1/*-
2 * Copyright (c) 2007 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 *	Stand-alone ZFS file reader.
29 */
30
31#include <stdbool.h>
32#include <sys/endian.h>
33#include <sys/stat.h>
34#include <sys/stdint.h>
35#include <sys/list.h>
36#include <sys/zfs_bootenv.h>
37#include <machine/_inttypes.h>
38
39#include "zfsimpl.h"
40#include "zfssubr.c"
41
42#ifdef HAS_ZSTD_ZFS
43extern int zstd_init(void);
44#endif
45
46struct zfsmount {
47	char			*path;
48	const spa_t		*spa;
49	objset_phys_t		objset;
50	uint64_t		rootobj;
51	STAILQ_ENTRY(zfsmount)	next;
52};
53
54typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t;
55static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount);
56
57/*
58 * The indirect_child_t represents the vdev that we will read from, when we
59 * need to read all copies of the data (e.g. for scrub or reconstruction).
60 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
61 * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
62 * ic_vdev is a child of the mirror.
63 */
64typedef struct indirect_child {
65	void *ic_data;
66	vdev_t *ic_vdev;
67} indirect_child_t;
68
69/*
70 * The indirect_split_t represents one mapped segment of an i/o to the
71 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
72 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
73 * For split blocks, there will be several of these.
74 */
75typedef struct indirect_split {
76	list_node_t is_node; /* link on iv_splits */
77
78	/*
79	 * is_split_offset is the offset into the i/o.
80	 * This is the sum of the previous splits' is_size's.
81	 */
82	uint64_t is_split_offset;
83
84	vdev_t *is_vdev; /* top-level vdev */
85	uint64_t is_target_offset; /* offset on is_vdev */
86	uint64_t is_size;
87	int is_children; /* number of entries in is_child[] */
88
89	/*
90	 * is_good_child is the child that we are currently using to
91	 * attempt reconstruction.
92	 */
93	int is_good_child;
94
95	indirect_child_t is_child[1]; /* variable-length */
96} indirect_split_t;
97
98/*
99 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
100 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
101 */
102typedef struct indirect_vsd {
103	boolean_t iv_split_block;
104	boolean_t iv_reconstruct;
105
106	list_t iv_splits; /* list of indirect_split_t's */
107} indirect_vsd_t;
108
109/*
110 * List of all vdevs, chained through v_alllink.
111 */
112static vdev_list_t zfs_vdevs;
113
114/*
115 * List of supported read-incompatible ZFS features.  Do not add here features
116 * marked as ZFEATURE_FLAG_READONLY_COMPAT, they are irrelevant for read-only!
117 */
118static const char *features_for_read[] = {
119	"com.datto:bookmark_v2",
120	"com.datto:encryption",
121	"com.delphix:bookmark_written",
122	"com.delphix:device_removal",
123	"com.delphix:embedded_data",
124	"com.delphix:extensible_dataset",
125	"com.delphix:head_errlog",
126	"com.delphix:hole_birth",
127	"com.joyent:multi_vdev_crash_dump",
128	"com.klarasystems:vdev_zaps_v2",
129	"org.freebsd:zstd_compress",
130	"org.illumos:lz4_compress",
131	"org.illumos:sha512",
132	"org.illumos:skein",
133	"org.open-zfs:large_blocks",
134	"org.openzfs:blake3",
135	"org.zfsonlinux:large_dnode",
136	NULL
137};
138
139/*
140 * List of all pools, chained through spa_link.
141 */
142static spa_list_t zfs_pools;
143
144static const dnode_phys_t *dnode_cache_obj;
145static uint64_t dnode_cache_bn;
146static char *dnode_cache_buf;
147
148static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
149static int zfs_get_root(const spa_t *spa, uint64_t *objid);
150static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
151static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
152    const char *name, uint64_t integer_size, uint64_t num_integers,
153    void *value);
154static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
155    dnode_phys_t *);
156static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
157    size_t);
158static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
159    size_t);
160static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
161vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
162    uint64_t);
163vdev_indirect_mapping_entry_phys_t *
164    vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
165    uint64_t, uint64_t *);
166
167static void
168zfs_init(void)
169{
170	STAILQ_INIT(&zfs_vdevs);
171	STAILQ_INIT(&zfs_pools);
172
173	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
174
175	zfs_init_crc();
176#ifdef HAS_ZSTD_ZFS
177	zstd_init();
178#endif
179}
180
181static int
182nvlist_check_features_for_read(nvlist_t *nvl)
183{
184	nvlist_t *features = NULL;
185	nvs_data_t *data;
186	nvp_header_t *nvp;
187	nv_string_t *nvp_name;
188	int rc;
189
190	rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
191	    DATA_TYPE_NVLIST, NULL, &features, NULL);
192	switch (rc) {
193	case 0:
194		break;		/* Continue with checks */
195
196	case ENOENT:
197		return (0);	/* All features are disabled */
198
199	default:
200		return (rc);	/* Error while reading nvlist */
201	}
202
203	data = (nvs_data_t *)features->nv_data;
204	nvp = &data->nvl_pair;	/* first pair in nvlist */
205
206	while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
207		int i, found;
208
209		nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
210		found = 0;
211
212		for (i = 0; features_for_read[i] != NULL; i++) {
213			if (memcmp(nvp_name->nv_data, features_for_read[i],
214			    nvp_name->nv_size) == 0) {
215				found = 1;
216				break;
217			}
218		}
219
220		if (!found) {
221			printf("ZFS: unsupported feature: %.*s\n",
222			    nvp_name->nv_size, nvp_name->nv_data);
223			rc = EIO;
224		}
225		nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
226	}
227	nvlist_destroy(features);
228
229	return (rc);
230}
231
232static int
233vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
234    off_t offset, size_t size)
235{
236	size_t psize;
237	int rc;
238
239	if (vdev->v_phys_read == NULL)
240		return (ENOTSUP);
241
242	if (bp) {
243		psize = BP_GET_PSIZE(bp);
244	} else {
245		psize = size;
246	}
247
248	rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
249	if (rc == 0) {
250		if (bp != NULL)
251			rc = zio_checksum_verify(vdev->v_spa, bp, buf);
252	}
253
254	return (rc);
255}
256
257static int
258vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
259{
260	if (vdev->v_phys_write == NULL)
261		return (ENOTSUP);
262
263	return (vdev->v_phys_write(vdev, offset, buf, size));
264}
265
266typedef struct remap_segment {
267	vdev_t *rs_vd;
268	uint64_t rs_offset;
269	uint64_t rs_asize;
270	uint64_t rs_split_offset;
271	list_node_t rs_node;
272} remap_segment_t;
273
274static remap_segment_t *
275rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
276{
277	remap_segment_t *rs = malloc(sizeof (remap_segment_t));
278
279	if (rs != NULL) {
280		rs->rs_vd = vd;
281		rs->rs_offset = offset;
282		rs->rs_asize = asize;
283		rs->rs_split_offset = split_offset;
284	}
285
286	return (rs);
287}
288
289vdev_indirect_mapping_t *
290vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
291    uint64_t mapping_object)
292{
293	vdev_indirect_mapping_t *vim;
294	vdev_indirect_mapping_phys_t *vim_phys;
295	int rc;
296
297	vim = calloc(1, sizeof (*vim));
298	if (vim == NULL)
299		return (NULL);
300
301	vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
302	if (vim->vim_dn == NULL) {
303		free(vim);
304		return (NULL);
305	}
306
307	rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
308	if (rc != 0) {
309		free(vim->vim_dn);
310		free(vim);
311		return (NULL);
312	}
313
314	vim->vim_spa = spa;
315	vim->vim_phys = malloc(sizeof (*vim->vim_phys));
316	if (vim->vim_phys == NULL) {
317		free(vim->vim_dn);
318		free(vim);
319		return (NULL);
320	}
321
322	vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
323	*vim->vim_phys = *vim_phys;
324
325	vim->vim_objset = os;
326	vim->vim_object = mapping_object;
327	vim->vim_entries = NULL;
328
329	vim->vim_havecounts =
330	    (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
331
332	return (vim);
333}
334
335/*
336 * Compare an offset with an indirect mapping entry; there are three
337 * possible scenarios:
338 *
339 *     1. The offset is "less than" the mapping entry; meaning the
340 *        offset is less than the source offset of the mapping entry. In
341 *        this case, there is no overlap between the offset and the
342 *        mapping entry and -1 will be returned.
343 *
344 *     2. The offset is "greater than" the mapping entry; meaning the
345 *        offset is greater than the mapping entry's source offset plus
346 *        the entry's size. In this case, there is no overlap between
347 *        the offset and the mapping entry and 1 will be returned.
348 *
349 *        NOTE: If the offset is actually equal to the entry's offset
350 *        plus size, this is considered to be "greater" than the entry,
351 *        and this case applies (i.e. 1 will be returned). Thus, the
352 *        entry's "range" can be considered to be inclusive at its
353 *        start, but exclusive at its end: e.g. [src, src + size).
354 *
355 *     3. The last case to consider is if the offset actually falls
356 *        within the mapping entry's range. If this is the case, the
357 *        offset is considered to be "equal to" the mapping entry and
358 *        0 will be returned.
359 *
360 *        NOTE: If the offset is equal to the entry's source offset,
361 *        this case applies and 0 will be returned. If the offset is
362 *        equal to the entry's source plus its size, this case does
363 *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
364 *        returned.
365 */
366static int
367dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
368{
369	const uint64_t *key = v_key;
370	const vdev_indirect_mapping_entry_phys_t *array_elem =
371	    v_array_elem;
372	uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
373
374	if (*key < src_offset) {
375		return (-1);
376	} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
377		return (0);
378	} else {
379		return (1);
380	}
381}
382
383/*
384 * Return array entry.
385 */
386static vdev_indirect_mapping_entry_phys_t *
387vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
388{
389	uint64_t size;
390	off_t offset = 0;
391	int rc;
392
393	if (vim->vim_phys->vimp_num_entries == 0)
394		return (NULL);
395
396	if (vim->vim_entries == NULL) {
397		uint64_t bsize;
398
399		bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
400		size = vim->vim_phys->vimp_num_entries *
401		    sizeof (*vim->vim_entries);
402		if (size > bsize) {
403			size = bsize / sizeof (*vim->vim_entries);
404			size *= sizeof (*vim->vim_entries);
405		}
406		vim->vim_entries = malloc(size);
407		if (vim->vim_entries == NULL)
408			return (NULL);
409		vim->vim_num_entries = size / sizeof (*vim->vim_entries);
410		offset = index * sizeof (*vim->vim_entries);
411	}
412
413	/* We have data in vim_entries */
414	if (offset == 0) {
415		if (index >= vim->vim_entry_offset &&
416		    index <= vim->vim_entry_offset + vim->vim_num_entries) {
417			index -= vim->vim_entry_offset;
418			return (&vim->vim_entries[index]);
419		}
420		offset = index * sizeof (*vim->vim_entries);
421	}
422
423	vim->vim_entry_offset = index;
424	size = vim->vim_num_entries * sizeof (*vim->vim_entries);
425	rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
426	    size);
427	if (rc != 0) {
428		/* Read error, invalidate vim_entries. */
429		free(vim->vim_entries);
430		vim->vim_entries = NULL;
431		return (NULL);
432	}
433	index -= vim->vim_entry_offset;
434	return (&vim->vim_entries[index]);
435}
436
437/*
438 * Returns the mapping entry for the given offset.
439 *
440 * It's possible that the given offset will not be in the mapping table
441 * (i.e. no mapping entries contain this offset), in which case, the
442 * return value depends on the "next_if_missing" parameter.
443 *
444 * If the offset is not found in the table and "next_if_missing" is
445 * B_FALSE, then NULL will always be returned. The behavior is intended
446 * to allow consumers to get the entry corresponding to the offset
447 * parameter, iff the offset overlaps with an entry in the table.
448 *
449 * If the offset is not found in the table and "next_if_missing" is
450 * B_TRUE, then the entry nearest to the given offset will be returned,
451 * such that the entry's source offset is greater than the offset
452 * passed in (i.e. the "next" mapping entry in the table is returned, if
453 * the offset is missing from the table). If there are no entries whose
454 * source offset is greater than the passed in offset, NULL is returned.
455 */
456static vdev_indirect_mapping_entry_phys_t *
457vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
458    uint64_t offset)
459{
460	ASSERT(vim->vim_phys->vimp_num_entries > 0);
461
462	vdev_indirect_mapping_entry_phys_t *entry;
463
464	uint64_t last = vim->vim_phys->vimp_num_entries - 1;
465	uint64_t base = 0;
466
467	/*
468	 * We don't define these inside of the while loop because we use
469	 * their value in the case that offset isn't in the mapping.
470	 */
471	uint64_t mid;
472	int result;
473
474	while (last >= base) {
475		mid = base + ((last - base) >> 1);
476
477		entry = vdev_indirect_mapping_entry(vim, mid);
478		if (entry == NULL)
479			break;
480		result = dva_mapping_overlap_compare(&offset, entry);
481
482		if (result == 0) {
483			break;
484		} else if (result < 0) {
485			last = mid - 1;
486		} else {
487			base = mid + 1;
488		}
489	}
490	return (entry);
491}
492
493/*
494 * Given an indirect vdev and an extent on that vdev, it duplicates the
495 * physical entries of the indirect mapping that correspond to the extent
496 * to a new array and returns a pointer to it. In addition, copied_entries
497 * is populated with the number of mapping entries that were duplicated.
