1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
23 */
24
25#include <sys/zfs_context.h>
26#include <sys/txg.h>
27#include <sys/dmu_objset.h>
28#include <sys/dmu_traverse.h>
29#include <sys/dmu_redact.h>
30#include <sys/bqueue.h>
31#include <sys/objlist.h>
32#include <sys/dmu_tx.h>
33#ifdef _KERNEL
34#include <sys/zfs_vfsops.h>
35#include <sys/zap.h>
36#include <sys/zfs_znode.h>
37#endif
38
39/*
40 * This controls the number of entries in the buffer the redaction_list_update
41 * synctask uses to buffer writes to the redaction list.
42 */
43static const int redact_sync_bufsize = 1024;
44
45/*
46 * Controls how often to update the redaction list when creating a redaction
47 * list.
48 */
49static const uint64_t redaction_list_update_interval_ns =
50    1000 * 1000 * 1000ULL; /* 1s */
51
52/*
53 * This tunable controls the length of the queues that zfs redact worker threads
54 * use to communicate.  If the dmu_redact_snap thread is blocking on these
55 * queues, this variable may need to be increased.  If there is a significant
56 * slowdown at the start of a redact operation as these threads consume all the
57 * available IO resources, or the queues are consuming too much memory, this
58 * variable may need to be decreased.
59 */
60static const int zfs_redact_queue_length = 1024 * 1024;
61
62/*
63 * These tunables control the fill fraction of the queues by zfs redact. The
64 * fill fraction controls the frequency with which threads have to be
65 * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
66 * should be tuned down.  If the queues empty before the signalled thread can
67 * catch up, then these should be tuned up.
68 */
69static const uint64_t zfs_redact_queue_ff = 20;
70
71struct redact_record {
72	bqueue_node_t		ln;
73	boolean_t		eos_marker; /* Marks the end of the stream */
74	uint64_t		start_object;
75	uint64_t		start_blkid;
76	uint64_t		end_object;
77	uint64_t		end_blkid;
78	uint8_t			indblkshift;
79	uint32_t		datablksz;
80};
81
82struct redact_thread_arg {
83	bqueue_t	q;
84	objset_t	*os;		/* Objset to traverse */
85	dsl_dataset_t	*ds;		/* Dataset to traverse */
86	struct redact_record *current_record;
87	int		error_code;
88	boolean_t	cancel;
89	zbookmark_phys_t resume;
90	objlist_t	*deleted_objs;
91	uint64_t	*num_blocks_visited;
92	uint64_t	ignore_object;	/* ignore further callbacks on this */
93	uint64_t	txg; /* txg to traverse since */
94};
95
96/*
97 * The redaction node is a wrapper around the redaction record that is used
98 * by the redaction merging thread to sort the records and determine overlaps.
99 *
100 * It contains two nodes; one sorts the records by their start_zb, and the other
101 * sorts the records by their end_zb.
102 */
103struct redact_node {
104	avl_node_t			avl_node_start;
105	avl_node_t			avl_node_end;
106	struct redact_record		*record;
107	struct redact_thread_arg	*rt_arg;
108	uint32_t			thread_num;
109};
110
111struct merge_data {
112	list_t				md_redact_block_pending;
113	redact_block_phys_t		md_coalesce_block;
114	uint64_t			md_last_time;
115	redact_block_phys_t		md_furthest[TXG_SIZE];
116	/* Lists of struct redact_block_list_node. */
117	list_t				md_blocks[TXG_SIZE];
118	boolean_t			md_synctask_txg[TXG_SIZE];
119	uint64_t			md_latest_synctask_txg;
120	redaction_list_t		*md_redaction_list;
121};
122
123/*
124 * A wrapper around struct redact_block so it can be stored in a list_t.
125 */
126struct redact_block_list_node {
127	redact_block_phys_t	block;
128	list_node_t		node;
129};
130
131/*
132 * We've found a new redaction candidate.  In order to improve performance, we
133 * coalesce these blocks when they're adjacent to each other.  This function
134 * handles that.  If the new candidate block range is immediately after the
135 * range we're building, coalesce it into the range we're building.  Otherwise,
136 * put the record we're building on the queue, and update the build pointer to
137 * point to the new record.
