1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28/*
29 * DTrace - Dynamic Tracing for Solaris
30 *
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace).  The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file.  The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
40 * first.
41 *
42 * The functions here are ordered roughly as follows:
43 *
44 *   - Probe context functions
45 *   - Probe hashing functions
46 *   - Non-probe context utility functions
47 *   - Matching functions
48 *   - Provider-to-Framework API functions
49 *   - Probe management functions
50 *   - DIF object functions
51 *   - Format functions
52 *   - Predicate functions
53 *   - ECB functions
54 *   - Buffer functions
55 *   - Enabling functions
56 *   - DOF functions
57 *   - Anonymous enabling functions
58 *   - Consumer state functions
59 *   - Helper functions
60 *   - Hook functions
61 *   - Driver cookbook functions
62 *
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
66 */
67#include <sys/errno.h>
68#include <sys/param.h>
69#include <sys/types.h>
70#ifndef illumos
71#include <sys/time.h>
72#endif
73#include <sys/stat.h>
74#include <sys/conf.h>
75#include <sys/systm.h>
76#include <sys/endian.h>
77#ifdef illumos
78#include <sys/ddi.h>
79#include <sys/sunddi.h>
80#endif
81#include <sys/cpuvar.h>
82#include <sys/kmem.h>
83#ifdef illumos
84#include <sys/strsubr.h>
85#endif
86#include <sys/sysmacros.h>
87#include <sys/dtrace_impl.h>
88#include <sys/atomic.h>
89#include <sys/cmn_err.h>
90#ifdef illumos
91#include <sys/mutex_impl.h>
92#include <sys/rwlock_impl.h>
93#endif
94#include <sys/ctf_api.h>
95#ifdef illumos
96#include <sys/panic.h>
97#include <sys/priv_impl.h>
98#endif
99#ifdef illumos
100#include <sys/cred_impl.h>
101#include <sys/procfs_isa.h>
102#endif
103#include <sys/taskq.h>
104#ifdef illumos
105#include <sys/mkdev.h>
106#include <sys/kdi.h>
107#endif
108#include <sys/zone.h>
109#include <sys/socket.h>
110#include <netinet/in.h>
111#include "strtolctype.h"
112
113/* FreeBSD includes: */
114#ifndef illumos
115#include <sys/callout.h>
116#include <sys/ctype.h>
117#include <sys/eventhandler.h>
118#include <sys/limits.h>
119#include <sys/linker.h>
120#include <sys/kdb.h>
121#include <sys/jail.h>
122#include <sys/kernel.h>
123#include <sys/malloc.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/ptrace.h>
127#include <sys/random.h>
128#include <sys/rwlock.h>
129#include <sys/sx.h>
130#include <sys/sysctl.h>
131
132
133#include <sys/mount.h>
134#undef AT_UID
135#undef AT_GID
136#include <sys/vnode.h>
137#include <sys/cred.h>
138
139#include <sys/dtrace_bsd.h>
140
141#include <netinet/in.h>
142
143#include "dtrace_cddl.h"
144#include "dtrace_debug.c"
145#endif
146
147#include "dtrace_xoroshiro128_plus.h"
148
149/*
150 * DTrace Tunable Variables
151 *
152 * The following variables may be tuned by adding a line to /etc/system that
153 * includes both the name of the DTrace module ("dtrace") and the name of the
154 * variable.  For example:
155 *
156 *   set dtrace:dtrace_destructive_disallow = 1
157 *
158 * In general, the only variables that one should be tuning this way are those
159 * that affect system-wide DTrace behavior, and for which the default behavior
160 * is undesirable.  Most of these variables are tunable on a per-consumer
161 * basis using DTrace options, and need not be tuned on a system-wide basis.
162 * When tuning these variables, avoid pathological values; while some attempt
163 * is made to verify the integrity of these variables, they are not considered
164 * part of the supported interface to DTrace, and they are therefore not
165 * checked comprehensively.  Further, these variables should not be tuned
166 * dynamically via "mdb -kw" or other means; they should only be tuned via
167 * /etc/system.
168 */
169int		dtrace_destructive_disallow = 0;
170#ifndef illumos
171/* Positive logic version of dtrace_destructive_disallow for loader tunable */
172int		dtrace_allow_destructive = 1;
173#endif
174dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
175size_t		dtrace_difo_maxsize = (256 * 1024);
176dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
177size_t		dtrace_statvar_maxsize = (16 * 1024);
178size_t		dtrace_actions_max = (16 * 1024);
179size_t		dtrace_retain_max = 1024;
180dtrace_optval_t	dtrace_helper_actions_max = 128;
181dtrace_optval_t	dtrace_helper_providers_max = 32;
182dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
183size_t		dtrace_strsize_default = 256;
184dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
185dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
186dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
187dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
188dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
189dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
190dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
191dtrace_optval_t	dtrace_nspec_default = 1;
192dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
193dtrace_optval_t dtrace_stackframes_default = 20;
194dtrace_optval_t dtrace_ustackframes_default = 20;
195dtrace_optval_t dtrace_jstackframes_default = 50;
196dtrace_optval_t dtrace_jstackstrsize_default = 512;
197int		dtrace_msgdsize_max = 128;
198hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
199hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
200int		dtrace_devdepth_max = 32;
201int		dtrace_err_verbose;
202hrtime_t	dtrace_deadman_interval = NANOSEC;
203hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
204hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
205hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
206#ifndef illumos
207int		dtrace_memstr_max = 4096;
208int		dtrace_bufsize_max_frac = 128;
209#endif
210
211/*
212 * DTrace External Variables
213 *
214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
215 * available to DTrace consumers via the backtick (`) syntax.  One of these,
216 * dtrace_zero, is made deliberately so:  it is provided as a source of
217 * well-known, zero-filled memory.  While this variable is not documented,
218 * it is used by some translators as an implementation detail.
219 */
220const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
221
222/*
223 * DTrace Internal Variables
224 */
225#ifdef illumos
226static dev_info_t	*dtrace_devi;		/* device info */
227#endif
228#ifdef illumos
229static vmem_t		*dtrace_arena;		/* probe ID arena */
230static vmem_t		*dtrace_minor;		/* minor number arena */
231#else
232static taskq_t		*dtrace_taskq;		/* task queue */
233static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
234#endif
235static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
236static int		dtrace_nprobes;		/* number of probes */
237static dtrace_provider_t *dtrace_provider;	/* provider list */
238static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
239static int		dtrace_opens;		/* number of opens */
240static int		dtrace_helpers;		/* number of helpers */
241static int		dtrace_getf;		/* number of unpriv getf()s */
242#ifdef illumos
243static void		*dtrace_softstate;	/* softstate pointer */
244#endif
245static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
246static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
247static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
248static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
249static int		dtrace_toxranges;	/* number of toxic ranges */
250static int		dtrace_toxranges_max;	/* size of toxic range array */
251static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
252static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
253static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
254static kthread_t	*dtrace_panicked;	/* panicking thread */
255static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
256static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
257static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
258static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
259static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
260static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
261static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
262#ifndef illumos
263static struct mtx	dtrace_unr_mtx;
264MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
265static eventhandler_tag	dtrace_kld_load_tag;
266static eventhandler_tag	dtrace_kld_unload_try_tag;
267#endif
268
269/*
270 * DTrace Locking
271 * DTrace is protected by three (relatively coarse-grained) locks:
272 *
273 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
274 *     including enabling state, probes, ECBs, consumer state, helper state,
275 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
276 *     probe context is lock-free -- synchronization is handled via the
277 *     dtrace_sync() cross call mechanism.
278 *
279 * (2) dtrace_provider_lock is required when manipulating provider state, or
280 *     when provider state must be held constant.
281 *
282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
283 *     when meta provider state must be held constant.
284 *
285 * The lock ordering between these three locks is dtrace_meta_lock before
286 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
287 * several places where dtrace_provider_lock is held by the framework as it
288 * calls into the providers -- which then call back into the framework,
289 * grabbing dtrace_lock.)
290 *
291 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
293 * role as a coarse-grained lock; it is acquired before both of these locks.
294 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
297 * acquired _between_ dtrace_provider_lock and dtrace_lock.
298 */
299static kmutex_t		dtrace_lock;		/* probe state lock */
300static kmutex_t		dtrace_provider_lock;	/* provider state lock */
301static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
302
303#ifndef illumos
304/* XXX FreeBSD hacks. */
305#define cr_suid		cr_svuid
306#define cr_sgid		cr_svgid
307#define	ipaddr_t	in_addr_t
308#define mod_modname	pathname
309#define vuprintf	vprintf
310#ifndef crgetzoneid
311#define crgetzoneid(_a)        0
312#endif
313#define ttoproc(_a)	((_a)->td_proc)
314#define SNOCD		0
315#define CPU_ON_INTR(_a)	0
316
317#define PRIV_EFFECTIVE		(1 << 0)
318#define PRIV_DTRACE_KERNEL	(1 << 1)
319#define PRIV_DTRACE_PROC	(1 << 2)
320#define PRIV_DTRACE_USER	(1 << 3)
321#define PRIV_PROC_OWNER		(1 << 4)
322#define PRIV_PROC_ZONE		(1 << 5)
323#define PRIV_ALL		~0
324
325SYSCTL_DECL(_debug_dtrace);
326SYSCTL_DECL(_kern_dtrace);
327#endif
328
329#ifdef illumos
330#define curcpu	CPU->cpu_id
331#endif
332
333
334/*
335 * DTrace Provider Variables
336 *
337 * These are the variables relating to DTrace as a provider (that is, the
338 * provider of the BEGIN, END, and ERROR probes).
339 */
340static dtrace_pattr_t	dtrace_provider_attr = {
341{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
342{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
343{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
344{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
345{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
346};
347
348static void
349dtrace_nullop(void)
350{}
351
352static dtrace_pops_t dtrace_provider_ops = {
353	.dtps_provide =	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
354	.dtps_provide_module =	(void (*)(void *, modctl_t *))dtrace_nullop,
355	.dtps_enable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356	.dtps_disable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357	.dtps_suspend =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
358	.dtps_resume =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
359	.dtps_getargdesc =	NULL,
360	.dtps_getargval =	NULL,
361	.dtps_usermode =	NULL,
362	.dtps_destroy =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
363};
364
365static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
366static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
367dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
368
369/*
370 * DTrace Helper Tracing Variables
371 *
372 * These variables should be set dynamically to enable helper tracing.  The
373 * only variables that should be set are dtrace_helptrace_enable (which should
374 * be set to a non-zero value to allocate helper tracing buffers on the next
375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
376 * non-zero value to deallocate helper tracing buffers on the next close of
377 * /dev/dtrace).  When (and only when) helper tracing is disabled, the
378 * buffer size may also be set via dtrace_helptrace_bufsize.
379 */
380int			dtrace_helptrace_enable = 0;
381int			dtrace_helptrace_disable = 0;
382int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
383uint32_t		dtrace_helptrace_nlocals;
384static dtrace_helptrace_t *dtrace_helptrace_buffer;
385static uint32_t		dtrace_helptrace_next = 0;
386static int		dtrace_helptrace_wrapped = 0;
387
388/*
389 * DTrace Error Hashing
390 *
391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
392 * table.  This is very useful for checking coverage of tests that are
393 * expected to induce DIF or DOF processing errors, and may be useful for
394 * debugging problems in the DIF code generator or in DOF generation .  The
395 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
396 */
397#ifdef DEBUG
398static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
399static const char *dtrace_errlast;
400static kthread_t *dtrace_errthread;
401static kmutex_t dtrace_errlock;
402#endif
403
404/*
405 * DTrace Macros and Constants
406 *
407 * These are various macros that are useful in various spots in the
408 * implementation, along with a few random constants that have no meaning
409 * outside of the implementation.  There is no real structure to this cpp
410 * mishmash -- but is there ever?
411 */
412#define	DTRACE_HASHSTR(hash, probe)	\
413	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
414
415#define	DTRACE_HASHNEXT(hash, probe)	\
416	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
417
418#define	DTRACE_HASHPREV(hash, probe)	\
419	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
420
421#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
422	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
423	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
424
425#define	DTRACE_AGGHASHSIZE_SLEW		17
426
427#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
428
429/*
430 * The key for a thread-local variable consists of the lower 61 bits of the
431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
433 * equal to a variable identifier.  This is necessary (but not sufficient) to
434 * assure that global associative arrays never collide with thread-local
435 * variables.  To guarantee that they cannot collide, we must also define the
436 * order for keying dynamic variables.  That order is:
437 *
438 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
439 *
440 * Because the variable-key and the tls-key are in orthogonal spaces, there is
441 * no way for a global variable key signature to match a thread-local key
442 * signature.
443 */
444#ifdef illumos
445#define	DTRACE_TLS_THRKEY(where) { \
446	uint_t intr = 0; \
447	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
448	for (; actv; actv >>= 1) \
449		intr++; \
450	ASSERT(intr < (1 << 3)); \
451	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
452	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453}
454#else
455#define	DTRACE_TLS_THRKEY(where) { \
456	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
457	uint_t intr = 0; \
458	uint_t actv = _c->cpu_intr_actv; \
459	for (; actv; actv >>= 1) \
460		intr++; \
461	ASSERT(intr < (1 << 3)); \
462	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
463	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
464}
465#endif
466
467#define	DT_BSWAP_8(x)	((x) & 0xff)
468#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
469#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
470#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
471
472#define	DT_MASK_LO 0x00000000FFFFFFFFULL
473
474#define	DTRACE_STORE(type, tomax, offset, what) \
475	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
476
477#if !defined(__x86) && !defined(__aarch64__)
478#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
479	if (addr & (size - 1)) {					\
480		*flags |= CPU_DTRACE_BADALIGN;				\
481		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
482		return (0);						\
483	}
484#else
485#define	DTRACE_ALIGNCHECK(addr, size, flags)
486#endif
487
488/*
489 * Test whether a range of memory starting at testaddr of size testsz falls
490 * within the range of memory described by addr, sz.  We take care to avoid
491 * problems with overflow and underflow of the unsigned quantities, and
492 * disallow all negative sizes.  Ranges of size 0 are allowed.
493 */
494#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
495	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
496	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
497	(testaddr) + (testsz) >= (testaddr))
498
499#define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
500do {									\
501	if ((remp) != NULL) {						\
502		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
503	}								\
504} while (0)
505
506
507/*
508 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
509 * alloc_sz on the righthand side of the comparison in order to avoid overflow
510 * or underflow in the comparison with it.  This is simpler than the INRANGE
511 * check above, because we know that the dtms_scratch_ptr is valid in the
512 * range.  Allocations of size zero are allowed.
513 */
514#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
515	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
516	(mstate)->dtms_scratch_ptr >= (alloc_sz))
517
518#define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \
519	((ptr) >= (mstate)->dtms_scratch_base && \
520	(ptr) <= \
521	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany)))
522
523#define	DTRACE_LOADFUNC(bits)						\
524/*CSTYLED*/								\
525uint##bits##_t								\
526dtrace_load##bits(uintptr_t addr)					\
527{									\
528	size_t size = bits / NBBY;					\
529	/*CSTYLED*/							\
530	uint##bits##_t rval;						\
531	int i;								\
532	volatile uint16_t *flags = (volatile uint16_t *)		\
533	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
534									\
535	DTRACE_ALIGNCHECK(addr, size, flags);				\
536									\
537	for (i = 0; i < dtrace_toxranges; i++) {			\
538		if (addr >= dtrace_toxrange[i].dtt_limit)		\
539			continue;					\
540									\
541		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
542			continue;					\
543									\
544		/*							\
545		 * This address falls within a toxic region; return 0.	\
546		 */							\
547		*flags |= CPU_DTRACE_BADADDR;				\
548		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
549		return (0);						\
550	}								\
551									\
552	*flags |= CPU_DTRACE_NOFAULT;					\
553	/*CSTYLED*/							\
554	rval = *((volatile uint##bits##_t *)addr);			\
555	*flags &= ~CPU_DTRACE_NOFAULT;					\
556									\
557	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
558}
559
560#ifdef _LP64
561#define	dtrace_loadptr	dtrace_load64
562#else
563#define	dtrace_loadptr	dtrace_load32
564#endif
565
566#define	DTRACE_DYNHASH_FREE	0
567#define	DTRACE_DYNHASH_SINK	1
568#define	DTRACE_DYNHASH_VALID	2
569
570#define	DTRACE_MATCH_NEXT	0
571#define	DTRACE_MATCH_DONE	1
572#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
573#define	DTRACE_STATE_ALIGN	64
574
575#define	DTRACE_FLAGS2FLT(flags)						\
576	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
577	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
578	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
579	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
580	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
581	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
582	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
583	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
584	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
585	DTRACEFLT_UNKNOWN)
586
587#define	DTRACEACT_ISSTRING(act)						\
588	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
589	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
590
591/* Function prototype definitions: */
592static size_t dtrace_strlen(const char *, size_t);
593static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
594static void dtrace_enabling_provide(dtrace_provider_t *);
595static int dtrace_enabling_match(dtrace_enabling_t *, int *);
596static void dtrace_enabling_matchall(void);
597static void dtrace_enabling_reap(void);
598static dtrace_state_t *dtrace_anon_grab(void);
599static uint64_t dtrace_helper(int, dtrace_mstate_t *,
600    dtrace_state_t *, uint64_t, uint64_t);
601static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
602static void dtrace_buffer_drop(dtrace_buffer_t *);
603static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
604static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
605    dtrace_state_t *, dtrace_mstate_t *);
606static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
607    dtrace_optval_t);
608static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
609static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
610uint16_t dtrace_load16(uintptr_t);
611uint32_t dtrace_load32(uintptr_t);
612uint64_t dtrace_load64(uintptr_t);
613uint8_t dtrace_load8(uintptr_t);
614void dtrace_dynvar_clean(dtrace_dstate_t *);
615dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
616    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
617uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
618static int dtrace_priv_proc(dtrace_state_t *);
619static void dtrace_getf_barrier(void);
620static int dtrace_canload_remains(uint64_t, size_t, size_t *,
621    dtrace_mstate_t *, dtrace_vstate_t *);
622static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
623    dtrace_mstate_t *, dtrace_vstate_t *);
624
625/*
626 * DTrace Probe Context Functions
627 *
628 * These functions are called from probe context.  Because probe context is
629 * any context in which C may be called, arbitrarily locks may be held,
630 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
631 * As a result, functions called from probe context may only call other DTrace
632 * support functions -- they may not interact at all with the system at large.
633 * (Note that the ASSERT macro is made probe-context safe by redefining it in
634 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
635 * loads are to be performed from probe context, they _must_ be in terms of
636 * the safe dtrace_load*() variants.
637 *
638 * Some functions in this block are not actually called from probe context;
639 * for these functions, there will be a comment above the function reading
640 * "Note:  not called from probe context."
641 */
642void
643dtrace_panic(const char *format, ...)
644{
645	va_list alist;
646
647	va_start(alist, format);
648#ifdef __FreeBSD__
649	vpanic(format, alist);
650#else
651	dtrace_vpanic(format, alist);
652#endif
653	va_end(alist);
654}
655
656int
657dtrace_assfail(const char *a, const char *f, int l)
658{
659	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
660
661	/*
662	 * We just need something here that even the most clever compiler
663	 * cannot optimize away.
664	 */
665	return (a[(uintptr_t)f]);
666}
667
668/*
669 * Atomically increment a specified error counter from probe context.
670 */
671static void
672dtrace_error(uint32_t *counter)
673{
674	/*
675	 * Most counters stored to in probe context are per-CPU counters.
676	 * However, there are some error conditions that are sufficiently
677	 * arcane that they don't merit per-CPU storage.  If these counters
678	 * are incremented concurrently on different CPUs, scalability will be
679	 * adversely affected -- but we don't expect them to be white-hot in a
680	 * correctly constructed enabling...
681	 */
682	uint32_t oval, nval;
683
684	do {
685		oval = *counter;
686
687		if ((nval = oval + 1) == 0) {
688			/*
689			 * If the counter would wrap, set it to 1 -- assuring
690			 * that the counter is never zero when we have seen
691			 * errors.  (The counter must be 32-bits because we
692			 * aren't guaranteed a 64-bit compare&swap operation.)
693			 * To save this code both the infamy of being fingered
694			 * by a priggish news story and the indignity of being
695			 * the target of a neo-puritan witch trial, we're
696			 * carefully avoiding any colorful description of the
697			 * likelihood of this condition -- but suffice it to
698			 * say that it is only slightly more likely than the
699			 * overflow of predicate cache IDs, as discussed in
700			 * dtrace_predicate_create().
701			 */
702			nval = 1;
703		}
704	} while (dtrace_cas32(counter, oval, nval) != oval);
705}
706
707/*
708 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
709 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
710 */
711/* BEGIN CSTYLED */
712DTRACE_LOADFUNC(8)
713DTRACE_LOADFUNC(16)
714DTRACE_LOADFUNC(32)
715DTRACE_LOADFUNC(64)
716/* END CSTYLED */
717
718static int
719dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
720{
721	if (dest < mstate->dtms_scratch_base)
722		return (0);
723
724	if (dest + size < dest)
725		return (0);
726
727	if (dest + size > mstate->dtms_scratch_ptr)
728		return (0);
729
730	return (1);
731}
732
733static int
734dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
735    dtrace_statvar_t **svars, int nsvars)
736{
737	int i;
738	size_t maxglobalsize, maxlocalsize;
739
740	if (nsvars == 0)
741		return (0);
742
743	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
744	maxlocalsize = maxglobalsize * NCPU;
745
746	for (i = 0; i < nsvars; i++) {
747		dtrace_statvar_t *svar = svars[i];
748		uint8_t scope;
749		size_t size;
750
751		if (svar == NULL || (size = svar->dtsv_size) == 0)
752			continue;
753
754		scope = svar->dtsv_var.dtdv_scope;
755
756		/*
757		 * We verify that our size is valid in the spirit of providing
758		 * defense in depth:  we want to prevent attackers from using
759		 * DTrace to escalate an orthogonal kernel heap corruption bug
760		 * into the ability to store to arbitrary locations in memory.
761		 */
762		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
763		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
764
765		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
766		    svar->dtsv_size)) {
767			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
768			    svar->dtsv_size);
769			return (1);
770		}
771	}
772
773	return (0);
774}
775
776/*
777 * Check to see if the address is within a memory region to which a store may
778 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
779 * region.  The caller of dtrace_canstore() is responsible for performing any
780 * alignment checks that are needed before stores are actually executed.
781 */
782static int
783dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
784    dtrace_vstate_t *vstate)
785{
786	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
787}
788
789/*
790 * Implementation of dtrace_canstore which communicates the upper bound of the
791 * allowed memory region.
792 */
793static int
794dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
795    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
796{
797	/*
798	 * First, check to see if the address is in scratch space...
799	 */
800	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
801	    mstate->dtms_scratch_size)) {
802		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
803		    mstate->dtms_scratch_size);
804		return (1);
805	}
806
807	/*
808	 * Now check to see if it's a dynamic variable.  This check will pick
809	 * up both thread-local variables and any global dynamically-allocated
810	 * variables.
811	 */
812	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
813	    vstate->dtvs_dynvars.dtds_size)) {
814		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
815		uintptr_t base = (uintptr_t)dstate->dtds_base +
816		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
817		uintptr_t chunkoffs;
818		dtrace_dynvar_t *dvar;
819
820		/*
821		 * Before we assume that we can store here, we need to make
822		 * sure that it isn't in our metadata -- storing to our
823		 * dynamic variable metadata would corrupt our state.  For
824		 * the range to not include any dynamic variable metadata,
825		 * it must:
826		 *
827		 *	(1) Start above the hash table that is at the base of
828		 *	the dynamic variable space
829		 *
830		 *	(2) Have a starting chunk offset that is beyond the
831		 *	dtrace_dynvar_t that is at the base of every chunk
832		 *
833		 *	(3) Not span a chunk boundary
834		 *
835		 *	(4) Not be in the tuple space of a dynamic variable
836		 *
837		 */
838		if (addr < base)
839			return (0);
840
841		chunkoffs = (addr - base) % dstate->dtds_chunksize;
842
843		if (chunkoffs < sizeof (dtrace_dynvar_t))
844			return (0);
845
846		if (chunkoffs + sz > dstate->dtds_chunksize)
847			return (0);
848
849		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
850
851		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
852			return (0);
853
854		if (chunkoffs < sizeof (dtrace_dynvar_t) +
855		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
856			return (0);
857
858		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
859		return (1);
860	}
861
862	/*
863	 * Finally, check the static local and global variables.  These checks
864	 * take the longest, so we perform them last.
865	 */
866	if (dtrace_canstore_statvar(addr, sz, remain,
867	    vstate->dtvs_locals, vstate->dtvs_nlocals))
868		return (1);
869
870	if (dtrace_canstore_statvar(addr, sz, remain,
871	    vstate->dtvs_globals, vstate->dtvs_nglobals))
872		return (1);
873
874	return (0);
875}
876
877
878/*
879 * Convenience routine to check to see if the address is within a memory
880 * region in which a load may be issued given the user's privilege level;
881 * if not, it sets the appropriate error flags and loads 'addr' into the
882 * illegal value slot.
883 *
884 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
885 * appropriate memory access protection.
886 */
887static int
888dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
889    dtrace_vstate_t *vstate)
890{
891	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
892}
893
894/*
895 * Implementation of dtrace_canload which communicates the uppoer bound of the
896 * allowed memory region.
897 */
898static int
899dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
900    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
901{
902	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
903	file_t *fp;
904
905	/*
906	 * If we hold the privilege to read from kernel memory, then
907	 * everything is readable.
908	 */
909	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
910		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
911		return (1);
912	}
913
914	/*
915	 * You can obviously read that which you can store.
916	 */
917	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
918		return (1);
919
920	/*
921	 * We're allowed to read from our own string table.
922	 */
923	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
924	    mstate->dtms_difo->dtdo_strlen)) {
925		DTRACE_RANGE_REMAIN(remain, addr,
926		    mstate->dtms_difo->dtdo_strtab,
927		    mstate->dtms_difo->dtdo_strlen);
928		return (1);
929	}
930
931	if (vstate->dtvs_state != NULL &&
932	    dtrace_priv_proc(vstate->dtvs_state)) {
933		proc_t *p;
934
935		/*
936		 * When we have privileges to the current process, there are
937		 * several context-related kernel structures that are safe to
938		 * read, even absent the privilege to read from kernel memory.
939		 * These reads are safe because these structures contain only
940		 * state that (1) we're permitted to read, (2) is harmless or
941		 * (3) contains pointers to additional kernel state that we're
942		 * not permitted to read (and as such, do not present an
943		 * opportunity for privilege escalation).  Finally (and
944		 * critically), because of the nature of their relation with
945		 * the current thread context, the memory associated with these
946		 * structures cannot change over the duration of probe context,
947		 * and it is therefore impossible for this memory to be
948		 * deallocated and reallocated as something else while it's
949		 * being operated upon.
950		 */
951		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
952			DTRACE_RANGE_REMAIN(remain, addr, curthread,
953			    sizeof (kthread_t));
954			return (1);
955		}
956
957		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
958		    sz, curthread->t_procp, sizeof (proc_t))) {
959			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
960			    sizeof (proc_t));
961			return (1);
962		}
963
964		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
965		    curthread->t_cred, sizeof (cred_t))) {
966			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
967			    sizeof (cred_t));
968			return (1);
969		}
970
971#ifdef illumos
972		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
973		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
974			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
975			    sizeof (pid_t));
976			return (1);
977		}
978
979		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
980		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
981			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
982			    offsetof(cpu_t, cpu_pause_thread));
983			return (1);
984		}
985#endif
986	}
987
988	if ((fp = mstate->dtms_getf) != NULL) {
989		uintptr_t psz = sizeof (void *);
990		vnode_t *vp;
991		vnodeops_t *op;
992
993		/*
994		 * When getf() returns a file_t, the enabling is implicitly
995		 * granted the (transient) right to read the returned file_t
996		 * as well as the v_path and v_op->vnop_name of the underlying
997		 * vnode.  These accesses are allowed after a successful
998		 * getf() because the members that they refer to cannot change
999		 * once set -- and the barrier logic in the kernel's closef()
1000		 * path assures that the file_t and its referenced vode_t
1001		 * cannot themselves be stale (that is, it impossible for
1002		 * either dtms_getf itself or its f_vnode member to reference
1003		 * freed memory).
1004		 */
1005		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
1006			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
1007			return (1);
1008		}
1009
1010		if ((vp = fp->f_vnode) != NULL) {
1011			size_t slen;
1012#ifdef illumos
1013			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
1014				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1015				    psz);
1016				return (1);
1017			}
1018			slen = strlen(vp->v_path) + 1;
1019			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1020				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1021				    slen);
1022				return (1);
1023			}
1024#endif
1025
1026			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1027				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1028				    psz);
1029				return (1);
1030			}
1031
1032#ifdef illumos
1033			if ((op = vp->v_op) != NULL &&
1034			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1035				DTRACE_RANGE_REMAIN(remain, addr,
1036				    &op->vnop_name, psz);
1037				return (1);
1038			}
1039
1040			if (op != NULL && op->vnop_name != NULL &&
1041			    DTRACE_INRANGE(addr, sz, op->vnop_name,
1042			    (slen = strlen(op->vnop_name) + 1))) {
1043				DTRACE_RANGE_REMAIN(remain, addr,
1044				    op->vnop_name, slen);
1045				return (1);
1046			}
1047#endif
1048		}
1049	}
1050
1051	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1052	*illval = addr;
1053	return (0);
1054}
1055
1056/*
1057 * Convenience routine to check to see if a given string is within a memory
1058 * region in which a load may be issued given the user's privilege level;
1059 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1060 * calls in the event that the user has all privileges.
1061 */
1062static int
1063dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1064    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1065{
1066	size_t rsize;
1067
1068	/*
1069	 * If we hold the privilege to read from kernel memory, then
1070	 * everything is readable.
1071	 */
1072	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1073		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1074		return (1);
1075	}
1076
1077	/*
1078	 * Even if the caller is uninterested in querying the remaining valid
1079	 * range, it is required to ensure that the access is allowed.
1080	 */
1081	if (remain == NULL) {
1082		remain = &rsize;
1083	}
1084	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1085		size_t strsz;
1086		/*
1087		 * Perform the strlen after determining the length of the
1088		 * memory region which is accessible.  This prevents timing
1089		 * information from being used to find NULs in memory which is
1090		 * not accessible to the caller.
1091		 */
1092		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1093		    MIN(sz, *remain));
1094		if (strsz <= *remain) {
1095			return (1);
1096		}
1097	}
1098
1099	return (0);
1100}
1101
1102/*
1103 * Convenience routine to check to see if a given variable is within a memory
1104 * region in which a load may be issued given the user's privilege level.
1105 */
1106static int
1107dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1108    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1109{
1110	size_t sz;
1111	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1112
1113	/*
1114	 * Calculate the max size before performing any checks since even
1115	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1116	 * return the max length via 'remain'.
1117	 */
1118	if (type->dtdt_kind == DIF_TYPE_STRING) {
1119		dtrace_state_t *state = vstate->dtvs_state;
1120
1121		if (state != NULL) {
1122			sz = state->dts_options[DTRACEOPT_STRSIZE];
1123		} else {
1124			/*
1125			 * In helper context, we have a NULL state; fall back
1126			 * to using the system-wide default for the string size
1127			 * in this case.
1128			 */
1129			sz = dtrace_strsize_default;
1130		}
1131	} else {
1132		sz = type->dtdt_size;
1133	}
1134
1135	/*
1136	 * If we hold the privilege to read from kernel memory, then
1137	 * everything is readable.
1138	 */
1139	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1140		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1141		return (1);
1142	}
1143
1144	if (type->dtdt_kind == DIF_TYPE_STRING) {
1145		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1146		    vstate));
1147	}
1148	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1149	    vstate));
1150}
1151
1152/*
1153 * Convert a string to a signed integer using safe loads.
1154 *
1155 * NOTE: This function uses various macros from strtolctype.h to manipulate
1156 * digit values, etc -- these have all been checked to ensure they make
1157 * no additional function calls.
1158 */
1159static int64_t
1160dtrace_strtoll(char *input, int base, size_t limit)
1161{
1162	uintptr_t pos = (uintptr_t)input;
1163	int64_t val = 0;
1164	int x;
1165	boolean_t neg = B_FALSE;
1166	char c, cc, ccc;
1167	uintptr_t end = pos + limit;
1168
1169	/*
1170	 * Consume any whitespace preceding digits.
1171	 */
1172	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1173		pos++;
1174
1175	/*
1176	 * Handle an explicit sign if one is present.
1177	 */
1178	if (c == '-' || c == '+') {
1179		if (c == '-')
1180			neg = B_TRUE;
1181		c = dtrace_load8(++pos);
1182	}
1183
1184	/*
1185	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1186	 * if present.
1187	 */
1188	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1189	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1190		pos += 2;
1191		c = ccc;
1192	}
1193
1194	/*
1195	 * Read in contiguous digits until the first non-digit character.
1196	 */
1197	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1198	    c = dtrace_load8(++pos))
1199		val = val * base + x;
1200
1201	return (neg ? -val : val);
1202}
1203
1204/*
1205 * Compare two strings using safe loads.
1206 */
1207static int
1208dtrace_strncmp(char *s1, char *s2, size_t limit)
1209{
1210	uint8_t c1, c2;
1211	volatile uint16_t *flags;
1212
1213	if (s1 == s2 || limit == 0)
1214		return (0);
1215
1216	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1217
1218	do {
1219		if (s1 == NULL) {
1220			c1 = '\0';
1221		} else {
1222			c1 = dtrace_load8((uintptr_t)s1++);
1223		}
1224
1225		if (s2 == NULL) {
1226			c2 = '\0';
1227		} else {
1228			c2 = dtrace_load8((uintptr_t)s2++);
1229		}
1230
1231		if (c1 != c2)
1232			return (c1 - c2);
1233	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1234
1235	return (0);
1236}
1237
1238/*
1239 * Compute strlen(s) for a string using safe memory accesses.  The additional
1240 * len parameter is used to specify a maximum length to ensure completion.
1241 */
1242static size_t
1243dtrace_strlen(const char *s, size_t lim)
1244{
1245	uint_t len;
1246
1247	for (len = 0; len != lim; len++) {
1248		if (dtrace_load8((uintptr_t)s++) == '\0')
1249			break;
1250	}
1251
1252	return (len);
1253}
1254
1255/*
1256 * Check if an address falls within a toxic region.
1257 */
1258static int
1259dtrace_istoxic(uintptr_t kaddr, size_t size)
1260{
1261	uintptr_t taddr, tsize;
1262	int i;
1263
1264	for (i = 0; i < dtrace_toxranges; i++) {
1265		taddr = dtrace_toxrange[i].dtt_base;
1266		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1267
1268		if (kaddr - taddr < tsize) {
1269			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1270			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1271			return (1);
1272		}
1273
1274		if (taddr - kaddr < size) {
1275			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1276			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1277			return (1);
1278		}
1279	}
1280
1281	return (0);
1282}
1283
1284/*
1285 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1286 * memory specified by the DIF program.  The dst is assumed to be safe memory
1287 * that we can store to directly because it is managed by DTrace.  As with
1288 * standard bcopy, overlapping copies are handled properly.
1289 */
1290static void
1291dtrace_bcopy(const void *src, void *dst, size_t len)
1292{
1293	if (len != 0) {
1294		uint8_t *s1 = dst;
1295		const uint8_t *s2 = src;
1296
1297		if (s1 <= s2) {
1298			do {
1299				*s1++ = dtrace_load8((uintptr_t)s2++);
1300			} while (--len != 0);
1301		} else {
1302			s2 += len;
1303			s1 += len;
1304
1305			do {
1306				*--s1 = dtrace_load8((uintptr_t)--s2);
1307			} while (--len != 0);
1308		}
1309	}
1310}
1311
1312/*
1313 * Copy src to dst using safe memory accesses, up to either the specified
1314 * length, or the point that a nul byte is encountered.  The src is assumed to
1315 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1316 * safe memory that we can store to directly because it is managed by DTrace.
1317 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1318 */
1319static void
1320dtrace_strcpy(const void *src, void *dst, size_t len)
1321{
1322	if (len != 0) {
1323		uint8_t *s1 = dst, c;
1324		const uint8_t *s2 = src;
1325
1326		do {
1327			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1328		} while (--len != 0 && c != '\0');
1329	}
1330}
1331
1332/*
1333 * Copy src to dst, deriving the size and type from the specified (BYREF)
1334 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1335 * program.  The dst is assumed to be DTrace variable memory that is of the
1336 * specified type; we assume that we can store to directly.
1337 */
1338static void
1339dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1340{
1341	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1342
1343	if (type->dtdt_kind == DIF_TYPE_STRING) {
1344		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1345	} else {
1346		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1347	}
1348}
1349
1350/*
1351 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1352 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1353 * safe memory that we can access directly because it is managed by DTrace.
1354 */
1355static int
1356dtrace_bcmp(const void *s1, const void *s2, size_t len)
1357{
1358	volatile uint16_t *flags;
1359
1360	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1361
1362	if (s1 == s2)
1363		return (0);
1364
1365	if (s1 == NULL || s2 == NULL)
1366		return (1);
1367
1368	if (s1 != s2 && len != 0) {
1369		const uint8_t *ps1 = s1;
1370		const uint8_t *ps2 = s2;
1371
1372		do {
1373			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1374				return (1);
1375		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1376	}
1377	return (0);
1378}
1379
1380/*
1381 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1382 * is for safe DTrace-managed memory only.
1383 */
1384static void
1385dtrace_bzero(void *dst, size_t len)
1386{
1387	uchar_t *cp;
1388
1389	for (cp = dst; len != 0; len--)
1390		*cp++ = 0;
1391}
1392
1393static void
1394dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1395{
1396	uint64_t result[2];
1397
1398	result[0] = addend1[0] + addend2[0];
1399	result[1] = addend1[1] + addend2[1] +
1400	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1401
1402	sum[0] = result[0];
1403	sum[1] = result[1];
1404}
1405
1406/*
1407 * Shift the 128-bit value in a by b. If b is positive, shift left.
1408 * If b is negative, shift right.
1409 */
1410static void
1411dtrace_shift_128(uint64_t *a, int b)
1412{
1413	uint64_t mask;
1414
1415	if (b == 0)
1416		return;
1417
1418	if (b < 0) {
1419		b = -b;
1420		if (b >= 64) {
1421			a[0] = a[1] >> (b - 64);
1422			a[1] = 0;
1423		} else {
1424			a[0] >>= b;
1425			mask = 1LL << (64 - b);
1426			mask -= 1;
1427			a[0] |= ((a[1] & mask) << (64 - b));
1428			a[1] >>= b;
1429		}
1430	} else {
1431		if (b >= 64) {
1432			a[1] = a[0] << (b - 64);
1433			a[0] = 0;
1434		} else {
1435			a[1] <<= b;
1436			mask = a[0] >> (64 - b);
1437			a[1] |= mask;
1438			a[0] <<= b;
1439		}
1440	}
1441}
1442
1443/*
1444 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1445 * use native multiplication on those, and then re-combine into the
1446 * resulting 128-bit value.
1447 *
1448 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1449 *     hi1 * hi2 << 64 +
1450 *     hi1 * lo2 << 32 +
1451 *     hi2 * lo1 << 32 +
1452 *     lo1 * lo2
1453 */
1454static void
1455dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1456{
1457	uint64_t hi1, hi2, lo1, lo2;
1458	uint64_t tmp[2];
1459
1460	hi1 = factor1 >> 32;
1461	hi2 = factor2 >> 32;
1462
1463	lo1 = factor1 & DT_MASK_LO;
1464	lo2 = factor2 & DT_MASK_LO;
1465
1466	product[0] = lo1 * lo2;
1467	product[1] = hi1 * hi2;
1468
1469	tmp[0] = hi1 * lo2;
1470	tmp[1] = 0;
1471	dtrace_shift_128(tmp, 32);
1472	dtrace_add_128(product, tmp, product);
1473
1474	tmp[0] = hi2 * lo1;
1475	tmp[1] = 0;
1476	dtrace_shift_128(tmp, 32);
1477	dtrace_add_128(product, tmp, product);
1478}
1479
1480/*
1481 * This privilege check should be used by actions and subroutines to
1482 * verify that the user credentials of the process that enabled the
1483 * invoking ECB match the target credentials
1484 */
1485static int
1486dtrace_priv_proc_common_user(dtrace_state_t *state)
1487{
1488	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1489
1490	/*
1491	 * We should always have a non-NULL state cred here, since if cred
1492	 * is null (anonymous tracing), we fast-path bypass this routine.
1493	 */
1494	ASSERT(s_cr != NULL);
1495
1496	if ((cr = CRED()) != NULL &&
1497	    s_cr->cr_uid == cr->cr_uid &&
1498	    s_cr->cr_uid == cr->cr_ruid &&
1499	    s_cr->cr_uid == cr->cr_suid &&
1500	    s_cr->cr_gid == cr->cr_gid &&
1501	    s_cr->cr_gid == cr->cr_rgid &&
1502	    s_cr->cr_gid == cr->cr_sgid)
1503		return (1);
1504
1505	return (0);
1506}
1507
1508/*
1509 * This privilege check should be used by actions and subroutines to
1510 * verify that the zone of the process that enabled the invoking ECB
1511 * matches the target credentials
1512 */
1513static int
1514dtrace_priv_proc_common_zone(dtrace_state_t *state)
1515{
1516#ifdef illumos
1517	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1518
1519	/*
1520	 * We should always have a non-NULL state cred here, since if cred
1521	 * is null (anonymous tracing), we fast-path bypass this routine.
1522	 */
1523	ASSERT(s_cr != NULL);
1524
1525	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1526		return (1);
1527
1528	return (0);
1529#else
1530	return (1);
1531#endif
1532}
1533
1534/*
1535 * This privilege check should be used by actions and subroutines to
1536 * verify that the process has not setuid or changed credentials.
1537 */
1538static int
1539dtrace_priv_proc_common_nocd(void)
1540{
1541	proc_t *proc;
1542
1543	if ((proc = ttoproc(curthread)) != NULL &&
1544	    !(proc->p_flag & SNOCD))
1545		return (1);
1546
1547	return (0);
1548}
1549
1550static int
1551dtrace_priv_proc_destructive(dtrace_state_t *state)
1552{
1553	int action = state->dts_cred.dcr_action;
1554
1555	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1556	    dtrace_priv_proc_common_zone(state) == 0)
1557		goto bad;
1558
1559	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1560	    dtrace_priv_proc_common_user(state) == 0)
1561		goto bad;
1562
1563	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1564	    dtrace_priv_proc_common_nocd() == 0)
1565		goto bad;
1566
1567	return (1);
1568
1569bad:
1570	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1571
1572	return (0);
1573}
1574
1575static int
1576dtrace_priv_proc_control(dtrace_state_t *state)
1577{
1578	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1579		return (1);
1580
1581	if (dtrace_priv_proc_common_zone(state) &&
1582	    dtrace_priv_proc_common_user(state) &&
1583	    dtrace_priv_proc_common_nocd())
1584		return (1);
1585
1586	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1587
1588	return (0);
1589}
1590
1591static int
1592dtrace_priv_proc(dtrace_state_t *state)
1593{
1594	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1595		return (1);
1596
1597	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1598
1599	return (0);
1600}
1601
1602static int
1603dtrace_priv_kernel(dtrace_state_t *state)
1604{
1605	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1606		return (1);
1607
1608	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1609
1610	return (0);
1611}
1612
1613static int
1614dtrace_priv_kernel_destructive(dtrace_state_t *state)
1615{
1616	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1617		return (1);
1618
1619	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1620
1621	return (0);
1622}
1623
1624/*
1625 * Determine if the dte_cond of the specified ECB allows for processing of
1626 * the current probe to continue.  Note that this routine may allow continued
1627 * processing, but with access(es) stripped from the mstate's dtms_access
1628 * field.
1629 */
1630static int
1631dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1632    dtrace_ecb_t *ecb)
1633{
1634	dtrace_probe_t *probe = ecb->dte_probe;
1635	dtrace_provider_t *prov = probe->dtpr_provider;
1636	dtrace_pops_t *pops = &prov->dtpv_pops;
1637	int mode = DTRACE_MODE_NOPRIV_DROP;
1638
1639	ASSERT(ecb->dte_cond);
1640
1641#ifdef illumos
1642	if (pops->dtps_mode != NULL) {
1643		mode = pops->dtps_mode(prov->dtpv_arg,
1644		    probe->dtpr_id, probe->dtpr_arg);
1645
1646		ASSERT((mode & DTRACE_MODE_USER) ||
1647		    (mode & DTRACE_MODE_KERNEL));
1648		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1649		    (mode & DTRACE_MODE_NOPRIV_DROP));
1650	}
1651
1652	/*
1653	 * If the dte_cond bits indicate that this consumer is only allowed to
1654	 * see user-mode firings of this probe, call the provider's dtps_mode()
1655	 * entry point to check that the probe was fired while in a user
1656	 * context.  If that's not the case, use the policy specified by the
1657	 * provider to determine if we drop the probe or merely restrict
1658	 * operation.
1659	 */
1660	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1661		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1662
1663		if (!(mode & DTRACE_MODE_USER)) {
1664			if (mode & DTRACE_MODE_NOPRIV_DROP)
1665				return (0);
1666
1667			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1668		}
1669	}
1670#endif
1671
1672	/*
1673	 * This is more subtle than it looks. We have to be absolutely certain
1674	 * that CRED() isn't going to change out from under us so it's only
1675	 * legit to examine that structure if we're in constrained situations.
1676	 * Currently, the only times we'll this check is if a non-super-user
1677	 * has enabled the profile or syscall providers -- providers that
1678	 * allow visibility of all processes. For the profile case, the check
1679	 * above will ensure that we're examining a user context.
1680	 */
1681	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1682		cred_t *cr;
1683		cred_t *s_cr = state->dts_cred.dcr_cred;
1684		proc_t *proc;
1685
1686		ASSERT(s_cr != NULL);
1687
1688		if ((cr = CRED()) == NULL ||
1689		    s_cr->cr_uid != cr->cr_uid ||
1690		    s_cr->cr_uid != cr->cr_ruid ||
1691		    s_cr->cr_uid != cr->cr_suid ||
1692		    s_cr->cr_gid != cr->cr_gid ||
1693		    s_cr->cr_gid != cr->cr_rgid ||
1694		    s_cr->cr_gid != cr->cr_sgid ||
1695		    (proc = ttoproc(curthread)) == NULL ||
1696		    (proc->p_flag & SNOCD)) {
1697			if (mode & DTRACE_MODE_NOPRIV_DROP)
1698				return (0);
1699
1700#ifdef illumos
1701			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1702#endif
1703		}
1704	}
1705
1706#ifdef illumos
1707	/*
1708	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1709	 * in our zone, check to see if our mode policy is to restrict rather
1710	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1711	 * and DTRACE_ACCESS_ARGS
1712	 */
1713	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1714		cred_t *cr;
1715		cred_t *s_cr = state->dts_cred.dcr_cred;
1716
1717		ASSERT(s_cr != NULL);
1718
1719		if ((cr = CRED()) == NULL ||
1720		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1721			if (mode & DTRACE_MODE_NOPRIV_DROP)
1722				return (0);
1723
1724			mstate->dtms_access &=
1725			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1726		}
1727	}
1728#endif
1729
1730	return (1);
1731}
1732
1733/*
1734 * Note:  not called from probe context.  This function is called
1735 * asynchronously (and at a regular interval) from outside of probe context to
1736 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1737 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1738 */
1739void
1740dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1741{
1742	dtrace_dynvar_t *dirty;
1743	dtrace_dstate_percpu_t *dcpu;
1744	dtrace_dynvar_t **rinsep;
1745	int i, j, work = 0;
1746
1747	for (i = 0; i < NCPU; i++) {
1748		dcpu = &dstate->dtds_percpu[i];
1749		rinsep = &dcpu->dtdsc_rinsing;
1750
1751		/*
1752		 * If the dirty list is NULL, there is no dirty work to do.
1753		 */
1754		if (dcpu->dtdsc_dirty == NULL)
1755			continue;
1756
1757		if (dcpu->dtdsc_rinsing != NULL) {
1758			/*
1759			 * If the rinsing list is non-NULL, then it is because
1760			 * this CPU was selected to accept another CPU's
1761			 * dirty list -- and since that time, dirty buffers
1762			 * have accumulated.  This is a highly unlikely
1763			 * condition, but we choose to ignore the dirty
1764			 * buffers -- they'll be picked up a future cleanse.
1765			 */
1766			continue;
1767		}
1768
1769		if (dcpu->dtdsc_clean != NULL) {
1770			/*
1771			 * If the clean list is non-NULL, then we're in a
1772			 * situation where a CPU has done deallocations (we
1773			 * have a non-NULL dirty list) but no allocations (we
1774			 * also have a non-NULL clean list).  We can't simply
1775			 * move the dirty list into the clean list on this
1776			 * CPU, yet we also don't want to allow this condition
1777			 * to persist, lest a short clean list prevent a
1778			 * massive dirty list from being cleaned (which in
1779			 * turn could lead to otherwise avoidable dynamic
1780			 * drops).  To deal with this, we look for some CPU
1781			 * with a NULL clean list, NULL dirty list, and NULL
1782			 * rinsing list -- and then we borrow this CPU to
1783			 * rinse our dirty list.
1784			 */
1785			for (j = 0; j < NCPU; j++) {
1786				dtrace_dstate_percpu_t *rinser;
1787
1788				rinser = &dstate->dtds_percpu[j];
1789
1790				if (rinser->dtdsc_rinsing != NULL)
1791					continue;
1792
1793				if (rinser->dtdsc_dirty != NULL)
1794					continue;
1795
1796				if (rinser->dtdsc_clean != NULL)
1797					continue;
1798
1799				rinsep = &rinser->dtdsc_rinsing;
1800				break;
1801			}
1802
1803			if (j == NCPU) {
1804				/*
1805				 * We were unable to find another CPU that
1806				 * could accept this dirty list -- we are
1807				 * therefore unable to clean it now.
1808				 */
1809				dtrace_dynvar_failclean++;
1810				continue;
1811			}
1812		}
1813
1814		work = 1;
1815
1816		/*
1817		 * Atomically move the dirty list aside.
1818		 */
1819		do {
1820			dirty = dcpu->dtdsc_dirty;
1821
1822			/*
1823			 * Before we zap the dirty list, set the rinsing list.
1824			 * (This allows for a potential assertion in
1825			 * dtrace_dynvar():  if a free dynamic variable appears
1826			 * on a hash chain, either the dirty list or the
1827			 * rinsing list for some CPU must be non-NULL.)
1828			 */
1829			*rinsep = dirty;
1830			dtrace_membar_producer();
1831		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1832		    dirty, NULL) != dirty);
1833	}
1834
1835	if (!work) {
1836		/*
1837		 * We have no work to do; we can simply return.
1838		 */
1839		return;
1840	}
1841
1842	dtrace_sync();
1843
1844	for (i = 0; i < NCPU; i++) {
1845		dcpu = &dstate->dtds_percpu[i];
1846
1847		if (dcpu->dtdsc_rinsing == NULL)
1848			continue;
1849
1850		/*
1851		 * We are now guaranteed that no hash chain contains a pointer
1852		 * into this dirty list; we can make it clean.
1853		 */
1854		ASSERT(dcpu->dtdsc_clean == NULL);
1855		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1856		dcpu->dtdsc_rinsing = NULL;
1857	}
1858
1859	/*
1860	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1861	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1862	 * This prevents a race whereby a CPU incorrectly decides that
1863	 * the state should be something other than DTRACE_DSTATE_CLEAN
1864	 * after dtrace_dynvar_clean() has completed.
1865	 */
1866	dtrace_sync();
1867
1868	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1869}
1870
1871/*
1872 * Depending on the value of the op parameter, this function looks-up,
1873 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1874 * allocation is requested, this function will return a pointer to a
1875 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1876 * variable can be allocated.  If NULL is returned, the appropriate counter
1877 * will be incremented.
1878 */
1879dtrace_dynvar_t *
1880dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1881    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1882    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1883{
1884	uint64_t hashval = DTRACE_DYNHASH_VALID;
1885	dtrace_dynhash_t *hash = dstate->dtds_hash;
1886	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1887	processorid_t me = curcpu, cpu = me;
1888	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1889	size_t bucket, ksize;
1890	size_t chunksize = dstate->dtds_chunksize;
1891	uintptr_t kdata, lock, nstate;
1892	uint_t i;
1893
1894	ASSERT(nkeys != 0);
1895
1896	/*
1897	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1898	 * algorithm.  For the by-value portions, we perform the algorithm in
1899	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1900	 * bit, and seems to have only a minute effect on distribution.  For
1901	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1902	 * over each referenced byte.  It's painful to do this, but it's much
1903	 * better than pathological hash distribution.  The efficacy of the
1904	 * hashing algorithm (and a comparison with other algorithms) may be
1905	 * found by running the ::dtrace_dynstat MDB dcmd.
1906	 */
1907	for (i = 0; i < nkeys; i++) {
1908		if (key[i].dttk_size == 0) {
1909			uint64_t val = key[i].dttk_value;
1910
1911			hashval += (val >> 48) & 0xffff;
1912			hashval += (hashval << 10);
1913			hashval ^= (hashval >> 6);
1914
1915			hashval += (val >> 32) & 0xffff;
1916			hashval += (hashval << 10);
1917			hashval ^= (hashval >> 6);
1918
1919			hashval += (val >> 16) & 0xffff;
1920			hashval += (hashval << 10);
1921			hashval ^= (hashval >> 6);
1922
1923			hashval += val & 0xffff;
1924			hashval += (hashval << 10);
1925			hashval ^= (hashval >> 6);
1926		} else {
1927			/*
1928			 * This is incredibly painful, but it beats the hell
1929			 * out of the alternative.
1930			 */
1931			uint64_t j, size = key[i].dttk_size;
1932			uintptr_t base = (uintptr_t)key[i].dttk_value;
1933
1934			if (!dtrace_canload(base, size, mstate, vstate))
1935				break;
1936
1937			for (j = 0; j < size; j++) {
1938				hashval += dtrace_load8(base + j);
1939				hashval += (hashval << 10);
1940				hashval ^= (hashval >> 6);
1941			}
1942		}
1943	}
1944
1945	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1946		return (NULL);
1947
1948	hashval += (hashval << 3);
1949	hashval ^= (hashval >> 11);
1950	hashval += (hashval << 15);
1951
1952	/*
1953	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1954	 * comes out to be one of our two sentinel hash values.  If this
1955	 * actually happens, we set the hashval to be a value known to be a
1956	 * non-sentinel value.
1957	 */
1958	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1959		hashval = DTRACE_DYNHASH_VALID;
1960
1961	/*
1962	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1963	 * important here, tricks can be pulled to reduce it.  (However, it's
1964	 * critical that hash collisions be kept to an absolute minimum;
1965	 * they're much more painful than a divide.)  It's better to have a
1966	 * solution that generates few collisions and still keeps things
1967	 * relatively simple.
1968	 */
1969	bucket = hashval % dstate->dtds_hashsize;
1970
1971	if (op == DTRACE_DYNVAR_DEALLOC) {
1972		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1973
1974		for (;;) {
1975			while ((lock = *lockp) & 1)
1976				continue;
1977
1978			if (dtrace_casptr((volatile void *)lockp,
1979			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1980				break;
1981		}
1982
1983		dtrace_membar_producer();
1984	}
1985
1986top:
1987	prev = NULL;
1988	lock = hash[bucket].dtdh_lock;
1989
1990	dtrace_membar_consumer();
1991
1992	start = hash[bucket].dtdh_chain;
1993	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1994	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1995	    op != DTRACE_DYNVAR_DEALLOC));
1996
1997	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1998		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1999		dtrace_key_t *dkey = &dtuple->dtt_key[0];
2000
2001		if (dvar->dtdv_hashval != hashval) {
2002			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
2003				/*
2004				 * We've reached the sink, and therefore the
2005				 * end of the hash chain; we can kick out of
2006				 * the loop knowing that we have seen a valid
2007				 * snapshot of state.
2008				 */
2009				ASSERT(dvar->dtdv_next == NULL);
2010				ASSERT(dvar == &dtrace_dynhash_sink);
2011				break;
2012			}
2013
2014			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2015				/*
2016				 * We've gone off the rails:  somewhere along
2017				 * the line, one of the members of this hash
2018				 * chain was deleted.  Note that we could also
2019				 * detect this by simply letting this loop run
2020				 * to completion, as we would eventually hit
2021				 * the end of the dirty list.  However, we
2022				 * want to avoid running the length of the
2023				 * dirty list unnecessarily (it might be quite
2024				 * long), so we catch this as early as
2025				 * possible by detecting the hash marker.  In
2026				 * this case, we simply set dvar to NULL and
2027				 * break; the conditional after the loop will
2028				 * send us back to top.
2029				 */
2030				dvar = NULL;
2031				break;
2032			}
2033
2034			goto next;
2035		}
2036
2037		if (dtuple->dtt_nkeys != nkeys)
2038			goto next;
2039
2040		for (i = 0; i < nkeys; i++, dkey++) {
2041			if (dkey->dttk_size != key[i].dttk_size)
2042				goto next; /* size or type mismatch */
2043
2044			if (dkey->dttk_size != 0) {
2045				if (dtrace_bcmp(
2046				    (void *)(uintptr_t)key[i].dttk_value,
2047				    (void *)(uintptr_t)dkey->dttk_value,
2048				    dkey->dttk_size))
2049					goto next;
2050			} else {
2051				if (dkey->dttk_value != key[i].dttk_value)
2052					goto next;
2053			}
2054		}
2055
2056		if (op != DTRACE_DYNVAR_DEALLOC)
2057			return (dvar);
2058
2059		ASSERT(dvar->dtdv_next == NULL ||
2060		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2061
2062		if (prev != NULL) {
2063			ASSERT(hash[bucket].dtdh_chain != dvar);
2064			ASSERT(start != dvar);
2065			ASSERT(prev->dtdv_next == dvar);
2066			prev->dtdv_next = dvar->dtdv_next;
2067		} else {
2068			if (dtrace_casptr(&hash[bucket].dtdh_chain,
2069			    start, dvar->dtdv_next) != start) {
2070				/*
2071				 * We have failed to atomically swing the
2072				 * hash table head pointer, presumably because
2073				 * of a conflicting allocation on another CPU.
2074				 * We need to reread the hash chain and try
2075				 * again.
2076				 */
2077				goto top;
2078			}
2079		}
2080
2081		dtrace_membar_producer();
2082
2083		/*
2084		 * Now set the hash value to indicate that it's free.
2085		 */
2086		ASSERT(hash[bucket].dtdh_chain != dvar);
2087		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2088
2089		dtrace_membar_producer();
2090
2091		/*
2092		 * Set the next pointer to point at the dirty list, and
2093		 * atomically swing the dirty pointer to the newly freed dvar.
2094		 */
2095		do {
2096			next = dcpu->dtdsc_dirty;
2097			dvar->dtdv_next = next;
2098		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2099
2100		/*
2101		 * Finally, unlock this hash bucket.
2102		 */
2103		ASSERT(hash[bucket].dtdh_lock == lock);
2104		ASSERT(lock & 1);
2105		hash[bucket].dtdh_lock++;
2106
2107		return (NULL);
2108next:
2109		prev = dvar;
2110		continue;
2111	}
2112
2113	if (dvar == NULL) {
2114		/*
2115		 * If dvar is NULL, it is because we went off the rails:
2116		 * one of the elements that we traversed in the hash chain
2117		 * was deleted while we were traversing it.  In this case,
2118		 * we assert that we aren't doing a dealloc (deallocs lock
2119		 * the hash bucket to prevent themselves from racing with
2120		 * one another), and retry the hash chain traversal.
2121		 */
2122		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2123		goto top;
2124	}
2125
2126	if (op != DTRACE_DYNVAR_ALLOC) {
2127		/*
2128		 * If we are not to allocate a new variable, we want to
2129		 * return NULL now.  Before we return, check that the value
2130		 * of the lock word hasn't changed.  If it has, we may have
2131		 * seen an inconsistent snapshot.
2132		 */
2133		if (op == DTRACE_DYNVAR_NOALLOC) {
2134			if (hash[bucket].dtdh_lock != lock)
2135				goto top;
2136		} else {
2137			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2138			ASSERT(hash[bucket].dtdh_lock == lock);
2139			ASSERT(lock & 1);
2140			hash[bucket].dtdh_lock++;
2141		}
2142
2143		return (NULL);
2144	}
2145
2146	/*
2147	 * We need to allocate a new dynamic variable.  The size we need is the
2148	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2149	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2150	 * the size of any referred-to data (dsize).  We then round the final
2151	 * size up to the chunksize for allocation.
2152	 */
2153	for (ksize = 0, i = 0; i < nkeys; i++)
2154		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2155
2156	/*
2157	 * This should be pretty much impossible, but could happen if, say,
2158	 * strange DIF specified the tuple.  Ideally, this should be an
2159	 * assertion and not an error condition -- but that requires that the
2160	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2161	 * bullet-proof.  (That is, it must not be able to be fooled by
2162	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2163	 * solving this would presumably not amount to solving the Halting
2164	 * Problem -- but it still seems awfully hard.
2165	 */
2166	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2167	    ksize + dsize > chunksize) {
2168		dcpu->dtdsc_drops++;
2169		return (NULL);
2170	}
2171
2172	nstate = DTRACE_DSTATE_EMPTY;
2173
2174	do {
2175retry:
2176		free = dcpu->dtdsc_free;
2177
2178		if (free == NULL) {
2179			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2180			void *rval;
2181
2182			if (clean == NULL) {
2183				/*
2184				 * We're out of dynamic variable space on
2185				 * this CPU.  Unless we have tried all CPUs,
2186				 * we'll try to allocate from a different
2187				 * CPU.
2188				 */
2189				switch (dstate->dtds_state) {
2190				case DTRACE_DSTATE_CLEAN: {
2191					void *sp = &dstate->dtds_state;
2192
2193					if (++cpu >= NCPU)
2194						cpu = 0;
2195
2196					if (dcpu->dtdsc_dirty != NULL &&
2197					    nstate == DTRACE_DSTATE_EMPTY)
2198						nstate = DTRACE_DSTATE_DIRTY;
2199
2200					if (dcpu->dtdsc_rinsing != NULL)
2201						nstate = DTRACE_DSTATE_RINSING;
2202
2203					dcpu = &dstate->dtds_percpu[cpu];
2204
2205					if (cpu != me)
2206						goto retry;
2207
2208					(void) dtrace_cas32(sp,
2209					    DTRACE_DSTATE_CLEAN, nstate);
2210
2211					/*
2212					 * To increment the correct bean
2213					 * counter, take another lap.
2214					 */
2215					goto retry;
2216				}
2217
2218				case DTRACE_DSTATE_DIRTY:
2219					dcpu->dtdsc_dirty_drops++;
2220					break;
2221
2222				case DTRACE_DSTATE_RINSING:
2223					dcpu->dtdsc_rinsing_drops++;
2224					break;
2225
2226				case DTRACE_DSTATE_EMPTY:
2227					dcpu->dtdsc_drops++;
2228					break;
2229				}
2230
2231				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2232				return (NULL);
2233			}
2234
2235			/*
2236			 * The clean list appears to be non-empty.  We want to
2237			 * move the clean list to the free list; we start by
2238			 * moving the clean pointer aside.
2239			 */
2240			if (dtrace_casptr(&dcpu->dtdsc_clean,
2241			    clean, NULL) != clean) {
2242				/*
2243				 * We are in one of two situations:
2244				 *
2245				 *  (a)	The clean list was switched to the
2246				 *	free list by another CPU.
2247				 *
2248				 *  (b)	The clean list was added to by the
2249				 *	cleansing cyclic.
2250				 *
2251				 * In either of these situations, we can
2252				 * just reattempt the free list allocation.
2253				 */
2254				goto retry;
2255			}
2256
2257			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2258
2259			/*
2260			 * Now we'll move the clean list to our free list.
2261			 * It's impossible for this to fail:  the only way
2262			 * the free list can be updated is through this
2263			 * code path, and only one CPU can own the clean list.
2264			 * Thus, it would only be possible for this to fail if
2265			 * this code were racing with dtrace_dynvar_clean().
2266			 * (That is, if dtrace_dynvar_clean() updated the clean
2267			 * list, and we ended up racing to update the free
2268			 * list.)  This race is prevented by the dtrace_sync()
2269			 * in dtrace_dynvar_clean() -- which flushes the
2270			 * owners of the clean lists out before resetting
2271			 * the clean lists.
2272			 */
2273			dcpu = &dstate->dtds_percpu[me];
2274			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2275			ASSERT(rval == NULL);
2276			goto retry;
2277		}
2278
2279		dvar = free;
2280		new_free = dvar->dtdv_next;
2281	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2282
2283	/*
2284	 * We have now allocated a new chunk.  We copy the tuple keys into the
2285	 * tuple array and copy any referenced key data into the data space
2286	 * following the tuple array.  As we do this, we relocate dttk_value
2287	 * in the final tuple to point to the key data address in the chunk.
2288	 */
2289	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2290	dvar->dtdv_data = (void *)(kdata + ksize);
2291	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2292
2293	for (i = 0; i < nkeys; i++) {
2294		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2295		size_t kesize = key[i].dttk_size;
2296
2297		if (kesize != 0) {
2298			dtrace_bcopy(
2299			    (const void *)(uintptr_t)key[i].dttk_value,
2300			    (void *)kdata, kesize);
2301			dkey->dttk_value = kdata;
2302			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2303		} else {
2304			dkey->dttk_value = key[i].dttk_value;
2305		}
2306
2307		dkey->dttk_size = kesize;
2308	}
2309
2310	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2311	dvar->dtdv_hashval = hashval;
2312	dvar->dtdv_next = start;
2313
2314	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2315		return (dvar);
2316
2317	/*
2318	 * The cas has failed.  Either another CPU is adding an element to
2319	 * this hash chain, or another CPU is deleting an element from this
2320	 * hash chain.  The simplest way to deal with both of these cases
2321	 * (though not necessarily the most efficient) is to free our
2322	 * allocated block and re-attempt it all.  Note that the free is
2323	 * to the dirty list and _not_ to the free list.  This is to prevent
2324	 * races with allocators, above.