498 *
499 * Finally, since we are doing an allocation, it is up to the caller to
500 * free the array allocated in this function.
501 */
502vdev_indirect_mapping_entry_phys_t *
503vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
504    uint64_t asize, uint64_t *copied_entries)
505{
506	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
507	vdev_indirect_mapping_t *vim = vd->v_mapping;
508	uint64_t entries = 0;
509
510	vdev_indirect_mapping_entry_phys_t *first_mapping =
511	    vdev_indirect_mapping_entry_for_offset(vim, offset);
512	ASSERT3P(first_mapping, !=, NULL);
513
514	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
515	while (asize > 0) {
516		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
517		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
518		uint64_t inner_size = MIN(asize, size - inner_offset);
519
520		offset += inner_size;
521		asize -= inner_size;
522		entries++;
523		m++;
524	}
525
526	size_t copy_length = entries * sizeof (*first_mapping);
527	duplicate_mappings = malloc(copy_length);
528	if (duplicate_mappings != NULL)
529		bcopy(first_mapping, duplicate_mappings, copy_length);
530	else
531		entries = 0;
532
533	*copied_entries = entries;
534
535	return (duplicate_mappings);
536}
537
538static vdev_t *
539vdev_lookup_top(spa_t *spa, uint64_t vdev)
540{
541	vdev_t *rvd;
542	vdev_list_t *vlist;
543
544	vlist = &spa->spa_root_vdev->v_children;
545	STAILQ_FOREACH(rvd, vlist, v_childlink)
546		if (rvd->v_id == vdev)
547			break;
548
549	return (rvd);
550}
551
552/*
553 * This is a callback for vdev_indirect_remap() which allocates an
554 * indirect_split_t for each split segment and adds it to iv_splits.
555 */
556static void
557vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
558    uint64_t size, void *arg)
559{
560	int n = 1;
561	zio_t *zio = arg;
562	indirect_vsd_t *iv = zio->io_vsd;
563
564	if (vd->v_read == vdev_indirect_read)
565		return;
566
567	if (vd->v_read == vdev_mirror_read)
568		n = vd->v_nchildren;
569
570	indirect_split_t *is =
571	    malloc(offsetof(indirect_split_t, is_child[n]));
572	if (is == NULL) {
573		zio->io_error = ENOMEM;
574		return;
575	}
576	bzero(is, offsetof(indirect_split_t, is_child[n]));
577
578	is->is_children = n;
579	is->is_size = size;
580	is->is_split_offset = split_offset;
581	is->is_target_offset = offset;
582	is->is_vdev = vd;
583
584	/*
585	 * Note that we only consider multiple copies of the data for
586	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
587	 * though they use the same ops as mirror, because there's only one
588	 * "good" copy under the replacing/spare.
589	 */
590	if (vd->v_read == vdev_mirror_read) {
591		int i = 0;
592		vdev_t *kid;
593
594		STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
595			is->is_child[i++].ic_vdev = kid;
596		}
597	} else {
598		is->is_child[0].ic_vdev = vd;
599	}
600
601	list_insert_tail(&iv->iv_splits, is);
602}
603
604static void
605vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
606{
607	list_t stack;
608	spa_t *spa = vd->v_spa;
609	zio_t *zio = arg;
610	remap_segment_t *rs;
611
612	list_create(&stack, sizeof (remap_segment_t),
613	    offsetof(remap_segment_t, rs_node));
614
615	rs = rs_alloc(vd, offset, asize, 0);
616	if (rs == NULL) {
617		printf("vdev_indirect_remap: out of memory.\n");
618		zio->io_error = ENOMEM;
619	}
620	for (; rs != NULL; rs = list_remove_head(&stack)) {
621		vdev_t *v = rs->rs_vd;
622		uint64_t num_entries = 0;
623		/* vdev_indirect_mapping_t *vim = v->v_mapping; */
624		vdev_indirect_mapping_entry_phys_t *mapping =
625		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
626		    rs->rs_offset, rs->rs_asize, &num_entries);
627
628		if (num_entries == 0)
629			zio->io_error = ENOMEM;
630
631		for (uint64_t i = 0; i < num_entries; i++) {
632			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
633			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
634			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
635			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
636			uint64_t inner_offset = rs->rs_offset -
637			    DVA_MAPPING_GET_SRC_OFFSET(m);
638			uint64_t inner_size =
639			    MIN(rs->rs_asize, size - inner_offset);
640			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
641
642			if (dst_v->v_read == vdev_indirect_read) {
643				remap_segment_t *o;
644
645				o = rs_alloc(dst_v, dst_offset + inner_offset,
646				    inner_size, rs->rs_split_offset);
647				if (o == NULL) {
648					printf("vdev_indirect_remap: "
649					    "out of memory.\n");
650					zio->io_error = ENOMEM;
651					break;
652				}
653
654				list_insert_head(&stack, o);
655			}
656			vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
657			    dst_offset + inner_offset,
658			    inner_size, arg);
659
660			/*
661			 * vdev_indirect_gather_splits can have memory
662			 * allocation error, we can not recover from it.
663			 */
664			if (zio->io_error != 0)
665				break;
666			rs->rs_offset += inner_size;
667			rs->rs_asize -= inner_size;
668			rs->rs_split_offset += inner_size;
669		}
670
671		free(mapping);
672		free(rs);
673		if (zio->io_error != 0)
674			break;
675	}
676
677	list_destroy(&stack);
678}
679
680static void
681vdev_indirect_map_free(zio_t *zio)
682{
683	indirect_vsd_t *iv = zio->io_vsd;
684	indirect_split_t *is;
685
686	while ((is = list_head(&iv->iv_splits)) != NULL) {
687		for (int c = 0; c < is->is_children; c++) {
688			indirect_child_t *ic = &is->is_child[c];
689			free(ic->ic_data);
690		}
691		list_remove(&iv->iv_splits, is);
692		free(is);
693	}
694	free(iv);
695}
696
697static int
698vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
699    off_t offset, size_t bytes)
700{
701	zio_t zio;
702	spa_t *spa = vdev->v_spa;
703	indirect_vsd_t *iv;
704	indirect_split_t *first;
705	int rc = EIO;
706
707	iv = calloc(1, sizeof(*iv));
708	if (iv == NULL)
709		return (ENOMEM);
710
711	list_create(&iv->iv_splits,
712	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
713
714	bzero(&zio, sizeof(zio));
715	zio.io_spa = spa;
716	zio.io_bp = (blkptr_t *)bp;
717	zio.io_data = buf;
718	zio.io_size = bytes;
719	zio.io_offset = offset;
720	zio.io_vd = vdev;
721	zio.io_vsd = iv;
722
723	if (vdev->v_mapping == NULL) {
724		vdev_indirect_config_t *vic;
725
726		vic = &vdev->vdev_indirect_config;
727		vdev->v_mapping = vdev_indirect_mapping_open(spa,
728		    spa->spa_mos, vic->vic_mapping_object);
729	}
730
731	vdev_indirect_remap(vdev, offset, bytes, &zio);
732	if (zio.io_error != 0)
733		return (zio.io_error);
734
735	first = list_head(&iv->iv_splits);
736	if (first->is_size == zio.io_size) {
737		/*
738		 * This is not a split block; we are pointing to the entire
739		 * data, which will checksum the same as the original data.
740		 * Pass the BP down so that the child i/o can verify the
741		 * checksum, and try a different location if available
742		 * (e.g. on a mirror).
743		 *
744		 * While this special case could be handled the same as the
745		 * general (split block) case, doing it this way ensures
746		 * that the vast majority of blocks on indirect vdevs
747		 * (which are not split) are handled identically to blocks
748		 * on non-indirect vdevs.  This allows us to be less strict
749		 * about performance in the general (but rare) case.
750		 */
751		rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
752		    zio.io_data, first->is_target_offset, bytes);
753	} else {
754		iv->iv_split_block = B_TRUE;
755		/*
756		 * Read one copy of each split segment, from the
757		 * top-level vdev.  Since we don't know the
758		 * checksum of each split individually, the child
759		 * zio can't ensure that we get the right data.
760		 * E.g. if it's a mirror, it will just read from a
761		 * random (healthy) leaf vdev.  We have to verify
762		 * the checksum in vdev_indirect_io_done().
763		 */
764		for (indirect_split_t *is = list_head(&iv->iv_splits);
765		    is != NULL; is = list_next(&iv->iv_splits, is)) {
766			char *ptr = zio.io_data;
767
768			rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
769			    ptr + is->is_split_offset, is->is_target_offset,
770			    is->is_size);
771		}
772		if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
773			rc = ECKSUM;
774		else
775			rc = 0;
776	}
777
778	vdev_indirect_map_free(&zio);
779	if (rc == 0)
780		rc = zio.io_error;
781
782	return (rc);
783}
784
785static int
786vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
787    off_t offset, size_t bytes)
788{
789
790	return (vdev_read_phys(vdev, bp, buf,
791	    offset + VDEV_LABEL_START_SIZE, bytes));
792}
793
794static int
795vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
796    void *buf __unused, off_t offset __unused, size_t bytes __unused)
797{
798
799	return (ENOTSUP);
800}
801
802static int
803vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
804    off_t offset, size_t bytes)
805{
806	vdev_t *kid;
807	int rc;
808
809	rc = EIO;
810	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
811		if (kid->v_state != VDEV_STATE_HEALTHY)
812			continue;
813		rc = kid->v_read(kid, bp, buf, offset, bytes);
814		if (!rc)
815			return (0);
816	}
817
818	return (rc);
819}
820
821static int
822vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
823    off_t offset, size_t bytes)
824{
825	vdev_t *kid;
826
827	/*
828	 * Here we should have two kids:
829	 * First one which is the one we are replacing and we can trust
830	 * only this one to have valid data, but it might not be present.
831	 * Second one is that one we are replacing with. It is most likely
832	 * healthy, but we can't trust it has needed data, so we won't use it.
833	 */
834	kid = STAILQ_FIRST(&vdev->v_children);
835	if (kid == NULL)
836		return (EIO);
837	if (kid->v_state != VDEV_STATE_HEALTHY)
838		return (EIO);
839	return (kid->v_read(kid, bp, buf, offset, bytes));
840}
841
842static vdev_t *
843vdev_find(uint64_t guid)
844{
845	vdev_t *vdev;
846
847	STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
848		if (vdev->v_guid == guid)
849			return (vdev);
850
851	return (0);
852}
853
854static vdev_t *
855vdev_create(uint64_t guid, vdev_read_t *_read)
856{
857	vdev_t *vdev;
858	vdev_indirect_config_t *vic;
859
860	vdev = calloc(1, sizeof(vdev_t));
861	if (vdev != NULL) {
862		STAILQ_INIT(&vdev->v_children);
863		vdev->v_guid = guid;
864		vdev->v_read = _read;
865
866		/*
867		 * root vdev has no read function, we use this fact to
868		 * skip setting up data we do not need for root vdev.
869		 * We only point root vdev from spa.
870		 */
871		if (_read != NULL) {
872			vic = &vdev->vdev_indirect_config;
873			vic->vic_prev_indirect_vdev = UINT64_MAX;
874			STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
875		}
876	}
877
878	return (vdev);
879}
880
881static void
882vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
883{
884	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
885	uint64_t is_log;
886
887	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
888	is_log = 0;
889	(void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
890	    &is_offline, NULL);
891	(void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
892	    &is_removed, NULL);
893	(void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
894	    &is_faulted, NULL);
895	(void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
896	    NULL, &is_degraded, NULL);
897	(void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
898	    NULL, &isnt_present, NULL);
899	(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
900	    &is_log, NULL);
901
902	if (is_offline != 0)
903		vdev->v_state = VDEV_STATE_OFFLINE;
904	else if (is_removed != 0)
905		vdev->v_state = VDEV_STATE_REMOVED;
906	else if (is_faulted != 0)
907		vdev->v_state = VDEV_STATE_FAULTED;
908	else if (is_degraded != 0)
909		vdev->v_state = VDEV_STATE_DEGRADED;
910	else if (isnt_present != 0)
911		vdev->v_state = VDEV_STATE_CANT_OPEN;
912
913	vdev->v_islog = is_log != 0;
914}
915
916static int
917vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
918{
919	uint64_t id, ashift, asize, nparity;
920	const char *path;
921	const char *type;
922	int len, pathlen;
923	char *name;
924	vdev_t *vdev;
925
926	if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
927	    NULL) ||
928	    nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
929	    &type, &len)) {
930		return (ENOENT);
931	}
932
933	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
934	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
935#ifdef ZFS_TEST
936	    memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
937#endif
938	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
939	    memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
940	    memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
941	    memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
942		printf("ZFS: can only boot from disk, mirror, raidz1, "
943		    "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
944		return (EIO);
945	}
946
947	if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
948		vdev = vdev_create(guid, vdev_mirror_read);
949	else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
950		vdev = vdev_create(guid, vdev_raidz_read);
951	else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
952		vdev = vdev_create(guid, vdev_replacing_read);
953	else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
954		vdev_indirect_config_t *vic;
955
956		vdev = vdev_create(guid, vdev_indirect_read);
957		if (vdev != NULL) {
958			vdev->v_state = VDEV_STATE_HEALTHY;
959			vic = &vdev->vdev_indirect_config;
960
961			nvlist_find(nvlist,
962			    ZPOOL_CONFIG_INDIRECT_OBJECT,
963			    DATA_TYPE_UINT64,
964			    NULL, &vic->vic_mapping_object, NULL);
965			nvlist_find(nvlist,
966			    ZPOOL_CONFIG_INDIRECT_BIRTHS,
967			    DATA_TYPE_UINT64,
968			    NULL, &vic->vic_births_object, NULL);
969			nvlist_find(nvlist,
970			    ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
971			    DATA_TYPE_UINT64,
972			    NULL, &vic->vic_prev_indirect_vdev, NULL);
973		}
974	} else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
975		vdev = vdev_create(guid, vdev_missing_read);
976	} else {
977		vdev = vdev_create(guid, vdev_disk_read);
978	}
979
980	if (vdev == NULL)
981		return (ENOMEM);
982
983	vdev_set_initial_state(vdev, nvlist);
984	vdev->v_id = id;
985	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
986	    DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
987		vdev->v_ashift = ashift;
988
989	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
990	    DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
991		vdev->v_psize = asize +
992		    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
993	}
994
995	if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
996	    DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
997		vdev->v_nparity = nparity;
998
999	if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1000	    DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1001		char prefix[] = "/dev/";
1002
1003		len = strlen(prefix);
1004		if (len < pathlen && memcmp(path, prefix, len) == 0) {
1005			path += len;
1006			pathlen -= len;
1007		}
1008		name = malloc(pathlen + 1);
1009		bcopy(path, name, pathlen);
1010		name[pathlen] = '\0';
1011		vdev->v_name = name;
1012	} else {
1013		name = NULL;
1014		if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1015			if (vdev->v_nparity < 1 ||
1016			    vdev->v_nparity > 3) {
1017				printf("ZFS: invalid raidz parity: %d\n",
1018				    vdev->v_nparity);
1019				return (EIO);
1020			}
1021			(void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1022			    vdev->v_nparity, id);
1023		} else {
1024			(void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1025		}
1026		vdev->v_name = name;
1027	}
1028	*vdevp = vdev;
1029	return (0);
1030}
1031
1032/*
1033 * Find slot for vdev. We return either NULL to signal to use
1034 * STAILQ_INSERT_HEAD, or we return link element to be used with
1035 * STAILQ_INSERT_AFTER.