138 */
139static void
140record_merge_enqueue(bqueue_t *q, struct redact_record **build,
141    struct redact_record *new)
142{
143	if (new->eos_marker) {
144		if (*build != NULL)
145			bqueue_enqueue(q, *build, sizeof (**build));
146		bqueue_enqueue_flush(q, new, sizeof (*new));
147		return;
148	}
149	if (*build == NULL) {
150		*build = new;
151		return;
152	}
153	struct redact_record *curbuild = *build;
154	if ((curbuild->end_object == new->start_object &&
155	    curbuild->end_blkid + 1 == new->start_blkid &&
156	    curbuild->end_blkid != UINT64_MAX) ||
157	    (curbuild->end_object + 1 == new->start_object &&
158	    curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
159		curbuild->end_object = new->end_object;
160		curbuild->end_blkid = new->end_blkid;
161		kmem_free(new, sizeof (*new));
162	} else {
163		bqueue_enqueue(q, curbuild, sizeof (*curbuild));
164		*build = new;
165	}
166}
167#ifdef _KERNEL
168struct objnode {
169	avl_node_t node;
170	uint64_t obj;
171};
172
173static int
174objnode_compare(const void *o1, const void *o2)
175{
176	const struct objnode *obj1 = o1;
177	const struct objnode *obj2 = o2;
178	if (obj1->obj < obj2->obj)
179		return (-1);
180	if (obj1->obj > obj2->obj)
181		return (1);
182	return (0);
183}
184
185
186static objlist_t *
187zfs_get_deleteq(objset_t *os)
188{
189	objlist_t *deleteq_objlist = objlist_create();
190	uint64_t deleteq_obj;
191	zap_cursor_t zc;
192	zap_attribute_t za;
193	dmu_object_info_t doi;
194
195	ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
196	VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
197	ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
198
199	VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
200	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
201
202	/*
203	 * In order to insert objects into the objlist, they must be in sorted
204	 * order. We don't know what order we'll get them out of the ZAP in, so
205	 * we insert them into and remove them from an avl_tree_t to sort them.
206	 */
207	avl_tree_t at;
208	avl_create(&at, objnode_compare, sizeof (struct objnode),
209	    offsetof(struct objnode, node));
210
211	for (zap_cursor_init(&zc, os, deleteq_obj);
212	    zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) {
213		struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
214		obj->obj = za.za_first_integer;
215		avl_add(&at, obj);
216	}
217	zap_cursor_fini(&zc);
218
219	struct objnode *next, *found = avl_first(&at);
220	while (found != NULL) {
221		next = AVL_NEXT(&at, found);
222		objlist_insert(deleteq_objlist, found->obj);
223		found = next;
224	}
225
226	void *cookie = NULL;
227	while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
228		kmem_free(found, sizeof (*found));
229	avl_destroy(&at);
230	return (deleteq_objlist);
231}
232#endif
233
234/*
235 * This is the callback function to traverse_dataset for the redaction threads
236 * for dmu_redact_snap.  This thread is responsible for creating redaction
237 * records for all the data that is modified by the snapshots we're redacting
238 * with respect to.  Redaction records represent ranges of data that have been
239 * modified by one of the redaction snapshots, and are stored in the
240 * redact_record struct. We need to create redaction records for three
241 * cases:
242 *
243 * First, if there's a normal write, we need to create a redaction record for
244 * that block.
245 *
246 * Second, if there's a hole, we need to create a redaction record that covers
247 * the whole range of the hole.  If the hole is in the meta-dnode, it must cover
248 * every block in all of the objects in the hole.
249 *
250 * Third, if there is a deleted object, we need to create a redaction record for
251 * all of the blocks in that object.
252 */
253static int
254redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
255    const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
256{
257	(void) spa, (void) zilog;
258	struct redact_thread_arg *rta = arg;
259	struct redact_record *record;
260
261	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
262	    zb->zb_object >= rta->resume.zb_object);
263
264	if (rta->cancel)
265		return (SET_ERROR(EINTR));
266
267	if (rta->ignore_object == zb->zb_object)
268		return (0);
269
270	/*
271	 * If we're visiting a dnode, we need to handle the case where the
272	 * object has been deleted.
273	 */
274	if (zb->zb_level == ZB_DNODE_LEVEL) {
275		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
276
277		if (zb->zb_object == 0)
278			return (0);
279
280		/*
281		 * If the object has been deleted, redact all of the blocks in
282		 * it.
283		 */
284		if (dnp->dn_type == DMU_OT_NONE ||
285		    objlist_exists(rta->deleted_objs, zb->zb_object)) {
286			rta->ignore_object = zb->zb_object;
287			record = kmem_zalloc(sizeof (struct redact_record),
288			    KM_SLEEP);
289
290			record->eos_marker = B_FALSE;
291			record->start_object = record->end_object =
292			    zb->zb_object;
293			record->start_blkid = 0;
294			record->end_blkid = UINT64_MAX;
295			record_merge_enqueue(&rta->q,
296			    &rta->current_record, record);
297		}
298		return (0);
299	} else if (zb->zb_level < 0) {
300		return (0);
301	} else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
302		/*
303		 * If this is an indirect block, but not a hole, it doesn't
304		 * provide any useful information for redaction, so ignore it.
305		 */
306		return (0);
307	}
308
309	/*
310	 * At this point, there are two options left for the type of block we're
311	 * looking at.  Either this is a hole (which could be in the dnode or
312	 * the meta-dnode), or it's a level 0 block of some sort.  If it's a
313	 * hole, we create a redaction record that covers the whole range.  If
314	 * the hole is in a dnode, we need to redact all the blocks in that
315	 * hole.  If the hole is in the meta-dnode, we instead need to redact
316	 * all blocks in every object covered by that hole.  If it's a level 0
317	 * block, we only need to redact that single block.
