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
655			VERIFY(range_tree_is_empty(ms->ms_freeing));
656			VERIFY(range_tree_is_empty(ms->ms_checkpointing));
657		}
658	}
659
660	return (B_TRUE);
661}
662#else
663#define	dsl_early_sync_task_verify(dp, txg) \
664	((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
665#endif
666
667void
668dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
669{
670	zio_t *rio;	/* root zio for all dirty dataset syncs */
671	dmu_tx_t *tx;
672	dsl_dir_t *dd;
673	dsl_dataset_t *ds;
674	objset_t *mos = dp->dp_meta_objset;
675	list_t synced_datasets;
676
677	list_create(&synced_datasets, sizeof (dsl_dataset_t),
678	    offsetof(dsl_dataset_t, ds_synced_link));
679
680	tx = dmu_tx_create_assigned(dp, txg);
681
682	/*
683	 * Run all early sync tasks before writing out any dirty blocks.
684	 * For more info on early sync tasks see block comment in
685	 * dsl_early_sync_task().
686	 */
687	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
688		dsl_sync_task_t *dst;
689
690		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
691		while ((dst =
692		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
693			ASSERT(dsl_early_sync_task_verify(dp, txg));
694			dsl_sync_task_sync(dst, tx);
695		}
696		ASSERT(dsl_early_sync_task_verify(dp, txg));
697	}
698
699	/*
700	 * Write out all dirty blocks of dirty datasets. Note, this could
701	 * create a very large (+10k) zio tree.
702	 */
703	rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
704	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
705		/*
706		 * We must not sync any non-MOS datasets twice, because
707		 * we may have taken a snapshot of them.  However, we
708		 * may sync newly-created datasets on pass 2.
709		 */
710		ASSERT(!list_link_active(&ds->ds_synced_link));
711		list_insert_tail(&synced_datasets, ds);
712		dsl_dataset_sync(ds, rio, tx);
713	}
714	VERIFY0(zio_wait(rio));
715
716	/*
717	 * Update the long range free counter after
718	 * we're done syncing user data
719	 */
720	mutex_enter(&dp->dp_lock);
721	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
722	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
723	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
724	mutex_exit(&dp->dp_lock);
725
726	/*
727	 * After the data blocks have been written (ensured by the zio_wait()
728	 * above), update the user/group/project space accounting.  This happens
729	 * in tasks dispatched to dp_sync_taskq, so wait for them before
730	 * continuing.
731	 */
732	for (ds = list_head(&synced_datasets); ds != NULL;
733	    ds = list_next(&synced_datasets, ds)) {
734		dmu_objset_sync_done(ds->ds_objset, tx);
735	}
736	taskq_wait(dp->dp_sync_taskq);
737
738	/*
739	 * Sync the datasets again to push out the changes due to
740	 * userspace updates.  This must be done before we process the
741	 * sync tasks, so that any snapshots will have the correct
742	 * user accounting information (and we won't get confused
743	 * about which blocks are part of the snapshot).
744	 */
745	rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
746	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
747		objset_t *os = ds->ds_objset;
748
749		ASSERT(list_link_active(&ds->ds_synced_link));
750		dmu_buf_rele(ds->ds_dbuf, ds);
751		dsl_dataset_sync(ds, rio, tx);
752
753		/*
754		 * Release any key mappings created by calls to
755		 * dsl_dataset_dirty() from the userquota accounting
756		 * code paths.