1036 */
1037static vdev_t *
1038vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1039{
1040	vdev_t *v, *previous;
1041
1042	if (STAILQ_EMPTY(&top_vdev->v_children))
1043		return (NULL);
1044
1045	previous = NULL;
1046	STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1047		if (v->v_id > vdev->v_id)
1048			return (previous);
1049
1050		if (v->v_id == vdev->v_id)
1051			return (v);
1052
1053		if (v->v_id < vdev->v_id)
1054			previous = v;
1055	}
1056	return (previous);
1057}
1058
1059static size_t
1060vdev_child_count(vdev_t *vdev)
1061{
1062	vdev_t *v;
1063	size_t count;
1064
1065	count = 0;
1066	STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1067		count++;
1068	}
1069	return (count);
1070}
1071
1072/*
1073 * Insert vdev into top_vdev children list. List is ordered by v_id.
1074 */
1075static void
1076vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1077{
1078	vdev_t *previous;
1079	size_t count;
1080
1081	/*
1082	 * The top level vdev can appear in random order, depending how
1083	 * the firmware is presenting the disk devices.
1084	 * However, we will insert vdev to create list ordered by v_id,
1085	 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1086	 * as STAILQ does not have insert before.
1087	 */
1088	previous = vdev_find_previous(top_vdev, vdev);
1089
1090	if (previous == NULL) {
1091		STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1092	} else if (previous->v_id == vdev->v_id) {
1093		/*
1094		 * This vdev was configured from label config,
1095		 * do not insert duplicate.
1096		 */
1097		return;
1098	} else {
1099		STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1100		    v_childlink);
1101	}
1102
1103	count = vdev_child_count(top_vdev);
1104	if (top_vdev->v_nchildren < count)
1105		top_vdev->v_nchildren = count;
1106}
1107
1108static int
1109vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist)
1110{
1111	vdev_t *top_vdev, *vdev;
1112	nvlist_t **kids = NULL;
1113	int rc, nkids;
1114
1115	/* Get top vdev. */
1116	top_vdev = vdev_find(top_guid);
1117	if (top_vdev == NULL) {
1118		rc = vdev_init(top_guid, nvlist, &top_vdev);
1119		if (rc != 0)
1120			return (rc);
1121		top_vdev->v_spa = spa;
1122		top_vdev->v_top = top_vdev;
1123		vdev_insert(spa->spa_root_vdev, top_vdev);
1124	}
1125
1126	/* Add children if there are any. */
1127	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1128	    &nkids, &kids, NULL);
1129	if (rc == 0) {
1130		for (int i = 0; i < nkids; i++) {
1131			uint64_t guid;
1132
1133			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1134			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1135			if (rc != 0)
1136				goto done;
1137
1138			rc = vdev_init(guid, kids[i], &vdev);
1139			if (rc != 0)
1140				goto done;
1141
1142			vdev->v_spa = spa;
1143			vdev->v_top = top_vdev;
1144			vdev_insert(top_vdev, vdev);
1145		}
1146	} else {
1147		/*
1148		 * When there are no children, nvlist_find() does return
1149		 * error, reset it because leaf devices have no children.
1150		 */
1151		rc = 0;
1152	}
1153done:
1154	if (kids != NULL) {
1155		for (int i = 0; i < nkids; i++)
1156			nvlist_destroy(kids[i]);
1157		free(kids);
1158	}
1159
1160	return (rc);
1161}
1162
1163static int
1164vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist)
1165{
1166	uint64_t pool_guid, top_guid;
1167	nvlist_t *vdevs;
1168	int rc;
1169
1170	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1171	    NULL, &pool_guid, NULL) ||
1172	    nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1173	    NULL, &top_guid, NULL) ||
1174	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1175	    NULL, &vdevs, NULL)) {
1176		printf("ZFS: can't find vdev details\n");
1177		return (ENOENT);
1178	}
1179
1180	rc = vdev_from_nvlist(spa, top_guid, vdevs);
1181	nvlist_destroy(vdevs);
1182	return (rc);
1183}
1184
1185static void
1186vdev_set_state(vdev_t *vdev)
1187{
1188	vdev_t *kid;
1189	int good_kids;
1190	int bad_kids;
1191
1192	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1193		vdev_set_state(kid);
1194	}
1195
1196	/*
1197	 * A mirror or raidz is healthy if all its kids are healthy. A
1198	 * mirror is degraded if any of its kids is healthy; a raidz
1199	 * is degraded if at most nparity kids are offline.
1200	 */
1201	if (STAILQ_FIRST(&vdev->v_children)) {
1202		good_kids = 0;
1203		bad_kids = 0;
1204		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1205			if (kid->v_state == VDEV_STATE_HEALTHY)
1206				good_kids++;
1207			else
1208				bad_kids++;
1209		}
1210		if (bad_kids == 0) {
1211			vdev->v_state = VDEV_STATE_HEALTHY;
1212		} else {
1213			if (vdev->v_read == vdev_mirror_read) {
1214				if (good_kids) {
1215					vdev->v_state = VDEV_STATE_DEGRADED;
1216				} else {
1217					vdev->v_state = VDEV_STATE_OFFLINE;
1218				}
1219			} else if (vdev->v_read == vdev_raidz_read) {
1220				if (bad_kids > vdev->v_nparity) {
1221					vdev->v_state = VDEV_STATE_OFFLINE;
1222				} else {
1223					vdev->v_state = VDEV_STATE_DEGRADED;
1224				}
1225			}
1226		}
1227	}
1228}
1229
1230static int
1231vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist)
1232{
1233	vdev_t *vdev;
1234	nvlist_t **kids = NULL;
1235	int rc, nkids;
1236
1237	/* Update top vdev. */
1238	vdev = vdev_find(top_guid);
1239	if (vdev != NULL)
1240		vdev_set_initial_state(vdev, nvlist);
1241
1242	/* Update children if there are any. */
1243	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1244	    &nkids, &kids, NULL);
1245	if (rc == 0) {
1246		for (int i = 0; i < nkids; i++) {
1247			uint64_t guid;
1248
1249			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1250			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1251			if (rc != 0)
1252				break;
1253
1254			vdev = vdev_find(guid);
1255			if (vdev != NULL)
1256				vdev_set_initial_state(vdev, kids[i]);
1257		}
1258	} else {
1259		rc = 0;
1260	}
1261	if (kids != NULL) {
1262		for (int i = 0; i < nkids; i++)
1263			nvlist_destroy(kids[i]);
1264		free(kids);
1265	}
1266
1267	return (rc);
1268}
1269
1270static int
1271vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1272{
1273	uint64_t pool_guid, vdev_children;
1274	nvlist_t *vdevs = NULL, **kids = NULL;
1275	int rc, nkids;
1276
1277	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1278	    NULL, &pool_guid, NULL) ||
1279	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1280	    NULL, &vdev_children, NULL) ||
1281	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1282	    NULL, &vdevs, NULL)) {
1283		printf("ZFS: can't find vdev details\n");
1284		return (ENOENT);
1285	}
1286
1287	/* Wrong guid?! */
1288	if (spa->spa_guid != pool_guid) {
1289		nvlist_destroy(vdevs);
1290		return (EINVAL);
1291	}
1292
1293	spa->spa_root_vdev->v_nchildren = vdev_children;
1294
1295	rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1296	    &nkids, &kids, NULL);
1297	nvlist_destroy(vdevs);
1298
1299	/*
1300	 * MOS config has at least one child for root vdev.
1301	 */
1302	if (rc != 0)
1303		return (rc);
1304
1305	for (int i = 0; i < nkids; i++) {
1306		uint64_t guid;
1307		vdev_t *vdev;
1308
1309		rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1310		    NULL, &guid, NULL);
1311		if (rc != 0)
1312			break;
1313		vdev = vdev_find(guid);
1314		/*
1315		 * Top level vdev is missing, create it.
1316		 */
1317		if (vdev == NULL)
1318			rc = vdev_from_nvlist(spa, guid, kids[i]);
1319		else
1320			rc = vdev_update_from_nvlist(guid, kids[i]);
1321		if (rc != 0)
1322			break;
1323	}
1324	if (kids != NULL) {
1325		for (int i = 0; i < nkids; i++)
1326			nvlist_destroy(kids[i]);
1327		free(kids);
1328	}
1329
1330	/*
1331	 * Re-evaluate top-level vdev state.
1332	 */
1333	vdev_set_state(spa->spa_root_vdev);
1334
1335	return (rc);
1336}
1337
1338static spa_t *
1339spa_find_by_guid(uint64_t guid)
1340{
1341	spa_t *spa;
1342
1343	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1344		if (spa->spa_guid == guid)
1345			return (spa);
1346
1347	return (NULL);
1348}
1349
1350static spa_t *
1351spa_find_by_name(const char *name)
1352{
1353	spa_t *spa;
1354
1355	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1356		if (strcmp(spa->spa_name, name) == 0)
1357			return (spa);
1358
1359	return (NULL);
1360}
1361
1362static spa_t *
1363spa_create(uint64_t guid, const char *name)
1364{
1365	spa_t *spa;
1366
1367	if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1368		return (NULL);
1369	if ((spa->spa_name = strdup(name)) == NULL) {
1370		free(spa);
1371		return (NULL);
1372	}
1373	spa->spa_uberblock = &spa->spa_uberblock_master;
1374	spa->spa_mos = &spa->spa_mos_master;
1375	spa->spa_guid = guid;
1376	spa->spa_root_vdev = vdev_create(guid, NULL);
1377	if (spa->spa_root_vdev == NULL) {
1378		free(spa->spa_name);
1379		free(spa);
1380		return (NULL);
1381	}
1382	spa->spa_root_vdev->v_name = strdup("root");
1383	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1384
1385	return (spa);
1386}
1387
1388static const char *
1389state_name(vdev_state_t state)
1390{
1391	static const char *names[] = {
1392		"UNKNOWN",
1393		"CLOSED",
1394		"OFFLINE",
1395		"REMOVED",
1396		"CANT_OPEN",
1397		"FAULTED",
1398		"DEGRADED",
1399		"ONLINE"
1400	};
1401	return (names[state]);
1402}
1403
1404#ifdef BOOT2
1405
1406#define pager_printf printf
1407
1408#else
1409
1410static int
1411pager_printf(const char *fmt, ...)