2325	 */
2326	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2327
2328	dtrace_membar_producer();
2329
2330	do {
2331		free = dcpu->dtdsc_dirty;
2332		dvar->dtdv_next = free;
2333	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2334
2335	goto top;
2336}
2337
2338/*ARGSUSED*/
2339static void
2340dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2341{
2342	if ((int64_t)nval < (int64_t)*oval)
2343		*oval = nval;
2344}
2345
2346/*ARGSUSED*/
2347static void
2348dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2349{
2350	if ((int64_t)nval > (int64_t)*oval)
2351		*oval = nval;
2352}
2353
2354static void
2355dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2356{
2357	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2358	int64_t val = (int64_t)nval;
2359
2360	if (val < 0) {
2361		for (i = 0; i < zero; i++) {
2362			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2363				quanta[i] += incr;
2364				return;
2365			}
2366		}
2367	} else {
2368		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2369			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2370				quanta[i - 1] += incr;
2371				return;
2372			}
2373		}
2374
2375		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2376		return;
2377	}
2378
2379	ASSERT(0);
2380}
2381
2382static void
2383dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2384{
2385	uint64_t arg = *lquanta++;
2386	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2387	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2388	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2389	int32_t val = (int32_t)nval, level;
2390
2391	ASSERT(step != 0);
2392	ASSERT(levels != 0);
2393
2394	if (val < base) {
2395		/*
2396		 * This is an underflow.
2397		 */
2398		lquanta[0] += incr;
2399		return;
2400	}
2401
2402	level = (val - base) / step;
2403
2404	if (level < levels) {
2405		lquanta[level + 1] += incr;
2406		return;
2407	}
2408
2409	/*
2410	 * This is an overflow.
2411	 */
2412	lquanta[levels + 1] += incr;
2413}
2414
2415static int
2416dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2417    uint16_t high, uint16_t nsteps, int64_t value)
2418{
2419	int64_t this = 1, last, next;
2420	int base = 1, order;
2421
2422	ASSERT(factor <= nsteps);
2423	ASSERT(nsteps % factor == 0);
2424
2425	for (order = 0; order < low; order++)
2426		this *= factor;
2427
2428	/*
2429	 * If our value is less than our factor taken to the power of the
2430	 * low order of magnitude, it goes into the zeroth bucket.
2431	 */
2432	if (value < (last = this))
2433		return (0);
2434
2435	for (this *= factor; order <= high; order++) {
2436		int nbuckets = this > nsteps ? nsteps : this;
2437
2438		if ((next = this * factor) < this) {
2439			/*
2440			 * We should not generally get log/linear quantizations
2441			 * with a high magnitude that allows 64-bits to
2442			 * overflow, but we nonetheless protect against this
2443			 * by explicitly checking for overflow, and clamping
2444			 * our value accordingly.
2445			 */
2446			value = this - 1;
2447		}
2448
2449		if (value < this) {
2450			/*
2451			 * If our value lies within this order of magnitude,
2452			 * determine its position by taking the offset within
2453			 * the order of magnitude, dividing by the bucket
2454			 * width, and adding to our (accumulated) base.
2455			 */
2456			return (base + (value - last) / (this / nbuckets));
2457		}
2458
2459		base += nbuckets - (nbuckets / factor);
2460		last = this;
2461		this = next;
2462	}
2463
2464	/*
2465	 * Our value is greater than or equal to our factor taken to the
2466	 * power of one plus the high magnitude -- return the top bucket.
2467	 */
2468	return (base);
2469}
2470
2471static void
2472dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2473{
2474	uint64_t arg = *llquanta++;
2475	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2476	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2477	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2478	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2479
2480	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2481	    low, high, nsteps, nval)] += incr;
2482}
2483
2484/*ARGSUSED*/
2485static void
2486dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2487{
2488	data[0]++;
2489	data[1] += nval;
2490}
2491
2492/*ARGSUSED*/
2493static void
2494dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2495{
2496	int64_t snval = (int64_t)nval;
2497	uint64_t tmp[2];
2498
2499	data[0]++;
2500	data[1] += nval;
2501
2502	/*
2503	 * What we want to say here is:
2504	 *
2505	 * data[2] += nval * nval;
2506	 *
2507	 * But given that nval is 64-bit, we could easily overflow, so
2508	 * we do this as 128-bit arithmetic.
2509	 */
2510	if (snval < 0)
2511		snval = -snval;
2512
2513	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2514	dtrace_add_128(data + 2, tmp, data + 2);
2515}
2516
2517/*ARGSUSED*/
2518static void
2519dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2520{
2521	*oval = *oval + 1;
2522}
2523
2524/*ARGSUSED*/
2525static void
2526dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2527{
2528	*oval += nval;
2529}
2530
2531/*
2532 * Aggregate given the tuple in the principal data buffer, and the aggregating
2533 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2534 * buffer is specified as the buf parameter.  This routine does not return
2535 * failure; if there is no space in the aggregation buffer, the data will be
2536 * dropped, and a corresponding counter incremented.
2537 */
2538static void
2539dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2540    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2541{
2542	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2543	uint32_t i, ndx, size, fsize;
2544	uint32_t align = sizeof (uint64_t) - 1;
2545	dtrace_aggbuffer_t *agb;
2546	dtrace_aggkey_t *key;
2547	uint32_t hashval = 0, limit, isstr;
2548	caddr_t tomax, data, kdata;
2549	dtrace_actkind_t action;
2550	dtrace_action_t *act;
2551	uintptr_t offs;
2552
2553	if (buf == NULL)
2554		return;
2555
2556	if (!agg->dtag_hasarg) {
2557		/*
2558		 * Currently, only quantize() and lquantize() take additional
2559		 * arguments, and they have the same semantics:  an increment
2560		 * value that defaults to 1 when not present.  If additional
2561		 * aggregating actions take arguments, the setting of the
2562		 * default argument value will presumably have to become more
2563		 * sophisticated...
2564		 */
2565		arg = 1;
2566	}
2567
2568	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2569	size = rec->dtrd_offset - agg->dtag_base;
2570	fsize = size + rec->dtrd_size;
2571
2572	ASSERT(dbuf->dtb_tomax != NULL);
2573	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2574
2575	if ((tomax = buf->dtb_tomax) == NULL) {
2576		dtrace_buffer_drop(buf);
2577		return;
2578	}
2579
2580	/*
2581	 * The metastructure is always at the bottom of the buffer.
2582	 */
2583	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2584	    sizeof (dtrace_aggbuffer_t));
2585
2586	if (buf->dtb_offset == 0) {
2587		/*
2588		 * We just kludge up approximately 1/8th of the size to be
2589		 * buckets.  If this guess ends up being routinely
2590		 * off-the-mark, we may need to dynamically readjust this
2591		 * based on past performance.
2592		 */
2593		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2594
2595		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2596		    (uintptr_t)tomax || hashsize == 0) {
2597			/*
2598			 * We've been given a ludicrously small buffer;
2599			 * increment our drop count and leave.
2600			 */
2601			dtrace_buffer_drop(buf);
2602			return;
2603		}
2604
2605		/*
2606		 * And now, a pathetic attempt to try to get a an odd (or
2607		 * perchance, a prime) hash size for better hash distribution.
2608		 */
2609		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2610			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2611
2612		agb->dtagb_hashsize = hashsize;
2613		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2614		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2615		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2616
2617		for (i = 0; i < agb->dtagb_hashsize; i++)
2618			agb->dtagb_hash[i] = NULL;
2619	}
2620
2621	ASSERT(agg->dtag_first != NULL);
2622	ASSERT(agg->dtag_first->dta_intuple);
2623
2624	/*
2625	 * Calculate the hash value based on the key.  Note that we _don't_
2626	 * include the aggid in the hashing (but we will store it as part of
2627	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2628	 * algorithm: a simple, quick algorithm that has no known funnels, and
2629	 * gets good distribution in practice.  The efficacy of the hashing
2630	 * algorithm (and a comparison with other algorithms) may be found by
2631	 * running the ::dtrace_aggstat MDB dcmd.
2632	 */
2633	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2634		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2635		limit = i + act->dta_rec.dtrd_size;
2636		ASSERT(limit <= size);
2637		isstr = DTRACEACT_ISSTRING(act);
2638
2639		for (; i < limit; i++) {
2640			hashval += data[i];
2641			hashval += (hashval << 10);
2642			hashval ^= (hashval >> 6);
2643
2644			if (isstr && data[i] == '\0')
2645				break;
2646		}
2647	}
2648
2649	hashval += (hashval << 3);
2650	hashval ^= (hashval >> 11);
2651	hashval += (hashval << 15);
2652
2653	/*
2654	 * Yes, the divide here is expensive -- but it's generally the least
2655	 * of the performance issues given the amount of data that we iterate
2656	 * over to compute hash values, compare data, etc.
2657	 */
2658	ndx = hashval % agb->dtagb_hashsize;
2659
2660	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2661		ASSERT((caddr_t)key >= tomax);
2662		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2663
2664		if (hashval != key->dtak_hashval || key->dtak_size != size)
2665			continue;
2666
2667		kdata = key->dtak_data;
2668		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2669
2670		for (act = agg->dtag_first; act->dta_intuple;
2671		    act = act->dta_next) {
2672			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2673			limit = i + act->dta_rec.dtrd_size;
2674			ASSERT(limit <= size);
2675			isstr = DTRACEACT_ISSTRING(act);
2676
2677			for (; i < limit; i++) {
2678				if (kdata[i] != data[i])
2679					goto next;
2680
2681				if (isstr && data[i] == '\0')
2682					break;
2683			}
2684		}
2685
2686		if (action != key->dtak_action) {
2687			/*
2688			 * We are aggregating on the same value in the same
2689			 * aggregation with two different aggregating actions.
2690			 * (This should have been picked up in the compiler,
2691			 * so we may be dealing with errant or devious DIF.)
2692			 * This is an error condition; we indicate as much,
2693			 * and return.
2694			 */
2695			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2696			return;
2697		}
2698
2699		/*
2700		 * This is a hit:  we need to apply the aggregator to
2701		 * the value at this key.
2702		 */
2703		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2704		return;
2705next:
2706		continue;
2707	}
2708
2709	/*
2710	 * We didn't find it.  We need to allocate some zero-filled space,
2711	 * link it into the hash table appropriately, and apply the aggregator
2712	 * to the (zero-filled) value.
2713	 */
2714	offs = buf->dtb_offset;
2715	while (offs & (align - 1))
2716		offs += sizeof (uint32_t);
2717
2718	/*
2719	 * If we don't have enough room to both allocate a new key _and_
2720	 * its associated data, increment the drop count and return.
2721	 */
2722	if ((uintptr_t)tomax + offs + fsize >
2723	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2724		dtrace_buffer_drop(buf);
2725		return;
2726	}
2727
2728	/*CONSTCOND*/
2729	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2730	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2731	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2732
2733	key->dtak_data = kdata = tomax + offs;
2734	buf->dtb_offset = offs + fsize;
2735
2736	/*
2737	 * Now copy the data across.
2738	 */
2739	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2740
2741	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2742		kdata[i] = data[i];
2743
2744	/*
2745	 * Because strings are not zeroed out by default, we need to iterate
2746	 * looking for actions that store strings, and we need to explicitly
2747	 * pad these strings out with zeroes.
2748	 */
2749	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2750		int nul;
2751
2752		if (!DTRACEACT_ISSTRING(act))
2753			continue;
2754
2755		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2756		limit = i + act->dta_rec.dtrd_size;
2757		ASSERT(limit <= size);
2758
2759		for (nul = 0; i < limit; i++) {
2760			if (nul) {
2761				kdata[i] = '\0';
2762				continue;
2763			}
2764
2765			if (data[i] != '\0')
2766				continue;
2767
2768			nul = 1;
2769		}
2770	}
2771
2772	for (i = size; i < fsize; i++)
2773		kdata[i] = 0;
2774
2775	key->dtak_hashval = hashval;
2776	key->dtak_size = size;
2777	key->dtak_action = action;
2778	key->dtak_next = agb->dtagb_hash[ndx];
2779	agb->dtagb_hash[ndx] = key;
2780
2781	/*
2782	 * Finally, apply the aggregator.
2783	 */
2784	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2785	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2786}
2787
2788/*
2789 * Given consumer state, this routine finds a speculation in the INACTIVE
2790 * state and transitions it into the ACTIVE state.  If there is no speculation
2791 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2792 * incremented -- it is up to the caller to take appropriate action.
2793 */
2794static int
2795dtrace_speculation(dtrace_state_t *state)
2796{
2797	int i = 0;
2798	dtrace_speculation_state_t curstate;
2799	uint32_t *stat = &state->dts_speculations_unavail, count;
2800
2801	while (i < state->dts_nspeculations) {
2802		dtrace_speculation_t *spec = &state->dts_speculations[i];
2803
2804		curstate = spec->dtsp_state;
2805
2806		if (curstate != DTRACESPEC_INACTIVE) {
2807			if (curstate == DTRACESPEC_COMMITTINGMANY ||
2808			    curstate == DTRACESPEC_COMMITTING ||
2809			    curstate == DTRACESPEC_DISCARDING)
2810				stat = &state->dts_speculations_busy;
2811			i++;
2812			continue;
2813		}
2814
2815		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2816		    curstate, DTRACESPEC_ACTIVE) == curstate)
2817			return (i + 1);
2818	}
2819
2820	/*
2821	 * We couldn't find a speculation.  If we found as much as a single
2822	 * busy speculation buffer, we'll attribute this failure as "busy"
2823	 * instead of "unavail".
2824	 */
2825	do {
2826		count = *stat;
2827	} while (dtrace_cas32(stat, count, count + 1) != count);
2828
2829	return (0);
2830}
2831
2832/*
2833 * This routine commits an active speculation.  If the specified speculation
2834 * is not in a valid state to perform a commit(), this routine will silently do
2835 * nothing.  The state of the specified speculation is transitioned according
2836 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2837 */
2838static void
2839dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2840    dtrace_specid_t which)
2841{
2842	dtrace_speculation_t *spec;
2843	dtrace_buffer_t *src, *dest;
2844	uintptr_t daddr, saddr, dlimit, slimit;
2845	dtrace_speculation_state_t curstate, new = 0;
2846	intptr_t offs;
2847	uint64_t timestamp;
2848
2849	if (which == 0)
2850		return;
2851
2852	if (which > state->dts_nspeculations) {
2853		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2854		return;
2855	}
2856
2857	spec = &state->dts_speculations[which - 1];
2858	src = &spec->dtsp_buffer[cpu];
2859	dest = &state->dts_buffer[cpu];
2860
2861	do {
2862		curstate = spec->dtsp_state;
2863
2864		if (curstate == DTRACESPEC_COMMITTINGMANY)
2865			break;
2866
2867		switch (curstate) {
2868		case DTRACESPEC_INACTIVE:
2869		case DTRACESPEC_DISCARDING:
2870			return;
2871
2872		case DTRACESPEC_COMMITTING:
2873			/*
2874			 * This is only possible if we are (a) commit()'ing
2875			 * without having done a prior speculate() on this CPU
2876			 * and (b) racing with another commit() on a different
2877			 * CPU.  There's nothing to do -- we just assert that
2878			 * our offset is 0.
2879			 */
2880			ASSERT(src->dtb_offset == 0);
2881			return;
2882
2883		case DTRACESPEC_ACTIVE:
2884			new = DTRACESPEC_COMMITTING;
2885			break;
2886
2887		case DTRACESPEC_ACTIVEONE:
2888			/*
2889			 * This speculation is active on one CPU.  If our
2890			 * buffer offset is non-zero, we know that the one CPU
2891			 * must be us.  Otherwise, we are committing on a
2892			 * different CPU from the speculate(), and we must
2893			 * rely on being asynchronously cleaned.
2894			 */
2895			if (src->dtb_offset != 0) {
2896				new = DTRACESPEC_COMMITTING;
2897				break;
2898			}
2899			/*FALLTHROUGH*/
2900
2901		case DTRACESPEC_ACTIVEMANY:
2902			new = DTRACESPEC_COMMITTINGMANY;
2903			break;
2904
2905		default:
2906			ASSERT(0);
2907		}
2908	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2909	    curstate, new) != curstate);
2910
2911	/*
2912	 * We have set the state to indicate that we are committing this
2913	 * speculation.  Now reserve the necessary space in the destination
2914	 * buffer.
2915	 */
2916	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2917	    sizeof (uint64_t), state, NULL)) < 0) {
2918		dtrace_buffer_drop(dest);
2919		goto out;
2920	}
2921
2922	/*
2923	 * We have sufficient space to copy the speculative buffer into the
2924	 * primary buffer.  First, modify the speculative buffer, filling
2925	 * in the timestamp of all entries with the curstate time.  The data
2926	 * must have the commit() time rather than the time it was traced,
2927	 * so that all entries in the primary buffer are in timestamp order.
2928	 */
2929	timestamp = dtrace_gethrtime();
2930	saddr = (uintptr_t)src->dtb_tomax;
2931	slimit = saddr + src->dtb_offset;
2932	while (saddr < slimit) {
2933		size_t size;
2934		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2935
2936		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2937			saddr += sizeof (dtrace_epid_t);
2938			continue;
2939		}
2940		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2941		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2942
2943		ASSERT3U(saddr + size, <=, slimit);
2944		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2945		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2946
2947		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2948
2949		saddr += size;
2950	}
2951
2952	/*
2953	 * Copy the buffer across.  (Note that this is a
2954	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2955	 * a serious performance issue, a high-performance DTrace-specific
2956	 * bcopy() should obviously be invented.)
2957	 */
2958	daddr = (uintptr_t)dest->dtb_tomax + offs;
2959	dlimit = daddr + src->dtb_offset;
2960	saddr = (uintptr_t)src->dtb_tomax;
2961
2962	/*
2963	 * First, the aligned portion.
2964	 */
2965	while (dlimit - daddr >= sizeof (uint64_t)) {
2966		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2967
2968		daddr += sizeof (uint64_t);
2969		saddr += sizeof (uint64_t);
2970	}
2971
2972	/*
2973	 * Now any left-over bit...
2974	 */
2975	while (dlimit - daddr)
2976		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2977
2978	/*
2979	 * Finally, commit the reserved space in the destination buffer.
2980	 */
2981	dest->dtb_offset = offs + src->dtb_offset;
2982
2983out:
2984	/*
2985	 * If we're lucky enough to be the only active CPU on this speculation
2986	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2987	 */
2988	if (curstate == DTRACESPEC_ACTIVE ||
2989	    (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2990		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2991		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2992
2993		ASSERT(rval == DTRACESPEC_COMMITTING);
2994	}
2995
2996	src->dtb_offset = 0;
2997	src->dtb_xamot_drops += src->dtb_drops;
2998	src->dtb_drops = 0;
2999}
3000
3001/*
3002 * This routine discards an active speculation.  If the specified speculation
3003 * is not in a valid state to perform a discard(), this routine will silently
3004 * do nothing.  The state of the specified speculation is transitioned
3005 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
3006 */
3007static void
3008dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
3009    dtrace_specid_t which)
3010{
3011	dtrace_speculation_t *spec;
3012	dtrace_speculation_state_t curstate, new = 0;
3013	dtrace_buffer_t *buf;
3014
3015	if (which == 0)
3016		return;
3017
3018	if (which > state->dts_nspeculations) {
3019		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3020		return;
3021	}
3022
3023	spec = &state->dts_speculations[which - 1];
3024	buf = &spec->dtsp_buffer[cpu];
3025
3026	do {
3027		curstate = spec->dtsp_state;
3028
3029		switch (curstate) {
3030		case DTRACESPEC_INACTIVE:
3031		case DTRACESPEC_COMMITTINGMANY:
3032		case DTRACESPEC_COMMITTING:
3033		case DTRACESPEC_DISCARDING:
3034			return;
3035
3036		case DTRACESPEC_ACTIVE:
3037		case DTRACESPEC_ACTIVEMANY:
3038			new = DTRACESPEC_DISCARDING;
3039			break;
3040
3041		case DTRACESPEC_ACTIVEONE:
3042			if (buf->dtb_offset != 0) {
3043				new = DTRACESPEC_INACTIVE;
3044			} else {
3045				new = DTRACESPEC_DISCARDING;
3046			}
3047			break;
3048
3049		default:
3050			ASSERT(0);
3051		}
3052	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3053	    curstate, new) != curstate);
3054
3055	buf->dtb_offset = 0;
3056	buf->dtb_drops = 0;
3057}
3058
3059/*
3060 * Note:  not called from probe context.  This function is called
3061 * asynchronously from cross call context to clean any speculations that are
3062 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
3063 * transitioned back to the INACTIVE state until all CPUs have cleaned the
3064 * speculation.
3065 */
3066static void
3067dtrace_speculation_clean_here(dtrace_state_t *state)
3068{
3069	dtrace_icookie_t cookie;
3070	processorid_t cpu = curcpu;
3071	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3072	dtrace_specid_t i;
3073
3074	cookie = dtrace_interrupt_disable();
3075
3076	if (dest->dtb_tomax == NULL) {
3077		dtrace_interrupt_enable(cookie);
3078		return;
3079	}
3080
3081	for (i = 0; i < state->dts_nspeculations; i++) {
3082		dtrace_speculation_t *spec = &state->dts_speculations[i];
3083		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3084
3085		if (src->dtb_tomax == NULL)
3086			continue;
3087
3088		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3089			src->dtb_offset = 0;
3090			continue;
3091		}
3092
3093		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3094			continue;
3095
3096		if (src->dtb_offset == 0)
3097			continue;
3098
3099		dtrace_speculation_commit(state, cpu, i + 1);
3100	}
3101
3102	dtrace_interrupt_enable(cookie);
3103}
3104
3105/*
3106 * Note:  not called from probe context.  This function is called
3107 * asynchronously (and at a regular interval) to clean any speculations that
3108 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
3109 * is work to be done, it cross calls all CPUs to perform that work;
3110 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3111 * INACTIVE state until they have been cleaned by all CPUs.
3112 */
3113static void
3114dtrace_speculation_clean(dtrace_state_t *state)
3115{
3116	int work = 0, rv;
3117	dtrace_specid_t i;
3118
3119	for (i = 0; i < state->dts_nspeculations; i++) {
3120		dtrace_speculation_t *spec = &state->dts_speculations[i];
3121
3122		ASSERT(!spec->dtsp_cleaning);
3123
3124		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3125		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3126			continue;
3127
3128		work++;
3129		spec->dtsp_cleaning = 1;
3130	}
3131
3132	if (!work)
3133		return;
3134
3135	dtrace_xcall(DTRACE_CPUALL,
3136	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3137
3138	/*
3139	 * We now know that all CPUs have committed or discarded their
3140	 * speculation buffers, as appropriate.  We can now set the state
3141	 * to inactive.
3142	 */
3143	for (i = 0; i < state->dts_nspeculations; i++) {
3144		dtrace_speculation_t *spec = &state->dts_speculations[i];
3145		dtrace_speculation_state_t curstate, new;
3146
3147		if (!spec->dtsp_cleaning)
3148			continue;
3149
3150		curstate = spec->dtsp_state;
3151		ASSERT(curstate == DTRACESPEC_DISCARDING ||
3152		    curstate == DTRACESPEC_COMMITTINGMANY);
3153
3154		new = DTRACESPEC_INACTIVE;
3155
3156		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new);
3157		ASSERT(rv == curstate);
3158		spec->dtsp_cleaning = 0;
3159	}
3160}
3161
3162/*
3163 * Called as part of a speculate() to get the speculative buffer associated
3164 * with a given speculation.  Returns NULL if the specified speculation is not
3165 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3166 * the active CPU is not the specified CPU -- the speculation will be
3167 * atomically transitioned into the ACTIVEMANY state.
3168 */
3169static dtrace_buffer_t *
3170dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3171    dtrace_specid_t which)
3172{
3173	dtrace_speculation_t *spec;
3174	dtrace_speculation_state_t curstate, new = 0;
3175	dtrace_buffer_t *buf;
3176
3177	if (which == 0)
3178		return (NULL);
3179
3180	if (which > state->dts_nspeculations) {
3181		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3182		return (NULL);
3183	}
3184
3185	spec = &state->dts_speculations[which - 1];
3186	buf = &spec->dtsp_buffer[cpuid];
3187
3188	do {
3189		curstate = spec->dtsp_state;
3190
3191		switch (curstate) {
3192		case DTRACESPEC_INACTIVE:
3193		case DTRACESPEC_COMMITTINGMANY:
3194		case DTRACESPEC_DISCARDING:
3195			return (NULL);
3196
3197		case DTRACESPEC_COMMITTING:
3198			ASSERT(buf->dtb_offset == 0);
3199			return (NULL);
3200
3201		case DTRACESPEC_ACTIVEONE:
3202			/*
3203			 * This speculation is currently active on one CPU.
3204			 * Check the offset in the buffer; if it's non-zero,
3205			 * that CPU must be us (and we leave the state alone).
3206			 * If it's zero, assume that we're starting on a new
3207			 * CPU -- and change the state to indicate that the
3208			 * speculation is active on more than one CPU.
3209			 */
3210			if (buf->dtb_offset != 0)
3211				return (buf);
3212
3213			new = DTRACESPEC_ACTIVEMANY;
3214			break;
3215
3216		case DTRACESPEC_ACTIVEMANY:
3217			return (buf);
3218
3219		case DTRACESPEC_ACTIVE:
3220			new = DTRACESPEC_ACTIVEONE;
3221			break;
3222
3223		default:
3224			ASSERT(0);
3225		}
3226	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3227	    curstate, new) != curstate);
3228
3229	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3230	return (buf);
3231}
3232
3233/*
3234 * Return a string.  In the event that the user lacks the privilege to access
3235 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3236 * don't fail access checking.
3237 *
3238 * dtrace_dif_variable() uses this routine as a helper for various
3239 * builtin values such as 'execname' and 'probefunc.'
3240 */
3241uintptr_t
3242dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3243    dtrace_mstate_t *mstate)
3244{
3245	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3246	uintptr_t ret;
3247	size_t strsz;
3248
3249	/*
3250	 * The easy case: this probe is allowed to read all of memory, so
3251	 * we can just return this as a vanilla pointer.
3252	 */
3253	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3254		return (addr);
3255
3256	/*
3257	 * This is the tougher case: we copy the string in question from
3258	 * kernel memory into scratch memory and return it that way: this
3259	 * ensures that we won't trip up when access checking tests the
3260	 * BYREF return value.
3261	 */
3262	strsz = dtrace_strlen((char *)addr, size) + 1;
3263
3264	if (mstate->dtms_scratch_ptr + strsz >
3265	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3266		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3267		return (0);
3268	}
3269
3270	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3271	    strsz);
3272	ret = mstate->dtms_scratch_ptr;
3273	mstate->dtms_scratch_ptr += strsz;
3274	return (ret);
3275}
3276
3277/*
3278 * Return a string from a memoy address which is known to have one or
3279 * more concatenated, individually zero terminated, sub-strings.
3280 * In the event that the user lacks the privilege to access
3281 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3282 * don't fail access checking.
3283 *
3284 * dtrace_dif_variable() uses this routine as a helper for various
3285 * builtin values such as 'execargs'.
3286 */
3287static uintptr_t
3288dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3289    dtrace_mstate_t *mstate)
3290{
3291	char *p;
3292	size_t i;
3293	uintptr_t ret;
3294
3295	if (mstate->dtms_scratch_ptr + strsz >
3296	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3297		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3298		return (0);
3299	}
3300
3301	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3302	    strsz);
3303
3304	/* Replace sub-string termination characters with a space. */
3305	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3306	    p++, i++)
3307		if (*p == '\0')
3308			*p = ' ';
3309
3310	ret = mstate->dtms_scratch_ptr;
3311	mstate->dtms_scratch_ptr += strsz;
3312	return (ret);
3313}
3314
3315/*
3316 * This function implements the DIF emulator's variable lookups.  The emulator
3317 * passes a reserved variable identifier and optional built-in array index.
3318 */
3319static uint64_t
3320dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3321    uint64_t ndx)
3322{
3323	/*
3324	 * If we're accessing one of the uncached arguments, we'll turn this
3325	 * into a reference in the args array.
3326	 */
3327	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3328		ndx = v - DIF_VAR_ARG0;
3329		v = DIF_VAR_ARGS;
3330	}
3331
3332	switch (v) {
3333	case DIF_VAR_ARGS:
3334		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3335		if (ndx >= sizeof (mstate->dtms_arg) /
3336		    sizeof (mstate->dtms_arg[0])) {
3337			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3338			dtrace_provider_t *pv;
3339			uint64_t val;
3340
3341			pv = mstate->dtms_probe->dtpr_provider;
3342			if (pv->dtpv_pops.dtps_getargval != NULL)
3343				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3344				    mstate->dtms_probe->dtpr_id,
3345				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3346			else
3347				val = dtrace_getarg(ndx, aframes);
3348
3349			/*
3350			 * This is regrettably required to keep the compiler
3351			 * from tail-optimizing the call to dtrace_getarg().
3352			 * The condition always evaluates to true, but the
3353			 * compiler has no way of figuring that out a priori.
3354			 * (None of this would be necessary if the compiler
3355			 * could be relied upon to _always_ tail-optimize
3356			 * the call to dtrace_getarg() -- but it can't.)
3357			 */
3358			if (mstate->dtms_probe != NULL)
3359				return (val);
3360
3361			ASSERT(0);
3362		}
3363
3364		return (mstate->dtms_arg[ndx]);
3365
3366	case DIF_VAR_REGS:
3367	case DIF_VAR_UREGS: {
3368		struct trapframe *tframe;
3369
3370		if (!dtrace_priv_proc(state))
3371			return (0);
3372
3373		if (v == DIF_VAR_REGS)
3374			tframe = curthread->t_dtrace_trapframe;
3375		else
3376			tframe = curthread->td_frame;
3377
3378		if (tframe == NULL) {
3379			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3380			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3381			return (0);
3382		}
3383
3384		return (dtrace_getreg(tframe, ndx));
3385	}
3386
3387	case DIF_VAR_CURTHREAD:
3388		if (!dtrace_priv_proc(state))
3389			return (0);
3390		return ((uint64_t)(uintptr_t)curthread);
3391
3392	case DIF_VAR_TIMESTAMP:
3393		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3394			mstate->dtms_timestamp = dtrace_gethrtime();
3395			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3396		}
3397		return (mstate->dtms_timestamp);
3398
3399	case DIF_VAR_VTIMESTAMP:
3400		ASSERT(dtrace_vtime_references != 0);
3401		return (curthread->t_dtrace_vtime);
3402
3403	case DIF_VAR_WALLTIMESTAMP:
3404		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3405			mstate->dtms_walltimestamp = dtrace_gethrestime();
3406			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3407		}
3408		return (mstate->dtms_walltimestamp);
3409
3410#ifdef illumos
3411	case DIF_VAR_IPL:
3412		if (!dtrace_priv_kernel(state))
3413			return (0);
3414		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3415			mstate->dtms_ipl = dtrace_getipl();
3416			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3417		}
3418		return (mstate->dtms_ipl);
3419#endif
3420
3421	case DIF_VAR_EPID:
3422		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3423		return (mstate->dtms_epid);
3424
3425	case DIF_VAR_ID:
3426		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3427		return (mstate->dtms_probe->dtpr_id);
3428
3429	case DIF_VAR_STACKDEPTH:
3430		if (!dtrace_priv_kernel(state))
3431			return (0);
3432		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3433			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3434
3435			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3436			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3437		}
3438		return (mstate->dtms_stackdepth);
3439
3440	case DIF_VAR_USTACKDEPTH:
3441		if (!dtrace_priv_proc(state))
3442			return (0);
3443		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3444			/*
3445			 * See comment in DIF_VAR_PID.
3446			 */
3447			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3448			    CPU_ON_INTR(CPU)) {
3449				mstate->dtms_ustackdepth = 0;
3450			} else {
3451				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3452				mstate->dtms_ustackdepth =
3453				    dtrace_getustackdepth();
3454				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3455			}
3456			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3457		}
3458		return (mstate->dtms_ustackdepth);
3459
3460	case DIF_VAR_CALLER:
3461		if (!dtrace_priv_kernel(state))
3462			return (0);
3463		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3464			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3465
3466			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3467				/*
3468				 * If this is an unanchored probe, we are
3469				 * required to go through the slow path:
3470				 * dtrace_caller() only guarantees correct
3471				 * results for anchored probes.
3472				 */
3473				pc_t caller[2] = {0, 0};
3474
3475				dtrace_getpcstack(caller, 2, aframes,
3476				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3477				mstate->dtms_caller = caller[1];
3478			} else if ((mstate->dtms_caller =
3479			    dtrace_caller(aframes)) == -1) {
3480				/*
3481				 * We have failed to do this the quick way;
3482				 * we must resort to the slower approach of
3483				 * calling dtrace_getpcstack().
3484				 */
3485				pc_t caller = 0;
3486
3487				dtrace_getpcstack(&caller, 1, aframes, NULL);
3488				mstate->dtms_caller = caller;
3489			}
3490
3491			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3492		}
3493		return (mstate->dtms_caller);
3494
3495	case DIF_VAR_UCALLER:
3496		if (!dtrace_priv_proc(state))
3497			return (0);
3498
3499		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3500			uint64_t ustack[3];
3501
3502			/*
3503			 * dtrace_getupcstack() fills in the first uint64_t
3504			 * with the current PID.  The second uint64_t will
3505			 * be the program counter at user-level.  The third
3506			 * uint64_t will contain the caller, which is what
3507			 * we're after.
3508			 */
3509			ustack[2] = 0;
3510			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3511			dtrace_getupcstack(ustack, 3);
3512			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3513			mstate->dtms_ucaller = ustack[2];
3514			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3515		}
3516
3517		return (mstate->dtms_ucaller);
3518
3519	case DIF_VAR_PROBEPROV:
3520		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3521		return (dtrace_dif_varstr(
3522		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3523		    state, mstate));
3524
3525	case DIF_VAR_PROBEMOD:
3526		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3527		return (dtrace_dif_varstr(
3528		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3529		    state, mstate));
3530
3531	case DIF_VAR_PROBEFUNC:
3532		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3533		return (dtrace_dif_varstr(
3534		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3535		    state, mstate));
3536
3537	case DIF_VAR_PROBENAME:
3538		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3539		return (dtrace_dif_varstr(
3540		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3541		    state, mstate));
3542
3543	case DIF_VAR_PID:
3544		if (!dtrace_priv_proc(state))
3545			return (0);
3546
3547#ifdef illumos
3548		/*
3549		 * Note that we are assuming that an unanchored probe is
3550		 * always due to a high-level interrupt.  (And we're assuming
3551		 * that there is only a single high level interrupt.)
3552		 */
3553		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3554			return (pid0.pid_id);
3555
3556		/*
3557		 * It is always safe to dereference one's own t_procp pointer:
3558		 * it always points to a valid, allocated proc structure.
3559		 * Further, it is always safe to dereference the p_pidp member
3560		 * of one's own proc structure.  (These are truisms becuase
3561		 * threads and processes don't clean up their own state --
3562		 * they leave that task to whomever reaps them.)
3563		 */
3564		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3565#else
3566		return ((uint64_t)curproc->p_pid);
3567#endif
3568
3569	case DIF_VAR_PPID:
3570		if (!dtrace_priv_proc(state))
3571			return (0);
3572
3573#ifdef illumos
3574		/*
3575		 * See comment in DIF_VAR_PID.
3576		 */
3577		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3578			return (pid0.pid_id);
3579
3580		/*
3581		 * It is always safe to dereference one's own t_procp pointer:
3582		 * it always points to a valid, allocated proc structure.
3583		 * (This is true because threads don't clean up their own
3584		 * state -- they leave that task to whomever reaps them.)
3585		 */
3586		return ((uint64_t)curthread->t_procp->p_ppid);
3587#else
3588		if (curproc->p_pid == proc0.p_pid)
3589			return (curproc->p_pid);
3590		else
3591			return (curproc->p_pptr->p_pid);
3592#endif
3593
3594	case DIF_VAR_TID:
3595#ifdef illumos
3596		/*
3597		 * See comment in DIF_VAR_PID.
3598		 */
3599		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3600			return (0);
3601#endif
3602
3603		return ((uint64_t)curthread->t_tid);
3604
3605	case DIF_VAR_EXECARGS: {
3606		struct pargs *p_args = curthread->td_proc->p_args;
3607
3608		if (p_args == NULL)
3609			return(0);
3610
3611		return (dtrace_dif_varstrz(
3612		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3613	}
3614
3615	case DIF_VAR_EXECNAME:
3616#ifdef illumos
3617		if (!dtrace_priv_proc(state))
3618			return (0);
3619
3620		/*
3621		 * See comment in DIF_VAR_PID.
3622		 */
3623		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3624			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3625
3626		/*
3627		 * It is always safe to dereference one's own t_procp pointer:
3628		 * it always points to a valid, allocated proc structure.
3629		 * (This is true because threads don't clean up their own
3630		 * state -- they leave that task to whomever reaps them.)
3631		 */
3632		return (dtrace_dif_varstr(
3633		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3634		    state, mstate));
3635#else
3636		return (dtrace_dif_varstr(
3637		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3638#endif
3639
3640	case DIF_VAR_ZONENAME:
3641#ifdef illumos
3642		if (!dtrace_priv_proc(state))
3643			return (0);
3644
3645		/*
3646		 * See comment in DIF_VAR_PID.
3647		 */
3648		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3649			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3650
3651		/*
3652		 * It is always safe to dereference one's own t_procp pointer:
3653		 * it always points to a valid, allocated proc structure.
3654		 * (This is true because threads don't clean up their own
3655		 * state -- they leave that task to whomever reaps them.)
3656		 */
3657		return (dtrace_dif_varstr(
3658		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3659		    state, mstate));
3660#elif defined(__FreeBSD__)
3661	/*
3662	 * On FreeBSD, we introduce compatibility to zonename by falling through
3663	 * into jailname.
3664	 */
3665	case DIF_VAR_JAILNAME:
3666		if (!dtrace_priv_kernel(state))
3667			return (0);
3668
3669		return (dtrace_dif_varstr(
3670		    (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3671		    state, mstate));
3672
3673	case DIF_VAR_JID:
3674		if (!dtrace_priv_kernel(state))
3675			return (0);
3676
3677		return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3678#else
3679		return (0);
3680#endif
3681
3682	case DIF_VAR_UID:
3683		if (!dtrace_priv_proc(state))
3684			return (0);
3685
3686#ifdef illumos
3687		/*
3688		 * See comment in DIF_VAR_PID.
3689		 */
3690		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3691			return ((uint64_t)p0.p_cred->cr_uid);
3692
3693		/*
3694		 * It is always safe to dereference one's own t_procp pointer:
3695		 * it always points to a valid, allocated proc structure.
3696		 * (This is true because threads don't clean up their own
3697		 * state -- they leave that task to whomever reaps them.)
3698		 *
3699		 * Additionally, it is safe to dereference one's own process
3700		 * credential, since this is never NULL after process birth.
3701		 */
3702		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3703#else
3704		return ((uint64_t)curthread->td_ucred->cr_uid);
3705#endif
3706
3707	case DIF_VAR_GID:
3708		if (!dtrace_priv_proc(state))
3709			return (0);
3710
3711#ifdef illumos
3712		/*
3713		 * See comment in DIF_VAR_PID.
3714		 */
3715		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3716			return ((uint64_t)p0.p_cred->cr_gid);
3717
3718		/*
3719		 * It is always safe to dereference one's own t_procp pointer:
3720		 * it always points to a valid, allocated proc structure.
3721		 * (This is true because threads don't clean up their own
3722		 * state -- they leave that task to whomever reaps them.)
3723		 *
3724		 * Additionally, it is safe to dereference one's own process
3725		 * credential, since this is never NULL after process birth.
3726		 */
3727		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3728#else
3729		return ((uint64_t)curthread->td_ucred->cr_gid);
3730#endif
3731
3732	case DIF_VAR_ERRNO: {
3733#ifdef illumos
3734		klwp_t *lwp;
3735		if (!dtrace_priv_proc(state))
3736			return (0);
3737
3738		/*
3739		 * See comment in DIF_VAR_PID.
3740		 */
3741		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3742			return (0);
3743
3744		/*
3745		 * It is always safe to dereference one's own t_lwp pointer in
3746		 * the event that this pointer is non-NULL.  (This is true
3747		 * because threads and lwps don't clean up their own state --
3748		 * they leave that task to whomever reaps them.)
3749		 */
3750		if ((lwp = curthread->t_lwp) == NULL)
3751			return (0);
3752
3753		return ((uint64_t)lwp->lwp_errno);
3754#else
3755		return (curthread->td_errno);
3756#endif
3757	}
3758#ifndef illumos
3759	case DIF_VAR_CPU: {
3760		return curcpu;
3761	}
3762#endif
3763	default:
3764		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3765		return (0);
3766	}
3767}
3768
3769
3770typedef enum dtrace_json_state {
3771	DTRACE_JSON_REST = 1,
3772	DTRACE_JSON_OBJECT,
3773	DTRACE_JSON_STRING,
3774	DTRACE_JSON_STRING_ESCAPE,
3775	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3776	DTRACE_JSON_COLON,
3777	DTRACE_JSON_COMMA,
3778	DTRACE_JSON_VALUE,
3779	DTRACE_JSON_IDENTIFIER,
3780	DTRACE_JSON_NUMBER,
3781	DTRACE_JSON_NUMBER_FRAC,
3782	DTRACE_JSON_NUMBER_EXP,
3783	DTRACE_JSON_COLLECT_OBJECT
3784} dtrace_json_state_t;
3785
3786/*
3787 * This function possesses just enough knowledge about JSON to extract a single
3788 * value from a JSON string and store it in the scratch buffer.  It is able
3789 * to extract nested object values, and members of arrays by index.
3790 *
3791 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3792 * be looked up as we descend into the object tree.  e.g.
3793 *
3794 *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3795 *       with nelems = 5.
3796 *
3797 * The run time of this function must be bounded above by strsize to limit the
3798 * amount of work done in probe context.  As such, it is implemented as a
3799 * simple state machine, reading one character at a time using safe loads
3800 * until we find the requested element, hit a parsing error or run off the
3801 * end of the object or string.
3802 *
3803 * As there is no way for a subroutine to return an error without interrupting
3804 * clause execution, we simply return NULL in the event of a missing key or any
3805 * other error condition.  Each NULL return in this function is commented with
3806 * the error condition it represents -- parsing or otherwise.
3807 *
3808 * The set of states for the state machine closely matches the JSON
3809 * specification (http://json.org/).  Briefly:
3810 *
3811 *   DTRACE_JSON_REST:
3812 *     Skip whitespace until we find either a top-level Object, moving
3813 *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3814 *
3815 *   DTRACE_JSON_OBJECT:
3816 *     Locate the next key String in an Object.  Sets a flag to denote
3817 *     the next String as a key string and moves to DTRACE_JSON_STRING.
3818 *
3819 *   DTRACE_JSON_COLON:
3820 *     Skip whitespace until we find the colon that separates key Strings
3821 *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3822 *
3823 *   DTRACE_JSON_VALUE:
3824 *     Detects the type of the next value (String, Number, Identifier, Object
3825 *     or Array) and routes to the states that process that type.  Here we also
3826 *     deal with the element selector list if we are requested to traverse down
3827 *     into the object tree.
3828 *
3829 *   DTRACE_JSON_COMMA:
3830 *     Skip whitespace until we find the comma that separates key-value pairs
3831 *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3832 *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3833 *     states return to this state at the end of their value, unless otherwise
3834 *     noted.
3835 *
3836 *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3837 *     Processes a Number literal from the JSON, including any exponent
3838 *     component that may be present.  Numbers are returned as strings, which
3839 *     may be passed to strtoll() if an integer is required.
3840 *
3841 *   DTRACE_JSON_IDENTIFIER:
3842 *     Processes a "true", "false" or "null" literal in the JSON.
3843 *
3844 *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3845 *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3846 *     Processes a String literal from the JSON, whether the String denotes
3847 *     a key, a value or part of a larger Object.  Handles all escape sequences
3848 *     present in the specification, including four-digit unicode characters,
3849 *     but merely includes the escape sequence without converting it to the
3850 *     actual escaped character.  If the String is flagged as a key, we
3851 *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3852 *
3853 *   DTRACE_JSON_COLLECT_OBJECT:
3854 *     This state collects an entire Object (or Array), correctly handling
3855 *     embedded strings.  If the full element selector list matches this nested
3856 *     object, we return the Object in full as a string.  If not, we use this
3857 *     state to skip to the next value at this level and continue processing.
3858 *
3859 * NOTE: This function uses various macros from strtolctype.h to manipulate
3860 * digit values, etc -- these have all been checked to ensure they make
3861 * no additional function calls.
3862 */
3863static char *
3864dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3865    char *dest)
3866{
3867	dtrace_json_state_t state = DTRACE_JSON_REST;
3868	int64_t array_elem = INT64_MIN;
3869	int64_t array_pos = 0;
3870	uint8_t escape_unicount = 0;
3871	boolean_t string_is_key = B_FALSE;
3872	boolean_t collect_object = B_FALSE;
3873	boolean_t found_key = B_FALSE;
3874	boolean_t in_array = B_FALSE;
3875	uint32_t braces = 0, brackets = 0;
3876	char *elem = elemlist;
3877	char *dd = dest;
3878	uintptr_t cur;
3879
3880	for (cur = json; cur < json + size; cur++) {
3881		char cc = dtrace_load8(cur);
3882		if (cc == '\0')
3883			return (NULL);
3884
3885		switch (state) {
3886		case DTRACE_JSON_REST:
3887			if (isspace(cc))
3888				break;
3889
3890			if (cc == '{') {
3891				state = DTRACE_JSON_OBJECT;
3892				break;
3893			}
3894
3895			if (cc == '[') {
3896				in_array = B_TRUE;
3897				array_pos = 0;
3898				array_elem = dtrace_strtoll(elem, 10, size);
3899				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3900				state = DTRACE_JSON_VALUE;
3901				break;
3902			}
3903
3904			/*
3905			 * ERROR: expected to find a top-level object or array.
3906			 */
3907			return (NULL);
3908		case DTRACE_JSON_OBJECT:
3909			if (isspace(cc))
3910				break;
3911
3912			if (cc == '"') {
3913				state = DTRACE_JSON_STRING;
3914				string_is_key = B_TRUE;
3915				break;
3916			}
3917
3918			/*
3919			 * ERROR: either the object did not start with a key
3920			 * string, or we've run off the end of the object
3921			 * without finding the requested key.
3922			 */
3923			return (NULL);
3924		case DTRACE_JSON_STRING:
3925			if (cc == '\\') {
3926				*dd++ = '\\';
3927				state = DTRACE_JSON_STRING_ESCAPE;
3928				break;
3929			}
3930
3931			if (cc == '"') {
3932				if (collect_object) {
3933					/*
3934					 * We don't reset the dest here, as
3935					 * the string is part of a larger
3936					 * object being collected.
3937					 */
3938					*dd++ = cc;
3939					collect_object = B_FALSE;
3940					state = DTRACE_JSON_COLLECT_OBJECT;
3941					break;
3942				}
3943				*dd = '\0';
3944				dd = dest; /* reset string buffer */
3945				if (string_is_key) {
3946					if (dtrace_strncmp(dest, elem,
3947					    size) == 0)
3948						found_key = B_TRUE;
3949				} else if (found_key) {
3950					if (nelems > 1) {
3951						/*
3952						 * We expected an object, not
3953						 * this string.
3954						 */
3955						return (NULL);
3956					}
3957					return (dest);
3958				}
3959				state = string_is_key ? DTRACE_JSON_COLON :
3960				    DTRACE_JSON_COMMA;
3961				string_is_key = B_FALSE;
3962				break;
3963			}
3964
3965			*dd++ = cc;
3966			break;
3967		case DTRACE_JSON_STRING_ESCAPE:
3968			*dd++ = cc;
3969			if (cc == 'u') {
3970				escape_unicount = 0;
3971				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3972			} else {
3973				state = DTRACE_JSON_STRING;
3974			}
3975			break;
3976		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3977			if (!isxdigit(cc)) {
3978				/*
3979				 * ERROR: invalid unicode escape, expected
3980				 * four valid hexidecimal digits.
3981				 */
3982				return (NULL);
3983			}
3984
3985			*dd++ = cc;
3986			if (++escape_unicount == 4)
3987				state = DTRACE_JSON_STRING;
3988			break;
3989		case DTRACE_JSON_COLON:
3990			if (isspace(cc))
3991				break;
3992
3993			if (cc == ':') {
3994				state = DTRACE_JSON_VALUE;
3995				break;
3996			}
3997
3998			/*
3999			 * ERROR: expected a colon.
4000			 */
4001			return (NULL);
4002		case DTRACE_JSON_COMMA:
4003			if (isspace(cc))
4004				break;
4005
4006			if (cc == ',') {
4007				if (in_array) {
4008					state = DTRACE_JSON_VALUE;
4009					if (++array_pos == array_elem)
4010						found_key = B_TRUE;
4011				} else {
4012					state = DTRACE_JSON_OBJECT;
4013				}
4014				break;
4015			}
4016
4017			/*
4018			 * ERROR: either we hit an unexpected character, or
4019			 * we reached the end of the object or array without
4020			 * finding the requested key.
4021			 */
4022			return (NULL);
4023		case DTRACE_JSON_IDENTIFIER:
4024			if (islower(cc)) {
4025				*dd++ = cc;
4026				break;
4027			}
4028
4029			*dd = '\0';
4030			dd = dest; /* reset string buffer */
4031
4032			if (dtrace_strncmp(dest, "true", 5) == 0 ||
4033			    dtrace_strncmp(dest, "false", 6) == 0 ||
4034			    dtrace_strncmp(dest, "null", 5) == 0) {
4035				if (found_key) {
4036					if (nelems > 1) {
4037						/*
4038						 * ERROR: We expected an object,
4039						 * not this identifier.
4040						 */
4041						return (NULL);
4042					}
4043					return (dest);
4044				} else {
4045					cur--;
4046					state = DTRACE_JSON_COMMA;
4047					break;
4048				}
4049			}
4050
4051			/*
4052			 * ERROR: we did not recognise the identifier as one
4053			 * of those in the JSON specification.
4054			 */
4055			return (NULL);
4056		case DTRACE_JSON_NUMBER:
4057			if (cc == '.') {
4058				*dd++ = cc;
4059				state = DTRACE_JSON_NUMBER_FRAC;
4060				break;
4061			}
4062
4063			if (cc == 'x' || cc == 'X') {
4064				/*
4065				 * ERROR: specification explicitly excludes
4066				 * hexidecimal or octal numbers.
4067				 */
4068				return (NULL);
4069			}
4070
4071			/* FALLTHRU */
4072		case DTRACE_JSON_NUMBER_FRAC:
4073			if (cc == 'e' || cc == 'E') {
4074				*dd++ = cc;
4075				state = DTRACE_JSON_NUMBER_EXP;
4076				break;
4077			}
4078
4079			if (cc == '+' || cc == '-') {
4080				/*
4081				 * ERROR: expect sign as part of exponent only.
4082				 */
4083				return (NULL);
4084			}
4085			/* FALLTHRU */
4086		case DTRACE_JSON_NUMBER_EXP:
4087			if (isdigit(cc) || cc == '+' || cc == '-') {
4088				*dd++ = cc;
4089				break;
4090			}
4091
4092			*dd = '\0';
4093			dd = dest; /* reset string buffer */
4094			if (found_key) {
4095				if (nelems > 1) {
4096					/*
4097					 * ERROR: We expected an object, not
4098					 * this number.
4099					 */
4100					return (NULL);
4101				}
4102				return (dest);
4103			}
4104
4105			cur--;
4106			state = DTRACE_JSON_COMMA;
4107			break;
4108		case DTRACE_JSON_VALUE:
4109			if (isspace(cc))
4110				break;
4111
4112			if (cc == '{' || cc == '[') {
4113				if (nelems > 1 && found_key) {
4114					in_array = cc == '[' ? B_TRUE : B_FALSE;
4115					/*
4116					 * If our element selector directs us
4117					 * to descend into this nested object,
4118					 * then move to the next selector
4119					 * element in the list and restart the
4120					 * state machine.
4121					 */
4122					while (*elem != '\0')
4123						elem++;
4124					elem++; /* skip the inter-element NUL */
4125					nelems--;
4126					dd = dest;
4127					if (in_array) {
4128						state = DTRACE_JSON_VALUE;
4129						array_pos = 0;
4130						array_elem = dtrace_strtoll(
4131						    elem, 10, size);
4132						found_key = array_elem == 0 ?
4133						    B_TRUE : B_FALSE;
4134					} else {
4135						found_key = B_FALSE;
4136						state = DTRACE_JSON_OBJECT;
4137					}
4138					break;
4139				}
4140
4141				/*
4142				 * Otherwise, we wish to either skip this
4143				 * nested object or return it in full.
4144				 */
4145				if (cc == '[')
4146					brackets = 1;
4147				else
4148					braces = 1;
4149				*dd++ = cc;
4150				state = DTRACE_JSON_COLLECT_OBJECT;
4151				break;
4152			}
4153
4154			if (cc == '"') {
4155				state = DTRACE_JSON_STRING;
4156				break;
4157			}
4158
4159			if (islower(cc)) {
4160				/*
4161				 * Here we deal with true, false and null.
4162				 */
4163				*dd++ = cc;
4164				state = DTRACE_JSON_IDENTIFIER;
4165				break;
4166			}
4167
4168			if (cc == '-' || isdigit(cc)) {
4169				*dd++ = cc;
4170				state = DTRACE_JSON_NUMBER;
4171				break;
4172			}
4173
4174			/*
4175			 * ERROR: unexpected character at start of value.
4176			 */
4177			return (NULL);
4178		case DTRACE_JSON_COLLECT_OBJECT:
4179			if (cc == '\0')
4180				/*
4181				 * ERROR: unexpected end of input.
4182				 */
4183				return (NULL);
4184
4185			*dd++ = cc;
4186			if (cc == '"') {
4187				collect_object = B_TRUE;
4188				state = DTRACE_JSON_STRING;
4189				break;
4190			}
4191
4192			if (cc == ']') {
4193				if (brackets-- == 0) {
4194					/*
4195					 * ERROR: unbalanced brackets.
4196					 */
4197					return (NULL);
4198				}
4199			} else if (cc == '}') {
4200				if (braces-- == 0) {
4201					/*
4202					 * ERROR: unbalanced braces.
4203					 */
4204					return (NULL);
4205				}
4206			} else if (cc == '{') {
4207				braces++;
4208			} else if (cc == '[') {
4209				brackets++;
4210			}
4211
4212			if (brackets == 0 && braces == 0) {
4213				if (found_key) {
4214					*dd = '\0';
4215					return (dest);
4216				}
4217				dd = dest; /* reset string buffer */
4218				state = DTRACE_JSON_COMMA;
4219			}
4220			break;
4221		}
4222	}
4223	return (NULL);
4224}
4225
4226/*
4227 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4228 * Notice that we don't bother validating the proper number of arguments or
4229 * their types in the tuple stack.  This isn't needed because all argument
4230 * interpretation is safe because of our load safety -- the worst that can
4231 * happen is that a bogus program can obtain bogus results.
4232 */
4233static void
4234dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4235    dtrace_key_t *tupregs, int nargs,
4236    dtrace_mstate_t *mstate, dtrace_state_t *state)
4237{
4238	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4239	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4240	dtrace_vstate_t *vstate = &state->dts_vstate;
4241
4242#ifdef illumos
4243	union {
4244		mutex_impl_t mi;
4245		uint64_t mx;
4246	} m;
4247
4248	union {
4249		krwlock_t ri;
4250		uintptr_t rw;
4251	} r;
4252#else
4253	struct thread *lowner;
4254	union {
4255		struct lock_object *li;
4256		uintptr_t lx;
4257	} l;
4258#endif
4259
4260	switch (subr) {
4261	case DIF_SUBR_RAND:
4262		regs[rd] = dtrace_xoroshiro128_plus_next(
4263		    state->dts_rstate[curcpu]);
4264		break;
4265
4266#ifdef illumos
4267	case DIF_SUBR_MUTEX_OWNED:
4268		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4269		    mstate, vstate)) {
4270			regs[rd] = 0;
4271			break;
4272		}
4273
4274		m.mx = dtrace_load64(tupregs[0].dttk_value);
4275		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4276			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4277		else
4278			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4279		break;
4280
4281	case DIF_SUBR_MUTEX_OWNER:
4282		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4283		    mstate, vstate)) {
4284			regs[rd] = 0;
4285			break;
4286		}
4287
4288		m.mx = dtrace_load64(tupregs[0].dttk_value);
4289		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4290		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4291			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4292		else
4293			regs[rd] = 0;
4294		break;
4295
4296	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4297		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4298		    mstate, vstate)) {
4299			regs[rd] = 0;
4300			break;
4301		}
4302
4303		m.mx = dtrace_load64(tupregs[0].dttk_value);
4304		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4305		break;
4306
4307	case DIF_SUBR_MUTEX_TYPE_SPIN:
4308		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4309		    mstate, vstate)) {
4310			regs[rd] = 0;
4311			break;
4312		}
4313
4314		m.mx = dtrace_load64(tupregs[0].dttk_value);
4315		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4316		break;
4317
4318	case DIF_SUBR_RW_READ_HELD: {
4319		uintptr_t tmp;
4320
4321		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4322		    mstate, vstate)) {
4323			regs[rd] = 0;
4324			break;
4325		}
4326
4327		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4328		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4329		break;
4330	}
4331
4332	case DIF_SUBR_RW_WRITE_HELD:
4333		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4334		    mstate, vstate)) {
4335			regs[rd] = 0;
4336			break;
4337		}
4338
4339		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4340		regs[rd] = _RW_WRITE_HELD(&r.ri);
4341		break;
4342
4343	case DIF_SUBR_RW_ISWRITER:
4344		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4345		    mstate, vstate)) {
4346			regs[rd] = 0;
4347			break;
4348		}
4349
4350		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4351		regs[rd] = _RW_ISWRITER(&r.ri);
4352		break;
4353
4354#else /* !illumos */
4355	case DIF_SUBR_MUTEX_OWNED:
4356		if (!dtrace_canload(tupregs[0].dttk_value,
4357			sizeof (struct lock_object), mstate, vstate)) {
4358			regs[rd] = 0;
4359			break;
4360		}
4361		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4362		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4363		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4364		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4365		break;
4366
4367	case DIF_SUBR_MUTEX_OWNER:
4368		if (!dtrace_canload(tupregs[0].dttk_value,
4369			sizeof (struct lock_object), mstate, vstate)) {
4370			regs[rd] = 0;
4371			break;
4372		}
4373		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4374		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4375		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4376		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4377		regs[rd] = (uintptr_t)lowner;
4378		break;
4379
4380	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4381		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4382		    mstate, vstate)) {
4383			regs[rd] = 0;
4384			break;
4385		}
4386		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4387		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4388		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4389		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4390		break;
4391
4392	case DIF_SUBR_MUTEX_TYPE_SPIN:
4393		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4394		    mstate, vstate)) {
4395			regs[rd] = 0;
4396			break;
4397		}
4398		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4399		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4400		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4401		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4402		break;
4403
4404	case DIF_SUBR_RW_READ_HELD:
4405	case DIF_SUBR_SX_SHARED_HELD:
4406		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4407		    mstate, vstate)) {
4408			regs[rd] = 0;
4409			break;
4410		}
4411		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4412		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4413		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4414		    lowner == NULL;
4415		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4416		break;
4417
4418	case DIF_SUBR_RW_WRITE_HELD:
4419	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4420		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4421		    mstate, vstate)) {
4422			regs[rd] = 0;
4423			break;
4424		}
4425		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4426		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4427		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4428		    lowner != NULL;
4429		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4430		break;
4431
4432	case DIF_SUBR_RW_ISWRITER:
4433	case DIF_SUBR_SX_ISEXCLUSIVE:
4434		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4435		    mstate, vstate)) {
4436			regs[rd] = 0;
4437			break;
4438		}
4439		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4440		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4441		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4442		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4443		regs[rd] = (lowner == curthread);
4444		break;
4445#endif /* illumos */
4446
4447	case DIF_SUBR_BCOPY: {
4448		/*
4449		 * We need to be sure that the destination is in the scratch
4450		 * region -- no other region is allowed.
4451		 */
4452		uintptr_t src = tupregs[0].dttk_value;
4453		uintptr_t dest = tupregs[1].dttk_value;
4454		size_t size = tupregs[2].dttk_value;
4455
4456		if (!dtrace_inscratch(dest, size, mstate)) {
4457			*flags |= CPU_DTRACE_BADADDR;
4458			*illval = regs[rd];
4459			break;
4460		}
4461
4462		if (!dtrace_canload(src, size, mstate, vstate)) {
4463			regs[rd] = 0;
4464			break;
4465		}
4466
4467		dtrace_bcopy((void *)src, (void *)dest, size);
4468		break;
4469	}
4470
4471	case DIF_SUBR_ALLOCA:
4472	case DIF_SUBR_COPYIN: {
4473		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4474		uint64_t size =
4475		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4476		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4477
4478		/*
4479		 * This action doesn't require any credential checks since
4480		 * probes will not activate in user contexts to which the
4481		 * enabling user does not have permissions.
4482		 */
4483
4484		/*
4485		 * Rounding up the user allocation size could have overflowed
4486		 * a large, bogus allocation (like -1ULL) to 0.
4487		 */
4488		if (scratch_size < size ||
4489		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4490			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4491			regs[rd] = 0;
4492			break;
4493		}
4494
4495		if (subr == DIF_SUBR_COPYIN) {
4496			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4497			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4498			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4499		}
4500
4501		mstate->dtms_scratch_ptr += scratch_size;
4502		regs[rd] = dest;
4503		break;
4504	}
4505
4506	case DIF_SUBR_COPYINTO: {
4507		uint64_t size = tupregs[1].dttk_value;
4508		uintptr_t dest = tupregs[2].dttk_value;
4509
4510		/*
4511		 * This action doesn't require any credential checks since
4512		 * probes will not activate in user contexts to which the
4513		 * enabling user does not have permissions.
4514		 */
4515		if (!dtrace_inscratch(dest, size, mstate)) {
4516			*flags |= CPU_DTRACE_BADADDR;
4517			*illval = regs[rd];
4518			break;
4519		}
4520
4521		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4522		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4523		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4524		break;
4525	}
4526
4527	case DIF_SUBR_COPYINSTR: {
4528		uintptr_t dest = mstate->dtms_scratch_ptr;
4529		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4530
4531		if (nargs > 1 && tupregs[1].dttk_value < size)
4532			size = tupregs[1].dttk_value + 1;
4533
4534		/*
4535		 * This action doesn't require any credential checks since
4536		 * probes will not activate in user contexts to which the
4537		 * enabling user does not have permissions.
4538		 */
4539		if (!DTRACE_INSCRATCH(mstate, size)) {
4540			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4541			regs[rd] = 0;
4542			break;
4543		}
4544
4545		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4546		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4547		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4548
4549		((char *)dest)[size - 1] = '\0';
4550		mstate->dtms_scratch_ptr += size;
4551		regs[rd] = dest;
4552		break;
4553	}
4554
4555#ifdef illumos
4556	case DIF_SUBR_MSGSIZE:
4557	case DIF_SUBR_MSGDSIZE: {
4558		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4559		uintptr_t wptr, rptr;
4560		size_t count = 0;
4561		int cont = 0;
4562
4563		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4564
4565			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4566			    vstate)) {
4567				regs[rd] = 0;
4568				break;
4569			}
4570
4571			wptr = dtrace_loadptr(baddr +
4572			    offsetof(mblk_t, b_wptr));
4573
4574			rptr = dtrace_loadptr(baddr +
4575			    offsetof(mblk_t, b_rptr));
4576
4577			if (wptr < rptr) {
4578				*flags |= CPU_DTRACE_BADADDR;
4579				*illval = tupregs[0].dttk_value;
4580				break;
4581			}
4582
4583			daddr = dtrace_loadptr(baddr +
4584			    offsetof(mblk_t, b_datap));
4585
4586			baddr = dtrace_loadptr(baddr +
4587			    offsetof(mblk_t, b_cont));
4588
4589			/*
4590			 * We want to prevent against denial-of-service here,
4591			 * so we're only going to search the list for
4592			 * dtrace_msgdsize_max mblks.
4593			 */
4594			if (cont++ > dtrace_msgdsize_max) {
4595				*flags |= CPU_DTRACE_ILLOP;
4596				break;
4597			}
4598
4599			if (subr == DIF_SUBR_MSGDSIZE) {
4600				if (dtrace_load8(daddr +
4601				    offsetof(dblk_t, db_type)) != M_DATA)
4602					continue;
4603			}
4604
4605			count += wptr - rptr;
4606		}
4607
4608		if (!(*flags & CPU_DTRACE_FAULT))
4609			regs[rd] = count;
4610
4611		break;
4612	}
4613#endif
4614
4615	case DIF_SUBR_PROGENYOF: {
4616		pid_t pid = tupregs[0].dttk_value;
4617		proc_t *p;
4618		int rval = 0;
4619
4620		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4621
4622		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4623#ifdef illumos
4624			if (p->p_pidp->pid_id == pid) {
4625#else
4626			if (p->p_pid == pid) {
4627#endif
4628				rval = 1;
4629				break;
4630			}
4631		}
4632
4633		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4634
4635		regs[rd] = rval;
4636		break;
4637	}
4638
4639	case DIF_SUBR_SPECULATION:
4640		regs[rd] = dtrace_speculation(state);
4641		break;
4642
4643	case DIF_SUBR_COPYOUT: {
4644		uintptr_t kaddr = tupregs[0].dttk_value;
4645		uintptr_t uaddr = tupregs[1].dttk_value;
4646		uint64_t size = tupregs[2].dttk_value;
4647
4648		if (!dtrace_destructive_disallow &&
4649		    dtrace_priv_proc_control(state) &&
4650		    !dtrace_istoxic(kaddr, size) &&
4651		    dtrace_canload(kaddr, size, mstate, vstate)) {
4652			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4653			dtrace_copyout(kaddr, uaddr, size, flags);
4654			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4655		}
4656		break;
4657	}
4658
4659	case DIF_SUBR_COPYOUTSTR: {
4660		uintptr_t kaddr = tupregs[0].dttk_value;
4661		uintptr_t uaddr = tupregs[1].dttk_value;
4662		uint64_t size = tupregs[2].dttk_value;
4663		size_t lim;
4664
4665		if (!dtrace_destructive_disallow &&
4666		    dtrace_priv_proc_control(state) &&
4667		    !dtrace_istoxic(kaddr, size) &&
4668		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4669			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4670			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4671			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4672		}
4673		break;
4674	}
4675
4676	case DIF_SUBR_STRLEN: {
4677		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4678		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4679		size_t lim;
4680
4681		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4682			regs[rd] = 0;
4683			break;
4684		}
4685
4686		regs[rd] = dtrace_strlen((char *)addr, lim);
4687		break;
4688	}
4689
4690	case DIF_SUBR_STRCHR:
4691	case DIF_SUBR_STRRCHR: {
4692		/*
4693		 * We're going to iterate over the string looking for the
4694		 * specified character.  We will iterate until we have reached
4695		 * the string length or we have found the character.  If this
4696		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4697		 * of the specified character instead of the first.