757		 */
758		if (os->os_encrypted && !os->os_raw_receive &&
759		    !os->os_next_write_raw[txg & TXG_MASK]) {
760			ASSERT3P(ds->ds_key_mapping, !=, NULL);
761			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
762		}
763	}
764	VERIFY0(zio_wait(rio));
765
766	/*
767	 * Now that the datasets have been completely synced, we can
768	 * clean up our in-memory structures accumulated while syncing:
769	 *
770	 *  - move dead blocks from the pending deadlist and livelists
771	 *    to the on-disk versions
772	 *  - release hold from dsl_dataset_dirty()
773	 *  - release key mapping hold from dsl_dataset_dirty()
774	 */
775	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
776		objset_t *os = ds->ds_objset;
777
778		if (os->os_encrypted && !os->os_raw_receive &&
779		    !os->os_next_write_raw[txg & TXG_MASK]) {
780			ASSERT3P(ds->ds_key_mapping, !=, NULL);
781			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
782		}
783
784		dsl_dataset_sync_done(ds, tx);
785		dmu_buf_rele(ds->ds_dbuf, ds);
786	}
787
788	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
789		dsl_dir_sync(dd, tx);
790	}
791
792	/*
793	 * The MOS's space is accounted for in the pool/$MOS
794	 * (dp_mos_dir).  We can't modify the mos while we're syncing
795	 * it, so we remember the deltas and apply them here.
796	 */
797	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
798	    dp->dp_mos_uncompressed_delta != 0) {
799		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
800		    dp->dp_mos_used_delta,
801		    dp->dp_mos_compressed_delta,
802		    dp->dp_mos_uncompressed_delta, tx);
803		dp->dp_mos_used_delta = 0;
804		dp->dp_mos_compressed_delta = 0;
805		dp->dp_mos_uncompressed_delta = 0;
806	}
807
808	if (dmu_objset_is_dirty(mos, txg)) {
809		dsl_pool_sync_mos(dp, tx);
810	}
811
812	/*
813	 * We have written all of the accounted dirty data, so our
814	 * dp_space_towrite should now be zero. However, some seldom-used
815	 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
816	 * the accounting of any dirtied space now.
817	 *
818	 * Note that, besides any dirty data from datasets, the amount of
819	 * dirty data in the MOS is also accounted by the pool. Therefore,
820	 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
821	 * attempt to update the accounting for the same dirty data twice.
822	 * (i.e. at this point we only update the accounting for the space
823	 * that we know that we "leaked").
824	 */
825	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
826
827	/*
828	 * If we modify a dataset in the same txg that we want to destroy it,
829	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
830	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
831	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
832	 * and clearing the hold on it) before we process the sync_tasks.
833	 * The MOS data dirtied by the sync_tasks will be synced on the next
834	 * pass.
835	 */
836	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
837		dsl_sync_task_t *dst;
838		/*
839		 * No more sync tasks should have been added while we
840		 * were syncing.
841		 */
842		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
843		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
844			dsl_sync_task_sync(dst, tx);
845	}
846
847	dmu_tx_commit(tx);
848
849	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
850}
851
852void
853dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
854{
855	zilog_t *zilog;
856
857	while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
858		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
859		/*
860		 * We don't remove the zilog from the dp_dirty_zilogs
861		 * list until after we've cleaned it. This ensures that
862		 * callers of zilog_is_dirty() receive an accurate
863		 * answer when they are racing with the spa sync thread.
864		 */
865		zil_clean(zilog, txg);
866		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
867		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
868		dmu_buf_rele(ds->ds_dbuf, zilog);
869	}
870
871	dsl_pool_wrlog_clear(dp, txg);
872
873	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
874}
875
876/*
877 * TRUE if the current thread is the tx_sync_thread or if we
878 * are being called from SPA context during pool initialization.
879 */
880int
881dsl_pool_sync_context(dsl_pool_t *dp)
882{
883	return (curthread == dp->dp_tx.tx_sync_thread ||
884	    spa_is_initializing(dp->dp_spa) ||
885	    taskq_member(dp->dp_sync_taskq, curthread));
886}
887
888/*
889 * This function returns the amount of allocatable space in the pool
890 * minus whatever space is currently reserved by ZFS for specific
891 * purposes. Specifically:
892 *
893 * 1] Any reserved SLOP space
894 * 2] Any space used by the checkpoint
895 * 3] Any space used for deferred frees
896 *
897 * The latter 2 are especially important because they are needed to
898 * rectify the SPA's and DMU's different understanding of how much space
899 * is used. Now the DMU is aware of that extra space tracked by the SPA
900 * without having to maintain a separate special dir (e.g similar to
901 * $MOS, $FREEING, and $LEAKED).