1412{
1413	char line[80];
1414	va_list args;
1415
1416	va_start(args, fmt);
1417	vsnprintf(line, sizeof(line), fmt, args);
1418	va_end(args);
1419	return (pager_output(line));
1420}
1421
1422#endif
1423
1424#define	STATUS_FORMAT	"        %s %s\n"
1425
1426static int
1427print_state(int indent, const char *name, vdev_state_t state)
1428{
1429	int i;
1430	char buf[512];
1431
1432	buf[0] = 0;
1433	for (i = 0; i < indent; i++)
1434		strcat(buf, "  ");
1435	strcat(buf, name);
1436	return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1437}
1438
1439static int
1440vdev_status(vdev_t *vdev, int indent)
1441{
1442	vdev_t *kid;
1443	int ret;
1444
1445	if (vdev->v_islog) {
1446		(void) pager_output("        logs\n");
1447		indent++;
1448	}
1449
1450	ret = print_state(indent, vdev->v_name, vdev->v_state);
1451	if (ret != 0)
1452		return (ret);
1453
1454	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1455		ret = vdev_status(kid, indent + 1);
1456		if (ret != 0)
1457			return (ret);
1458	}
1459	return (ret);
1460}
1461
1462static int
1463spa_status(spa_t *spa)
1464{
1465	static char bootfs[ZFS_MAXNAMELEN];
1466	uint64_t rootid;
1467	vdev_list_t *vlist;
1468	vdev_t *vdev;
1469	int good_kids, bad_kids, degraded_kids, ret;
1470	vdev_state_t state;
1471
1472	ret = pager_printf("  pool: %s\n", spa->spa_name);
1473	if (ret != 0)
1474		return (ret);
1475
1476	if (zfs_get_root(spa, &rootid) == 0 &&
1477	    zfs_rlookup(spa, rootid, bootfs) == 0) {
1478		if (bootfs[0] == '\0')
1479			ret = pager_printf("bootfs: %s\n", spa->spa_name);
1480		else
1481			ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1482			    bootfs);
1483		if (ret != 0)
1484			return (ret);
1485	}
1486	ret = pager_printf("config:\n\n");
1487	if (ret != 0)
1488		return (ret);
1489	ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1490	if (ret != 0)
1491		return (ret);
1492
1493	good_kids = 0;
1494	degraded_kids = 0;
1495	bad_kids = 0;
1496	vlist = &spa->spa_root_vdev->v_children;
1497	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1498		if (vdev->v_state == VDEV_STATE_HEALTHY)
1499			good_kids++;
1500		else if (vdev->v_state == VDEV_STATE_DEGRADED)
1501			degraded_kids++;
1502		else
1503			bad_kids++;
1504	}
1505
1506	state = VDEV_STATE_CLOSED;
1507	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1508		state = VDEV_STATE_HEALTHY;
1509	else if ((good_kids + degraded_kids) > 0)
1510		state = VDEV_STATE_DEGRADED;
1511
1512	ret = print_state(0, spa->spa_name, state);
1513	if (ret != 0)
1514		return (ret);
1515
1516	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1517		ret = vdev_status(vdev, 1);
1518		if (ret != 0)
1519			return (ret);
1520	}
1521	return (ret);
1522}
1523
1524static int
1525spa_all_status(void)
1526{
1527	spa_t *spa;
1528	int first = 1, ret = 0;
1529
1530	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1531		if (!first) {
1532			ret = pager_printf("\n");
1533			if (ret != 0)
1534				return (ret);
1535		}
1536		first = 0;
1537		ret = spa_status(spa);
1538		if (ret != 0)
1539			return (ret);
1540	}
1541	return (ret);
1542}
1543
1544static uint64_t
1545vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1546{
1547	uint64_t label_offset;
1548
1549	if (l < VDEV_LABELS / 2)
1550		label_offset = 0;
1551	else
1552		label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1553
1554	return (offset + l * sizeof (vdev_label_t) + label_offset);
1555}
1556
1557static int
1558vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1559{
1560	unsigned int seq1 = 0;
1561	unsigned int seq2 = 0;
1562	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1563
1564	if (cmp != 0)
1565		return (cmp);
1566
1567	cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1568	if (cmp != 0)
1569		return (cmp);
1570
1571	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1572		seq1 = MMP_SEQ(ub1);
1573
1574	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1575		seq2 = MMP_SEQ(ub2);
1576
1577	return (AVL_CMP(seq1, seq2));
1578}
1579
1580static int
1581uberblock_verify(uberblock_t *ub)
1582{
1583	if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1584		byteswap_uint64_array(ub, sizeof (uberblock_t));
1585	}
1586
1587	if (ub->ub_magic != UBERBLOCK_MAGIC ||
1588	    !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1589		return (EINVAL);
1590
1591	return (0);
1592}
1593
1594static int
1595vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1596    size_t size)
1597{
1598	blkptr_t bp;
1599	off_t off;
1600
1601	off = vdev_label_offset(vd->v_psize, l, offset);
1602
1603	BP_ZERO(&bp);
1604	BP_SET_LSIZE(&bp, size);
1605	BP_SET_PSIZE(&bp, size);
1606	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1607	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1608	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1609	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1610
1611	return (vdev_read_phys(vd, &bp, buf, off, size));
1612}
1613
1614/*
1615 * We do need to be sure we write to correct location.
1616 * Our vdev label does consist of 4 fields:
1617 * pad1 (8k), reserved.
1618 * bootenv (8k), checksummed, previously reserved, may contian garbage.
1619 * vdev_phys (112k), checksummed
1620 * uberblock ring (128k), checksummed.
1621 *
1622 * Since bootenv area may contain garbage, we can not reliably read it, as
1623 * we can get checksum errors.
1624 * Next best thing is vdev_phys - it is just after bootenv. It still may
1625 * be corrupted, but in such case we will miss this one write.
1626 */
1627static int
1628vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1629{
1630	uint64_t off, o_phys;
1631	void *buf;
1632	size_t size = VDEV_PHYS_SIZE;
1633	int rc;
1634
1635	o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1636	off = vdev_label_offset(vd->v_psize, l, o_phys);
1637
1638	/* off should be 8K from bootenv */
1639	if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1640		return (EINVAL);
1641
1642	buf = malloc(size);
1643	if (buf == NULL)
1644		return (ENOMEM);
1645
1646	/* Read vdev_phys */
1647	rc = vdev_label_read(vd, l, buf, o_phys, size);
1648	free(buf);
1649	return (rc);
1650}
1651
1652static int
1653vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1654{
1655	zio_checksum_info_t *ci;
1656	zio_cksum_t cksum;
1657	off_t off;
1658	size_t size = VDEV_PAD_SIZE;
1659	int rc;
1660
1661	if (vd->v_phys_write == NULL)
1662		return (ENOTSUP);
1663
1664	off = vdev_label_offset(vd->v_psize, l, offset);
1665
1666	rc = vdev_label_write_validate(vd, l, offset);
1667	if (rc != 0) {
1668		return (rc);
1669	}
1670
1671	ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1672	be->vbe_zbt.zec_magic = ZEC_MAGIC;
1673	zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1674	ci->ci_func[0](be, size, NULL, &cksum);
1675	be->vbe_zbt.zec_cksum = cksum;
1676
1677	return (vdev_write_phys(vd, be, off, size));
1678}
1679
1680static int
1681vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1682{
1683	vdev_t *kid;
1684	int rv = 0, err;
1685
1686	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1687		if (kid->v_state != VDEV_STATE_HEALTHY)
1688			continue;
1689		err = vdev_write_bootenv_impl(kid, be);
1690		if (err != 0)
1691			rv = err;
1692	}
1693
1694	/*
1695	 * Non-leaf vdevs do not have v_phys_write.
1696	 */
1697	if (vdev->v_phys_write == NULL)
1698		return (rv);
1699
1700	for (int l = 0; l < VDEV_LABELS; l++) {
1701		err = vdev_label_write(vdev, l, be,
1702		    offsetof(vdev_label_t, vl_be));
1703		if (err != 0) {
1704			printf("failed to write bootenv to %s label %d: %d\n",
1705			    vdev->v_name ? vdev->v_name : "unknown", l, err);
1706			rv = err;
1707		}
1708	}
1709	return (rv);
1710}
1711
1712int
1713vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1714{
1715	vdev_boot_envblock_t *be;
1716	nvlist_t nv, *nvp;
1717	uint64_t version;
1718	int rv;
1719
1720	if (nvl->nv_size > sizeof(be->vbe_bootenv))
1721		return (E2BIG);
1722
1723	version = VB_RAW;
1724	nvp = vdev_read_bootenv(vdev);
1725	if (nvp != NULL) {
1726		nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1727		    &version, NULL);
1728		nvlist_destroy(nvp);
1729	}
1730
1731	be = calloc(1, sizeof(*be));
1732	if (be == NULL)
1733		return (ENOMEM);
1734
1735	be->vbe_version = version;
1736	switch (version) {
1737	case VB_RAW:
1738		/*
1739		 * If there is no envmap, we will just wipe bootenv.
1740		 */
1741		nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1742		    be->vbe_bootenv, NULL);
1743		rv = 0;
1744		break;
1745
1746	case VB_NVLIST:
1747		nv.nv_header = nvl->nv_header;
1748		nv.nv_asize = nvl->nv_asize;
1749		nv.nv_size = nvl->nv_size;
1750
1751		bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1752		nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1753		bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1754		rv = nvlist_export(&nv);
1755		break;
1756
1757	default:
1758		rv = EINVAL;
1759		break;
1760	}
1761
1762	if (rv == 0) {
1763		be->vbe_version = htobe64(be->vbe_version);
1764		rv = vdev_write_bootenv_impl(vdev, be);
1765	}
1766	free(be);
1767	return (rv);
1768}
1769
1770/*
1771 * Read the bootenv area from pool label, return the nvlist from it.
1772 * We return from first successful read.
1773 */
1774nvlist_t *
1775vdev_read_bootenv(vdev_t *vdev)
1776{
1777	vdev_t *kid;
1778	nvlist_t *benv;
1779	vdev_boot_envblock_t *be;
1780	char *command;
1781	bool ok;
1782	int rv;
1783
1784	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1785		if (kid->v_state != VDEV_STATE_HEALTHY)
1786			continue;
1787
1788		benv = vdev_read_bootenv(kid);
1789		if (benv != NULL)
1790			return (benv);
1791	}
1792
1793	be = malloc(sizeof (*be));
1794	if (be == NULL)
1795		return (NULL);
1796
1797	rv = 0;
1798	for (int l = 0; l < VDEV_LABELS; l++) {
1799		rv = vdev_label_read(vdev, l, be,
1800		    offsetof(vdev_label_t, vl_be),
1801		    sizeof (*be));
1802		if (rv == 0)
1803			break;
1804	}
1805	if (rv != 0) {
1806		free(be);
1807		return (NULL);
1808	}
1809
1810	be->vbe_version = be64toh(be->vbe_version);
1811	switch (be->vbe_version) {
1812	case VB_RAW:
1813		/*
1814		 * we have textual data in vbe_bootenv, create nvlist
1815		 * with key "envmap".
1816		 */
1817		benv = nvlist_create(NV_UNIQUE_NAME);
1818		if (benv != NULL) {
1819			if (*be->vbe_bootenv == '\0') {
1820				nvlist_add_uint64(benv, BOOTENV_VERSION,
1821				    VB_NVLIST);
1822				break;
1823			}
1824			nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1825			be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1826			nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1827		}
1828		break;
1829
1830	case VB_NVLIST:
1831		benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1832		break;
1833
1834	default:
1835		command = (char *)be;
1836		ok = false;
1837
1838		/* Check for legacy zfsbootcfg command string */
1839		for (int i = 0; command[i] != '\0'; i++) {
1840			if (iscntrl(command[i])) {
1841				ok = false;
1842				break;
1843			} else {
1844				ok = true;
1845			}
1846		}
1847		benv = nvlist_create(NV_UNIQUE_NAME);
1848		if (benv != NULL) {
1849			if (ok)
1850				nvlist_add_string(benv, FREEBSD_BOOTONCE,
1851				    command);
1852			else
1853				nvlist_add_uint64(benv, BOOTENV_VERSION,
1854				    VB_NVLIST);
1855		}
1856		break;
1857	}
1858	free(be);
1859	return (benv);
1860}
1861
1862static uint64_t
1863vdev_get_label_asize(nvlist_t *nvl)
1864{
1865	nvlist_t *vdevs;
1866	uint64_t asize;
1867	const char *type;
1868	int len;
1869
1870	asize = 0;
1871	/* Get vdev tree */
1872	if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1873	    NULL, &vdevs, NULL) != 0)
1874		return (asize);
1875
1876	/*
1877	 * Get vdev type. We will calculate asize for raidz, mirror and disk.
1878	 * For raidz, the asize is raw size of all children.
1879	 */
1880	if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1881	    NULL, &type, &len) != 0)
1882		goto done;
1883
1884	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1885	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1886	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1887		goto done;
1888
1889	if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1890	    NULL, &asize, NULL) != 0)
1891		goto done;
1892
1893	if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1894		nvlist_t **kids;
1895		int nkids;
1896
1897		if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1898		    DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1899			asize = 0;
1900			goto done;
1901		}
1902
1903		asize /= nkids;
1904		for (int i = 0; i < nkids; i++)
1905			nvlist_destroy(kids[i]);
1906		free(kids);
1907	}
1908
1909	asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1910done:
1911	nvlist_destroy(vdevs);
1912	return (asize);
1913}
1914
1915static nvlist_t *
1916vdev_label_read_config(vdev_t *vd, uint64_t txg)
1917{
1918	vdev_phys_t *label;
1919	uint64_t best_txg = 0;
1920	uint64_t label_txg = 0;
1921	uint64_t asize;
1922	nvlist_t *nvl = NULL, *tmp;
1923	int error;
1924
1925	label = malloc(sizeof (vdev_phys_t));
1926	if (label == NULL)
1927		return (NULL);
1928
1929	for (int l = 0; l < VDEV_LABELS; l++) {
1930		if (vdev_label_read(vd, l, label,
1931		    offsetof(vdev_label_t, vl_vdev_phys),
1932		    sizeof (vdev_phys_t)))
1933			continue;
1934
1935		tmp = nvlist_import(label->vp_nvlist,
1936		    sizeof(label->vp_nvlist));
1937		if (tmp == NULL)
1938			continue;
1939
1940		error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1941		    DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1942		if (error != 0 || label_txg == 0) {
1943			nvlist_destroy(nvl);
1944			nvl = tmp;
1945			goto done;
1946		}
1947
1948		if (label_txg <= txg && label_txg > best_txg) {
1949			best_txg = label_txg;
1950			nvlist_destroy(nvl);
1951			nvl = tmp;
1952			tmp = NULL;
1953
1954			/*
1955			 * Use asize from pool config. We need this
1956			 * because we can get bad value from BIOS.