4698		 */
4699		uintptr_t addr = tupregs[0].dttk_value;
4700		uintptr_t addr_limit;
4701		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4702		size_t lim;
4703		char c, target = (char)tupregs[1].dttk_value;
4704
4705		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4706			regs[rd] = 0;
4707			break;
4708		}
4709		addr_limit = addr + lim;
4710
4711		for (regs[rd] = 0; addr < addr_limit; addr++) {
4712			if ((c = dtrace_load8(addr)) == target) {
4713				regs[rd] = addr;
4714
4715				if (subr == DIF_SUBR_STRCHR)
4716					break;
4717			}
4718
4719			if (c == '\0')
4720				break;
4721		}
4722		break;
4723	}
4724
4725	case DIF_SUBR_STRSTR:
4726	case DIF_SUBR_INDEX:
4727	case DIF_SUBR_RINDEX: {
4728		/*
4729		 * We're going to iterate over the string looking for the
4730		 * specified string.  We will iterate until we have reached
4731		 * the string length or we have found the string.  (Yes, this
4732		 * is done in the most naive way possible -- but considering
4733		 * that the string we're searching for is likely to be
4734		 * relatively short, the complexity of Rabin-Karp or similar
4735		 * hardly seems merited.)
4736		 */
4737		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4738		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4739		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4740		size_t len = dtrace_strlen(addr, size);
4741		size_t sublen = dtrace_strlen(substr, size);
4742		char *limit = addr + len, *orig = addr;
4743		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4744		int inc = 1;
4745
4746		regs[rd] = notfound;
4747
4748		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4749			regs[rd] = 0;
4750			break;
4751		}
4752
4753		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4754		    vstate)) {
4755			regs[rd] = 0;
4756			break;
4757		}
4758
4759		/*
4760		 * strstr() and index()/rindex() have similar semantics if
4761		 * both strings are the empty string: strstr() returns a
4762		 * pointer to the (empty) string, and index() and rindex()
4763		 * both return index 0 (regardless of any position argument).
4764		 */
4765		if (sublen == 0 && len == 0) {
4766			if (subr == DIF_SUBR_STRSTR)
4767				regs[rd] = (uintptr_t)addr;
4768			else
4769				regs[rd] = 0;
4770			break;
4771		}
4772
4773		if (subr != DIF_SUBR_STRSTR) {
4774			if (subr == DIF_SUBR_RINDEX) {
4775				limit = orig - 1;
4776				addr += len;
4777				inc = -1;
4778			}
4779
4780			/*
4781			 * Both index() and rindex() take an optional position
4782			 * argument that denotes the starting position.
4783			 */
4784			if (nargs == 3) {
4785				int64_t pos = (int64_t)tupregs[2].dttk_value;
4786
4787				/*
4788				 * If the position argument to index() is
4789				 * negative, Perl implicitly clamps it at
4790				 * zero.  This semantic is a little surprising
4791				 * given the special meaning of negative
4792				 * positions to similar Perl functions like
4793				 * substr(), but it appears to reflect a
4794				 * notion that index() can start from a
4795				 * negative index and increment its way up to
4796				 * the string.  Given this notion, Perl's
4797				 * rindex() is at least self-consistent in
4798				 * that it implicitly clamps positions greater
4799				 * than the string length to be the string
4800				 * length.  Where Perl completely loses
4801				 * coherence, however, is when the specified
4802				 * substring is the empty string ("").  In
4803				 * this case, even if the position is
4804				 * negative, rindex() returns 0 -- and even if
4805				 * the position is greater than the length,
4806				 * index() returns the string length.  These
4807				 * semantics violate the notion that index()
4808				 * should never return a value less than the
4809				 * specified position and that rindex() should
4810				 * never return a value greater than the
4811				 * specified position.  (One assumes that
4812				 * these semantics are artifacts of Perl's
4813				 * implementation and not the results of
4814				 * deliberate design -- it beggars belief that
4815				 * even Larry Wall could desire such oddness.)
4816				 * While in the abstract one would wish for
4817				 * consistent position semantics across
4818				 * substr(), index() and rindex() -- or at the
4819				 * very least self-consistent position
4820				 * semantics for index() and rindex() -- we
4821				 * instead opt to keep with the extant Perl
4822				 * semantics, in all their broken glory.  (Do
4823				 * we have more desire to maintain Perl's
4824				 * semantics than Perl does?  Probably.)
4825				 */
4826				if (subr == DIF_SUBR_RINDEX) {
4827					if (pos < 0) {
4828						if (sublen == 0)
4829							regs[rd] = 0;
4830						break;
4831					}
4832
4833					if (pos > len)
4834						pos = len;
4835				} else {
4836					if (pos < 0)
4837						pos = 0;
4838
4839					if (pos >= len) {
4840						if (sublen == 0)
4841							regs[rd] = len;
4842						break;
4843					}
4844				}
4845
4846				addr = orig + pos;
4847			}
4848		}
4849
4850		for (regs[rd] = notfound; addr != limit; addr += inc) {
4851			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4852				if (subr != DIF_SUBR_STRSTR) {
4853					/*
4854					 * As D index() and rindex() are
4855					 * modeled on Perl (and not on awk),
4856					 * we return a zero-based (and not a
4857					 * one-based) index.  (For you Perl
4858					 * weenies: no, we're not going to add
4859					 * $[ -- and shouldn't you be at a con
4860					 * or something?)
4861					 */
4862					regs[rd] = (uintptr_t)(addr - orig);
4863					break;
4864				}
4865
4866				ASSERT(subr == DIF_SUBR_STRSTR);
4867				regs[rd] = (uintptr_t)addr;
4868				break;
4869			}
4870		}
4871
4872		break;
4873	}
4874
4875	case DIF_SUBR_STRTOK: {
4876		uintptr_t addr = tupregs[0].dttk_value;
4877		uintptr_t tokaddr = tupregs[1].dttk_value;
4878		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4879		uintptr_t limit, toklimit;
4880		size_t clim;
4881		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4882		char *dest = (char *)mstate->dtms_scratch_ptr;
4883		int i;
4884
4885		/*
4886		 * Check both the token buffer and (later) the input buffer,
4887		 * since both could be non-scratch addresses.
4888		 */
4889		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4890			regs[rd] = 0;
4891			break;
4892		}
4893		toklimit = tokaddr + clim;
4894
4895		if (!DTRACE_INSCRATCH(mstate, size)) {
4896			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4897			regs[rd] = 0;
4898			break;
4899		}
4900
4901		if (addr == 0) {
4902			/*
4903			 * If the address specified is NULL, we use our saved
4904			 * strtok pointer from the mstate.  Note that this
4905			 * means that the saved strtok pointer is _only_
4906			 * valid within multiple enablings of the same probe --
4907			 * it behaves like an implicit clause-local variable.
4908			 */
4909			addr = mstate->dtms_strtok;
4910			limit = mstate->dtms_strtok_limit;
4911		} else {
4912			/*
4913			 * If the user-specified address is non-NULL we must
4914			 * access check it.  This is the only time we have
4915			 * a chance to do so, since this address may reside
4916			 * in the string table of this clause-- future calls
4917			 * (when we fetch addr from mstate->dtms_strtok)
4918			 * would fail this access check.
4919			 */
4920			if (!dtrace_strcanload(addr, size, &clim, mstate,
4921			    vstate)) {
4922				regs[rd] = 0;
4923				break;
4924			}
4925			limit = addr + clim;
4926		}
4927
4928		/*
4929		 * First, zero the token map, and then process the token
4930		 * string -- setting a bit in the map for every character
4931		 * found in the token string.
4932		 */
4933		for (i = 0; i < sizeof (tokmap); i++)
4934			tokmap[i] = 0;
4935
4936		for (; tokaddr < toklimit; tokaddr++) {
4937			if ((c = dtrace_load8(tokaddr)) == '\0')
4938				break;
4939
4940			ASSERT((c >> 3) < sizeof (tokmap));
4941			tokmap[c >> 3] |= (1 << (c & 0x7));
4942		}
4943
4944		for (; addr < limit; addr++) {
4945			/*
4946			 * We're looking for a character that is _not_
4947			 * contained in the token string.
4948			 */
4949			if ((c = dtrace_load8(addr)) == '\0')
4950				break;
4951
4952			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4953				break;
4954		}
4955
4956		if (c == '\0') {
4957			/*
4958			 * We reached the end of the string without finding
4959			 * any character that was not in the token string.
4960			 * We return NULL in this case, and we set the saved
4961			 * address to NULL as well.
4962			 */
4963			regs[rd] = 0;
4964			mstate->dtms_strtok = 0;
4965			mstate->dtms_strtok_limit = 0;
4966			break;
4967		}
4968
4969		/*
4970		 * From here on, we're copying into the destination string.
4971		 */
4972		for (i = 0; addr < limit && i < size - 1; addr++) {
4973			if ((c = dtrace_load8(addr)) == '\0')
4974				break;
4975
4976			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4977				break;
4978
4979			ASSERT(i < size);
4980			dest[i++] = c;
4981		}
4982
4983		ASSERT(i < size);
4984		dest[i] = '\0';
4985		regs[rd] = (uintptr_t)dest;
4986		mstate->dtms_scratch_ptr += size;
4987		mstate->dtms_strtok = addr;
4988		mstate->dtms_strtok_limit = limit;
4989		break;
4990	}
4991
4992	case DIF_SUBR_SUBSTR: {
4993		uintptr_t s = tupregs[0].dttk_value;
4994		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4995		char *d = (char *)mstate->dtms_scratch_ptr;
4996		int64_t index = (int64_t)tupregs[1].dttk_value;
4997		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4998		size_t len = dtrace_strlen((char *)s, size);
4999		int64_t i;
5000
5001		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5002			regs[rd] = 0;
5003			break;
5004		}
5005
5006		if (!DTRACE_INSCRATCH(mstate, size)) {
5007			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5008			regs[rd] = 0;
5009			break;
5010		}
5011
5012		if (nargs <= 2)
5013			remaining = (int64_t)size;
5014
5015		if (index < 0) {
5016			index += len;
5017
5018			if (index < 0 && index + remaining > 0) {
5019				remaining += index;
5020				index = 0;
5021			}
5022		}
5023
5024		if (index >= len || index < 0) {
5025			remaining = 0;
5026		} else if (remaining < 0) {
5027			remaining += len - index;
5028		} else if (index + remaining > size) {
5029			remaining = size - index;
5030		}
5031
5032		for (i = 0; i < remaining; i++) {
5033			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5034				break;
5035		}
5036
5037		d[i] = '\0';
5038
5039		mstate->dtms_scratch_ptr += size;
5040		regs[rd] = (uintptr_t)d;
5041		break;
5042	}
5043
5044	case DIF_SUBR_JSON: {
5045		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5046		uintptr_t json = tupregs[0].dttk_value;
5047		size_t jsonlen = dtrace_strlen((char *)json, size);
5048		uintptr_t elem = tupregs[1].dttk_value;
5049		size_t elemlen = dtrace_strlen((char *)elem, size);
5050
5051		char *dest = (char *)mstate->dtms_scratch_ptr;
5052		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5053		char *ee = elemlist;
5054		int nelems = 1;
5055		uintptr_t cur;
5056
5057		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5058		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5059			regs[rd] = 0;
5060			break;
5061		}
5062
5063		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5064			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5065			regs[rd] = 0;
5066			break;
5067		}
5068
5069		/*
5070		 * Read the element selector and split it up into a packed list
5071		 * of strings.
5072		 */
5073		for (cur = elem; cur < elem + elemlen; cur++) {
5074			char cc = dtrace_load8(cur);
5075
5076			if (cur == elem && cc == '[') {
5077				/*
5078				 * If the first element selector key is
5079				 * actually an array index then ignore the
5080				 * bracket.
5081				 */
5082				continue;
5083			}
5084
5085			if (cc == ']')
5086				continue;
5087
5088			if (cc == '.' || cc == '[') {
5089				nelems++;
5090				cc = '\0';
5091			}
5092
5093			*ee++ = cc;
5094		}
5095		*ee++ = '\0';
5096
5097		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5098		    nelems, dest)) != 0)
5099			mstate->dtms_scratch_ptr += jsonlen + 1;
5100		break;
5101	}
5102
5103	case DIF_SUBR_TOUPPER:
5104	case DIF_SUBR_TOLOWER: {
5105		uintptr_t s = tupregs[0].dttk_value;
5106		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5107		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5108		size_t len = dtrace_strlen((char *)s, size);
5109		char lower, upper, convert;
5110		int64_t i;
5111
5112		if (subr == DIF_SUBR_TOUPPER) {
5113			lower = 'a';
5114			upper = 'z';
5115			convert = 'A';
5116		} else {
5117			lower = 'A';
5118			upper = 'Z';
5119			convert = 'a';
5120		}
5121
5122		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5123			regs[rd] = 0;
5124			break;
5125		}
5126
5127		if (!DTRACE_INSCRATCH(mstate, size)) {
5128			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5129			regs[rd] = 0;
5130			break;
5131		}
5132
5133		for (i = 0; i < size - 1; i++) {
5134			if ((c = dtrace_load8(s + i)) == '\0')
5135				break;
5136
5137			if (c >= lower && c <= upper)
5138				c = convert + (c - lower);
5139
5140			dest[i] = c;
5141		}
5142
5143		ASSERT(i < size);
5144		dest[i] = '\0';
5145		regs[rd] = (uintptr_t)dest;
5146		mstate->dtms_scratch_ptr += size;
5147		break;
5148	}
5149
5150#ifdef illumos
5151	case DIF_SUBR_GETMAJOR:
5152#ifdef _LP64
5153		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5154#else
5155		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5156#endif
5157		break;
5158
5159	case DIF_SUBR_GETMINOR:
5160#ifdef _LP64
5161		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5162#else
5163		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5164#endif
5165		break;
5166
5167	case DIF_SUBR_DDI_PATHNAME: {
5168		/*
5169		 * This one is a galactic mess.  We are going to roughly
5170		 * emulate ddi_pathname(), but it's made more complicated
5171		 * by the fact that we (a) want to include the minor name and
5172		 * (b) must proceed iteratively instead of recursively.
5173		 */
5174		uintptr_t dest = mstate->dtms_scratch_ptr;
5175		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5176		char *start = (char *)dest, *end = start + size - 1;
5177		uintptr_t daddr = tupregs[0].dttk_value;
5178		int64_t minor = (int64_t)tupregs[1].dttk_value;
5179		char *s;
5180		int i, len, depth = 0;
5181
5182		/*
5183		 * Due to all the pointer jumping we do and context we must
5184		 * rely upon, we just mandate that the user must have kernel
5185		 * read privileges to use this routine.
5186		 */
5187		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5188			*flags |= CPU_DTRACE_KPRIV;
5189			*illval = daddr;
5190			regs[rd] = 0;
5191		}
5192
5193		if (!DTRACE_INSCRATCH(mstate, size)) {
5194			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5195			regs[rd] = 0;
5196			break;
5197		}
5198
5199		*end = '\0';
5200
5201		/*
5202		 * We want to have a name for the minor.  In order to do this,
5203		 * we need to walk the minor list from the devinfo.  We want
5204		 * to be sure that we don't infinitely walk a circular list,
5205		 * so we check for circularity by sending a scout pointer
5206		 * ahead two elements for every element that we iterate over;
5207		 * if the list is circular, these will ultimately point to the
5208		 * same element.  You may recognize this little trick as the
5209		 * answer to a stupid interview question -- one that always
5210		 * seems to be asked by those who had to have it laboriously
5211		 * explained to them, and who can't even concisely describe
5212		 * the conditions under which one would be forced to resort to
5213		 * this technique.  Needless to say, those conditions are
5214		 * found here -- and probably only here.  Is this the only use
5215		 * of this infamous trick in shipping, production code?  If it
5216		 * isn't, it probably should be...
5217		 */
5218		if (minor != -1) {
5219			uintptr_t maddr = dtrace_loadptr(daddr +
5220			    offsetof(struct dev_info, devi_minor));
5221
5222			uintptr_t next = offsetof(struct ddi_minor_data, next);
5223			uintptr_t name = offsetof(struct ddi_minor_data,
5224			    d_minor) + offsetof(struct ddi_minor, name);
5225			uintptr_t dev = offsetof(struct ddi_minor_data,
5226			    d_minor) + offsetof(struct ddi_minor, dev);
5227			uintptr_t scout;
5228
5229			if (maddr != NULL)
5230				scout = dtrace_loadptr(maddr + next);
5231
5232			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5233				uint64_t m;
5234#ifdef _LP64
5235				m = dtrace_load64(maddr + dev) & MAXMIN64;
5236#else
5237				m = dtrace_load32(maddr + dev) & MAXMIN;
5238#endif
5239				if (m != minor) {
5240					maddr = dtrace_loadptr(maddr + next);
5241
5242					if (scout == NULL)
5243						continue;
5244
5245					scout = dtrace_loadptr(scout + next);
5246
5247					if (scout == NULL)
5248						continue;
5249
5250					scout = dtrace_loadptr(scout + next);
5251
5252					if (scout == NULL)
5253						continue;
5254
5255					if (scout == maddr) {
5256						*flags |= CPU_DTRACE_ILLOP;
5257						break;
5258					}
5259
5260					continue;
5261				}
5262
5263				/*
5264				 * We have the minor data.  Now we need to
5265				 * copy the minor's name into the end of the
5266				 * pathname.
5267				 */
5268				s = (char *)dtrace_loadptr(maddr + name);
5269				len = dtrace_strlen(s, size);
5270
5271				if (*flags & CPU_DTRACE_FAULT)
5272					break;
5273
5274				if (len != 0) {
5275					if ((end -= (len + 1)) < start)
5276						break;
5277
5278					*end = ':';
5279				}
5280
5281				for (i = 1; i <= len; i++)
5282					end[i] = dtrace_load8((uintptr_t)s++);
5283				break;
5284			}
5285		}
5286
5287		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5288			ddi_node_state_t devi_state;
5289
5290			devi_state = dtrace_load32(daddr +
5291			    offsetof(struct dev_info, devi_node_state));
5292
5293			if (*flags & CPU_DTRACE_FAULT)
5294				break;
5295
5296			if (devi_state >= DS_INITIALIZED) {
5297				s = (char *)dtrace_loadptr(daddr +
5298				    offsetof(struct dev_info, devi_addr));
5299				len = dtrace_strlen(s, size);
5300
5301				if (*flags & CPU_DTRACE_FAULT)
5302					break;
5303
5304				if (len != 0) {
5305					if ((end -= (len + 1)) < start)
5306						break;
5307
5308					*end = '@';
5309				}
5310
5311				for (i = 1; i <= len; i++)
5312					end[i] = dtrace_load8((uintptr_t)s++);
5313			}
5314
5315			/*
5316			 * Now for the node name...
5317			 */
5318			s = (char *)dtrace_loadptr(daddr +
5319			    offsetof(struct dev_info, devi_node_name));
5320
5321			daddr = dtrace_loadptr(daddr +
5322			    offsetof(struct dev_info, devi_parent));
5323
5324			/*
5325			 * If our parent is NULL (that is, if we're the root
5326			 * node), we're going to use the special path
5327			 * "devices".
5328			 */
5329			if (daddr == 0)
5330				s = "devices";
5331
5332			len = dtrace_strlen(s, size);
5333			if (*flags & CPU_DTRACE_FAULT)
5334				break;
5335
5336			if ((end -= (len + 1)) < start)
5337				break;
5338
5339			for (i = 1; i <= len; i++)
5340				end[i] = dtrace_load8((uintptr_t)s++);
5341			*end = '/';
5342
5343			if (depth++ > dtrace_devdepth_max) {
5344				*flags |= CPU_DTRACE_ILLOP;
5345				break;
5346			}
5347		}
5348
5349		if (end < start)
5350			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5351
5352		if (daddr == 0) {
5353			regs[rd] = (uintptr_t)end;
5354			mstate->dtms_scratch_ptr += size;
5355		}
5356
5357		break;
5358	}
5359#endif
5360
5361	case DIF_SUBR_STRJOIN: {
5362		char *d = (char *)mstate->dtms_scratch_ptr;
5363		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5364		uintptr_t s1 = tupregs[0].dttk_value;
5365		uintptr_t s2 = tupregs[1].dttk_value;
5366		int i = 0, j = 0;
5367		size_t lim1, lim2;
5368		char c;
5369
5370		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5371		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5372			regs[rd] = 0;
5373			break;
5374		}
5375
5376		if (!DTRACE_INSCRATCH(mstate, size)) {
5377			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5378			regs[rd] = 0;
5379			break;
5380		}
5381
5382		for (;;) {
5383			if (i >= size) {
5384				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5385				regs[rd] = 0;
5386				break;
5387			}
5388			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5389			if ((d[i++] = c) == '\0') {
5390				i--;
5391				break;
5392			}
5393		}
5394
5395		for (;;) {
5396			if (i >= size) {
5397				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5398				regs[rd] = 0;
5399				break;
5400			}
5401
5402			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5403			if ((d[i++] = c) == '\0')
5404				break;
5405		}
5406
5407		if (i < size) {
5408			mstate->dtms_scratch_ptr += i;
5409			regs[rd] = (uintptr_t)d;
5410		}
5411
5412		break;
5413	}
5414
5415	case DIF_SUBR_STRTOLL: {
5416		uintptr_t s = tupregs[0].dttk_value;
5417		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5418		size_t lim;
5419		int base = 10;
5420
5421		if (nargs > 1) {
5422			if ((base = tupregs[1].dttk_value) <= 1 ||
5423			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5424				*flags |= CPU_DTRACE_ILLOP;
5425				break;
5426			}
5427		}
5428
5429		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5430			regs[rd] = INT64_MIN;
5431			break;
5432		}
5433
5434		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5435		break;
5436	}
5437
5438	case DIF_SUBR_LLTOSTR: {
5439		int64_t i = (int64_t)tupregs[0].dttk_value;
5440		uint64_t val, digit;
5441		uint64_t size = 65;	/* enough room for 2^64 in binary */
5442		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5443		int base = 10;
5444
5445		if (nargs > 1) {
5446			if ((base = tupregs[1].dttk_value) <= 1 ||
5447			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5448				*flags |= CPU_DTRACE_ILLOP;
5449				break;
5450			}
5451		}
5452
5453		val = (base == 10 && i < 0) ? i * -1 : i;
5454
5455		if (!DTRACE_INSCRATCH(mstate, size)) {
5456			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5457			regs[rd] = 0;
5458			break;
5459		}
5460
5461		for (*end-- = '\0'; val; val /= base) {
5462			if ((digit = val % base) <= '9' - '0') {
5463				*end-- = '0' + digit;
5464			} else {
5465				*end-- = 'a' + (digit - ('9' - '0') - 1);
5466			}
5467		}
5468
5469		if (i == 0 && base == 16)
5470			*end-- = '0';
5471
5472		if (base == 16)
5473			*end-- = 'x';
5474
5475		if (i == 0 || base == 8 || base == 16)
5476			*end-- = '0';
5477
5478		if (i < 0 && base == 10)
5479			*end-- = '-';
5480
5481		regs[rd] = (uintptr_t)end + 1;
5482		mstate->dtms_scratch_ptr += size;
5483		break;
5484	}
5485
5486	case DIF_SUBR_HTONS:
5487	case DIF_SUBR_NTOHS:
5488#if BYTE_ORDER == BIG_ENDIAN
5489		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5490#else
5491		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5492#endif
5493		break;
5494
5495
5496	case DIF_SUBR_HTONL:
5497	case DIF_SUBR_NTOHL:
5498#if BYTE_ORDER == BIG_ENDIAN
5499		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5500#else
5501		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5502#endif
5503		break;
5504
5505
5506	case DIF_SUBR_HTONLL:
5507	case DIF_SUBR_NTOHLL:
5508#if BYTE_ORDER == BIG_ENDIAN
5509		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5510#else
5511		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5512#endif
5513		break;
5514
5515
5516	case DIF_SUBR_DIRNAME:
5517	case DIF_SUBR_BASENAME: {
5518		char *dest = (char *)mstate->dtms_scratch_ptr;
5519		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5520		uintptr_t src = tupregs[0].dttk_value;
5521		int i, j, len = dtrace_strlen((char *)src, size);
5522		int lastbase = -1, firstbase = -1, lastdir = -1;
5523		int start, end;
5524
5525		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5526			regs[rd] = 0;
5527			break;
5528		}
5529
5530		if (!DTRACE_INSCRATCH(mstate, size)) {
5531			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5532			regs[rd] = 0;
5533			break;
5534		}
5535
5536		/*
5537		 * The basename and dirname for a zero-length string is
5538		 * defined to be "."
5539		 */
5540		if (len == 0) {
5541			len = 1;
5542			src = (uintptr_t)".";
5543		}
5544
5545		/*
5546		 * Start from the back of the string, moving back toward the
5547		 * front until we see a character that isn't a slash.  That
5548		 * character is the last character in the basename.
5549		 */
5550		for (i = len - 1; i >= 0; i--) {
5551			if (dtrace_load8(src + i) != '/')
5552				break;
5553		}
5554
5555		if (i >= 0)
5556			lastbase = i;
5557
5558		/*
5559		 * Starting from the last character in the basename, move
5560		 * towards the front until we find a slash.  The character
5561		 * that we processed immediately before that is the first
5562		 * character in the basename.
5563		 */
5564		for (; i >= 0; i--) {
5565			if (dtrace_load8(src + i) == '/')
5566				break;
5567		}
5568
5569		if (i >= 0)
5570			firstbase = i + 1;
5571
5572		/*
5573		 * Now keep going until we find a non-slash character.  That
5574		 * character is the last character in the dirname.
5575		 */
5576		for (; i >= 0; i--) {
5577			if (dtrace_load8(src + i) != '/')
5578				break;
5579		}
5580
5581		if (i >= 0)
5582			lastdir = i;
5583
5584		ASSERT(!(lastbase == -1 && firstbase != -1));
5585		ASSERT(!(firstbase == -1 && lastdir != -1));
5586
5587		if (lastbase == -1) {
5588			/*
5589			 * We didn't find a non-slash character.  We know that
5590			 * the length is non-zero, so the whole string must be
5591			 * slashes.  In either the dirname or the basename
5592			 * case, we return '/'.
5593			 */
5594			ASSERT(firstbase == -1);
5595			firstbase = lastbase = lastdir = 0;
5596		}
5597
5598		if (firstbase == -1) {
5599			/*
5600			 * The entire string consists only of a basename
5601			 * component.  If we're looking for dirname, we need
5602			 * to change our string to be just "."; if we're
5603			 * looking for a basename, we'll just set the first
5604			 * character of the basename to be 0.
5605			 */
5606			if (subr == DIF_SUBR_DIRNAME) {
5607				ASSERT(lastdir == -1);
5608				src = (uintptr_t)".";
5609				lastdir = 0;
5610			} else {
5611				firstbase = 0;
5612			}
5613		}
5614
5615		if (subr == DIF_SUBR_DIRNAME) {
5616			if (lastdir == -1) {
5617				/*
5618				 * We know that we have a slash in the name --
5619				 * or lastdir would be set to 0, above.  And
5620				 * because lastdir is -1, we know that this
5621				 * slash must be the first character.  (That
5622				 * is, the full string must be of the form
5623				 * "/basename".)  In this case, the last
5624				 * character of the directory name is 0.
5625				 */
5626				lastdir = 0;
5627			}
5628
5629			start = 0;
5630			end = lastdir;
5631		} else {
5632			ASSERT(subr == DIF_SUBR_BASENAME);
5633			ASSERT(firstbase != -1 && lastbase != -1);
5634			start = firstbase;
5635			end = lastbase;
5636		}
5637
5638		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5639			dest[j] = dtrace_load8(src + i);
5640
5641		dest[j] = '\0';
5642		regs[rd] = (uintptr_t)dest;
5643		mstate->dtms_scratch_ptr += size;
5644		break;
5645	}
5646
5647	case DIF_SUBR_GETF: {
5648		uintptr_t fd = tupregs[0].dttk_value;
5649		struct filedesc *fdp;
5650		file_t *fp;
5651
5652		if (!dtrace_priv_proc(state)) {
5653			regs[rd] = 0;
5654			break;
5655		}
5656		fdp = curproc->p_fd;
5657		FILEDESC_SLOCK(fdp);
5658		/*
5659		 * XXXMJG this looks broken as no ref is taken.
5660		 */
5661		fp = fget_noref(fdp, fd);
5662		mstate->dtms_getf = fp;
5663		regs[rd] = (uintptr_t)fp;
5664		FILEDESC_SUNLOCK(fdp);
5665		break;
5666	}
5667
5668	case DIF_SUBR_CLEANPATH: {
5669		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5670		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5671		uintptr_t src = tupregs[0].dttk_value;
5672		size_t lim;
5673		int i = 0, j = 0;
5674#ifdef illumos
5675		zone_t *z;
5676#endif
5677
5678		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5679			regs[rd] = 0;
5680			break;
5681		}
5682
5683		if (!DTRACE_INSCRATCH(mstate, size)) {
5684			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5685			regs[rd] = 0;
5686			break;
5687		}
5688
5689		/*
5690		 * Move forward, loading each character.
5691		 */
5692		do {
5693			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5694next:
5695			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5696				break;
5697
5698			if (c != '/') {
5699				dest[j++] = c;
5700				continue;
5701			}
5702
5703			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5704
5705			if (c == '/') {
5706				/*
5707				 * We have two slashes -- we can just advance
5708				 * to the next character.
5709				 */
5710				goto next;
5711			}
5712
5713			if (c != '.') {
5714				/*
5715				 * This is not "." and it's not ".." -- we can
5716				 * just store the "/" and this character and
5717				 * drive on.
5718				 */
5719				dest[j++] = '/';
5720				dest[j++] = c;
5721				continue;
5722			}
5723
5724			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5725
5726			if (c == '/') {
5727				/*
5728				 * This is a "/./" component.  We're not going
5729				 * to store anything in the destination buffer;
5730				 * we're just going to go to the next component.
5731				 */
5732				goto next;
5733			}
5734
5735			if (c != '.') {
5736				/*
5737				 * This is not ".." -- we can just store the
5738				 * "/." and this character and continue
5739				 * processing.
5740				 */
5741				dest[j++] = '/';
5742				dest[j++] = '.';
5743				dest[j++] = c;
5744				continue;
5745			}
5746
5747			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5748
5749			if (c != '/' && c != '\0') {
5750				/*
5751				 * This is not ".." -- it's "..[mumble]".
5752				 * We'll store the "/.." and this character
5753				 * and continue processing.
5754				 */
5755				dest[j++] = '/';
5756				dest[j++] = '.';
5757				dest[j++] = '.';
5758				dest[j++] = c;
5759				continue;
5760			}
5761
5762			/*
5763			 * This is "/../" or "/..\0".  We need to back up
5764			 * our destination pointer until we find a "/".
5765			 */
5766			i--;
5767			while (j != 0 && dest[--j] != '/')
5768				continue;
5769
5770			if (c == '\0')
5771				dest[++j] = '/';
5772		} while (c != '\0');
5773
5774		dest[j] = '\0';
5775
5776#ifdef illumos
5777		if (mstate->dtms_getf != NULL &&
5778		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5779		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5780			/*
5781			 * If we've done a getf() as a part of this ECB and we
5782			 * don't have kernel access (and we're not in the global
5783			 * zone), check if the path we cleaned up begins with
5784			 * the zone's root path, and trim it off if so.  Note
5785			 * that this is an output cleanliness issue, not a
5786			 * security issue: knowing one's zone root path does
5787			 * not enable privilege escalation.
5788			 */
5789			if (strstr(dest, z->zone_rootpath) == dest)
5790				dest += strlen(z->zone_rootpath) - 1;
5791		}
5792#endif
5793
5794		regs[rd] = (uintptr_t)dest;
5795		mstate->dtms_scratch_ptr += size;
5796		break;
5797	}
5798
5799	case DIF_SUBR_INET_NTOA:
5800	case DIF_SUBR_INET_NTOA6:
5801	case DIF_SUBR_INET_NTOP: {
5802		size_t size;
5803		int af, argi, i;
5804		char *base, *end;
5805
5806		if (subr == DIF_SUBR_INET_NTOP) {
5807			af = (int)tupregs[0].dttk_value;
5808			argi = 1;
5809		} else {
5810			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5811			argi = 0;
5812		}
5813
5814		if (af == AF_INET) {
5815			ipaddr_t ip4;
5816			uint8_t *ptr8, val;
5817
5818			if (!dtrace_canload(tupregs[argi].dttk_value,
5819			    sizeof (ipaddr_t), mstate, vstate)) {
5820				regs[rd] = 0;
5821				break;
5822			}
5823
5824			/*
5825			 * Safely load the IPv4 address.
5826			 */
5827			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5828
5829			/*
5830			 * Check an IPv4 string will fit in scratch.
5831			 */
5832			size = INET_ADDRSTRLEN;
5833			if (!DTRACE_INSCRATCH(mstate, size)) {
5834				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5835				regs[rd] = 0;
5836				break;
5837			}
5838			base = (char *)mstate->dtms_scratch_ptr;
5839			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5840
5841			/*
5842			 * Stringify as a dotted decimal quad.
5843			 */
5844			*end-- = '\0';
5845			ptr8 = (uint8_t *)&ip4;
5846			for (i = 3; i >= 0; i--) {
5847				val = ptr8[i];
5848
5849				if (val == 0) {
5850					*end-- = '0';
5851				} else {
5852					for (; val; val /= 10) {
5853						*end-- = '0' + (val % 10);
5854					}
5855				}
5856
5857				if (i > 0)
5858					*end-- = '.';
5859			}
5860			ASSERT(end + 1 >= base);
5861
5862		} else if (af == AF_INET6) {
5863			struct in6_addr ip6;
5864			int firstzero, tryzero, numzero, v6end;
5865			uint16_t val;
5866			const char digits[] = "0123456789abcdef";
5867
5868			/*
5869			 * Stringify using RFC 1884 convention 2 - 16 bit
5870			 * hexadecimal values with a zero-run compression.
5871			 * Lower case hexadecimal digits are used.
5872			 * 	eg, fe80::214:4fff:fe0b:76c8.
5873			 * The IPv4 embedded form is returned for inet_ntop,
5874			 * just the IPv4 string is returned for inet_ntoa6.
5875			 */
5876
5877			if (!dtrace_canload(tupregs[argi].dttk_value,
5878			    sizeof (struct in6_addr), mstate, vstate)) {
5879				regs[rd] = 0;
5880				break;
5881			}
5882
5883			/*
5884			 * Safely load the IPv6 address.
5885			 */
5886			dtrace_bcopy(
5887			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5888			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5889
5890			/*
5891			 * Check an IPv6 string will fit in scratch.
5892			 */
5893			size = INET6_ADDRSTRLEN;
5894			if (!DTRACE_INSCRATCH(mstate, size)) {
5895				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5896				regs[rd] = 0;
5897				break;
5898			}
5899			base = (char *)mstate->dtms_scratch_ptr;
5900			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5901			*end-- = '\0';
5902
5903			/*
5904			 * Find the longest run of 16 bit zero values
5905			 * for the single allowed zero compression - "::".
5906			 */
5907			firstzero = -1;
5908			tryzero = -1;
5909			numzero = 1;
5910			for (i = 0; i < sizeof (struct in6_addr); i++) {
5911#ifdef illumos
5912				if (ip6._S6_un._S6_u8[i] == 0 &&
5913#else
5914				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5915#endif
5916				    tryzero == -1 && i % 2 == 0) {
5917					tryzero = i;
5918					continue;
5919				}
5920
5921				if (tryzero != -1 &&
5922#ifdef illumos
5923				    (ip6._S6_un._S6_u8[i] != 0 ||
5924#else
5925				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5926#endif
5927				    i == sizeof (struct in6_addr) - 1)) {
5928
5929					if (i - tryzero <= numzero) {
5930						tryzero = -1;
5931						continue;
5932					}
5933
5934					firstzero = tryzero;
5935					numzero = i - i % 2 - tryzero;
5936					tryzero = -1;
5937
5938#ifdef illumos
5939					if (ip6._S6_un._S6_u8[i] == 0 &&
5940#else
5941					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5942#endif
5943					    i == sizeof (struct in6_addr) - 1)
5944						numzero += 2;
5945				}
5946			}
5947			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5948
5949			/*
5950			 * Check for an IPv4 embedded address.
5951			 */
5952			v6end = sizeof (struct in6_addr) - 2;
5953			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5954			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5955				for (i = sizeof (struct in6_addr) - 1;
5956				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5957					ASSERT(end >= base);
5958
5959#ifdef illumos
5960					val = ip6._S6_un._S6_u8[i];
5961#else
5962					val = ip6.__u6_addr.__u6_addr8[i];
5963#endif
5964
5965					if (val == 0) {
5966						*end-- = '0';
5967					} else {
5968						for (; val; val /= 10) {
5969							*end-- = '0' + val % 10;
5970						}
5971					}
5972
5973					if (i > DTRACE_V4MAPPED_OFFSET)
5974						*end-- = '.';
5975				}
5976
5977				if (subr == DIF_SUBR_INET_NTOA6)
5978					goto inetout;
5979
5980				/*
5981				 * Set v6end to skip the IPv4 address that
5982				 * we have already stringified.
5983				 */
5984				v6end = 10;
5985			}
5986
5987			/*
5988			 * Build the IPv6 string by working through the
5989			 * address in reverse.
5990			 */
5991			for (i = v6end; i >= 0; i -= 2) {
5992				ASSERT(end >= base);
5993
5994				if (i == firstzero + numzero - 2) {
5995					*end-- = ':';
5996					*end-- = ':';
5997					i -= numzero - 2;
5998					continue;
5999				}
6000
6001				if (i < 14 && i != firstzero - 2)
6002					*end-- = ':';
6003
6004#ifdef illumos
6005				val = (ip6._S6_un._S6_u8[i] << 8) +
6006				    ip6._S6_un._S6_u8[i + 1];
6007#else
6008				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6009				    ip6.__u6_addr.__u6_addr8[i + 1];
6010#endif
6011
6012				if (val == 0) {
6013					*end-- = '0';
6014				} else {
6015					for (; val; val /= 16) {
6016						*end-- = digits[val % 16];
6017					}
6018				}
6019			}
6020			ASSERT(end + 1 >= base);
6021
6022		} else {
6023			/*
6024			 * The user didn't use AH_INET or AH_INET6.
6025			 */
6026			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6027			regs[rd] = 0;
6028			break;
6029		}
6030
6031inetout:	regs[rd] = (uintptr_t)end + 1;
6032		mstate->dtms_scratch_ptr += size;
6033		break;
6034	}
6035
6036	case DIF_SUBR_MEMREF: {
6037		uintptr_t size = 2 * sizeof(uintptr_t);
6038		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6039		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6040
6041		/* address and length */
6042		memref[0] = tupregs[0].dttk_value;
6043		memref[1] = tupregs[1].dttk_value;
6044
6045		regs[rd] = (uintptr_t) memref;
6046		mstate->dtms_scratch_ptr += scratch_size;
6047		break;
6048	}
6049
6050#ifndef illumos
6051	case DIF_SUBR_MEMSTR: {
6052		char *str = (char *)mstate->dtms_scratch_ptr;
6053		uintptr_t mem = tupregs[0].dttk_value;
6054		char c = tupregs[1].dttk_value;
6055		size_t size = tupregs[2].dttk_value;
6056		uint8_t n;
6057		int i;
6058
6059		regs[rd] = 0;
6060
6061		if (size == 0)
6062			break;
6063
6064		if (!dtrace_canload(mem, size - 1, mstate, vstate))
6065			break;
6066
6067		if (!DTRACE_INSCRATCH(mstate, size)) {
6068			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6069			break;
6070		}
6071
6072		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6073			*flags |= CPU_DTRACE_ILLOP;
6074			break;
6075		}
6076
6077		for (i = 0; i < size - 1; i++) {
6078			n = dtrace_load8(mem++);
6079			str[i] = (n == 0) ? c : n;
6080		}
6081		str[size - 1] = 0;
6082
6083		regs[rd] = (uintptr_t)str;
6084		mstate->dtms_scratch_ptr += size;
6085		break;
6086	}
6087#endif
6088	}
6089}
6090
6091/*
6092 * Emulate the execution of DTrace IR instructions specified by the given
6093 * DIF object.  This function is deliberately void of assertions as all of
6094 * the necessary checks are handled by a call to dtrace_difo_validate().
6095 */
6096static uint64_t
6097dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6098    dtrace_vstate_t *vstate, dtrace_state_t *state)
6099{
6100	const dif_instr_t *text = difo->dtdo_buf;
6101	const uint_t textlen = difo->dtdo_len;
6102	const char *strtab = difo->dtdo_strtab;
6103	const uint64_t *inttab = difo->dtdo_inttab;
6104
6105	uint64_t rval = 0;
6106	dtrace_statvar_t *svar;
6107	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6108	dtrace_difv_t *v;
6109	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6110	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6111
6112	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6113	uint64_t regs[DIF_DIR_NREGS];
6114	uint64_t *tmp;
6115
6116	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6117	int64_t cc_r;
6118	uint_t pc = 0, id, opc = 0;
6119	uint8_t ttop = 0;
6120	dif_instr_t instr;
6121	uint_t r1, r2, rd;
6122
6123	/*
6124	 * We stash the current DIF object into the machine state: we need it
6125	 * for subsequent access checking.
6126	 */
6127	mstate->dtms_difo = difo;
6128
6129	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
6130
6131	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6132		opc = pc;
6133
6134		instr = text[pc++];
6135		r1 = DIF_INSTR_R1(instr);
6136		r2 = DIF_INSTR_R2(instr);
6137		rd = DIF_INSTR_RD(instr);
6138
6139		switch (DIF_INSTR_OP(instr)) {
6140		case DIF_OP_OR:
6141			regs[rd] = regs[r1] | regs[r2];
6142			break;
6143		case DIF_OP_XOR:
6144			regs[rd] = regs[r1] ^ regs[r2];
6145			break;
6146		case DIF_OP_AND:
6147			regs[rd] = regs[r1] & regs[r2];
6148			break;
6149		case DIF_OP_SLL:
6150			regs[rd] = regs[r1] << regs[r2];
6151			break;
6152		case DIF_OP_SRL:
6153			regs[rd] = regs[r1] >> regs[r2];
6154			break;
6155		case DIF_OP_SUB:
6156			regs[rd] = regs[r1] - regs[r2];
6157			break;
6158		case DIF_OP_ADD:
6159			regs[rd] = regs[r1] + regs[r2];
6160			break;
6161		case DIF_OP_MUL:
6162			regs[rd] = regs[r1] * regs[r2];
6163			break;
6164		case DIF_OP_SDIV:
6165			if (regs[r2] == 0) {
6166				regs[rd] = 0;
6167				*flags |= CPU_DTRACE_DIVZERO;
6168			} else {
6169				regs[rd] = (int64_t)regs[r1] /
6170				    (int64_t)regs[r2];
6171			}
6172			break;
6173
6174		case DIF_OP_UDIV:
6175			if (regs[r2] == 0) {
6176				regs[rd] = 0;
6177				*flags |= CPU_DTRACE_DIVZERO;
6178			} else {
6179				regs[rd] = regs[r1] / regs[r2];
6180			}
6181			break;
6182
6183		case DIF_OP_SREM:
6184			if (regs[r2] == 0) {
6185				regs[rd] = 0;
6186				*flags |= CPU_DTRACE_DIVZERO;
6187			} else {
6188				regs[rd] = (int64_t)regs[r1] %
6189				    (int64_t)regs[r2];
6190			}
6191			break;
6192
6193		case DIF_OP_UREM:
6194			if (regs[r2] == 0) {
6195				regs[rd] = 0;
6196				*flags |= CPU_DTRACE_DIVZERO;
6197			} else {
6198				regs[rd] = regs[r1] % regs[r2];
6199			}
6200			break;
6201
6202		case DIF_OP_NOT:
6203			regs[rd] = ~regs[r1];
6204			break;
6205		case DIF_OP_MOV:
6206			regs[rd] = regs[r1];
6207			break;
6208		case DIF_OP_CMP:
6209			cc_r = regs[r1] - regs[r2];
6210			cc_n = cc_r < 0;
6211			cc_z = cc_r == 0;
6212			cc_v = 0;
6213			cc_c = regs[r1] < regs[r2];
6214			break;
6215		case DIF_OP_TST:
6216			cc_n = cc_v = cc_c = 0;
6217			cc_z = regs[r1] == 0;
6218			break;
6219		case DIF_OP_BA:
6220			pc = DIF_INSTR_LABEL(instr);
6221			break;
6222		case DIF_OP_BE:
6223			if (cc_z)
6224				pc = DIF_INSTR_LABEL(instr);
6225			break;
6226		case DIF_OP_BNE:
6227			if (cc_z == 0)
6228				pc = DIF_INSTR_LABEL(instr);
6229			break;
6230		case DIF_OP_BG:
6231			if ((cc_z | (cc_n ^ cc_v)) == 0)
6232				pc = DIF_INSTR_LABEL(instr);
6233			break;
6234		case DIF_OP_BGU:
6235			if ((cc_c | cc_z) == 0)
6236				pc = DIF_INSTR_LABEL(instr);
6237			break;
6238		case DIF_OP_BGE:
6239			if ((cc_n ^ cc_v) == 0)
6240				pc = DIF_INSTR_LABEL(instr);
6241			break;
6242		case DIF_OP_BGEU:
6243			if (cc_c == 0)
6244				pc = DIF_INSTR_LABEL(instr);
6245			break;
6246		case DIF_OP_BL:
6247			if (cc_n ^ cc_v)
6248				pc = DIF_INSTR_LABEL(instr);
6249			break;
6250		case DIF_OP_BLU:
6251			if (cc_c)
6252				pc = DIF_INSTR_LABEL(instr);
6253			break;
6254		case DIF_OP_BLE:
6255			if (cc_z | (cc_n ^ cc_v))
6256				pc = DIF_INSTR_LABEL(instr);
6257			break;
6258		case DIF_OP_BLEU:
6259			if (cc_c | cc_z)
6260				pc = DIF_INSTR_LABEL(instr);
6261			break;
6262		case DIF_OP_RLDSB:
6263			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6264				break;
6265			/*FALLTHROUGH*/
6266		case DIF_OP_LDSB:
6267			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6268			break;
6269		case DIF_OP_RLDSH:
6270			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6271				break;
6272			/*FALLTHROUGH*/
6273		case DIF_OP_LDSH:
6274			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6275			break;
6276		case DIF_OP_RLDSW:
6277			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6278				break;
6279			/*FALLTHROUGH*/
6280		case DIF_OP_LDSW:
6281			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6282			break;
6283		case DIF_OP_RLDUB:
6284			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6285				break;
6286			/*FALLTHROUGH*/
6287		case DIF_OP_LDUB:
6288			regs[rd] = dtrace_load8(regs[r1]);
6289			break;
6290		case DIF_OP_RLDUH:
6291			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6292				break;
6293			/*FALLTHROUGH*/
6294		case DIF_OP_LDUH:
6295			regs[rd] = dtrace_load16(regs[r1]);
6296			break;
6297		case DIF_OP_RLDUW:
6298			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6299				break;
6300			/*FALLTHROUGH*/
6301		case DIF_OP_LDUW:
6302			regs[rd] = dtrace_load32(regs[r1]);
6303			break;
6304		case DIF_OP_RLDX:
6305			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6306				break;
6307			/*FALLTHROUGH*/
6308		case DIF_OP_LDX:
6309			regs[rd] = dtrace_load64(regs[r1]);
6310			break;
6311		case DIF_OP_ULDSB:
6312			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6313			regs[rd] = (int8_t)
6314			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6315			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6316			break;
6317		case DIF_OP_ULDSH:
6318			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6319			regs[rd] = (int16_t)
6320			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6321			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6322			break;
6323		case DIF_OP_ULDSW:
6324			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6325			regs[rd] = (int32_t)
6326			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6327			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6328			break;
6329		case DIF_OP_ULDUB:
6330			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6331			regs[rd] =
6332			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6333			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6334			break;
6335		case DIF_OP_ULDUH:
6336			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6337			regs[rd] =
6338			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6339			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6340			break;
6341		case DIF_OP_ULDUW:
6342			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6343			regs[rd] =
6344			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6345			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6346			break;
6347		case DIF_OP_ULDX:
6348			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6349			regs[rd] =
6350			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6351			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6352			break;
6353		case DIF_OP_RET:
6354			rval = regs[rd];
6355			pc = textlen;
6356			break;
6357		case DIF_OP_NOP:
6358			break;
6359		case DIF_OP_SETX:
6360			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6361			break;
6362		case DIF_OP_SETS:
6363			regs[rd] = (uint64_t)(uintptr_t)
6364			    (strtab + DIF_INSTR_STRING(instr));
6365			break;
6366		case DIF_OP_SCMP: {
6367			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6368			uintptr_t s1 = regs[r1];
6369			uintptr_t s2 = regs[r2];
6370			size_t lim1, lim2;
6371
6372			/*
6373			 * If one of the strings is NULL then the limit becomes
6374			 * 0 which compares 0 characters in dtrace_strncmp()
6375			 * resulting in a false positive.  dtrace_strncmp()
6376			 * treats a NULL as an empty 1-char string.
6377			 */
6378			lim1 = lim2 = 1;
6379
6380			if (s1 != 0 &&
6381			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6382				break;
6383			if (s2 != 0 &&
6384			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6385				break;
6386
6387			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6388			    MIN(lim1, lim2));
6389
6390			cc_n = cc_r < 0;
6391			cc_z = cc_r == 0;
6392			cc_v = cc_c = 0;
6393			break;
6394		}
6395		case DIF_OP_LDGA:
6396			regs[rd] = dtrace_dif_variable(mstate, state,
6397			    r1, regs[r2]);
6398			break;
6399		case DIF_OP_LDGS:
6400			id = DIF_INSTR_VAR(instr);
6401
6402			if (id >= DIF_VAR_OTHER_UBASE) {
6403				uintptr_t a;
6404
6405				id -= DIF_VAR_OTHER_UBASE;
6406				svar = vstate->dtvs_globals[id];
6407				ASSERT(svar != NULL);
6408				v = &svar->dtsv_var;
6409
6410				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6411					regs[rd] = svar->dtsv_data;
6412					break;
6413				}
6414
6415				a = (uintptr_t)svar->dtsv_data;
6416
6417				if (*(uint8_t *)a == UINT8_MAX) {
6418					/*
6419					 * If the 0th byte is set to UINT8_MAX
6420					 * then this is to be treated as a
6421					 * reference to a NULL variable.
6422					 */
6423					regs[rd] = 0;
6424				} else {
6425					regs[rd] = a + sizeof (uint64_t);
6426				}
6427
6428				break;
6429			}
6430
6431			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6432			break;
6433
6434		case DIF_OP_STGS:
6435			id = DIF_INSTR_VAR(instr);
6436
6437			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6438			id -= DIF_VAR_OTHER_UBASE;
6439
6440			VERIFY(id < vstate->dtvs_nglobals);
6441			svar = vstate->dtvs_globals[id];
6442			ASSERT(svar != NULL);
6443			v = &svar->dtsv_var;
6444
6445			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6446				uintptr_t a = (uintptr_t)svar->dtsv_data;
6447				size_t lim;
6448
6449				ASSERT(a != 0);
6450				ASSERT(svar->dtsv_size != 0);
6451
6452				if (regs[rd] == 0) {
6453					*(uint8_t *)a = UINT8_MAX;
6454					break;
6455				} else {
6456					*(uint8_t *)a = 0;
6457					a += sizeof (uint64_t);
6458				}
6459				if (!dtrace_vcanload(
6460				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6461				    &lim, mstate, vstate))
6462					break;
6463
6464				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6465				    (void *)a, &v->dtdv_type, lim);
6466				break;
6467			}
6468
6469			svar->dtsv_data = regs[rd];
6470			break;
6471
6472		case DIF_OP_LDTA:
6473			/*
6474			 * There are no DTrace built-in thread-local arrays at
6475			 * present.  This opcode is saved for future work.
6476			 */
6477			*flags |= CPU_DTRACE_ILLOP;
6478			regs[rd] = 0;
6479			break;
6480
6481		case DIF_OP_LDLS:
6482			id = DIF_INSTR_VAR(instr);
6483
6484			if (id < DIF_VAR_OTHER_UBASE) {
6485				/*
6486				 * For now, this has no meaning.
6487				 */
6488				regs[rd] = 0;
6489				break;
6490			}
6491
6492			id -= DIF_VAR_OTHER_UBASE;
6493
6494			ASSERT(id < vstate->dtvs_nlocals);
6495			ASSERT(vstate->dtvs_locals != NULL);
6496
6497			svar = vstate->dtvs_locals[id];
6498			ASSERT(svar != NULL);
6499			v = &svar->dtsv_var;
6500
6501			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6502				uintptr_t a = (uintptr_t)svar->dtsv_data;
6503				size_t sz = v->dtdv_type.dtdt_size;
6504				size_t lim;
6505
6506				sz += sizeof (uint64_t);
6507				ASSERT(svar->dtsv_size == NCPU * sz);
6508				a += curcpu * sz;
6509
6510				if (*(uint8_t *)a == UINT8_MAX) {
6511					/*
6512					 * If the 0th byte is set to UINT8_MAX
6513					 * then this is to be treated as a
6514					 * reference to a NULL variable.
6515					 */
6516					regs[rd] = 0;
6517				} else {
6518					regs[rd] = a + sizeof (uint64_t);
6519				}
6520
6521				break;
6522			}
6523
6524			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6525			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6526			regs[rd] = tmp[curcpu];
6527			break;
6528
6529		case DIF_OP_STLS:
6530			id = DIF_INSTR_VAR(instr);
6531
6532			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6533			id -= DIF_VAR_OTHER_UBASE;
6534			VERIFY(id < vstate->dtvs_nlocals);
6535
6536			ASSERT(vstate->dtvs_locals != NULL);
6537			svar = vstate->dtvs_locals[id];
6538			ASSERT(svar != NULL);
6539			v = &svar->dtsv_var;
6540
6541			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6542				uintptr_t a = (uintptr_t)svar->dtsv_data;
6543				size_t sz = v->dtdv_type.dtdt_size;
6544				size_t lim;
6545
6546				sz += sizeof (uint64_t);
6547				ASSERT(svar->dtsv_size == NCPU * sz);
6548				a += curcpu * sz;
6549
6550				if (regs[rd] == 0) {
6551					*(uint8_t *)a = UINT8_MAX;
6552					break;
6553				} else {
6554					*(uint8_t *)a = 0;
6555					a += sizeof (uint64_t);
6556				}
6557
6558				if (!dtrace_vcanload(
6559				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6560				    &lim, mstate, vstate))
6561					break;
6562
6563				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6564				    (void *)a, &v->dtdv_type, lim);
6565				break;
6566			}
6567
6568			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6569			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6570			tmp[curcpu] = regs[rd];
6571			break;
6572
6573		case DIF_OP_LDTS: {
6574			dtrace_dynvar_t *dvar;
6575			dtrace_key_t *key;
6576
6577			id = DIF_INSTR_VAR(instr);
6578			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6579			id -= DIF_VAR_OTHER_UBASE;
6580			v = &vstate->dtvs_tlocals[id];
6581
6582			key = &tupregs[DIF_DTR_NREGS];
6583			key[0].dttk_value = (uint64_t)id;
6584			key[0].dttk_size = 0;
6585			DTRACE_TLS_THRKEY(key[1].dttk_value);
6586			key[1].dttk_size = 0;
6587
6588			dvar = dtrace_dynvar(dstate, 2, key,
6589			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6590			    mstate, vstate);
6591
6592			if (dvar == NULL) {
6593				regs[rd] = 0;
6594				break;
6595			}
6596
6597			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6598				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6599			} else {
6600				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6601			}
6602
6603			break;
6604		}
6605
6606		case DIF_OP_STTS: {
6607			dtrace_dynvar_t *dvar;
6608			dtrace_key_t *key;
6609
6610			id = DIF_INSTR_VAR(instr);
6611			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6612			id -= DIF_VAR_OTHER_UBASE;
6613			VERIFY(id < vstate->dtvs_ntlocals);
6614
6615			key = &tupregs[DIF_DTR_NREGS];
6616			key[0].dttk_value = (uint64_t)id;
6617			key[0].dttk_size = 0;
6618			DTRACE_TLS_THRKEY(key[1].dttk_value);
6619			key[1].dttk_size = 0;
6620			v = &vstate->dtvs_tlocals[id];
6621
6622			dvar = dtrace_dynvar(dstate, 2, key,
6623			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6624			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6625			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6626			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6627
6628			/*
6629			 * Given that we're storing to thread-local data,
6630			 * we need to flush our predicate cache.
6631			 */
6632			curthread->t_predcache = 0;
6633
6634			if (dvar == NULL)
6635				break;
6636
6637			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6638				size_t lim;
6639
6640				if (!dtrace_vcanload(
6641				    (void *)(uintptr_t)regs[rd],
6642				    &v->dtdv_type, &lim, mstate, vstate))
6643					break;
6644
6645				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6646				    dvar->dtdv_data, &v->dtdv_type, lim);
6647			} else {
6648				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6649			}
6650
6651			break;
6652		}
6653
6654		case DIF_OP_SRA:
6655			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6656			break;
6657
6658		case DIF_OP_CALL:
6659			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6660			    regs, tupregs, ttop, mstate, state);
6661			break;
6662
6663		case DIF_OP_PUSHTR:
6664			if (ttop == DIF_DTR_NREGS) {
6665				*flags |= CPU_DTRACE_TUPOFLOW;
6666				break;
6667			}
6668
6669			if (r1 == DIF_TYPE_STRING) {
6670				/*
6671				 * If this is a string type and the size is 0,
6672				 * we'll use the system-wide default string
6673				 * size.  Note that we are _not_ looking at
6674				 * the value of the DTRACEOPT_STRSIZE option;
6675				 * had this been set, we would expect to have
6676				 * a non-zero size value in the "pushtr".
6677				 */
6678				tupregs[ttop].dttk_size =
6679				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6680				    regs[r2] ? regs[r2] :
6681				    dtrace_strsize_default) + 1;
6682			} else {
6683				if (regs[r2] > LONG_MAX) {
6684					*flags |= CPU_DTRACE_ILLOP;
6685					break;
6686				}
6687
6688				tupregs[ttop].dttk_size = regs[r2];
6689			}
6690
6691			tupregs[ttop++].dttk_value = regs[rd];
6692			break;
6693
6694		case DIF_OP_PUSHTV:
6695			if (ttop == DIF_DTR_NREGS) {
6696				*flags |= CPU_DTRACE_TUPOFLOW;
6697				break;
6698			}
6699
6700			tupregs[ttop].dttk_value = regs[rd];
6701			tupregs[ttop++].dttk_size = 0;
6702			break;
6703
6704		case DIF_OP_POPTS:
6705			if (ttop != 0)
6706				ttop--;
6707			break;
6708
6709		case DIF_OP_FLUSHTS:
6710			ttop = 0;
6711			break;
6712
6713		case DIF_OP_LDGAA:
6714		case DIF_OP_LDTAA: {
6715			dtrace_dynvar_t *dvar;
6716			dtrace_key_t *key = tupregs;
6717			uint_t nkeys = ttop;
6718
6719			id = DIF_INSTR_VAR(instr);
6720			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6721			id -= DIF_VAR_OTHER_UBASE;
6722
6723			key[nkeys].dttk_value = (uint64_t)id;
6724			key[nkeys++].dttk_size = 0;
6725
6726			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6727				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6728				key[nkeys++].dttk_size = 0;
6729				VERIFY(id < vstate->dtvs_ntlocals);
6730				v = &vstate->dtvs_tlocals[id];
6731			} else {
6732				VERIFY(id < vstate->dtvs_nglobals);
6733				v = &vstate->dtvs_globals[id]->dtsv_var;
6734			}
6735
6736			dvar = dtrace_dynvar(dstate, nkeys, key,
6737			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6738			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6739			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6740
6741			if (dvar == NULL) {
6742				regs[rd] = 0;
6743				break;
6744			}
6745
6746			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6747				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6748			} else {
6749				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6750			}
6751
6752			break;
6753		}
6754
6755		case DIF_OP_STGAA:
6756		case DIF_OP_STTAA: {
6757			dtrace_dynvar_t *dvar;
6758			dtrace_key_t *key = tupregs;
6759			uint_t nkeys = ttop;
6760
6761			id = DIF_INSTR_VAR(instr);
6762			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6763			id -= DIF_VAR_OTHER_UBASE;
6764
6765			key[nkeys].dttk_value = (uint64_t)id;
6766			key[nkeys++].dttk_size = 0;
6767
6768			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6769				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6770				key[nkeys++].dttk_size = 0;
6771				VERIFY(id < vstate->dtvs_ntlocals);
6772				v = &vstate->dtvs_tlocals[id];
6773			} else {
6774				VERIFY(id < vstate->dtvs_nglobals);
6775				v = &vstate->dtvs_globals[id]->dtsv_var;
6776			}
6777
6778			dvar = dtrace_dynvar(dstate, nkeys, key,
6779			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6780			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6781			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6782			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6783
6784			if (dvar == NULL)
6785				break;
6786
6787			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6788				size_t lim;
6789
6790				if (!dtrace_vcanload(
6791				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6792				    &lim, mstate, vstate))
6793					break;
6794
6795				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6796				    dvar->dtdv_data, &v->dtdv_type, lim);
6797			} else {
6798				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6799			}
6800
6801			break;
6802		}
6803
6804		case DIF_OP_ALLOCS: {
6805			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6806			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6807
6808			/*
6809			 * Rounding up the user allocation size could have
6810			 * overflowed large, bogus allocations (like -1ULL) to
6811			 * 0.
6812			 */
6813			if (size < regs[r1] ||
6814			    !DTRACE_INSCRATCH(mstate, size)) {
6815				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6816				regs[rd] = 0;
6817				break;
6818			}
6819
6820			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6821			mstate->dtms_scratch_ptr += size;
6822			regs[rd] = ptr;
6823			break;
6824		}
6825
6826		case DIF_OP_COPYS:
6827			if (!dtrace_canstore(regs[rd], regs[r2],
6828			    mstate, vstate)) {
6829				*flags |= CPU_DTRACE_BADADDR;
6830				*illval = regs[rd];
6831				break;
6832			}
6833
6834			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6835				break;
6836
6837			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6838			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6839			break;
6840
6841		case DIF_OP_STB:
6842			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6843				*flags |= CPU_DTRACE_BADADDR;
6844				*illval = regs[rd];
6845				break;
6846			}
6847			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6848			break;
6849
6850		case DIF_OP_STH:
6851			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6852				*flags |= CPU_DTRACE_BADADDR;
6853				*illval = regs[rd];
6854				break;
6855			}
6856			if (regs[rd] & 1) {
6857				*flags |= CPU_DTRACE_BADALIGN;
6858				*illval = regs[rd];
6859				break;
6860			}
6861			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6862			break;
6863
6864		case DIF_OP_STW:
6865			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6866				*flags |= CPU_DTRACE_BADADDR;
6867				*illval = regs[rd];
6868				break;
6869			}
6870			if (regs[rd] & 3) {
6871				*flags |= CPU_DTRACE_BADALIGN;
6872				*illval = regs[rd];
6873				break;
6874			}
6875			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6876			break;
6877
6878		case DIF_OP_STX:
6879			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6880				*flags |= CPU_DTRACE_BADADDR;
6881				*illval = regs[rd];
6882				break;
6883			}
6884			if (regs[rd] & 7) {
6885				*flags |= CPU_DTRACE_BADALIGN;
6886				*illval = regs[rd];
6887				break;
6888			}
6889			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6890			break;
6891		}
6892	}
6893
6894	if (!(*flags & CPU_DTRACE_FAULT))
6895		return (rval);
6896
6897	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6898	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6899
6900	return (0);
6901}
6902
6903static void
6904dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6905{
6906	dtrace_probe_t *probe = ecb->dte_probe;
6907	dtrace_provider_t *prov = probe->dtpr_provider;
6908	char c[DTRACE_FULLNAMELEN + 80], *str;
6909	char *msg = "dtrace: breakpoint action at probe ";
6910	char *ecbmsg = " (ecb ";
6911	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6912	uintptr_t val = (uintptr_t)ecb;
6913	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6914
6915	if (dtrace_destructive_disallow)
6916		return;
6917
6918	/*
6919	 * It's impossible to be taking action on the NULL probe.
6920	 */
6921	ASSERT(probe != NULL);
6922
6923	/*
6924	 * This is a poor man's (destitute man's?) sprintf():  we want to
6925	 * print the provider name, module name, function name and name of
6926	 * the probe, along with the hex address of the ECB with the breakpoint
6927	 * action -- all of which we must place in the character buffer by
6928	 * hand.
6929	 */
6930	while (*msg != '\0')
6931		c[i++] = *msg++;
6932
6933	for (str = prov->dtpv_name; *str != '\0'; str++)
6934		c[i++] = *str;
6935	c[i++] = ':';
6936
6937	for (str = probe->dtpr_mod; *str != '\0'; str++)
6938		c[i++] = *str;
6939	c[i++] = ':';
6940
6941	for (str = probe->dtpr_func; *str != '\0'; str++)
6942		c[i++] = *str;
6943	c[i++] = ':';
6944
6945	for (str = probe->dtpr_name; *str != '\0'; str++)
6946		c[i++] = *str;
6947
6948	while (*ecbmsg != '\0')
6949		c[i++] = *ecbmsg++;
6950
6951	while (shift >= 0) {
6952		mask = (uintptr_t)0xf << shift;
6953
6954		if (val >= ((uintptr_t)1 << shift))
6955			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6956		shift -= 4;
6957	}
6958
6959	c[i++] = ')';
6960	c[i] = '\0';
6961
6962#ifdef illumos
6963	debug_enter(c);
6964#else
6965	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6966#endif
6967}
6968
6969static void
6970dtrace_action_panic(dtrace_ecb_t *ecb)
6971{
6972	dtrace_probe_t *probe = ecb->dte_probe;
6973
6974	/*
6975	 * It's impossible to be taking action on the NULL probe.
6976	 */
6977	ASSERT(probe != NULL);
6978
6979	if (dtrace_destructive_disallow)
6980		return;
6981
6982	if (dtrace_panicked != NULL)
6983		return;
6984
6985	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6986		return;
6987
6988	/*
6989	 * We won the right to panic.  (We want to be sure that only one
6990	 * thread calls panic() from dtrace_probe(), and that panic() is
6991	 * called exactly once.)