902 *
903 * Note: By deferred frees here, we mean the frees that were deferred
904 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
905 * segments placed in ms_defer trees during metaslab_sync_done().
906 */
907uint64_t
908dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
909{
910	spa_t *spa = dp->dp_spa;
911	uint64_t space, resv, adjustedsize;
912	uint64_t spa_deferred_frees =
913	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
914
915	space = spa_get_dspace(spa)
916	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
917	resv = spa_get_slop_space(spa);
918
919	switch (slop_policy) {
920	case ZFS_SPACE_CHECK_NORMAL:
921		break;
922	case ZFS_SPACE_CHECK_RESERVED:
923		resv >>= 1;
924		break;
925	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
926		resv >>= 2;
927		break;
928	case ZFS_SPACE_CHECK_NONE:
929		resv = 0;
930		break;
931	default:
932		panic("invalid slop policy value: %d", slop_policy);
933		break;
934	}
935	adjustedsize = (space >= resv) ? (space - resv) : 0;
936
937	return (adjustedsize);
938}
939
940uint64_t
941dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
942{
943	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
944	uint64_t deferred =
945	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
946	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
947	return (quota);
948}
949
950uint64_t
951dsl_pool_deferred_space(dsl_pool_t *dp)
952{
953	return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
954}
955
956boolean_t
957dsl_pool_need_dirty_delay(dsl_pool_t *dp)
958{
959	uint64_t delay_min_bytes =
960	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
961
962	/*
963	 * We are not taking the dp_lock here and few other places, since torn
964	 * reads are unlikely: on 64-bit systems due to register size and on
965	 * 32-bit due to memory constraints.  Pool-wide locks in hot path may
966	 * be too expensive, while we do not need a precise result here.
967	 */
968	return (dp->dp_dirty_total > delay_min_bytes);
969}
970
971static boolean_t
972dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
973{
974	uint64_t dirty_min_bytes =
975	    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
976	uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
977
978	return (dirty > dirty_min_bytes);
979}
980
981void
982dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
983{
984	if (space > 0) {
985		mutex_enter(&dp->dp_lock);
986		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
987		dsl_pool_dirty_delta(dp, space);
988		boolean_t needsync = !dmu_tx_is_syncing(tx) &&
989		    dsl_pool_need_dirty_sync(dp, tx->tx_txg);
990		mutex_exit(&dp->dp_lock);
991
992		if (needsync)
993			txg_kick(dp, tx->tx_txg);
994	}
995}
996
997void
998dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
999{
1000	ASSERT3S(space, >=, 0);
1001	if (space == 0)
1002		return;
1003
1004	mutex_enter(&dp->dp_lock);
1005	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1006		/* XXX writing something we didn't dirty? */
1007		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
1008	}
1009	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1010	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1011	ASSERT3U(dp->dp_dirty_total, >=, space);
1012	dsl_pool_dirty_delta(dp, -space);
1013	mutex_exit(&dp->dp_lock);
1014}
1015
1016static int
1017upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
1018{
1019	dmu_tx_t *tx = arg;
1020	dsl_dataset_t *ds, *prev = NULL;
1021	int err;
1022
1023	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
1024	if (err)
1025		return (err);
1026
1027	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1028		err = dsl_dataset_hold_obj(dp,
1029		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
1030		if (err) {
1031			dsl_dataset_rele(ds, FTAG);
1032			return (err);
1033		}
1034
1035		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
1036			break;
1037		dsl_dataset_rele(ds, FTAG);
1038		ds = prev;
1039		prev = NULL;
1040	}
1041
1042	if (prev == NULL) {
1043		prev = dp->dp_origin_snap;
1044
1045		/*
1046		 * The $ORIGIN can't have any data, or the accounting
1047		 * will be wrong.