1957			 */
1958			asize = vdev_get_label_asize(nvl);
1959			if (asize != 0) {
1960				vd->v_psize = asize;
1961			}
1962		}
1963		nvlist_destroy(tmp);
1964	}
1965
1966	if (best_txg == 0) {
1967		nvlist_destroy(nvl);
1968		nvl = NULL;
1969	}
1970done:
1971	free(label);
1972	return (nvl);
1973}
1974
1975static void
1976vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1977{
1978	uberblock_t *buf;
1979
1980	buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1981	if (buf == NULL)
1982		return;
1983
1984	for (int l = 0; l < VDEV_LABELS; l++) {
1985		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1986			if (vdev_label_read(vd, l, buf,
1987			    VDEV_UBERBLOCK_OFFSET(vd, n),
1988			    VDEV_UBERBLOCK_SIZE(vd)))
1989				continue;
1990			if (uberblock_verify(buf) != 0)
1991				continue;
1992
1993			if (vdev_uberblock_compare(buf, ub) > 0)
1994				*ub = *buf;
1995		}
1996	}
1997	free(buf);
1998}
1999
2000static int
2001vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2002    spa_t **spap)
2003{
2004	vdev_t vtmp;
2005	spa_t *spa;
2006	vdev_t *vdev;
2007	nvlist_t *nvl;
2008	uint64_t val;
2009	uint64_t guid, vdev_children;
2010	uint64_t pool_txg, pool_guid;
2011	const char *pool_name;
2012	int rc, namelen;
2013
2014	/*
2015	 * Load the vdev label and figure out which
2016	 * uberblock is most current.
2017	 */
2018	memset(&vtmp, 0, sizeof(vtmp));
2019	vtmp.v_phys_read = _read;
2020	vtmp.v_phys_write = _write;
2021	vtmp.v_priv = priv;
2022	vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2023	    (uint64_t)sizeof (vdev_label_t));
2024
2025	/* Test for minimum device size. */
2026	if (vtmp.v_psize < SPA_MINDEVSIZE)
2027		return (EIO);
2028
2029	nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2030	if (nvl == NULL)
2031		return (EIO);
2032
2033	if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2034	    NULL, &val, NULL) != 0) {
2035		nvlist_destroy(nvl);
2036		return (EIO);
2037	}
2038
2039	if (!SPA_VERSION_IS_SUPPORTED(val)) {
2040		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2041		    (unsigned)val, (unsigned)SPA_VERSION);
2042		nvlist_destroy(nvl);
2043		return (EIO);
2044	}
2045
2046	/* Check ZFS features for read */
2047	rc = nvlist_check_features_for_read(nvl);
2048	if (rc != 0) {
2049		nvlist_destroy(nvl);
2050		return (EIO);
2051	}
2052
2053	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2054	    NULL, &val, NULL) != 0) {
2055		nvlist_destroy(nvl);
2056		return (EIO);
2057	}
2058
2059	if (val == POOL_STATE_DESTROYED) {
2060		/* We don't boot only from destroyed pools. */
2061		nvlist_destroy(nvl);
2062		return (EIO);
2063	}
2064
2065	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2066	    NULL, &pool_txg, NULL) != 0 ||
2067	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2068	    NULL, &pool_guid, NULL) != 0 ||
2069	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2070	    NULL, &pool_name, &namelen) != 0) {
2071		/*
2072		 * Cache and spare devices end up here - just ignore
2073		 * them.
2074		 */
2075		nvlist_destroy(nvl);
2076		return (EIO);
2077	}
2078
2079	/*
2080	 * Create the pool if this is the first time we've seen it.
2081	 */
2082	spa = spa_find_by_guid(pool_guid);
2083	if (spa == NULL) {
2084		char *name;
2085
2086		nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN,
2087		    DATA_TYPE_UINT64, NULL, &vdev_children, NULL);
2088		name = malloc(namelen + 1);
2089		if (name == NULL) {
2090			nvlist_destroy(nvl);
2091			return (ENOMEM);
2092		}
2093		bcopy(pool_name, name, namelen);
2094		name[namelen] = '\0';
2095		spa = spa_create(pool_guid, name);
2096		free(name);
2097		if (spa == NULL) {
2098			nvlist_destroy(nvl);
2099			return (ENOMEM);
2100		}
2101		spa->spa_root_vdev->v_nchildren = vdev_children;
2102	}
2103	if (pool_txg > spa->spa_txg)
2104		spa->spa_txg = pool_txg;
2105
2106	/*
2107	 * Get the vdev tree and create our in-core copy of it.
2108	 * If we already have a vdev with this guid, this must
2109	 * be some kind of alias (overlapping slices, dangerously dedicated
2110	 * disks etc).
2111	 */
2112	if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2113	    NULL, &guid, NULL) != 0) {
2114		nvlist_destroy(nvl);
2115		return (EIO);
2116	}
2117	vdev = vdev_find(guid);
2118	/* Has this vdev already been inited? */
2119	if (vdev && vdev->v_phys_read) {
2120		nvlist_destroy(nvl);
2121		return (EIO);
2122	}
2123
2124	rc = vdev_init_from_label(spa, nvl);
2125	nvlist_destroy(nvl);
2126	if (rc != 0)
2127		return (rc);
2128
2129	/*
2130	 * We should already have created an incomplete vdev for this
2131	 * vdev. Find it and initialise it with our read proc.
2132	 */
2133	vdev = vdev_find(guid);
2134	if (vdev != NULL) {
2135		vdev->v_phys_read = _read;
2136		vdev->v_phys_write = _write;
2137		vdev->v_priv = priv;
2138		vdev->v_psize = vtmp.v_psize;
2139		/*
2140		 * If no other state is set, mark vdev healthy.
2141		 */
2142		if (vdev->v_state == VDEV_STATE_UNKNOWN)
2143			vdev->v_state = VDEV_STATE_HEALTHY;
2144	} else {
2145		printf("ZFS: inconsistent nvlist contents\n");
2146		return (EIO);
2147	}
2148
2149	if (vdev->v_islog)
2150		spa->spa_with_log = vdev->v_islog;
2151
2152	/*
2153	 * Re-evaluate top-level vdev state.
2154	 */
2155	vdev_set_state(vdev->v_top);
2156
2157	/*
2158	 * Ok, we are happy with the pool so far. Lets find
2159	 * the best uberblock and then we can actually access
2160	 * the contents of the pool.
2161	 */
2162	vdev_uberblock_load(vdev, spa->spa_uberblock);
2163
2164	if (spap != NULL)
2165		*spap = spa;
2166	return (0);
2167}
2168
2169static int
2170ilog2(int n)
2171{
2172	int v;
2173
2174	for (v = 0; v < 32; v++)
2175		if (n == (1 << v))
2176			return (v);
2177	return (-1);
2178}
2179
2180static int
2181zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2182{
2183	blkptr_t gbh_bp;
2184	zio_gbh_phys_t zio_gb;
2185	char *pbuf;
2186	int i;
2187
2188	/* Artificial BP for gang block header. */
2189	gbh_bp = *bp;
2190	BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2191	BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2192	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2193	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2194	for (i = 0; i < SPA_DVAS_PER_BP; i++)
2195		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2196
2197	/* Read gang header block using the artificial BP. */
2198	if (zio_read(spa, &gbh_bp, &zio_gb))
2199		return (EIO);
2200
2201	pbuf = buf;
2202	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2203		blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2204
2205		if (BP_IS_HOLE(gbp))
2206			continue;
2207		if (zio_read(spa, gbp, pbuf))
2208			return (EIO);
2209		pbuf += BP_GET_PSIZE(gbp);
2210	}
2211
2212	if (zio_checksum_verify(spa, bp, buf))
2213		return (EIO);
2214	return (0);
2215}
2216
2217static int
2218zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2219{
2220	int cpfunc = BP_GET_COMPRESS(bp);
2221	uint64_t align, size;
2222	void *pbuf;
2223	int i, error;
2224
2225	/*
2226	 * Process data embedded in block pointer
2227	 */
2228	if (BP_IS_EMBEDDED(bp)) {
2229		ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2230
2231		size = BPE_GET_PSIZE(bp);
2232		ASSERT(size <= BPE_PAYLOAD_SIZE);
2233
2234		if (cpfunc != ZIO_COMPRESS_OFF)
2235			pbuf = malloc(size);
2236		else
2237			pbuf = buf;
2238
2239		if (pbuf == NULL)
2240			return (ENOMEM);
2241
2242		decode_embedded_bp_compressed(bp, pbuf);
2243		error = 0;
2244
2245		if (cpfunc != ZIO_COMPRESS_OFF) {
2246			error = zio_decompress_data(cpfunc, pbuf,
2247			    size, buf, BP_GET_LSIZE(bp));
2248			free(pbuf);
2249		}
2250		if (error != 0)
2251			printf("ZFS: i/o error - unable to decompress "
2252			    "block pointer data, error %d\n", error);
2253		return (error);
2254	}
2255
2256	error = EIO;
2257
2258	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2259		const dva_t *dva = &bp->blk_dva[i];
2260		vdev_t *vdev;
2261		vdev_list_t *vlist;
2262		uint64_t vdevid;
2263		off_t offset;
2264
2265		if (!dva->dva_word[0] && !dva->dva_word[1])
2266			continue;
2267
2268		vdevid = DVA_GET_VDEV(dva);
2269		offset = DVA_GET_OFFSET(dva);
2270		vlist = &spa->spa_root_vdev->v_children;
2271		STAILQ_FOREACH(vdev, vlist, v_childlink) {
2272			if (vdev->v_id == vdevid)
2273				break;
2274		}
2275		if (!vdev || !vdev->v_read)
2276			continue;
2277
2278		size = BP_GET_PSIZE(bp);
2279		if (vdev->v_read == vdev_raidz_read) {
2280			align = 1ULL << vdev->v_ashift;
2281			if (P2PHASE(size, align) != 0)
2282				size = P2ROUNDUP(size, align);
2283		}
2284		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2285			pbuf = malloc(size);
2286		else
2287			pbuf = buf;
2288
2289		if (pbuf == NULL) {
2290			error = ENOMEM;
2291			break;
2292		}
2293
2294		if (DVA_GET_GANG(dva))
2295			error = zio_read_gang(spa, bp, pbuf);
2296		else
2297			error = vdev->v_read(vdev, bp, pbuf, offset, size);
2298		if (error == 0) {
2299			if (cpfunc != ZIO_COMPRESS_OFF)
2300				error = zio_decompress_data(cpfunc, pbuf,
2301				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2302			else if (size != BP_GET_PSIZE(bp))
2303				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2304		} else {
2305			printf("zio_read error: %d\n", error);
2306		}
2307		if (buf != pbuf)
2308			free(pbuf);
2309		if (error == 0)
2310			break;
2311	}
2312	if (error != 0)
2313		printf("ZFS: i/o error - all block copies unavailable\n");
2314
2315	return (error);
2316}
2317
2318static int
2319dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2320    void *buf, size_t buflen)
2321{
2322	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2323	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2324	int nlevels = dnode->dn_nlevels;
2325	int i, rc;
2326
2327	if (bsize > SPA_MAXBLOCKSIZE) {
2328		printf("ZFS: I/O error - blocks larger than %llu are not "
2329		    "supported\n", SPA_MAXBLOCKSIZE);
2330		return (EIO);
2331	}
2332
2333	/*
2334	 * Handle odd block sizes, mirrors dmu_read_impl().  Data can't exist
2335	 * past the first block, so we'll clip the read to the portion of the
2336	 * buffer within bsize and zero out the remainder.
2337	 */
2338	if (dnode->dn_maxblkid == 0) {
2339		size_t newbuflen;
2340
2341		newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset);
2342		bzero((char *)buf + newbuflen, buflen - newbuflen);
2343		buflen = newbuflen;
2344	}
2345
2346	/*
2347	 * Note: bsize may not be a power of two here so we need to do an
2348	 * actual divide rather than a bitshift.
2349	 */
2350	while (buflen > 0) {
2351		uint64_t bn = offset / bsize;
2352		int boff = offset % bsize;
2353		int ibn;
2354		const blkptr_t *indbp;
2355		blkptr_t bp;
2356
2357		if (bn > dnode->dn_maxblkid)
2358			return (EIO);
2359
2360		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2361			goto cached;
2362
2363		indbp = dnode->dn_blkptr;
2364		for (i = 0; i < nlevels; i++) {
2365			/*
2366			 * Copy the bp from the indirect array so that
2367			 * we can re-use the scratch buffer for multi-level
2368			 * objects.
2369			 */
2370			ibn = bn >> ((nlevels - i - 1) * ibshift);
2371			ibn &= ((1 << ibshift) - 1);
2372			bp = indbp[ibn];
2373			if (BP_IS_HOLE(&bp)) {
2374				memset(dnode_cache_buf, 0, bsize);
2375				break;
2376			}
2377			rc = zio_read(spa, &bp, dnode_cache_buf);
2378			if (rc)
2379				return (rc);
2380			indbp = (const blkptr_t *) dnode_cache_buf;
2381		}
2382		dnode_cache_obj = dnode;
2383		dnode_cache_bn = bn;
2384	cached:
2385
2386		/*
2387		 * The buffer contains our data block. Copy what we
2388		 * need from it and loop.