6992	 */
6993	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6994	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6995	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6996}
6997
6998static void
6999dtrace_action_raise(uint64_t sig)
7000{
7001	if (dtrace_destructive_disallow)
7002		return;
7003
7004	if (sig >= NSIG) {
7005		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
7006		return;
7007	}
7008
7009#ifdef illumos
7010	/*
7011	 * raise() has a queue depth of 1 -- we ignore all subsequent
7012	 * invocations of the raise() action.
7013	 */
7014	if (curthread->t_dtrace_sig == 0)
7015		curthread->t_dtrace_sig = (uint8_t)sig;
7016
7017	curthread->t_sig_check = 1;
7018	aston(curthread);
7019#else
7020	struct proc *p = curproc;
7021	PROC_LOCK(p);
7022	kern_psignal(p, sig);
7023	PROC_UNLOCK(p);
7024#endif
7025}
7026
7027static void
7028dtrace_action_stop(void)
7029{
7030	if (dtrace_destructive_disallow)
7031		return;
7032
7033#ifdef illumos
7034	if (!curthread->t_dtrace_stop) {
7035		curthread->t_dtrace_stop = 1;
7036		curthread->t_sig_check = 1;
7037		aston(curthread);
7038	}
7039#else
7040	struct proc *p = curproc;
7041	PROC_LOCK(p);
7042	kern_psignal(p, SIGSTOP);
7043	PROC_UNLOCK(p);
7044#endif
7045}
7046
7047static void
7048dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7049{
7050	hrtime_t now;
7051	volatile uint16_t *flags;
7052#ifdef illumos
7053	cpu_t *cpu = CPU;
7054#else
7055	cpu_t *cpu = &solaris_cpu[curcpu];
7056#endif
7057
7058	if (dtrace_destructive_disallow)
7059		return;
7060
7061	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7062
7063	now = dtrace_gethrtime();
7064
7065	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7066		/*
7067		 * We need to advance the mark to the current time.
7068		 */
7069		cpu->cpu_dtrace_chillmark = now;
7070		cpu->cpu_dtrace_chilled = 0;
7071	}
7072
7073	/*
7074	 * Now check to see if the requested chill time would take us over
7075	 * the maximum amount of time allowed in the chill interval.  (Or
7076	 * worse, if the calculation itself induces overflow.)
7077	 */
7078	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7079	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7080		*flags |= CPU_DTRACE_ILLOP;
7081		return;
7082	}
7083
7084	while (dtrace_gethrtime() - now < val)
7085		continue;
7086
7087	/*
7088	 * Normally, we assure that the value of the variable "timestamp" does
7089	 * not change within an ECB.  The presence of chill() represents an
7090	 * exception to this rule, however.
7091	 */
7092	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7093	cpu->cpu_dtrace_chilled += val;
7094}
7095
7096static void
7097dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7098    uint64_t *buf, uint64_t arg)
7099{
7100	int nframes = DTRACE_USTACK_NFRAMES(arg);
7101	int strsize = DTRACE_USTACK_STRSIZE(arg);
7102	uint64_t *pcs = &buf[1], *fps;
7103	char *str = (char *)&pcs[nframes];
7104	int size, offs = 0, i, j;
7105	size_t rem;
7106	uintptr_t old = mstate->dtms_scratch_ptr, saved;
7107	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7108	char *sym;
7109
7110	/*
7111	 * Should be taking a faster path if string space has not been
7112	 * allocated.
7113	 */
7114	ASSERT(strsize != 0);
7115
7116	/*
7117	 * We will first allocate some temporary space for the frame pointers.
7118	 */
7119	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7120	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7121	    (nframes * sizeof (uint64_t));
7122
7123	if (!DTRACE_INSCRATCH(mstate, size)) {
7124		/*
7125		 * Not enough room for our frame pointers -- need to indicate
7126		 * that we ran out of scratch space.
7127		 */
7128		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7129		return;
7130	}
7131
7132	mstate->dtms_scratch_ptr += size;
7133	saved = mstate->dtms_scratch_ptr;
7134
7135	/*
7136	 * Now get a stack with both program counters and frame pointers.
7137	 */
7138	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7139	dtrace_getufpstack(buf, fps, nframes + 1);
7140	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7141
7142	/*
7143	 * If that faulted, we're cooked.
7144	 */
7145	if (*flags & CPU_DTRACE_FAULT)
7146		goto out;
7147
7148	/*
7149	 * Now we want to walk up the stack, calling the USTACK helper.  For
7150	 * each iteration, we restore the scratch pointer.
7151	 */
7152	for (i = 0; i < nframes; i++) {
7153		mstate->dtms_scratch_ptr = saved;
7154
7155		if (offs >= strsize)
7156			break;
7157
7158		sym = (char *)(uintptr_t)dtrace_helper(
7159		    DTRACE_HELPER_ACTION_USTACK,
7160		    mstate, state, pcs[i], fps[i]);
7161
7162		/*
7163		 * If we faulted while running the helper, we're going to
7164		 * clear the fault and null out the corresponding string.
7165		 */
7166		if (*flags & CPU_DTRACE_FAULT) {
7167			*flags &= ~CPU_DTRACE_FAULT;
7168			str[offs++] = '\0';
7169			continue;
7170		}
7171
7172		if (sym == NULL) {
7173			str[offs++] = '\0';
7174			continue;
7175		}
7176
7177		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7178		    &(state->dts_vstate))) {
7179			str[offs++] = '\0';
7180			continue;
7181		}
7182
7183		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7184
7185		/*
7186		 * Now copy in the string that the helper returned to us.
7187		 */
7188		for (j = 0; offs + j < strsize && j < rem; j++) {
7189			if ((str[offs + j] = sym[j]) == '\0')
7190				break;
7191		}
7192
7193		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7194
7195		offs += j + 1;
7196	}
7197
7198	if (offs >= strsize) {
7199		/*
7200		 * If we didn't have room for all of the strings, we don't
7201		 * abort processing -- this needn't be a fatal error -- but we
7202		 * still want to increment a counter (dts_stkstroverflows) to
7203		 * allow this condition to be warned about.  (If this is from
7204		 * a jstack() action, it is easily tuned via jstackstrsize.)
7205		 */
7206		dtrace_error(&state->dts_stkstroverflows);
7207	}
7208
7209	while (offs < strsize)
7210		str[offs++] = '\0';
7211
7212out:
7213	mstate->dtms_scratch_ptr = old;
7214}
7215
7216static void
7217dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7218    size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7219{
7220	volatile uint16_t *flags;
7221	uint64_t val = *valp;
7222	size_t valoffs = *valoffsp;
7223
7224	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7225	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7226
7227	/*
7228	 * If this is a string, we're going to only load until we find the zero
7229	 * byte -- after which we'll store zero bytes.
7230	 */
7231	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7232		char c = '\0' + 1;
7233		size_t s;
7234
7235		for (s = 0; s < size; s++) {
7236			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7237				c = dtrace_load8(val++);
7238			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7239				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7240				c = dtrace_fuword8((void *)(uintptr_t)val++);
7241				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7242				if (*flags & CPU_DTRACE_FAULT)
7243					break;
7244			}
7245
7246			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7247
7248			if (c == '\0' && intuple)
7249				break;
7250		}
7251	} else {
7252		uint8_t c;
7253		while (valoffs < end) {
7254			if (dtkind == DIF_TF_BYREF) {
7255				c = dtrace_load8(val++);
7256			} else if (dtkind == DIF_TF_BYUREF) {
7257				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7258				c = dtrace_fuword8((void *)(uintptr_t)val++);
7259				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7260				if (*flags & CPU_DTRACE_FAULT)
7261					break;
7262			}
7263
7264			DTRACE_STORE(uint8_t, tomax,
7265			    valoffs++, c);
7266		}
7267	}
7268
7269	*valp = val;
7270	*valoffsp = valoffs;
7271}
7272
7273/*
7274 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7275 * defined, we also assert that we are not recursing unless the probe ID is an
7276 * error probe.
7277 */
7278static dtrace_icookie_t
7279dtrace_probe_enter(dtrace_id_t id)
7280{
7281	dtrace_icookie_t cookie;
7282
7283	cookie = dtrace_interrupt_disable();
7284
7285	/*
7286	 * Unless this is an ERROR probe, we are not allowed to recurse in
7287	 * dtrace_probe(). Recursing into DTrace probe usually means that a
7288	 * function is instrumented that should not have been instrumented or
7289	 * that the ordering guarantee of the records will be violated,
7290	 * resulting in unexpected output. If there is an exception to this
7291	 * assertion, a new case should be added.
7292	 */
7293	ASSERT(curthread->t_dtrace_inprobe == 0 ||
7294	    id == dtrace_probeid_error);
7295	curthread->t_dtrace_inprobe = 1;
7296
7297	return (cookie);
7298}
7299
7300/*
7301 * Clears the per-thread inprobe flag and enables interrupts.
7302 */
7303static void
7304dtrace_probe_exit(dtrace_icookie_t cookie)
7305{
7306
7307	curthread->t_dtrace_inprobe = 0;
7308	dtrace_interrupt_enable(cookie);
7309}
7310
7311/*
7312 * If you're looking for the epicenter of DTrace, you just found it.  This
7313 * is the function called by the provider to fire a probe -- from which all
7314 * subsequent probe-context DTrace activity emanates.
7315 */
7316void
7317dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7318    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7319{
7320	processorid_t cpuid;
7321	dtrace_icookie_t cookie;
7322	dtrace_probe_t *probe;
7323	dtrace_mstate_t mstate;
7324	dtrace_ecb_t *ecb;
7325	dtrace_action_t *act;
7326	intptr_t offs;
7327	size_t size;
7328	int vtime, onintr;
7329	volatile uint16_t *flags;
7330	hrtime_t now;
7331
7332	if (KERNEL_PANICKED())
7333		return;
7334
7335#ifdef illumos
7336	/*
7337	 * Kick out immediately if this CPU is still being born (in which case
7338	 * curthread will be set to -1) or the current thread can't allow
7339	 * probes in its current context.
7340	 */
7341	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7342		return;
7343#endif
7344
7345	cookie = dtrace_probe_enter(id);
7346	probe = dtrace_probes[id - 1];
7347	cpuid = curcpu;
7348	onintr = CPU_ON_INTR(CPU);
7349
7350	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7351	    probe->dtpr_predcache == curthread->t_predcache) {
7352		/*
7353		 * We have hit in the predicate cache; we know that
7354		 * this predicate would evaluate to be false.
7355		 */
7356		dtrace_probe_exit(cookie);
7357		return;
7358	}
7359
7360#ifdef illumos
7361	if (panic_quiesce) {
7362#else
7363	if (KERNEL_PANICKED()) {
7364#endif
7365		/*
7366		 * We don't trace anything if we're panicking.
7367		 */
7368		dtrace_probe_exit(cookie);
7369		return;
7370	}
7371
7372	now = mstate.dtms_timestamp = dtrace_gethrtime();
7373	mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7374	vtime = dtrace_vtime_references != 0;
7375
7376	if (vtime && curthread->t_dtrace_start)
7377		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7378
7379	mstate.dtms_difo = NULL;
7380	mstate.dtms_probe = probe;
7381	mstate.dtms_strtok = 0;
7382	mstate.dtms_arg[0] = arg0;
7383	mstate.dtms_arg[1] = arg1;
7384	mstate.dtms_arg[2] = arg2;
7385	mstate.dtms_arg[3] = arg3;
7386	mstate.dtms_arg[4] = arg4;
7387
7388	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7389
7390	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7391		dtrace_predicate_t *pred = ecb->dte_predicate;
7392		dtrace_state_t *state = ecb->dte_state;
7393		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7394		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7395		dtrace_vstate_t *vstate = &state->dts_vstate;
7396		dtrace_provider_t *prov = probe->dtpr_provider;
7397		uint64_t tracememsize = 0;
7398		int committed = 0;
7399		caddr_t tomax;
7400
7401		/*
7402		 * A little subtlety with the following (seemingly innocuous)
7403		 * declaration of the automatic 'val':  by looking at the
7404		 * code, you might think that it could be declared in the
7405		 * action processing loop, below.  (That is, it's only used in
7406		 * the action processing loop.)  However, it must be declared
7407		 * out of that scope because in the case of DIF expression
7408		 * arguments to aggregating actions, one iteration of the
7409		 * action loop will use the last iteration's value.
7410		 */
7411		uint64_t val = 0;
7412
7413		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7414		mstate.dtms_getf = NULL;
7415
7416		*flags &= ~CPU_DTRACE_ERROR;
7417
7418		if (prov == dtrace_provider) {
7419			/*
7420			 * If dtrace itself is the provider of this probe,
7421			 * we're only going to continue processing the ECB if
7422			 * arg0 (the dtrace_state_t) is equal to the ECB's
7423			 * creating state.  (This prevents disjoint consumers
7424			 * from seeing one another's metaprobes.)
7425			 */
7426			if (arg0 != (uint64_t)(uintptr_t)state)
7427				continue;
7428		}
7429
7430		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7431			/*
7432			 * We're not currently active.  If our provider isn't
7433			 * the dtrace pseudo provider, we're not interested.
7434			 */
7435			if (prov != dtrace_provider)
7436				continue;
7437
7438			/*
7439			 * Now we must further check if we are in the BEGIN
7440			 * probe.  If we are, we will only continue processing
7441			 * if we're still in WARMUP -- if one BEGIN enabling
7442			 * has invoked the exit() action, we don't want to
7443			 * evaluate subsequent BEGIN enablings.
7444			 */
7445			if (probe->dtpr_id == dtrace_probeid_begin &&
7446			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7447				ASSERT(state->dts_activity ==
7448				    DTRACE_ACTIVITY_DRAINING);
7449				continue;
7450			}
7451		}
7452
7453		if (ecb->dte_cond) {
7454			/*
7455			 * If the dte_cond bits indicate that this
7456			 * consumer is only allowed to see user-mode firings
7457			 * of this probe, call the provider's dtps_usermode()
7458			 * entry point to check that the probe was fired
7459			 * while in a user context. Skip this ECB if that's
7460			 * not the case.
7461			 */
7462			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7463			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7464			    probe->dtpr_id, probe->dtpr_arg) == 0)
7465				continue;
7466
7467#ifdef illumos
7468			/*
7469			 * This is more subtle than it looks. We have to be
7470			 * absolutely certain that CRED() isn't going to
7471			 * change out from under us so it's only legit to
7472			 * examine that structure if we're in constrained
7473			 * situations. Currently, the only times we'll this
7474			 * check is if a non-super-user has enabled the
7475			 * profile or syscall providers -- providers that
7476			 * allow visibility of all processes. For the
7477			 * profile case, the check above will ensure that
7478			 * we're examining a user context.
7479			 */
7480			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7481				cred_t *cr;
7482				cred_t *s_cr =
7483				    ecb->dte_state->dts_cred.dcr_cred;
7484				proc_t *proc;
7485
7486				ASSERT(s_cr != NULL);
7487
7488				if ((cr = CRED()) == NULL ||
7489				    s_cr->cr_uid != cr->cr_uid ||
7490				    s_cr->cr_uid != cr->cr_ruid ||
7491				    s_cr->cr_uid != cr->cr_suid ||
7492				    s_cr->cr_gid != cr->cr_gid ||
7493				    s_cr->cr_gid != cr->cr_rgid ||
7494				    s_cr->cr_gid != cr->cr_sgid ||
7495				    (proc = ttoproc(curthread)) == NULL ||
7496				    (proc->p_flag & SNOCD))
7497					continue;
7498			}
7499
7500			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7501				cred_t *cr;
7502				cred_t *s_cr =
7503				    ecb->dte_state->dts_cred.dcr_cred;
7504
7505				ASSERT(s_cr != NULL);
7506
7507				if ((cr = CRED()) == NULL ||
7508				    s_cr->cr_zone->zone_id !=
7509				    cr->cr_zone->zone_id)
7510					continue;
7511			}
7512#endif
7513		}
7514
7515		if (now - state->dts_alive > dtrace_deadman_timeout) {
7516			/*
7517			 * We seem to be dead.  Unless we (a) have kernel
7518			 * destructive permissions (b) have explicitly enabled
7519			 * destructive actions and (c) destructive actions have
7520			 * not been disabled, we're going to transition into
7521			 * the KILLED state, from which no further processing
7522			 * on this state will be performed.
7523			 */
7524			if (!dtrace_priv_kernel_destructive(state) ||
7525			    !state->dts_cred.dcr_destructive ||
7526			    dtrace_destructive_disallow) {
7527				void *activity = &state->dts_activity;
7528				dtrace_activity_t curstate;
7529
7530				do {
7531					curstate = state->dts_activity;
7532				} while (dtrace_cas32(activity, curstate,
7533				    DTRACE_ACTIVITY_KILLED) != curstate);
7534
7535				continue;
7536			}
7537		}
7538
7539		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7540		    ecb->dte_alignment, state, &mstate)) < 0)
7541			continue;
7542
7543		tomax = buf->dtb_tomax;
7544		ASSERT(tomax != NULL);
7545
7546		if (ecb->dte_size != 0) {
7547			dtrace_rechdr_t dtrh;
7548			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7549				mstate.dtms_timestamp = dtrace_gethrtime();
7550				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7551			}
7552			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7553			dtrh.dtrh_epid = ecb->dte_epid;
7554			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7555			    mstate.dtms_timestamp);
7556			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7557		}
7558
7559		mstate.dtms_epid = ecb->dte_epid;
7560		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7561
7562		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7563			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7564		else
7565			mstate.dtms_access = 0;
7566
7567		if (pred != NULL) {
7568			dtrace_difo_t *dp = pred->dtp_difo;
7569			uint64_t rval;
7570
7571			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7572
7573			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7574				dtrace_cacheid_t cid = probe->dtpr_predcache;
7575
7576				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7577					/*
7578					 * Update the predicate cache...
7579					 */
7580					ASSERT(cid == pred->dtp_cacheid);
7581					curthread->t_predcache = cid;
7582				}
7583
7584				continue;
7585			}
7586		}
7587
7588		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7589		    act != NULL; act = act->dta_next) {
7590			size_t valoffs;
7591			dtrace_difo_t *dp;
7592			dtrace_recdesc_t *rec = &act->dta_rec;
7593
7594			size = rec->dtrd_size;
7595			valoffs = offs + rec->dtrd_offset;
7596
7597			if (DTRACEACT_ISAGG(act->dta_kind)) {
7598				uint64_t v = 0xbad;
7599				dtrace_aggregation_t *agg;
7600
7601				agg = (dtrace_aggregation_t *)act;
7602
7603				if ((dp = act->dta_difo) != NULL)
7604					v = dtrace_dif_emulate(dp,
7605					    &mstate, vstate, state);
7606
7607				if (*flags & CPU_DTRACE_ERROR)
7608					continue;
7609
7610				/*
7611				 * Note that we always pass the expression
7612				 * value from the previous iteration of the
7613				 * action loop.  This value will only be used
7614				 * if there is an expression argument to the
7615				 * aggregating action, denoted by the
7616				 * dtag_hasarg field.
7617				 */
7618				dtrace_aggregate(agg, buf,
7619				    offs, aggbuf, v, val);
7620				continue;
7621			}
7622
7623			switch (act->dta_kind) {
7624			case DTRACEACT_STOP:
7625				if (dtrace_priv_proc_destructive(state))
7626					dtrace_action_stop();
7627				continue;
7628
7629			case DTRACEACT_BREAKPOINT:
7630				if (dtrace_priv_kernel_destructive(state))
7631					dtrace_action_breakpoint(ecb);
7632				continue;
7633
7634			case DTRACEACT_PANIC:
7635				if (dtrace_priv_kernel_destructive(state))
7636					dtrace_action_panic(ecb);
7637				continue;
7638
7639			case DTRACEACT_STACK:
7640				if (!dtrace_priv_kernel(state))
7641					continue;
7642
7643				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7644				    size / sizeof (pc_t), probe->dtpr_aframes,
7645				    DTRACE_ANCHORED(probe) ? NULL :
7646				    (uint32_t *)arg0);
7647				continue;
7648
7649			case DTRACEACT_JSTACK:
7650			case DTRACEACT_USTACK:
7651				if (!dtrace_priv_proc(state))
7652					continue;
7653
7654				/*
7655				 * See comment in DIF_VAR_PID.
7656				 */
7657				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7658				    CPU_ON_INTR(CPU)) {
7659					int depth = DTRACE_USTACK_NFRAMES(
7660					    rec->dtrd_arg) + 1;
7661
7662					dtrace_bzero((void *)(tomax + valoffs),
7663					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7664					    + depth * sizeof (uint64_t));
7665
7666					continue;
7667				}
7668
7669				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7670				    curproc->p_dtrace_helpers != NULL) {
7671					/*
7672					 * This is the slow path -- we have
7673					 * allocated string space, and we're
7674					 * getting the stack of a process that
7675					 * has helpers.  Call into a separate
7676					 * routine to perform this processing.
7677					 */
7678					dtrace_action_ustack(&mstate, state,
7679					    (uint64_t *)(tomax + valoffs),
7680					    rec->dtrd_arg);
7681					continue;
7682				}
7683
7684				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7685				dtrace_getupcstack((uint64_t *)
7686				    (tomax + valoffs),
7687				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7688				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7689				continue;
7690
7691			default:
7692				break;
7693			}
7694
7695			dp = act->dta_difo;
7696			ASSERT(dp != NULL);
7697
7698			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7699
7700			if (*flags & CPU_DTRACE_ERROR)
7701				continue;
7702
7703			switch (act->dta_kind) {
7704			case DTRACEACT_SPECULATE: {
7705				dtrace_rechdr_t *dtrh;
7706
7707				ASSERT(buf == &state->dts_buffer[cpuid]);
7708				buf = dtrace_speculation_buffer(state,
7709				    cpuid, val);
7710
7711				if (buf == NULL) {
7712					*flags |= CPU_DTRACE_DROP;
7713					continue;
7714				}
7715
7716				offs = dtrace_buffer_reserve(buf,
7717				    ecb->dte_needed, ecb->dte_alignment,
7718				    state, NULL);
7719
7720				if (offs < 0) {
7721					*flags |= CPU_DTRACE_DROP;
7722					continue;
7723				}
7724
7725				tomax = buf->dtb_tomax;
7726				ASSERT(tomax != NULL);
7727
7728				if (ecb->dte_size == 0)
7729					continue;
7730
7731				ASSERT3U(ecb->dte_size, >=,
7732				    sizeof (dtrace_rechdr_t));
7733				dtrh = ((void *)(tomax + offs));
7734				dtrh->dtrh_epid = ecb->dte_epid;
7735				/*
7736				 * When the speculation is committed, all of
7737				 * the records in the speculative buffer will
7738				 * have their timestamps set to the commit
7739				 * time.  Until then, it is set to a sentinel
7740				 * value, for debugability.
7741				 */
7742				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7743				continue;
7744			}
7745
7746			case DTRACEACT_PRINTM: {
7747				/*
7748				 * printm() assumes that the DIF returns a
7749				 * pointer returned by memref(). memref() is a
7750				 * subroutine that is used to get around the
7751				 * single-valued returns of DIF and is assumed
7752				 * to always be allocated in the scratch space.
7753				 * Therefore, we need to validate that the
7754				 * pointer given to printm() is in the scratch
7755				 * space in order to avoid a potential panic.
7756				 */
7757				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7758
7759				if (!DTRACE_INSCRATCHPTR(&mstate,
7760				    (uintptr_t)memref, 2 * sizeof(uintptr_t))) {
7761					*flags |= CPU_DTRACE_BADADDR;
7762					continue;
7763				}
7764
7765				/* Get the size from the memref. */
7766				size = memref[1];
7767
7768				/*
7769				 * Check if the size exceeds the allocated
7770				 * buffer size.
7771				 */
7772				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7773					/* Flag a drop! */
7774					*flags |= CPU_DTRACE_DROP;
7775					continue;
7776				}
7777
7778				/* Store the size in the buffer first. */
7779				DTRACE_STORE(uintptr_t, tomax,
7780				    valoffs, size);
7781
7782				/*
7783				 * Offset the buffer address to the start
7784				 * of the data.
7785				 */
7786				valoffs += sizeof(uintptr_t);
7787
7788				/*
7789				 * Reset to the memory address rather than
7790				 * the memref array, then let the BYREF
7791				 * code below do the work to store the
7792				 * memory data in the buffer.
7793				 */
7794				val = memref[0];
7795				break;
7796			}
7797
7798			case DTRACEACT_CHILL:
7799				if (dtrace_priv_kernel_destructive(state))
7800					dtrace_action_chill(&mstate, val);
7801				continue;
7802
7803			case DTRACEACT_RAISE:
7804				if (dtrace_priv_proc_destructive(state))
7805					dtrace_action_raise(val);
7806				continue;
7807
7808			case DTRACEACT_COMMIT:
7809				ASSERT(!committed);
7810
7811				/*
7812				 * We need to commit our buffer state.
7813				 */
7814				if (ecb->dte_size)
7815					buf->dtb_offset = offs + ecb->dte_size;
7816				buf = &state->dts_buffer[cpuid];
7817				dtrace_speculation_commit(state, cpuid, val);
7818				committed = 1;
7819				continue;
7820
7821			case DTRACEACT_DISCARD:
7822				dtrace_speculation_discard(state, cpuid, val);
7823				continue;
7824
7825			case DTRACEACT_DIFEXPR:
7826			case DTRACEACT_LIBACT:
7827			case DTRACEACT_PRINTF:
7828			case DTRACEACT_PRINTA:
7829			case DTRACEACT_SYSTEM:
7830			case DTRACEACT_FREOPEN:
7831			case DTRACEACT_TRACEMEM:
7832				break;
7833
7834			case DTRACEACT_TRACEMEM_DYNSIZE:
7835				tracememsize = val;
7836				break;
7837
7838			case DTRACEACT_SYM:
7839			case DTRACEACT_MOD:
7840				if (!dtrace_priv_kernel(state))
7841					continue;
7842				break;
7843
7844			case DTRACEACT_USYM:
7845			case DTRACEACT_UMOD:
7846			case DTRACEACT_UADDR: {
7847#ifdef illumos
7848				struct pid *pid = curthread->t_procp->p_pidp;
7849#endif
7850
7851				if (!dtrace_priv_proc(state))
7852					continue;
7853
7854				DTRACE_STORE(uint64_t, tomax,
7855#ifdef illumos
7856				    valoffs, (uint64_t)pid->pid_id);
7857#else
7858				    valoffs, (uint64_t) curproc->p_pid);
7859#endif
7860				DTRACE_STORE(uint64_t, tomax,
7861				    valoffs + sizeof (uint64_t), val);
7862
7863				continue;
7864			}
7865
7866			case DTRACEACT_EXIT: {
7867				/*
7868				 * For the exit action, we are going to attempt
7869				 * to atomically set our activity to be
7870				 * draining.  If this fails (either because
7871				 * another CPU has beat us to the exit action,
7872				 * or because our current activity is something
7873				 * other than ACTIVE or WARMUP), we will
7874				 * continue.  This assures that the exit action
7875				 * can be successfully recorded at most once
7876				 * when we're in the ACTIVE state.  If we're
7877				 * encountering the exit() action while in
7878				 * COOLDOWN, however, we want to honor the new
7879				 * status code.  (We know that we're the only
7880				 * thread in COOLDOWN, so there is no race.)
7881				 */
7882				void *activity = &state->dts_activity;
7883				dtrace_activity_t curstate = state->dts_activity;
7884
7885				if (curstate == DTRACE_ACTIVITY_COOLDOWN)
7886					break;
7887
7888				if (curstate != DTRACE_ACTIVITY_WARMUP)
7889					curstate = DTRACE_ACTIVITY_ACTIVE;
7890
7891				if (dtrace_cas32(activity, curstate,
7892				    DTRACE_ACTIVITY_DRAINING) != curstate) {
7893					*flags |= CPU_DTRACE_DROP;
7894					continue;
7895				}
7896
7897				break;
7898			}
7899
7900			default:
7901				ASSERT(0);
7902			}
7903
7904			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7905			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7906				uintptr_t end = valoffs + size;
7907
7908				if (tracememsize != 0 &&
7909				    valoffs + tracememsize < end) {
7910					end = valoffs + tracememsize;
7911					tracememsize = 0;
7912				}
7913
7914				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7915				    !dtrace_vcanload((void *)(uintptr_t)val,
7916				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7917					continue;
7918
7919				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7920				    &val, end, act->dta_intuple,
7921				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7922				    DIF_TF_BYREF: DIF_TF_BYUREF);
7923				continue;
7924			}
7925
7926			switch (size) {
7927			case 0:
7928				break;
7929
7930			case sizeof (uint8_t):
7931				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7932				break;
7933			case sizeof (uint16_t):
7934				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7935				break;
7936			case sizeof (uint32_t):
7937				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7938				break;
7939			case sizeof (uint64_t):
7940				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7941				break;
7942			default:
7943				/*
7944				 * Any other size should have been returned by
7945				 * reference, not by value.
7946				 */
7947				ASSERT(0);
7948				break;
7949			}
7950		}
7951
7952		if (*flags & CPU_DTRACE_DROP)
7953			continue;
7954
7955		if (*flags & CPU_DTRACE_FAULT) {
7956			int ndx;
7957			dtrace_action_t *err;
7958
7959			buf->dtb_errors++;
7960
7961			if (probe->dtpr_id == dtrace_probeid_error) {
7962				/*
7963				 * There's nothing we can do -- we had an
7964				 * error on the error probe.  We bump an
7965				 * error counter to at least indicate that
7966				 * this condition happened.
7967				 */
7968				dtrace_error(&state->dts_dblerrors);
7969				continue;
7970			}
7971
7972			if (vtime) {
7973				/*
7974				 * Before recursing on dtrace_probe(), we
7975				 * need to explicitly clear out our start
7976				 * time to prevent it from being accumulated
7977				 * into t_dtrace_vtime.
7978				 */
7979				curthread->t_dtrace_start = 0;
7980			}
7981
7982			/*
7983			 * Iterate over the actions to figure out which action
7984			 * we were processing when we experienced the error.
7985			 * Note that act points _past_ the faulting action; if
7986			 * act is ecb->dte_action, the fault was in the
7987			 * predicate, if it's ecb->dte_action->dta_next it's
7988			 * in action #1, and so on.
7989			 */
7990			for (err = ecb->dte_action, ndx = 0;
7991			    err != act; err = err->dta_next, ndx++)
7992				continue;
7993
7994			dtrace_probe_error(state, ecb->dte_epid, ndx,
7995			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7996			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7997			    cpu_core[cpuid].cpuc_dtrace_illval);
7998
7999			continue;
8000		}
8001
8002		if (!committed)
8003			buf->dtb_offset = offs + ecb->dte_size;
8004	}
8005
8006	if (vtime)
8007		curthread->t_dtrace_start = dtrace_gethrtime();
8008
8009	dtrace_probe_exit(cookie);
8010}
8011
8012/*
8013 * DTrace Probe Hashing Functions
8014 *
8015 * The functions in this section (and indeed, the functions in remaining
8016 * sections) are not _called_ from probe context.  (Any exceptions to this are
8017 * marked with a "Note:".)  Rather, they are called from elsewhere in the
8018 * DTrace framework to look-up probes in, add probes to and remove probes from
8019 * the DTrace probe hashes.  (Each probe is hashed by each element of the
8020 * probe tuple -- allowing for fast lookups, regardless of what was
8021 * specified.)
8022 */
8023static uint_t
8024dtrace_hash_str(const char *p)
8025{
8026	unsigned int g;
8027	uint_t hval = 0;
8028
8029	while (*p) {
8030		hval = (hval << 4) + *p++;
8031		if ((g = (hval & 0xf0000000)) != 0)
8032			hval ^= g >> 24;
8033		hval &= ~g;
8034	}
8035	return (hval);
8036}
8037
8038static dtrace_hash_t *
8039dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
8040{
8041	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8042
8043	hash->dth_stroffs = stroffs;
8044	hash->dth_nextoffs = nextoffs;
8045	hash->dth_prevoffs = prevoffs;
8046
8047	hash->dth_size = 1;
8048	hash->dth_mask = hash->dth_size - 1;
8049
8050	hash->dth_tab = kmem_zalloc(hash->dth_size *
8051	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8052
8053	return (hash);
8054}
8055
8056static void
8057dtrace_hash_destroy(dtrace_hash_t *hash)
8058{
8059#ifdef DEBUG
8060	int i;
8061
8062	for (i = 0; i < hash->dth_size; i++)
8063		ASSERT(hash->dth_tab[i] == NULL);
8064#endif
8065
8066	kmem_free(hash->dth_tab,
8067	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
8068	kmem_free(hash, sizeof (dtrace_hash_t));
8069}
8070
8071static void
8072dtrace_hash_resize(dtrace_hash_t *hash)
8073{
8074	int size = hash->dth_size, i, ndx;
8075	int new_size = hash->dth_size << 1;
8076	int new_mask = new_size - 1;
8077	dtrace_hashbucket_t **new_tab, *bucket, *next;
8078
8079	ASSERT((new_size & new_mask) == 0);
8080
8081	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8082
8083	for (i = 0; i < size; i++) {
8084		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8085			dtrace_probe_t *probe = bucket->dthb_chain;
8086
8087			ASSERT(probe != NULL);
8088			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8089
8090			next = bucket->dthb_next;
8091			bucket->dthb_next = new_tab[ndx];
8092			new_tab[ndx] = bucket;
8093		}
8094	}
8095
8096	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8097	hash->dth_tab = new_tab;
8098	hash->dth_size = new_size;
8099	hash->dth_mask = new_mask;
8100}
8101
8102static void
8103dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8104{
8105	int hashval = DTRACE_HASHSTR(hash, new);
8106	int ndx = hashval & hash->dth_mask;
8107	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8108	dtrace_probe_t **nextp, **prevp;
8109
8110	for (; bucket != NULL; bucket = bucket->dthb_next) {
8111		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8112			goto add;
8113	}
8114
8115	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8116		dtrace_hash_resize(hash);
8117		dtrace_hash_add(hash, new);
8118		return;
8119	}
8120
8121	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8122	bucket->dthb_next = hash->dth_tab[ndx];
8123	hash->dth_tab[ndx] = bucket;
8124	hash->dth_nbuckets++;
8125
8126add:
8127	nextp = DTRACE_HASHNEXT(hash, new);
8128	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8129	*nextp = bucket->dthb_chain;
8130
8131	if (bucket->dthb_chain != NULL) {
8132		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8133		ASSERT(*prevp == NULL);
8134		*prevp = new;
8135	}
8136
8137	bucket->dthb_chain = new;
8138	bucket->dthb_len++;
8139}
8140
8141static dtrace_probe_t *
8142dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8143{
8144	int hashval = DTRACE_HASHSTR(hash, template);
8145	int ndx = hashval & hash->dth_mask;
8146	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8147
8148	for (; bucket != NULL; bucket = bucket->dthb_next) {
8149		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8150			return (bucket->dthb_chain);
8151	}
8152
8153	return (NULL);
8154}
8155
8156static int
8157dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8158{
8159	int hashval = DTRACE_HASHSTR(hash, template);
8160	int ndx = hashval & hash->dth_mask;
8161	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8162
8163	for (; bucket != NULL; bucket = bucket->dthb_next) {
8164		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8165			return (bucket->dthb_len);
8166	}
8167
8168	return (0);
8169}
8170
8171static void
8172dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8173{
8174	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8175	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8176
8177	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8178	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8179
8180	/*
8181	 * Find the bucket that we're removing this probe from.
8182	 */
8183	for (; bucket != NULL; bucket = bucket->dthb_next) {
8184		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8185			break;
8186	}
8187
8188	ASSERT(bucket != NULL);
8189
8190	if (*prevp == NULL) {
8191		if (*nextp == NULL) {
8192			/*
8193			 * The removed probe was the only probe on this
8194			 * bucket; we need to remove the bucket.
8195			 */
8196			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8197
8198			ASSERT(bucket->dthb_chain == probe);
8199			ASSERT(b != NULL);
8200
8201			if (b == bucket) {
8202				hash->dth_tab[ndx] = bucket->dthb_next;
8203			} else {
8204				while (b->dthb_next != bucket)
8205					b = b->dthb_next;
8206				b->dthb_next = bucket->dthb_next;
8207			}
8208
8209			ASSERT(hash->dth_nbuckets > 0);
8210			hash->dth_nbuckets--;
8211			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8212			return;
8213		}
8214
8215		bucket->dthb_chain = *nextp;
8216	} else {
8217		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8218	}
8219
8220	if (*nextp != NULL)
8221		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8222}
8223
8224/*
8225 * DTrace Utility Functions
8226 *
8227 * These are random utility functions that are _not_ called from probe context.
8228 */
8229static int
8230dtrace_badattr(const dtrace_attribute_t *a)
8231{
8232	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8233	    a->dtat_data > DTRACE_STABILITY_MAX ||
8234	    a->dtat_class > DTRACE_CLASS_MAX);
8235}
8236
8237/*
8238 * Return a duplicate copy of a string.  If the specified string is NULL,
8239 * this function returns a zero-length string.
8240 */
8241static char *
8242dtrace_strdup(const char *str)
8243{
8244	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8245
8246	if (str != NULL)
8247		(void) strcpy(new, str);
8248
8249	return (new);
8250}
8251
8252#define	DTRACE_ISALPHA(c)	\
8253	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8254
8255static int
8256dtrace_badname(const char *s)
8257{
8258	char c;
8259
8260	if (s == NULL || (c = *s++) == '\0')
8261		return (0);
8262
8263	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8264		return (1);
8265
8266	while ((c = *s++) != '\0') {
8267		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8268		    c != '-' && c != '_' && c != '.' && c != '`')
8269			return (1);
8270	}
8271
8272	return (0);
8273}
8274
8275static void
8276dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8277{
8278	uint32_t priv;
8279
8280#ifdef illumos
8281	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8282		/*
8283		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8284		 */
8285		priv = DTRACE_PRIV_ALL;
8286	} else {
8287		*uidp = crgetuid(cr);
8288		*zoneidp = crgetzoneid(cr);
8289
8290		priv = 0;
8291		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8292			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8293		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8294			priv |= DTRACE_PRIV_USER;
8295		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8296			priv |= DTRACE_PRIV_PROC;
8297		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8298			priv |= DTRACE_PRIV_OWNER;
8299		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8300			priv |= DTRACE_PRIV_ZONEOWNER;
8301	}
8302#else
8303	priv = DTRACE_PRIV_ALL;
8304#endif
8305
8306	*privp = priv;
8307}
8308
8309#ifdef DTRACE_ERRDEBUG
8310static void
8311dtrace_errdebug(const char *str)
8312{
8313	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8314	int occupied = 0;
8315
8316	mutex_enter(&dtrace_errlock);
8317	dtrace_errlast = str;
8318	dtrace_errthread = curthread;
8319
8320	while (occupied++ < DTRACE_ERRHASHSZ) {
8321		if (dtrace_errhash[hval].dter_msg == str) {
8322			dtrace_errhash[hval].dter_count++;
8323			goto out;
8324		}
8325
8326		if (dtrace_errhash[hval].dter_msg != NULL) {
8327			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8328			continue;
8329		}
8330
8331		dtrace_errhash[hval].dter_msg = str;
8332		dtrace_errhash[hval].dter_count = 1;
8333		goto out;
8334	}
8335
8336	panic("dtrace: undersized error hash");
8337out:
8338	mutex_exit(&dtrace_errlock);
8339}
8340#endif
8341
8342/*
8343 * DTrace Matching Functions
8344 *
8345 * These functions are used to match groups of probes, given some elements of
8346 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8347 */
8348static int
8349dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8350    zoneid_t zoneid)
8351{
8352	if (priv != DTRACE_PRIV_ALL) {
8353		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8354		uint32_t match = priv & ppriv;
8355
8356		/*
8357		 * No PRIV_DTRACE_* privileges...
8358		 */
8359		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8360		    DTRACE_PRIV_KERNEL)) == 0)
8361			return (0);
8362
8363		/*
8364		 * No matching bits, but there were bits to match...
8365		 */
8366		if (match == 0 && ppriv != 0)
8367			return (0);
8368
8369		/*
8370		 * Need to have permissions to the process, but don't...
8371		 */
8372		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8373		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8374			return (0);
8375		}
8376
8377		/*
8378		 * Need to be in the same zone unless we possess the
8379		 * privilege to examine all zones.
8380		 */
8381		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8382		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8383			return (0);
8384		}
8385	}
8386
8387	return (1);
8388}
8389
8390/*
8391 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8392 * consists of input pattern strings and an ops-vector to evaluate them.
8393 * This function returns >0 for match, 0 for no match, and <0 for error.
8394 */
8395static int
8396dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8397    uint32_t priv, uid_t uid, zoneid_t zoneid)
8398{
8399	dtrace_provider_t *pvp = prp->dtpr_provider;
8400	int rv;
8401
8402	if (pvp->dtpv_defunct)
8403		return (0);
8404
8405	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8406		return (rv);
8407
8408	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8409		return (rv);
8410
8411	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8412		return (rv);
8413
8414	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8415		return (rv);
8416
8417	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8418		return (0);
8419
8420	return (rv);
8421}
8422
8423/*
8424 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8425 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8426 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8427 * In addition, all of the recursion cases except for '*' matching have been
8428 * unwound.  For '*', we still implement recursive evaluation, but a depth
8429 * counter is maintained and matching is aborted if we recurse too deep.
8430 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8431 */
8432static int
8433dtrace_match_glob(const char *s, const char *p, int depth)
8434{
8435	const char *olds;
8436	char s1, c;
8437	int gs;
8438
8439	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8440		return (-1);
8441
8442	if (s == NULL)
8443		s = ""; /* treat NULL as empty string */
8444
8445top:
8446	olds = s;
8447	s1 = *s++;
8448
8449	if (p == NULL)
8450		return (0);
8451
8452	if ((c = *p++) == '\0')
8453		return (s1 == '\0');
8454
8455	switch (c) {
8456	case '[': {
8457		int ok = 0, notflag = 0;
8458		char lc = '\0';
8459
8460		if (s1 == '\0')
8461			return (0);
8462
8463		if (*p == '!') {
8464			notflag = 1;
8465			p++;
8466		}
8467
8468		if ((c = *p++) == '\0')
8469			return (0);
8470
8471		do {
8472			if (c == '-' && lc != '\0' && *p != ']') {
8473				if ((c = *p++) == '\0')
8474					return (0);
8475				if (c == '\\' && (c = *p++) == '\0')
8476					return (0);
8477
8478				if (notflag) {
8479					if (s1 < lc || s1 > c)
8480						ok++;
8481					else
8482						return (0);
8483				} else if (lc <= s1 && s1 <= c)
8484					ok++;
8485
8486			} else if (c == '\\' && (c = *p++) == '\0')
8487				return (0);
8488
8489			lc = c; /* save left-hand 'c' for next iteration */
8490
8491			if (notflag) {
8492				if (s1 != c)
8493					ok++;
8494				else
8495					return (0);
8496			} else if (s1 == c)
8497				ok++;
8498
8499			if ((c = *p++) == '\0')
8500				return (0);
8501
8502		} while (c != ']');
8503
8504		if (ok)
8505			goto top;
8506
8507		return (0);
8508	}
8509
8510	case '\\':
8511		if ((c = *p++) == '\0')
8512			return (0);
8513		/*FALLTHRU*/
8514
8515	default:
8516		if (c != s1)
8517			return (0);
8518		/*FALLTHRU*/
8519
8520	case '?':
8521		if (s1 != '\0')
8522			goto top;
8523		return (0);
8524
8525	case '*':
8526		while (*p == '*')
8527			p++; /* consecutive *'s are identical to a single one */
8528
8529		if (*p == '\0')
8530			return (1);
8531
8532		for (s = olds; *s != '\0'; s++) {
8533			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8534				return (gs);
8535		}
8536
8537		return (0);
8538	}
8539}
8540
8541/*ARGSUSED*/
8542static int
8543dtrace_match_string(const char *s, const char *p, int depth)
8544{
8545	return (s != NULL && strcmp(s, p) == 0);
8546}
8547
8548/*ARGSUSED*/
8549static int
8550dtrace_match_nul(const char *s, const char *p, int depth)
8551{
8552	return (1); /* always match the empty pattern */
8553}
8554
8555/*ARGSUSED*/
8556static int
8557dtrace_match_nonzero(const char *s, const char *p, int depth)
8558{
8559	return (s != NULL && s[0] != '\0');
8560}
8561
8562static int
8563dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8564    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8565{
8566	dtrace_probe_t template, *probe;
8567	dtrace_hash_t *hash = NULL;
8568	int len, best = INT_MAX, nmatched = 0;
8569	dtrace_id_t i;
8570
8571	ASSERT(MUTEX_HELD(&dtrace_lock));
8572
8573	/*
8574	 * If the probe ID is specified in the key, just lookup by ID and
8575	 * invoke the match callback once if a matching probe is found.
8576	 */
8577	if (pkp->dtpk_id != DTRACE_IDNONE) {
8578		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8579		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8580			(void) (*matched)(probe, arg);
8581			nmatched++;
8582		}
8583		return (nmatched);
8584	}
8585
8586	template.dtpr_mod = (char *)pkp->dtpk_mod;
8587	template.dtpr_func = (char *)pkp->dtpk_func;
8588	template.dtpr_name = (char *)pkp->dtpk_name;
8589
8590	/*
8591	 * We want to find the most distinct of the module name, function
8592	 * name, and name.  So for each one that is not a glob pattern or
8593	 * empty string, we perform a lookup in the corresponding hash and
8594	 * use the hash table with the fewest collisions to do our search.
8595	 */
8596	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8597	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8598		best = len;
8599		hash = dtrace_bymod;
8600	}
8601
8602	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8603	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8604		best = len;
8605		hash = dtrace_byfunc;
8606	}
8607
8608	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8609	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8610		best = len;
8611		hash = dtrace_byname;
8612	}
8613
8614	/*
8615	 * If we did not select a hash table, iterate over every probe and
8616	 * invoke our callback for each one that matches our input probe key.
8617	 */
8618	if (hash == NULL) {
8619		for (i = 0; i < dtrace_nprobes; i++) {
8620			if ((probe = dtrace_probes[i]) == NULL ||
8621			    dtrace_match_probe(probe, pkp, priv, uid,
8622			    zoneid) <= 0)
8623				continue;
8624
8625			nmatched++;
8626
8627			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8628				break;
8629		}
8630
8631		return (nmatched);
8632	}
8633
8634	/*
8635	 * If we selected a hash table, iterate over each probe of the same key
8636	 * name and invoke the callback for every probe that matches the other
8637	 * attributes of our input probe key.
8638	 */
8639	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8640	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8641
8642		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8643			continue;
8644
8645		nmatched++;
8646
8647		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8648			break;
8649	}
8650
8651	return (nmatched);
8652}
8653
8654/*
8655 * Return the function pointer dtrace_probecmp() should use to compare the
8656 * specified pattern with a string.  For NULL or empty patterns, we select
8657 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8658 * For non-empty non-glob strings, we use dtrace_match_string().
8659 */
8660static dtrace_probekey_f *
8661dtrace_probekey_func(const char *p)
8662{
8663	char c;
8664
8665	if (p == NULL || *p == '\0')
8666		return (&dtrace_match_nul);
8667
8668	while ((c = *p++) != '\0') {
8669		if (c == '[' || c == '?' || c == '*' || c == '\\')
8670			return (&dtrace_match_glob);
8671	}
8672
8673	return (&dtrace_match_string);
8674}
8675
8676/*
8677 * Build a probe comparison key for use with dtrace_match_probe() from the
8678 * given probe description.  By convention, a null key only matches anchored
8679 * probes: if each field is the empty string, reset dtpk_fmatch to
8680 * dtrace_match_nonzero().
8681 */
8682static void
8683dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8684{
8685	pkp->dtpk_prov = pdp->dtpd_provider;
8686	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8687
8688	pkp->dtpk_mod = pdp->dtpd_mod;
8689	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8690
8691	pkp->dtpk_func = pdp->dtpd_func;
8692	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8693
8694	pkp->dtpk_name = pdp->dtpd_name;
8695	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8696
8697	pkp->dtpk_id = pdp->dtpd_id;
8698
8699	if (pkp->dtpk_id == DTRACE_IDNONE &&
8700	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8701	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8702	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8703	    pkp->dtpk_nmatch == &dtrace_match_nul)
8704		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8705}
8706
8707/*
8708 * DTrace Provider-to-Framework API Functions
8709 *
8710 * These functions implement much of the Provider-to-Framework API, as
8711 * described in <sys/dtrace.h>.  The parts of the API not in this section are
8712 * the functions in the API for probe management (found below), and
8713 * dtrace_probe() itself (found above).
8714 */
8715
8716/*
8717 * Register the calling provider with the DTrace framework.  This should
8718 * generally be called by DTrace providers in their attach(9E) entry point.
8719 */
8720int
8721dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8722    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8723{
8724	dtrace_provider_t *provider;
8725
8726	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8727		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8728		    "arguments", name ? name : "<NULL>");
8729		return (EINVAL);
8730	}
8731
8732	if (name[0] == '\0' || dtrace_badname(name)) {
8733		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8734		    "provider name", name);
8735		return (EINVAL);
8736	}
8737
8738	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8739	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8740	    pops->dtps_destroy == NULL ||
8741	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8742		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8743		    "provider ops", name);
8744		return (EINVAL);
8745	}
8746
8747	if (dtrace_badattr(&pap->dtpa_provider) ||
8748	    dtrace_badattr(&pap->dtpa_mod) ||
8749	    dtrace_badattr(&pap->dtpa_func) ||
8750	    dtrace_badattr(&pap->dtpa_name) ||
8751	    dtrace_badattr(&pap->dtpa_args)) {
8752		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8753		    "provider attributes", name);
8754		return (EINVAL);
8755	}
8756
8757	if (priv & ~DTRACE_PRIV_ALL) {
8758		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8759		    "privilege attributes", name);
8760		return (EINVAL);
8761	}
8762
8763	if ((priv & DTRACE_PRIV_KERNEL) &&
8764	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8765	    pops->dtps_usermode == NULL) {
8766		cmn_err(CE_WARN, "failed to register provider '%s': need "
8767		    "dtps_usermode() op for given privilege attributes", name);
8768		return (EINVAL);
8769	}
8770
8771	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8772	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8773	(void) strcpy(provider->dtpv_name, name);
8774
8775	provider->dtpv_attr = *pap;
8776	provider->dtpv_priv.dtpp_flags = priv;
8777	if (cr != NULL) {
8778		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8779		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8780	}
8781	provider->dtpv_pops = *pops;
8782
8783	if (pops->dtps_provide == NULL) {
8784		ASSERT(pops->dtps_provide_module != NULL);
8785		provider->dtpv_pops.dtps_provide =
8786		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8787	}
8788
8789	if (pops->dtps_provide_module == NULL) {
8790		ASSERT(pops->dtps_provide != NULL);
8791		provider->dtpv_pops.dtps_provide_module =
8792		    (void (*)(void *, modctl_t *))dtrace_nullop;
8793	}
8794
8795	if (pops->dtps_suspend == NULL) {
8796		ASSERT(pops->dtps_resume == NULL);
8797		provider->dtpv_pops.dtps_suspend =
8798		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8799		provider->dtpv_pops.dtps_resume =
8800		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8801	}
8802
8803	provider->dtpv_arg = arg;
8804	*idp = (dtrace_provider_id_t)provider;
8805
8806	if (pops == &dtrace_provider_ops) {
8807		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8808		ASSERT(MUTEX_HELD(&dtrace_lock));
8809		ASSERT(dtrace_anon.dta_enabling == NULL);
8810
8811		/*
8812		 * We make sure that the DTrace provider is at the head of
8813		 * the provider chain.
8814		 */
8815		provider->dtpv_next = dtrace_provider;
8816		dtrace_provider = provider;
8817		return (0);
8818	}
8819
8820	mutex_enter(&dtrace_provider_lock);
8821	mutex_enter(&dtrace_lock);
8822
8823	/*
8824	 * If there is at least one provider registered, we'll add this
8825	 * provider after the first provider.
8826	 */
8827	if (dtrace_provider != NULL) {
8828		provider->dtpv_next = dtrace_provider->dtpv_next;
8829		dtrace_provider->dtpv_next = provider;
8830	} else {
8831		dtrace_provider = provider;
8832	}
8833
8834	if (dtrace_retained != NULL) {
8835		dtrace_enabling_provide(provider);
8836
8837		/*
8838		 * Now we need to call dtrace_enabling_matchall() -- which
8839		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8840		 * to drop all of our locks before calling into it...
8841		 */
8842		mutex_exit(&dtrace_lock);
8843		mutex_exit(&dtrace_provider_lock);
8844		dtrace_enabling_matchall();
8845
8846		return (0);
8847	}
8848
8849	mutex_exit(&dtrace_lock);
8850	mutex_exit(&dtrace_provider_lock);
8851
8852	return (0);
8853}
8854
8855/*
8856 * Unregister the specified provider from the DTrace framework.  This should
8857 * generally be called by DTrace providers in their detach(9E) entry point.
8858 */
8859int
8860dtrace_unregister(dtrace_provider_id_t id)
8861{
8862	dtrace_provider_t *old = (dtrace_provider_t *)id;
8863	dtrace_provider_t *prev = NULL;
8864	int i, self = 0, noreap = 0;
8865	dtrace_probe_t *probe, *first = NULL;
8866
8867	if (old->dtpv_pops.dtps_enable ==
8868	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8869		/*
8870		 * If DTrace itself is the provider, we're called with locks
8871		 * already held.
8872		 */
8873		ASSERT(old == dtrace_provider);
8874#ifdef illumos
8875		ASSERT(dtrace_devi != NULL);
8876#endif
8877		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8878		ASSERT(MUTEX_HELD(&dtrace_lock));
8879		self = 1;
8880
8881		if (dtrace_provider->dtpv_next != NULL) {
8882			/*
8883			 * There's another provider here; return failure.
8884			 */
8885			return (EBUSY);
8886		}
8887	} else {
8888		mutex_enter(&dtrace_provider_lock);
8889#ifdef illumos
8890		mutex_enter(&mod_lock);
8891#endif
8892		mutex_enter(&dtrace_lock);
8893	}
8894
8895	/*
8896	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8897	 * probes, we refuse to let providers slither away, unless this
8898	 * provider has already been explicitly invalidated.
8899	 */
8900	if (!old->dtpv_defunct &&
8901	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8902	    dtrace_anon.dta_state->dts_necbs > 0))) {
8903		if (!self) {
8904			mutex_exit(&dtrace_lock);
8905#ifdef illumos
8906			mutex_exit(&mod_lock);
8907#endif
8908			mutex_exit(&dtrace_provider_lock);
8909		}
8910		return (EBUSY);
8911	}
8912
8913	/*
8914	 * Attempt to destroy the probes associated with this provider.
8915	 */
8916	for (i = 0; i < dtrace_nprobes; i++) {
8917		if ((probe = dtrace_probes[i]) == NULL)
8918			continue;
8919
8920		if (probe->dtpr_provider != old)
8921			continue;
8922
8923		if (probe->dtpr_ecb == NULL)
8924			continue;
8925
8926		/*
8927		 * If we are trying to unregister a defunct provider, and the
8928		 * provider was made defunct within the interval dictated by
8929		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8930		 * attempt to reap our enablings.  To denote that the provider
8931		 * should reattempt to unregister itself at some point in the
8932		 * future, we will return a differentiable error code (EAGAIN
8933		 * instead of EBUSY) in this case.
8934		 */
8935		if (dtrace_gethrtime() - old->dtpv_defunct >
8936		    dtrace_unregister_defunct_reap)
8937			noreap = 1;
8938
8939		if (!self) {
8940			mutex_exit(&dtrace_lock);
8941#ifdef illumos
8942			mutex_exit(&mod_lock);
8943#endif
8944			mutex_exit(&dtrace_provider_lock);
8945		}
8946
8947		if (noreap)
8948			return (EBUSY);
8949
8950		(void) taskq_dispatch(dtrace_taskq,
8951		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8952
8953		return (EAGAIN);
8954	}
8955
8956	/*
8957	 * All of the probes for this provider are disabled; we can safely
8958	 * remove all of them from their hash chains and from the probe array.
8959	 */
8960	for (i = 0; i < dtrace_nprobes; i++) {
8961		if ((probe = dtrace_probes[i]) == NULL)
8962			continue;
8963
8964		if (probe->dtpr_provider != old)
8965			continue;
8966
8967		dtrace_probes[i] = NULL;
8968
8969		dtrace_hash_remove(dtrace_bymod, probe);
8970		dtrace_hash_remove(dtrace_byfunc, probe);
8971		dtrace_hash_remove(dtrace_byname, probe);
8972
8973		if (first == NULL) {
8974			first = probe;
8975			probe->dtpr_nextmod = NULL;
8976		} else {
8977			probe->dtpr_nextmod = first;
8978			first = probe;
8979		}
8980	}
8981
8982	/*
8983	 * The provider's probes have been removed from the hash chains and
8984	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8985	 * everyone has cleared out from any probe array processing.
8986	 */
8987	dtrace_sync();
8988
8989	for (probe = first; probe != NULL; probe = first) {
8990		first = probe->dtpr_nextmod;
8991
8992		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8993		    probe->dtpr_arg);
8994		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8995		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8996		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8997#ifdef illumos
8998		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8999#else
9000		free_unr(dtrace_arena, probe->dtpr_id);
9001#endif
9002		kmem_free(probe, sizeof (dtrace_probe_t));
9003	}
9004
9005	if ((prev = dtrace_provider) == old) {
9006#ifdef illumos
9007		ASSERT(self || dtrace_devi == NULL);
9008		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
9009#endif
9010		dtrace_provider = old->dtpv_next;
9011	} else {
9012		while (prev != NULL && prev->dtpv_next != old)
9013			prev = prev->dtpv_next;
9014
9015		if (prev == NULL) {
9016			panic("attempt to unregister non-existent "
9017			    "dtrace provider %p\n", (void *)id);
9018		}
9019
9020		prev->dtpv_next = old->dtpv_next;
9021	}
9022
9023	if (!self) {
9024		mutex_exit(&dtrace_lock);
9025#ifdef illumos
9026		mutex_exit(&mod_lock);
9027#endif
9028		mutex_exit(&dtrace_provider_lock);
9029	}
9030
9031	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9032	kmem_free(old, sizeof (dtrace_provider_t));
9033
9034	return (0);
9035}
9036
9037/*
9038 * Invalidate the specified provider.  All subsequent probe lookups for the
9039 * specified provider will fail, but its probes will not be removed.
9040 */
9041void
9042dtrace_invalidate(dtrace_provider_id_t id)
9043{
9044	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9045
9046	ASSERT(pvp->dtpv_pops.dtps_enable !=
9047	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9048
9049	mutex_enter(&dtrace_provider_lock);
9050	mutex_enter(&dtrace_lock);
9051
9052	pvp->dtpv_defunct = dtrace_gethrtime();
9053
9054	mutex_exit(&dtrace_lock);
9055	mutex_exit(&dtrace_provider_lock);
9056}
9057
9058/*
9059 * Indicate whether or not DTrace has attached.
9060 */
9061int
9062dtrace_attached(void)
9063{
9064	/*
9065	 * dtrace_provider will be non-NULL iff the DTrace driver has
9066	 * attached.  (It's non-NULL because DTrace is always itself a
9067	 * provider.)
9068	 */
9069	return (dtrace_provider != NULL);
9070}
9071
9072/*
9073 * Remove all the unenabled probes for the given provider.  This function is
9074 * not unlike dtrace_unregister(), except that it doesn't remove the provider
9075 * -- just as many of its associated probes as it can.
9076 */
9077int
9078dtrace_condense(dtrace_provider_id_t id)
9079{
9080	dtrace_provider_t *prov = (dtrace_provider_t *)id;
9081	int i;
9082	dtrace_probe_t *probe;
9083
9084	/*
9085	 * Make sure this isn't the dtrace provider itself.
9086	 */
9087	ASSERT(prov->dtpv_pops.dtps_enable !=
9088	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9089
9090	mutex_enter(&dtrace_provider_lock);
9091	mutex_enter(&dtrace_lock);
9092
9093	/*
9094	 * Attempt to destroy the probes associated with this provider.
9095	 */
9096	for (i = 0; i < dtrace_nprobes; i++) {
9097		if ((probe = dtrace_probes[i]) == NULL)
9098			continue;
9099
9100		if (probe->dtpr_provider != prov)
9101			continue;
9102
9103		if (probe->dtpr_ecb != NULL)
9104			continue;
9105
9106		dtrace_probes[i] = NULL;
9107
9108		dtrace_hash_remove(dtrace_bymod, probe);
9109		dtrace_hash_remove(dtrace_byfunc, probe);
9110		dtrace_hash_remove(dtrace_byname, probe);
9111
9112		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9113		    probe->dtpr_arg);
9114		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9115		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9116		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9117		kmem_free(probe, sizeof (dtrace_probe_t));
9118#ifdef illumos
9119		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9120#else
9121		free_unr(dtrace_arena, i + 1);
9122#endif
9123	}
9124
9125	mutex_exit(&dtrace_lock);
9126	mutex_exit(&dtrace_provider_lock);
9127
9128	return (0);
9129}
9130
9131/*
9132 * DTrace Probe Management Functions
9133 *
9134 * The functions in this section perform the DTrace probe management,
9135 * including functions to create probes, look-up probes, and call into the
9136 * providers to request that probes be provided.  Some of these functions are
9137 * in the Provider-to-Framework API; these functions can be identified by the
9138 * fact that they are not declared "static".
9139 */
9140
9141/*
9142 * Create a probe with the specified module name, function name, and name.
9143 */
9144dtrace_id_t
9145dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9146    const char *func, const char *name, int aframes, void *arg)
9147{
9148	dtrace_probe_t *probe, **probes;
9149	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9150	dtrace_id_t id;
9151
9152	if (provider == dtrace_provider) {
9153		ASSERT(MUTEX_HELD(&dtrace_lock));
9154	} else {
9155		mutex_enter(&dtrace_lock);
9156	}
9157
9158#ifdef illumos
9159	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9160	    VM_BESTFIT | VM_SLEEP);
9161#else
9162	id = alloc_unr(dtrace_arena);
9163#endif
9164	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9165
9166	probe->dtpr_id = id;
9167	probe->dtpr_gen = dtrace_probegen++;
9168	probe->dtpr_mod = dtrace_strdup(mod);
9169	probe->dtpr_func = dtrace_strdup(func);
9170	probe->dtpr_name = dtrace_strdup(name);
9171	probe->dtpr_arg = arg;
9172	probe->dtpr_aframes = aframes;
9173	probe->dtpr_provider = provider;
9174
9175	dtrace_hash_add(dtrace_bymod, probe);
9176	dtrace_hash_add(dtrace_byfunc, probe);
9177	dtrace_hash_add(dtrace_byname, probe);
9178
9179	if (id - 1 >= dtrace_nprobes) {
9180		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9181		size_t nsize = osize << 1;
9182
9183		if (nsize == 0) {
9184			ASSERT(osize == 0);
9185			ASSERT(dtrace_probes == NULL);
9186			nsize = sizeof (dtrace_probe_t *);
9187		}
9188
9189		probes = kmem_zalloc(nsize, KM_SLEEP);
9190
9191		if (dtrace_probes == NULL) {
9192			ASSERT(osize == 0);
9193			dtrace_probes = probes;
9194			dtrace_nprobes = 1;
9195		} else {
9196			dtrace_probe_t **oprobes = dtrace_probes;
9197
9198			bcopy(oprobes, probes, osize);
9199			dtrace_membar_producer();
9200			dtrace_probes = probes;
9201
9202			dtrace_sync();
9203
9204			/*
9205			 * All CPUs are now seeing the new probes array; we can
9206			 * safely free the old array.
9207			 */
9208			kmem_free(oprobes, osize);
9209			dtrace_nprobes <<= 1;
9210		}
9211
9212		ASSERT(id - 1 < dtrace_nprobes);
9213	}
9214
9215	ASSERT(dtrace_probes[id - 1] == NULL);
9216	dtrace_probes[id - 1] = probe;
9217
9218	if (provider != dtrace_provider)
9219		mutex_exit(&dtrace_lock);
9220
9221	return (id);
9222}
9223
9224static dtrace_probe_t *
9225dtrace_probe_lookup_id(dtrace_id_t id)
9226{
9227	ASSERT(MUTEX_HELD(&dtrace_lock));
9228
9229	if (id == 0 || id > dtrace_nprobes)
9230		return (NULL);
9231
9232	return (dtrace_probes[id - 1]);
9233}
9234
9235static int
9236dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9237{
9238	*((dtrace_id_t *)arg) = probe->dtpr_id;
9239
9240	return (DTRACE_MATCH_DONE);
9241}
9242
9243/*
9244 * Look up a probe based on provider and one or more of module name, function
9245 * name and probe name.
9246 */
9247dtrace_id_t
9248dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9249    char *func, char *name)
9250{
9251	dtrace_probekey_t pkey;
9252	dtrace_id_t id;
9253	int match;
9254
9255	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9256	pkey.dtpk_pmatch = &dtrace_match_string;
9257	pkey.dtpk_mod = mod;
9258	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9259	pkey.dtpk_func = func;
9260	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9261	pkey.dtpk_name = name;
9262	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9263	pkey.dtpk_id = DTRACE_IDNONE;
9264
9265	mutex_enter(&dtrace_lock);
9266	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9267	    dtrace_probe_lookup_match, &id);
9268	mutex_exit(&dtrace_lock);
9269
9270	ASSERT(match == 1 || match == 0);
9271	return (match ? id : 0);
9272}
9273
9274/*
9275 * Returns the probe argument associated with the specified probe.
9276 */
9277void *
9278dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9279{
9280	dtrace_probe_t *probe;
9281	void *rval = NULL;
9282
9283	mutex_enter(&dtrace_lock);
9284
9285	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9286	    probe->dtpr_provider == (dtrace_provider_t *)id)
9287		rval = probe->dtpr_arg;
9288
9289	mutex_exit(&dtrace_lock);
9290
9291	return (rval);
9292}
9293
9294/*
9295 * Copy a probe into a probe description.