318	 */
319	record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
320	record->eos_marker = B_FALSE;
321
322	record->start_object = record->end_object = zb->zb_object;
323	if (BP_IS_HOLE(bp)) {
324		record->start_blkid = zb->zb_blkid *
325		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
326
327		record->end_blkid = ((zb->zb_blkid + 1) *
328		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
329
330		if (zb->zb_object == DMU_META_DNODE_OBJECT) {
331			record->start_object = record->start_blkid *
332			    ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
333			    sizeof (dnode_phys_t));
334			record->start_blkid = 0;
335			record->end_object = ((record->end_blkid +
336			    1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
337			    sizeof (dnode_phys_t))) - 1;
338			record->end_blkid = UINT64_MAX;
339		}
340	} else if (zb->zb_level != 0 ||
341	    zb->zb_object == DMU_META_DNODE_OBJECT) {
342		kmem_free(record, sizeof (*record));
343		return (0);
344	} else {
345		record->start_blkid = record->end_blkid = zb->zb_blkid;
346	}
347	record->indblkshift = dnp->dn_indblkshift;
348	record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
349	record_merge_enqueue(&rta->q, &rta->current_record, record);
350
351	return (0);
352}
353
354static __attribute__((noreturn)) void
355redact_traverse_thread(void *arg)
356{
357	struct redact_thread_arg *rt_arg = arg;
358	int err;
359	struct redact_record *data;
360#ifdef _KERNEL
361	if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
362		rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
363	else
364		rt_arg->deleted_objs = objlist_create();
365#else
366	rt_arg->deleted_objs = objlist_create();
367#endif
368
369	err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
370	    &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
371	    redact_cb, rt_arg);
372
373	if (err != EINTR)
374		rt_arg->error_code = err;
375	objlist_destroy(rt_arg->deleted_objs);
376	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
377	data->eos_marker = B_TRUE;
378	record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
379	thread_exit();
380}
381
382static inline void
383create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
384    uint64_t blkid)
385{
386	zb->zb_object = object;
387	zb->zb_level = 0;
388	zb->zb_blkid = blkid;
389}
390
391/*
392 * This is a utility function that can do the comparison for the start or ends
393 * of the ranges in a redact_record.
394 */
395static int
396redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
397    uint64_t obj2, uint64_t off2, uint32_t dbss2)
398{
399	zbookmark_phys_t z1, z2;
400	create_zbookmark_from_obj_off(&z1, obj1, off1);
401	create_zbookmark_from_obj_off(&z2, obj2, off2);
402
403	return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
404	    dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
405}
406
407/*
408 * Compare two redaction records by their range's start location.  Also makes
409 * eos records always compare last.  We use the thread number in the redact_node
410 * to ensure that records do not compare equal (which is not allowed in our avl
411 * trees).
412 */
413static int
414redact_node_compare_start(const void *arg1, const void *arg2)
415{
416	const struct redact_node *rn1 = arg1;
417	const struct redact_node *rn2 = arg2;
418	const struct redact_record *rr1 = rn1->record;
419	const struct redact_record *rr2 = rn2->record;
420	if (rr1->eos_marker)
421		return (1);
422	if (rr2->eos_marker)
423		return (-1);
424
425	int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
426	    rr1->datablksz, rr2->start_object, rr2->start_blkid,
427	    rr2->datablksz);
428	if (cmp == 0)
429		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
430	return (cmp);
431}
432
433/*
434 * Compare two redaction records by their range's end location.  Also makes
435 * eos records always compare last.  We use the thread number in the redact_node
436 * to ensure that records do not compare equal (which is not allowed in our avl
437 * trees).
438 */
439static int
440redact_node_compare_end(const void *arg1, const void *arg2)
441{
442	const struct redact_node *rn1 = arg1;
443	const struct redact_node *rn2 = arg2;
444	const struct redact_record *srr1 = rn1->record;
445	const struct redact_record *srr2 = rn2->record;
446	if (srr1->eos_marker)
447		return (1);
448	if (srr2->eos_marker)
449		return (-1);
450
451	int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
452	    srr1->datablksz, srr2->end_object, srr2->end_blkid,
453	    srr2->datablksz);
454	if (cmp == 0)
455		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
456	return (cmp);
457}
458
459/*
460 * Utility function that compares two redaction records to determine if any part
461 * of the "from" record is before any part of the "to" record. Also causes End
462 * of Stream redaction records to compare after all others, so that the
463 * redaction merging logic can stay simple.
464 */
465static boolean_t
466redact_record_before(const struct redact_record *from,
467    const struct redact_record *to)
468{
469	if (from->eos_marker == B_TRUE)
470		return (B_FALSE);
471	else if (to->eos_marker == B_TRUE)
472		return (B_TRUE);
473	return (redact_range_compare(from->start_object, from->start_blkid,
474	    from->datablksz, to->end_object, to->end_blkid,
475	    to->datablksz) <= 0);
476}
477
478/*
479 * Pop a new redaction record off the queue, check that the records are in the
480 * right order, and free the old data.
481 */
482static struct redact_record *
483get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
484{
485	struct redact_record *next = bqueue_dequeue(bq);
486	ASSERT(redact_record_before(prev, next));
487	kmem_free(prev, sizeof (*prev));
488	return (next);
489}
490
491/*
492 * Remove the given redaction node from both trees, pull a new redaction record
493 * off the queue, free the old redaction record, update the redaction node, and
494 * reinsert the node into the trees.