1048		 */
1049		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1050		ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp));
1051		rrw_exit(&ds->ds_bp_rwlock, FTAG);
1052
1053		/* The origin doesn't get attached to itself */
1054		if (ds->ds_object == prev->ds_object) {
1055			dsl_dataset_rele(ds, FTAG);
1056			return (0);
1057		}
1058
1059		dmu_buf_will_dirty(ds->ds_dbuf, tx);
1060		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1061		dsl_dataset_phys(ds)->ds_prev_snap_txg =
1062		    dsl_dataset_phys(prev)->ds_creation_txg;
1063
1064		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1065		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
1066
1067		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1068		dsl_dataset_phys(prev)->ds_num_children++;
1069
1070		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1071			ASSERT(ds->ds_prev == NULL);
1072			VERIFY0(dsl_dataset_hold_obj(dp,
1073			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
1074			    ds, &ds->ds_prev));
1075		}
1076	}
1077
1078	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1079	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1080
1081	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1082		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1083		dsl_dataset_phys(prev)->ds_next_clones_obj =
1084		    zap_create(dp->dp_meta_objset,
1085		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1086	}
1087	VERIFY0(zap_add_int(dp->dp_meta_objset,
1088	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1089
1090	dsl_dataset_rele(ds, FTAG);
1091	if (prev != dp->dp_origin_snap)
1092		dsl_dataset_rele(prev, FTAG);
1093	return (0);
1094}
1095
1096void
1097dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1098{
1099	ASSERT(dmu_tx_is_syncing(tx));
1100	ASSERT(dp->dp_origin_snap != NULL);
1101
1102	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1103	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1104}
1105
1106static int
1107upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1108{
1109	dmu_tx_t *tx = arg;
1110	objset_t *mos = dp->dp_meta_objset;
1111
1112	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1113		dsl_dataset_t *origin;
1114
1115		VERIFY0(dsl_dataset_hold_obj(dp,
1116		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1117
1118		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1119			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1120			dsl_dir_phys(origin->ds_dir)->dd_clones =
1121			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1122			    0, tx);
1123		}
1124
1125		VERIFY0(zap_add_int(dp->dp_meta_objset,
1126		    dsl_dir_phys(origin->ds_dir)->dd_clones,
1127		    ds->ds_object, tx));
1128
1129		dsl_dataset_rele(origin, FTAG);
1130	}
1131	return (0);
1132}
1133
1134void
1135dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1136{
1137	uint64_t obj;
1138
1139	ASSERT(dmu_tx_is_syncing(tx));
1140
1141	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1142	VERIFY0(dsl_pool_open_special_dir(dp,
1143	    FREE_DIR_NAME, &dp->dp_free_dir));
1144
1145	/*
1146	 * We can't use bpobj_alloc(), because spa_version() still
1147	 * returns the old version, and we need a new-version bpobj with
1148	 * subobj support.  So call dmu_object_alloc() directly.
1149	 */
1150	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1151	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1152	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1153	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1154	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1155
1156	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1157	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1158}
1159
1160void
1161dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1162{
1163	uint64_t dsobj;
1164	dsl_dataset_t *ds;
1165
1166	ASSERT(dmu_tx_is_syncing(tx));
1167	ASSERT(dp->dp_origin_snap == NULL);
1168	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1169
1170	/* create the origin dir, ds, & snap-ds */
1171	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1172	    NULL, 0, kcred, NULL, tx);
1173	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1174	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1175	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1176	    dp, &dp->dp_origin_snap));
1177	dsl_dataset_rele(ds, FTAG);
1178}
1179
1180taskq_t *
1181dsl_pool_zrele_taskq(dsl_pool_t *dp)
1182{
1183	return (dp->dp_zrele_taskq);
1184}
1185
1186taskq_t *
1187dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1188{
1189	return (dp->dp_unlinked_drain_taskq);
1190}
1191
1192/*
1193 * Walk through the pool-wide zap object of temporary snapshot user holds
1194 * and release them.