9296 */
9297static void
9298dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9299{
9300	bzero(pdp, sizeof (dtrace_probedesc_t));
9301	pdp->dtpd_id = prp->dtpr_id;
9302
9303	(void) strncpy(pdp->dtpd_provider,
9304	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9305
9306	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9307	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9308	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9309}
9310
9311/*
9312 * Called to indicate that a probe -- or probes -- should be provided by a
9313 * specfied provider.  If the specified description is NULL, the provider will
9314 * be told to provide all of its probes.  (This is done whenever a new
9315 * consumer comes along, or whenever a retained enabling is to be matched.) If
9316 * the specified description is non-NULL, the provider is given the
9317 * opportunity to dynamically provide the specified probe, allowing providers
9318 * to support the creation of probes on-the-fly.  (So-called _autocreated_
9319 * probes.)  If the provider is NULL, the operations will be applied to all
9320 * providers; if the provider is non-NULL the operations will only be applied
9321 * to the specified provider.  The dtrace_provider_lock must be held, and the
9322 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9323 * will need to grab the dtrace_lock when it reenters the framework through
9324 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9325 */
9326static void
9327dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9328{
9329#ifdef illumos
9330	modctl_t *ctl;
9331#endif
9332	int all = 0;
9333
9334	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9335
9336	if (prv == NULL) {
9337		all = 1;
9338		prv = dtrace_provider;
9339	}
9340
9341	do {
9342		/*
9343		 * First, call the blanket provide operation.
9344		 */
9345		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9346
9347#ifdef illumos
9348		/*
9349		 * Now call the per-module provide operation.  We will grab
9350		 * mod_lock to prevent the list from being modified.  Note
9351		 * that this also prevents the mod_busy bits from changing.
9352		 * (mod_busy can only be changed with mod_lock held.)
9353		 */
9354		mutex_enter(&mod_lock);
9355
9356		ctl = &modules;
9357		do {
9358			if (ctl->mod_busy || ctl->mod_mp == NULL)
9359				continue;
9360
9361			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9362
9363		} while ((ctl = ctl->mod_next) != &modules);
9364
9365		mutex_exit(&mod_lock);
9366#endif
9367	} while (all && (prv = prv->dtpv_next) != NULL);
9368}
9369
9370#ifdef illumos
9371/*
9372 * Iterate over each probe, and call the Framework-to-Provider API function
9373 * denoted by offs.
9374 */
9375static void
9376dtrace_probe_foreach(uintptr_t offs)
9377{
9378	dtrace_provider_t *prov;
9379	void (*func)(void *, dtrace_id_t, void *);
9380	dtrace_probe_t *probe;
9381	dtrace_icookie_t cookie;
9382	int i;
9383
9384	/*
9385	 * We disable interrupts to walk through the probe array.  This is
9386	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9387	 * won't see stale data.
9388	 */
9389	cookie = dtrace_interrupt_disable();
9390
9391	for (i = 0; i < dtrace_nprobes; i++) {
9392		if ((probe = dtrace_probes[i]) == NULL)
9393			continue;
9394
9395		if (probe->dtpr_ecb == NULL) {
9396			/*
9397			 * This probe isn't enabled -- don't call the function.
9398			 */
9399			continue;
9400		}
9401
9402		prov = probe->dtpr_provider;
9403		func = *((void(**)(void *, dtrace_id_t, void *))
9404		    ((uintptr_t)&prov->dtpv_pops + offs));
9405
9406		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9407	}
9408
9409	dtrace_interrupt_enable(cookie);
9410}
9411#endif
9412
9413static int
9414dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9415{
9416	dtrace_probekey_t pkey;
9417	uint32_t priv;
9418	uid_t uid;
9419	zoneid_t zoneid;
9420
9421	ASSERT(MUTEX_HELD(&dtrace_lock));
9422	dtrace_ecb_create_cache = NULL;
9423
9424	if (desc == NULL) {
9425		/*
9426		 * If we're passed a NULL description, we're being asked to
9427		 * create an ECB with a NULL probe.
9428		 */
9429		(void) dtrace_ecb_create_enable(NULL, enab);
9430		return (0);
9431	}
9432
9433	dtrace_probekey(desc, &pkey);
9434	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9435	    &priv, &uid, &zoneid);
9436
9437	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9438	    enab));
9439}
9440
9441/*
9442 * DTrace Helper Provider Functions
9443 */
9444static void
9445dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9446{
9447	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9448	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9449	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9450}
9451
9452static void
9453dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9454    const dof_provider_t *dofprov, char *strtab)
9455{
9456	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9457	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9458	    dofprov->dofpv_provattr);
9459	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9460	    dofprov->dofpv_modattr);
9461	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9462	    dofprov->dofpv_funcattr);
9463	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9464	    dofprov->dofpv_nameattr);
9465	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9466	    dofprov->dofpv_argsattr);
9467}
9468
9469static void
9470dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9471{
9472	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9473	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9474	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9475	dof_provider_t *provider;
9476	dof_probe_t *probe;
9477	uint32_t *off, *enoff;
9478	uint8_t *arg;
9479	char *strtab;
9480	uint_t i, nprobes;
9481	dtrace_helper_provdesc_t dhpv;
9482	dtrace_helper_probedesc_t dhpb;
9483	dtrace_meta_t *meta = dtrace_meta_pid;
9484	dtrace_mops_t *mops = &meta->dtm_mops;
9485	void *parg;
9486
9487	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9488	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9489	    provider->dofpv_strtab * dof->dofh_secsize);
9490	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9491	    provider->dofpv_probes * dof->dofh_secsize);
9492	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9493	    provider->dofpv_prargs * dof->dofh_secsize);
9494	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9495	    provider->dofpv_proffs * dof->dofh_secsize);
9496
9497	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9498	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9499	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9500	enoff = NULL;
9501
9502	/*
9503	 * See dtrace_helper_provider_validate().
9504	 */
9505	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9506	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9507		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9508		    provider->dofpv_prenoffs * dof->dofh_secsize);
9509		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9510	}
9511
9512	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9513
9514	/*
9515	 * Create the provider.
9516	 */
9517	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9518
9519	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9520		return;
9521
9522	meta->dtm_count++;
9523
9524	/*
9525	 * Create the probes.
9526	 */
9527	for (i = 0; i < nprobes; i++) {
9528		probe = (dof_probe_t *)(uintptr_t)(daddr +
9529		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9530
9531		/* See the check in dtrace_helper_provider_validate(). */
9532		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9533			continue;
9534
9535		dhpb.dthpb_mod = dhp->dofhp_mod;
9536		dhpb.dthpb_func = strtab + probe->dofpr_func;
9537		dhpb.dthpb_name = strtab + probe->dofpr_name;
9538		dhpb.dthpb_base = probe->dofpr_addr;
9539		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9540		dhpb.dthpb_noffs = probe->dofpr_noffs;
9541		if (enoff != NULL) {
9542			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9543			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9544		} else {
9545			dhpb.dthpb_enoffs = NULL;
9546			dhpb.dthpb_nenoffs = 0;
9547		}
9548		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9549		dhpb.dthpb_nargc = probe->dofpr_nargc;
9550		dhpb.dthpb_xargc = probe->dofpr_xargc;
9551		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9552		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9553
9554		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9555	}
9556}
9557
9558static void
9559dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9560{
9561	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9562	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9563	int i;
9564
9565	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9566
9567	for (i = 0; i < dof->dofh_secnum; i++) {
9568		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9569		    dof->dofh_secoff + i * dof->dofh_secsize);
9570
9571		if (sec->dofs_type != DOF_SECT_PROVIDER)
9572			continue;
9573
9574		dtrace_helper_provide_one(dhp, sec, pid);
9575	}
9576
9577	/*
9578	 * We may have just created probes, so we must now rematch against
9579	 * any retained enablings.  Note that this call will acquire both
9580	 * cpu_lock and dtrace_lock; the fact that we are holding
9581	 * dtrace_meta_lock now is what defines the ordering with respect to
9582	 * these three locks.
9583	 */
9584	dtrace_enabling_matchall();
9585}
9586
9587static void
9588dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9589{
9590	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9591	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9592	dof_sec_t *str_sec;
9593	dof_provider_t *provider;
9594	char *strtab;
9595	dtrace_helper_provdesc_t dhpv;
9596	dtrace_meta_t *meta = dtrace_meta_pid;
9597	dtrace_mops_t *mops = &meta->dtm_mops;
9598
9599	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9600	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9601	    provider->dofpv_strtab * dof->dofh_secsize);
9602
9603	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9604
9605	/*
9606	 * Create the provider.
9607	 */
9608	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9609
9610	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9611
9612	meta->dtm_count--;
9613}
9614
9615static void
9616dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9617{
9618	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9619	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9620	int i;
9621
9622	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9623
9624	for (i = 0; i < dof->dofh_secnum; i++) {
9625		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9626		    dof->dofh_secoff + i * dof->dofh_secsize);
9627
9628		if (sec->dofs_type != DOF_SECT_PROVIDER)
9629			continue;
9630
9631		dtrace_helper_provider_remove_one(dhp, sec, pid);
9632	}
9633}
9634
9635/*
9636 * DTrace Meta Provider-to-Framework API Functions
9637 *
9638 * These functions implement the Meta Provider-to-Framework API, as described
9639 * in <sys/dtrace.h>.
9640 */
9641int
9642dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9643    dtrace_meta_provider_id_t *idp)
9644{
9645	dtrace_meta_t *meta;
9646	dtrace_helpers_t *help, *next;
9647	int i;
9648
9649	*idp = DTRACE_METAPROVNONE;
9650
9651	/*
9652	 * We strictly don't need the name, but we hold onto it for
9653	 * debuggability. All hail error queues!
9654	 */
9655	if (name == NULL) {
9656		cmn_err(CE_WARN, "failed to register meta-provider: "
9657		    "invalid name");
9658		return (EINVAL);
9659	}
9660
9661	if (mops == NULL ||
9662	    mops->dtms_create_probe == NULL ||
9663	    mops->dtms_provide_pid == NULL ||
9664	    mops->dtms_remove_pid == NULL) {
9665		cmn_err(CE_WARN, "failed to register meta-register %s: "
9666		    "invalid ops", name);
9667		return (EINVAL);
9668	}
9669
9670	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9671	meta->dtm_mops = *mops;
9672	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9673	(void) strcpy(meta->dtm_name, name);
9674	meta->dtm_arg = arg;
9675
9676	mutex_enter(&dtrace_meta_lock);
9677	mutex_enter(&dtrace_lock);
9678
9679	if (dtrace_meta_pid != NULL) {
9680		mutex_exit(&dtrace_lock);
9681		mutex_exit(&dtrace_meta_lock);
9682		cmn_err(CE_WARN, "failed to register meta-register %s: "
9683		    "user-land meta-provider exists", name);
9684		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9685		kmem_free(meta, sizeof (dtrace_meta_t));
9686		return (EINVAL);
9687	}
9688
9689	dtrace_meta_pid = meta;
9690	*idp = (dtrace_meta_provider_id_t)meta;
9691
9692	/*
9693	 * If there are providers and probes ready to go, pass them
9694	 * off to the new meta provider now.
9695	 */
9696
9697	help = dtrace_deferred_pid;
9698	dtrace_deferred_pid = NULL;
9699
9700	mutex_exit(&dtrace_lock);
9701
9702	while (help != NULL) {
9703		for (i = 0; i < help->dthps_nprovs; i++) {
9704			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9705			    help->dthps_pid);
9706		}
9707
9708		next = help->dthps_next;
9709		help->dthps_next = NULL;
9710		help->dthps_prev = NULL;
9711		help->dthps_deferred = 0;
9712		help = next;
9713	}
9714
9715	mutex_exit(&dtrace_meta_lock);
9716
9717	return (0);
9718}
9719
9720int
9721dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9722{
9723	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9724
9725	mutex_enter(&dtrace_meta_lock);
9726	mutex_enter(&dtrace_lock);
9727
9728	if (old == dtrace_meta_pid) {
9729		pp = &dtrace_meta_pid;
9730	} else {
9731		panic("attempt to unregister non-existent "
9732		    "dtrace meta-provider %p\n", (void *)old);
9733	}
9734
9735	if (old->dtm_count != 0) {
9736		mutex_exit(&dtrace_lock);
9737		mutex_exit(&dtrace_meta_lock);
9738		return (EBUSY);
9739	}
9740
9741	*pp = NULL;
9742
9743	mutex_exit(&dtrace_lock);
9744	mutex_exit(&dtrace_meta_lock);
9745
9746	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9747	kmem_free(old, sizeof (dtrace_meta_t));
9748
9749	return (0);
9750}
9751
9752
9753/*
9754 * DTrace DIF Object Functions
9755 */
9756static int
9757dtrace_difo_err(uint_t pc, const char *format, ...)
9758{
9759	if (dtrace_err_verbose) {
9760		va_list alist;
9761
9762		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9763		va_start(alist, format);
9764		(void) vuprintf(format, alist);
9765		va_end(alist);
9766	}
9767
9768#ifdef DTRACE_ERRDEBUG
9769	dtrace_errdebug(format);
9770#endif
9771	return (1);
9772}
9773
9774/*
9775 * Validate a DTrace DIF object by checking the IR instructions.  The following
9776 * rules are currently enforced by dtrace_difo_validate():
9777 *
9778 * 1. Each instruction must have a valid opcode
9779 * 2. Each register, string, variable, or subroutine reference must be valid
9780 * 3. No instruction can modify register %r0 (must be zero)
9781 * 4. All instruction reserved bits must be set to zero
9782 * 5. The last instruction must be a "ret" instruction
9783 * 6. All branch targets must reference a valid instruction _after_ the branch
9784 */
9785static int
9786dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9787    cred_t *cr)
9788{
9789	int err = 0, i;
9790	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9791	int kcheckload;
9792	uint_t pc;
9793	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9794
9795	kcheckload = cr == NULL ||
9796	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9797
9798	dp->dtdo_destructive = 0;
9799
9800	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9801		dif_instr_t instr = dp->dtdo_buf[pc];
9802
9803		uint_t r1 = DIF_INSTR_R1(instr);
9804		uint_t r2 = DIF_INSTR_R2(instr);
9805		uint_t rd = DIF_INSTR_RD(instr);
9806		uint_t rs = DIF_INSTR_RS(instr);
9807		uint_t label = DIF_INSTR_LABEL(instr);
9808		uint_t v = DIF_INSTR_VAR(instr);
9809		uint_t subr = DIF_INSTR_SUBR(instr);
9810		uint_t type = DIF_INSTR_TYPE(instr);
9811		uint_t op = DIF_INSTR_OP(instr);
9812
9813		switch (op) {
9814		case DIF_OP_OR:
9815		case DIF_OP_XOR:
9816		case DIF_OP_AND:
9817		case DIF_OP_SLL:
9818		case DIF_OP_SRL:
9819		case DIF_OP_SRA:
9820		case DIF_OP_SUB:
9821		case DIF_OP_ADD:
9822		case DIF_OP_MUL:
9823		case DIF_OP_SDIV:
9824		case DIF_OP_UDIV:
9825		case DIF_OP_SREM:
9826		case DIF_OP_UREM:
9827		case DIF_OP_COPYS:
9828			if (r1 >= nregs)
9829				err += efunc(pc, "invalid register %u\n", r1);
9830			if (r2 >= nregs)
9831				err += efunc(pc, "invalid register %u\n", r2);
9832			if (rd >= nregs)
9833				err += efunc(pc, "invalid register %u\n", rd);
9834			if (rd == 0)
9835				err += efunc(pc, "cannot write to %%r0\n");
9836			break;
9837		case DIF_OP_NOT:
9838		case DIF_OP_MOV:
9839		case DIF_OP_ALLOCS:
9840			if (r1 >= nregs)
9841				err += efunc(pc, "invalid register %u\n", r1);
9842			if (r2 != 0)
9843				err += efunc(pc, "non-zero reserved bits\n");
9844			if (rd >= nregs)
9845				err += efunc(pc, "invalid register %u\n", rd);
9846			if (rd == 0)
9847				err += efunc(pc, "cannot write to %%r0\n");
9848			break;
9849		case DIF_OP_LDSB:
9850		case DIF_OP_LDSH:
9851		case DIF_OP_LDSW:
9852		case DIF_OP_LDUB:
9853		case DIF_OP_LDUH:
9854		case DIF_OP_LDUW:
9855		case DIF_OP_LDX:
9856			if (r1 >= nregs)
9857				err += efunc(pc, "invalid register %u\n", r1);
9858			if (r2 != 0)
9859				err += efunc(pc, "non-zero reserved bits\n");
9860			if (rd >= nregs)
9861				err += efunc(pc, "invalid register %u\n", rd);
9862			if (rd == 0)
9863				err += efunc(pc, "cannot write to %%r0\n");
9864			if (kcheckload)
9865				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9866				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9867			break;
9868		case DIF_OP_RLDSB:
9869		case DIF_OP_RLDSH:
9870		case DIF_OP_RLDSW:
9871		case DIF_OP_RLDUB:
9872		case DIF_OP_RLDUH:
9873		case DIF_OP_RLDUW:
9874		case DIF_OP_RLDX:
9875			if (r1 >= nregs)
9876				err += efunc(pc, "invalid register %u\n", r1);
9877			if (r2 != 0)
9878				err += efunc(pc, "non-zero reserved bits\n");
9879			if (rd >= nregs)
9880				err += efunc(pc, "invalid register %u\n", rd);
9881			if (rd == 0)
9882				err += efunc(pc, "cannot write to %%r0\n");
9883			break;
9884		case DIF_OP_ULDSB:
9885		case DIF_OP_ULDSH:
9886		case DIF_OP_ULDSW:
9887		case DIF_OP_ULDUB:
9888		case DIF_OP_ULDUH:
9889		case DIF_OP_ULDUW:
9890		case DIF_OP_ULDX:
9891			if (r1 >= nregs)
9892				err += efunc(pc, "invalid register %u\n", r1);
9893			if (r2 != 0)
9894				err += efunc(pc, "non-zero reserved bits\n");
9895			if (rd >= nregs)
9896				err += efunc(pc, "invalid register %u\n", rd);
9897			if (rd == 0)
9898				err += efunc(pc, "cannot write to %%r0\n");
9899			break;
9900		case DIF_OP_STB:
9901		case DIF_OP_STH:
9902		case DIF_OP_STW:
9903		case DIF_OP_STX:
9904			if (r1 >= nregs)
9905				err += efunc(pc, "invalid register %u\n", r1);
9906			if (r2 != 0)
9907				err += efunc(pc, "non-zero reserved bits\n");
9908			if (rd >= nregs)
9909				err += efunc(pc, "invalid register %u\n", rd);
9910			if (rd == 0)
9911				err += efunc(pc, "cannot write to 0 address\n");
9912			break;
9913		case DIF_OP_CMP:
9914		case DIF_OP_SCMP:
9915			if (r1 >= nregs)
9916				err += efunc(pc, "invalid register %u\n", r1);
9917			if (r2 >= nregs)
9918				err += efunc(pc, "invalid register %u\n", r2);
9919			if (rd != 0)
9920				err += efunc(pc, "non-zero reserved bits\n");
9921			break;
9922		case DIF_OP_TST:
9923			if (r1 >= nregs)
9924				err += efunc(pc, "invalid register %u\n", r1);
9925			if (r2 != 0 || rd != 0)
9926				err += efunc(pc, "non-zero reserved bits\n");
9927			break;
9928		case DIF_OP_BA:
9929		case DIF_OP_BE:
9930		case DIF_OP_BNE:
9931		case DIF_OP_BG:
9932		case DIF_OP_BGU:
9933		case DIF_OP_BGE:
9934		case DIF_OP_BGEU:
9935		case DIF_OP_BL:
9936		case DIF_OP_BLU:
9937		case DIF_OP_BLE:
9938		case DIF_OP_BLEU:
9939			if (label >= dp->dtdo_len) {
9940				err += efunc(pc, "invalid branch target %u\n",
9941				    label);
9942			}
9943			if (label <= pc) {
9944				err += efunc(pc, "backward branch to %u\n",
9945				    label);
9946			}
9947			break;
9948		case DIF_OP_RET:
9949			if (r1 != 0 || r2 != 0)
9950				err += efunc(pc, "non-zero reserved bits\n");
9951			if (rd >= nregs)
9952				err += efunc(pc, "invalid register %u\n", rd);
9953			break;
9954		case DIF_OP_NOP:
9955		case DIF_OP_POPTS:
9956		case DIF_OP_FLUSHTS:
9957			if (r1 != 0 || r2 != 0 || rd != 0)
9958				err += efunc(pc, "non-zero reserved bits\n");
9959			break;
9960		case DIF_OP_SETX:
9961			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9962				err += efunc(pc, "invalid integer ref %u\n",
9963				    DIF_INSTR_INTEGER(instr));
9964			}
9965			if (rd >= nregs)
9966				err += efunc(pc, "invalid register %u\n", rd);
9967			if (rd == 0)
9968				err += efunc(pc, "cannot write to %%r0\n");
9969			break;
9970		case DIF_OP_SETS:
9971			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9972				err += efunc(pc, "invalid string ref %u\n",
9973				    DIF_INSTR_STRING(instr));
9974			}
9975			if (rd >= nregs)
9976				err += efunc(pc, "invalid register %u\n", rd);
9977			if (rd == 0)
9978				err += efunc(pc, "cannot write to %%r0\n");
9979			break;
9980		case DIF_OP_LDGA:
9981		case DIF_OP_LDTA:
9982			if (r1 > DIF_VAR_ARRAY_MAX)
9983				err += efunc(pc, "invalid array %u\n", r1);
9984			if (r2 >= nregs)
9985				err += efunc(pc, "invalid register %u\n", r2);
9986			if (rd >= nregs)
9987				err += efunc(pc, "invalid register %u\n", rd);
9988			if (rd == 0)
9989				err += efunc(pc, "cannot write to %%r0\n");
9990			break;
9991		case DIF_OP_LDGS:
9992		case DIF_OP_LDTS:
9993		case DIF_OP_LDLS:
9994		case DIF_OP_LDGAA:
9995		case DIF_OP_LDTAA:
9996			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9997				err += efunc(pc, "invalid variable %u\n", v);
9998			if (rd >= nregs)
9999				err += efunc(pc, "invalid register %u\n", rd);
10000			if (rd == 0)
10001				err += efunc(pc, "cannot write to %%r0\n");
10002			break;
10003		case DIF_OP_STGS:
10004		case DIF_OP_STTS:
10005		case DIF_OP_STLS:
10006		case DIF_OP_STGAA:
10007		case DIF_OP_STTAA:
10008			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
10009				err += efunc(pc, "invalid variable %u\n", v);
10010			if (rs >= nregs)
10011				err += efunc(pc, "invalid register %u\n", rd);
10012			break;
10013		case DIF_OP_CALL:
10014			if (subr > DIF_SUBR_MAX)
10015				err += efunc(pc, "invalid subr %u\n", subr);
10016			if (rd >= nregs)
10017				err += efunc(pc, "invalid register %u\n", rd);
10018			if (rd == 0)
10019				err += efunc(pc, "cannot write to %%r0\n");
10020
10021			if (subr == DIF_SUBR_COPYOUT ||
10022			    subr == DIF_SUBR_COPYOUTSTR) {
10023				dp->dtdo_destructive = 1;
10024			}
10025
10026			if (subr == DIF_SUBR_GETF) {
10027#ifdef __FreeBSD__
10028				err += efunc(pc, "getf() not supported");
10029#else
10030				/*
10031				 * If we have a getf() we need to record that
10032				 * in our state.  Note that our state can be
10033				 * NULL if this is a helper -- but in that
10034				 * case, the call to getf() is itself illegal,
10035				 * and will be caught (slightly later) when
10036				 * the helper is validated.
10037				 */
10038				if (vstate->dtvs_state != NULL)
10039					vstate->dtvs_state->dts_getf++;
10040#endif
10041			}
10042
10043			break;
10044		case DIF_OP_PUSHTR:
10045			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10046				err += efunc(pc, "invalid ref type %u\n", type);
10047			if (r2 >= nregs)
10048				err += efunc(pc, "invalid register %u\n", r2);
10049			if (rs >= nregs)
10050				err += efunc(pc, "invalid register %u\n", rs);
10051			break;
10052		case DIF_OP_PUSHTV:
10053			if (type != DIF_TYPE_CTF)
10054				err += efunc(pc, "invalid val type %u\n", type);
10055			if (r2 >= nregs)
10056				err += efunc(pc, "invalid register %u\n", r2);
10057			if (rs >= nregs)
10058				err += efunc(pc, "invalid register %u\n", rs);
10059			break;
10060		default:
10061			err += efunc(pc, "invalid opcode %u\n",
10062			    DIF_INSTR_OP(instr));
10063		}
10064	}
10065
10066	if (dp->dtdo_len != 0 &&
10067	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10068		err += efunc(dp->dtdo_len - 1,
10069		    "expected 'ret' as last DIF instruction\n");
10070	}
10071
10072	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10073		/*
10074		 * If we're not returning by reference, the size must be either
10075		 * 0 or the size of one of the base types.
10076		 */
10077		switch (dp->dtdo_rtype.dtdt_size) {
10078		case 0:
10079		case sizeof (uint8_t):
10080		case sizeof (uint16_t):
10081		case sizeof (uint32_t):
10082		case sizeof (uint64_t):
10083			break;
10084
10085		default:
10086			err += efunc(dp->dtdo_len - 1, "bad return size\n");
10087		}
10088	}
10089
10090	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10091		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10092		dtrace_diftype_t *vt, *et;
10093		uint_t id, ndx;
10094
10095		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10096		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
10097		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10098			err += efunc(i, "unrecognized variable scope %d\n",
10099			    v->dtdv_scope);
10100			break;
10101		}
10102
10103		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10104		    v->dtdv_kind != DIFV_KIND_SCALAR) {
10105			err += efunc(i, "unrecognized variable type %d\n",
10106			    v->dtdv_kind);
10107			break;
10108		}
10109
10110		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10111			err += efunc(i, "%d exceeds variable id limit\n", id);
10112			break;
10113		}
10114
10115		if (id < DIF_VAR_OTHER_UBASE)
10116			continue;
10117
10118		/*
10119		 * For user-defined variables, we need to check that this
10120		 * definition is identical to any previous definition that we
10121		 * encountered.
10122		 */
10123		ndx = id - DIF_VAR_OTHER_UBASE;
10124
10125		switch (v->dtdv_scope) {
10126		case DIFV_SCOPE_GLOBAL:
10127			if (maxglobal == -1 || ndx > maxglobal)
10128				maxglobal = ndx;
10129
10130			if (ndx < vstate->dtvs_nglobals) {
10131				dtrace_statvar_t *svar;
10132
10133				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10134					existing = &svar->dtsv_var;
10135			}
10136
10137			break;
10138
10139		case DIFV_SCOPE_THREAD:
10140			if (maxtlocal == -1 || ndx > maxtlocal)
10141				maxtlocal = ndx;
10142
10143			if (ndx < vstate->dtvs_ntlocals)
10144				existing = &vstate->dtvs_tlocals[ndx];
10145			break;
10146
10147		case DIFV_SCOPE_LOCAL:
10148			if (maxlocal == -1 || ndx > maxlocal)
10149				maxlocal = ndx;
10150
10151			if (ndx < vstate->dtvs_nlocals) {
10152				dtrace_statvar_t *svar;
10153
10154				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10155					existing = &svar->dtsv_var;
10156			}
10157
10158			break;
10159		}
10160
10161		vt = &v->dtdv_type;
10162
10163		if (vt->dtdt_flags & DIF_TF_BYREF) {
10164			if (vt->dtdt_size == 0) {
10165				err += efunc(i, "zero-sized variable\n");
10166				break;
10167			}
10168
10169			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10170			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10171			    vt->dtdt_size > dtrace_statvar_maxsize) {
10172				err += efunc(i, "oversized by-ref static\n");
10173				break;
10174			}
10175		}
10176
10177		if (existing == NULL || existing->dtdv_id == 0)
10178			continue;
10179
10180		ASSERT(existing->dtdv_id == v->dtdv_id);
10181		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10182
10183		if (existing->dtdv_kind != v->dtdv_kind)
10184			err += efunc(i, "%d changed variable kind\n", id);
10185
10186		et = &existing->dtdv_type;
10187
10188		if (vt->dtdt_flags != et->dtdt_flags) {
10189			err += efunc(i, "%d changed variable type flags\n", id);
10190			break;
10191		}
10192
10193		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10194			err += efunc(i, "%d changed variable type size\n", id);
10195			break;
10196		}
10197	}
10198
10199	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10200		dif_instr_t instr = dp->dtdo_buf[pc];
10201
10202		uint_t v = DIF_INSTR_VAR(instr);
10203		uint_t op = DIF_INSTR_OP(instr);
10204
10205		switch (op) {
10206		case DIF_OP_LDGS:
10207		case DIF_OP_LDGAA:
10208		case DIF_OP_STGS:
10209		case DIF_OP_STGAA:
10210			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10211				err += efunc(pc, "invalid variable %u\n", v);
10212			break;
10213		case DIF_OP_LDTS:
10214		case DIF_OP_LDTAA:
10215		case DIF_OP_STTS:
10216		case DIF_OP_STTAA:
10217			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10218				err += efunc(pc, "invalid variable %u\n", v);
10219			break;
10220		case DIF_OP_LDLS:
10221		case DIF_OP_STLS:
10222			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10223				err += efunc(pc, "invalid variable %u\n", v);
10224			break;
10225		default:
10226			break;
10227		}
10228	}
10229
10230	return (err);
10231}
10232
10233/*
10234 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10235 * are much more constrained than normal DIFOs.  Specifically, they may
10236 * not:
10237 *
10238 * 1. Make calls to subroutines other than copyin(), copyinstr() or
10239 *    miscellaneous string routines
10240 * 2. Access DTrace variables other than the args[] array, and the
10241 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10242 * 3. Have thread-local variables.
10243 * 4. Have dynamic variables.
10244 */
10245static int
10246dtrace_difo_validate_helper(dtrace_difo_t *dp)
10247{
10248	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10249	int err = 0;
10250	uint_t pc;
10251
10252	for (pc = 0; pc < dp->dtdo_len; pc++) {
10253		dif_instr_t instr = dp->dtdo_buf[pc];
10254
10255		uint_t v = DIF_INSTR_VAR(instr);
10256		uint_t subr = DIF_INSTR_SUBR(instr);
10257		uint_t op = DIF_INSTR_OP(instr);
10258
10259		switch (op) {
10260		case DIF_OP_OR:
10261		case DIF_OP_XOR:
10262		case DIF_OP_AND:
10263		case DIF_OP_SLL:
10264		case DIF_OP_SRL:
10265		case DIF_OP_SRA:
10266		case DIF_OP_SUB:
10267		case DIF_OP_ADD:
10268		case DIF_OP_MUL:
10269		case DIF_OP_SDIV:
10270		case DIF_OP_UDIV:
10271		case DIF_OP_SREM:
10272		case DIF_OP_UREM:
10273		case DIF_OP_COPYS:
10274		case DIF_OP_NOT:
10275		case DIF_OP_MOV:
10276		case DIF_OP_RLDSB:
10277		case DIF_OP_RLDSH:
10278		case DIF_OP_RLDSW:
10279		case DIF_OP_RLDUB:
10280		case DIF_OP_RLDUH:
10281		case DIF_OP_RLDUW:
10282		case DIF_OP_RLDX:
10283		case DIF_OP_ULDSB:
10284		case DIF_OP_ULDSH:
10285		case DIF_OP_ULDSW:
10286		case DIF_OP_ULDUB:
10287		case DIF_OP_ULDUH:
10288		case DIF_OP_ULDUW:
10289		case DIF_OP_ULDX:
10290		case DIF_OP_STB:
10291		case DIF_OP_STH:
10292		case DIF_OP_STW:
10293		case DIF_OP_STX:
10294		case DIF_OP_ALLOCS:
10295		case DIF_OP_CMP:
10296		case DIF_OP_SCMP:
10297		case DIF_OP_TST:
10298		case DIF_OP_BA:
10299		case DIF_OP_BE:
10300		case DIF_OP_BNE:
10301		case DIF_OP_BG:
10302		case DIF_OP_BGU:
10303		case DIF_OP_BGE:
10304		case DIF_OP_BGEU:
10305		case DIF_OP_BL:
10306		case DIF_OP_BLU:
10307		case DIF_OP_BLE:
10308		case DIF_OP_BLEU:
10309		case DIF_OP_RET:
10310		case DIF_OP_NOP:
10311		case DIF_OP_POPTS:
10312		case DIF_OP_FLUSHTS:
10313		case DIF_OP_SETX:
10314		case DIF_OP_SETS:
10315		case DIF_OP_LDGA:
10316		case DIF_OP_LDLS:
10317		case DIF_OP_STGS:
10318		case DIF_OP_STLS:
10319		case DIF_OP_PUSHTR:
10320		case DIF_OP_PUSHTV:
10321			break;
10322
10323		case DIF_OP_LDGS:
10324			if (v >= DIF_VAR_OTHER_UBASE)
10325				break;
10326
10327			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10328				break;
10329
10330			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10331			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10332			    v == DIF_VAR_EXECARGS ||
10333			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10334			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10335				break;
10336
10337			err += efunc(pc, "illegal variable %u\n", v);
10338			break;
10339
10340		case DIF_OP_LDTA:
10341		case DIF_OP_LDTS:
10342		case DIF_OP_LDGAA:
10343		case DIF_OP_LDTAA:
10344			err += efunc(pc, "illegal dynamic variable load\n");
10345			break;
10346
10347		case DIF_OP_STTS:
10348		case DIF_OP_STGAA:
10349		case DIF_OP_STTAA:
10350			err += efunc(pc, "illegal dynamic variable store\n");
10351			break;
10352
10353		case DIF_OP_CALL:
10354			if (subr == DIF_SUBR_ALLOCA ||
10355			    subr == DIF_SUBR_BCOPY ||
10356			    subr == DIF_SUBR_COPYIN ||
10357			    subr == DIF_SUBR_COPYINTO ||
10358			    subr == DIF_SUBR_COPYINSTR ||
10359			    subr == DIF_SUBR_INDEX ||
10360			    subr == DIF_SUBR_INET_NTOA ||
10361			    subr == DIF_SUBR_INET_NTOA6 ||
10362			    subr == DIF_SUBR_INET_NTOP ||
10363			    subr == DIF_SUBR_JSON ||
10364			    subr == DIF_SUBR_LLTOSTR ||
10365			    subr == DIF_SUBR_STRTOLL ||
10366			    subr == DIF_SUBR_RINDEX ||
10367			    subr == DIF_SUBR_STRCHR ||
10368			    subr == DIF_SUBR_STRJOIN ||
10369			    subr == DIF_SUBR_STRRCHR ||
10370			    subr == DIF_SUBR_STRSTR ||
10371			    subr == DIF_SUBR_HTONS ||
10372			    subr == DIF_SUBR_HTONL ||
10373			    subr == DIF_SUBR_HTONLL ||
10374			    subr == DIF_SUBR_NTOHS ||
10375			    subr == DIF_SUBR_NTOHL ||
10376			    subr == DIF_SUBR_NTOHLL ||
10377			    subr == DIF_SUBR_MEMREF)
10378				break;
10379#ifdef __FreeBSD__
10380			if (subr == DIF_SUBR_MEMSTR)
10381				break;
10382#endif
10383
10384			err += efunc(pc, "invalid subr %u\n", subr);
10385			break;
10386
10387		default:
10388			err += efunc(pc, "invalid opcode %u\n",
10389			    DIF_INSTR_OP(instr));
10390		}
10391	}
10392
10393	return (err);
10394}
10395
10396/*
10397 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10398 * basis; 0 if not.
10399 */
10400static int
10401dtrace_difo_cacheable(dtrace_difo_t *dp)
10402{
10403	int i;
10404
10405	if (dp == NULL)
10406		return (0);
10407
10408	for (i = 0; i < dp->dtdo_varlen; i++) {
10409		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10410
10411		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10412			continue;
10413
10414		switch (v->dtdv_id) {
10415		case DIF_VAR_CURTHREAD:
10416		case DIF_VAR_PID:
10417		case DIF_VAR_TID:
10418		case DIF_VAR_EXECARGS:
10419		case DIF_VAR_EXECNAME:
10420		case DIF_VAR_ZONENAME:
10421			break;
10422
10423		default:
10424			return (0);
10425		}
10426	}
10427
10428	/*
10429	 * This DIF object may be cacheable.  Now we need to look for any
10430	 * array loading instructions, any memory loading instructions, or
10431	 * any stores to thread-local variables.
10432	 */
10433	for (i = 0; i < dp->dtdo_len; i++) {
10434		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10435
10436		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10437		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10438		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10439		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10440			return (0);
10441	}
10442
10443	return (1);
10444}
10445
10446static void
10447dtrace_difo_hold(dtrace_difo_t *dp)
10448{
10449	int i;
10450
10451	ASSERT(MUTEX_HELD(&dtrace_lock));
10452
10453	dp->dtdo_refcnt++;
10454	ASSERT(dp->dtdo_refcnt != 0);
10455
10456	/*
10457	 * We need to check this DIF object for references to the variable
10458	 * DIF_VAR_VTIMESTAMP.
10459	 */
10460	for (i = 0; i < dp->dtdo_varlen; i++) {
10461		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10462
10463		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10464			continue;
10465
10466		if (dtrace_vtime_references++ == 0)
10467			dtrace_vtime_enable();
10468	}
10469}
10470
10471/*
10472 * This routine calculates the dynamic variable chunksize for a given DIF
10473 * object.  The calculation is not fool-proof, and can probably be tricked by
10474 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10475 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10476 * if a dynamic variable size exceeds the chunksize.
10477 */
10478static void
10479dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10480{
10481	uint64_t sval = 0;
10482	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10483	const dif_instr_t *text = dp->dtdo_buf;
10484	uint_t pc, srd = 0;
10485	uint_t ttop = 0;
10486	size_t size, ksize;
10487	uint_t id, i;
10488
10489	for (pc = 0; pc < dp->dtdo_len; pc++) {
10490		dif_instr_t instr = text[pc];
10491		uint_t op = DIF_INSTR_OP(instr);
10492		uint_t rd = DIF_INSTR_RD(instr);
10493		uint_t r1 = DIF_INSTR_R1(instr);
10494		uint_t nkeys = 0;
10495		uchar_t scope = 0;
10496
10497		dtrace_key_t *key = tupregs;
10498
10499		switch (op) {
10500		case DIF_OP_SETX:
10501			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10502			srd = rd;
10503			continue;
10504
10505		case DIF_OP_STTS:
10506			key = &tupregs[DIF_DTR_NREGS];
10507			key[0].dttk_size = 0;
10508			key[1].dttk_size = 0;
10509			nkeys = 2;
10510			scope = DIFV_SCOPE_THREAD;
10511			break;
10512
10513		case DIF_OP_STGAA:
10514		case DIF_OP_STTAA:
10515			nkeys = ttop;
10516
10517			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10518				key[nkeys++].dttk_size = 0;
10519
10520			key[nkeys++].dttk_size = 0;
10521
10522			if (op == DIF_OP_STTAA) {
10523				scope = DIFV_SCOPE_THREAD;
10524			} else {
10525				scope = DIFV_SCOPE_GLOBAL;
10526			}
10527
10528			break;
10529
10530		case DIF_OP_PUSHTR:
10531			if (ttop == DIF_DTR_NREGS)
10532				return;
10533
10534			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10535				/*
10536				 * If the register for the size of the "pushtr"
10537				 * is %r0 (or the value is 0) and the type is
10538				 * a string, we'll use the system-wide default
10539				 * string size.
10540				 */
10541				tupregs[ttop++].dttk_size =
10542				    dtrace_strsize_default;
10543			} else {
10544				if (srd == 0)
10545					return;
10546
10547				if (sval > LONG_MAX)
10548					return;
10549
10550				tupregs[ttop++].dttk_size = sval;
10551			}
10552
10553			break;
10554
10555		case DIF_OP_PUSHTV:
10556			if (ttop == DIF_DTR_NREGS)
10557				return;
10558
10559			tupregs[ttop++].dttk_size = 0;
10560			break;
10561
10562		case DIF_OP_FLUSHTS:
10563			ttop = 0;
10564			break;
10565
10566		case DIF_OP_POPTS:
10567			if (ttop != 0)
10568				ttop--;
10569			break;
10570		}
10571
10572		sval = 0;
10573		srd = 0;
10574
10575		if (nkeys == 0)
10576			continue;
10577
10578		/*
10579		 * We have a dynamic variable allocation; calculate its size.
10580		 */
10581		for (ksize = 0, i = 0; i < nkeys; i++)
10582			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10583
10584		size = sizeof (dtrace_dynvar_t);
10585		size += sizeof (dtrace_key_t) * (nkeys - 1);
10586		size += ksize;
10587
10588		/*
10589		 * Now we need to determine the size of the stored data.
10590		 */
10591		id = DIF_INSTR_VAR(instr);
10592
10593		for (i = 0; i < dp->dtdo_varlen; i++) {
10594			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10595
10596			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10597				size += v->dtdv_type.dtdt_size;
10598				break;
10599			}
10600		}
10601
10602		if (i == dp->dtdo_varlen)
10603			return;
10604
10605		/*
10606		 * We have the size.  If this is larger than the chunk size
10607		 * for our dynamic variable state, reset the chunk size.
10608		 */
10609		size = P2ROUNDUP(size, sizeof (uint64_t));
10610
10611		/*
10612		 * Before setting the chunk size, check that we're not going
10613		 * to set it to a negative value...
10614		 */
10615		if (size > LONG_MAX)
10616			return;
10617
10618		/*
10619		 * ...and make certain that we didn't badly overflow.
10620		 */
10621		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10622			return;
10623
10624		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10625			vstate->dtvs_dynvars.dtds_chunksize = size;
10626	}
10627}
10628
10629static void
10630dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10631{
10632	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10633	uint_t id;
10634
10635	ASSERT(MUTEX_HELD(&dtrace_lock));
10636	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10637
10638	for (i = 0; i < dp->dtdo_varlen; i++) {
10639		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10640		dtrace_statvar_t *svar, ***svarp = NULL;
10641		size_t dsize = 0;
10642		uint8_t scope = v->dtdv_scope;
10643		int *np = NULL;
10644
10645		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10646			continue;
10647
10648		id -= DIF_VAR_OTHER_UBASE;
10649
10650		switch (scope) {
10651		case DIFV_SCOPE_THREAD:
10652			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10653				dtrace_difv_t *tlocals;
10654
10655				if ((ntlocals = (otlocals << 1)) == 0)
10656					ntlocals = 1;
10657
10658				osz = otlocals * sizeof (dtrace_difv_t);
10659				nsz = ntlocals * sizeof (dtrace_difv_t);
10660
10661				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10662
10663				if (osz != 0) {
10664					bcopy(vstate->dtvs_tlocals,
10665					    tlocals, osz);
10666					kmem_free(vstate->dtvs_tlocals, osz);
10667				}
10668
10669				vstate->dtvs_tlocals = tlocals;
10670				vstate->dtvs_ntlocals = ntlocals;
10671			}
10672
10673			vstate->dtvs_tlocals[id] = *v;
10674			continue;
10675
10676		case DIFV_SCOPE_LOCAL:
10677			np = &vstate->dtvs_nlocals;
10678			svarp = &vstate->dtvs_locals;
10679
10680			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10681				dsize = NCPU * (v->dtdv_type.dtdt_size +
10682				    sizeof (uint64_t));
10683			else
10684				dsize = NCPU * sizeof (uint64_t);
10685
10686			break;
10687
10688		case DIFV_SCOPE_GLOBAL:
10689			np = &vstate->dtvs_nglobals;
10690			svarp = &vstate->dtvs_globals;
10691
10692			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10693				dsize = v->dtdv_type.dtdt_size +
10694				    sizeof (uint64_t);
10695
10696			break;
10697
10698		default:
10699			ASSERT(0);
10700		}
10701
10702		while (id >= (oldsvars = *np)) {
10703			dtrace_statvar_t **statics;
10704			int newsvars, oldsize, newsize;
10705
10706			if ((newsvars = (oldsvars << 1)) == 0)
10707				newsvars = 1;
10708
10709			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10710			newsize = newsvars * sizeof (dtrace_statvar_t *);
10711
10712			statics = kmem_zalloc(newsize, KM_SLEEP);
10713
10714			if (oldsize != 0) {
10715				bcopy(*svarp, statics, oldsize);
10716				kmem_free(*svarp, oldsize);
10717			}
10718
10719			*svarp = statics;
10720			*np = newsvars;
10721		}
10722
10723		if ((svar = (*svarp)[id]) == NULL) {
10724			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10725			svar->dtsv_var = *v;
10726
10727			if ((svar->dtsv_size = dsize) != 0) {
10728				svar->dtsv_data = (uint64_t)(uintptr_t)
10729				    kmem_zalloc(dsize, KM_SLEEP);
10730			}
10731
10732			(*svarp)[id] = svar;
10733		}
10734
10735		svar->dtsv_refcnt++;
10736	}
10737
10738	dtrace_difo_chunksize(dp, vstate);
10739	dtrace_difo_hold(dp);
10740}
10741
10742static dtrace_difo_t *
10743dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10744{
10745	dtrace_difo_t *new;
10746	size_t sz;
10747
10748	ASSERT(dp->dtdo_buf != NULL);
10749	ASSERT(dp->dtdo_refcnt != 0);
10750
10751	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10752
10753	ASSERT(dp->dtdo_buf != NULL);
10754	sz = dp->dtdo_len * sizeof (dif_instr_t);
10755	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10756	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10757	new->dtdo_len = dp->dtdo_len;
10758
10759	if (dp->dtdo_strtab != NULL) {
10760		ASSERT(dp->dtdo_strlen != 0);
10761		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10762		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10763		new->dtdo_strlen = dp->dtdo_strlen;
10764	}
10765
10766	if (dp->dtdo_inttab != NULL) {
10767		ASSERT(dp->dtdo_intlen != 0);
10768		sz = dp->dtdo_intlen * sizeof (uint64_t);
10769		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10770		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10771		new->dtdo_intlen = dp->dtdo_intlen;
10772	}
10773
10774	if (dp->dtdo_vartab != NULL) {
10775		ASSERT(dp->dtdo_varlen != 0);
10776		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10777		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10778		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10779		new->dtdo_varlen = dp->dtdo_varlen;
10780	}
10781
10782	dtrace_difo_init(new, vstate);
10783	return (new);
10784}
10785
10786static void
10787dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10788{
10789	int i;
10790
10791	ASSERT(dp->dtdo_refcnt == 0);
10792
10793	for (i = 0; i < dp->dtdo_varlen; i++) {
10794		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10795		dtrace_statvar_t *svar, **svarp = NULL;
10796		uint_t id;
10797		uint8_t scope = v->dtdv_scope;
10798		int *np = NULL;
10799
10800		switch (scope) {
10801		case DIFV_SCOPE_THREAD:
10802			continue;
10803
10804		case DIFV_SCOPE_LOCAL:
10805			np = &vstate->dtvs_nlocals;
10806			svarp = vstate->dtvs_locals;
10807			break;
10808
10809		case DIFV_SCOPE_GLOBAL:
10810			np = &vstate->dtvs_nglobals;
10811			svarp = vstate->dtvs_globals;
10812			break;
10813
10814		default:
10815			ASSERT(0);
10816		}
10817
10818		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10819			continue;
10820
10821		id -= DIF_VAR_OTHER_UBASE;
10822		ASSERT(id < *np);
10823
10824		svar = svarp[id];
10825		ASSERT(svar != NULL);
10826		ASSERT(svar->dtsv_refcnt > 0);
10827
10828		if (--svar->dtsv_refcnt > 0)
10829			continue;
10830
10831		if (svar->dtsv_size != 0) {
10832			ASSERT(svar->dtsv_data != 0);
10833			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10834			    svar->dtsv_size);
10835		}
10836
10837		kmem_free(svar, sizeof (dtrace_statvar_t));
10838		svarp[id] = NULL;
10839	}
10840
10841	if (dp->dtdo_buf != NULL)
10842		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10843	if (dp->dtdo_inttab != NULL)
10844		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10845	if (dp->dtdo_strtab != NULL)
10846		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10847	if (dp->dtdo_vartab != NULL)
10848		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10849
10850	kmem_free(dp, sizeof (dtrace_difo_t));
10851}
10852
10853static void
10854dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10855{
10856	int i;
10857
10858	ASSERT(MUTEX_HELD(&dtrace_lock));
10859	ASSERT(dp->dtdo_refcnt != 0);
10860
10861	for (i = 0; i < dp->dtdo_varlen; i++) {
10862		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10863
10864		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10865			continue;
10866
10867		ASSERT(dtrace_vtime_references > 0);
10868		if (--dtrace_vtime_references == 0)
10869			dtrace_vtime_disable();
10870	}
10871
10872	if (--dp->dtdo_refcnt == 0)
10873		dtrace_difo_destroy(dp, vstate);
10874}
10875
10876/*
10877 * DTrace Format Functions
10878 */
10879static uint16_t
10880dtrace_format_add(dtrace_state_t *state, char *str)
10881{
10882	char *fmt, **new;
10883	uint16_t ndx, len = strlen(str) + 1;
10884
10885	fmt = kmem_zalloc(len, KM_SLEEP);
10886	bcopy(str, fmt, len);
10887
10888	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10889		if (state->dts_formats[ndx] == NULL) {
10890			state->dts_formats[ndx] = fmt;
10891			return (ndx + 1);
10892		}
10893	}
10894
10895	if (state->dts_nformats == USHRT_MAX) {
10896		/*
10897		 * This is only likely if a denial-of-service attack is being
10898		 * attempted.  As such, it's okay to fail silently here.
10899		 */
10900		kmem_free(fmt, len);
10901		return (0);
10902	}
10903
10904	/*
10905	 * For simplicity, we always resize the formats array to be exactly the
10906	 * number of formats.
10907	 */
10908	ndx = state->dts_nformats++;
10909	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10910
10911	if (state->dts_formats != NULL) {
10912		ASSERT(ndx != 0);
10913		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10914		kmem_free(state->dts_formats, ndx * sizeof (char *));
10915	}
10916
10917	state->dts_formats = new;
10918	state->dts_formats[ndx] = fmt;
10919
10920	return (ndx + 1);
10921}
10922
10923static void
10924dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10925{
10926	char *fmt;
10927
10928	ASSERT(state->dts_formats != NULL);
10929	ASSERT(format <= state->dts_nformats);
10930	ASSERT(state->dts_formats[format - 1] != NULL);
10931
10932	fmt = state->dts_formats[format - 1];
10933	kmem_free(fmt, strlen(fmt) + 1);
10934	state->dts_formats[format - 1] = NULL;
10935}
10936
10937static void
10938dtrace_format_destroy(dtrace_state_t *state)
10939{
10940	int i;
10941
10942	if (state->dts_nformats == 0) {
10943		ASSERT(state->dts_formats == NULL);
10944		return;
10945	}
10946
10947	ASSERT(state->dts_formats != NULL);
10948
10949	for (i = 0; i < state->dts_nformats; i++) {
10950		char *fmt = state->dts_formats[i];
10951
10952		if (fmt == NULL)
10953			continue;
10954
10955		kmem_free(fmt, strlen(fmt) + 1);
10956	}
10957
10958	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10959	state->dts_nformats = 0;
10960	state->dts_formats = NULL;
10961}
10962
10963/*
10964 * DTrace Predicate Functions
10965 */
10966static dtrace_predicate_t *
10967dtrace_predicate_create(dtrace_difo_t *dp)
10968{
10969	dtrace_predicate_t *pred;
10970
10971	ASSERT(MUTEX_HELD(&dtrace_lock));
10972	ASSERT(dp->dtdo_refcnt != 0);
10973
10974	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10975	pred->dtp_difo = dp;
10976	pred->dtp_refcnt = 1;
10977
10978	if (!dtrace_difo_cacheable(dp))
10979		return (pred);
10980
10981	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10982		/*
10983		 * This is only theoretically possible -- we have had 2^32
10984		 * cacheable predicates on this machine.  We cannot allow any
10985		 * more predicates to become cacheable:  as unlikely as it is,
10986		 * there may be a thread caching a (now stale) predicate cache
10987		 * ID. (N.B.: the temptation is being successfully resisted to
10988		 * have this cmn_err() "Holy shit -- we executed this code!")
10989		 */
10990		return (pred);
10991	}
10992
10993	pred->dtp_cacheid = dtrace_predcache_id++;
10994
10995	return (pred);
10996}
10997
10998static void
10999dtrace_predicate_hold(dtrace_predicate_t *pred)
11000{
11001	ASSERT(MUTEX_HELD(&dtrace_lock));
11002	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
11003	ASSERT(pred->dtp_refcnt > 0);
11004
11005	pred->dtp_refcnt++;
11006}
11007
11008static void
11009dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
11010{
11011	dtrace_difo_t *dp = pred->dtp_difo;
11012
11013	ASSERT(MUTEX_HELD(&dtrace_lock));
11014	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
11015	ASSERT(pred->dtp_refcnt > 0);
11016
11017	if (--pred->dtp_refcnt == 0) {
11018		dtrace_difo_release(pred->dtp_difo, vstate);
11019		kmem_free(pred, sizeof (dtrace_predicate_t));
11020	}
11021}
11022
11023/*
11024 * DTrace Action Description Functions
11025 */
11026static dtrace_actdesc_t *
11027dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
11028    uint64_t uarg, uint64_t arg)
11029{
11030	dtrace_actdesc_t *act;
11031
11032#ifdef illumos
11033	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11034	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11035#endif
11036
11037	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11038	act->dtad_kind = kind;
11039	act->dtad_ntuple = ntuple;
11040	act->dtad_uarg = uarg;
11041	act->dtad_arg = arg;
11042	act->dtad_refcnt = 1;
11043
11044	return (act);
11045}
11046
11047static void
11048dtrace_actdesc_hold(dtrace_actdesc_t *act)
11049{
11050	ASSERT(act->dtad_refcnt >= 1);
11051	act->dtad_refcnt++;
11052}
11053
11054static void
11055dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11056{
11057	dtrace_actkind_t kind = act->dtad_kind;
11058	dtrace_difo_t *dp;
11059
11060	ASSERT(act->dtad_refcnt >= 1);
11061
11062	if (--act->dtad_refcnt != 0)
11063		return;
11064
11065	if ((dp = act->dtad_difo) != NULL)
11066		dtrace_difo_release(dp, vstate);
11067
11068	if (DTRACEACT_ISPRINTFLIKE(kind)) {
11069		char *str = (char *)(uintptr_t)act->dtad_arg;
11070
11071#ifdef illumos
11072		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11073		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11074#endif
11075
11076		if (str != NULL)
11077			kmem_free(str, strlen(str) + 1);
11078	}
11079
11080	kmem_free(act, sizeof (dtrace_actdesc_t));
11081}
11082
11083/*
11084 * DTrace ECB Functions
11085 */
11086static dtrace_ecb_t *
11087dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11088{
11089	dtrace_ecb_t *ecb;
11090	dtrace_epid_t epid;
11091
11092	ASSERT(MUTEX_HELD(&dtrace_lock));
11093
11094	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11095	ecb->dte_predicate = NULL;
11096	ecb->dte_probe = probe;
11097
11098	/*
11099	 * The default size is the size of the default action: recording
11100	 * the header.
11101	 */
11102	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11103	ecb->dte_alignment = sizeof (dtrace_epid_t);
11104
11105	epid = state->dts_epid++;
11106
11107	if (epid - 1 >= state->dts_necbs) {
11108		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11109		int necbs = state->dts_necbs << 1;
11110
11111		ASSERT(epid == state->dts_necbs + 1);
11112
11113		if (necbs == 0) {
11114			ASSERT(oecbs == NULL);
11115			necbs = 1;
11116		}
11117
11118		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11119
11120		if (oecbs != NULL)
11121			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11122
11123		dtrace_membar_producer();
11124		state->dts_ecbs = ecbs;
11125
11126		if (oecbs != NULL) {
11127			/*
11128			 * If this state is active, we must dtrace_sync()
11129			 * before we can free the old dts_ecbs array:  we're
11130			 * coming in hot, and there may be active ring
11131			 * buffer processing (which indexes into the dts_ecbs
11132			 * array) on another CPU.
11133			 */
11134			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11135				dtrace_sync();
11136
11137			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11138		}
11139
11140		dtrace_membar_producer();
11141		state->dts_necbs = necbs;
11142	}
11143
11144	ecb->dte_state = state;
11145
11146	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11147	dtrace_membar_producer();
11148	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11149
11150	return (ecb);
11151}
11152
11153static void
11154dtrace_ecb_enable(dtrace_ecb_t *ecb)
11155{
11156	dtrace_probe_t *probe = ecb->dte_probe;
11157
11158	ASSERT(MUTEX_HELD(&cpu_lock));
11159	ASSERT(MUTEX_HELD(&dtrace_lock));
11160	ASSERT(ecb->dte_next == NULL);
11161
11162	if (probe == NULL) {
11163		/*
11164		 * This is the NULL probe -- there's nothing to do.
11165		 */
11166		return;
11167	}
11168
11169	if (probe->dtpr_ecb == NULL) {
11170		dtrace_provider_t *prov = probe->dtpr_provider;
11171
11172		/*
11173		 * We're the first ECB on this probe.
11174		 */
11175		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11176
11177		if (ecb->dte_predicate != NULL)
11178			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11179
11180		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11181		    probe->dtpr_id, probe->dtpr_arg);
11182	} else {
11183		/*
11184		 * This probe is already active.  Swing the last pointer to
11185		 * point to the new ECB, and issue a dtrace_sync() to assure
11186		 * that all CPUs have seen the change.
11187		 */
11188		ASSERT(probe->dtpr_ecb_last != NULL);
11189		probe->dtpr_ecb_last->dte_next = ecb;
11190		probe->dtpr_ecb_last = ecb;
11191		probe->dtpr_predcache = 0;
11192
11193		dtrace_sync();
11194	}
11195}
11196
11197static int
11198dtrace_ecb_resize(dtrace_ecb_t *ecb)
11199{
11200	dtrace_action_t *act;
11201	uint32_t curneeded = UINT32_MAX;
11202	uint32_t aggbase = UINT32_MAX;
11203
11204	/*
11205	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11206	 * we always record it first.)
11207	 */
11208	ecb->dte_size = sizeof (dtrace_rechdr_t);
11209	ecb->dte_alignment = sizeof (dtrace_epid_t);
11210
11211	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11212		dtrace_recdesc_t *rec = &act->dta_rec;
11213		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11214
11215		ecb->dte_alignment = MAX(ecb->dte_alignment,
11216		    rec->dtrd_alignment);
11217
11218		if (DTRACEACT_ISAGG(act->dta_kind)) {
11219			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11220
11221			ASSERT(rec->dtrd_size != 0);
11222			ASSERT(agg->dtag_first != NULL);
11223			ASSERT(act->dta_prev->dta_intuple);
11224			ASSERT(aggbase != UINT32_MAX);
11225			ASSERT(curneeded != UINT32_MAX);
11226
11227			agg->dtag_base = aggbase;
11228
11229			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11230			rec->dtrd_offset = curneeded;
11231			if (curneeded + rec->dtrd_size < curneeded)
11232				return (EINVAL);
11233			curneeded += rec->dtrd_size;
11234			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11235
11236			aggbase = UINT32_MAX;
11237			curneeded = UINT32_MAX;
11238		} else if (act->dta_intuple) {
11239			if (curneeded == UINT32_MAX) {
11240				/*
11241				 * This is the first record in a tuple.  Align
11242				 * curneeded to be at offset 4 in an 8-byte
11243				 * aligned block.
11244				 */
11245				ASSERT(act->dta_prev == NULL ||
11246				    !act->dta_prev->dta_intuple);
11247				ASSERT3U(aggbase, ==, UINT32_MAX);
11248				curneeded = P2PHASEUP(ecb->dte_size,
11249				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11250
11251				aggbase = curneeded - sizeof (dtrace_aggid_t);
11252				ASSERT(IS_P2ALIGNED(aggbase,
11253				    sizeof (uint64_t)));
11254			}
11255			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11256			rec->dtrd_offset = curneeded;
11257			if (curneeded + rec->dtrd_size < curneeded)
11258				return (EINVAL);
11259			curneeded += rec->dtrd_size;
11260		} else {
11261			/* tuples must be followed by an aggregation */
11262			ASSERT(act->dta_prev == NULL ||
11263			    !act->dta_prev->dta_intuple);
11264
11265			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11266			    rec->dtrd_alignment);
11267			rec->dtrd_offset = ecb->dte_size;
11268			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11269				return (EINVAL);
11270			ecb->dte_size += rec->dtrd_size;
11271			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11272		}
11273	}
11274
11275	if ((act = ecb->dte_action) != NULL &&
11276	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11277	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11278		/*
11279		 * If the size is still sizeof (dtrace_rechdr_t), then all
11280		 * actions store no data; set the size to 0.
11281		 */
11282		ecb->dte_size = 0;
11283	}
11284
11285	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11286	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11287	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11288	    ecb->dte_needed);
11289	return (0);
11290}
11291
11292static dtrace_action_t *
11293dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11294{
11295	dtrace_aggregation_t *agg;
11296	size_t size = sizeof (uint64_t);
11297	int ntuple = desc->dtad_ntuple;
11298	dtrace_action_t *act;
11299	dtrace_recdesc_t *frec;
11300	dtrace_aggid_t aggid;
11301	dtrace_state_t *state = ecb->dte_state;
11302
11303	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11304	agg->dtag_ecb = ecb;
11305
11306	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11307
11308	switch (desc->dtad_kind) {
11309	case DTRACEAGG_MIN:
11310		agg->dtag_initial = INT64_MAX;
11311		agg->dtag_aggregate = dtrace_aggregate_min;
11312		break;
11313
11314	case DTRACEAGG_MAX:
11315		agg->dtag_initial = INT64_MIN;
11316		agg->dtag_aggregate = dtrace_aggregate_max;
11317		break;
11318
11319	case DTRACEAGG_COUNT:
11320		agg->dtag_aggregate = dtrace_aggregate_count;
11321		break;
11322
11323	case DTRACEAGG_QUANTIZE:
11324		agg->dtag_aggregate = dtrace_aggregate_quantize;
11325		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11326		    sizeof (uint64_t);
11327		break;
11328
11329	case DTRACEAGG_LQUANTIZE: {
11330		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11331		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11332
11333		agg->dtag_initial = desc->dtad_arg;
11334		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11335
11336		if (step == 0 || levels == 0)
11337			goto err;
11338
11339		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11340		break;
11341	}
11342
11343	case DTRACEAGG_LLQUANTIZE: {
11344		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11345		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11346		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11347		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11348		int64_t v;
11349
11350		agg->dtag_initial = desc->dtad_arg;
11351		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11352
11353		if (factor < 2 || low >= high || nsteps < factor)
11354			goto err;
11355
11356		/*
11357		 * Now check that the number of steps evenly divides a power
11358		 * of the factor.  (This assures both integer bucket size and
11359		 * linearity within each magnitude.)
11360		 */
11361		for (v = factor; v < nsteps; v *= factor)
11362			continue;
11363
11364		if ((v % nsteps) || (nsteps % factor))
11365			goto err;
11366
11367		size = (dtrace_aggregate_llquantize_bucket(factor,
11368		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11369		break;
11370	}
11371
11372	case DTRACEAGG_AVG:
11373		agg->dtag_aggregate = dtrace_aggregate_avg;
11374		size = sizeof (uint64_t) * 2;
11375		break;
11376
11377	case DTRACEAGG_STDDEV:
11378		agg->dtag_aggregate = dtrace_aggregate_stddev;
11379		size = sizeof (uint64_t) * 4;
11380		break;
11381
11382	case DTRACEAGG_SUM:
11383		agg->dtag_aggregate = dtrace_aggregate_sum;
11384		break;
11385
11386	default:
11387		goto err;
11388	}
11389
11390	agg->dtag_action.dta_rec.dtrd_size = size;
11391
11392	if (ntuple == 0)
11393		goto err;
11394
11395	/*
11396	 * We must make sure that we have enough actions for the n-tuple.
11397	 */
11398	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11399		if (DTRACEACT_ISAGG(act->dta_kind))
11400			break;
11401
11402		if (--ntuple == 0) {
11403			/*
11404			 * This is the action with which our n-tuple begins.
11405			 */
11406			agg->dtag_first = act;
11407			goto success;
11408		}
11409	}
11410
11411	/*
11412	 * This n-tuple is short by ntuple elements.  Return failure.
11413	 */
11414	ASSERT(ntuple != 0);
11415err:
11416	kmem_free(agg, sizeof (dtrace_aggregation_t));
11417	return (NULL);
11418
11419success:
11420	/*
11421	 * If the last action in the tuple has a size of zero, it's actually
11422	 * an expression argument for the aggregating action.
11423	 */
11424	ASSERT(ecb->dte_action_last != NULL);
11425	act = ecb->dte_action_last;
11426
11427	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11428		ASSERT(act->dta_difo != NULL);
11429
11430		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11431			agg->dtag_hasarg = 1;
11432	}
11433
11434	/*
11435	 * We need to allocate an id for this aggregation.
11436	 */
11437#ifdef illumos
11438	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11439	    VM_BESTFIT | VM_SLEEP);
11440#else
11441	aggid = alloc_unr(state->dts_aggid_arena);
11442#endif
11443
11444	if (aggid - 1 >= state->dts_naggregations) {
11445		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11446		dtrace_aggregation_t **aggs;
11447		int naggs = state->dts_naggregations << 1;
11448		int onaggs = state->dts_naggregations;
11449
11450		ASSERT(aggid == state->dts_naggregations + 1);
11451
11452		if (naggs == 0) {
11453			ASSERT(oaggs == NULL);
11454			naggs = 1;
11455		}
11456
11457		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11458
11459		if (oaggs != NULL) {
11460			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11461			kmem_free(oaggs, onaggs * sizeof (*aggs));
11462		}
11463
11464		state->dts_aggregations = aggs;
11465		state->dts_naggregations = naggs;
11466	}
11467
11468	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11469	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11470
11471	frec = &agg->dtag_first->dta_rec;
11472	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11473		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11474
11475	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11476		ASSERT(!act->dta_intuple);
11477		act->dta_intuple = 1;
11478	}
11479
11480	return (&agg->dtag_action);
11481}
11482
11483static void
11484dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11485{
11486	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11487	dtrace_state_t *state = ecb->dte_state;
11488	dtrace_aggid_t aggid = agg->dtag_id;
11489
11490	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11491#ifdef illumos
11492	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11493#else
11494	free_unr(state->dts_aggid_arena, aggid);
11495#endif
11496
11497	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11498	state->dts_aggregations[aggid - 1] = NULL;
11499
11500	kmem_free(agg, sizeof (dtrace_aggregation_t));
11501}
11502
11503static int
11504dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11505{
11506	dtrace_action_t *action, *last;
11507	dtrace_difo_t *dp = desc->dtad_difo;
11508	uint32_t size = 0, align = sizeof (uint8_t), mask;
11509	uint16_t format = 0;
11510	dtrace_recdesc_t *rec;
11511	dtrace_state_t *state = ecb->dte_state;
11512	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11513	uint64_t arg = desc->dtad_arg;
11514
11515	ASSERT(MUTEX_HELD(&dtrace_lock));
11516	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11517
11518	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11519		/*
11520		 * If this is an aggregating action, there must be neither
11521		 * a speculate nor a commit on the action chain.