2389		 */
2390		i = bsize - boff;
2391		if (i > buflen) i = buflen;
2392		memcpy(buf, &dnode_cache_buf[boff], i);
2393		buf = ((char *)buf) + i;
2394		offset += i;
2395		buflen -= i;
2396	}
2397
2398	return (0);
2399}
2400
2401/*
2402 * Lookup a value in a microzap directory.
2403 */
2404static int
2405mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2406    uint64_t *value)
2407{
2408	const mzap_ent_phys_t *mze;
2409	int chunks, i;
2410
2411	/*
2412	 * Microzap objects use exactly one block. Read the whole
2413	 * thing.
2414	 */
2415	chunks = size / MZAP_ENT_LEN - 1;
2416	for (i = 0; i < chunks; i++) {
2417		mze = &mz->mz_chunk[i];
2418		if (strcmp(mze->mze_name, name) == 0) {
2419			*value = mze->mze_value;
2420			return (0);
2421		}
2422	}
2423
2424	return (ENOENT);
2425}
2426
2427/*
2428 * Compare a name with a zap leaf entry. Return non-zero if the name
2429 * matches.
2430 */
2431static int
2432fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2433    const char *name)
2434{
2435	size_t namelen;
2436	const zap_leaf_chunk_t *nc;
2437	const char *p;
2438
2439	namelen = zc->l_entry.le_name_numints;
2440
2441	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2442	p = name;
2443	while (namelen > 0) {
2444		size_t len;
2445
2446		len = namelen;
2447		if (len > ZAP_LEAF_ARRAY_BYTES)
2448			len = ZAP_LEAF_ARRAY_BYTES;
2449		if (memcmp(p, nc->l_array.la_array, len))
2450			return (0);
2451		p += len;
2452		namelen -= len;
2453		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2454	}
2455
2456	return (1);
2457}
2458
2459/*
2460 * Extract a uint64_t value from a zap leaf entry.
2461 */
2462static uint64_t
2463fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2464{
2465	const zap_leaf_chunk_t *vc;
2466	int i;
2467	uint64_t value;
2468	const uint8_t *p;
2469
2470	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2471	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2472		value = (value << 8) | p[i];
2473	}
2474
2475	return (value);
2476}
2477
2478static void
2479stv(int len, void *addr, uint64_t value)
2480{
2481	switch (len) {
2482	case 1:
2483		*(uint8_t *)addr = value;
2484		return;
2485	case 2:
2486		*(uint16_t *)addr = value;
2487		return;
2488	case 4:
2489		*(uint32_t *)addr = value;
2490		return;
2491	case 8:
2492		*(uint64_t *)addr = value;
2493		return;
2494	}
2495}
2496
2497/*
2498 * Extract a array from a zap leaf entry.
2499 */
2500static void
2501fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2502    uint64_t integer_size, uint64_t num_integers, void *buf)
2503{
2504	uint64_t array_int_len = zc->l_entry.le_value_intlen;
2505	uint64_t value = 0;
2506	uint64_t *u64 = buf;
2507	char *p = buf;
2508	int len = MIN(zc->l_entry.le_value_numints, num_integers);
2509	int chunk = zc->l_entry.le_value_chunk;
2510	int byten = 0;
2511
2512	if (integer_size == 8 && len == 1) {
2513		*u64 = fzap_leaf_value(zl, zc);
2514		return;
2515	}
2516
2517	while (len > 0) {
2518		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2519		int i;
2520
2521		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2522		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2523			value = (value << 8) | la->la_array[i];
2524			byten++;
2525			if (byten == array_int_len) {
2526				stv(integer_size, p, value);
2527				byten = 0;
2528				len--;
2529				if (len == 0)
2530					return;
2531				p += integer_size;
2532			}
2533		}
2534		chunk = la->la_next;
2535	}
2536}
2537
2538static int
2539fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2540{
2541
2542	switch (integer_size) {
2543	case 1:
2544	case 2:
2545	case 4:
2546	case 8:
2547		break;
2548	default:
2549		return (EINVAL);
2550	}
2551
2552	if (integer_size * num_integers > ZAP_MAXVALUELEN)
2553		return (E2BIG);
2554
2555	return (0);
2556}
2557
2558static void
2559zap_leaf_free(zap_leaf_t *leaf)
2560{
2561	free(leaf->l_phys);
2562	free(leaf);
2563}
2564
2565static int
2566zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2567{
2568	int bs = FZAP_BLOCK_SHIFT(zap);
2569	int err;
2570
2571	*lp = malloc(sizeof(**lp));
2572	if (*lp == NULL)
2573		return (ENOMEM);
2574
2575	(*lp)->l_bs = bs;
2576	(*lp)->l_phys = malloc(1 << bs);
2577
2578	if ((*lp)->l_phys == NULL) {
2579		free(*lp);
2580		return (ENOMEM);
2581	}
2582	err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2583	    1 << bs);
2584	if (err != 0) {
2585		zap_leaf_free(*lp);
2586	}
2587	return (err);
2588}
2589
2590static int
2591zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2592    uint64_t *valp)
2593{
2594	int bs = FZAP_BLOCK_SHIFT(zap);
2595	uint64_t blk = idx >> (bs - 3);
2596	uint64_t off = idx & ((1 << (bs - 3)) - 1);
2597	uint64_t *buf;
2598	int rc;
2599
2600	buf = malloc(1 << zap->zap_block_shift);
2601	if (buf == NULL)
2602		return (ENOMEM);
2603	rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2604	    buf, 1 << zap->zap_block_shift);
2605	if (rc == 0)
2606		*valp = buf[off];
2607	free(buf);
2608	return (rc);
2609}
2610
2611static int
2612zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2613{
2614	if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2615		*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2616		return (0);
2617	} else {
2618		return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2619		    idx, valp));
2620	}
2621}
2622
2623#define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2624static int
2625zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2626{
2627	uint64_t idx, blk;
2628	int err;
2629
2630	idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2631	err = zap_idx_to_blk(zap, idx, &blk);
2632	if (err != 0)
2633		return (err);
2634	return (zap_get_leaf_byblk(zap, blk, lp));
2635}
2636
2637#define	CHAIN_END	0xffff	/* end of the chunk chain */
2638#define	LEAF_HASH(l, h) \
2639	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2640	((h) >> \
2641	(64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2642#define	LEAF_HASH_ENTPTR(l, h)	(&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2643
2644static int
2645zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2646    uint64_t integer_size, uint64_t num_integers, void *value)
2647{
2648	int rc;
2649	uint16_t *chunkp;
2650	struct zap_leaf_entry *le;
2651
2652	/*
2653	 * Make sure this chunk matches our hash.
2654	 */
2655	if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2656	    zl->l_phys->l_hdr.lh_prefix !=
2657	    hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2658		return (EIO);
2659
2660	rc = ENOENT;
2661	for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2662	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
2663		zap_leaf_chunk_t *zc;
2664		uint16_t chunk = *chunkp;
2665
2666		le = ZAP_LEAF_ENTRY(zl, chunk);
2667		if (le->le_hash != hash)
2668			continue;
2669		zc = &ZAP_LEAF_CHUNK(zl, chunk);
2670		if (fzap_name_equal(zl, zc, name)) {
2671			if (zc->l_entry.le_value_intlen > integer_size) {
2672				rc = EINVAL;
2673			} else {
2674				fzap_leaf_array(zl, zc, integer_size,
2675				    num_integers, value);
2676				rc = 0;
2677			}
2678			break;
2679		}
2680	}
2681	return (rc);
2682}
2683
2684/*
2685 * Lookup a value in a fatzap directory.
2686 */
2687static int
2688fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2689    const char *name, uint64_t integer_size, uint64_t num_integers,
2690    void *value)
2691{
2692	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2693	fat_zap_t z;
2694	zap_leaf_t *zl;
2695	uint64_t hash;
2696	int rc;
2697
2698	if (zh->zap_magic != ZAP_MAGIC)
2699		return (EIO);
2700
2701	if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2702		return (rc);
2703	}
2704
2705	z.zap_block_shift = ilog2(bsize);
2706	z.zap_phys = zh;
2707	z.zap_spa = spa;
2708	z.zap_dnode = dnode;
2709
2710	hash = zap_hash(zh->zap_salt, name);
2711	rc = zap_deref_leaf(&z, hash, &zl);
2712	if (rc != 0)
2713		return (rc);
2714
2715	rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2716
2717	zap_leaf_free(zl);
2718	return (rc);
2719}
2720
2721/*
2722 * Lookup a name in a zap object and return its value as a uint64_t.
2723 */
2724static int
2725zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2726    uint64_t integer_size, uint64_t num_integers, void *value)
2727{
2728	int rc;
2729	zap_phys_t *zap;
2730	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2731
2732	zap = malloc(size);
2733	if (zap == NULL)
2734		return (ENOMEM);
2735
2736	rc = dnode_read(spa, dnode, 0, zap, size);
2737	if (rc)
2738		goto done;
2739
2740	switch (zap->zap_block_type) {
2741	case ZBT_MICRO:
2742		rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2743		break;
2744	case ZBT_HEADER:
2745		rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2746		    num_integers, value);
2747		break;
2748	default:
2749		printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2750		    zap->zap_block_type);
2751		rc = EIO;
2752	}
2753done:
2754	free(zap);
2755	return (rc);
2756}
2757
2758/*
2759 * List a microzap directory.
2760 */
2761static int
2762mzap_list(const mzap_phys_t *mz, size_t size,
2763    int (*callback)(const char *, uint64_t))
2764{
2765	const mzap_ent_phys_t *mze;
2766	int chunks, i, rc;
2767
2768	/*
2769	 * Microzap objects use exactly one block. Read the whole
2770	 * thing.
2771	 */
2772	rc = 0;
2773	chunks = size / MZAP_ENT_LEN - 1;
2774	for (i = 0; i < chunks; i++) {
2775		mze = &mz->mz_chunk[i];
2776		if (mze->mze_name[0]) {
2777			rc = callback(mze->mze_name, mze->mze_value);
2778			if (rc != 0)
2779				break;
2780		}
2781	}
2782
2783	return (rc);
2784}
2785
2786/*
2787 * List a fatzap directory.
2788 */
2789static int
2790fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2791    int (*callback)(const char *, uint64_t))
2792{
2793	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2794	fat_zap_t z;
2795	uint64_t i;
2796	int j, rc;
2797
2798	if (zh->zap_magic != ZAP_MAGIC)
2799		return (EIO);
2800
2801	z.zap_block_shift = ilog2(bsize);
2802	z.zap_phys = zh;
2803
2804	/*
2805	 * This assumes that the leaf blocks start at block 1. The
2806	 * documentation isn't exactly clear on this.
2807	 */
2808	zap_leaf_t zl;
2809	zl.l_bs = z.zap_block_shift;
2810	zl.l_phys = malloc(bsize);
2811	if (zl.l_phys == NULL)
2812		return (ENOMEM);
2813
2814	for (i = 0; i < zh->zap_num_leafs; i++) {
2815		off_t off = ((off_t)(i + 1)) << zl.l_bs;
2816		char name[256], *p;
2817		uint64_t value;
2818
2819		if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2820			free(zl.l_phys);
2821			return (EIO);
2822		}
2823
2824		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2825			zap_leaf_chunk_t *zc, *nc;
2826			int namelen;
2827
2828			zc = &ZAP_LEAF_CHUNK(&zl, j);
2829			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2830				continue;
2831			namelen = zc->l_entry.le_name_numints;
2832			if (namelen > sizeof(name))
2833				namelen = sizeof(name);
2834
2835			/*
2836			 * Paste the name back together.
2837			 */
2838			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2839			p = name;
2840			while (namelen > 0) {
2841				int len;
2842				len = namelen;
2843				if (len > ZAP_LEAF_ARRAY_BYTES)
2844					len = ZAP_LEAF_ARRAY_BYTES;
2845				memcpy(p, nc->l_array.la_array, len);
2846				p += len;
2847				namelen -= len;
2848				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2849			}
2850
2851			/*
2852			 * Assume the first eight bytes of the value are
2853			 * a uint64_t.
2854			 */
2855			value = fzap_leaf_value(&zl, zc);
2856
2857			/* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2858			rc = callback((const char *)name, value);
2859			if (rc != 0) {
2860				free(zl.l_phys);
2861				return (rc);
2862			}
2863		}
2864	}
2865
2866	free(zl.l_phys);
2867	return (0);
2868}
2869
2870static int zfs_printf(const char *name, uint64_t value __unused)
2871{
2872
2873	printf("%s\n", name);
2874
2875	return (0);
2876}
2877
2878/*
2879 * List a zap directory.
2880 */
2881static int
2882zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2883{
2884	zap_phys_t *zap;
2885	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2886	int rc;
2887
2888	zap = malloc(size);
2889	if (zap == NULL)
2890		return (ENOMEM);
2891
2892	rc = dnode_read(spa, dnode, 0, zap, size);
2893	if (rc == 0) {
2894		if (zap->zap_block_type == ZBT_MICRO)
2895			rc = mzap_list((const mzap_phys_t *)zap, size,
2896			    zfs_printf);
2897		else
2898			rc = fzap_list(spa, dnode, zap, zfs_printf);
2899	}
2900	free(zap);
2901	return (rc);
2902}
2903
2904static int
2905objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2906    dnode_phys_t *dnode)
2907{
2908	off_t offset;
2909
2910	offset = objnum * sizeof(dnode_phys_t);
2911	return dnode_read(spa, &os->os_meta_dnode, offset,
2912		dnode, sizeof(dnode_phys_t));
2913}
2914
2915/*
2916 * Lookup a name in a microzap directory.