495 */
496static int
497update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
498    struct redact_node *redact_node)
499{
500	avl_remove(start_tree, redact_node);
501	avl_remove(end_tree, redact_node);
502	redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
503	    redact_node->record);
504	avl_add(end_tree, redact_node);
505	avl_add(start_tree, redact_node);
506	return (redact_node->rt_arg->error_code);
507}
508
509/*
510 * Synctask for updating redaction lists.  We first take this txg's list of
511 * redacted blocks and append those to the redaction list.  We then update the
512 * redaction list's bonus buffer.  We store the furthest blocks we visited and
513 * the list of snapshots that we're redacting with respect to.  We need these so
514 * that redacted sends and receives can be correctly resumed.
515 */
516static void
517redaction_list_update_sync(void *arg, dmu_tx_t *tx)
518{
519	struct merge_data *md = arg;
520	uint64_t txg = dmu_tx_get_txg(tx);
521	list_t *list = &md->md_blocks[txg & TXG_MASK];
522	redact_block_phys_t *furthest_visited =
523	    &md->md_furthest[txg & TXG_MASK];
524	objset_t *mos = tx->tx_pool->dp_meta_objset;
525	redaction_list_t *rl = md->md_redaction_list;
526	int bufsize = redact_sync_bufsize;
527	redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
528	    KM_SLEEP);
529	int index = 0;
530
531	dmu_buf_will_dirty(rl->rl_dbuf, tx);
532
533	for (struct redact_block_list_node *rbln = list_remove_head(list);
534	    rbln != NULL; rbln = list_remove_head(list)) {
535		ASSERT3U(rbln->block.rbp_object, <=,
536		    furthest_visited->rbp_object);
537		ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
538		    rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
539		buf[index] = rbln->block;
540		index++;
541		if (index == bufsize) {
542			dmu_write(mos, rl->rl_object,
543			    rl->rl_phys->rlp_num_entries * sizeof (*buf),
544			    bufsize * sizeof (*buf), buf, tx);
545			rl->rl_phys->rlp_num_entries += bufsize;
546			index = 0;
547		}
548		kmem_free(rbln, sizeof (*rbln));
549	}
550	if (index > 0) {
551		dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
552		    sizeof (*buf), index * sizeof (*buf), buf, tx);
553		rl->rl_phys->rlp_num_entries += index;
554	}
555	kmem_free(buf, bufsize * sizeof (*buf));
556
557	md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
558	rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
559	rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
560}
561
562static void
563commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
564    uint64_t blkid)
565{
566	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
567	dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
568	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
569	uint64_t txg = dmu_tx_get_txg(tx);
570	if (!md->md_synctask_txg[txg & TXG_MASK]) {
571		dsl_sync_task_nowait(dmu_tx_pool(tx),
572		    redaction_list_update_sync, md, tx);
573		md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
574		md->md_latest_synctask_txg = txg;
575	}
576	md->md_furthest[txg & TXG_MASK].rbp_object = object;
577	md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
578	list_move_tail(&md->md_blocks[txg & TXG_MASK],
579	    &md->md_redact_block_pending);
580	dmu_tx_commit(tx);
581	md->md_last_time = gethrtime();
582}
583
584/*
585 * We want to store the list of blocks that we're redacting in the bookmark's
586 * redaction list.  However, this list is stored in the MOS, which means it can
587 * only be written to in syncing context.  To get around this, we create a
588 * synctask that will write to the mos for us.  We tell it what to write by
589 * a linked list for each current transaction group; every time we decide to
590 * redact a block, we append it to the transaction group that is currently in
591 * open context.  We also update some progress information that the synctask
592 * will store to enable resumable redacted sends.