11522		 */
11523		dtrace_action_t *act;
11524
11525		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11526			if (act->dta_kind == DTRACEACT_COMMIT)
11527				return (EINVAL);
11528
11529			if (act->dta_kind == DTRACEACT_SPECULATE)
11530				return (EINVAL);
11531		}
11532
11533		action = dtrace_ecb_aggregation_create(ecb, desc);
11534
11535		if (action == NULL)
11536			return (EINVAL);
11537	} else {
11538		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11539		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11540		    dp != NULL && dp->dtdo_destructive)) {
11541			state->dts_destructive = 1;
11542		}
11543
11544		switch (desc->dtad_kind) {
11545		case DTRACEACT_PRINTF:
11546		case DTRACEACT_PRINTA:
11547		case DTRACEACT_SYSTEM:
11548		case DTRACEACT_FREOPEN:
11549		case DTRACEACT_DIFEXPR:
11550			/*
11551			 * We know that our arg is a string -- turn it into a
11552			 * format.
11553			 */
11554			if (arg == 0) {
11555				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11556				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11557				format = 0;
11558			} else {
11559				ASSERT(arg != 0);
11560#ifdef illumos
11561				ASSERT(arg > KERNELBASE);
11562#endif
11563				format = dtrace_format_add(state,
11564				    (char *)(uintptr_t)arg);
11565			}
11566
11567			/*FALLTHROUGH*/
11568		case DTRACEACT_LIBACT:
11569		case DTRACEACT_TRACEMEM:
11570		case DTRACEACT_TRACEMEM_DYNSIZE:
11571			if (dp == NULL)
11572				return (EINVAL);
11573
11574			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11575				break;
11576
11577			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11578				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11579					return (EINVAL);
11580
11581				size = opt[DTRACEOPT_STRSIZE];
11582			}
11583
11584			break;
11585
11586		case DTRACEACT_STACK:
11587			if ((nframes = arg) == 0) {
11588				nframes = opt[DTRACEOPT_STACKFRAMES];
11589				ASSERT(nframes > 0);
11590				arg = nframes;
11591			}
11592
11593			size = nframes * sizeof (pc_t);
11594			break;
11595
11596		case DTRACEACT_JSTACK:
11597			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11598				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11599
11600			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11601				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11602
11603			arg = DTRACE_USTACK_ARG(nframes, strsize);
11604
11605			/*FALLTHROUGH*/
11606		case DTRACEACT_USTACK:
11607			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11608			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11609				strsize = DTRACE_USTACK_STRSIZE(arg);
11610				nframes = opt[DTRACEOPT_USTACKFRAMES];
11611				ASSERT(nframes > 0);
11612				arg = DTRACE_USTACK_ARG(nframes, strsize);
11613			}
11614
11615			/*
11616			 * Save a slot for the pid.
11617			 */
11618			size = (nframes + 1) * sizeof (uint64_t);
11619			size += DTRACE_USTACK_STRSIZE(arg);
11620			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11621
11622			break;
11623
11624		case DTRACEACT_SYM:
11625		case DTRACEACT_MOD:
11626			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11627			    sizeof (uint64_t)) ||
11628			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11629				return (EINVAL);
11630			break;
11631
11632		case DTRACEACT_USYM:
11633		case DTRACEACT_UMOD:
11634		case DTRACEACT_UADDR:
11635			if (dp == NULL ||
11636			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11637			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11638				return (EINVAL);
11639
11640			/*
11641			 * We have a slot for the pid, plus a slot for the
11642			 * argument.  To keep things simple (aligned with
11643			 * bitness-neutral sizing), we store each as a 64-bit
11644			 * quantity.
11645			 */
11646			size = 2 * sizeof (uint64_t);
11647			break;
11648
11649		case DTRACEACT_STOP:
11650		case DTRACEACT_BREAKPOINT:
11651		case DTRACEACT_PANIC:
11652			break;
11653
11654		case DTRACEACT_CHILL:
11655		case DTRACEACT_DISCARD:
11656		case DTRACEACT_RAISE:
11657			if (dp == NULL)
11658				return (EINVAL);
11659			break;
11660
11661		case DTRACEACT_EXIT:
11662			if (dp == NULL ||
11663			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11664			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11665				return (EINVAL);
11666			break;
11667
11668		case DTRACEACT_SPECULATE:
11669			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11670				return (EINVAL);
11671
11672			if (dp == NULL)
11673				return (EINVAL);
11674
11675			state->dts_speculates = 1;
11676			break;
11677
11678		case DTRACEACT_PRINTM:
11679		    	size = dp->dtdo_rtype.dtdt_size;
11680			break;
11681
11682		case DTRACEACT_COMMIT: {
11683			dtrace_action_t *act = ecb->dte_action;
11684
11685			for (; act != NULL; act = act->dta_next) {
11686				if (act->dta_kind == DTRACEACT_COMMIT)
11687					return (EINVAL);
11688			}
11689
11690			if (dp == NULL)
11691				return (EINVAL);
11692			break;
11693		}
11694
11695		default:
11696			return (EINVAL);
11697		}
11698
11699		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11700			/*
11701			 * If this is a data-storing action or a speculate,
11702			 * we must be sure that there isn't a commit on the
11703			 * action chain.
11704			 */
11705			dtrace_action_t *act = ecb->dte_action;
11706
11707			for (; act != NULL; act = act->dta_next) {
11708				if (act->dta_kind == DTRACEACT_COMMIT)
11709					return (EINVAL);
11710			}
11711		}
11712
11713		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11714		action->dta_rec.dtrd_size = size;
11715	}
11716
11717	action->dta_refcnt = 1;
11718	rec = &action->dta_rec;
11719	size = rec->dtrd_size;
11720
11721	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11722		if (!(size & mask)) {
11723			align = mask + 1;
11724			break;
11725		}
11726	}
11727
11728	action->dta_kind = desc->dtad_kind;
11729
11730	if ((action->dta_difo = dp) != NULL)
11731		dtrace_difo_hold(dp);
11732
11733	rec->dtrd_action = action->dta_kind;
11734	rec->dtrd_arg = arg;
11735	rec->dtrd_uarg = desc->dtad_uarg;
11736	rec->dtrd_alignment = (uint16_t)align;
11737	rec->dtrd_format = format;
11738
11739	if ((last = ecb->dte_action_last) != NULL) {
11740		ASSERT(ecb->dte_action != NULL);
11741		action->dta_prev = last;
11742		last->dta_next = action;
11743	} else {
11744		ASSERT(ecb->dte_action == NULL);
11745		ecb->dte_action = action;
11746	}
11747
11748	ecb->dte_action_last = action;
11749
11750	return (0);
11751}
11752
11753static void
11754dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11755{
11756	dtrace_action_t *act = ecb->dte_action, *next;
11757	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11758	dtrace_difo_t *dp;
11759	uint16_t format;
11760
11761	if (act != NULL && act->dta_refcnt > 1) {
11762		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11763		act->dta_refcnt--;
11764	} else {
11765		for (; act != NULL; act = next) {
11766			next = act->dta_next;
11767			ASSERT(next != NULL || act == ecb->dte_action_last);
11768			ASSERT(act->dta_refcnt == 1);
11769
11770			if ((format = act->dta_rec.dtrd_format) != 0)
11771				dtrace_format_remove(ecb->dte_state, format);
11772
11773			if ((dp = act->dta_difo) != NULL)
11774				dtrace_difo_release(dp, vstate);
11775
11776			if (DTRACEACT_ISAGG(act->dta_kind)) {
11777				dtrace_ecb_aggregation_destroy(ecb, act);
11778			} else {
11779				kmem_free(act, sizeof (dtrace_action_t));
11780			}
11781		}
11782	}
11783
11784	ecb->dte_action = NULL;
11785	ecb->dte_action_last = NULL;
11786	ecb->dte_size = 0;
11787}
11788
11789static void
11790dtrace_ecb_disable(dtrace_ecb_t *ecb)
11791{
11792	/*
11793	 * We disable the ECB by removing it from its probe.
11794	 */
11795	dtrace_ecb_t *pecb, *prev = NULL;
11796	dtrace_probe_t *probe = ecb->dte_probe;
11797
11798	ASSERT(MUTEX_HELD(&dtrace_lock));
11799
11800	if (probe == NULL) {
11801		/*
11802		 * This is the NULL probe; there is nothing to disable.
11803		 */
11804		return;
11805	}
11806
11807	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11808		if (pecb == ecb)
11809			break;
11810		prev = pecb;
11811	}
11812
11813	ASSERT(pecb != NULL);
11814
11815	if (prev == NULL) {
11816		probe->dtpr_ecb = ecb->dte_next;
11817	} else {
11818		prev->dte_next = ecb->dte_next;
11819	}
11820
11821	if (ecb == probe->dtpr_ecb_last) {
11822		ASSERT(ecb->dte_next == NULL);
11823		probe->dtpr_ecb_last = prev;
11824	}
11825
11826	/*
11827	 * The ECB has been disconnected from the probe; now sync to assure
11828	 * that all CPUs have seen the change before returning.
11829	 */
11830	dtrace_sync();
11831
11832	if (probe->dtpr_ecb == NULL) {
11833		/*
11834		 * That was the last ECB on the probe; clear the predicate
11835		 * cache ID for the probe, disable it and sync one more time
11836		 * to assure that we'll never hit it again.
11837		 */
11838		dtrace_provider_t *prov = probe->dtpr_provider;
11839
11840		ASSERT(ecb->dte_next == NULL);
11841		ASSERT(probe->dtpr_ecb_last == NULL);
11842		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11843		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11844		    probe->dtpr_id, probe->dtpr_arg);
11845		dtrace_sync();
11846	} else {
11847		/*
11848		 * There is at least one ECB remaining on the probe.  If there
11849		 * is _exactly_ one, set the probe's predicate cache ID to be
11850		 * the predicate cache ID of the remaining ECB.
11851		 */
11852		ASSERT(probe->dtpr_ecb_last != NULL);
11853		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11854
11855		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11856			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11857
11858			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11859
11860			if (p != NULL)
11861				probe->dtpr_predcache = p->dtp_cacheid;
11862		}
11863
11864		ecb->dte_next = NULL;
11865	}
11866}
11867
11868static void
11869dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11870{
11871	dtrace_state_t *state = ecb->dte_state;
11872	dtrace_vstate_t *vstate = &state->dts_vstate;
11873	dtrace_predicate_t *pred;
11874	dtrace_epid_t epid = ecb->dte_epid;
11875
11876	ASSERT(MUTEX_HELD(&dtrace_lock));
11877	ASSERT(ecb->dte_next == NULL);
11878	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11879
11880	if ((pred = ecb->dte_predicate) != NULL)
11881		dtrace_predicate_release(pred, vstate);
11882
11883	dtrace_ecb_action_remove(ecb);
11884
11885	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11886	state->dts_ecbs[epid - 1] = NULL;
11887
11888	kmem_free(ecb, sizeof (dtrace_ecb_t));
11889}
11890
11891static dtrace_ecb_t *
11892dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11893    dtrace_enabling_t *enab)
11894{
11895	dtrace_ecb_t *ecb;
11896	dtrace_predicate_t *pred;
11897	dtrace_actdesc_t *act;
11898	dtrace_provider_t *prov;
11899	dtrace_ecbdesc_t *desc = enab->dten_current;
11900
11901	ASSERT(MUTEX_HELD(&dtrace_lock));
11902	ASSERT(state != NULL);
11903
11904	ecb = dtrace_ecb_add(state, probe);
11905	ecb->dte_uarg = desc->dted_uarg;
11906
11907	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11908		dtrace_predicate_hold(pred);
11909		ecb->dte_predicate = pred;
11910	}
11911
11912	if (probe != NULL) {
11913		/*
11914		 * If the provider shows more leg than the consumer is old
11915		 * enough to see, we need to enable the appropriate implicit
11916		 * predicate bits to prevent the ecb from activating at
11917		 * revealing times.
11918		 *
11919		 * Providers specifying DTRACE_PRIV_USER at register time
11920		 * are stating that they need the /proc-style privilege
11921		 * model to be enforced, and this is what DTRACE_COND_OWNER
11922		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11923		 */
11924		prov = probe->dtpr_provider;
11925		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11926		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11927			ecb->dte_cond |= DTRACE_COND_OWNER;
11928
11929		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11930		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11931			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11932
11933		/*
11934		 * If the provider shows us kernel innards and the user
11935		 * is lacking sufficient privilege, enable the
11936		 * DTRACE_COND_USERMODE implicit predicate.
11937		 */
11938		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11939		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11940			ecb->dte_cond |= DTRACE_COND_USERMODE;
11941	}
11942
11943	if (dtrace_ecb_create_cache != NULL) {
11944		/*
11945		 * If we have a cached ecb, we'll use its action list instead
11946		 * of creating our own (saving both time and space).
11947		 */
11948		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11949		dtrace_action_t *act = cached->dte_action;
11950
11951		if (act != NULL) {
11952			ASSERT(act->dta_refcnt > 0);
11953			act->dta_refcnt++;
11954			ecb->dte_action = act;
11955			ecb->dte_action_last = cached->dte_action_last;
11956			ecb->dte_needed = cached->dte_needed;
11957			ecb->dte_size = cached->dte_size;
11958			ecb->dte_alignment = cached->dte_alignment;
11959		}
11960
11961		return (ecb);
11962	}
11963
11964	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11965		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11966			dtrace_ecb_destroy(ecb);
11967			return (NULL);
11968		}
11969	}
11970
11971	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11972		dtrace_ecb_destroy(ecb);
11973		return (NULL);
11974	}
11975
11976	return (dtrace_ecb_create_cache = ecb);
11977}
11978
11979static int
11980dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11981{
11982	dtrace_ecb_t *ecb;
11983	dtrace_enabling_t *enab = arg;
11984	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11985
11986	ASSERT(state != NULL);
11987
11988	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11989		/*
11990		 * This probe was created in a generation for which this
11991		 * enabling has previously created ECBs; we don't want to
11992		 * enable it again, so just kick out.
11993		 */
11994		return (DTRACE_MATCH_NEXT);
11995	}
11996
11997	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11998		return (DTRACE_MATCH_DONE);
11999
12000	dtrace_ecb_enable(ecb);
12001	return (DTRACE_MATCH_NEXT);
12002}
12003
12004static dtrace_ecb_t *
12005dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
12006{
12007	dtrace_ecb_t *ecb;
12008
12009	ASSERT(MUTEX_HELD(&dtrace_lock));
12010
12011	if (id == 0 || id > state->dts_necbs)
12012		return (NULL);
12013
12014	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
12015	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
12016
12017	return (state->dts_ecbs[id - 1]);
12018}
12019
12020static dtrace_aggregation_t *
12021dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
12022{
12023	dtrace_aggregation_t *agg;
12024
12025	ASSERT(MUTEX_HELD(&dtrace_lock));
12026
12027	if (id == 0 || id > state->dts_naggregations)
12028		return (NULL);
12029
12030	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
12031	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
12032	    agg->dtag_id == id);
12033
12034	return (state->dts_aggregations[id - 1]);
12035}
12036
12037/*
12038 * DTrace Buffer Functions
12039 *
12040 * The following functions manipulate DTrace buffers.  Most of these functions
12041 * are called in the context of establishing or processing consumer state;
12042 * exceptions are explicitly noted.
12043 */
12044
12045/*
12046 * Note:  called from cross call context.  This function switches the two
12047 * buffers on a given CPU.  The atomicity of this operation is assured by
12048 * disabling interrupts while the actual switch takes place; the disabling of
12049 * interrupts serializes the execution with any execution of dtrace_probe() on
12050 * the same CPU.
12051 */
12052static void
12053dtrace_buffer_switch(dtrace_buffer_t *buf)
12054{
12055	caddr_t tomax = buf->dtb_tomax;
12056	caddr_t xamot = buf->dtb_xamot;
12057	dtrace_icookie_t cookie;
12058	hrtime_t now;
12059
12060	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12061	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12062
12063	cookie = dtrace_interrupt_disable();
12064	now = dtrace_gethrtime();
12065	buf->dtb_tomax = xamot;
12066	buf->dtb_xamot = tomax;
12067	buf->dtb_xamot_drops = buf->dtb_drops;
12068	buf->dtb_xamot_offset = buf->dtb_offset;
12069	buf->dtb_xamot_errors = buf->dtb_errors;
12070	buf->dtb_xamot_flags = buf->dtb_flags;
12071	buf->dtb_offset = 0;
12072	buf->dtb_drops = 0;
12073	buf->dtb_errors = 0;
12074	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12075	buf->dtb_interval = now - buf->dtb_switched;
12076	buf->dtb_switched = now;
12077	dtrace_interrupt_enable(cookie);
12078}
12079
12080/*
12081 * Note:  called from cross call context.  This function activates a buffer
12082 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
12083 * is guaranteed by the disabling of interrupts.
12084 */
12085static void
12086dtrace_buffer_activate(dtrace_state_t *state)
12087{
12088	dtrace_buffer_t *buf;
12089	dtrace_icookie_t cookie = dtrace_interrupt_disable();
12090
12091	buf = &state->dts_buffer[curcpu];
12092
12093	if (buf->dtb_tomax != NULL) {
12094		/*
12095		 * We might like to assert that the buffer is marked inactive,
12096		 * but this isn't necessarily true:  the buffer for the CPU
12097		 * that processes the BEGIN probe has its buffer activated
12098		 * manually.  In this case, we take the (harmless) action
12099		 * re-clearing the bit INACTIVE bit.
12100		 */
12101		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12102	}
12103
12104	dtrace_interrupt_enable(cookie);
12105}
12106
12107#ifdef __FreeBSD__
12108/*
12109 * Activate the specified per-CPU buffer.  This is used instead of
12110 * dtrace_buffer_activate() when APs have not yet started, i.e. when
12111 * activating anonymous state.
12112 */
12113static void
12114dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12115{
12116
12117	if (state->dts_buffer[cpu].dtb_tomax != NULL)
12118		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12119}
12120#endif
12121
12122static int
12123dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12124    processorid_t cpu, int *factor)
12125{
12126#ifdef illumos
12127	cpu_t *cp;
12128#endif
12129	dtrace_buffer_t *buf;
12130	int allocated = 0, desired = 0;
12131
12132#ifdef illumos
12133	ASSERT(MUTEX_HELD(&cpu_lock));
12134	ASSERT(MUTEX_HELD(&dtrace_lock));
12135
12136	*factor = 1;
12137
12138	if (size > dtrace_nonroot_maxsize &&
12139	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12140		return (EFBIG);
12141
12142	cp = cpu_list;
12143
12144	do {
12145		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12146			continue;
12147
12148		buf = &bufs[cp->cpu_id];
12149
12150		/*
12151		 * If there is already a buffer allocated for this CPU, it
12152		 * is only possible that this is a DR event.  In this case,
12153		 */
12154		if (buf->dtb_tomax != NULL) {
12155			ASSERT(buf->dtb_size == size);
12156			continue;
12157		}
12158
12159		ASSERT(buf->dtb_xamot == NULL);
12160
12161		if ((buf->dtb_tomax = kmem_zalloc(size,
12162		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12163			goto err;
12164
12165		buf->dtb_size = size;
12166		buf->dtb_flags = flags;
12167		buf->dtb_offset = 0;
12168		buf->dtb_drops = 0;
12169
12170		if (flags & DTRACEBUF_NOSWITCH)
12171			continue;
12172
12173		if ((buf->dtb_xamot = kmem_zalloc(size,
12174		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12175			goto err;
12176	} while ((cp = cp->cpu_next) != cpu_list);
12177
12178	return (0);
12179
12180err:
12181	cp = cpu_list;
12182
12183	do {
12184		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12185			continue;
12186
12187		buf = &bufs[cp->cpu_id];
12188		desired += 2;
12189
12190		if (buf->dtb_xamot != NULL) {
12191			ASSERT(buf->dtb_tomax != NULL);
12192			ASSERT(buf->dtb_size == size);
12193			kmem_free(buf->dtb_xamot, size);
12194			allocated++;
12195		}
12196
12197		if (buf->dtb_tomax != NULL) {
12198			ASSERT(buf->dtb_size == size);
12199			kmem_free(buf->dtb_tomax, size);
12200			allocated++;
12201		}
12202
12203		buf->dtb_tomax = NULL;
12204		buf->dtb_xamot = NULL;
12205		buf->dtb_size = 0;
12206	} while ((cp = cp->cpu_next) != cpu_list);
12207#else
12208	int i;
12209
12210	*factor = 1;
12211#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12212    defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12213	/*
12214	 * FreeBSD isn't good at limiting the amount of memory we
12215	 * ask to malloc, so let's place a limit here before trying
12216	 * to do something that might well end in tears at bedtime.
12217	 */
12218	int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus;
12219	if (size > physmem * PAGE_SIZE / bufsize_percpu_frac)
12220		return (ENOMEM);
12221#endif
12222
12223	ASSERT(MUTEX_HELD(&dtrace_lock));
12224	CPU_FOREACH(i) {
12225		if (cpu != DTRACE_CPUALL && cpu != i)
12226			continue;
12227
12228		buf = &bufs[i];
12229
12230		/*
12231		 * If there is already a buffer allocated for this CPU, it
12232		 * is only possible that this is a DR event.  In this case,
12233		 * the buffer size must match our specified size.
12234		 */
12235		if (buf->dtb_tomax != NULL) {
12236			ASSERT(buf->dtb_size == size);
12237			continue;
12238		}
12239
12240		ASSERT(buf->dtb_xamot == NULL);
12241
12242		if ((buf->dtb_tomax = kmem_zalloc(size,
12243		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12244			goto err;
12245
12246		buf->dtb_size = size;
12247		buf->dtb_flags = flags;
12248		buf->dtb_offset = 0;
12249		buf->dtb_drops = 0;
12250
12251		if (flags & DTRACEBUF_NOSWITCH)
12252			continue;
12253
12254		if ((buf->dtb_xamot = kmem_zalloc(size,
12255		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12256			goto err;
12257	}
12258
12259	return (0);
12260
12261err:
12262	/*
12263	 * Error allocating memory, so free the buffers that were
12264	 * allocated before the failed allocation.
12265	 */
12266	CPU_FOREACH(i) {
12267		if (cpu != DTRACE_CPUALL && cpu != i)
12268			continue;
12269
12270		buf = &bufs[i];
12271		desired += 2;
12272
12273		if (buf->dtb_xamot != NULL) {
12274			ASSERT(buf->dtb_tomax != NULL);
12275			ASSERT(buf->dtb_size == size);
12276			kmem_free(buf->dtb_xamot, size);
12277			allocated++;
12278		}
12279
12280		if (buf->dtb_tomax != NULL) {
12281			ASSERT(buf->dtb_size == size);
12282			kmem_free(buf->dtb_tomax, size);
12283			allocated++;
12284		}
12285
12286		buf->dtb_tomax = NULL;
12287		buf->dtb_xamot = NULL;
12288		buf->dtb_size = 0;
12289
12290	}
12291#endif
12292	*factor = desired / (allocated > 0 ? allocated : 1);
12293
12294	return (ENOMEM);
12295}
12296
12297/*
12298 * Note:  called from probe context.  This function just increments the drop
12299 * count on a buffer.  It has been made a function to allow for the
12300 * possibility of understanding the source of mysterious drop counts.  (A
12301 * problem for which one may be particularly disappointed that DTrace cannot
12302 * be used to understand DTrace.)
12303 */
12304static void
12305dtrace_buffer_drop(dtrace_buffer_t *buf)
12306{
12307	buf->dtb_drops++;
12308}
12309
12310/*
12311 * Note:  called from probe context.  This function is called to reserve space
12312 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12313 * mstate.  Returns the new offset in the buffer, or a negative value if an
12314 * error has occurred.
12315 */
12316static intptr_t
12317dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12318    dtrace_state_t *state, dtrace_mstate_t *mstate)
12319{
12320	intptr_t offs = buf->dtb_offset, soffs;
12321	intptr_t woffs;
12322	caddr_t tomax;
12323	size_t total;
12324
12325	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12326		return (-1);
12327
12328	if ((tomax = buf->dtb_tomax) == NULL) {
12329		dtrace_buffer_drop(buf);
12330		return (-1);
12331	}
12332
12333	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12334		while (offs & (align - 1)) {
12335			/*
12336			 * Assert that our alignment is off by a number which
12337			 * is itself sizeof (uint32_t) aligned.
12338			 */
12339			ASSERT(!((align - (offs & (align - 1))) &
12340			    (sizeof (uint32_t) - 1)));
12341			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12342			offs += sizeof (uint32_t);
12343		}
12344
12345		if ((soffs = offs + needed) > buf->dtb_size) {
12346			dtrace_buffer_drop(buf);
12347			return (-1);
12348		}
12349
12350		if (mstate == NULL)
12351			return (offs);
12352
12353		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12354		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12355		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12356
12357		return (offs);
12358	}
12359
12360	if (buf->dtb_flags & DTRACEBUF_FILL) {
12361		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12362		    (buf->dtb_flags & DTRACEBUF_FULL))
12363			return (-1);
12364		goto out;
12365	}
12366
12367	total = needed + (offs & (align - 1));
12368
12369	/*
12370	 * For a ring buffer, life is quite a bit more complicated.  Before
12371	 * we can store any padding, we need to adjust our wrapping offset.
12372	 * (If we've never before wrapped or we're not about to, no adjustment
12373	 * is required.)
12374	 */
12375	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12376	    offs + total > buf->dtb_size) {
12377		woffs = buf->dtb_xamot_offset;
12378
12379		if (offs + total > buf->dtb_size) {
12380			/*
12381			 * We can't fit in the end of the buffer.  First, a
12382			 * sanity check that we can fit in the buffer at all.
12383			 */
12384			if (total > buf->dtb_size) {
12385				dtrace_buffer_drop(buf);
12386				return (-1);
12387			}
12388
12389			/*
12390			 * We're going to be storing at the top of the buffer,
12391			 * so now we need to deal with the wrapped offset.  We
12392			 * only reset our wrapped offset to 0 if it is
12393			 * currently greater than the current offset.  If it
12394			 * is less than the current offset, it is because a
12395			 * previous allocation induced a wrap -- but the
12396			 * allocation didn't subsequently take the space due
12397			 * to an error or false predicate evaluation.  In this
12398			 * case, we'll just leave the wrapped offset alone: if
12399			 * the wrapped offset hasn't been advanced far enough
12400			 * for this allocation, it will be adjusted in the
12401			 * lower loop.
12402			 */
12403			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12404				if (woffs >= offs)
12405					woffs = 0;
12406			} else {
12407				woffs = 0;
12408			}
12409
12410			/*
12411			 * Now we know that we're going to be storing to the
12412			 * top of the buffer and that there is room for us
12413			 * there.  We need to clear the buffer from the current
12414			 * offset to the end (there may be old gunk there).
12415			 */
12416			while (offs < buf->dtb_size)
12417				tomax[offs++] = 0;
12418
12419			/*
12420			 * We need to set our offset to zero.  And because we
12421			 * are wrapping, we need to set the bit indicating as
12422			 * much.  We can also adjust our needed space back
12423			 * down to the space required by the ECB -- we know
12424			 * that the top of the buffer is aligned.
12425			 */
12426			offs = 0;
12427			total = needed;
12428			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12429		} else {
12430			/*
12431			 * There is room for us in the buffer, so we simply
12432			 * need to check the wrapped offset.
12433			 */
12434			if (woffs < offs) {
12435				/*
12436				 * The wrapped offset is less than the offset.
12437				 * This can happen if we allocated buffer space
12438				 * that induced a wrap, but then we didn't
12439				 * subsequently take the space due to an error
12440				 * or false predicate evaluation.  This is
12441				 * okay; we know that _this_ allocation isn't
12442				 * going to induce a wrap.  We still can't
12443				 * reset the wrapped offset to be zero,
12444				 * however: the space may have been trashed in
12445				 * the previous failed probe attempt.  But at
12446				 * least the wrapped offset doesn't need to
12447				 * be adjusted at all...
12448				 */
12449				goto out;
12450			}
12451		}
12452
12453		while (offs + total > woffs) {
12454			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12455			size_t size;
12456
12457			if (epid == DTRACE_EPIDNONE) {
12458				size = sizeof (uint32_t);
12459			} else {
12460				ASSERT3U(epid, <=, state->dts_necbs);
12461				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12462
12463				size = state->dts_ecbs[epid - 1]->dte_size;
12464			}
12465
12466			ASSERT(woffs + size <= buf->dtb_size);
12467			ASSERT(size != 0);
12468
12469			if (woffs + size == buf->dtb_size) {
12470				/*
12471				 * We've reached the end of the buffer; we want
12472				 * to set the wrapped offset to 0 and break
12473				 * out.  However, if the offs is 0, then we're
12474				 * in a strange edge-condition:  the amount of
12475				 * space that we want to reserve plus the size
12476				 * of the record that we're overwriting is
12477				 * greater than the size of the buffer.  This
12478				 * is problematic because if we reserve the
12479				 * space but subsequently don't consume it (due
12480				 * to a failed predicate or error) the wrapped
12481				 * offset will be 0 -- yet the EPID at offset 0
12482				 * will not be committed.  This situation is
12483				 * relatively easy to deal with:  if we're in
12484				 * this case, the buffer is indistinguishable
12485				 * from one that hasn't wrapped; we need only
12486				 * finish the job by clearing the wrapped bit,
12487				 * explicitly setting the offset to be 0, and
12488				 * zero'ing out the old data in the buffer.
12489				 */
12490				if (offs == 0) {
12491					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12492					buf->dtb_offset = 0;
12493					woffs = total;
12494
12495					while (woffs < buf->dtb_size)
12496						tomax[woffs++] = 0;
12497				}
12498
12499				woffs = 0;
12500				break;
12501			}
12502
12503			woffs += size;
12504		}
12505
12506		/*
12507		 * We have a wrapped offset.  It may be that the wrapped offset
12508		 * has become zero -- that's okay.
12509		 */
12510		buf->dtb_xamot_offset = woffs;
12511	}
12512
12513out:
12514	/*
12515	 * Now we can plow the buffer with any necessary padding.
12516	 */
12517	while (offs & (align - 1)) {
12518		/*
12519		 * Assert that our alignment is off by a number which
12520		 * is itself sizeof (uint32_t) aligned.
12521		 */
12522		ASSERT(!((align - (offs & (align - 1))) &
12523		    (sizeof (uint32_t) - 1)));
12524		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12525		offs += sizeof (uint32_t);
12526	}
12527
12528	if (buf->dtb_flags & DTRACEBUF_FILL) {
12529		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12530			buf->dtb_flags |= DTRACEBUF_FULL;
12531			return (-1);
12532		}
12533	}
12534
12535	if (mstate == NULL)
12536		return (offs);
12537
12538	/*
12539	 * For ring buffers and fill buffers, the scratch space is always
12540	 * the inactive buffer.
12541	 */
12542	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12543	mstate->dtms_scratch_size = buf->dtb_size;
12544	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12545
12546	return (offs);
12547}
12548
12549static void
12550dtrace_buffer_polish(dtrace_buffer_t *buf)
12551{
12552	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12553	ASSERT(MUTEX_HELD(&dtrace_lock));
12554
12555	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12556		return;
12557
12558	/*
12559	 * We need to polish the ring buffer.  There are three cases:
12560	 *
12561	 * - The first (and presumably most common) is that there is no gap
12562	 *   between the buffer offset and the wrapped offset.  In this case,
12563	 *   there is nothing in the buffer that isn't valid data; we can
12564	 *   mark the buffer as polished and return.
12565	 *
12566	 * - The second (less common than the first but still more common
12567	 *   than the third) is that there is a gap between the buffer offset
12568	 *   and the wrapped offset, and the wrapped offset is larger than the
12569	 *   buffer offset.  This can happen because of an alignment issue, or
12570	 *   can happen because of a call to dtrace_buffer_reserve() that
12571	 *   didn't subsequently consume the buffer space.  In this case,
12572	 *   we need to zero the data from the buffer offset to the wrapped
12573	 *   offset.
12574	 *
12575	 * - The third (and least common) is that there is a gap between the
12576	 *   buffer offset and the wrapped offset, but the wrapped offset is
12577	 *   _less_ than the buffer offset.  This can only happen because a
12578	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12579	 *   was not subsequently consumed.  In this case, we need to zero the
12580	 *   space from the offset to the end of the buffer _and_ from the
12581	 *   top of the buffer to the wrapped offset.
12582	 */
12583	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12584		bzero(buf->dtb_tomax + buf->dtb_offset,
12585		    buf->dtb_xamot_offset - buf->dtb_offset);
12586	}
12587
12588	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12589		bzero(buf->dtb_tomax + buf->dtb_offset,
12590		    buf->dtb_size - buf->dtb_offset);
12591		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12592	}
12593}
12594
12595/*
12596 * This routine determines if data generated at the specified time has likely
12597 * been entirely consumed at user-level.  This routine is called to determine
12598 * if an ECB on a defunct probe (but for an active enabling) can be safely
12599 * disabled and destroyed.
12600 */
12601static int
12602dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12603{
12604	int i;
12605
12606	for (i = 0; i < NCPU; i++) {
12607		dtrace_buffer_t *buf = &bufs[i];
12608
12609		if (buf->dtb_size == 0)
12610			continue;
12611
12612		if (buf->dtb_flags & DTRACEBUF_RING)
12613			return (0);
12614
12615		if (!buf->dtb_switched && buf->dtb_offset != 0)
12616			return (0);
12617
12618		if (buf->dtb_switched - buf->dtb_interval < when)
12619			return (0);
12620	}
12621
12622	return (1);
12623}
12624
12625static void
12626dtrace_buffer_free(dtrace_buffer_t *bufs)
12627{
12628	int i;
12629
12630	for (i = 0; i < NCPU; i++) {
12631		dtrace_buffer_t *buf = &bufs[i];
12632
12633		if (buf->dtb_tomax == NULL) {
12634			ASSERT(buf->dtb_xamot == NULL);
12635			ASSERT(buf->dtb_size == 0);
12636			continue;
12637		}
12638
12639		if (buf->dtb_xamot != NULL) {
12640			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12641			kmem_free(buf->dtb_xamot, buf->dtb_size);
12642		}
12643
12644		kmem_free(buf->dtb_tomax, buf->dtb_size);
12645		buf->dtb_size = 0;
12646		buf->dtb_tomax = NULL;
12647		buf->dtb_xamot = NULL;
12648	}
12649}
12650
12651/*
12652 * DTrace Enabling Functions
12653 */
12654static dtrace_enabling_t *
12655dtrace_enabling_create(dtrace_vstate_t *vstate)
12656{
12657	dtrace_enabling_t *enab;
12658
12659	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12660	enab->dten_vstate = vstate;
12661
12662	return (enab);
12663}
12664
12665static void
12666dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12667{
12668	dtrace_ecbdesc_t **ndesc;
12669	size_t osize, nsize;
12670
12671	/*
12672	 * We can't add to enablings after we've enabled them, or after we've
12673	 * retained them.
12674	 */
12675	ASSERT(enab->dten_probegen == 0);
12676	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12677
12678	if (enab->dten_ndesc < enab->dten_maxdesc) {
12679		enab->dten_desc[enab->dten_ndesc++] = ecb;
12680		return;
12681	}
12682
12683	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12684
12685	if (enab->dten_maxdesc == 0) {
12686		enab->dten_maxdesc = 1;
12687	} else {
12688		enab->dten_maxdesc <<= 1;
12689	}
12690
12691	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12692
12693	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12694	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12695	bcopy(enab->dten_desc, ndesc, osize);
12696	if (enab->dten_desc != NULL)
12697		kmem_free(enab->dten_desc, osize);
12698
12699	enab->dten_desc = ndesc;
12700	enab->dten_desc[enab->dten_ndesc++] = ecb;
12701}
12702
12703static void
12704dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12705    dtrace_probedesc_t *pd)
12706{
12707	dtrace_ecbdesc_t *new;
12708	dtrace_predicate_t *pred;
12709	dtrace_actdesc_t *act;
12710
12711	/*
12712	 * We're going to create a new ECB description that matches the
12713	 * specified ECB in every way, but has the specified probe description.
12714	 */
12715	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12716
12717	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12718		dtrace_predicate_hold(pred);
12719
12720	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12721		dtrace_actdesc_hold(act);
12722
12723	new->dted_action = ecb->dted_action;
12724	new->dted_pred = ecb->dted_pred;
12725	new->dted_probe = *pd;
12726	new->dted_uarg = ecb->dted_uarg;
12727
12728	dtrace_enabling_add(enab, new);
12729}
12730
12731static void
12732dtrace_enabling_dump(dtrace_enabling_t *enab)
12733{
12734	int i;
12735
12736	for (i = 0; i < enab->dten_ndesc; i++) {
12737		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12738
12739#ifdef __FreeBSD__
12740		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12741		    desc->dtpd_provider, desc->dtpd_mod,
12742		    desc->dtpd_func, desc->dtpd_name);
12743#else
12744		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12745		    desc->dtpd_provider, desc->dtpd_mod,
12746		    desc->dtpd_func, desc->dtpd_name);
12747#endif
12748	}
12749}
12750
12751static void
12752dtrace_enabling_destroy(dtrace_enabling_t *enab)
12753{
12754	int i;
12755	dtrace_ecbdesc_t *ep;
12756	dtrace_vstate_t *vstate = enab->dten_vstate;
12757
12758	ASSERT(MUTEX_HELD(&dtrace_lock));
12759
12760	for (i = 0; i < enab->dten_ndesc; i++) {
12761		dtrace_actdesc_t *act, *next;
12762		dtrace_predicate_t *pred;
12763
12764		ep = enab->dten_desc[i];
12765
12766		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12767			dtrace_predicate_release(pred, vstate);
12768
12769		for (act = ep->dted_action; act != NULL; act = next) {
12770			next = act->dtad_next;
12771			dtrace_actdesc_release(act, vstate);
12772		}
12773
12774		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12775	}
12776
12777	if (enab->dten_desc != NULL)
12778		kmem_free(enab->dten_desc,
12779		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12780
12781	/*
12782	 * If this was a retained enabling, decrement the dts_nretained count
12783	 * and take it off of the dtrace_retained list.
12784	 */
12785	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12786	    dtrace_retained == enab) {
12787		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12788		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12789		enab->dten_vstate->dtvs_state->dts_nretained--;
12790		dtrace_retained_gen++;
12791	}
12792
12793	if (enab->dten_prev == NULL) {
12794		if (dtrace_retained == enab) {
12795			dtrace_retained = enab->dten_next;
12796
12797			if (dtrace_retained != NULL)
12798				dtrace_retained->dten_prev = NULL;
12799		}
12800	} else {
12801		ASSERT(enab != dtrace_retained);
12802		ASSERT(dtrace_retained != NULL);
12803		enab->dten_prev->dten_next = enab->dten_next;
12804	}
12805
12806	if (enab->dten_next != NULL) {
12807		ASSERT(dtrace_retained != NULL);
12808		enab->dten_next->dten_prev = enab->dten_prev;
12809	}
12810
12811	kmem_free(enab, sizeof (dtrace_enabling_t));
12812}
12813
12814static int
12815dtrace_enabling_retain(dtrace_enabling_t *enab)
12816{
12817	dtrace_state_t *state;
12818
12819	ASSERT(MUTEX_HELD(&dtrace_lock));
12820	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12821	ASSERT(enab->dten_vstate != NULL);
12822
12823	state = enab->dten_vstate->dtvs_state;
12824	ASSERT(state != NULL);
12825
12826	/*
12827	 * We only allow each state to retain dtrace_retain_max enablings.
12828	 */
12829	if (state->dts_nretained >= dtrace_retain_max)
12830		return (ENOSPC);
12831
12832	state->dts_nretained++;
12833	dtrace_retained_gen++;
12834
12835	if (dtrace_retained == NULL) {
12836		dtrace_retained = enab;
12837		return (0);
12838	}
12839
12840	enab->dten_next = dtrace_retained;
12841	dtrace_retained->dten_prev = enab;
12842	dtrace_retained = enab;
12843
12844	return (0);
12845}
12846
12847static int
12848dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12849    dtrace_probedesc_t *create)
12850{
12851	dtrace_enabling_t *new, *enab;
12852	int found = 0, err = ENOENT;
12853
12854	ASSERT(MUTEX_HELD(&dtrace_lock));
12855	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12856	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12857	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12858	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12859
12860	new = dtrace_enabling_create(&state->dts_vstate);
12861
12862	/*
12863	 * Iterate over all retained enablings, looking for enablings that
12864	 * match the specified state.
12865	 */
12866	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12867		int i;
12868
12869		/*
12870		 * dtvs_state can only be NULL for helper enablings -- and
12871		 * helper enablings can't be retained.
12872		 */
12873		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12874
12875		if (enab->dten_vstate->dtvs_state != state)
12876			continue;
12877
12878		/*
12879		 * Now iterate over each probe description; we're looking for
12880		 * an exact match to the specified probe description.
12881		 */
12882		for (i = 0; i < enab->dten_ndesc; i++) {
12883			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12884			dtrace_probedesc_t *pd = &ep->dted_probe;
12885
12886			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12887				continue;
12888
12889			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12890				continue;
12891
12892			if (strcmp(pd->dtpd_func, match->dtpd_func))
12893				continue;
12894
12895			if (strcmp(pd->dtpd_name, match->dtpd_name))
12896				continue;
12897
12898			/*
12899			 * We have a winning probe!  Add it to our growing
12900			 * enabling.
12901			 */
12902			found = 1;
12903			dtrace_enabling_addlike(new, ep, create);
12904		}
12905	}
12906
12907	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12908		dtrace_enabling_destroy(new);
12909		return (err);
12910	}
12911
12912	return (0);
12913}
12914
12915static void
12916dtrace_enabling_retract(dtrace_state_t *state)
12917{
12918	dtrace_enabling_t *enab, *next;
12919
12920	ASSERT(MUTEX_HELD(&dtrace_lock));
12921
12922	/*
12923	 * Iterate over all retained enablings, destroy the enablings retained
12924	 * for the specified state.
12925	 */
12926	for (enab = dtrace_retained; enab != NULL; enab = next) {
12927		next = enab->dten_next;
12928
12929		/*
12930		 * dtvs_state can only be NULL for helper enablings -- and
12931		 * helper enablings can't be retained.
12932		 */
12933		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12934
12935		if (enab->dten_vstate->dtvs_state == state) {
12936			ASSERT(state->dts_nretained > 0);
12937			dtrace_enabling_destroy(enab);
12938		}
12939	}
12940
12941	ASSERT(state->dts_nretained == 0);
12942}
12943
12944static int
12945dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12946{
12947	int i = 0;
12948	int matched = 0;
12949
12950	ASSERT(MUTEX_HELD(&cpu_lock));
12951	ASSERT(MUTEX_HELD(&dtrace_lock));
12952
12953	for (i = 0; i < enab->dten_ndesc; i++) {
12954		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12955
12956		enab->dten_current = ep;
12957		enab->dten_error = 0;
12958
12959		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12960
12961		if (enab->dten_error != 0) {
12962			/*
12963			 * If we get an error half-way through enabling the
12964			 * probes, we kick out -- perhaps with some number of
12965			 * them enabled.  Leaving enabled probes enabled may
12966			 * be slightly confusing for user-level, but we expect
12967			 * that no one will attempt to actually drive on in
12968			 * the face of such errors.  If this is an anonymous
12969			 * enabling (indicated with a NULL nmatched pointer),
12970			 * we cmn_err() a message.  We aren't expecting to
12971			 * get such an error -- such as it can exist at all,
12972			 * it would be a result of corrupted DOF in the driver
12973			 * properties.
12974			 */
12975			if (nmatched == NULL) {
12976				cmn_err(CE_WARN, "dtrace_enabling_match() "
12977				    "error on %p: %d", (void *)ep,
12978				    enab->dten_error);
12979			}
12980
12981			return (enab->dten_error);
12982		}
12983	}
12984
12985	enab->dten_probegen = dtrace_probegen;
12986	if (nmatched != NULL)
12987		*nmatched = matched;
12988
12989	return (0);
12990}
12991
12992static void
12993dtrace_enabling_matchall(void)
12994{
12995	dtrace_enabling_t *enab;
12996
12997	mutex_enter(&cpu_lock);
12998	mutex_enter(&dtrace_lock);
12999
13000	/*
13001	 * Iterate over all retained enablings to see if any probes match
13002	 * against them.  We only perform this operation on enablings for which
13003	 * we have sufficient permissions by virtue of being in the global zone
13004	 * or in the same zone as the DTrace client.  Because we can be called
13005	 * after dtrace_detach() has been called, we cannot assert that there
13006	 * are retained enablings.  We can safely load from dtrace_retained,
13007	 * however:  the taskq_destroy() at the end of dtrace_detach() will
13008	 * block pending our completion.
13009	 */
13010	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13011#ifdef illumos
13012		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
13013
13014		if (INGLOBALZONE(curproc) ||
13015		    cr != NULL && getzoneid() == crgetzoneid(cr))
13016#endif
13017			(void) dtrace_enabling_match(enab, NULL);
13018	}
13019
13020	mutex_exit(&dtrace_lock);
13021	mutex_exit(&cpu_lock);
13022}
13023
13024/*
13025 * If an enabling is to be enabled without having matched probes (that is, if
13026 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
13027 * enabling must be _primed_ by creating an ECB for every ECB description.
13028 * This must be done to assure that we know the number of speculations, the
13029 * number of aggregations, the minimum buffer size needed, etc. before we
13030 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
13031 * enabling any probes, we create ECBs for every ECB decription, but with a
13032 * NULL probe -- which is exactly what this function does.
13033 */
13034static void
13035dtrace_enabling_prime(dtrace_state_t *state)
13036{
13037	dtrace_enabling_t *enab;
13038	int i;
13039
13040	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13041		ASSERT(enab->dten_vstate->dtvs_state != NULL);
13042
13043		if (enab->dten_vstate->dtvs_state != state)
13044			continue;
13045
13046		/*
13047		 * We don't want to prime an enabling more than once, lest
13048		 * we allow a malicious user to induce resource exhaustion.
13049		 * (The ECBs that result from priming an enabling aren't
13050		 * leaked -- but they also aren't deallocated until the
13051		 * consumer state is destroyed.)
13052		 */
13053		if (enab->dten_primed)
13054			continue;
13055
13056		for (i = 0; i < enab->dten_ndesc; i++) {
13057			enab->dten_current = enab->dten_desc[i];
13058			(void) dtrace_probe_enable(NULL, enab);
13059		}
13060
13061		enab->dten_primed = 1;
13062	}
13063}
13064
13065/*
13066 * Called to indicate that probes should be provided due to retained
13067 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
13068 * must take an initial lap through the enabling calling the dtps_provide()
13069 * entry point explicitly to allow for autocreated probes.
13070 */
13071static void
13072dtrace_enabling_provide(dtrace_provider_t *prv)
13073{
13074	int i, all = 0;
13075	dtrace_probedesc_t desc;
13076	dtrace_genid_t gen;
13077
13078	ASSERT(MUTEX_HELD(&dtrace_lock));
13079	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13080
13081	if (prv == NULL) {
13082		all = 1;
13083		prv = dtrace_provider;
13084	}
13085
13086	do {
13087		dtrace_enabling_t *enab;
13088		void *parg = prv->dtpv_arg;
13089
13090retry:
13091		gen = dtrace_retained_gen;
13092		for (enab = dtrace_retained; enab != NULL;
13093		    enab = enab->dten_next) {
13094			for (i = 0; i < enab->dten_ndesc; i++) {
13095				desc = enab->dten_desc[i]->dted_probe;
13096				mutex_exit(&dtrace_lock);
13097				prv->dtpv_pops.dtps_provide(parg, &desc);
13098				mutex_enter(&dtrace_lock);
13099				/*
13100				 * Process the retained enablings again if
13101				 * they have changed while we weren't holding
13102				 * dtrace_lock.
13103				 */
13104				if (gen != dtrace_retained_gen)
13105					goto retry;
13106			}
13107		}
13108	} while (all && (prv = prv->dtpv_next) != NULL);
13109
13110	mutex_exit(&dtrace_lock);
13111	dtrace_probe_provide(NULL, all ? NULL : prv);
13112	mutex_enter(&dtrace_lock);
13113}
13114
13115/*
13116 * Called to reap ECBs that are attached to probes from defunct providers.
13117 */
13118static void
13119dtrace_enabling_reap(void)
13120{
13121	dtrace_provider_t *prov;
13122	dtrace_probe_t *probe;
13123	dtrace_ecb_t *ecb;
13124	hrtime_t when;
13125	int i;
13126
13127	mutex_enter(&cpu_lock);
13128	mutex_enter(&dtrace_lock);
13129
13130	for (i = 0; i < dtrace_nprobes; i++) {
13131		if ((probe = dtrace_probes[i]) == NULL)
13132			continue;
13133
13134		if (probe->dtpr_ecb == NULL)
13135			continue;
13136
13137		prov = probe->dtpr_provider;
13138
13139		if ((when = prov->dtpv_defunct) == 0)
13140			continue;
13141
13142		/*
13143		 * We have ECBs on a defunct provider:  we want to reap these
13144		 * ECBs to allow the provider to unregister.  The destruction
13145		 * of these ECBs must be done carefully:  if we destroy the ECB
13146		 * and the consumer later wishes to consume an EPID that
13147		 * corresponds to the destroyed ECB (and if the EPID metadata
13148		 * has not been previously consumed), the consumer will abort
13149		 * processing on the unknown EPID.  To reduce (but not, sadly,
13150		 * eliminate) the possibility of this, we will only destroy an
13151		 * ECB for a defunct provider if, for the state that
13152		 * corresponds to the ECB:
13153		 *
13154		 *  (a)	There is no speculative tracing (which can effectively
13155		 *	cache an EPID for an arbitrary amount of time).
13156		 *
13157		 *  (b)	The principal buffers have been switched twice since the
13158		 *	provider became defunct.
13159		 *
13160		 *  (c)	The aggregation buffers are of zero size or have been
13161		 *	switched twice since the provider became defunct.
13162		 *
13163		 * We use dts_speculates to determine (a) and call a function
13164		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13165		 * that as soon as we've been unable to destroy one of the ECBs
13166		 * associated with the probe, we quit trying -- reaping is only
13167		 * fruitful in as much as we can destroy all ECBs associated
13168		 * with the defunct provider's probes.
13169		 */
13170		while ((ecb = probe->dtpr_ecb) != NULL) {
13171			dtrace_state_t *state = ecb->dte_state;
13172			dtrace_buffer_t *buf = state->dts_buffer;
13173			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13174
13175			if (state->dts_speculates)
13176				break;
13177
13178			if (!dtrace_buffer_consumed(buf, when))
13179				break;
13180
13181			if (!dtrace_buffer_consumed(aggbuf, when))
13182				break;
13183
13184			dtrace_ecb_disable(ecb);
13185			ASSERT(probe->dtpr_ecb != ecb);
13186			dtrace_ecb_destroy(ecb);
13187		}
13188	}
13189
13190	mutex_exit(&dtrace_lock);
13191	mutex_exit(&cpu_lock);
13192}
13193
13194/*
13195 * DTrace DOF Functions
13196 */
13197/*ARGSUSED*/
13198static void
13199dtrace_dof_error(dof_hdr_t *dof, const char *str)
13200{
13201	if (dtrace_err_verbose)
13202		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13203
13204#ifdef DTRACE_ERRDEBUG
13205	dtrace_errdebug(str);
13206#endif
13207}
13208
13209/*
13210 * Create DOF out of a currently enabled state.  Right now, we only create
13211 * DOF containing the run-time options -- but this could be expanded to create
13212 * complete DOF representing the enabled state.
13213 */
13214static dof_hdr_t *
13215dtrace_dof_create(dtrace_state_t *state)
13216{
13217	dof_hdr_t *dof;
13218	dof_sec_t *sec;
13219	dof_optdesc_t *opt;
13220	int i, len = sizeof (dof_hdr_t) +
13221	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13222	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13223
13224	ASSERT(MUTEX_HELD(&dtrace_lock));
13225
13226	dof = kmem_zalloc(len, KM_SLEEP);
13227	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13228	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13229	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13230	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13231
13232	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13233	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13234	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13235	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13236	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13237	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13238
13239	dof->dofh_flags = 0;
13240	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13241	dof->dofh_secsize = sizeof (dof_sec_t);
13242	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13243	dof->dofh_secoff = sizeof (dof_hdr_t);
13244	dof->dofh_loadsz = len;
13245	dof->dofh_filesz = len;
13246	dof->dofh_pad = 0;
13247
13248	/*
13249	 * Fill in the option section header...
13250	 */
13251	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13252	sec->dofs_type = DOF_SECT_OPTDESC;
13253	sec->dofs_align = sizeof (uint64_t);
13254	sec->dofs_flags = DOF_SECF_LOAD;
13255	sec->dofs_entsize = sizeof (dof_optdesc_t);
13256
13257	opt = (dof_optdesc_t *)((uintptr_t)sec +
13258	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13259
13260	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13261	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13262
13263	for (i = 0; i < DTRACEOPT_MAX; i++) {
13264		opt[i].dofo_option = i;
13265		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13266		opt[i].dofo_value = state->dts_options[i];
13267	}
13268
13269	return (dof);
13270}
13271
13272static dof_hdr_t *
13273dtrace_dof_copyin(uintptr_t uarg, int *errp)
13274{
13275	dof_hdr_t hdr, *dof;
13276
13277	ASSERT(!MUTEX_HELD(&dtrace_lock));
13278
13279	/*
13280	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13281	 */
13282	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13283		dtrace_dof_error(NULL, "failed to copyin DOF header");
13284		*errp = EFAULT;
13285		return (NULL);
13286	}
13287
13288	/*
13289	 * Now we'll allocate the entire DOF and copy it in -- provided
13290	 * that the length isn't outrageous.
13291	 */
13292	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13293		dtrace_dof_error(&hdr, "load size exceeds maximum");
13294		*errp = E2BIG;
13295		return (NULL);
13296	}
13297
13298	if (hdr.dofh_loadsz < sizeof (hdr)) {
13299		dtrace_dof_error(&hdr, "invalid load size");
13300		*errp = EINVAL;
13301		return (NULL);
13302	}
13303
13304	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13305
13306	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13307	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13308		kmem_free(dof, hdr.dofh_loadsz);
13309		*errp = EFAULT;
13310		return (NULL);
13311	}
13312
13313	return (dof);
13314}
13315
13316#ifdef __FreeBSD__
13317static dof_hdr_t *
13318dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13319{
13320	dof_hdr_t hdr, *dof;
13321	struct thread *td;
13322	size_t loadsz;
13323
13324	ASSERT(!MUTEX_HELD(&dtrace_lock));
13325
13326	td = curthread;
13327
13328	/*
13329	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13330	 */
13331	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13332		dtrace_dof_error(NULL, "failed to copyin DOF header");
13333		*errp = EFAULT;
13334		return (NULL);
13335	}
13336
13337	/*
13338	 * Now we'll allocate the entire DOF and copy it in -- provided
13339	 * that the length isn't outrageous.
13340	 */
13341	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13342		dtrace_dof_error(&hdr, "load size exceeds maximum");
13343		*errp = E2BIG;
13344		return (NULL);
13345	}
13346	loadsz = (size_t)hdr.dofh_loadsz;
13347
13348	if (loadsz < sizeof (hdr)) {
13349		dtrace_dof_error(&hdr, "invalid load size");
13350		*errp = EINVAL;
13351		return (NULL);
13352	}
13353
13354	dof = kmem_alloc(loadsz, KM_SLEEP);
13355
13356	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13357	    dof->dofh_loadsz != loadsz) {
13358		kmem_free(dof, hdr.dofh_loadsz);
13359		*errp = EFAULT;
13360		return (NULL);
13361	}
13362
13363	return (dof);
13364}
13365
13366static __inline uchar_t
13367dtrace_dof_char(char c)
13368{
13369
13370	switch (c) {
13371	case '0':
13372	case '1':
13373	case '2':
13374	case '3':
13375	case '4':
13376	case '5':
13377	case '6':
13378	case '7':
13379	case '8':
13380	case '9':
13381		return (c - '0');
13382	case 'A':
13383	case 'B':
13384	case 'C':
13385	case 'D':
13386	case 'E':
13387	case 'F':
13388		return (c - 'A' + 10);
13389	case 'a':
13390	case 'b':
13391	case 'c':
13392	case 'd':
13393	case 'e':
13394	case 'f':
13395		return (c - 'a' + 10);
13396	}
13397	/* Should not reach here. */
13398	return (UCHAR_MAX);
13399}
13400#endif /* __FreeBSD__ */
13401
13402static dof_hdr_t *
13403dtrace_dof_property(const char *name)
13404{
13405#ifdef __FreeBSD__
13406	uint8_t *dofbuf;
13407	u_char *data, *eol;
13408	caddr_t doffile;
13409	size_t bytes, len, i;
13410	dof_hdr_t *dof;
13411	u_char c1, c2;
13412
13413	dof = NULL;
13414
13415	doffile = preload_search_by_type("dtrace_dof");
13416	if (doffile == NULL)
13417		return (NULL);
13418
13419	data = preload_fetch_addr(doffile);
13420	len = preload_fetch_size(doffile);
13421	for (;;) {
13422		/* Look for the end of the line. All lines end in a newline. */
13423		eol = memchr(data, '\n', len);
13424		if (eol == NULL)
13425			return (NULL);
13426
13427		if (strncmp(name, data, strlen(name)) == 0)
13428			break;
13429
13430		eol++; /* skip past the newline */
13431		len -= eol - data;
13432		data = eol;
13433	}
13434
13435	/* We've found the data corresponding to the specified key. */
13436
13437	data += strlen(name) + 1; /* skip past the '=' */
13438	len = eol - data;
13439	if (len % 2 != 0) {
13440		dtrace_dof_error(NULL, "invalid DOF encoding length");
13441		goto doferr;
13442	}
13443	bytes = len / 2;
13444	if (bytes < sizeof(dof_hdr_t)) {
13445		dtrace_dof_error(NULL, "truncated header");
13446		goto doferr;
13447	}
13448
13449	/*
13450	 * Each byte is represented by the two ASCII characters in its hex
13451	 * representation.
13452	 */
13453	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13454	for (i = 0; i < bytes; i++) {
13455		c1 = dtrace_dof_char(data[i * 2]);
13456		c2 = dtrace_dof_char(data[i * 2 + 1]);
13457		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13458			dtrace_dof_error(NULL, "invalid hex char in DOF");
13459			goto doferr;
13460		}
13461		dofbuf[i] = c1 * 16 + c2;
13462	}
13463
13464	dof = (dof_hdr_t *)dofbuf;
13465	if (bytes < dof->dofh_loadsz) {
13466		dtrace_dof_error(NULL, "truncated DOF");
13467		goto doferr;
13468	}
13469
13470	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13471		dtrace_dof_error(NULL, "oversized DOF");
13472		goto doferr;
13473	}
13474
13475	return (dof);
13476
13477doferr:
13478	free(dof, M_SOLARIS);
13479	return (NULL);
13480#else /* __FreeBSD__ */
13481	uchar_t *buf;
13482	uint64_t loadsz;
13483	unsigned int len, i;
13484	dof_hdr_t *dof;
13485
13486	/*
13487	 * Unfortunately, array of values in .conf files are always (and
13488	 * only) interpreted to be integer arrays.  We must read our DOF
13489	 * as an integer array, and then squeeze it into a byte array.
13490	 */
13491	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13492	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13493		return (NULL);
13494
13495	for (i = 0; i < len; i++)
13496		buf[i] = (uchar_t)(((int *)buf)[i]);
13497
13498	if (len < sizeof (dof_hdr_t)) {
13499		ddi_prop_free(buf);
13500		dtrace_dof_error(NULL, "truncated header");
13501		return (NULL);
13502	}
13503
13504	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13505		ddi_prop_free(buf);
13506		dtrace_dof_error(NULL, "truncated DOF");
13507		return (NULL);
13508	}
13509
13510	if (loadsz >= dtrace_dof_maxsize) {
13511		ddi_prop_free(buf);
13512		dtrace_dof_error(NULL, "oversized DOF");
13513		return (NULL);
13514	}
13515
13516	dof = kmem_alloc(loadsz, KM_SLEEP);
13517	bcopy(buf, dof, loadsz);
13518	ddi_prop_free(buf);
13519
13520	return (dof);
13521#endif /* !__FreeBSD__ */
13522}
13523
13524static void
13525dtrace_dof_destroy(dof_hdr_t *dof)
13526{
13527	kmem_free(dof, dof->dofh_loadsz);
13528}
13529
13530/*
13531 * Return the dof_sec_t pointer corresponding to a given section index.  If the
13532 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13533 * a type other than DOF_SECT_NONE is specified, the header is checked against
13534 * this type and NULL is returned if the types do not match.
13535 */
13536static dof_sec_t *
13537dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13538{
13539	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13540	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13541
13542	if (i >= dof->dofh_secnum) {
13543		dtrace_dof_error(dof, "referenced section index is invalid");
13544		return (NULL);
13545	}
13546
13547	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13548		dtrace_dof_error(dof, "referenced section is not loadable");
13549		return (NULL);
13550	}
13551
13552	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13553		dtrace_dof_error(dof, "referenced section is the wrong type");
13554		return (NULL);
13555	}
13556
13557	return (sec);
13558}
13559
13560static dtrace_probedesc_t *
13561dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13562{
13563	dof_probedesc_t *probe;
13564	dof_sec_t *strtab;
13565	uintptr_t daddr = (uintptr_t)dof;
13566	uintptr_t str;
13567	size_t size;
13568
13569	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13570		dtrace_dof_error(dof, "invalid probe section");
13571		return (NULL);
13572	}
13573
13574	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13575		dtrace_dof_error(dof, "bad alignment in probe description");
13576		return (NULL);
13577	}
13578
13579	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13580		dtrace_dof_error(dof, "truncated probe description");
13581		return (NULL);
13582	}
13583
13584	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13585	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13586
13587	if (strtab == NULL)
13588		return (NULL);
13589
13590	str = daddr + strtab->dofs_offset;
13591	size = strtab->dofs_size;
13592
13593	if (probe->dofp_provider >= strtab->dofs_size) {
13594		dtrace_dof_error(dof, "corrupt probe provider");
13595		return (NULL);
13596	}
13597
13598	(void) strncpy(desc->dtpd_provider,
13599	    (char *)(str + probe->dofp_provider),
13600	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13601
13602	if (probe->dofp_mod >= strtab->dofs_size) {
13603		dtrace_dof_error(dof, "corrupt probe module");
13604		return (NULL);
13605	}
13606
13607	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13608	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13609
13610	if (probe->dofp_func >= strtab->dofs_size) {
13611		dtrace_dof_error(dof, "corrupt probe function");
13612		return (NULL);
13613	}
13614
13615	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13616	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13617
13618	if (probe->dofp_name >= strtab->dofs_size) {
13619		dtrace_dof_error(dof, "corrupt probe name");
13620		return (NULL);
13621	}
13622
13623	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13624	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13625
13626	return (desc);
13627}
13628
13629static dtrace_difo_t *
13630dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13631    cred_t *cr)
13632{
13633	dtrace_difo_t *dp;
13634	size_t ttl = 0;
13635	dof_difohdr_t *dofd;
13636	uintptr_t daddr = (uintptr_t)dof;
13637	size_t max = dtrace_difo_maxsize;
13638	int i, l, n;
13639
13640	static const struct {
13641		int section;
13642		int bufoffs;
13643		int lenoffs;
13644		int entsize;
13645		int align;
13646		const char *msg;
13647	} difo[] = {
13648		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13649		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13650		sizeof (dif_instr_t), "multiple DIF sections" },
13651
13652		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13653		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13654		sizeof (uint64_t), "multiple integer tables" },
13655
13656		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13657		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13658		sizeof (char), "multiple string tables" },
13659
13660		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13661		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13662		sizeof (uint_t), "multiple variable tables" },
13663
13664		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13665	};
13666
13667	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13668		dtrace_dof_error(dof, "invalid DIFO header section");
13669		return (NULL);
13670	}
13671
13672	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13673		dtrace_dof_error(dof, "bad alignment in DIFO header");
13674		return (NULL);
13675	}
13676
13677	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13678	    sec->dofs_size % sizeof (dof_secidx_t)) {
13679		dtrace_dof_error(dof, "bad size in DIFO header");
13680		return (NULL);
13681	}
13682
13683	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13684	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13685
13686	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13687	dp->dtdo_rtype = dofd->dofd_rtype;
13688
13689	for (l = 0; l < n; l++) {
13690		dof_sec_t *subsec;
13691		void **bufp;
13692		uint32_t *lenp;
13693
13694		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13695		    dofd->dofd_links[l])) == NULL)
13696			goto err; /* invalid section link */
13697
13698		if (ttl + subsec->dofs_size > max) {
13699			dtrace_dof_error(dof, "exceeds maximum size");
13700			goto err;
13701		}
13702
13703		ttl += subsec->dofs_size;
13704
13705		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13706			if (subsec->dofs_type != difo[i].section)
13707				continue;
13708
13709			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13710				dtrace_dof_error(dof, "section not loaded");
13711				goto err;
13712			}
13713
13714			if (subsec->dofs_align != difo[i].align) {
13715				dtrace_dof_error(dof, "bad alignment");
13716				goto err;
13717			}
13718
13719			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13720			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13721
13722			if (*bufp != NULL) {
13723				dtrace_dof_error(dof, difo[i].msg);
13724				goto err;
13725			}
13726
13727			if (difo[i].entsize != subsec->dofs_entsize) {
13728				dtrace_dof_error(dof, "entry size mismatch");
13729				goto err;
13730			}
13731
13732			if (subsec->dofs_entsize != 0 &&
13733			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13734				dtrace_dof_error(dof, "corrupt entry size");
13735				goto err;
13736			}
13737
13738			*lenp = subsec->dofs_size;
13739			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13740			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13741			    *bufp, subsec->dofs_size);
13742
13743			if (subsec->dofs_entsize != 0)
13744				*lenp /= subsec->dofs_entsize;
13745
13746			break;
13747		}
13748
13749		/*
13750		 * If we encounter a loadable DIFO sub-section that is not
13751		 * known to us, assume this is a broken program and fail.