2917 */
2918static int
2919mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2920{
2921	const mzap_ent_phys_t *mze;
2922	int chunks, i;
2923
2924	/*
2925	 * Microzap objects use exactly one block. Read the whole
2926	 * thing.
2927	 */
2928	chunks = size / MZAP_ENT_LEN - 1;
2929	for (i = 0; i < chunks; i++) {
2930		mze = &mz->mz_chunk[i];
2931		if (value == mze->mze_value) {
2932			strcpy(name, mze->mze_name);
2933			return (0);
2934		}
2935	}
2936
2937	return (ENOENT);
2938}
2939
2940static void
2941fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2942{
2943	size_t namelen;
2944	const zap_leaf_chunk_t *nc;
2945	char *p;
2946
2947	namelen = zc->l_entry.le_name_numints;
2948
2949	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2950	p = name;
2951	while (namelen > 0) {
2952		size_t len;
2953		len = namelen;
2954		if (len > ZAP_LEAF_ARRAY_BYTES)
2955			len = ZAP_LEAF_ARRAY_BYTES;
2956		memcpy(p, nc->l_array.la_array, len);
2957		p += len;
2958		namelen -= len;
2959		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2960	}
2961
2962	*p = '\0';
2963}
2964
2965static int
2966fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2967    char *name, uint64_t value)
2968{
2969	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2970	fat_zap_t z;
2971	uint64_t i;
2972	int j, rc;
2973
2974	if (zh->zap_magic != ZAP_MAGIC)
2975		return (EIO);
2976
2977	z.zap_block_shift = ilog2(bsize);
2978	z.zap_phys = zh;
2979
2980	/*
2981	 * This assumes that the leaf blocks start at block 1. The
2982	 * documentation isn't exactly clear on this.
2983	 */
2984	zap_leaf_t zl;
2985	zl.l_bs = z.zap_block_shift;
2986	zl.l_phys = malloc(bsize);
2987	if (zl.l_phys == NULL)
2988		return (ENOMEM);
2989
2990	for (i = 0; i < zh->zap_num_leafs; i++) {
2991		off_t off = ((off_t)(i + 1)) << zl.l_bs;
2992
2993		rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
2994		if (rc != 0)
2995			goto done;
2996
2997		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2998			zap_leaf_chunk_t *zc;
2999
3000			zc = &ZAP_LEAF_CHUNK(&zl, j);
3001			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
3002				continue;
3003			if (zc->l_entry.le_value_intlen != 8 ||
3004			    zc->l_entry.le_value_numints != 1)
3005				continue;
3006
3007			if (fzap_leaf_value(&zl, zc) == value) {
3008				fzap_name_copy(&zl, zc, name);
3009				goto done;
3010			}
3011		}
3012	}
3013
3014	rc = ENOENT;
3015done:
3016	free(zl.l_phys);
3017	return (rc);
3018}
3019
3020static int
3021zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3022    uint64_t value)
3023{
3024	zap_phys_t *zap;
3025	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3026	int rc;
3027
3028	zap = malloc(size);
3029	if (zap == NULL)
3030		return (ENOMEM);
3031
3032	rc = dnode_read(spa, dnode, 0, zap, size);
3033	if (rc == 0) {
3034		if (zap->zap_block_type == ZBT_MICRO)
3035			rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3036			    name, value);
3037		else
3038			rc = fzap_rlookup(spa, dnode, zap, name, value);
3039	}
3040	free(zap);
3041	return (rc);
3042}
3043
3044static int
3045zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3046{
3047	char name[256];
3048	char component[256];
3049	uint64_t dir_obj, parent_obj, child_dir_zapobj;
3050	dnode_phys_t child_dir_zap, snapnames_zap, dataset, dir, parent;
3051	dsl_dir_phys_t *dd;
3052	dsl_dataset_phys_t *ds;
3053	char *p;
3054	int len;
3055	boolean_t issnap = B_FALSE;
3056
3057	p = &name[sizeof(name) - 1];
3058	*p = '\0';
3059
3060	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3061		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3062		return (EIO);
3063	}
3064	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3065	dir_obj = ds->ds_dir_obj;
3066	if (ds->ds_snapnames_zapobj == 0)
3067		issnap = B_TRUE;
3068
3069	for (;;) {
3070		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3071			return (EIO);
3072		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3073
3074		/* Actual loop condition. */
3075		parent_obj = dd->dd_parent_obj;
3076		if (parent_obj == 0)
3077			break;
3078
3079		if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3080		    &parent) != 0)
3081			return (EIO);
3082		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3083		if (issnap == B_TRUE) {
3084			/*
3085			 * The dataset we are looking up is a snapshot
3086			 * the dir_obj is the parent already, we don't want
3087			 * the grandparent just yet. Reset to the parent.
3088			 */
3089			dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3090			/* Lookup the dataset to get the snapname ZAP */
3091			if (objset_get_dnode(spa, spa->spa_mos,
3092			    dd->dd_head_dataset_obj, &dataset))
3093				return (EIO);
3094			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3095			if (objset_get_dnode(spa, spa->spa_mos,
3096			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3097				return (EIO);
3098			/* Get the name of the snapshot */
3099			if (zap_rlookup(spa, &snapnames_zap, component,
3100			    objnum) != 0)
3101				return (EIO);
3102			len = strlen(component);
3103			p -= len;
3104			memcpy(p, component, len);
3105			--p;
3106			*p = '@';
3107			issnap = B_FALSE;
3108			continue;
3109		}
3110
3111		child_dir_zapobj = dd->dd_child_dir_zapobj;
3112		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3113		    &child_dir_zap) != 0)
3114			return (EIO);
3115		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3116			return (EIO);
3117
3118		len = strlen(component);
3119		p -= len;
3120		memcpy(p, component, len);
3121		--p;
3122		*p = '/';
3123
3124		/* Actual loop iteration. */
3125		dir_obj = parent_obj;
3126	}
3127
3128	if (*p != '\0')
3129		++p;
3130	strcpy(result, p);
3131
3132	return (0);
3133}
3134
3135static int
3136zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3137{
3138	char element[256];
3139	uint64_t dir_obj, child_dir_zapobj;
3140	dnode_phys_t child_dir_zap, snapnames_zap, dir, dataset;
3141	dsl_dir_phys_t *dd;
3142	dsl_dataset_phys_t *ds;
3143	const char *p, *q;
3144	boolean_t issnap = B_FALSE;
3145
3146	if (objset_get_dnode(spa, spa->spa_mos,
3147	    DMU_POOL_DIRECTORY_OBJECT, &dir))
3148		return (EIO);
3149	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3150	    1, &dir_obj))
3151		return (EIO);
3152
3153	p = name;
3154	for (;;) {
3155		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3156			return (EIO);
3157		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3158
3159		while (*p == '/')
3160			p++;
3161		/* Actual loop condition #1. */
3162		if (*p == '\0')
3163			break;
3164
3165		q = strchr(p, '/');
3166		if (q) {
3167			memcpy(element, p, q - p);
3168			element[q - p] = '\0';
3169			p = q + 1;
3170		} else {
3171			strcpy(element, p);
3172			p += strlen(p);
3173		}
3174
3175		if (issnap == B_TRUE) {
3176		        if (objset_get_dnode(spa, spa->spa_mos,
3177			    dd->dd_head_dataset_obj, &dataset))
3178		                return (EIO);
3179			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3180			if (objset_get_dnode(spa, spa->spa_mos,
3181			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3182				return (EIO);
3183			/* Actual loop condition #2. */
3184			if (zap_lookup(spa, &snapnames_zap, element,
3185			    sizeof (dir_obj), 1, &dir_obj) != 0)
3186				return (ENOENT);
3187			*objnum = dir_obj;
3188			return (0);
3189		} else if ((q = strchr(element, '@')) != NULL) {
3190			issnap = B_TRUE;
3191			element[q - element] = '\0';
3192			p = q + 1;
3193		}
3194		child_dir_zapobj = dd->dd_child_dir_zapobj;
3195		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3196		    &child_dir_zap) != 0)
3197			return (EIO);
3198
3199		/* Actual loop condition #2. */
3200		if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3201		    1, &dir_obj) != 0)
3202			return (ENOENT);
3203	}
3204
3205	*objnum = dd->dd_head_dataset_obj;
3206	return (0);
3207}
3208
3209#ifndef BOOT2
3210static int
3211zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3212{
3213	uint64_t dir_obj, child_dir_zapobj;
3214	dnode_phys_t child_dir_zap, dir, dataset;
3215	dsl_dataset_phys_t *ds;
3216	dsl_dir_phys_t *dd;
3217
3218	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3219		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3220		return (EIO);
3221	}
3222	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3223	dir_obj = ds->ds_dir_obj;
3224
3225	if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3226		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3227		return (EIO);
3228	}
3229	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3230
3231	child_dir_zapobj = dd->dd_child_dir_zapobj;
3232	if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3233	    &child_dir_zap) != 0) {
3234		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3235		return (EIO);
3236	}
3237
3238	return (zap_list(spa, &child_dir_zap) != 0);
3239}
3240
3241int
3242zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3243    int (*callback)(const char *, uint64_t))
3244{
3245	uint64_t dir_obj, child_dir_zapobj;
3246	dnode_phys_t child_dir_zap, dir, dataset;
3247	dsl_dataset_phys_t *ds;
3248	dsl_dir_phys_t *dd;
3249	zap_phys_t *zap;
3250	size_t size;
3251	int err;
3252
3253	err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3254	if (err != 0) {
3255		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3256		return (err);
3257	}
3258	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3259	dir_obj = ds->ds_dir_obj;
3260
3261	err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3262	if (err != 0) {
3263		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3264		return (err);
3265	}
3266	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3267
3268	child_dir_zapobj = dd->dd_child_dir_zapobj;
3269	err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3270	    &child_dir_zap);
3271	if (err != 0) {
3272		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3273		return (err);
3274	}
3275
3276	size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3277	zap = malloc(size);
3278	if (zap != NULL) {
3279		err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3280		if (err != 0)
3281			goto done;
3282
3283		if (zap->zap_block_type == ZBT_MICRO)
3284			err = mzap_list((const mzap_phys_t *)zap, size,
3285			    callback);
3286		else
3287			err = fzap_list(spa, &child_dir_zap, zap, callback);
3288	} else {
3289		err = ENOMEM;
3290	}
3291done:
3292	free(zap);
3293	return (err);
3294}
3295#endif
3296
3297/*
3298 * Find the object set given the object number of its dataset object
3299 * and return its details in *objset
3300 */
3301static int
3302zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3303{
3304	dnode_phys_t dataset;
3305	dsl_dataset_phys_t *ds;
3306
3307	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3308		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3309		return (EIO);
3310	}
3311
3312	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3313	if (zio_read(spa, &ds->ds_bp, objset)) {
3314		printf("ZFS: can't read object set for dataset %ju\n",
3315		    (uintmax_t)objnum);
3316		return (EIO);
3317	}
3318
3319	return (0);
3320}
3321
3322/*
3323 * Find the object set pointed to by the BOOTFS property or the root
3324 * dataset if there is none and return its details in *objset
3325 */
3326static int
3327zfs_get_root(const spa_t *spa, uint64_t *objid)
3328{
3329	dnode_phys_t dir, propdir;
3330	uint64_t props, bootfs, root;
3331
3332	*objid = 0;
3333
3334	/*
3335	 * Start with the MOS directory object.
3336	 */
3337	if (objset_get_dnode(spa, spa->spa_mos,
3338	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3339		printf("ZFS: can't read MOS object directory\n");
3340		return (EIO);
3341	}
3342
3343	/*
3344	 * Lookup the pool_props and see if we can find a bootfs.
3345	 */
3346	if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3347	    sizeof(props), 1, &props) == 0 &&
3348	    objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3349	    zap_lookup(spa, &propdir, "bootfs",
3350	    sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3351		*objid = bootfs;
3352		return (0);
3353	}
3354	/*
3355	 * Lookup the root dataset directory
3356	 */
3357	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3358	    sizeof(root), 1, &root) ||
3359	    objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3360		printf("ZFS: can't find root dsl_dir\n");
3361		return (EIO);
3362	}
3363
3364	/*
3365	 * Use the information from the dataset directory's bonus buffer
3366	 * to find the dataset object and from that the object set itself.
3367	 */
3368	dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3369	*objid = dd->dd_head_dataset_obj;
3370	return (0);
3371}
3372
3373static int
3374zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3375{
3376
3377	mount->spa = spa;
3378
3379	/*
3380	 * Find the root object set if not explicitly provided
3381	 */
3382	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3383		printf("ZFS: can't find root filesystem\n");
3384		return (EIO);
3385	}
3386
3387	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3388		printf("ZFS: can't open root filesystem\n");
3389		return (EIO);
3390	}
3391
3392	mount->rootobj = rootobj;
3393
3394	return (0);
3395}
3396
3397/*
3398 * callback function for feature name checks.
3399 */
3400static int
3401check_feature(const char *name, uint64_t value)
3402{
3403	int i;
3404
3405	if (value == 0)
3406		return (0);
3407	if (name[0] == '\0')
3408		return (0);
3409
3410	for (i = 0; features_for_read[i] != NULL; i++) {
3411		if (strcmp(name, features_for_read[i]) == 0)
3412			return (0);
3413	}
3414	printf("ZFS: unsupported feature: %s\n", name);
3415	return (EIO);
3416}
3417
3418/*
3419 * Checks whether the MOS features that are active are supported.