593 */
594static void
595update_redaction_list(struct merge_data *md, objset_t *os,
596    uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
597{
598	boolean_t enqueue = B_FALSE;
599	redact_block_phys_t cur = {0};
600	uint64_t count = endblkid - blkid + 1;
601	while (count > REDACT_BLOCK_MAX_COUNT) {
602		update_redaction_list(md, os, object, blkid,
603		    blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
604		blkid += REDACT_BLOCK_MAX_COUNT;
605		count -= REDACT_BLOCK_MAX_COUNT;
606	}
607	redact_block_phys_t *coalesce = &md->md_coalesce_block;
608	boolean_t new;
609	if (coalesce->rbp_size_count == 0) {
610		new = B_TRUE;
611		enqueue = B_FALSE;
612	} else  {
613		uint64_t old_count = redact_block_get_count(coalesce);
614		if (coalesce->rbp_object == object &&
615		    coalesce->rbp_blkid + old_count == blkid &&
616		    old_count + count <= REDACT_BLOCK_MAX_COUNT) {
617			ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
618			redact_block_set_count(coalesce, old_count + count);
619			new = B_FALSE;
620			enqueue = B_FALSE;
621		} else {
622			new = B_TRUE;
623			enqueue = B_TRUE;
624		}
625	}
626
627	if (new) {
628		cur = *coalesce;
629		coalesce->rbp_blkid = blkid;
630		coalesce->rbp_object = object;
631
632		redact_block_set_count(coalesce, count);
633		redact_block_set_size(coalesce, blksz);
634	}
635
636	if (enqueue && redact_block_get_size(&cur) != 0) {
637		struct redact_block_list_node *rbln =
638		    kmem_alloc(sizeof (struct redact_block_list_node),
639		    KM_SLEEP);
640		rbln->block = cur;
641		list_insert_tail(&md->md_redact_block_pending, rbln);
642	}
643
644	if (gethrtime() > md->md_last_time +
645	    redaction_list_update_interval_ns) {
646		commit_rl_updates(os, md, object, blkid);
647	}
648}
649
650/*
651 * This thread merges all the redaction records provided by the worker threads,
652 * and determines which blocks are redacted by all the snapshots.  The algorithm
653 * for doing so is similar to performing a merge in mergesort with n sub-lists
654 * instead of 2, with some added complexity due to the fact that the entries are
655 * ranges, not just single blocks.  This algorithm relies on the fact that the
656 * queues are sorted, which is ensured by the fact that traverse_dataset
657 * traverses the dataset in a consistent order.  We pull one entry off the front
658 * of the queues of each secure dataset traversal thread.  Then we repeat the
659 * following: each record represents a range of blocks modified by one of the
660 * redaction snapshots, and each block in that range may need to be redacted in
661 * the send stream.  Find the record with the latest start of its range, and the
662 * record with the earliest end of its range. If the last start is before the
663 * first end, then we know that the blocks in the range [last_start, first_end]
664 * are covered by all of the ranges at the front of the queues, which means
665 * every thread redacts that whole range.  For example, let's say the ranges on
666 * each queue look like this:
667 *
668 * Block Id   1  2  3  4  5  6  7  8  9 10 11
669 * Thread 1 |    [====================]
670 * Thread 2 |       [========]
671 * Thread 3 |             [=================]
672 *
673 * Thread 3 has the last start (5), and the thread 2 has the last end (6).  All
674 * three threads modified the range [5,6], so that data should not be sent over
675 * the wire.  After we've determined whether or not to redact anything, we take
676 * the record with the first end.  We discard that record, and pull a new one
677 * off the front of the queue it came from.  In the above example, we would
678 * discard Thread 2's record, and pull a new one.  Let's say the next record we
679 * pulled from Thread 2 covered range [10,11].  The new layout would look like
680 * this:
681 *
682 * Block Id   1  2  3  4  5  6  7  8  9 10 11
683 * Thread 1 |    [====================]
684 * Thread 2 |                            [==]
685 * Thread 3 |             [=================]
686 *
687 * When we compare the last start (10, from Thread 2) and the first end (9, from
688 * Thread 1), we see that the last start is greater than the first end.
689 * Therefore, we do not redact anything from these records.  We'll iterate by
690 * replacing the record from Thread 1.
691 *
692 * We iterate by replacing the record with the lowest end because we know
693 * that the record with the lowest end has helped us as much as it can.  All the
694 * ranges before it that we will ever redact have been redacted.  In addition,
695 * by replacing the one with the lowest end, we guarantee we catch all ranges
696 * that need to be redacted.  For example, if in the case above we had replaced
697 * the record from Thread 1 instead, we might have ended up with the following:
698 *
699 * Block Id   1  2  3  4  5  6  7  8  9 10 11 12
700 * Thread 1 |                               [==]
701 * Thread 2 |       [========]
702 * Thread 3 |             [=================]
703 *
704 * If the next record from Thread 2 had been [8,10], for example, we should have
705 * redacted part of that range, but because we updated Thread 1's record, we
706 * missed it.
707 *
708 * We implement this algorithm by using two trees.  The first sorts the
709 * redaction records by their start_zb, and the second sorts them by their
710 * end_zb.  We use these to find the record with the last start and the record
711 * with the first end.  We create a record with that start and end, and send it
712 * on.  The overall runtime of this implementation is O(n log m), where n is the
713 * total number of redaction records from all the different redaction snapshots,
714 * and m is the number of redaction snapshots.
715 *
716 * If we redact with respect to zero snapshots, we create a redaction
717 * record with the start object and blkid to 0, and the end object and blkid to
718 * UINT64_MAX.  This will result in us redacting every block.
719 */
720static int
721perform_thread_merge(bqueue_t *q, uint32_t num_threads,
722    struct redact_thread_arg *thread_args, boolean_t *cancel)
723{
724	struct redact_node *redact_nodes = NULL;
725	avl_tree_t start_tree, end_tree;
726	struct redact_record *record;
727	struct redact_record *current_record = NULL;
728	int err = 0;
729	struct merge_data md = { {0} };
730	list_create(&md.md_redact_block_pending,
731	    sizeof (struct redact_block_list_node),
732	    offsetof(struct redact_block_list_node, node));
733
734	/*
735	 * If we're redacting with respect to zero snapshots, then no data is
736	 * permitted to be sent.  We enqueue a record that redacts all blocks,
737	 * and an eos marker.
738	 */
739	if (num_threads == 0) {
740		record = kmem_zalloc(sizeof (struct redact_record),
741		    KM_SLEEP);
742		// We can't redact object 0, so don't try.