13752		 */
13753		if (difo[i].section == DOF_SECT_NONE &&
13754		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13755			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13756			goto err;
13757		}
13758	}
13759
13760	if (dp->dtdo_buf == NULL) {
13761		/*
13762		 * We can't have a DIF object without DIF text.
13763		 */
13764		dtrace_dof_error(dof, "missing DIF text");
13765		goto err;
13766	}
13767
13768	/*
13769	 * Before we validate the DIF object, run through the variable table
13770	 * looking for the strings -- if any of their size are under, we'll set
13771	 * their size to be the system-wide default string size.  Note that
13772	 * this should _not_ happen if the "strsize" option has been set --
13773	 * in this case, the compiler should have set the size to reflect the
13774	 * setting of the option.
13775	 */
13776	for (i = 0; i < dp->dtdo_varlen; i++) {
13777		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13778		dtrace_diftype_t *t = &v->dtdv_type;
13779
13780		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13781			continue;
13782
13783		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13784			t->dtdt_size = dtrace_strsize_default;
13785	}
13786
13787	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13788		goto err;
13789
13790	dtrace_difo_init(dp, vstate);
13791	return (dp);
13792
13793err:
13794	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13795	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13796	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13797	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13798
13799	kmem_free(dp, sizeof (dtrace_difo_t));
13800	return (NULL);
13801}
13802
13803static dtrace_predicate_t *
13804dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13805    cred_t *cr)
13806{
13807	dtrace_difo_t *dp;
13808
13809	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13810		return (NULL);
13811
13812	return (dtrace_predicate_create(dp));
13813}
13814
13815static dtrace_actdesc_t *
13816dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13817    cred_t *cr)
13818{
13819	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13820	dof_actdesc_t *desc;
13821	dof_sec_t *difosec;
13822	size_t offs;
13823	uintptr_t daddr = (uintptr_t)dof;
13824	uint64_t arg;
13825	dtrace_actkind_t kind;
13826
13827	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13828		dtrace_dof_error(dof, "invalid action section");
13829		return (NULL);
13830	}
13831
13832	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13833		dtrace_dof_error(dof, "truncated action description");
13834		return (NULL);
13835	}
13836
13837	if (sec->dofs_align != sizeof (uint64_t)) {
13838		dtrace_dof_error(dof, "bad alignment in action description");
13839		return (NULL);
13840	}
13841
13842	if (sec->dofs_size < sec->dofs_entsize) {
13843		dtrace_dof_error(dof, "section entry size exceeds total size");
13844		return (NULL);
13845	}
13846
13847	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13848		dtrace_dof_error(dof, "bad entry size in action description");
13849		return (NULL);
13850	}
13851
13852	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13853		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13854		return (NULL);
13855	}
13856
13857	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13858		desc = (dof_actdesc_t *)(daddr +
13859		    (uintptr_t)sec->dofs_offset + offs);
13860		kind = (dtrace_actkind_t)desc->dofa_kind;
13861
13862		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13863		    (kind != DTRACEACT_PRINTA ||
13864		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13865		    (kind == DTRACEACT_DIFEXPR &&
13866		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13867			dof_sec_t *strtab;
13868			char *str, *fmt;
13869			uint64_t i;
13870
13871			/*
13872			 * The argument to these actions is an index into the
13873			 * DOF string table.  For printf()-like actions, this
13874			 * is the format string.  For print(), this is the
13875			 * CTF type of the expression result.
13876			 */
13877			if ((strtab = dtrace_dof_sect(dof,
13878			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13879				goto err;
13880
13881			str = (char *)((uintptr_t)dof +
13882			    (uintptr_t)strtab->dofs_offset);
13883
13884			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13885				if (str[i] == '\0')
13886					break;
13887			}
13888
13889			if (i >= strtab->dofs_size) {
13890				dtrace_dof_error(dof, "bogus format string");
13891				goto err;
13892			}
13893
13894			if (i == desc->dofa_arg) {
13895				dtrace_dof_error(dof, "empty format string");
13896				goto err;
13897			}
13898
13899			i -= desc->dofa_arg;
13900			fmt = kmem_alloc(i + 1, KM_SLEEP);
13901			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13902			arg = (uint64_t)(uintptr_t)fmt;
13903		} else {
13904			if (kind == DTRACEACT_PRINTA) {
13905				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13906				arg = 0;
13907			} else {
13908				arg = desc->dofa_arg;
13909			}
13910		}
13911
13912		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13913		    desc->dofa_uarg, arg);
13914
13915		if (last != NULL) {
13916			last->dtad_next = act;
13917		} else {
13918			first = act;
13919		}
13920
13921		last = act;
13922
13923		if (desc->dofa_difo == DOF_SECIDX_NONE)
13924			continue;
13925
13926		if ((difosec = dtrace_dof_sect(dof,
13927		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13928			goto err;
13929
13930		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13931
13932		if (act->dtad_difo == NULL)
13933			goto err;
13934	}
13935
13936	ASSERT(first != NULL);
13937	return (first);
13938
13939err:
13940	for (act = first; act != NULL; act = next) {
13941		next = act->dtad_next;
13942		dtrace_actdesc_release(act, vstate);
13943	}
13944
13945	return (NULL);
13946}
13947
13948static dtrace_ecbdesc_t *
13949dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13950    cred_t *cr)
13951{
13952	dtrace_ecbdesc_t *ep;
13953	dof_ecbdesc_t *ecb;
13954	dtrace_probedesc_t *desc;
13955	dtrace_predicate_t *pred = NULL;
13956
13957	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13958		dtrace_dof_error(dof, "truncated ECB description");
13959		return (NULL);
13960	}
13961
13962	if (sec->dofs_align != sizeof (uint64_t)) {
13963		dtrace_dof_error(dof, "bad alignment in ECB description");
13964		return (NULL);
13965	}
13966
13967	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13968	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13969
13970	if (sec == NULL)
13971		return (NULL);
13972
13973	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13974	ep->dted_uarg = ecb->dofe_uarg;
13975	desc = &ep->dted_probe;
13976
13977	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13978		goto err;
13979
13980	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13981		if ((sec = dtrace_dof_sect(dof,
13982		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13983			goto err;
13984
13985		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13986			goto err;
13987
13988		ep->dted_pred.dtpdd_predicate = pred;
13989	}
13990
13991	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13992		if ((sec = dtrace_dof_sect(dof,
13993		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13994			goto err;
13995
13996		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13997
13998		if (ep->dted_action == NULL)
13999			goto err;
14000	}
14001
14002	return (ep);
14003
14004err:
14005	if (pred != NULL)
14006		dtrace_predicate_release(pred, vstate);
14007	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
14008	return (NULL);
14009}
14010
14011/*
14012 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
14013 * specified DOF.  SETX relocations are computed using 'ubase', the base load
14014 * address of the object containing the DOF, and DOFREL relocations are relative
14015 * to the relocation offset within the DOF.
14016 */
14017static int
14018dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
14019    uint64_t udaddr)
14020{
14021	uintptr_t daddr = (uintptr_t)dof;
14022	uintptr_t ts_end;
14023	dof_relohdr_t *dofr =
14024	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
14025	dof_sec_t *ss, *rs, *ts;
14026	dof_relodesc_t *r;
14027	uint_t i, n;
14028
14029	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
14030	    sec->dofs_align != sizeof (dof_secidx_t)) {
14031		dtrace_dof_error(dof, "invalid relocation header");
14032		return (-1);
14033	}
14034
14035	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14036	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14037	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14038	ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14039
14040	if (ss == NULL || rs == NULL || ts == NULL)
14041		return (-1); /* dtrace_dof_error() has been called already */
14042
14043	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14044	    rs->dofs_align != sizeof (uint64_t)) {
14045		dtrace_dof_error(dof, "invalid relocation section");
14046		return (-1);
14047	}
14048
14049	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14050	n = rs->dofs_size / rs->dofs_entsize;
14051
14052	for (i = 0; i < n; i++) {
14053		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14054
14055		switch (r->dofr_type) {
14056		case DOF_RELO_NONE:
14057			break;
14058		case DOF_RELO_SETX:
14059		case DOF_RELO_DOFREL:
14060			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14061			    sizeof (uint64_t) > ts->dofs_size) {
14062				dtrace_dof_error(dof, "bad relocation offset");
14063				return (-1);
14064			}
14065
14066			if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14067				dtrace_dof_error(dof, "bad relocation offset");
14068				return (-1);
14069			}
14070
14071			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14072				dtrace_dof_error(dof, "misaligned setx relo");
14073				return (-1);
14074			}
14075
14076			if (r->dofr_type == DOF_RELO_SETX)
14077				*(uint64_t *)taddr += ubase;
14078			else
14079				*(uint64_t *)taddr +=
14080				    udaddr + ts->dofs_offset + r->dofr_offset;
14081			break;
14082		default:
14083			dtrace_dof_error(dof, "invalid relocation type");
14084			return (-1);
14085		}
14086
14087		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14088	}
14089
14090	return (0);
14091}
14092
14093/*
14094 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14095 * header:  it should be at the front of a memory region that is at least
14096 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14097 * size.  It need not be validated in any other way.
14098 */
14099static int
14100dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14101    dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14102{
14103	uint64_t len = dof->dofh_loadsz, seclen;
14104	uintptr_t daddr = (uintptr_t)dof;
14105	dtrace_ecbdesc_t *ep;
14106	dtrace_enabling_t *enab;
14107	uint_t i;
14108
14109	ASSERT(MUTEX_HELD(&dtrace_lock));
14110	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14111
14112	/*
14113	 * Check the DOF header identification bytes.  In addition to checking
14114	 * valid settings, we also verify that unused bits/bytes are zeroed so
14115	 * we can use them later without fear of regressing existing binaries.
14116	 */
14117	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14118	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14119		dtrace_dof_error(dof, "DOF magic string mismatch");
14120		return (-1);
14121	}
14122
14123	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14124	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14125		dtrace_dof_error(dof, "DOF has invalid data model");
14126		return (-1);
14127	}
14128
14129	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14130		dtrace_dof_error(dof, "DOF encoding mismatch");
14131		return (-1);
14132	}
14133
14134	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14135	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14136		dtrace_dof_error(dof, "DOF version mismatch");
14137		return (-1);
14138	}
14139
14140	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14141		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14142		return (-1);
14143	}
14144
14145	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14146		dtrace_dof_error(dof, "DOF uses too many integer registers");
14147		return (-1);
14148	}
14149
14150	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14151		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14152		return (-1);
14153	}
14154
14155	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14156		if (dof->dofh_ident[i] != 0) {
14157			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14158			return (-1);
14159		}
14160	}
14161
14162	if (dof->dofh_flags & ~DOF_FL_VALID) {
14163		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14164		return (-1);
14165	}
14166
14167	if (dof->dofh_secsize == 0) {
14168		dtrace_dof_error(dof, "zero section header size");
14169		return (-1);
14170	}
14171
14172	/*
14173	 * Check that the section headers don't exceed the amount of DOF
14174	 * data.  Note that we cast the section size and number of sections
14175	 * to uint64_t's to prevent possible overflow in the multiplication.
14176	 */
14177	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14178
14179	if (dof->dofh_secoff > len || seclen > len ||
14180	    dof->dofh_secoff + seclen > len) {
14181		dtrace_dof_error(dof, "truncated section headers");
14182		return (-1);
14183	}
14184
14185	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14186		dtrace_dof_error(dof, "misaligned section headers");
14187		return (-1);
14188	}
14189
14190	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14191		dtrace_dof_error(dof, "misaligned section size");
14192		return (-1);
14193	}
14194
14195	/*
14196	 * Take an initial pass through the section headers to be sure that
14197	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14198	 * set, do not permit sections relating to providers, probes, or args.
14199	 */
14200	for (i = 0; i < dof->dofh_secnum; i++) {
14201		dof_sec_t *sec = (dof_sec_t *)(daddr +
14202		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14203
14204		if (noprobes) {
14205			switch (sec->dofs_type) {
14206			case DOF_SECT_PROVIDER:
14207			case DOF_SECT_PROBES:
14208			case DOF_SECT_PRARGS:
14209			case DOF_SECT_PROFFS:
14210				dtrace_dof_error(dof, "illegal sections "
14211				    "for enabling");
14212				return (-1);
14213			}
14214		}
14215
14216		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14217		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14218			dtrace_dof_error(dof, "loadable section with load "
14219			    "flag unset");
14220			return (-1);
14221		}
14222
14223		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14224			continue; /* just ignore non-loadable sections */
14225
14226		if (!ISP2(sec->dofs_align)) {
14227			dtrace_dof_error(dof, "bad section alignment");
14228			return (-1);
14229		}
14230
14231		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14232			dtrace_dof_error(dof, "misaligned section");
14233			return (-1);
14234		}
14235
14236		if (sec->dofs_offset > len || sec->dofs_size > len ||
14237		    sec->dofs_offset + sec->dofs_size > len) {
14238			dtrace_dof_error(dof, "corrupt section header");
14239			return (-1);
14240		}
14241
14242		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14243		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14244			dtrace_dof_error(dof, "non-terminating string table");
14245			return (-1);
14246		}
14247	}
14248
14249	/*
14250	 * Take a second pass through the sections and locate and perform any
14251	 * relocations that are present.  We do this after the first pass to
14252	 * be sure that all sections have had their headers validated.
14253	 */
14254	for (i = 0; i < dof->dofh_secnum; i++) {
14255		dof_sec_t *sec = (dof_sec_t *)(daddr +
14256		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14257
14258		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14259			continue; /* skip sections that are not loadable */
14260
14261		switch (sec->dofs_type) {
14262		case DOF_SECT_URELHDR:
14263			if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14264				return (-1);
14265			break;
14266		}
14267	}
14268
14269	if ((enab = *enabp) == NULL)
14270		enab = *enabp = dtrace_enabling_create(vstate);
14271
14272	for (i = 0; i < dof->dofh_secnum; i++) {
14273		dof_sec_t *sec = (dof_sec_t *)(daddr +
14274		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14275
14276		if (sec->dofs_type != DOF_SECT_ECBDESC)
14277			continue;
14278
14279		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14280			dtrace_enabling_destroy(enab);
14281			*enabp = NULL;
14282			return (-1);
14283		}
14284
14285		dtrace_enabling_add(enab, ep);
14286	}
14287
14288	return (0);
14289}
14290
14291/*
14292 * Process DOF for any options.  This routine assumes that the DOF has been
14293 * at least processed by dtrace_dof_slurp().
14294 */
14295static int
14296dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14297{
14298	int i, rval;
14299	uint32_t entsize;
14300	size_t offs;
14301	dof_optdesc_t *desc;
14302
14303	for (i = 0; i < dof->dofh_secnum; i++) {
14304		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14305		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14306
14307		if (sec->dofs_type != DOF_SECT_OPTDESC)
14308			continue;
14309
14310		if (sec->dofs_align != sizeof (uint64_t)) {
14311			dtrace_dof_error(dof, "bad alignment in "
14312			    "option description");
14313			return (EINVAL);
14314		}
14315
14316		if ((entsize = sec->dofs_entsize) == 0) {
14317			dtrace_dof_error(dof, "zeroed option entry size");
14318			return (EINVAL);
14319		}
14320
14321		if (entsize < sizeof (dof_optdesc_t)) {
14322			dtrace_dof_error(dof, "bad option entry size");
14323			return (EINVAL);
14324		}
14325
14326		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14327			desc = (dof_optdesc_t *)((uintptr_t)dof +
14328			    (uintptr_t)sec->dofs_offset + offs);
14329
14330			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14331				dtrace_dof_error(dof, "non-zero option string");
14332				return (EINVAL);
14333			}
14334
14335			if (desc->dofo_value == DTRACEOPT_UNSET) {
14336				dtrace_dof_error(dof, "unset option");
14337				return (EINVAL);
14338			}
14339
14340			if ((rval = dtrace_state_option(state,
14341			    desc->dofo_option, desc->dofo_value)) != 0) {
14342				dtrace_dof_error(dof, "rejected option");
14343				return (rval);
14344			}
14345		}
14346	}
14347
14348	return (0);
14349}
14350
14351/*
14352 * DTrace Consumer State Functions
14353 */
14354static int
14355dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14356{
14357	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14358	void *base;
14359	uintptr_t limit;
14360	dtrace_dynvar_t *dvar, *next, *start;
14361	int i;
14362
14363	ASSERT(MUTEX_HELD(&dtrace_lock));
14364	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14365
14366	bzero(dstate, sizeof (dtrace_dstate_t));
14367
14368	if ((dstate->dtds_chunksize = chunksize) == 0)
14369		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14370
14371	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14372
14373	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14374		size = min;
14375
14376	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14377		return (ENOMEM);
14378
14379	dstate->dtds_size = size;
14380	dstate->dtds_base = base;
14381	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14382	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14383
14384	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14385
14386	if (hashsize != 1 && (hashsize & 1))
14387		hashsize--;
14388
14389	dstate->dtds_hashsize = hashsize;
14390	dstate->dtds_hash = dstate->dtds_base;
14391
14392	/*
14393	 * Set all of our hash buckets to point to the single sink, and (if
14394	 * it hasn't already been set), set the sink's hash value to be the
14395	 * sink sentinel value.  The sink is needed for dynamic variable
14396	 * lookups to know that they have iterated over an entire, valid hash
14397	 * chain.
14398	 */
14399	for (i = 0; i < hashsize; i++)
14400		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14401
14402	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14403		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14404
14405	/*
14406	 * Determine number of active CPUs.  Divide free list evenly among
14407	 * active CPUs.
14408	 */
14409	start = (dtrace_dynvar_t *)
14410	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14411	limit = (uintptr_t)base + size;
14412
14413	VERIFY((uintptr_t)start < limit);
14414	VERIFY((uintptr_t)start >= (uintptr_t)base);
14415
14416	maxper = (limit - (uintptr_t)start) / NCPU;
14417	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14418
14419#ifndef illumos
14420	CPU_FOREACH(i) {
14421#else
14422	for (i = 0; i < NCPU; i++) {
14423#endif
14424		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14425
14426		/*
14427		 * If we don't even have enough chunks to make it once through
14428		 * NCPUs, we're just going to allocate everything to the first
14429		 * CPU.  And if we're on the last CPU, we're going to allocate
14430		 * whatever is left over.  In either case, we set the limit to
14431		 * be the limit of the dynamic variable space.
14432		 */
14433		if (maxper == 0 || i == NCPU - 1) {
14434			limit = (uintptr_t)base + size;
14435			start = NULL;
14436		} else {
14437			limit = (uintptr_t)start + maxper;
14438			start = (dtrace_dynvar_t *)limit;
14439		}
14440
14441		VERIFY(limit <= (uintptr_t)base + size);
14442
14443		for (;;) {
14444			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14445			    dstate->dtds_chunksize);
14446
14447			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14448				break;
14449
14450			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14451			    (uintptr_t)dvar <= (uintptr_t)base + size);
14452			dvar->dtdv_next = next;
14453			dvar = next;
14454		}
14455
14456		if (maxper == 0)
14457			break;
14458	}
14459
14460	return (0);
14461}
14462
14463static void
14464dtrace_dstate_fini(dtrace_dstate_t *dstate)
14465{
14466	ASSERT(MUTEX_HELD(&cpu_lock));
14467
14468	if (dstate->dtds_base == NULL)
14469		return;
14470
14471	kmem_free(dstate->dtds_base, dstate->dtds_size);
14472	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14473}
14474
14475static void
14476dtrace_vstate_fini(dtrace_vstate_t *vstate)
14477{
14478	/*
14479	 * Logical XOR, where are you?
14480	 */
14481	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14482
14483	if (vstate->dtvs_nglobals > 0) {
14484		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14485		    sizeof (dtrace_statvar_t *));
14486	}
14487
14488	if (vstate->dtvs_ntlocals > 0) {
14489		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14490		    sizeof (dtrace_difv_t));
14491	}
14492
14493	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14494
14495	if (vstate->dtvs_nlocals > 0) {
14496		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14497		    sizeof (dtrace_statvar_t *));
14498	}
14499}
14500
14501#ifdef illumos
14502static void
14503dtrace_state_clean(dtrace_state_t *state)
14504{
14505	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14506		return;
14507
14508	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14509	dtrace_speculation_clean(state);
14510}
14511
14512static void
14513dtrace_state_deadman(dtrace_state_t *state)
14514{
14515	hrtime_t now;
14516
14517	dtrace_sync();
14518
14519	now = dtrace_gethrtime();
14520
14521	if (state != dtrace_anon.dta_state &&
14522	    now - state->dts_laststatus >= dtrace_deadman_user)
14523		return;
14524
14525	/*
14526	 * We must be sure that dts_alive never appears to be less than the
14527	 * value upon entry to dtrace_state_deadman(), and because we lack a
14528	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14529	 * store INT64_MAX to it, followed by a memory barrier, followed by
14530	 * the new value.  This assures that dts_alive never appears to be
14531	 * less than its true value, regardless of the order in which the
14532	 * stores to the underlying storage are issued.
14533	 */
14534	state->dts_alive = INT64_MAX;
14535	dtrace_membar_producer();
14536	state->dts_alive = now;
14537}
14538#else	/* !illumos */
14539static void
14540dtrace_state_clean(void *arg)
14541{
14542	dtrace_state_t *state = arg;
14543	dtrace_optval_t *opt = state->dts_options;
14544
14545	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14546		return;
14547
14548	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14549	dtrace_speculation_clean(state);
14550
14551	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14552	    dtrace_state_clean, state);
14553}
14554
14555static void
14556dtrace_state_deadman(void *arg)
14557{
14558	dtrace_state_t *state = arg;
14559	hrtime_t now;
14560
14561	dtrace_sync();
14562
14563	dtrace_debug_output();
14564
14565	now = dtrace_gethrtime();
14566
14567	if (state != dtrace_anon.dta_state &&
14568	    now - state->dts_laststatus >= dtrace_deadman_user)
14569		return;
14570
14571	/*
14572	 * We must be sure that dts_alive never appears to be less than the
14573	 * value upon entry to dtrace_state_deadman(), and because we lack a
14574	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14575	 * store INT64_MAX to it, followed by a memory barrier, followed by
14576	 * the new value.  This assures that dts_alive never appears to be
14577	 * less than its true value, regardless of the order in which the
14578	 * stores to the underlying storage are issued.
14579	 */
14580	state->dts_alive = INT64_MAX;
14581	dtrace_membar_producer();
14582	state->dts_alive = now;
14583
14584	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14585	    dtrace_state_deadman, state);
14586}
14587#endif	/* illumos */
14588
14589static dtrace_state_t *
14590#ifdef illumos
14591dtrace_state_create(dev_t *devp, cred_t *cr)
14592#else
14593dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14594#endif
14595{
14596#ifdef illumos
14597	minor_t minor;
14598	major_t major;
14599#else
14600	cred_t *cr = NULL;
14601	int m = 0;
14602#endif
14603	char c[30];
14604	dtrace_state_t *state;
14605	dtrace_optval_t *opt;
14606	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14607	int cpu_it;
14608
14609	ASSERT(MUTEX_HELD(&dtrace_lock));
14610	ASSERT(MUTEX_HELD(&cpu_lock));
14611
14612#ifdef illumos
14613	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14614	    VM_BESTFIT | VM_SLEEP);
14615
14616	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14617		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14618		return (NULL);
14619	}
14620
14621	state = ddi_get_soft_state(dtrace_softstate, minor);
14622#else
14623	if (dev != NULL) {
14624		cr = dev->si_cred;
14625		m = dev2unit(dev);
14626	}
14627
14628	/* Allocate memory for the state. */
14629	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14630#endif
14631
14632	state->dts_epid = DTRACE_EPIDNONE + 1;
14633
14634	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14635#ifdef illumos
14636	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14637	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14638
14639	if (devp != NULL) {
14640		major = getemajor(*devp);
14641	} else {
14642		major = ddi_driver_major(dtrace_devi);
14643	}
14644
14645	state->dts_dev = makedevice(major, minor);
14646
14647	if (devp != NULL)
14648		*devp = state->dts_dev;
14649#else
14650	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14651	state->dts_dev = dev;
14652#endif
14653
14654	/*
14655	 * We allocate NCPU buffers.  On the one hand, this can be quite
14656	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14657	 * other hand, it saves an additional memory reference in the probe
14658	 * path.
14659	 */
14660	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14661	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14662
14663	/*
14664         * Allocate and initialise the per-process per-CPU random state.
14665	 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14666         * assumed to be seeded at this point (if from Fortuna seed file).
14667	 */
14668	arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14669	for (cpu_it = 1; cpu_it < NCPU; cpu_it++) {
14670		/*
14671		 * Each CPU is assigned a 2^64 period, non-overlapping
14672		 * subsequence.
14673		 */
14674		dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1],
14675		    state->dts_rstate[cpu_it]);
14676	}
14677
14678#ifdef illumos
14679	state->dts_cleaner = CYCLIC_NONE;
14680	state->dts_deadman = CYCLIC_NONE;
14681#else
14682	callout_init(&state->dts_cleaner, 1);
14683	callout_init(&state->dts_deadman, 1);
14684#endif
14685	state->dts_vstate.dtvs_state = state;
14686
14687	for (i = 0; i < DTRACEOPT_MAX; i++)
14688		state->dts_options[i] = DTRACEOPT_UNSET;
14689
14690	/*
14691	 * Set the default options.
14692	 */
14693	opt = state->dts_options;
14694	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14695	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14696	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14697	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14698	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14699	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14700	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14701	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14702	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14703	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14704	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14705	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14706	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14707	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14708
14709	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14710
14711	/*
14712	 * Depending on the user credentials, we set flag bits which alter probe
14713	 * visibility or the amount of destructiveness allowed.  In the case of
14714	 * actual anonymous tracing, or the possession of all privileges, all of
14715	 * the normal checks are bypassed.
14716	 */
14717	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14718		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14719		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14720	} else {
14721		/*
14722		 * Set up the credentials for this instantiation.  We take a
14723		 * hold on the credential to prevent it from disappearing on
14724		 * us; this in turn prevents the zone_t referenced by this
14725		 * credential from disappearing.  This means that we can
14726		 * examine the credential and the zone from probe context.
14727		 */
14728		crhold(cr);
14729		state->dts_cred.dcr_cred = cr;
14730
14731		/*
14732		 * CRA_PROC means "we have *some* privilege for dtrace" and
14733		 * unlocks the use of variables like pid, zonename, etc.
14734		 */
14735		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14736		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14737			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14738		}
14739
14740		/*
14741		 * dtrace_user allows use of syscall and profile providers.
14742		 * If the user also has proc_owner and/or proc_zone, we
14743		 * extend the scope to include additional visibility and
14744		 * destructive power.
14745		 */
14746		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14747			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14748				state->dts_cred.dcr_visible |=
14749				    DTRACE_CRV_ALLPROC;
14750
14751				state->dts_cred.dcr_action |=
14752				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14753			}
14754
14755			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14756				state->dts_cred.dcr_visible |=
14757				    DTRACE_CRV_ALLZONE;
14758
14759				state->dts_cred.dcr_action |=
14760				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14761			}
14762
14763			/*
14764			 * If we have all privs in whatever zone this is,
14765			 * we can do destructive things to processes which
14766			 * have altered credentials.
14767			 */
14768#ifdef illumos
14769			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14770			    cr->cr_zone->zone_privset)) {
14771				state->dts_cred.dcr_action |=
14772				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14773			}
14774#endif
14775		}
14776
14777		/*
14778		 * Holding the dtrace_kernel privilege also implies that
14779		 * the user has the dtrace_user privilege from a visibility
14780		 * perspective.  But without further privileges, some
14781		 * destructive actions are not available.
14782		 */
14783		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14784			/*
14785			 * Make all probes in all zones visible.  However,
14786			 * this doesn't mean that all actions become available
14787			 * to all zones.
14788			 */
14789			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14790			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14791
14792			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14793			    DTRACE_CRA_PROC;
14794			/*
14795			 * Holding proc_owner means that destructive actions
14796			 * for *this* zone are allowed.
14797			 */
14798			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14799				state->dts_cred.dcr_action |=
14800				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14801
14802			/*
14803			 * Holding proc_zone means that destructive actions
14804			 * for this user/group ID in all zones is allowed.
14805			 */
14806			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14807				state->dts_cred.dcr_action |=
14808				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14809
14810#ifdef illumos
14811			/*
14812			 * If we have all privs in whatever zone this is,
14813			 * we can do destructive things to processes which
14814			 * have altered credentials.
14815			 */
14816			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14817			    cr->cr_zone->zone_privset)) {
14818				state->dts_cred.dcr_action |=
14819				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14820			}
14821#endif
14822		}
14823
14824		/*
14825		 * Holding the dtrace_proc privilege gives control over fasttrap
14826		 * and pid providers.  We need to grant wider destructive
14827		 * privileges in the event that the user has proc_owner and/or
14828		 * proc_zone.
14829		 */
14830		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14831			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14832				state->dts_cred.dcr_action |=
14833				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14834
14835			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14836				state->dts_cred.dcr_action |=
14837				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14838		}
14839	}
14840
14841	return (state);
14842}
14843
14844static int
14845dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14846{
14847	dtrace_optval_t *opt = state->dts_options, size;
14848	processorid_t cpu = 0;
14849	int flags = 0, rval, factor, divisor = 1;
14850
14851	ASSERT(MUTEX_HELD(&dtrace_lock));
14852	ASSERT(MUTEX_HELD(&cpu_lock));
14853	ASSERT(which < DTRACEOPT_MAX);
14854	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14855	    (state == dtrace_anon.dta_state &&
14856	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14857
14858	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14859		return (0);
14860
14861	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14862		cpu = opt[DTRACEOPT_CPU];
14863
14864	if (which == DTRACEOPT_SPECSIZE)
14865		flags |= DTRACEBUF_NOSWITCH;
14866
14867	if (which == DTRACEOPT_BUFSIZE) {
14868		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14869			flags |= DTRACEBUF_RING;
14870
14871		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14872			flags |= DTRACEBUF_FILL;
14873
14874		if (state != dtrace_anon.dta_state ||
14875		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14876			flags |= DTRACEBUF_INACTIVE;
14877	}
14878
14879	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14880		/*
14881		 * The size must be 8-byte aligned.  If the size is not 8-byte
14882		 * aligned, drop it down by the difference.
14883		 */
14884		if (size & (sizeof (uint64_t) - 1))
14885			size -= size & (sizeof (uint64_t) - 1);
14886
14887		if (size < state->dts_reserve) {
14888			/*
14889			 * Buffers always must be large enough to accommodate
14890			 * their prereserved space.  We return E2BIG instead
14891			 * of ENOMEM in this case to allow for user-level
14892			 * software to differentiate the cases.
14893			 */
14894			return (E2BIG);
14895		}
14896
14897		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14898
14899		if (rval != ENOMEM) {
14900			opt[which] = size;
14901			return (rval);
14902		}
14903
14904		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14905			return (rval);
14906
14907		for (divisor = 2; divisor < factor; divisor <<= 1)
14908			continue;
14909	}
14910
14911	return (ENOMEM);
14912}
14913
14914static int
14915dtrace_state_buffers(dtrace_state_t *state)
14916{
14917	dtrace_speculation_t *spec = state->dts_speculations;
14918	int rval, i;
14919
14920	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14921	    DTRACEOPT_BUFSIZE)) != 0)
14922		return (rval);
14923
14924	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14925	    DTRACEOPT_AGGSIZE)) != 0)
14926		return (rval);
14927
14928	for (i = 0; i < state->dts_nspeculations; i++) {
14929		if ((rval = dtrace_state_buffer(state,
14930		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14931			return (rval);
14932	}
14933
14934	return (0);
14935}
14936
14937static void
14938dtrace_state_prereserve(dtrace_state_t *state)
14939{
14940	dtrace_ecb_t *ecb;
14941	dtrace_probe_t *probe;
14942
14943	state->dts_reserve = 0;
14944
14945	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14946		return;
14947
14948	/*
14949	 * If our buffer policy is a "fill" buffer policy, we need to set the
14950	 * prereserved space to be the space required by the END probes.
14951	 */
14952	probe = dtrace_probes[dtrace_probeid_end - 1];
14953	ASSERT(probe != NULL);
14954
14955	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14956		if (ecb->dte_state != state)
14957			continue;
14958
14959		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14960	}
14961}
14962
14963static int
14964dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14965{
14966	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14967	dtrace_speculation_t *spec;
14968	dtrace_buffer_t *buf;
14969#ifdef illumos
14970	cyc_handler_t hdlr;
14971	cyc_time_t when;
14972#endif
14973	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14974	dtrace_icookie_t cookie;
14975
14976	mutex_enter(&cpu_lock);
14977	mutex_enter(&dtrace_lock);
14978
14979	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14980		rval = EBUSY;
14981		goto out;
14982	}
14983
14984	/*
14985	 * Before we can perform any checks, we must prime all of the
14986	 * retained enablings that correspond to this state.
14987	 */
14988	dtrace_enabling_prime(state);
14989
14990	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14991		rval = EACCES;
14992		goto out;
14993	}
14994
14995	dtrace_state_prereserve(state);
14996
14997	/*
14998	 * Now we want to do is try to allocate our speculations.
14999	 * We do not automatically resize the number of speculations; if
15000	 * this fails, we will fail the operation.
15001	 */
15002	nspec = opt[DTRACEOPT_NSPEC];
15003	ASSERT(nspec != DTRACEOPT_UNSET);
15004
15005	if (nspec > INT_MAX) {
15006		rval = ENOMEM;
15007		goto out;
15008	}
15009
15010	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
15011	    KM_NOSLEEP | KM_NORMALPRI);
15012
15013	if (spec == NULL) {
15014		rval = ENOMEM;
15015		goto out;
15016	}
15017
15018	state->dts_speculations = spec;
15019	state->dts_nspeculations = (int)nspec;
15020
15021	for (i = 0; i < nspec; i++) {
15022		if ((buf = kmem_zalloc(bufsize,
15023		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
15024			rval = ENOMEM;
15025			goto err;
15026		}
15027
15028		spec[i].dtsp_buffer = buf;
15029	}
15030
15031	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
15032		if (dtrace_anon.dta_state == NULL) {
15033			rval = ENOENT;
15034			goto out;
15035		}
15036
15037		if (state->dts_necbs != 0) {
15038			rval = EALREADY;
15039			goto out;
15040		}
15041
15042		state->dts_anon = dtrace_anon_grab();
15043		ASSERT(state->dts_anon != NULL);
15044		state = state->dts_anon;
15045
15046		/*
15047		 * We want "grabanon" to be set in the grabbed state, so we'll
15048		 * copy that option value from the grabbing state into the
15049		 * grabbed state.
15050		 */
15051		state->dts_options[DTRACEOPT_GRABANON] =
15052		    opt[DTRACEOPT_GRABANON];
15053
15054		*cpu = dtrace_anon.dta_beganon;
15055
15056		/*
15057		 * If the anonymous state is active (as it almost certainly
15058		 * is if the anonymous enabling ultimately matched anything),
15059		 * we don't allow any further option processing -- but we
15060		 * don't return failure.
15061		 */
15062		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15063			goto out;
15064	}
15065
15066	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15067	    opt[DTRACEOPT_AGGSIZE] != 0) {
15068		if (state->dts_aggregations == NULL) {
15069			/*
15070			 * We're not going to create an aggregation buffer
15071			 * because we don't have any ECBs that contain
15072			 * aggregations -- set this option to 0.
15073			 */
15074			opt[DTRACEOPT_AGGSIZE] = 0;
15075		} else {
15076			/*
15077			 * If we have an aggregation buffer, we must also have
15078			 * a buffer to use as scratch.
15079			 */
15080			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15081			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15082				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15083			}
15084		}
15085	}
15086
15087	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15088	    opt[DTRACEOPT_SPECSIZE] != 0) {
15089		if (!state->dts_speculates) {
15090			/*
15091			 * We're not going to create speculation buffers
15092			 * because we don't have any ECBs that actually
15093			 * speculate -- set the speculation size to 0.
15094			 */
15095			opt[DTRACEOPT_SPECSIZE] = 0;
15096		}
15097	}
15098
15099	/*
15100	 * The bare minimum size for any buffer that we're actually going to
15101	 * do anything to is sizeof (uint64_t).
15102	 */
15103	sz = sizeof (uint64_t);
15104
15105	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15106	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15107	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15108		/*
15109		 * A buffer size has been explicitly set to 0 (or to a size
15110		 * that will be adjusted to 0) and we need the space -- we
15111		 * need to return failure.  We return ENOSPC to differentiate
15112		 * it from failing to allocate a buffer due to failure to meet
15113		 * the reserve (for which we return E2BIG).
15114		 */
15115		rval = ENOSPC;
15116		goto out;
15117	}
15118
15119	if ((rval = dtrace_state_buffers(state)) != 0)
15120		goto err;
15121
15122	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15123		sz = dtrace_dstate_defsize;
15124
15125	do {
15126		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15127
15128		if (rval == 0)
15129			break;
15130
15131		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15132			goto err;
15133	} while (sz >>= 1);
15134
15135	opt[DTRACEOPT_DYNVARSIZE] = sz;
15136
15137	if (rval != 0)
15138		goto err;
15139
15140	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15141		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15142
15143	if (opt[DTRACEOPT_CLEANRATE] == 0)
15144		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15145
15146	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15147		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15148
15149	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15150		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15151
15152	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15153#ifdef illumos
15154	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15155	hdlr.cyh_arg = state;
15156	hdlr.cyh_level = CY_LOW_LEVEL;
15157
15158	when.cyt_when = 0;
15159	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15160
15161	state->dts_cleaner = cyclic_add(&hdlr, &when);
15162
15163	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15164	hdlr.cyh_arg = state;
15165	hdlr.cyh_level = CY_LOW_LEVEL;
15166
15167	when.cyt_when = 0;
15168	when.cyt_interval = dtrace_deadman_interval;
15169
15170	state->dts_deadman = cyclic_add(&hdlr, &when);
15171#else
15172	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15173	    dtrace_state_clean, state);
15174	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15175	    dtrace_state_deadman, state);
15176#endif
15177
15178	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15179
15180#ifdef illumos
15181	if (state->dts_getf != 0 &&
15182	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15183		/*
15184		 * We don't have kernel privs but we have at least one call
15185		 * to getf(); we need to bump our zone's count, and (if
15186		 * this is the first enabling to have an unprivileged call
15187		 * to getf()) we need to hook into closef().
15188		 */
15189		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15190
15191		if (dtrace_getf++ == 0) {
15192			ASSERT(dtrace_closef == NULL);
15193			dtrace_closef = dtrace_getf_barrier;
15194		}
15195	}
15196#endif
15197
15198	/*
15199	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15200	 * interrupts here both to record the CPU on which we fired the BEGIN
15201	 * probe (the data from this CPU will be processed first at user
15202	 * level) and to manually activate the buffer for this CPU.
15203	 */
15204	cookie = dtrace_interrupt_disable();
15205	*cpu = curcpu;
15206	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15207	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15208
15209	dtrace_probe(dtrace_probeid_begin,
15210	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15211	dtrace_interrupt_enable(cookie);
15212	/*
15213	 * We may have had an exit action from a BEGIN probe; only change our
15214	 * state to ACTIVE if we're still in WARMUP.
15215	 */
15216	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15217	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15218
15219	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15220		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15221
15222#ifdef __FreeBSD__
15223	/*
15224	 * We enable anonymous tracing before APs are started, so we must
15225	 * activate buffers using the current CPU.
15226	 */
15227	if (state == dtrace_anon.dta_state)
15228		for (int i = 0; i < NCPU; i++)
15229			dtrace_buffer_activate_cpu(state, i);
15230	else
15231		dtrace_xcall(DTRACE_CPUALL,
15232		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15233#else
15234	/*
15235	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15236	 * want each CPU to transition its principal buffer out of the
15237	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15238	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15239	 * atomically transition from processing none of a state's ECBs to
15240	 * processing all of them.
15241	 */
15242	dtrace_xcall(DTRACE_CPUALL,
15243	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15244#endif
15245	goto out;
15246
15247err:
15248	dtrace_buffer_free(state->dts_buffer);
15249	dtrace_buffer_free(state->dts_aggbuffer);
15250
15251	if ((nspec = state->dts_nspeculations) == 0) {
15252		ASSERT(state->dts_speculations == NULL);
15253		goto out;
15254	}
15255
15256	spec = state->dts_speculations;
15257	ASSERT(spec != NULL);
15258
15259	for (i = 0; i < state->dts_nspeculations; i++) {
15260		if ((buf = spec[i].dtsp_buffer) == NULL)
15261			break;
15262
15263		dtrace_buffer_free(buf);
15264		kmem_free(buf, bufsize);
15265	}
15266
15267	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15268	state->dts_nspeculations = 0;
15269	state->dts_speculations = NULL;
15270
15271out:
15272	mutex_exit(&dtrace_lock);
15273	mutex_exit(&cpu_lock);
15274
15275	return (rval);
15276}
15277
15278static int
15279dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15280{
15281	dtrace_icookie_t cookie;
15282
15283	ASSERT(MUTEX_HELD(&dtrace_lock));
15284
15285	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15286	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15287		return (EINVAL);
15288
15289	/*
15290	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15291	 * to be sure that every CPU has seen it.  See below for the details
15292	 * on why this is done.
15293	 */
15294	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15295	dtrace_sync();
15296
15297	/*
15298	 * By this point, it is impossible for any CPU to be still processing
15299	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15300	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15301	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15302	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15303	 * iff we're in the END probe.
15304	 */
15305	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15306	dtrace_sync();
15307	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15308
15309	/*
15310	 * Finally, we can release the reserve and call the END probe.  We
15311	 * disable interrupts across calling the END probe to allow us to
15312	 * return the CPU on which we actually called the END probe.  This
15313	 * allows user-land to be sure that this CPU's principal buffer is
15314	 * processed last.
15315	 */
15316	state->dts_reserve = 0;
15317
15318	cookie = dtrace_interrupt_disable();
15319	*cpu = curcpu;
15320	dtrace_probe(dtrace_probeid_end,
15321	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15322	dtrace_interrupt_enable(cookie);
15323
15324	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15325	dtrace_sync();
15326
15327#ifdef illumos
15328	if (state->dts_getf != 0 &&
15329	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15330		/*
15331		 * We don't have kernel privs but we have at least one call
15332		 * to getf(); we need to lower our zone's count, and (if
15333		 * this is the last enabling to have an unprivileged call
15334		 * to getf()) we need to clear the closef() hook.
15335		 */
15336		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15337		ASSERT(dtrace_closef == dtrace_getf_barrier);
15338		ASSERT(dtrace_getf > 0);
15339
15340		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15341
15342		if (--dtrace_getf == 0)
15343			dtrace_closef = NULL;
15344	}
15345#endif
15346
15347	return (0);
15348}
15349
15350static int
15351dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15352    dtrace_optval_t val)
15353{
15354	ASSERT(MUTEX_HELD(&dtrace_lock));
15355
15356	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15357		return (EBUSY);
15358
15359	if (option >= DTRACEOPT_MAX)
15360		return (EINVAL);
15361
15362	if (option != DTRACEOPT_CPU && val < 0)
15363		return (EINVAL);
15364
15365	switch (option) {
15366	case DTRACEOPT_DESTRUCTIVE:
15367		if (dtrace_destructive_disallow)
15368			return (EACCES);
15369
15370		state->dts_cred.dcr_destructive = 1;
15371		break;
15372
15373	case DTRACEOPT_BUFSIZE:
15374	case DTRACEOPT_DYNVARSIZE:
15375	case DTRACEOPT_AGGSIZE:
15376	case DTRACEOPT_SPECSIZE:
15377	case DTRACEOPT_STRSIZE:
15378		if (val < 0)
15379			return (EINVAL);
15380
15381		if (val >= LONG_MAX) {
15382			/*
15383			 * If this is an otherwise negative value, set it to
15384			 * the highest multiple of 128m less than LONG_MAX.
15385			 * Technically, we're adjusting the size without
15386			 * regard to the buffer resizing policy, but in fact,
15387			 * this has no effect -- if we set the buffer size to
15388			 * ~LONG_MAX and the buffer policy is ultimately set to
15389			 * be "manual", the buffer allocation is guaranteed to
15390			 * fail, if only because the allocation requires two
15391			 * buffers.  (We set the the size to the highest
15392			 * multiple of 128m because it ensures that the size
15393			 * will remain a multiple of a megabyte when
15394			 * repeatedly halved -- all the way down to 15m.)
15395			 */
15396			val = LONG_MAX - (1 << 27) + 1;
15397		}
15398	}
15399
15400	state->dts_options[option] = val;
15401
15402	return (0);
15403}
15404
15405static void
15406dtrace_state_destroy(dtrace_state_t *state)
15407{
15408	dtrace_ecb_t *ecb;
15409	dtrace_vstate_t *vstate = &state->dts_vstate;
15410#ifdef illumos
15411	minor_t minor = getminor(state->dts_dev);
15412#endif
15413	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15414	dtrace_speculation_t *spec = state->dts_speculations;
15415	int nspec = state->dts_nspeculations;
15416	uint32_t match;
15417
15418	ASSERT(MUTEX_HELD(&dtrace_lock));
15419	ASSERT(MUTEX_HELD(&cpu_lock));
15420
15421	/*
15422	 * First, retract any retained enablings for this state.
15423	 */
15424	dtrace_enabling_retract(state);
15425	ASSERT(state->dts_nretained == 0);
15426
15427	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15428	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15429		/*
15430		 * We have managed to come into dtrace_state_destroy() on a
15431		 * hot enabling -- almost certainly because of a disorderly
15432		 * shutdown of a consumer.  (That is, a consumer that is
15433		 * exiting without having called dtrace_stop().) In this case,
15434		 * we're going to set our activity to be KILLED, and then
15435		 * issue a sync to be sure that everyone is out of probe
15436		 * context before we start blowing away ECBs.
15437		 */
15438		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15439		dtrace_sync();
15440	}
15441
15442	/*
15443	 * Release the credential hold we took in dtrace_state_create().
15444	 */
15445	if (state->dts_cred.dcr_cred != NULL)
15446		crfree(state->dts_cred.dcr_cred);
15447
15448	/*
15449	 * Now we can safely disable and destroy any enabled probes.  Because
15450	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15451	 * (especially if they're all enabled), we take two passes through the
15452	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15453	 * in the second we disable whatever is left over.
15454	 */
15455	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15456		for (i = 0; i < state->dts_necbs; i++) {
15457			if ((ecb = state->dts_ecbs[i]) == NULL)
15458				continue;
15459
15460			if (match && ecb->dte_probe != NULL) {
15461				dtrace_probe_t *probe = ecb->dte_probe;
15462				dtrace_provider_t *prov = probe->dtpr_provider;
15463
15464				if (!(prov->dtpv_priv.dtpp_flags & match))
15465					continue;
15466			}
15467
15468			dtrace_ecb_disable(ecb);
15469			dtrace_ecb_destroy(ecb);
15470		}
15471
15472		if (!match)
15473			break;
15474	}
15475
15476	/*
15477	 * Before we free the buffers, perform one more sync to assure that
15478	 * every CPU is out of probe context.
15479	 */
15480	dtrace_sync();
15481
15482	dtrace_buffer_free(state->dts_buffer);
15483	dtrace_buffer_free(state->dts_aggbuffer);
15484
15485	for (i = 0; i < nspec; i++)
15486		dtrace_buffer_free(spec[i].dtsp_buffer);
15487
15488#ifdef illumos
15489	if (state->dts_cleaner != CYCLIC_NONE)
15490		cyclic_remove(state->dts_cleaner);
15491
15492	if (state->dts_deadman != CYCLIC_NONE)
15493		cyclic_remove(state->dts_deadman);
15494#else
15495	callout_stop(&state->dts_cleaner);
15496	callout_drain(&state->dts_cleaner);
15497	callout_stop(&state->dts_deadman);
15498	callout_drain(&state->dts_deadman);
15499#endif
15500
15501	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15502	dtrace_vstate_fini(vstate);
15503	if (state->dts_ecbs != NULL)
15504		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15505
15506	if (state->dts_aggregations != NULL) {
15507#ifdef DEBUG
15508		for (i = 0; i < state->dts_naggregations; i++)
15509			ASSERT(state->dts_aggregations[i] == NULL);
15510#endif
15511		ASSERT(state->dts_naggregations > 0);
15512		kmem_free(state->dts_aggregations,
15513		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15514	}
15515
15516	kmem_free(state->dts_buffer, bufsize);
15517	kmem_free(state->dts_aggbuffer, bufsize);
15518
15519	for (i = 0; i < nspec; i++)
15520		kmem_free(spec[i].dtsp_buffer, bufsize);
15521
15522	if (spec != NULL)
15523		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15524
15525	dtrace_format_destroy(state);
15526
15527	if (state->dts_aggid_arena != NULL) {
15528#ifdef illumos
15529		vmem_destroy(state->dts_aggid_arena);
15530#else
15531		delete_unrhdr(state->dts_aggid_arena);
15532#endif
15533		state->dts_aggid_arena = NULL;
15534	}
15535#ifdef illumos
15536	ddi_soft_state_free(dtrace_softstate, minor);
15537	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15538#endif
15539}
15540
15541/*
15542 * DTrace Anonymous Enabling Functions
15543 */
15544static dtrace_state_t *
15545dtrace_anon_grab(void)
15546{
15547	dtrace_state_t *state;
15548
15549	ASSERT(MUTEX_HELD(&dtrace_lock));
15550
15551	if ((state = dtrace_anon.dta_state) == NULL) {
15552		ASSERT(dtrace_anon.dta_enabling == NULL);
15553		return (NULL);
15554	}
15555
15556	ASSERT(dtrace_anon.dta_enabling != NULL);
15557	ASSERT(dtrace_retained != NULL);
15558
15559	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15560	dtrace_anon.dta_enabling = NULL;
15561	dtrace_anon.dta_state = NULL;
15562
15563	return (state);
15564}
15565
15566static void
15567dtrace_anon_property(void)
15568{
15569	int i, rv;
15570	dtrace_state_t *state;
15571	dof_hdr_t *dof;
15572	char c[32];		/* enough for "dof-data-" + digits */
15573
15574	ASSERT(MUTEX_HELD(&dtrace_lock));
15575	ASSERT(MUTEX_HELD(&cpu_lock));
15576
15577	for (i = 0; ; i++) {
15578		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15579
15580		dtrace_err_verbose = 1;
15581
15582		if ((dof = dtrace_dof_property(c)) == NULL) {
15583			dtrace_err_verbose = 0;
15584			break;
15585		}
15586
15587#ifdef illumos
15588		/*
15589		 * We want to create anonymous state, so we need to transition
15590		 * the kernel debugger to indicate that DTrace is active.  If
15591		 * this fails (e.g. because the debugger has modified text in
15592		 * some way), we won't continue with the processing.
15593		 */
15594		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15595			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15596			    "enabling ignored.");
15597			dtrace_dof_destroy(dof);
15598			break;
15599		}
15600#endif
15601
15602		/*
15603		 * If we haven't allocated an anonymous state, we'll do so now.
15604		 */
15605		if ((state = dtrace_anon.dta_state) == NULL) {
15606			state = dtrace_state_create(NULL, NULL);
15607			dtrace_anon.dta_state = state;
15608
15609			if (state == NULL) {
15610				/*
15611				 * This basically shouldn't happen:  the only
15612				 * failure mode from dtrace_state_create() is a
15613				 * failure of ddi_soft_state_zalloc() that
15614				 * itself should never happen.  Still, the
15615				 * interface allows for a failure mode, and
15616				 * we want to fail as gracefully as possible:
15617				 * we'll emit an error message and cease
15618				 * processing anonymous state in this case.
15619				 */
15620				cmn_err(CE_WARN, "failed to create "
15621				    "anonymous state");
15622				dtrace_dof_destroy(dof);
15623				break;
15624			}
15625		}
15626
15627		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15628		    &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15629
15630		if (rv == 0)
15631			rv = dtrace_dof_options(dof, state);
15632
15633		dtrace_err_verbose = 0;
15634		dtrace_dof_destroy(dof);
15635
15636		if (rv != 0) {
15637			/*
15638			 * This is malformed DOF; chuck any anonymous state
15639			 * that we created.
15640			 */
15641			ASSERT(dtrace_anon.dta_enabling == NULL);
15642			dtrace_state_destroy(state);
15643			dtrace_anon.dta_state = NULL;
15644			break;
15645		}
15646
15647		ASSERT(dtrace_anon.dta_enabling != NULL);
15648	}
15649
15650	if (dtrace_anon.dta_enabling != NULL) {
15651		int rval;
15652
15653		/*
15654		 * dtrace_enabling_retain() can only fail because we are
15655		 * trying to retain more enablings than are allowed -- but
15656		 * we only have one anonymous enabling, and we are guaranteed
15657		 * to be allowed at least one retained enabling; we assert
15658		 * that dtrace_enabling_retain() returns success.
15659		 */
15660		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15661		ASSERT(rval == 0);
15662
15663		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15664	}
15665}
15666
15667/*
15668 * DTrace Helper Functions
15669 */
15670static void
15671dtrace_helper_trace(dtrace_helper_action_t *helper,
15672    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15673{
15674	uint32_t size, next, nnext, i;
15675	dtrace_helptrace_t *ent, *buffer;
15676	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15677
15678	if ((buffer = dtrace_helptrace_buffer) == NULL)
15679		return;
15680
15681	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15682
15683	/*
15684	 * What would a tracing framework be without its own tracing
15685	 * framework?  (Well, a hell of a lot simpler, for starters...)
15686	 */
15687	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15688	    sizeof (uint64_t) - sizeof (uint64_t);
15689
15690	/*
15691	 * Iterate until we can allocate a slot in the trace buffer.
15692	 */
15693	do {
15694		next = dtrace_helptrace_next;
15695
15696		if (next + size < dtrace_helptrace_bufsize) {
15697			nnext = next + size;
15698		} else {
15699			nnext = size;
15700		}
15701	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15702
15703	/*
15704	 * We have our slot; fill it in.
15705	 */
15706	if (nnext == size) {
15707		dtrace_helptrace_wrapped++;
15708		next = 0;
15709	}
15710
15711	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15712	ent->dtht_helper = helper;
15713	ent->dtht_where = where;
15714	ent->dtht_nlocals = vstate->dtvs_nlocals;
15715
15716	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15717	    mstate->dtms_fltoffs : -1;
15718	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15719	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15720
15721	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15722		dtrace_statvar_t *svar;
15723
15724		if ((svar = vstate->dtvs_locals[i]) == NULL)
15725			continue;
15726
15727		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15728		ent->dtht_locals[i] =
15729		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15730	}
15731}
15732
15733static uint64_t
15734dtrace_helper(int which, dtrace_mstate_t *mstate,
15735    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15736{
15737	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15738	uint64_t sarg0 = mstate->dtms_arg[0];
15739	uint64_t sarg1 = mstate->dtms_arg[1];
15740	uint64_t rval = 0;
15741	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15742	dtrace_helper_action_t *helper;
15743	dtrace_vstate_t *vstate;
15744	dtrace_difo_t *pred;
15745	int i, trace = dtrace_helptrace_buffer != NULL;
15746
15747	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15748
15749	if (helpers == NULL)
15750		return (0);
15751
15752	if ((helper = helpers->dthps_actions[which]) == NULL)
15753		return (0);
15754
15755	vstate = &helpers->dthps_vstate;
15756	mstate->dtms_arg[0] = arg0;
15757	mstate->dtms_arg[1] = arg1;
15758
15759	/*
15760	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15761	 * we'll call the corresponding actions.  Note that the below calls
15762	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15763	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15764	 * the stored DIF offset with its own (which is the desired behavior).
15765	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15766	 * from machine state; this is okay, too.
15767	 */
15768	for (; helper != NULL; helper = helper->dtha_next) {
15769		if ((pred = helper->dtha_predicate) != NULL) {
15770			if (trace)
15771				dtrace_helper_trace(helper, mstate, vstate, 0);
15772
15773			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15774				goto next;
15775
15776			if (*flags & CPU_DTRACE_FAULT)
15777				goto err;
15778		}
15779
15780		for (i = 0; i < helper->dtha_nactions; i++) {
15781			if (trace)
15782				dtrace_helper_trace(helper,
15783				    mstate, vstate, i + 1);
15784
15785			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15786			    mstate, vstate, state);
15787
15788			if (*flags & CPU_DTRACE_FAULT)
15789				goto err;
15790		}
15791
15792next:
15793		if (trace)
15794			dtrace_helper_trace(helper, mstate, vstate,
15795			    DTRACE_HELPTRACE_NEXT);
15796	}
15797
15798	if (trace)
15799		dtrace_helper_trace(helper, mstate, vstate,
15800		    DTRACE_HELPTRACE_DONE);
15801
15802	/*
15803	 * Restore the arg0 that we saved upon entry.
15804	 */
15805	mstate->dtms_arg[0] = sarg0;
15806	mstate->dtms_arg[1] = sarg1;
15807
15808	return (rval);
15809
15810err:
15811	if (trace)
15812		dtrace_helper_trace(helper, mstate, vstate,
15813		    DTRACE_HELPTRACE_ERR);
15814
15815	/*
15816	 * Restore the arg0 that we saved upon entry.
15817	 */
15818	mstate->dtms_arg[0] = sarg0;
15819	mstate->dtms_arg[1] = sarg1;
15820
15821	return (0);
15822}
15823
15824static void
15825dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15826    dtrace_vstate_t *vstate)
15827{
15828	int i;
15829
15830	if (helper->dtha_predicate != NULL)
15831		dtrace_difo_release(helper->dtha_predicate, vstate);
15832
15833	for (i = 0; i < helper->dtha_nactions; i++) {
15834		ASSERT(helper->dtha_actions[i] != NULL);
15835		dtrace_difo_release(helper->dtha_actions[i], vstate);
15836	}
15837
15838	kmem_free(helper->dtha_actions,
15839	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15840	kmem_free(helper, sizeof (dtrace_helper_action_t));
15841}
15842
15843static int
15844dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15845{
15846	proc_t *p = curproc;
15847	dtrace_vstate_t *vstate;
15848	int i;
15849
15850	if (help == NULL)
15851		help = p->p_dtrace_helpers;
15852
15853	ASSERT(MUTEX_HELD(&dtrace_lock));
15854
15855	if (help == NULL || gen > help->dthps_generation)
15856		return (EINVAL);
15857
15858	vstate = &help->dthps_vstate;
15859
15860	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15861		dtrace_helper_action_t *last = NULL, *h, *next;
15862
15863		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15864			next = h->dtha_next;
15865
15866			if (h->dtha_generation == gen) {
15867				if (last != NULL) {
15868					last->dtha_next = next;
15869				} else {
15870					help->dthps_actions[i] = next;
15871				}
15872
15873				dtrace_helper_action_destroy(h, vstate);
15874			} else {
15875				last = h;
15876			}
15877		}
15878	}
15879
15880	/*
15881	 * Interate until we've cleared out all helper providers with the
15882	 * given generation number.
15883	 */
15884	for (;;) {
15885		dtrace_helper_provider_t *prov;
15886
15887		/*
15888		 * Look for a helper provider with the right generation. We
15889		 * have to start back at the beginning of the list each time
15890		 * because we drop dtrace_lock. It's unlikely that we'll make
15891		 * more than two passes.
15892		 */
15893		for (i = 0; i < help->dthps_nprovs; i++) {
15894			prov = help->dthps_provs[i];
15895
15896			if (prov->dthp_generation == gen)
15897				break;
15898		}
15899
15900		/*
15901		 * If there were no matches, we're done.
15902		 */
15903		if (i == help->dthps_nprovs)
15904			break;
15905
15906		/*
15907		 * Move the last helper provider into this slot.
15908		 */
15909		help->dthps_nprovs--;
15910		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15911		help->dthps_provs[help->dthps_nprovs] = NULL;
15912
15913		mutex_exit(&dtrace_lock);
15914
15915		/*
15916		 * If we have a meta provider, remove this helper provider.
15917		 */
15918		mutex_enter(&dtrace_meta_lock);
15919		if (dtrace_meta_pid != NULL) {
15920			ASSERT(dtrace_deferred_pid == NULL);
15921			dtrace_helper_provider_remove(&prov->dthp_prov,
15922			    p->p_pid);
15923		}
15924		mutex_exit(&dtrace_meta_lock);
15925
15926		dtrace_helper_provider_destroy(prov);
15927
15928		mutex_enter(&dtrace_lock);
15929	}
15930
15931	return (0);
15932}
15933
15934static int
15935dtrace_helper_validate(dtrace_helper_action_t *helper)
15936{
15937	int err = 0, i;
15938	dtrace_difo_t *dp;
15939
15940	if ((dp = helper->dtha_predicate) != NULL)
15941		err += dtrace_difo_validate_helper(dp);
15942
15943	for (i = 0; i < helper->dtha_nactions; i++)
15944		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15945
15946	return (err == 0);
15947}
15948
15949static int
15950dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15951    dtrace_helpers_t *help)
15952{
15953	dtrace_helper_action_t *helper, *last;
15954	dtrace_actdesc_t *act;
15955	dtrace_vstate_t *vstate;
15956	dtrace_predicate_t *pred;
15957	int count = 0, nactions = 0, i;
15958
15959	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15960		return (EINVAL);
15961
15962	last = help->dthps_actions[which];
15963	vstate = &help->dthps_vstate;
15964
15965	for (count = 0; last != NULL; last = last->dtha_next) {
15966		count++;
15967		if (last->dtha_next == NULL)
15968			break;
15969	}
15970
15971	/*
15972	 * If we already have dtrace_helper_actions_max helper actions for this
15973	 * helper action type, we'll refuse to add a new one.
15974	 */
15975	if (count >= dtrace_helper_actions_max)
15976		return (ENOSPC);
15977
15978	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15979	helper->dtha_generation = help->dthps_generation;
15980
15981	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15982		ASSERT(pred->dtp_difo != NULL);
15983		dtrace_difo_hold(pred->dtp_difo);
15984		helper->dtha_predicate = pred->dtp_difo;
15985	}
15986
15987	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15988		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15989			goto err;
15990
15991		if (act->dtad_difo == NULL)
15992			goto err;
15993
15994		nactions++;
15995	}
15996
15997	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15998	    (helper->dtha_nactions = nactions), KM_SLEEP);
15999
16000	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
16001		dtrace_difo_hold(act->dtad_difo);
16002		helper->dtha_actions[i++] = act->dtad_difo;
16003	}
16004
16005	if (!dtrace_helper_validate(helper))
16006		goto err;
16007
16008	if (last == NULL) {
16009		help->dthps_actions[which] = helper;
16010	} else {
16011		last->dtha_next = helper;
16012	}
16013
16014	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
16015		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
16016		dtrace_helptrace_next = 0;
16017	}
16018
16019	return (0);
16020err:
16021	dtrace_helper_action_destroy(helper, vstate);
16022	return (EINVAL);
16023}
16024
16025static void
16026dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
16027    dof_helper_t *dofhp)
16028{
16029	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
16030
16031	mutex_enter(&dtrace_meta_lock);
16032	mutex_enter(&dtrace_lock);
16033
16034	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16035		/*
16036		 * If the dtrace module is loaded but not attached, or if
16037		 * there aren't isn't a meta provider registered to deal with
16038		 * these provider descriptions, we need to postpone creating
16039		 * the actual providers until later.
16040		 */
16041
16042		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16043		    dtrace_deferred_pid != help) {
16044			help->dthps_deferred = 1;
16045			help->dthps_pid = p->p_pid;
16046			help->dthps_next = dtrace_deferred_pid;
16047			help->dthps_prev = NULL;
16048			if (dtrace_deferred_pid != NULL)
16049				dtrace_deferred_pid->dthps_prev = help;
16050			dtrace_deferred_pid = help;
16051		}
16052
16053		mutex_exit(&dtrace_lock);
16054
16055	} else if (dofhp != NULL) {
16056		/*
16057		 * If the dtrace module is loaded and we have a particular
16058		 * helper provider description, pass that off to the
16059		 * meta provider.
16060		 */
16061
16062		mutex_exit(&dtrace_lock);
16063
16064		dtrace_helper_provide(dofhp, p->p_pid);
16065
16066	} else {
16067		/*
16068		 * Otherwise, just pass all the helper provider descriptions
16069		 * off to the meta provider.
16070		 */
16071
16072		int i;
16073		mutex_exit(&dtrace_lock);
16074
16075		for (i = 0; i < help->dthps_nprovs; i++) {
16076			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16077			    p->p_pid);
16078		}
16079	}
16080
16081	mutex_exit(&dtrace_meta_lock);
16082}
16083
16084static int
16085dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16086{
16087	dtrace_helper_provider_t *hprov, **tmp_provs;
16088	uint_t tmp_maxprovs, i;
16089
16090	ASSERT(MUTEX_HELD(&dtrace_lock));
16091	ASSERT(help != NULL);
16092
16093	/*
16094	 * If we already have dtrace_helper_providers_max helper providers,
16095	 * we're refuse to add a new one.
16096	 */
16097	if (help->dthps_nprovs >= dtrace_helper_providers_max)
16098		return (ENOSPC);
16099
16100	/*
16101	 * Check to make sure this isn't a duplicate.
16102	 */
16103	for (i = 0; i < help->dthps_nprovs; i++) {
16104		if (dofhp->dofhp_addr ==
16105		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
16106			return (EALREADY);
16107	}
16108
16109	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16110	hprov->dthp_prov = *dofhp;
16111	hprov->dthp_ref = 1;
16112	hprov->dthp_generation = gen;
16113
16114	/*
16115	 * Allocate a bigger table for helper providers if it's already full.
16116	 */
16117	if (help->dthps_maxprovs == help->dthps_nprovs) {
16118		tmp_maxprovs = help->dthps_maxprovs;
16119		tmp_provs = help->dthps_provs;
16120
16121		if (help->dthps_maxprovs == 0)
16122			help->dthps_maxprovs = 2;
16123		else
16124			help->dthps_maxprovs *= 2;
16125		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16126			help->dthps_maxprovs = dtrace_helper_providers_max;
16127
16128		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16129
16130		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16131		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16132
16133		if (tmp_provs != NULL) {
16134			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16135			    sizeof (dtrace_helper_provider_t *));
16136			kmem_free(tmp_provs, tmp_maxprovs *
16137			    sizeof (dtrace_helper_provider_t *));
16138		}
16139	}
16140
16141	help->dthps_provs[help->dthps_nprovs] = hprov;
16142	help->dthps_nprovs++;
16143
16144	return (0);
16145}
16146
16147static void
16148dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16149{
16150	mutex_enter(&dtrace_lock);
16151
16152	if (--hprov->dthp_ref == 0) {
16153		dof_hdr_t *dof;
16154		mutex_exit(&dtrace_lock);
16155		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16156		dtrace_dof_destroy(dof);
16157		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16158	} else {
16159		mutex_exit(&dtrace_lock);
16160	}
16161}
16162
16163static int
16164dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16165{
16166	uintptr_t daddr = (uintptr_t)dof;
16167	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16168	dof_provider_t *provider;
16169	dof_probe_t *probe;
16170	uint8_t *arg;
16171	char *strtab, *typestr;
16172	dof_stridx_t typeidx;
16173	size_t typesz;
16174	uint_t nprobes, j, k;
16175
16176	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16177
16178	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16179		dtrace_dof_error(dof, "misaligned section offset");
16180		return (-1);
16181	}
16182
16183	/*
16184	 * The section needs to be large enough to contain the DOF provider
16185	 * structure appropriate for the given version.