3420 */
3421static int
3422check_mos_features(const spa_t *spa)
3423{
3424	dnode_phys_t dir;
3425	zap_phys_t *zap;
3426	uint64_t objnum;
3427	size_t size;
3428	int rc;
3429
3430	if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3431	    &dir)) != 0)
3432		return (rc);
3433	if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3434	    sizeof (objnum), 1, &objnum)) != 0) {
3435		/*
3436		 * It is older pool without features. As we have already
3437		 * tested the label, just return without raising the error.
3438		 */
3439		return (0);
3440	}
3441
3442	if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3443		return (rc);
3444
3445	if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3446		return (EIO);
3447
3448	size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3449	zap = malloc(size);
3450	if (zap == NULL)
3451		return (ENOMEM);
3452
3453	if (dnode_read(spa, &dir, 0, zap, size)) {
3454		free(zap);
3455		return (EIO);
3456	}
3457
3458	if (zap->zap_block_type == ZBT_MICRO)
3459		rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3460	else
3461		rc = fzap_list(spa, &dir, zap, check_feature);
3462
3463	free(zap);
3464	return (rc);
3465}
3466
3467static int
3468load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3469{
3470	dnode_phys_t dir;
3471	size_t size;
3472	int rc;
3473	char *nv;
3474
3475	*value = NULL;
3476	if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3477		return (rc);
3478	if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3479	    dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3480		return (EIO);
3481	}
3482
3483	if (dir.dn_bonuslen != sizeof (uint64_t))
3484		return (EIO);
3485
3486	size = *(uint64_t *)DN_BONUS(&dir);
3487	nv = malloc(size);
3488	if (nv == NULL)
3489		return (ENOMEM);
3490
3491	rc = dnode_read(spa, &dir, 0, nv, size);
3492	if (rc != 0) {
3493		free(nv);
3494		nv = NULL;
3495		return (rc);
3496	}
3497	*value = nvlist_import(nv, size);
3498	free(nv);
3499	return (rc);
3500}
3501
3502static int
3503zfs_spa_init(spa_t *spa)
3504{
3505	struct uberblock checkpoint;
3506	dnode_phys_t dir;
3507	uint64_t config_object;
3508	nvlist_t *nvlist;
3509	int rc;
3510
3511	if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3512		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3513		return (EIO);
3514	}
3515	if (spa->spa_mos->os_type != DMU_OST_META) {
3516		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3517		return (EIO);
3518	}
3519
3520	if (objset_get_dnode(spa, &spa->spa_mos_master,
3521	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3522		printf("ZFS: failed to read pool %s directory object\n",
3523		    spa->spa_name);
3524		return (EIO);
3525	}
3526	/* this is allowed to fail, older pools do not have salt */
3527	rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3528	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3529	    spa->spa_cksum_salt.zcs_bytes);
3530
3531	rc = check_mos_features(spa);
3532	if (rc != 0) {
3533		printf("ZFS: pool %s is not supported\n", spa->spa_name);
3534		return (rc);
3535	}
3536
3537	rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3538	    sizeof (config_object), 1, &config_object);
3539	if (rc != 0) {
3540		printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3541		return (EIO);
3542	}
3543	rc = load_nvlist(spa, config_object, &nvlist);
3544	if (rc != 0)
3545		return (rc);
3546
3547	rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3548	    sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3549	    &checkpoint);
3550	if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3551		memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3552		    sizeof(checkpoint));
3553		if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3554		    &spa->spa_mos_checkpoint)) {
3555			printf("ZFS: can not read checkpoint data.\n");
3556			return (EIO);
3557		}
3558	}
3559
3560	/*
3561	 * Update vdevs from MOS config. Note, we do skip encoding bytes
3562	 * here. See also vdev_label_read_config().
3563	 */
3564	rc = vdev_init_from_nvlist(spa, nvlist);
3565	nvlist_destroy(nvlist);
3566	return (rc);
3567}
3568
3569static int
3570zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3571{
3572
3573	if (dn->dn_bonustype != DMU_OT_SA) {
3574		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3575
3576		sb->st_mode = zp->zp_mode;
3577		sb->st_uid = zp->zp_uid;
3578		sb->st_gid = zp->zp_gid;
3579		sb->st_size = zp->zp_size;
3580	} else {
3581		sa_hdr_phys_t *sahdrp;
3582		int hdrsize;
3583		size_t size = 0;
3584		void *buf = NULL;
3585
3586		if (dn->dn_bonuslen != 0)
3587			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3588		else {
3589			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3590				blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3591				int error;
3592
3593				size = BP_GET_LSIZE(bp);
3594				buf = malloc(size);
3595				if (buf == NULL)
3596					error = ENOMEM;
3597				else
3598					error = zio_read(spa, bp, buf);
3599
3600				if (error != 0) {
3601					free(buf);
3602					return (error);
3603				}
3604				sahdrp = buf;
3605			} else {
3606				return (EIO);
3607			}
3608		}
3609		hdrsize = SA_HDR_SIZE(sahdrp);
3610		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3611		    SA_MODE_OFFSET);
3612		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3613		    SA_UID_OFFSET);
3614		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3615		    SA_GID_OFFSET);
3616		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3617		    SA_SIZE_OFFSET);
3618		free(buf);
3619	}
3620
3621	return (0);
3622}
3623
3624static int
3625zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3626{
3627	int rc = 0;
3628
3629	if (dn->dn_bonustype == DMU_OT_SA) {
3630		sa_hdr_phys_t *sahdrp = NULL;
3631		size_t size = 0;
3632		void *buf = NULL;
3633		int hdrsize;
3634		char *p;
3635
3636		if (dn->dn_bonuslen != 0) {
3637			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3638		} else {
3639			blkptr_t *bp;
3640
3641			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3642				return (EIO);
3643			bp = DN_SPILL_BLKPTR(dn);
3644
3645			size = BP_GET_LSIZE(bp);
3646			buf = malloc(size);
3647			if (buf == NULL)
3648				rc = ENOMEM;
3649			else
3650				rc = zio_read(spa, bp, buf);
3651			if (rc != 0) {
3652				free(buf);
3653				return (rc);
3654			}
3655			sahdrp = buf;
3656		}
3657		hdrsize = SA_HDR_SIZE(sahdrp);
3658		p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3659		memcpy(path, p, psize);
3660		free(buf);
3661		return (0);
3662	}
3663	/*
3664	 * Second test is purely to silence bogus compiler
3665	 * warning about accessing past the end of dn_bonus.
3666	 */
3667	if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3668	    sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3669		memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3670	} else {
3671		rc = dnode_read(spa, dn, 0, path, psize);
3672	}
3673	return (rc);
3674}
3675
3676struct obj_list {
3677	uint64_t		objnum;
3678	STAILQ_ENTRY(obj_list)	entry;
3679};
3680
3681/*
3682 * Lookup a file and return its dnode.
3683 */
3684static int
3685zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3686{
3687	int rc;
3688	uint64_t objnum;
3689	const spa_t *spa;
3690	dnode_phys_t dn;
3691	const char *p, *q;
3692	char element[256];
3693	char path[1024];
3694	int symlinks_followed = 0;
3695	struct stat sb;
3696	struct obj_list *entry, *tentry;
3697	STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3698
3699	spa = mount->spa;
3700	if (mount->objset.os_type != DMU_OST_ZFS) {
3701		printf("ZFS: unexpected object set type %ju\n",
3702		    (uintmax_t)mount->objset.os_type);
3703		return (EIO);
3704	}
3705
3706	if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3707		return (ENOMEM);
3708
3709	/*
3710	 * Get the root directory dnode.
3711	 */
3712	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3713	if (rc) {
3714		free(entry);
3715		return (rc);
3716	}
3717
3718	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3719	if (rc) {
3720		free(entry);
3721		return (rc);
3722	}
3723	entry->objnum = objnum;
3724	STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3725
3726	rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3727	if (rc != 0)
3728		goto done;
3729
3730	p = upath;
3731	while (p && *p) {
3732		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3733		if (rc != 0)
3734			goto done;
3735
3736		while (*p == '/')
3737			p++;
3738		if (*p == '\0')
3739			break;
3740		q = p;
3741		while (*q != '\0' && *q != '/')
3742			q++;
3743
3744		/* skip dot */
3745		if (p + 1 == q && p[0] == '.') {
3746			p++;
3747			continue;
3748		}
3749		/* double dot */
3750		if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3751			p += 2;
3752			if (STAILQ_FIRST(&on_cache) ==
3753			    STAILQ_LAST(&on_cache, obj_list, entry)) {
3754				rc = ENOENT;
3755				goto done;
3756			}
3757			entry = STAILQ_FIRST(&on_cache);
3758			STAILQ_REMOVE_HEAD(&on_cache, entry);
3759			free(entry);
3760			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3761			continue;
3762		}
3763		if (q - p + 1 > sizeof(element)) {
3764			rc = ENAMETOOLONG;
3765			goto done;
3766		}
3767		memcpy(element, p, q - p);
3768		element[q - p] = 0;
3769		p = q;
3770
3771		if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3772			goto done;
3773		if (!S_ISDIR(sb.st_mode)) {
3774			rc = ENOTDIR;
3775			goto done;
3776		}
3777
3778		rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3779		if (rc)
3780			goto done;
3781		objnum = ZFS_DIRENT_OBJ(objnum);
3782
3783		if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3784			rc = ENOMEM;
3785			goto done;
3786		}
3787		entry->objnum = objnum;
3788		STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3789		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3790		if (rc)
3791			goto done;
3792
3793		/*
3794		 * Check for symlink.
3795		 */
3796		rc = zfs_dnode_stat(spa, &dn, &sb);
3797		if (rc)
3798			goto done;
3799		if (S_ISLNK(sb.st_mode)) {
3800			if (symlinks_followed > 10) {
3801				rc = EMLINK;
3802				goto done;
3803			}
3804			symlinks_followed++;
3805
3806			/*
3807			 * Read the link value and copy the tail of our
3808			 * current path onto the end.
3809			 */
3810			if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3811				rc = ENAMETOOLONG;
3812				goto done;
3813			}
3814			strcpy(&path[sb.st_size], p);
3815
3816			rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3817			if (rc != 0)
3818				goto done;
3819
3820			/*
3821			 * Restart with the new path, starting either at
3822			 * the root or at the parent depending whether or
3823			 * not the link is relative.
3824			 */
3825			p = path;
3826			if (*p == '/') {
3827				while (STAILQ_FIRST(&on_cache) !=
3828				    STAILQ_LAST(&on_cache, obj_list, entry)) {
3829					entry = STAILQ_FIRST(&on_cache);
3830					STAILQ_REMOVE_HEAD(&on_cache, entry);
3831					free(entry);
3832				}
3833			} else {
3834				entry = STAILQ_FIRST(&on_cache);
3835				STAILQ_REMOVE_HEAD(&on_cache, entry);
3836				free(entry);
3837			}
3838			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3839		}
3840	}
3841
3842	*dnode = dn;
3843done:
3844	STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3845		free(entry);
3846	return (rc);
3847}
3848
3849/*
3850 * Return either a cached copy of the bootenv, or read each of the vdev children
3851 * looking for the bootenv. Cache what's found and return the results. Returns 0
3852 * when benvp is filled in, and some errno when not.
3853 */
3854static int
3855zfs_get_bootenv_spa(spa_t *spa, nvlist_t **benvp)
3856{
3857	vdev_t *vd;
3858	nvlist_t *benv = NULL;
3859
3860	if (spa->spa_bootenv == NULL) {
3861		STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children,
3862		    v_childlink) {
3863			benv = vdev_read_bootenv(vd);
3864
3865			if (benv != NULL)
3866				break;
3867		}
3868		spa->spa_bootenv = benv;
3869	}
3870	benv = spa->spa_bootenv;
3871
3872	if (benv == NULL)
3873		return (ENOENT);
3874
3875	*benvp = benv;
3876	return (0);
3877}
3878
3879/*
3880 * Store nvlist to pool label bootenv area. Also updates cached pointer in spa.
3881 */
3882static int
3883zfs_set_bootenv_spa(spa_t *spa, nvlist_t *benv)
3884{
3885	vdev_t *vd;
3886
3887	STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, v_childlink) {
3888		vdev_write_bootenv(vd, benv);
3889	}
3890
3891	spa->spa_bootenv = benv;
3892	return (0);
3893}
3894
3895/*
3896 * Get bootonce value by key. The bootonce <key, value> pair is removed from the
3897 * bootenv nvlist and the remaining nvlist is committed back to disk. This process
3898 * the bootonce flag since we've reached the point in the boot that we've 'used'
3899 * the BE. For chained boot scenarios, we may reach this point multiple times (but
3900 * only remove it and return 0 the first time).
3901 */
3902static int
3903zfs_get_bootonce_spa(spa_t *spa, const char *key, char *buf, size_t size)
3904{
3905	nvlist_t *benv;
3906	char *result = NULL;
3907	int result_size, rv;
3908
3909	if ((rv = zfs_get_bootenv_spa(spa, &benv)) != 0)
3910		return (rv);
3911
3912	if ((rv = nvlist_find(benv, key, DATA_TYPE_STRING, NULL,
3913	    &result, &result_size)) == 0) {
3914		if (result_size == 0) {
3915			/* ignore empty string */
3916			rv = ENOENT;
3917		} else if (buf != NULL) {
3918			size = MIN((size_t)result_size + 1, size);
3919			strlcpy(buf, result, size);
3920		}
3921		(void)nvlist_remove(benv, key, DATA_TYPE_STRING);
3922		(void)zfs_set_bootenv_spa(spa, benv);
3923	}
3924
3925	return (rv);
3926}
3927