1195 */
1196void
1197dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1198{
1199	zap_attribute_t za;
1200	zap_cursor_t zc;
1201	objset_t *mos = dp->dp_meta_objset;
1202	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1203	nvlist_t *holds;
1204
1205	if (zapobj == 0)
1206		return;
1207	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1208
1209	holds = fnvlist_alloc();
1210
1211	for (zap_cursor_init(&zc, mos, zapobj);
1212	    zap_cursor_retrieve(&zc, &za) == 0;
1213	    zap_cursor_advance(&zc)) {
1214		char *htag;
1215		nvlist_t *tags;
1216
1217		htag = strchr(za.za_name, '-');
1218		*htag = '\0';
1219		++htag;
1220		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1221			tags = fnvlist_alloc();
1222			fnvlist_add_boolean(tags, htag);
1223			fnvlist_add_nvlist(holds, za.za_name, tags);
1224			fnvlist_free(tags);
1225		} else {
1226			fnvlist_add_boolean(tags, htag);
1227		}
1228	}
1229	dsl_dataset_user_release_tmp(dp, holds);
1230	fnvlist_free(holds);
1231	zap_cursor_fini(&zc);
1232}
1233
1234/*
1235 * Create the pool-wide zap object for storing temporary snapshot holds.
1236 */
1237static void
1238dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1239{
1240	objset_t *mos = dp->dp_meta_objset;
1241
1242	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1243	ASSERT(dmu_tx_is_syncing(tx));
1244
1245	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1246	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1247}
1248
1249static int
1250dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1251    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1252{
1253	objset_t *mos = dp->dp_meta_objset;
1254	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1255	char *name;
1256	int error;
1257
1258	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1259	ASSERT(dmu_tx_is_syncing(tx));
1260
1261	/*
1262	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1263	 * zap object for temporary holds might not exist yet.
1264	 */
1265	if (zapobj == 0) {
1266		if (holding) {
1267			dsl_pool_user_hold_create_obj(dp, tx);
1268			zapobj = dp->dp_tmp_userrefs_obj;
1269		} else {
1270			return (SET_ERROR(ENOENT));
1271		}
1272	}
1273
1274	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1275	if (holding)
1276		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1277	else
1278		error = zap_remove(mos, zapobj, name, tx);
1279	kmem_strfree(name);
1280
1281	return (error);
1282}
1283
1284/*
1285 * Add a temporary hold for the given dataset object and tag.
1286 */
1287int
1288dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1289    uint64_t now, dmu_tx_t *tx)
1290{
1291	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1292}
1293
1294/*
1295 * Release a temporary hold for the given dataset object and tag.
1296 */
1297int
1298dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1299    dmu_tx_t *tx)
1300{
1301	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1302	    tx, B_FALSE));
1303}
1304
1305/*
1306 * DSL Pool Configuration Lock
1307 *
1308 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1309 * creation / destruction / rename / property setting).  It must be held for
1310 * read to hold a dataset or dsl_dir.  I.e. you must call
1311 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1312 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1313 * must be held continuously until all datasets and dsl_dirs are released.
1314 *
1315 * The only exception to this rule is that if a "long hold" is placed on
1316 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1317 * is still held.  The long hold will prevent the dataset from being
1318 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1319 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1320 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1321 *
1322 * Legitimate long-holders (including owners) should be long-running, cancelable
1323 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1324 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1325 * "zfs send", and "zfs diff".  There are several other long-holders whose
1326 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1327 *
1328 * The usual formula for long-holding would be:
1329 * dsl_pool_hold()
1330 * dsl_dataset_hold()
1331 * ... perform checks ...
1332 * dsl_dataset_long_hold()
1333 * dsl_pool_rele()
1334 * ... perform long-running task ...
1335 * dsl_dataset_long_rele()
1336 * dsl_dataset_rele()
1337 *
1338 * Note that when the long hold is released, the dataset is still held but
1339 * the pool is not held.  The dataset may change arbitrarily during this time
1340 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1341 * dataset except release it.