16186	 */
16187	if (sec->dofs_size <
16188	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16189	    offsetof(dof_provider_t, dofpv_prenoffs) :
16190	    sizeof (dof_provider_t))) {
16191		dtrace_dof_error(dof, "provider section too small");
16192		return (-1);
16193	}
16194
16195	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16196	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16197	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16198	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16199	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16200
16201	if (str_sec == NULL || prb_sec == NULL ||
16202	    arg_sec == NULL || off_sec == NULL)
16203		return (-1);
16204
16205	enoff_sec = NULL;
16206
16207	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16208	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16209	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16210	    provider->dofpv_prenoffs)) == NULL)
16211		return (-1);
16212
16213	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16214
16215	if (provider->dofpv_name >= str_sec->dofs_size ||
16216	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16217		dtrace_dof_error(dof, "invalid provider name");
16218		return (-1);
16219	}
16220
16221	if (prb_sec->dofs_entsize == 0 ||
16222	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16223		dtrace_dof_error(dof, "invalid entry size");
16224		return (-1);
16225	}
16226
16227	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16228		dtrace_dof_error(dof, "misaligned entry size");
16229		return (-1);
16230	}
16231
16232	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16233		dtrace_dof_error(dof, "invalid entry size");
16234		return (-1);
16235	}
16236
16237	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16238		dtrace_dof_error(dof, "misaligned section offset");
16239		return (-1);
16240	}
16241
16242	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16243		dtrace_dof_error(dof, "invalid entry size");
16244		return (-1);
16245	}
16246
16247	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16248
16249	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16250
16251	/*
16252	 * Take a pass through the probes to check for errors.
16253	 */
16254	for (j = 0; j < nprobes; j++) {
16255		probe = (dof_probe_t *)(uintptr_t)(daddr +
16256		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16257
16258		if (probe->dofpr_func >= str_sec->dofs_size) {
16259			dtrace_dof_error(dof, "invalid function name");
16260			return (-1);
16261		}
16262
16263		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16264			dtrace_dof_error(dof, "function name too long");
16265			/*
16266			 * Keep going if the function name is too long.
16267			 * Unlike provider and probe names, we cannot reasonably
16268			 * impose restrictions on function names, since they're
16269			 * a property of the code being instrumented. We will
16270			 * skip this probe in dtrace_helper_provide_one().
16271			 */
16272		}
16273
16274		if (probe->dofpr_name >= str_sec->dofs_size ||
16275		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16276			dtrace_dof_error(dof, "invalid probe name");
16277			return (-1);
16278		}
16279
16280		/*
16281		 * The offset count must not wrap the index, and the offsets
16282		 * must also not overflow the section's data.
16283		 */
16284		if (probe->dofpr_offidx + probe->dofpr_noffs <
16285		    probe->dofpr_offidx ||
16286		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16287		    off_sec->dofs_entsize > off_sec->dofs_size) {
16288			dtrace_dof_error(dof, "invalid probe offset");
16289			return (-1);
16290		}
16291
16292		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16293			/*
16294			 * If there's no is-enabled offset section, make sure
16295			 * there aren't any is-enabled offsets. Otherwise
16296			 * perform the same checks as for probe offsets
16297			 * (immediately above).
16298			 */
16299			if (enoff_sec == NULL) {
16300				if (probe->dofpr_enoffidx != 0 ||
16301				    probe->dofpr_nenoffs != 0) {
16302					dtrace_dof_error(dof, "is-enabled "
16303					    "offsets with null section");
16304					return (-1);
16305				}
16306			} else if (probe->dofpr_enoffidx +
16307			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16308			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16309			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16310				dtrace_dof_error(dof, "invalid is-enabled "
16311				    "offset");
16312				return (-1);
16313			}
16314
16315			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16316				dtrace_dof_error(dof, "zero probe and "
16317				    "is-enabled offsets");
16318				return (-1);
16319			}
16320		} else if (probe->dofpr_noffs == 0) {
16321			dtrace_dof_error(dof, "zero probe offsets");
16322			return (-1);
16323		}
16324
16325		if (probe->dofpr_argidx + probe->dofpr_xargc <
16326		    probe->dofpr_argidx ||
16327		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16328		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16329			dtrace_dof_error(dof, "invalid args");
16330			return (-1);
16331		}
16332
16333		typeidx = probe->dofpr_nargv;
16334		typestr = strtab + probe->dofpr_nargv;
16335		for (k = 0; k < probe->dofpr_nargc; k++) {
16336			if (typeidx >= str_sec->dofs_size) {
16337				dtrace_dof_error(dof, "bad "
16338				    "native argument type");
16339				return (-1);
16340			}
16341
16342			typesz = strlen(typestr) + 1;
16343			if (typesz > DTRACE_ARGTYPELEN) {
16344				dtrace_dof_error(dof, "native "
16345				    "argument type too long");
16346				return (-1);
16347			}
16348			typeidx += typesz;
16349			typestr += typesz;
16350		}
16351
16352		typeidx = probe->dofpr_xargv;
16353		typestr = strtab + probe->dofpr_xargv;
16354		for (k = 0; k < probe->dofpr_xargc; k++) {
16355			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16356				dtrace_dof_error(dof, "bad "
16357				    "native argument index");
16358				return (-1);
16359			}
16360
16361			if (typeidx >= str_sec->dofs_size) {
16362				dtrace_dof_error(dof, "bad "
16363				    "translated argument type");
16364				return (-1);
16365			}
16366
16367			typesz = strlen(typestr) + 1;
16368			if (typesz > DTRACE_ARGTYPELEN) {
16369				dtrace_dof_error(dof, "translated argument "
16370				    "type too long");
16371				return (-1);
16372			}
16373
16374			typeidx += typesz;
16375			typestr += typesz;
16376		}
16377	}
16378
16379	return (0);
16380}
16381
16382static int
16383dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16384{
16385	dtrace_helpers_t *help;
16386	dtrace_vstate_t *vstate;
16387	dtrace_enabling_t *enab = NULL;
16388	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16389	uintptr_t daddr = (uintptr_t)dof;
16390
16391	ASSERT(MUTEX_HELD(&dtrace_lock));
16392
16393	if ((help = p->p_dtrace_helpers) == NULL)
16394		help = dtrace_helpers_create(p);
16395
16396	vstate = &help->dthps_vstate;
16397
16398	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16399	    dhp->dofhp_dof, B_FALSE)) != 0) {
16400		dtrace_dof_destroy(dof);
16401		return (rv);
16402	}
16403
16404	/*
16405	 * Look for helper providers and validate their descriptions.
16406	 */
16407	for (i = 0; i < dof->dofh_secnum; i++) {
16408		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16409		    dof->dofh_secoff + i * dof->dofh_secsize);
16410
16411		if (sec->dofs_type != DOF_SECT_PROVIDER)
16412			continue;
16413
16414		if (dtrace_helper_provider_validate(dof, sec) != 0) {
16415			dtrace_enabling_destroy(enab);
16416			dtrace_dof_destroy(dof);
16417			return (-1);
16418		}
16419
16420		nprovs++;
16421	}
16422
16423	/*
16424	 * Now we need to walk through the ECB descriptions in the enabling.
16425	 */
16426	for (i = 0; i < enab->dten_ndesc; i++) {
16427		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16428		dtrace_probedesc_t *desc = &ep->dted_probe;
16429
16430		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16431			continue;
16432
16433		if (strcmp(desc->dtpd_mod, "helper") != 0)
16434			continue;
16435
16436		if (strcmp(desc->dtpd_func, "ustack") != 0)
16437			continue;
16438
16439		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16440		    ep, help)) != 0) {
16441			/*
16442			 * Adding this helper action failed -- we are now going
16443			 * to rip out the entire generation and return failure.
16444			 */
16445			(void) dtrace_helper_destroygen(help,
16446			    help->dthps_generation);
16447			dtrace_enabling_destroy(enab);
16448			dtrace_dof_destroy(dof);
16449			return (-1);
16450		}
16451
16452		nhelpers++;
16453	}
16454
16455	if (nhelpers < enab->dten_ndesc)
16456		dtrace_dof_error(dof, "unmatched helpers");
16457
16458	gen = help->dthps_generation++;
16459	dtrace_enabling_destroy(enab);
16460
16461	if (nprovs > 0) {
16462		/*
16463		 * Now that this is in-kernel, we change the sense of the
16464		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16465		 * and dofhp_addr denotes the address at user-level.
16466		 */
16467		dhp->dofhp_addr = dhp->dofhp_dof;
16468		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16469
16470		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16471			mutex_exit(&dtrace_lock);
16472			dtrace_helper_provider_register(p, help, dhp);
16473			mutex_enter(&dtrace_lock);
16474
16475			destroy = 0;
16476		}
16477	}
16478
16479	if (destroy)
16480		dtrace_dof_destroy(dof);
16481
16482	return (gen);
16483}
16484
16485static dtrace_helpers_t *
16486dtrace_helpers_create(proc_t *p)
16487{
16488	dtrace_helpers_t *help;
16489
16490	ASSERT(MUTEX_HELD(&dtrace_lock));
16491	ASSERT(p->p_dtrace_helpers == NULL);
16492
16493	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16494	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16495	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16496
16497	p->p_dtrace_helpers = help;
16498	dtrace_helpers++;
16499
16500	return (help);
16501}
16502
16503#ifdef illumos
16504static
16505#endif
16506void
16507dtrace_helpers_destroy(proc_t *p)
16508{
16509	dtrace_helpers_t *help;
16510	dtrace_vstate_t *vstate;
16511#ifdef illumos
16512	proc_t *p = curproc;
16513#endif
16514	int i;
16515
16516	mutex_enter(&dtrace_lock);
16517
16518	ASSERT(p->p_dtrace_helpers != NULL);
16519	ASSERT(dtrace_helpers > 0);
16520
16521	help = p->p_dtrace_helpers;
16522	vstate = &help->dthps_vstate;
16523
16524	/*
16525	 * We're now going to lose the help from this process.
16526	 */
16527	p->p_dtrace_helpers = NULL;
16528	dtrace_sync();
16529
16530	/*
16531	 * Destory the helper actions.
16532	 */
16533	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16534		dtrace_helper_action_t *h, *next;
16535
16536		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16537			next = h->dtha_next;
16538			dtrace_helper_action_destroy(h, vstate);
16539			h = next;
16540		}
16541	}
16542
16543	mutex_exit(&dtrace_lock);
16544
16545	/*
16546	 * Destroy the helper providers.
16547	 */
16548	if (help->dthps_maxprovs > 0) {
16549		mutex_enter(&dtrace_meta_lock);
16550		if (dtrace_meta_pid != NULL) {
16551			ASSERT(dtrace_deferred_pid == NULL);
16552
16553			for (i = 0; i < help->dthps_nprovs; i++) {
16554				dtrace_helper_provider_remove(
16555				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16556			}
16557		} else {
16558			mutex_enter(&dtrace_lock);
16559			ASSERT(help->dthps_deferred == 0 ||
16560			    help->dthps_next != NULL ||
16561			    help->dthps_prev != NULL ||
16562			    help == dtrace_deferred_pid);
16563
16564			/*
16565			 * Remove the helper from the deferred list.
16566			 */
16567			if (help->dthps_next != NULL)
16568				help->dthps_next->dthps_prev = help->dthps_prev;
16569			if (help->dthps_prev != NULL)
16570				help->dthps_prev->dthps_next = help->dthps_next;
16571			if (dtrace_deferred_pid == help) {
16572				dtrace_deferred_pid = help->dthps_next;
16573				ASSERT(help->dthps_prev == NULL);
16574			}
16575
16576			mutex_exit(&dtrace_lock);
16577		}
16578
16579		mutex_exit(&dtrace_meta_lock);
16580
16581		for (i = 0; i < help->dthps_nprovs; i++) {
16582			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16583		}
16584
16585		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16586		    sizeof (dtrace_helper_provider_t *));
16587	}
16588
16589	mutex_enter(&dtrace_lock);
16590
16591	dtrace_vstate_fini(&help->dthps_vstate);
16592	kmem_free(help->dthps_actions,
16593	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16594	kmem_free(help, sizeof (dtrace_helpers_t));
16595
16596	--dtrace_helpers;
16597	mutex_exit(&dtrace_lock);
16598}
16599
16600#ifdef illumos
16601static
16602#endif
16603void
16604dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16605{
16606	dtrace_helpers_t *help, *newhelp;
16607	dtrace_helper_action_t *helper, *new, *last;
16608	dtrace_difo_t *dp;
16609	dtrace_vstate_t *vstate;
16610	int i, j, sz, hasprovs = 0;
16611
16612	mutex_enter(&dtrace_lock);
16613	ASSERT(from->p_dtrace_helpers != NULL);
16614	ASSERT(dtrace_helpers > 0);
16615
16616	help = from->p_dtrace_helpers;
16617	newhelp = dtrace_helpers_create(to);
16618	ASSERT(to->p_dtrace_helpers != NULL);
16619
16620	newhelp->dthps_generation = help->dthps_generation;
16621	vstate = &newhelp->dthps_vstate;
16622
16623	/*
16624	 * Duplicate the helper actions.
16625	 */
16626	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16627		if ((helper = help->dthps_actions[i]) == NULL)
16628			continue;
16629
16630		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16631			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16632			    KM_SLEEP);
16633			new->dtha_generation = helper->dtha_generation;
16634
16635			if ((dp = helper->dtha_predicate) != NULL) {
16636				dp = dtrace_difo_duplicate(dp, vstate);
16637				new->dtha_predicate = dp;
16638			}
16639
16640			new->dtha_nactions = helper->dtha_nactions;
16641			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16642			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16643
16644			for (j = 0; j < new->dtha_nactions; j++) {
16645				dtrace_difo_t *dp = helper->dtha_actions[j];
16646
16647				ASSERT(dp != NULL);
16648				dp = dtrace_difo_duplicate(dp, vstate);
16649				new->dtha_actions[j] = dp;
16650			}
16651
16652			if (last != NULL) {
16653				last->dtha_next = new;
16654			} else {
16655				newhelp->dthps_actions[i] = new;
16656			}
16657
16658			last = new;
16659		}
16660	}
16661
16662	/*
16663	 * Duplicate the helper providers and register them with the
16664	 * DTrace framework.
16665	 */
16666	if (help->dthps_nprovs > 0) {
16667		newhelp->dthps_nprovs = help->dthps_nprovs;
16668		newhelp->dthps_maxprovs = help->dthps_nprovs;
16669		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16670		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16671		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16672			newhelp->dthps_provs[i] = help->dthps_provs[i];
16673			newhelp->dthps_provs[i]->dthp_ref++;
16674		}
16675
16676		hasprovs = 1;
16677	}
16678
16679	mutex_exit(&dtrace_lock);
16680
16681	if (hasprovs)
16682		dtrace_helper_provider_register(to, newhelp, NULL);
16683}
16684
16685/*
16686 * DTrace Hook Functions
16687 */
16688static void
16689dtrace_module_loaded(modctl_t *ctl)
16690{
16691	dtrace_provider_t *prv;
16692
16693	mutex_enter(&dtrace_provider_lock);
16694#ifdef illumos
16695	mutex_enter(&mod_lock);
16696#endif
16697
16698#ifdef illumos
16699	ASSERT(ctl->mod_busy);
16700#endif
16701
16702	/*
16703	 * We're going to call each providers per-module provide operation
16704	 * specifying only this module.
16705	 */
16706	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16707		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16708
16709#ifdef illumos
16710	mutex_exit(&mod_lock);
16711#endif
16712	mutex_exit(&dtrace_provider_lock);
16713
16714	/*
16715	 * If we have any retained enablings, we need to match against them.
16716	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16717	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16718	 * module.  (In particular, this happens when loading scheduling
16719	 * classes.)  So if we have any retained enablings, we need to dispatch
16720	 * our task queue to do the match for us.
16721	 */
16722	mutex_enter(&dtrace_lock);
16723
16724	if (dtrace_retained == NULL) {
16725		mutex_exit(&dtrace_lock);
16726		return;
16727	}
16728
16729	(void) taskq_dispatch(dtrace_taskq,
16730	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16731
16732	mutex_exit(&dtrace_lock);
16733
16734	/*
16735	 * And now, for a little heuristic sleaze:  in general, we want to
16736	 * match modules as soon as they load.  However, we cannot guarantee
16737	 * this, because it would lead us to the lock ordering violation
16738	 * outlined above.  The common case, of course, is that cpu_lock is
16739	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16740	 * long enough for the task queue to do its work.  If it's not, it's
16741	 * not a serious problem -- it just means that the module that we
16742	 * just loaded may not be immediately instrumentable.
16743	 */
16744	delay(1);
16745}
16746
16747static void
16748#ifdef illumos
16749dtrace_module_unloaded(modctl_t *ctl)
16750#else
16751dtrace_module_unloaded(modctl_t *ctl, int *error)
16752#endif
16753{
16754	dtrace_probe_t template, *probe, *first, *next;
16755	dtrace_provider_t *prov;
16756#ifndef illumos
16757	char modname[DTRACE_MODNAMELEN];
16758	size_t len;
16759#endif
16760
16761#ifdef illumos
16762	template.dtpr_mod = ctl->mod_modname;
16763#else
16764	/* Handle the fact that ctl->filename may end in ".ko". */
16765	strlcpy(modname, ctl->filename, sizeof(modname));
16766	len = strlen(ctl->filename);
16767	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16768		modname[len - 3] = '\0';
16769	template.dtpr_mod = modname;
16770#endif
16771
16772	mutex_enter(&dtrace_provider_lock);
16773#ifdef illumos
16774	mutex_enter(&mod_lock);
16775#endif
16776	mutex_enter(&dtrace_lock);
16777
16778#ifndef illumos
16779	if (ctl->nenabled > 0) {
16780		/* Don't allow unloads if a probe is enabled. */
16781		mutex_exit(&dtrace_provider_lock);
16782		mutex_exit(&dtrace_lock);
16783		*error = -1;
16784		printf(
16785	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16786		return;
16787	}
16788#endif
16789
16790	if (dtrace_bymod == NULL) {
16791		/*
16792		 * The DTrace module is loaded (obviously) but not attached;
16793		 * we don't have any work to do.
16794		 */
16795		mutex_exit(&dtrace_provider_lock);
16796#ifdef illumos
16797		mutex_exit(&mod_lock);
16798#endif
16799		mutex_exit(&dtrace_lock);
16800		return;
16801	}
16802
16803	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16804	    probe != NULL; probe = probe->dtpr_nextmod) {
16805		if (probe->dtpr_ecb != NULL) {
16806			mutex_exit(&dtrace_provider_lock);
16807#ifdef illumos
16808			mutex_exit(&mod_lock);
16809#endif
16810			mutex_exit(&dtrace_lock);
16811
16812			/*
16813			 * This shouldn't _actually_ be possible -- we're
16814			 * unloading a module that has an enabled probe in it.
16815			 * (It's normally up to the provider to make sure that
16816			 * this can't happen.)  However, because dtps_enable()
16817			 * doesn't have a failure mode, there can be an
16818			 * enable/unload race.  Upshot:  we don't want to
16819			 * assert, but we're not going to disable the
16820			 * probe, either.
16821			 */
16822			if (dtrace_err_verbose) {
16823#ifdef illumos
16824				cmn_err(CE_WARN, "unloaded module '%s' had "
16825				    "enabled probes", ctl->mod_modname);
16826#else
16827				cmn_err(CE_WARN, "unloaded module '%s' had "
16828				    "enabled probes", modname);
16829#endif
16830			}
16831
16832			return;
16833		}
16834	}
16835
16836	probe = first;
16837
16838	for (first = NULL; probe != NULL; probe = next) {
16839		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16840
16841		dtrace_probes[probe->dtpr_id - 1] = NULL;
16842
16843		next = probe->dtpr_nextmod;
16844		dtrace_hash_remove(dtrace_bymod, probe);
16845		dtrace_hash_remove(dtrace_byfunc, probe);
16846		dtrace_hash_remove(dtrace_byname, probe);
16847
16848		if (first == NULL) {
16849			first = probe;
16850			probe->dtpr_nextmod = NULL;
16851		} else {
16852			probe->dtpr_nextmod = first;
16853			first = probe;
16854		}
16855	}
16856
16857	/*
16858	 * We've removed all of the module's probes from the hash chains and
16859	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16860	 * everyone has cleared out from any probe array processing.
16861	 */
16862	dtrace_sync();
16863
16864	for (probe = first; probe != NULL; probe = first) {
16865		first = probe->dtpr_nextmod;
16866		prov = probe->dtpr_provider;
16867		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16868		    probe->dtpr_arg);
16869		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16870		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16871		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16872#ifdef illumos
16873		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16874#else
16875		free_unr(dtrace_arena, probe->dtpr_id);
16876#endif
16877		kmem_free(probe, sizeof (dtrace_probe_t));
16878	}
16879
16880	mutex_exit(&dtrace_lock);
16881#ifdef illumos
16882	mutex_exit(&mod_lock);
16883#endif
16884	mutex_exit(&dtrace_provider_lock);
16885}
16886
16887#ifndef illumos
16888static void
16889dtrace_kld_load(void *arg __unused, linker_file_t lf)
16890{
16891
16892	dtrace_module_loaded(lf);
16893}
16894
16895static void
16896dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16897{
16898
16899	if (*error != 0)
16900		/* We already have an error, so don't do anything. */
16901		return;
16902	dtrace_module_unloaded(lf, error);
16903}
16904#endif
16905
16906#ifdef illumos
16907static void
16908dtrace_suspend(void)
16909{
16910	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16911}
16912
16913static void
16914dtrace_resume(void)
16915{
16916	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16917}
16918#endif
16919
16920static int
16921dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16922{
16923	ASSERT(MUTEX_HELD(&cpu_lock));
16924	mutex_enter(&dtrace_lock);
16925
16926	switch (what) {
16927	case CPU_CONFIG: {
16928		dtrace_state_t *state;
16929		dtrace_optval_t *opt, rs, c;
16930
16931		/*
16932		 * For now, we only allocate a new buffer for anonymous state.
16933		 */
16934		if ((state = dtrace_anon.dta_state) == NULL)
16935			break;
16936
16937		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16938			break;
16939
16940		opt = state->dts_options;
16941		c = opt[DTRACEOPT_CPU];
16942
16943		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16944			break;
16945
16946		/*
16947		 * Regardless of what the actual policy is, we're going to
16948		 * temporarily set our resize policy to be manual.  We're
16949		 * also going to temporarily set our CPU option to denote
16950		 * the newly configured CPU.
16951		 */
16952		rs = opt[DTRACEOPT_BUFRESIZE];
16953		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16954		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16955
16956		(void) dtrace_state_buffers(state);
16957
16958		opt[DTRACEOPT_BUFRESIZE] = rs;
16959		opt[DTRACEOPT_CPU] = c;
16960
16961		break;
16962	}
16963
16964	case CPU_UNCONFIG:
16965		/*
16966		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16967		 * buffer will be freed when the consumer exits.)
16968		 */
16969		break;
16970
16971	default:
16972		break;
16973	}
16974
16975	mutex_exit(&dtrace_lock);
16976	return (0);
16977}
16978
16979#ifdef illumos
16980static void
16981dtrace_cpu_setup_initial(processorid_t cpu)
16982{
16983	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16984}
16985#endif
16986
16987static void
16988dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16989{
16990	if (dtrace_toxranges >= dtrace_toxranges_max) {
16991		int osize, nsize;
16992		dtrace_toxrange_t *range;
16993
16994		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16995
16996		if (osize == 0) {
16997			ASSERT(dtrace_toxrange == NULL);
16998			ASSERT(dtrace_toxranges_max == 0);
16999			dtrace_toxranges_max = 1;
17000		} else {
17001			dtrace_toxranges_max <<= 1;
17002		}
17003
17004		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
17005		range = kmem_zalloc(nsize, KM_SLEEP);
17006
17007		if (dtrace_toxrange != NULL) {
17008			ASSERT(osize != 0);
17009			bcopy(dtrace_toxrange, range, osize);
17010			kmem_free(dtrace_toxrange, osize);
17011		}
17012
17013		dtrace_toxrange = range;
17014	}
17015
17016	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
17017	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
17018
17019	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
17020	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
17021	dtrace_toxranges++;
17022}
17023
17024static void
17025dtrace_getf_barrier(void)
17026{
17027#ifdef illumos
17028	/*
17029	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
17030	 * that contain calls to getf(), this routine will be called on every
17031	 * closef() before either the underlying vnode is released or the
17032	 * file_t itself is freed.  By the time we are here, it is essential
17033	 * that the file_t can no longer be accessed from a call to getf()
17034	 * in probe context -- that assures that a dtrace_sync() can be used
17035	 * to clear out any enablings referring to the old structures.
17036	 */
17037	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17038	    kcred->cr_zone->zone_dtrace_getf != 0)
17039		dtrace_sync();
17040#endif
17041}
17042
17043/*
17044 * DTrace Driver Cookbook Functions
17045 */
17046#ifdef illumos
17047/*ARGSUSED*/
17048static int
17049dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17050{
17051	dtrace_provider_id_t id;
17052	dtrace_state_t *state = NULL;
17053	dtrace_enabling_t *enab;
17054
17055	mutex_enter(&cpu_lock);
17056	mutex_enter(&dtrace_provider_lock);
17057	mutex_enter(&dtrace_lock);
17058
17059	if (ddi_soft_state_init(&dtrace_softstate,
17060	    sizeof (dtrace_state_t), 0) != 0) {
17061		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17062		mutex_exit(&cpu_lock);
17063		mutex_exit(&dtrace_provider_lock);
17064		mutex_exit(&dtrace_lock);
17065		return (DDI_FAILURE);
17066	}
17067
17068	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17069	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17070	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17071	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17072		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17073		ddi_remove_minor_node(devi, NULL);
17074		ddi_soft_state_fini(&dtrace_softstate);
17075		mutex_exit(&cpu_lock);
17076		mutex_exit(&dtrace_provider_lock);
17077		mutex_exit(&dtrace_lock);
17078		return (DDI_FAILURE);
17079	}
17080
17081	ddi_report_dev(devi);
17082	dtrace_devi = devi;
17083
17084	dtrace_modload = dtrace_module_loaded;
17085	dtrace_modunload = dtrace_module_unloaded;
17086	dtrace_cpu_init = dtrace_cpu_setup_initial;
17087	dtrace_helpers_cleanup = dtrace_helpers_destroy;
17088	dtrace_helpers_fork = dtrace_helpers_duplicate;
17089	dtrace_cpustart_init = dtrace_suspend;
17090	dtrace_cpustart_fini = dtrace_resume;
17091	dtrace_debugger_init = dtrace_suspend;
17092	dtrace_debugger_fini = dtrace_resume;
17093
17094	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17095
17096	ASSERT(MUTEX_HELD(&cpu_lock));
17097
17098	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17099	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17100	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17101	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17102	    VM_SLEEP | VMC_IDENTIFIER);
17103	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17104	    1, INT_MAX, 0);
17105
17106	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17107	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17108	    NULL, NULL, NULL, NULL, NULL, 0);
17109
17110	ASSERT(MUTEX_HELD(&cpu_lock));
17111	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17112	    offsetof(dtrace_probe_t, dtpr_nextmod),
17113	    offsetof(dtrace_probe_t, dtpr_prevmod));
17114
17115	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17116	    offsetof(dtrace_probe_t, dtpr_nextfunc),
17117	    offsetof(dtrace_probe_t, dtpr_prevfunc));
17118
17119	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17120	    offsetof(dtrace_probe_t, dtpr_nextname),
17121	    offsetof(dtrace_probe_t, dtpr_prevname));
17122
17123	if (dtrace_retain_max < 1) {
17124		cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; "
17125		    "setting to 1", dtrace_retain_max);
17126		dtrace_retain_max = 1;
17127	}
17128
17129	/*
17130	 * Now discover our toxic ranges.
17131	 */
17132	dtrace_toxic_ranges(dtrace_toxrange_add);
17133
17134	/*
17135	 * Before we register ourselves as a provider to our own framework,
17136	 * we would like to assert that dtrace_provider is NULL -- but that's
17137	 * not true if we were loaded as a dependency of a DTrace provider.
17138	 * Once we've registered, we can assert that dtrace_provider is our
17139	 * pseudo provider.
17140	 */
17141	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17142	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17143
17144	ASSERT(dtrace_provider != NULL);
17145	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17146
17147	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17148	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17149	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17150	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17151	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17152	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17153
17154	dtrace_anon_property();
17155	mutex_exit(&cpu_lock);
17156
17157	/*
17158	 * If there are already providers, we must ask them to provide their
17159	 * probes, and then match any anonymous enabling against them.  Note
17160	 * that there should be no other retained enablings at this time:
17161	 * the only retained enablings at this time should be the anonymous
17162	 * enabling.
17163	 */
17164	if (dtrace_anon.dta_enabling != NULL) {
17165		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17166
17167		dtrace_enabling_provide(NULL);
17168		state = dtrace_anon.dta_state;
17169
17170		/*
17171		 * We couldn't hold cpu_lock across the above call to
17172		 * dtrace_enabling_provide(), but we must hold it to actually
17173		 * enable the probes.  We have to drop all of our locks, pick
17174		 * up cpu_lock, and regain our locks before matching the
17175		 * retained anonymous enabling.
17176		 */
17177		mutex_exit(&dtrace_lock);
17178		mutex_exit(&dtrace_provider_lock);
17179
17180		mutex_enter(&cpu_lock);
17181		mutex_enter(&dtrace_provider_lock);
17182		mutex_enter(&dtrace_lock);
17183
17184		if ((enab = dtrace_anon.dta_enabling) != NULL)
17185			(void) dtrace_enabling_match(enab, NULL);
17186
17187		mutex_exit(&cpu_lock);
17188	}
17189
17190	mutex_exit(&dtrace_lock);
17191	mutex_exit(&dtrace_provider_lock);
17192
17193	if (state != NULL) {
17194		/*
17195		 * If we created any anonymous state, set it going now.
17196		 */
17197		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17198	}
17199
17200	return (DDI_SUCCESS);
17201}
17202#endif	/* illumos */
17203
17204#ifndef illumos
17205static void dtrace_dtr(void *);
17206#endif
17207
17208/*ARGSUSED*/
17209static int
17210#ifdef illumos
17211dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17212#else
17213dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17214#endif
17215{
17216	dtrace_state_t *state;
17217	uint32_t priv;
17218	uid_t uid;
17219	zoneid_t zoneid;
17220
17221#ifdef illumos
17222	if (getminor(*devp) == DTRACEMNRN_HELPER)
17223		return (0);
17224
17225	/*
17226	 * If this wasn't an open with the "helper" minor, then it must be
17227	 * the "dtrace" minor.
17228	 */
17229	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17230		return (ENXIO);
17231#else
17232	cred_t *cred_p = NULL;
17233	cred_p = dev->si_cred;
17234
17235	/*
17236	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17237	 * caller lacks sufficient permission to do anything with DTrace.
17238	 */
17239	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17240	if (priv == DTRACE_PRIV_NONE) {
17241#endif
17242
17243		return (EACCES);
17244	}
17245
17246	/*
17247	 * Ask all providers to provide all their probes.
17248	 */
17249	mutex_enter(&dtrace_provider_lock);
17250	dtrace_probe_provide(NULL, NULL);
17251	mutex_exit(&dtrace_provider_lock);
17252
17253	mutex_enter(&cpu_lock);
17254	mutex_enter(&dtrace_lock);
17255	dtrace_opens++;
17256	dtrace_membar_producer();
17257
17258#ifdef illumos
17259	/*
17260	 * If the kernel debugger is active (that is, if the kernel debugger
17261	 * modified text in some way), we won't allow the open.
17262	 */
17263	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17264		dtrace_opens--;
17265		mutex_exit(&cpu_lock);
17266		mutex_exit(&dtrace_lock);
17267		return (EBUSY);
17268	}
17269
17270	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17271		/*
17272		 * If DTrace helper tracing is enabled, we need to allocate the
17273		 * trace buffer and initialize the values.
17274		 */
17275		dtrace_helptrace_buffer =
17276		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17277		dtrace_helptrace_next = 0;
17278		dtrace_helptrace_wrapped = 0;
17279		dtrace_helptrace_enable = 0;
17280	}
17281
17282	state = dtrace_state_create(devp, cred_p);
17283#else
17284	state = dtrace_state_create(dev, NULL);
17285	devfs_set_cdevpriv(state, dtrace_dtr);
17286#endif
17287
17288	mutex_exit(&cpu_lock);
17289
17290	if (state == NULL) {
17291#ifdef illumos
17292		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17293			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17294#else
17295		--dtrace_opens;
17296#endif
17297		mutex_exit(&dtrace_lock);
17298		return (EAGAIN);
17299	}
17300
17301	mutex_exit(&dtrace_lock);
17302
17303	return (0);
17304}
17305
17306/*ARGSUSED*/
17307#ifdef illumos
17308static int
17309dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17310#else
17311static void
17312dtrace_dtr(void *data)
17313#endif
17314{
17315#ifdef illumos
17316	minor_t minor = getminor(dev);
17317	dtrace_state_t *state;
17318#endif
17319	dtrace_helptrace_t *buf = NULL;
17320
17321#ifdef illumos
17322	if (minor == DTRACEMNRN_HELPER)
17323		return (0);
17324
17325	state = ddi_get_soft_state(dtrace_softstate, minor);
17326#else
17327	dtrace_state_t *state = data;
17328#endif
17329
17330	mutex_enter(&cpu_lock);
17331	mutex_enter(&dtrace_lock);
17332
17333#ifdef illumos
17334	if (state->dts_anon)
17335#else
17336	if (state != NULL && state->dts_anon)
17337#endif
17338	{
17339		/*
17340		 * There is anonymous state. Destroy that first.
17341		 */
17342		ASSERT(dtrace_anon.dta_state == NULL);
17343		dtrace_state_destroy(state->dts_anon);
17344	}
17345
17346	if (dtrace_helptrace_disable) {
17347		/*
17348		 * If we have been told to disable helper tracing, set the
17349		 * buffer to NULL before calling into dtrace_state_destroy();
17350		 * we take advantage of its dtrace_sync() to know that no
17351		 * CPU is in probe context with enabled helper tracing
17352		 * after it returns.
17353		 */
17354		buf = dtrace_helptrace_buffer;
17355		dtrace_helptrace_buffer = NULL;
17356	}
17357
17358#ifdef illumos
17359	dtrace_state_destroy(state);
17360#else
17361	if (state != NULL) {
17362		dtrace_state_destroy(state);
17363		kmem_free(state, 0);
17364	}
17365#endif
17366	ASSERT(dtrace_opens > 0);
17367
17368#ifdef illumos
17369	/*
17370	 * Only relinquish control of the kernel debugger interface when there
17371	 * are no consumers and no anonymous enablings.
17372	 */
17373	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17374		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17375#else
17376	--dtrace_opens;
17377#endif
17378
17379	if (buf != NULL) {
17380		kmem_free(buf, dtrace_helptrace_bufsize);
17381		dtrace_helptrace_disable = 0;
17382	}
17383
17384	mutex_exit(&dtrace_lock);
17385	mutex_exit(&cpu_lock);
17386
17387#ifdef illumos
17388	return (0);
17389#endif
17390}
17391
17392#ifdef illumos
17393/*ARGSUSED*/
17394static int
17395dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17396{
17397	int rval;
17398	dof_helper_t help, *dhp = NULL;
17399
17400	switch (cmd) {
17401	case DTRACEHIOC_ADDDOF:
17402		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17403			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17404			return (EFAULT);
17405		}
17406
17407		dhp = &help;
17408		arg = (intptr_t)help.dofhp_dof;
17409		/*FALLTHROUGH*/
17410
17411	case DTRACEHIOC_ADD: {
17412		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17413
17414		if (dof == NULL)
17415			return (rval);
17416
17417		mutex_enter(&dtrace_lock);
17418
17419		/*
17420		 * dtrace_helper_slurp() takes responsibility for the dof --
17421		 * it may free it now or it may save it and free it later.
17422		 */
17423		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17424			*rv = rval;
17425			rval = 0;
17426		} else {
17427			rval = EINVAL;
17428		}
17429
17430		mutex_exit(&dtrace_lock);
17431		return (rval);
17432	}
17433
17434	case DTRACEHIOC_REMOVE: {
17435		mutex_enter(&dtrace_lock);
17436		rval = dtrace_helper_destroygen(NULL, arg);
17437		mutex_exit(&dtrace_lock);
17438
17439		return (rval);
17440	}
17441
17442	default:
17443		break;
17444	}
17445
17446	return (ENOTTY);
17447}
17448
17449/*ARGSUSED*/
17450static int
17451dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17452{
17453	minor_t minor = getminor(dev);
17454	dtrace_state_t *state;
17455	int rval;
17456
17457	if (minor == DTRACEMNRN_HELPER)
17458		return (dtrace_ioctl_helper(cmd, arg, rv));
17459
17460	state = ddi_get_soft_state(dtrace_softstate, minor);
17461
17462	if (state->dts_anon) {
17463		ASSERT(dtrace_anon.dta_state == NULL);
17464		state = state->dts_anon;
17465	}
17466
17467	switch (cmd) {
17468	case DTRACEIOC_PROVIDER: {
17469		dtrace_providerdesc_t pvd;
17470		dtrace_provider_t *pvp;
17471
17472		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17473			return (EFAULT);
17474
17475		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17476		mutex_enter(&dtrace_provider_lock);
17477
17478		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17479			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17480				break;
17481		}
17482
17483		mutex_exit(&dtrace_provider_lock);
17484
17485		if (pvp == NULL)
17486			return (ESRCH);
17487
17488		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17489		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17490
17491		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17492			return (EFAULT);
17493
17494		return (0);
17495	}
17496
17497	case DTRACEIOC_EPROBE: {
17498		dtrace_eprobedesc_t epdesc;
17499		dtrace_ecb_t *ecb;
17500		dtrace_action_t *act;
17501		void *buf;
17502		size_t size;
17503		uintptr_t dest;
17504		int nrecs;
17505
17506		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17507			return (EFAULT);
17508
17509		mutex_enter(&dtrace_lock);
17510
17511		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17512			mutex_exit(&dtrace_lock);
17513			return (EINVAL);
17514		}
17515
17516		if (ecb->dte_probe == NULL) {
17517			mutex_exit(&dtrace_lock);
17518			return (EINVAL);
17519		}
17520
17521		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17522		epdesc.dtepd_uarg = ecb->dte_uarg;
17523		epdesc.dtepd_size = ecb->dte_size;
17524
17525		nrecs = epdesc.dtepd_nrecs;
17526		epdesc.dtepd_nrecs = 0;
17527		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17528			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17529				continue;
17530
17531			epdesc.dtepd_nrecs++;
17532		}
17533
17534		/*
17535		 * Now that we have the size, we need to allocate a temporary
17536		 * buffer in which to store the complete description.  We need
17537		 * the temporary buffer to be able to drop dtrace_lock()
17538		 * across the copyout(), below.
17539		 */
17540		size = sizeof (dtrace_eprobedesc_t) +
17541		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17542
17543		buf = kmem_alloc(size, KM_SLEEP);
17544		dest = (uintptr_t)buf;
17545
17546		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17547		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17548
17549		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17550			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17551				continue;
17552
17553			if (nrecs-- == 0)
17554				break;
17555
17556			bcopy(&act->dta_rec, (void *)dest,
17557			    sizeof (dtrace_recdesc_t));
17558			dest += sizeof (dtrace_recdesc_t);
17559		}
17560
17561		mutex_exit(&dtrace_lock);
17562
17563		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17564			kmem_free(buf, size);
17565			return (EFAULT);
17566		}
17567
17568		kmem_free(buf, size);
17569		return (0);
17570	}
17571
17572	case DTRACEIOC_AGGDESC: {
17573		dtrace_aggdesc_t aggdesc;
17574		dtrace_action_t *act;
17575		dtrace_aggregation_t *agg;
17576		int nrecs;
17577		uint32_t offs;
17578		dtrace_recdesc_t *lrec;
17579		void *buf;
17580		size_t size;
17581		uintptr_t dest;
17582
17583		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17584			return (EFAULT);
17585
17586		mutex_enter(&dtrace_lock);
17587
17588		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17589			mutex_exit(&dtrace_lock);
17590			return (EINVAL);
17591		}
17592
17593		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17594
17595		nrecs = aggdesc.dtagd_nrecs;
17596		aggdesc.dtagd_nrecs = 0;
17597
17598		offs = agg->dtag_base;
17599		lrec = &agg->dtag_action.dta_rec;
17600		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17601
17602		for (act = agg->dtag_first; ; act = act->dta_next) {
17603			ASSERT(act->dta_intuple ||
17604			    DTRACEACT_ISAGG(act->dta_kind));
17605
17606			/*
17607			 * If this action has a record size of zero, it
17608			 * denotes an argument to the aggregating action.
17609			 * Because the presence of this record doesn't (or
17610			 * shouldn't) affect the way the data is interpreted,
17611			 * we don't copy it out to save user-level the
17612			 * confusion of dealing with a zero-length record.
17613			 */
17614			if (act->dta_rec.dtrd_size == 0) {
17615				ASSERT(agg->dtag_hasarg);
17616				continue;
17617			}
17618
17619			aggdesc.dtagd_nrecs++;
17620
17621			if (act == &agg->dtag_action)
17622				break;
17623		}
17624
17625		/*
17626		 * Now that we have the size, we need to allocate a temporary
17627		 * buffer in which to store the complete description.  We need
17628		 * the temporary buffer to be able to drop dtrace_lock()
17629		 * across the copyout(), below.
17630		 */
17631		size = sizeof (dtrace_aggdesc_t) +
17632		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17633
17634		buf = kmem_alloc(size, KM_SLEEP);
17635		dest = (uintptr_t)buf;
17636
17637		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17638		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17639
17640		for (act = agg->dtag_first; ; act = act->dta_next) {
17641			dtrace_recdesc_t rec = act->dta_rec;
17642
17643			/*
17644			 * See the comment in the above loop for why we pass
17645			 * over zero-length records.
17646			 */
17647			if (rec.dtrd_size == 0) {
17648				ASSERT(agg->dtag_hasarg);
17649				continue;
17650			}
17651
17652			if (nrecs-- == 0)
17653				break;
17654
17655			rec.dtrd_offset -= offs;
17656			bcopy(&rec, (void *)dest, sizeof (rec));
17657			dest += sizeof (dtrace_recdesc_t);
17658
17659			if (act == &agg->dtag_action)
17660				break;
17661		}
17662
17663		mutex_exit(&dtrace_lock);
17664
17665		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17666			kmem_free(buf, size);
17667			return (EFAULT);
17668		}
17669
17670		kmem_free(buf, size);
17671		return (0);
17672	}
17673
17674	case DTRACEIOC_ENABLE: {
17675		dof_hdr_t *dof;
17676		dtrace_enabling_t *enab = NULL;
17677		dtrace_vstate_t *vstate;
17678		int err = 0;
17679
17680		*rv = 0;
17681
17682		/*
17683		 * If a NULL argument has been passed, we take this as our
17684		 * cue to reevaluate our enablings.
17685		 */
17686		if (arg == NULL) {
17687			dtrace_enabling_matchall();
17688
17689			return (0);
17690		}
17691
17692		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17693			return (rval);
17694
17695		mutex_enter(&cpu_lock);
17696		mutex_enter(&dtrace_lock);
17697		vstate = &state->dts_vstate;
17698
17699		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17700			mutex_exit(&dtrace_lock);
17701			mutex_exit(&cpu_lock);
17702			dtrace_dof_destroy(dof);
17703			return (EBUSY);
17704		}
17705
17706		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17707			mutex_exit(&dtrace_lock);
17708			mutex_exit(&cpu_lock);
17709			dtrace_dof_destroy(dof);
17710			return (EINVAL);
17711		}
17712
17713		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17714			dtrace_enabling_destroy(enab);
17715			mutex_exit(&dtrace_lock);
17716			mutex_exit(&cpu_lock);
17717			dtrace_dof_destroy(dof);
17718			return (rval);
17719		}
17720
17721		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17722			err = dtrace_enabling_retain(enab);
17723		} else {
17724			dtrace_enabling_destroy(enab);
17725		}
17726
17727		mutex_exit(&cpu_lock);
17728		mutex_exit(&dtrace_lock);
17729		dtrace_dof_destroy(dof);
17730
17731		return (err);
17732	}
17733
17734	case DTRACEIOC_REPLICATE: {
17735		dtrace_repldesc_t desc;
17736		dtrace_probedesc_t *match = &desc.dtrpd_match;
17737		dtrace_probedesc_t *create = &desc.dtrpd_create;
17738		int err;
17739
17740		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17741			return (EFAULT);
17742
17743		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17744		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17745		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17746		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17747
17748		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17749		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17750		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17751		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17752
17753		mutex_enter(&dtrace_lock);
17754		err = dtrace_enabling_replicate(state, match, create);
17755		mutex_exit(&dtrace_lock);
17756
17757		return (err);
17758	}
17759
17760	case DTRACEIOC_PROBEMATCH:
17761	case DTRACEIOC_PROBES: {
17762		dtrace_probe_t *probe = NULL;
17763		dtrace_probedesc_t desc;
17764		dtrace_probekey_t pkey;
17765		dtrace_id_t i;
17766		int m = 0;
17767		uint32_t priv;
17768		uid_t uid;
17769		zoneid_t zoneid;
17770
17771		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17772			return (EFAULT);
17773
17774		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17775		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17776		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17777		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17778
17779		/*
17780		 * Before we attempt to match this probe, we want to give
17781		 * all providers the opportunity to provide it.
17782		 */
17783		if (desc.dtpd_id == DTRACE_IDNONE) {
17784			mutex_enter(&dtrace_provider_lock);
17785			dtrace_probe_provide(&desc, NULL);
17786			mutex_exit(&dtrace_provider_lock);
17787			desc.dtpd_id++;
17788		}
17789
17790		if (cmd == DTRACEIOC_PROBEMATCH)  {
17791			dtrace_probekey(&desc, &pkey);
17792			pkey.dtpk_id = DTRACE_IDNONE;
17793		}
17794
17795		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17796
17797		mutex_enter(&dtrace_lock);
17798
17799		if (cmd == DTRACEIOC_PROBEMATCH) {
17800			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17801				if ((probe = dtrace_probes[i - 1]) != NULL &&
17802				    (m = dtrace_match_probe(probe, &pkey,
17803				    priv, uid, zoneid)) != 0)
17804					break;
17805			}
17806
17807			if (m < 0) {
17808				mutex_exit(&dtrace_lock);
17809				return (EINVAL);
17810			}
17811
17812		} else {
17813			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17814				if ((probe = dtrace_probes[i - 1]) != NULL &&
17815				    dtrace_match_priv(probe, priv, uid, zoneid))
17816					break;
17817			}
17818		}
17819
17820		if (probe == NULL) {
17821			mutex_exit(&dtrace_lock);
17822			return (ESRCH);
17823		}
17824
17825		dtrace_probe_description(probe, &desc);
17826		mutex_exit(&dtrace_lock);
17827
17828		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17829			return (EFAULT);
17830
17831		return (0);
17832	}
17833
17834	case DTRACEIOC_PROBEARG: {
17835		dtrace_argdesc_t desc;
17836		dtrace_probe_t *probe;
17837		dtrace_provider_t *prov;
17838
17839		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17840			return (EFAULT);
17841
17842		if (desc.dtargd_id == DTRACE_IDNONE)
17843			return (EINVAL);
17844
17845		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17846			return (EINVAL);
17847
17848		mutex_enter(&dtrace_provider_lock);
17849		mutex_enter(&mod_lock);
17850		mutex_enter(&dtrace_lock);
17851
17852		if (desc.dtargd_id > dtrace_nprobes) {
17853			mutex_exit(&dtrace_lock);
17854			mutex_exit(&mod_lock);
17855			mutex_exit(&dtrace_provider_lock);
17856			return (EINVAL);
17857		}
17858
17859		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17860			mutex_exit(&dtrace_lock);
17861			mutex_exit(&mod_lock);
17862			mutex_exit(&dtrace_provider_lock);
17863			return (EINVAL);
17864		}
17865
17866		mutex_exit(&dtrace_lock);
17867
17868		prov = probe->dtpr_provider;
17869
17870		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17871			/*
17872			 * There isn't any typed information for this probe.
17873			 * Set the argument number to DTRACE_ARGNONE.
17874			 */
17875			desc.dtargd_ndx = DTRACE_ARGNONE;
17876		} else {
17877			desc.dtargd_native[0] = '\0';
17878			desc.dtargd_xlate[0] = '\0';
17879			desc.dtargd_mapping = desc.dtargd_ndx;
17880
17881			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17882			    probe->dtpr_id, probe->dtpr_arg, &desc);
17883		}
17884
17885		mutex_exit(&mod_lock);
17886		mutex_exit(&dtrace_provider_lock);
17887
17888		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17889			return (EFAULT);
17890
17891		return (0);
17892	}
17893
17894	case DTRACEIOC_GO: {
17895		processorid_t cpuid;
17896		rval = dtrace_state_go(state, &cpuid);
17897
17898		if (rval != 0)
17899			return (rval);
17900
17901		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17902			return (EFAULT);
17903
17904		return (0);
17905	}
17906
17907	case DTRACEIOC_STOP: {
17908		processorid_t cpuid;
17909
17910		mutex_enter(&dtrace_lock);
17911		rval = dtrace_state_stop(state, &cpuid);
17912		mutex_exit(&dtrace_lock);
17913
17914		if (rval != 0)
17915			return (rval);
17916
17917		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17918			return (EFAULT);
17919
17920		return (0);
17921	}
17922
17923	case DTRACEIOC_DOFGET: {
17924		dof_hdr_t hdr, *dof;
17925		uint64_t len;
17926
17927		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17928			return (EFAULT);
17929
17930		mutex_enter(&dtrace_lock);
17931		dof = dtrace_dof_create(state);
17932		mutex_exit(&dtrace_lock);
17933
17934		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17935		rval = copyout(dof, (void *)arg, len);
17936		dtrace_dof_destroy(dof);
17937
17938		return (rval == 0 ? 0 : EFAULT);
17939	}
17940
17941	case DTRACEIOC_AGGSNAP:
17942	case DTRACEIOC_BUFSNAP: {
17943		dtrace_bufdesc_t desc;
17944		caddr_t cached;
17945		dtrace_buffer_t *buf;
17946
17947		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17948			return (EFAULT);
17949
17950		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17951			return (EINVAL);
17952
17953		mutex_enter(&dtrace_lock);
17954
17955		if (cmd == DTRACEIOC_BUFSNAP) {
17956			buf = &state->dts_buffer[desc.dtbd_cpu];
17957		} else {
17958			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17959		}
17960
17961		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17962			size_t sz = buf->dtb_offset;
17963
17964			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17965				mutex_exit(&dtrace_lock);
17966				return (EBUSY);
17967			}
17968
17969			/*
17970			 * If this buffer has already been consumed, we're
17971			 * going to indicate that there's nothing left here
17972			 * to consume.
17973			 */
17974			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17975				mutex_exit(&dtrace_lock);
17976
17977				desc.dtbd_size = 0;
17978				desc.dtbd_drops = 0;
17979				desc.dtbd_errors = 0;
17980				desc.dtbd_oldest = 0;
17981				sz = sizeof (desc);
17982
17983				if (copyout(&desc, (void *)arg, sz) != 0)
17984					return (EFAULT);
17985
17986				return (0);
17987			}
17988
17989			/*
17990			 * If this is a ring buffer that has wrapped, we want
17991			 * to copy the whole thing out.
17992			 */
17993			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17994				dtrace_buffer_polish(buf);
17995				sz = buf->dtb_size;
17996			}
17997
17998			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17999				mutex_exit(&dtrace_lock);
18000				return (EFAULT);
18001			}
18002
18003			desc.dtbd_size = sz;
18004			desc.dtbd_drops = buf->dtb_drops;
18005			desc.dtbd_errors = buf->dtb_errors;
18006			desc.dtbd_oldest = buf->dtb_xamot_offset;
18007			desc.dtbd_timestamp = dtrace_gethrtime();
18008
18009			mutex_exit(&dtrace_lock);
18010
18011			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18012				return (EFAULT);
18013
18014			buf->dtb_flags |= DTRACEBUF_CONSUMED;
18015
18016			return (0);
18017		}
18018
18019		if (buf->dtb_tomax == NULL) {
18020			ASSERT(buf->dtb_xamot == NULL);
18021			mutex_exit(&dtrace_lock);
18022			return (ENOENT);
18023		}
18024
18025		cached = buf->dtb_tomax;
18026		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
18027
18028		dtrace_xcall(desc.dtbd_cpu,
18029		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
18030
18031		state->dts_errors += buf->dtb_xamot_errors;
18032
18033		/*
18034		 * If the buffers did not actually switch, then the cross call
18035		 * did not take place -- presumably because the given CPU is
18036		 * not in the ready set.  If this is the case, we'll return
18037		 * ENOENT.
18038		 */
18039		if (buf->dtb_tomax == cached) {
18040			ASSERT(buf->dtb_xamot != cached);
18041			mutex_exit(&dtrace_lock);
18042			return (ENOENT);
18043		}
18044
18045		ASSERT(cached == buf->dtb_xamot);
18046
18047		/*
18048		 * We have our snapshot; now copy it out.
18049		 */
18050		if (copyout(buf->dtb_xamot, desc.dtbd_data,
18051		    buf->dtb_xamot_offset) != 0) {
18052			mutex_exit(&dtrace_lock);
18053			return (EFAULT);
18054		}
18055
18056		desc.dtbd_size = buf->dtb_xamot_offset;
18057		desc.dtbd_drops = buf->dtb_xamot_drops;
18058		desc.dtbd_errors = buf->dtb_xamot_errors;
18059		desc.dtbd_oldest = 0;
18060		desc.dtbd_timestamp = buf->dtb_switched;
18061
18062		mutex_exit(&dtrace_lock);
18063
18064		/*
18065		 * Finally, copy out the buffer description.
18066		 */
18067		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18068			return (EFAULT);
18069
18070		return (0);
18071	}
18072
18073	case DTRACEIOC_CONF: {
18074		dtrace_conf_t conf;
18075
18076		bzero(&conf, sizeof (conf));
18077		conf.dtc_difversion = DIF_VERSION;
18078		conf.dtc_difintregs = DIF_DIR_NREGS;
18079		conf.dtc_diftupregs = DIF_DTR_NREGS;
18080		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18081
18082		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18083			return (EFAULT);
18084
18085		return (0);
18086	}
18087
18088	case DTRACEIOC_STATUS: {
18089		dtrace_status_t stat;
18090		dtrace_dstate_t *dstate;
18091		int i, j;
18092		uint64_t nerrs;
18093
18094		/*
18095		 * See the comment in dtrace_state_deadman() for the reason
18096		 * for setting dts_laststatus to INT64_MAX before setting
18097		 * it to the correct value.
18098		 */
18099		state->dts_laststatus = INT64_MAX;
18100		dtrace_membar_producer();
18101		state->dts_laststatus = dtrace_gethrtime();
18102
18103		bzero(&stat, sizeof (stat));
18104
18105		mutex_enter(&dtrace_lock);
18106
18107		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18108			mutex_exit(&dtrace_lock);
18109			return (ENOENT);
18110		}
18111
18112		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18113			stat.dtst_exiting = 1;
18114
18115		nerrs = state->dts_errors;
18116		dstate = &state->dts_vstate.dtvs_dynvars;
18117
18118		for (i = 0; i < NCPU; i++) {
18119			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18120
18121			stat.dtst_dyndrops += dcpu->dtdsc_drops;
18122			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18123			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18124
18125			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18126				stat.dtst_filled++;
18127
18128			nerrs += state->dts_buffer[i].dtb_errors;
18129
18130			for (j = 0; j < state->dts_nspeculations; j++) {
18131				dtrace_speculation_t *spec;
18132				dtrace_buffer_t *buf;
18133
18134				spec = &state->dts_speculations[j];
18135				buf = &spec->dtsp_buffer[i];
18136				stat.dtst_specdrops += buf->dtb_xamot_drops;
18137			}
18138		}
18139
18140		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18141		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18142		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18143		stat.dtst_dblerrors = state->dts_dblerrors;
18144		stat.dtst_killed =
18145		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18146		stat.dtst_errors = nerrs;
18147
18148		mutex_exit(&dtrace_lock);
18149
18150		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18151			return (EFAULT);
18152
18153		return (0);
18154	}
18155
18156	case DTRACEIOC_FORMAT: {
18157		dtrace_fmtdesc_t fmt;
18158		char *str;
18159		int len;
18160
18161		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18162			return (EFAULT);
18163
18164		mutex_enter(&dtrace_lock);
18165
18166		if (fmt.dtfd_format == 0 ||
18167		    fmt.dtfd_format > state->dts_nformats) {
18168			mutex_exit(&dtrace_lock);
18169			return (EINVAL);
18170		}
18171
18172		/*
18173		 * Format strings are allocated contiguously and they are
18174		 * never freed; if a format index is less than the number
18175		 * of formats, we can assert that the format map is non-NULL
18176		 * and that the format for the specified index is non-NULL.
18177		 */
18178		ASSERT(state->dts_formats != NULL);
18179		str = state->dts_formats[fmt.dtfd_format - 1];
18180		ASSERT(str != NULL);
18181
18182		len = strlen(str) + 1;
18183
18184		if (len > fmt.dtfd_length) {
18185			fmt.dtfd_length = len;
18186
18187			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18188				mutex_exit(&dtrace_lock);
18189				return (EINVAL);
18190			}
18191		} else {
18192			if (copyout(str, fmt.dtfd_string, len) != 0) {
18193				mutex_exit(&dtrace_lock);
18194				return (EINVAL);
18195			}
18196		}
18197
18198		mutex_exit(&dtrace_lock);
18199		return (0);
18200	}
18201
18202	default:
18203		break;
18204	}
18205
18206	return (ENOTTY);
18207}
18208
18209/*ARGSUSED*/
18210static int
18211dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18212{
18213	dtrace_state_t *state;
18214
18215	switch (cmd) {
18216	case DDI_DETACH:
18217		break;
18218
18219	case DDI_SUSPEND:
18220		return (DDI_SUCCESS);
18221
18222	default:
18223		return (DDI_FAILURE);
18224	}
18225
18226	mutex_enter(&cpu_lock);
18227	mutex_enter(&dtrace_provider_lock);
18228	mutex_enter(&dtrace_lock);
18229
18230	ASSERT(dtrace_opens == 0);
18231
18232	if (dtrace_helpers > 0) {
18233		mutex_exit(&dtrace_provider_lock);
18234		mutex_exit(&dtrace_lock);
18235		mutex_exit(&cpu_lock);
18236		return (DDI_FAILURE);
18237	}
18238
18239	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18240		mutex_exit(&dtrace_provider_lock);
18241		mutex_exit(&dtrace_lock);
18242		mutex_exit(&cpu_lock);
18243		return (DDI_FAILURE);
18244	}
18245
18246	dtrace_provider = NULL;
18247
18248	if ((state = dtrace_anon_grab()) != NULL) {
18249		/*
18250		 * If there were ECBs on this state, the provider should
18251		 * have not been allowed to detach; assert that there is
18252		 * none.
18253		 */
18254		ASSERT(state->dts_necbs == 0);
18255		dtrace_state_destroy(state);
18256
18257		/*
18258		 * If we're being detached with anonymous state, we need to
18259		 * indicate to the kernel debugger that DTrace is now inactive.
18260		 */
18261		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18262	}
18263
18264	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18265	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18266	dtrace_cpu_init = NULL;
18267	dtrace_helpers_cleanup = NULL;
18268	dtrace_helpers_fork = NULL;
18269	dtrace_cpustart_init = NULL;
18270	dtrace_cpustart_fini = NULL;
18271	dtrace_debugger_init = NULL;
18272	dtrace_debugger_fini = NULL;
18273	dtrace_modload = NULL;
18274	dtrace_modunload = NULL;
18275
18276	ASSERT(dtrace_getf == 0);
18277	ASSERT(dtrace_closef == NULL);
18278
18279	mutex_exit(&cpu_lock);
18280
18281	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18282	dtrace_probes = NULL;
18283	dtrace_nprobes = 0;
18284
18285	dtrace_hash_destroy(dtrace_bymod);
18286	dtrace_hash_destroy(dtrace_byfunc);
18287	dtrace_hash_destroy(dtrace_byname);
18288	dtrace_bymod = NULL;
18289	dtrace_byfunc = NULL;
18290	dtrace_byname = NULL;
18291
18292	kmem_cache_destroy(dtrace_state_cache);
18293	vmem_destroy(dtrace_minor);
18294	vmem_destroy(dtrace_arena);
18295
18296	if (dtrace_toxrange != NULL) {
18297		kmem_free(dtrace_toxrange,
18298		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18299		dtrace_toxrange = NULL;
18300		dtrace_toxranges = 0;
18301		dtrace_toxranges_max = 0;
18302	}
18303
18304	ddi_remove_minor_node(dtrace_devi, NULL);
18305	dtrace_devi = NULL;
18306
18307	ddi_soft_state_fini(&dtrace_softstate);
18308
18309	ASSERT(dtrace_vtime_references == 0);
18310	ASSERT(dtrace_opens == 0);
18311	ASSERT(dtrace_retained == NULL);
18312
18313	mutex_exit(&dtrace_lock);
18314	mutex_exit(&dtrace_provider_lock);
18315
18316	/*
18317	 * We don't destroy the task queue until after we have dropped our
18318	 * locks (taskq_destroy() may block on running tasks).  To prevent
18319	 * attempting to do work after we have effectively detached but before
18320	 * the task queue has been destroyed, all tasks dispatched via the
18321	 * task queue must check that DTrace is still attached before
18322	 * performing any operation.
18323	 */
18324	taskq_destroy(dtrace_taskq);
18325	dtrace_taskq = NULL;
18326
18327	return (DDI_SUCCESS);
18328}
18329#endif
18330
18331#ifdef illumos
18332/*ARGSUSED*/
18333static int
18334dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18335{
18336	int error;
18337
18338	switch (infocmd) {
18339	case DDI_INFO_DEVT2DEVINFO:
18340		*result = (void *)dtrace_devi;
18341		error = DDI_SUCCESS;
18342		break;
18343	case DDI_INFO_DEVT2INSTANCE:
18344		*result = (void *)0;
18345		error = DDI_SUCCESS;
18346		break;
18347	default:
18348		error = DDI_FAILURE;
18349	}
18350	return (error);
18351}
18352#endif
18353
18354#ifdef illumos
18355static struct cb_ops dtrace_cb_ops = {
18356	dtrace_open,		/* open */
18357	dtrace_close,		/* close */
18358	nulldev,		/* strategy */
18359	nulldev,		/* print */
18360	nodev,			/* dump */
18361	nodev,			/* read */
18362	nodev,			/* write */
18363	dtrace_ioctl,		/* ioctl */
18364	nodev,			/* devmap */
18365	nodev,			/* mmap */
18366	nodev,			/* segmap */
18367	nochpoll,		/* poll */
18368	ddi_prop_op,		/* cb_prop_op */
18369	0,			/* streamtab  */
18370	D_NEW | D_MP		/* Driver compatibility flag */
18371};
18372
18373static struct dev_ops dtrace_ops = {
18374	DEVO_REV,		/* devo_rev */
18375	0,			/* refcnt */
18376	dtrace_info,		/* get_dev_info */
18377	nulldev,		/* identify */
18378	nulldev,		/* probe */
18379	dtrace_attach,		/* attach */
18380	dtrace_detach,		/* detach */
18381	nodev,			/* reset */
18382	&dtrace_cb_ops,		/* driver operations */
18383	NULL,			/* bus operations */
18384	nodev			/* dev power */
18385};
18386
18387static struct modldrv modldrv = {
18388	&mod_driverops,		/* module type (this is a pseudo driver) */
18389	"Dynamic Tracing",	/* name of module */
18390	&dtrace_ops,		/* driver ops */
18391};
18392
18393static struct modlinkage modlinkage = {
18394	MODREV_1,
18395	(void *)&modldrv,
18396	NULL
18397};
18398
18399int
18400_init(void)
18401{
18402	return (mod_install(&modlinkage));
18403}
18404
18405int
18406_info(struct modinfo *modinfop)
18407{
18408	return (mod_info(&modlinkage, modinfop));
18409}
18410
18411int
18412_fini(void)
18413{
18414	return (mod_remove(&modlinkage));
18415}
18416#else
18417
18418static d_ioctl_t	dtrace_ioctl;
18419static d_ioctl_t	dtrace_ioctl_helper;
18420static void		dtrace_load(void *);
18421static int		dtrace_unload(void);
18422static struct cdev	*dtrace_dev;
18423static struct cdev	*helper_dev;
18424
18425void dtrace_invop_init(void);
18426void dtrace_invop_uninit(void);
18427
18428static struct cdevsw dtrace_cdevsw = {
18429	.d_version	= D_VERSION,
18430	.d_ioctl	= dtrace_ioctl,
18431	.d_open		= dtrace_open,
18432	.d_name		= "dtrace",
18433};
18434
18435static struct cdevsw helper_cdevsw = {
18436	.d_version	= D_VERSION,
18437	.d_ioctl	= dtrace_ioctl_helper,
18438	.d_name		= "helper",
18439};
18440
18441#include <dtrace_anon.c>
18442#include <dtrace_ioctl.c>
18443#include <dtrace_load.c>
18444#include <dtrace_modevent.c>
18445#include <dtrace_sysctl.c>
18446#include <dtrace_unload.c>
18447#include <dtrace_vtime.c>
18448#include <dtrace_hacks.c>
18449#include <dtrace_isa.c>
18450
18451SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18452SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18453SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18454
18455DEV_MODULE(dtrace, dtrace_modevent, NULL);
18456MODULE_VERSION(dtrace, 1);
18457MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18458#endif
18459