743		record->start_object = 1;
744		record->start_blkid = 0;
745		record->end_object = record->end_blkid = UINT64_MAX;
746		bqueue_enqueue(q, record, sizeof (*record));
747		return (0);
748	}
749	redact_nodes = vmem_zalloc(num_threads *
750	    sizeof (*redact_nodes), KM_SLEEP);
751
752	avl_create(&start_tree, redact_node_compare_start,
753	    sizeof (struct redact_node),
754	    offsetof(struct redact_node, avl_node_start));
755	avl_create(&end_tree, redact_node_compare_end,
756	    sizeof (struct redact_node),
757	    offsetof(struct redact_node, avl_node_end));
758
759	for (int i = 0; i < num_threads; i++) {
760		struct redact_node *node = &redact_nodes[i];
761		struct redact_thread_arg *targ = &thread_args[i];
762		node->record = bqueue_dequeue(&targ->q);
763		node->rt_arg = targ;
764		node->thread_num = i;
765		avl_add(&start_tree, node);
766		avl_add(&end_tree, node);
767	}
768
769	/*
770	 * Once the first record in the end tree has returned EOS, every record
771	 * must be an EOS record, so we should stop.
772	 */
773	while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
774	    record->eos_marker) {
775		if (*cancel) {
776			err = EINTR;
777			break;
778		}
779		struct redact_node *last_start = avl_last(&start_tree);
780		struct redact_node *first_end = avl_first(&end_tree);
781
782		/*
783		 * If the last start record is before the first end record,
784		 * then we have blocks that are redacted by all threads.
785		 * Therefore, we should redact them.  Copy the record, and send
786		 * it to the main thread.
787		 */
788		if (redact_record_before(last_start->record,
789		    first_end->record)) {
790			record = kmem_zalloc(sizeof (struct redact_record),
791			    KM_SLEEP);
792			*record = *first_end->record;
793			record->start_object = last_start->record->start_object;
794			record->start_blkid = last_start->record->start_blkid;
795			record_merge_enqueue(q, &current_record,
796			    record);
797		}
798		err = update_avl_trees(&start_tree, &end_tree, first_end);
799	}
800
801	/*
802	 * We're done; if we were cancelled, we need to cancel our workers and
803	 * clear out their queues.  Either way, we need to remove every thread's
804	 * redact_node struct from the avl trees.
805	 */
806	for (int i = 0; i < num_threads; i++) {
807		if (err != 0) {
808			thread_args[i].cancel = B_TRUE;
809			while (!redact_nodes[i].record->eos_marker) {
810				(void) update_avl_trees(&start_tree, &end_tree,
811				    &redact_nodes[i]);
812			}
813		}
814		avl_remove(&start_tree, &redact_nodes[i]);
815		avl_remove(&end_tree, &redact_nodes[i]);
816		kmem_free(redact_nodes[i].record,
817		    sizeof (struct redact_record));
818		bqueue_destroy(&thread_args[i].q);
819	}
820
821	avl_destroy(&start_tree);
822	avl_destroy(&end_tree);
823	vmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
824	if (current_record != NULL)
825		bqueue_enqueue(q, current_record, sizeof (*current_record));
826	return (err);
827}
828
829struct redact_merge_thread_arg {
830	bqueue_t q;
831	spa_t *spa;
832	int numsnaps;
833	struct redact_thread_arg *thr_args;
834	boolean_t cancel;
835	int error_code;
836};
837
838static __attribute__((noreturn)) void
839redact_merge_thread(void *arg)
840{
841	struct redact_merge_thread_arg *rmta = arg;
842	rmta->error_code = perform_thread_merge(&rmta->q,
843	    rmta->numsnaps, rmta->thr_args, &rmta->cancel);
844	struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
845	rec->eos_marker = B_TRUE;
846	bqueue_enqueue_flush(&rmta->q, rec, 1);
847	thread_exit();
848}
849
850/*
851 * Find the next object in or after the redaction range passed in, and hold
852 * its dnode with the provided tag.  Also update *object to contain the new
853 * object number.
854 */
855static int
856hold_next_object(objset_t *os, struct redact_record *rec, const void *tag,
857    uint64_t *object, dnode_t **dn)
858{
859	int err = 0;
860	if (*dn != NULL)
861		dnode_rele(*dn, tag);
862	*dn = NULL;
863	if (*object < rec->start_object) {
864		*object = rec->start_object - 1;
865	}
866	err = dmu_object_next(os, object, B_FALSE, 0);
867	if (err != 0)
868		return (err);
869
870	err = dnode_hold(os, *object, tag, dn);
871	while (err == 0 && (*object < rec->start_object ||
872	    DMU_OT_IS_METADATA((*dn)->dn_type))) {
873		dnode_rele(*dn, tag);
874		*dn = NULL;
875		err = dmu_object_next(os, object, B_FALSE, 0);
876		if (err != 0)
877			break;
878		err = dnode_hold(os, *object, tag, dn);
879	}
880	return (err);
881}
882
883static int
884perform_redaction(objset_t *os, redaction_list_t *rl,
885    struct redact_merge_thread_arg *rmta)
886{
887	int err = 0;
888	bqueue_t *q = &rmta->q;
889	struct redact_record *rec = NULL;
890	struct merge_data md = { {0} };
891
892	list_create(&md.md_redact_block_pending,
893	    sizeof (struct redact_block_list_node),
894	    offsetof(struct redact_block_list_node, node));
895	md.md_redaction_list = rl;
896
897	for (int i = 0; i < TXG_SIZE; i++) {
898		list_create(&md.md_blocks[i],
899		    sizeof (struct redact_block_list_node),
900		    offsetof(struct redact_block_list_node, node));
901	}
902	dnode_t *dn = NULL;
903	uint64_t prev_obj = 0;
904	for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
905	    rec = get_next_redact_record(q, rec)) {
906		ASSERT3U(rec->start_object, !=, 0);
907		uint64_t object;
908		if (prev_obj != rec->start_object) {
909			object = rec->start_object - 1;
910			err = hold_next_object(os, rec, FTAG, &object, &dn);
911		} else {
912			object = prev_obj;
913		}
914		while (err == 0 && object <= rec->end_object) {
915			if (issig(JUSTLOOKING) && issig(FORREAL)) {
916				err = EINTR;
917				break;
918			}
919			/*
920			 * Part of the current object is contained somewhere in
921			 * the range covered by rec.