1342 *
1343 * Operations generally fall somewhere into the following taxonomy:
1344 *
1345 *                              Read-Only             Modifying
1346 *
1347 *    Dataset Layer / MOS        zfs get             zfs destroy
1348 *
1349 *     Individual Dataset         read()                write()
1350 *
1351 *
1352 * Dataset Layer Operations
1353 *
1354 * Modifying operations should generally use dsl_sync_task().  The synctask
1355 * infrastructure enforces proper locking strategy with respect to the
1356 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1357 *
1358 * Read-only operations will manually hold the pool, then the dataset, obtain
1359 * information from the dataset, then release the pool and dataset.
1360 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1361 * hold/rele.
1362 *
1363 *
1364 * Operations On Individual Datasets
1365 *
1366 * Objects _within_ an objset should only be modified by the current 'owner'
1367 * of the objset to prevent incorrect concurrent modification. Thus, use
1368 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1369 * and fail with EBUSY if there is already an owner. The owner can then
1370 * implement its own locking strategy, independent of the dataset layer's
1371 * locking infrastructure.
1372 * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1373 *  vnop will not reach into the dataset layer).
1374 *
1375 * Ideally, objects would also only be read by the objset���s owner, so that we
1376 * don���t observe state mid-modification.
1377 * (E.g. the ZPL is creating a new object and linking it into a directory; if
1378 * you don���t coordinate with the ZPL to hold ZPL-level locks, you could see an
1379 * intermediate state.  The ioctl level violates this but in pretty benign
1380 * ways, e.g. reading the zpl props object.)
1381 */
1382
1383int
1384dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
1385{
1386	spa_t *spa;
1387	int error;
1388
1389	error = spa_open(name, &spa, tag);
1390	if (error == 0) {
1391		*dp = spa_get_dsl(spa);
1392		dsl_pool_config_enter(*dp, tag);
1393	}
1394	return (error);
1395}
1396
1397void
1398dsl_pool_rele(dsl_pool_t *dp, const void *tag)
1399{
1400	dsl_pool_config_exit(dp, tag);
1401	spa_close(dp->dp_spa, tag);
1402}
1403
1404void
1405dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
1406{
1407	/*
1408	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1409	 *
1410	 * The rrwlock can (with the track_all flag) track all reading threads,
1411	 * which is very useful for debugging which code path failed to release
1412	 * the lock, and for verifying that the *current* thread does hold
1413	 * the lock.
1414	 *
1415	 * (Unlike a rwlock, which knows that N threads hold it for
1416	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1417	 * if any thread holds it for read, even if this thread doesn't).
1418	 */
1419	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1420	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1421}
1422
1423void
1424dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
1425{
1426	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1427	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1428}
1429
1430void
1431dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
1432{
1433	rrw_exit(&dp->dp_config_rwlock, tag);
1434}
1435
1436boolean_t
1437dsl_pool_config_held(dsl_pool_t *dp)
1438{
1439	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1440}
1441
1442boolean_t
1443dsl_pool_config_held_writer(dsl_pool_t *dp)
1444{
1445	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1446}
1447
1448EXPORT_SYMBOL(dsl_pool_config_enter);
1449EXPORT_SYMBOL(dsl_pool_config_exit);
1450
1451/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1452ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
1453	"Max percent of RAM allowed to be dirty");
1454
1455/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1456ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
1457	"zfs_dirty_data_max upper bound as % of RAM");
1458
1459ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
1460	"Transaction delay threshold");
1461
1462ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
1463	"Determines the dirty space limit");
1464
1465ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
1466	"The size limit of write-transaction zil log data");
1467
1468/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1469ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
1470	"zfs_dirty_data_max upper bound in bytes");
1471
1472ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
1473	"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1474
1475ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
1476	"How quickly delay approaches infinity");
1477
1478ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1479	"Max percent of CPUs that are used per dp_sync_taskq");
1480
1481ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1482	"Number of taskq entries that are pre-populated");
1483
1484ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1485	"Max number of taskq entries that are cached");
1486