922			 */
923			uint64_t startblkid;
924			uint64_t endblkid;
925			uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
926
927			if (rec->start_object < object)
928				startblkid = 0;
929			else if (rec->start_blkid > maxblkid)
930				break;
931			else
932				startblkid = rec->start_blkid;
933
934			if (rec->end_object > object || rec->end_blkid >
935			    maxblkid) {
936				endblkid = maxblkid;
937			} else {
938				endblkid = rec->end_blkid;
939			}
940			update_redaction_list(&md, os, object, startblkid,
941			    endblkid, dn->dn_datablksz);
942
943			if (object == rec->end_object)
944				break;
945			err = hold_next_object(os, rec, FTAG, &object, &dn);
946		}
947		if (err == ESRCH)
948			err = 0;
949		if (dn != NULL)
950			prev_obj = object;
951	}
952	if (err == 0 && dn != NULL)
953		dnode_rele(dn, FTAG);
954
955	if (err == ESRCH)
956		err = 0;
957	rmta->cancel = B_TRUE;
958	while (!rec->eos_marker)
959		rec = get_next_redact_record(q, rec);
960	kmem_free(rec, sizeof (*rec));
961
962	/*
963	 * There may be a block that's being coalesced, sync that out before we
964	 * return.
965	 */
966	if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
967		struct redact_block_list_node *rbln =
968		    kmem_alloc(sizeof (struct redact_block_list_node),
969		    KM_SLEEP);
970		rbln->block = md.md_coalesce_block;
971		list_insert_tail(&md.md_redact_block_pending, rbln);
972	}
973	commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
974
975	/*
976	 * Wait for all the redaction info to sync out before we return, so that
977	 * anyone who attempts to resume this redaction will have all the data
978	 * they need.
979	 */
980	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
981	if (md.md_latest_synctask_txg != 0)
982		txg_wait_synced(dp, md.md_latest_synctask_txg);
983	for (int i = 0; i < TXG_SIZE; i++)
984		list_destroy(&md.md_blocks[i]);
985	return (err);
986}
987
988static boolean_t
989redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
990{
991	for (int i = 0; i < num_snaps; i++) {
992		if (snaps[i] == guid)
993			return (B_TRUE);
994	}
995	return (B_FALSE);
996}
997
998int
999dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
1000    const char *redactbook)
1001{
1002	int err = 0;
1003	dsl_pool_t *dp = NULL;
1004	dsl_dataset_t *ds = NULL;
1005	int numsnaps = 0;
1006	objset_t *os;
1007	struct redact_thread_arg *args = NULL;
1008	redaction_list_t *new_rl = NULL;
1009	char *newredactbook;
1010
1011	if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
1012		return (err);
1013
1014	newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
1015	    KM_SLEEP);
1016
1017	if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
1018	    FTAG, &ds)) != 0) {
1019		goto out;
1020	}
1021	dsl_dataset_long_hold(ds, FTAG);
1022	if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
1023		err = EINVAL;
1024		goto out;
1025	}
1026	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
1027		err = EALREADY;
1028		goto out;
1029	}
1030
1031	numsnaps = fnvlist_num_pairs(redactnvl);
1032	if (numsnaps > 0)
1033		args = vmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
1034
1035	nvpair_t *pair = NULL;
1036	for (int i = 0; i < numsnaps; i++) {
1037		pair = nvlist_next_nvpair(redactnvl, pair);
1038		const char *name = nvpair_name(pair);
1039		struct redact_thread_arg *rta = &args[i];
1040		err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
1041		    FTAG, &rta->ds);
1042		if (err != 0)
1043			break;
1044		/*
1045		 * We want to do the long hold before we can get any other
1046		 * errors, because the cleanup code will release the long
1047		 * hold if rta->ds is filled in.
1048		 */
1049		dsl_dataset_long_hold(rta->ds, FTAG);
1050
1051		err = dmu_objset_from_ds(rta->ds, &rta->os);
1052		if (err != 0)
1053			break;
1054		if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
1055			err = EINVAL;
1056			break;
1057		}
1058		if (dsl_dataset_feature_is_active(rta->ds,
1059		    SPA_FEATURE_REDACTED_DATASETS)) {
1060			err = EALREADY;
1061			break;
1062
1063		}
1064	}
1065	if (err != 0)
1066		goto out;
1067	VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL);
1068
1069	boolean_t resuming = B_FALSE;
1070	zfs_bookmark_phys_t bookmark;
1071
1072	(void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
1073	char *c = strchr(newredactbook, '@');
1074	ASSERT3P(c, !=, NULL);
1075	int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
1076	    "#%s", redactbook);
1077	if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
1078		dsl_pool_rele(dp, FTAG);
1079		kmem_free(newredactbook,
1080		    sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1081		if (args != NULL)
1082			vmem_free(args, numsnaps * sizeof (*args));
1083		return (SET_ERROR(ENAMETOOLONG));
1084	}
1085	err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
1086	if (err == 0) {
1087		resuming = B_TRUE;
1088		if (bookmark.zbm_redaction_obj == 0) {
1089			err = EEXIST;
1090			goto out;
1091		}
1092		err = dsl_redaction_list_hold_obj(dp,
1093		    bookmark.zbm_redaction_obj, FTAG, &new_rl);
1094		if (err != 0) {
1095			err = EIO;
1096			goto out;
1097		}
1098		dsl_redaction_list_long_hold(dp, new_rl, FTAG);
1099		if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
1100			err = ESRCH;
1101			goto out;
1102		}
1103		for (int i = 0; i < numsnaps; i++) {
1104			struct redact_thread_arg *rta = &args[i];
1105			if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
1106			    new_rl->rl_phys->rlp_num_snaps,
1107			    dsl_dataset_phys(rta->ds)->ds_guid)) {
1108				err = ESRCH;
1109				goto out;
1110			}
1111		}
1112		if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
1113		    new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
1114			err = EEXIST;
1115			goto out;
1116		}
1117		dsl_pool_rele(dp, FTAG);
1118		dp = NULL;
1119	} else {
1120		uint64_t *guids = NULL;
1121		if (numsnaps > 0) {
1122			guids = vmem_zalloc(numsnaps * sizeof (uint64_t),
1123			    KM_SLEEP);
1124		}
1125		for (int i = 0; i < numsnaps; i++) {
1126			struct redact_thread_arg *rta = &args[i];
1127			guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
1128		}
1129
1130		dsl_pool_rele(dp, FTAG);
1131		dp = NULL;
1132		err = dsl_bookmark_create_redacted(newredactbook, snapname,
1133		    numsnaps, guids, FTAG, &new_rl);
1134		vmem_free(guids, numsnaps * sizeof (uint64_t));
1135		if (err != 0)
1136			goto out;
1137	}
1138
1139	for (int i = 0; i < numsnaps; i++) {
1140		struct redact_thread_arg *rta = &args[i];
1141		(void) bqueue_init(&rta->q, zfs_redact_queue_ff,
1142		    zfs_redact_queue_length,
1143		    offsetof(struct redact_record, ln));
1144		if (resuming) {
1145			rta->resume.zb_blkid =
1146			    new_rl->rl_phys->rlp_last_blkid;
1147			rta->resume.zb_object =
1148			    new_rl->rl_phys->rlp_last_object;
1149		}
1150		rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
1151		(void) thread_create(NULL, 0, redact_traverse_thread, rta,
1152		    0, curproc, TS_RUN, minclsyspri);
1153	}
1154
1155	struct redact_merge_thread_arg *rmta;
1156	rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
1157
1158	(void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
1159	    zfs_redact_queue_length, offsetof(struct redact_record, ln));
1160	rmta->numsnaps = numsnaps;
1161	rmta->spa = os->os_spa;
1162	rmta->thr_args = args;
1163	(void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
1164	    TS_RUN, minclsyspri);
1165	err = perform_redaction(os, new_rl, rmta);
1166	bqueue_destroy(&rmta->q);
1167	kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
1168
1169out:
1170	kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1171
1172	if (new_rl != NULL) {
1173		dsl_redaction_list_long_rele(new_rl, FTAG);
1174		dsl_redaction_list_rele(new_rl, FTAG);
1175	}
1176	for (int i = 0; i < numsnaps; i++) {
1177		struct redact_thread_arg *rta = &args[i];
1178		/*
1179		 * rta->ds may be NULL if we got an error while filling
1180		 * it in.
1181		 */
1182		if (rta->ds != NULL) {
1183			dsl_dataset_long_rele(rta->ds, FTAG);
1184			dsl_dataset_rele_flags(rta->ds,
1185			    DS_HOLD_FLAG_DECRYPT, FTAG);
1186		}
1187	}
1188
1189	if (args != NULL)
1190		vmem_free(args, numsnaps * sizeof (*args));
1191	if (dp != NULL)
1192		dsl_pool_rele(dp, FTAG);
1193	if (ds != NULL) {
1194		dsl_dataset_long_rele(ds, FTAG);
1195		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1196	}
1197	return (SET_ERROR(err));
1198
1199}
1200